drm/vc4: Add support for YUV planes.
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include "pp_acpi.h"
28 #include "hwmgr.h"
29 #include <atombios.h>
30 #include "tonga_hwmgr.h"
31 #include "pptable.h"
32 #include "processpptables.h"
33 #include "tonga_processpptables.h"
34 #include "tonga_pptable.h"
35 #include "pp_debug.h"
36 #include "tonga_ppsmc.h"
37 #include "cgs_common.h"
38 #include "pppcielanes.h"
39 #include "tonga_dyn_defaults.h"
40 #include "smumgr.h"
41 #include "tonga_smumgr.h"
42 #include "tonga_clockpowergating.h"
43 #include "tonga_thermal.h"
44
45 #include "smu/smu_7_1_2_d.h"
46 #include "smu/smu_7_1_2_sh_mask.h"
47
48 #include "gmc/gmc_8_1_d.h"
49 #include "gmc/gmc_8_1_sh_mask.h"
50
51 #include "bif/bif_5_0_d.h"
52 #include "bif/bif_5_0_sh_mask.h"
53
54 #include "cgs_linux.h"
55 #include "eventmgr.h"
56 #include "amd_pcie_helpers.h"
57
58 #define MC_CG_ARB_FREQ_F0 0x0a
59 #define MC_CG_ARB_FREQ_F1 0x0b
60 #define MC_CG_ARB_FREQ_F2 0x0c
61 #define MC_CG_ARB_FREQ_F3 0x0d
62
63 #define MC_CG_SEQ_DRAMCONF_S0 0x05
64 #define MC_CG_SEQ_DRAMCONF_S1 0x06
65 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
66 #define MC_CG_SEQ_YCLK_RESUME 0x0a
67
68 #define PCIE_BUS_CLK 10000
69 #define TCLK (PCIE_BUS_CLK / 10)
70
71 #define SMC_RAM_END 0x40000
72 #define SMC_CG_IND_START 0xc0030000
73 #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/
74
75 #define VOLTAGE_SCALE 4
76 #define VOLTAGE_VID_OFFSET_SCALE1 625
77 #define VOLTAGE_VID_OFFSET_SCALE2 100
78
79 #define VDDC_VDDCI_DELTA 200
80 #define VDDC_VDDGFX_DELTA 300
81
82 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
83 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
84 #define MC_SEQ_MISC0_GDDR5_VALUE 5
85
86 typedef uint32_t PECI_RegistryValue;
87
88 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
89 uint16_t PP_ClockStretcherLookupTable[2][4] = {
90 {600, 1050, 3, 0},
91 {600, 1050, 6, 1} };
92
93 /* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
94 uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
95 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
96 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
97
98 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
99 uint8_t PP_ClockStretchAmountConversion[2][6] = {
100 {0, 1, 3, 2, 4, 5},
101 {0, 2, 4, 5, 6, 5} };
102
103 /* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
104 enum DPM_EVENT_SRC {
105 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
106 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
107 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
108 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
109 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
110 };
111 typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
112
113 const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
114
115 struct tonga_power_state *cast_phw_tonga_power_state(
116 struct pp_hw_power_state *hw_ps)
117 {
118 if (hw_ps == NULL)
119 return NULL;
120
121 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
122 "Invalid Powerstate Type!",
123 return NULL);
124
125 return (struct tonga_power_state *)hw_ps;
126 }
127
128 const struct tonga_power_state *cast_const_phw_tonga_power_state(
129 const struct pp_hw_power_state *hw_ps)
130 {
131 if (hw_ps == NULL)
132 return NULL;
133
134 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
135 "Invalid Powerstate Type!",
136 return NULL);
137
138 return (const struct tonga_power_state *)hw_ps;
139 }
140
141 int tonga_add_voltage(struct pp_hwmgr *hwmgr,
142 phm_ppt_v1_voltage_lookup_table *look_up_table,
143 phm_ppt_v1_voltage_lookup_record *record)
144 {
145 uint32_t i;
146 PP_ASSERT_WITH_CODE((NULL != look_up_table),
147 "Lookup Table empty.", return -1;);
148 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
149 "Lookup Table empty.", return -1;);
150 PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
151 "Lookup Table is full.", return -1;);
152
153 /* This is to avoid entering duplicate calculated records. */
154 for (i = 0; i < look_up_table->count; i++) {
155 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
156 if (look_up_table->entries[i].us_calculated == 1)
157 return 0;
158 else
159 break;
160 }
161 }
162
163 look_up_table->entries[i].us_calculated = 1;
164 look_up_table->entries[i].us_vdd = record->us_vdd;
165 look_up_table->entries[i].us_cac_low = record->us_cac_low;
166 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
167 look_up_table->entries[i].us_cac_high = record->us_cac_high;
168 /* Only increment the count when we're appending, not replacing duplicate entry. */
169 if (i == look_up_table->count)
170 look_up_table->count++;
171
172 return 0;
173 }
174
175 int tonga_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
176 {
177 PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
178
179 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
180 }
181
182 uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
183 uint32_t voltage)
184 {
185 uint8_t count = (uint8_t) (voltage_table->count);
186 uint8_t i = 0;
187
188 PP_ASSERT_WITH_CODE((NULL != voltage_table),
189 "Voltage Table empty.", return 0;);
190 PP_ASSERT_WITH_CODE((0 != count),
191 "Voltage Table empty.", return 0;);
192
193 for (i = 0; i < count; i++) {
194 /* find first voltage bigger than requested */
195 if (voltage_table->entries[i].value >= voltage)
196 return i;
197 }
198
199 /* voltage is bigger than max voltage in the table */
200 return i - 1;
201 }
202
203 /**
204 * @brief PhwTonga_GetVoltageOrder
205 * Returns index of requested voltage record in lookup(table)
206 * @param hwmgr - pointer to hardware manager
207 * @param lookupTable - lookup list to search in
208 * @param voltage - voltage to look for
209 * @return 0 on success
210 */
211 uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
212 uint16_t voltage)
213 {
214 uint8_t count = (uint8_t) (look_up_table->count);
215 uint8_t i;
216
217 PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
218 PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
219
220 for (i = 0; i < count; i++) {
221 /* find first voltage equal or bigger than requested */
222 if (look_up_table->entries[i].us_vdd >= voltage)
223 return i;
224 }
225
226 /* voltage is bigger than max voltage in the table */
227 return i-1;
228 }
229
230 bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
231 {
232 /*
233 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
234 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
235 * whereas voltage control is a fundemental change that will not be disabled
236 */
237
238 return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
239 FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
240 }
241
242 /**
243 * Re-generate the DPM level mask value
244 * @param hwmgr the address of the hardware manager
245 */
246 static uint32_t tonga_get_dpm_level_enable_mask_value(
247 struct tonga_single_dpm_table * dpm_table)
248 {
249 uint32_t i;
250 uint32_t mask_value = 0;
251
252 for (i = dpm_table->count; i > 0; i--) {
253 mask_value = mask_value << 1;
254
255 if (dpm_table->dpm_levels[i-1].enabled)
256 mask_value |= 0x1;
257 else
258 mask_value &= 0xFFFFFFFE;
259 }
260 return mask_value;
261 }
262
263 /**
264 * Retrieve DPM default values from registry (if available)
265 *
266 * @param hwmgr the address of the powerplay hardware manager.
267 */
268 void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
269 {
270 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
271 phw_tonga_ulv_parm *ulv = &(data->ulv);
272 uint32_t tmp;
273
274 ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
275 data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
276 data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
277 data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
278 data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
279 data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
280 data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
281 data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
282 data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
283
284 data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
285 data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
286
287 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
288 PHM_PlatformCaps_ABM);
289 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
290 PHM_PlatformCaps_NonABMSupportInPPLib);
291
292 tmp = 0;
293 if (tmp == 0)
294 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
295 PHM_PlatformCaps_DynamicACTiming);
296
297 tmp = 0;
298 if (0 != tmp)
299 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
300 PHM_PlatformCaps_DisableMemoryTransition);
301
302 data->mclk_strobe_mode_threshold = 40000;
303 data->mclk_stutter_mode_threshold = 30000;
304 data->mclk_edc_enable_threshold = 40000;
305 data->mclk_edc_wr_enable_threshold = 40000;
306
307 tmp = 0;
308 if (tmp != 0)
309 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
310 PHM_PlatformCaps_DisableMCLS);
311
312 data->pcie_gen_performance.max = PP_PCIEGen1;
313 data->pcie_gen_performance.min = PP_PCIEGen3;
314 data->pcie_gen_power_saving.max = PP_PCIEGen1;
315 data->pcie_gen_power_saving.min = PP_PCIEGen3;
316
317 data->pcie_lane_performance.max = 0;
318 data->pcie_lane_performance.min = 16;
319 data->pcie_lane_power_saving.max = 0;
320 data->pcie_lane_power_saving.min = 16;
321
322 tmp = 0;
323
324 if (tmp)
325 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
326 PHM_PlatformCaps_SclkThrottleLowNotification);
327
328 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
329 PHM_PlatformCaps_DynamicUVDState);
330
331 }
332
333 int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
334 {
335 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
336
337 int result = 0;
338 uint32_t low_sclk_interrupt_threshold = 0;
339
340 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
341 PHM_PlatformCaps_SclkThrottleLowNotification)
342 && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
343 data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
344 low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
345
346 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
347
348 result = tonga_copy_bytes_to_smc(
349 hwmgr->smumgr,
350 data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
351 LowSclkInterruptThreshold),
352 (uint8_t *)&low_sclk_interrupt_threshold,
353 sizeof(uint32_t),
354 data->sram_end
355 );
356 }
357
358 return result;
359 }
360
361 /**
362 * Find SCLK value that is associated with specified virtual_voltage_Id.
363 *
364 * @param hwmgr the address of the powerplay hardware manager.
365 * @param virtual_voltage_Id voltageId to look for.
366 * @param sclk output value .
367 * @return always 0 if success and 2 if association not found
368 */
369 static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
370 phm_ppt_v1_voltage_lookup_table *lookup_table,
371 uint16_t virtual_voltage_id, uint32_t *sclk)
372 {
373 uint8_t entryId;
374 uint8_t voltageId;
375 struct phm_ppt_v1_information *pptable_info =
376 (struct phm_ppt_v1_information *)(hwmgr->pptable);
377
378 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
379
380 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
381 for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
382 voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
383 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
384 break;
385 }
386
387 PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
388 "Can't find requested voltage id in vdd_dep_on_sclk table!",
389 return -1;
390 );
391
392 *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
393
394 return 0;
395 }
396
397 /**
398 * Get Leakage VDDC based on leakage ID.
399 *
400 * @param hwmgr the address of the powerplay hardware manager.
401 * @return 2 if vddgfx returned is greater than 2V or if BIOS
402 */
403 int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
404 {
405 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
406 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
407 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
408 uint16_t virtual_voltage_id;
409 uint16_t vddc = 0;
410 uint16_t vddgfx = 0;
411 uint16_t i, j;
412 uint32_t sclk = 0;
413
414 /* retrieve voltage for leakage ID (0xff01 + i) */
415 for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
416 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
417
418 /* in split mode we should have only vddgfx EVV leakages */
419 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
420 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
421 pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
422 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
423 PHM_PlatformCaps_ClockStretcher)) {
424 for (j = 1; j < sclk_table->count; j++) {
425 if (sclk_table->entries[j].clk == sclk &&
426 sclk_table->entries[j].cks_enable == 0) {
427 sclk += 5000;
428 break;
429 }
430 }
431 }
432 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
433 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
434 virtual_voltage_id, &vddgfx),
435 "Error retrieving EVV voltage value!", continue);
436
437 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
438 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
439
440 /* the voltage should not be zero nor equal to leakage ID */
441 if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
442 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
443 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
444 data->vddcgfx_leakage.count++;
445 }
446 }
447 } else {
448 /* in merged mode we have only vddc EVV leakages */
449 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
450 pptable_info->vddc_lookup_table,
451 virtual_voltage_id, &sclk)) {
452 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
453 (hwmgr, VOLTAGE_TYPE_VDDC, sclk,
454 virtual_voltage_id, &vddc),
455 "Error retrieving EVV voltage value!", continue);
456
457 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
458 if (vddc > 2000)
459 printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n");
460
461 /* the voltage should not be zero nor equal to leakage ID */
462 if (vddc != 0 && vddc != virtual_voltage_id) {
463 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
464 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
465 data->vddc_leakage.count++;
466 }
467 }
468 }
469 }
470
471 return 0;
472 }
473
474 int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
475 {
476 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
477
478 /* enable SCLK dpm */
479 if (0 == data->sclk_dpm_key_disabled) {
480 PP_ASSERT_WITH_CODE(
481 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
482 PPSMC_MSG_DPM_Enable)),
483 "Failed to enable SCLK DPM during DPM Start Function!",
484 return -1);
485 }
486
487 /* enable MCLK dpm */
488 if (0 == data->mclk_dpm_key_disabled) {
489 PP_ASSERT_WITH_CODE(
490 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
491 PPSMC_MSG_MCLKDPM_Enable)),
492 "Failed to enable MCLK DPM during DPM Start Function!",
493 return -1);
494
495 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
496
497 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
498 ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
499 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
500 ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
501 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
502 ixLCAC_CPL_CNTL, 0x100005);/*Read */
503
504 udelay(10);
505
506 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
507 ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
508 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
509 ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
510 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
511 ixLCAC_CPL_CNTL, 0x500005);/* write */
512
513 }
514
515 return 0;
516 }
517
518 int tonga_start_dpm(struct pp_hwmgr *hwmgr)
519 {
520 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
521
522 /* enable general power management */
523 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
524 /* enable sclk deep sleep */
525 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
526
527 /* prepare for PCIE DPM */
528 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
529 offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
530
531 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
532
533 PP_ASSERT_WITH_CODE(
534 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
535 PPSMC_MSG_Voltage_Cntl_Enable)),
536 "Failed to enable voltage DPM during DPM Start Function!",
537 return -1);
538
539 if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
540 PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
541 }
542
543 /* enable PCIE dpm */
544 if (0 == data->pcie_dpm_key_disabled) {
545 PP_ASSERT_WITH_CODE(
546 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
547 PPSMC_MSG_PCIeDPM_Enable)),
548 "Failed to enable pcie DPM during DPM Start Function!",
549 return -1
550 );
551 }
552
553 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
554 PHM_PlatformCaps_Falcon_QuickTransition)) {
555 smum_send_msg_to_smc(hwmgr->smumgr,
556 PPSMC_MSG_EnableACDCGPIOInterrupt);
557 }
558
559 return 0;
560 }
561
562 int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
563 {
564 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
565
566 /* disable SCLK dpm */
567 if (0 == data->sclk_dpm_key_disabled) {
568 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
569 PP_ASSERT_WITH_CODE(
570 (0 == tonga_is_dpm_running(hwmgr)),
571 "Trying to Disable SCLK DPM when DPM is disabled",
572 return -1
573 );
574
575 PP_ASSERT_WITH_CODE(
576 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
577 PPSMC_MSG_DPM_Disable)),
578 "Failed to disable SCLK DPM during DPM stop Function!",
579 return -1);
580 }
581
582 /* disable MCLK dpm */
583 if (0 == data->mclk_dpm_key_disabled) {
584 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
585 PP_ASSERT_WITH_CODE(
586 (0 == tonga_is_dpm_running(hwmgr)),
587 "Trying to Disable MCLK DPM when DPM is disabled",
588 return -1
589 );
590
591 PP_ASSERT_WITH_CODE(
592 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
593 PPSMC_MSG_MCLKDPM_Disable)),
594 "Failed to Disable MCLK DPM during DPM stop Function!",
595 return -1);
596 }
597
598 return 0;
599 }
600
601 int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
602 {
603 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
604
605 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
606 /* disable sclk deep sleep*/
607 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
608
609 /* disable PCIE dpm */
610 if (0 == data->pcie_dpm_key_disabled) {
611 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
612 PP_ASSERT_WITH_CODE(
613 (0 == tonga_is_dpm_running(hwmgr)),
614 "Trying to Disable PCIE DPM when DPM is disabled",
615 return -1
616 );
617 PP_ASSERT_WITH_CODE(
618 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
619 PPSMC_MSG_PCIeDPM_Disable)),
620 "Failed to disable pcie DPM during DPM stop Function!",
621 return -1);
622 }
623
624 if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
625 PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
626
627 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
628 PP_ASSERT_WITH_CODE(
629 (0 == tonga_is_dpm_running(hwmgr)),
630 "Trying to Disable Voltage CNTL when DPM is disabled",
631 return -1
632 );
633
634 PP_ASSERT_WITH_CODE(
635 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
636 PPSMC_MSG_Voltage_Cntl_Disable)),
637 "Failed to disable voltage DPM during DPM stop Function!",
638 return -1);
639
640 return 0;
641 }
642
643 int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
644 {
645 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
646
647 return 0;
648 }
649
650 /**
651 * Send a message to the SMC and return a parameter
652 *
653 * @param hwmgr: the address of the powerplay hardware manager.
654 * @param msg: the message to send.
655 * @param parameter: pointer to the received parameter
656 * @return The response that came from the SMC.
657 */
658 PPSMC_Result tonga_send_msg_to_smc_return_parameter(
659 struct pp_hwmgr *hwmgr,
660 PPSMC_Msg msg,
661 uint32_t *parameter)
662 {
663 int result;
664
665 result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
666
667 if ((0 == result) && parameter) {
668 *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
669 }
670
671 return result;
672 }
673
674 /**
675 * force DPM power State
676 *
677 * @param hwmgr: the address of the powerplay hardware manager.
678 * @param n : DPM level
679 * @return The response that came from the SMC.
680 */
681 int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
682 {
683 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
684 uint32_t level_mask = 1 << n;
685
686 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
687 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
688 "Trying to force SCLK when DPM is disabled", return -1;);
689 if (0 == data->sclk_dpm_key_disabled)
690 return (0 == smum_send_msg_to_smc_with_parameter(
691 hwmgr->smumgr,
692 (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
693 level_mask) ? 0 : 1);
694
695 return 0;
696 }
697
698 /**
699 * force DPM power State
700 *
701 * @param hwmgr: the address of the powerplay hardware manager.
702 * @param n : DPM level
703 * @return The response that came from the SMC.
704 */
705 int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
706 {
707 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
708 uint32_t level_mask = 1 << n;
709
710 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
711 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
712 "Trying to Force MCLK when DPM is disabled", return -1;);
713 if (0 == data->mclk_dpm_key_disabled)
714 return (0 == smum_send_msg_to_smc_with_parameter(
715 hwmgr->smumgr,
716 (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
717 level_mask) ? 0 : 1);
718
719 return 0;
720 }
721
722 /**
723 * force DPM power State
724 *
725 * @param hwmgr: the address of the powerplay hardware manager.
726 * @param n : DPM level
727 * @return The response that came from the SMC.
728 */
729 int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
730 {
731 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
732
733 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
734 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
735 "Trying to Force PCIE level when DPM is disabled", return -1;);
736 if (0 == data->pcie_dpm_key_disabled)
737 return (0 == smum_send_msg_to_smc_with_parameter(
738 hwmgr->smumgr,
739 (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
740 n) ? 0 : 1);
741
742 return 0;
743 }
744
745 /**
746 * Set the initial state by calling SMC to switch to this state directly
747 *
748 * @param hwmgr the address of the powerplay hardware manager.
749 * @return always 0
750 */
751 int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
752 {
753 /*
754 * SMC only stores one state that SW will ask to switch too,
755 * so we switch the the just uploaded one
756 */
757 return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
758 }
759
760 /**
761 * Get the location of various tables inside the FW image.
762 *
763 * @param hwmgr the address of the powerplay hardware manager.
764 * @return always 0
765 */
766 int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
767 {
768 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
769 struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
770
771 uint32_t tmp;
772 int result;
773 bool error = 0;
774
775 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
776 SMU72_FIRMWARE_HEADER_LOCATION +
777 offsetof(SMU72_Firmware_Header, DpmTable),
778 &tmp, data->sram_end);
779
780 if (0 == result) {
781 data->dpm_table_start = tmp;
782 }
783
784 error |= (0 != result);
785
786 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
787 SMU72_FIRMWARE_HEADER_LOCATION +
788 offsetof(SMU72_Firmware_Header, SoftRegisters),
789 &tmp, data->sram_end);
790
791 if (0 == result) {
792 data->soft_regs_start = tmp;
793 tonga_smu->ulSoftRegsStart = tmp;
794 }
795
796 error |= (0 != result);
797
798
799 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
800 SMU72_FIRMWARE_HEADER_LOCATION +
801 offsetof(SMU72_Firmware_Header, mcRegisterTable),
802 &tmp, data->sram_end);
803
804 if (0 == result) {
805 data->mc_reg_table_start = tmp;
806 }
807
808 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
809 SMU72_FIRMWARE_HEADER_LOCATION +
810 offsetof(SMU72_Firmware_Header, FanTable),
811 &tmp, data->sram_end);
812
813 if (0 == result) {
814 data->fan_table_start = tmp;
815 }
816
817 error |= (0 != result);
818
819 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
820 SMU72_FIRMWARE_HEADER_LOCATION +
821 offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
822 &tmp, data->sram_end);
823
824 if (0 == result) {
825 data->arb_table_start = tmp;
826 }
827
828 error |= (0 != result);
829
830
831 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
832 SMU72_FIRMWARE_HEADER_LOCATION +
833 offsetof(SMU72_Firmware_Header, Version),
834 &tmp, data->sram_end);
835
836 if (0 == result) {
837 hwmgr->microcode_version_info.SMC = tmp;
838 }
839
840 error |= (0 != result);
841
842 return error ? 1 : 0;
843 }
844
845 /**
846 * Read clock related registers.
847 *
848 * @param hwmgr the address of the powerplay hardware manager.
849 * @return always 0
850 */
851 int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
852 {
853 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
854
855 data->clock_registers.vCG_SPLL_FUNC_CNTL =
856 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
857 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
858 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
859 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
860 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
861 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
862 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
863 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
864 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
865 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
866 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
867 data->clock_registers.vDLL_CNTL =
868 cgs_read_register(hwmgr->device, mmDLL_CNTL);
869 data->clock_registers.vMCLK_PWRMGT_CNTL =
870 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
871 data->clock_registers.vMPLL_AD_FUNC_CNTL =
872 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
873 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
874 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
875 data->clock_registers.vMPLL_FUNC_CNTL =
876 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
877 data->clock_registers.vMPLL_FUNC_CNTL_1 =
878 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
879 data->clock_registers.vMPLL_FUNC_CNTL_2 =
880 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
881 data->clock_registers.vMPLL_SS1 =
882 cgs_read_register(hwmgr->device, mmMPLL_SS1);
883 data->clock_registers.vMPLL_SS2 =
884 cgs_read_register(hwmgr->device, mmMPLL_SS2);
885
886 return 0;
887 }
888
889 /**
890 * Find out if memory is GDDR5.
891 *
892 * @param hwmgr the address of the powerplay hardware manager.
893 * @return always 0
894 */
895 int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
896 {
897 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
898 uint32_t temp;
899
900 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
901
902 data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
903 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
904 MC_SEQ_MISC0_GDDR5_SHIFT));
905
906 return 0;
907 }
908
909 /**
910 * Enables Dynamic Power Management by SMC
911 *
912 * @param hwmgr the address of the powerplay hardware manager.
913 * @return always 0
914 */
915 int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
916 {
917 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
918
919 return 0;
920 }
921
922 /**
923 * Initialize PowerGating States for different engines
924 *
925 * @param hwmgr the address of the powerplay hardware manager.
926 * @return always 0
927 */
928 int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
929 {
930 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
931
932 data->uvd_power_gated = 0;
933 data->vce_power_gated = 0;
934 data->samu_power_gated = 0;
935 data->acp_power_gated = 0;
936 data->pg_acp_init = 1;
937
938 return 0;
939 }
940
941 /**
942 * Checks if DPM is enabled
943 *
944 * @param hwmgr the address of the powerplay hardware manager.
945 * @return always 0
946 */
947 int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
948 {
949 /*
950 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
951 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
952 * whereas voltage control is a fundemental change that will not be disabled
953 */
954 return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
955 }
956
957 /**
958 * Checks if DPM is stopped
959 *
960 * @param hwmgr the address of the powerplay hardware manager.
961 * @return always 0
962 */
963 int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
964 {
965 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
966
967 if (0 != tonga_is_dpm_running(hwmgr)) {
968 /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
969 if (!data->dpm_table_start) {
970 return 1;
971 }
972 }
973
974 return 0;
975 }
976
977 /**
978 * Remove repeated voltage values and create table with unique values.
979 *
980 * @param hwmgr the address of the powerplay hardware manager.
981 * @param voltage_table the pointer to changing voltage table
982 * @return 1 in success
983 */
984
985 static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
986 pp_atomctrl_voltage_table *voltage_table)
987 {
988 uint32_t table_size, i, j;
989 uint16_t vvalue;
990 bool bVoltageFound = 0;
991 pp_atomctrl_voltage_table *table;
992
993 PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
994 table_size = sizeof(pp_atomctrl_voltage_table);
995 table = kzalloc(table_size, GFP_KERNEL);
996
997 if (NULL == table)
998 return -ENOMEM;
999
1000 memset(table, 0x00, table_size);
1001 table->mask_low = voltage_table->mask_low;
1002 table->phase_delay = voltage_table->phase_delay;
1003
1004 for (i = 0; i < voltage_table->count; i++) {
1005 vvalue = voltage_table->entries[i].value;
1006 bVoltageFound = 0;
1007
1008 for (j = 0; j < table->count; j++) {
1009 if (vvalue == table->entries[j].value) {
1010 bVoltageFound = 1;
1011 break;
1012 }
1013 }
1014
1015 if (!bVoltageFound) {
1016 table->entries[table->count].value = vvalue;
1017 table->entries[table->count].smio_low =
1018 voltage_table->entries[i].smio_low;
1019 table->count++;
1020 }
1021 }
1022
1023 memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
1024
1025 kfree(table);
1026
1027 return 0;
1028 }
1029
1030 static int tonga_get_svi2_vdd_ci_voltage_table(
1031 struct pp_hwmgr *hwmgr,
1032 phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
1033 {
1034 uint32_t i;
1035 int result;
1036 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1037 pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
1038
1039 PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
1040 "Voltage Dependency Table empty.", return -1;);
1041
1042 vddci_voltage_table->mask_low = 0;
1043 vddci_voltage_table->phase_delay = 0;
1044 vddci_voltage_table->count = voltage_dependency_table->count;
1045
1046 for (i = 0; i < voltage_dependency_table->count; i++) {
1047 vddci_voltage_table->entries[i].value =
1048 voltage_dependency_table->entries[i].vddci;
1049 vddci_voltage_table->entries[i].smio_low = 0;
1050 }
1051
1052 result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
1053 PP_ASSERT_WITH_CODE((0 == result),
1054 "Failed to trim VDDCI table.", return result;);
1055
1056 return 0;
1057 }
1058
1059
1060
1061 static int tonga_get_svi2_vdd_voltage_table(
1062 struct pp_hwmgr *hwmgr,
1063 phm_ppt_v1_voltage_lookup_table *look_up_table,
1064 pp_atomctrl_voltage_table *voltage_table)
1065 {
1066 uint8_t i = 0;
1067
1068 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1069 "Voltage Lookup Table empty.", return -1;);
1070
1071 voltage_table->mask_low = 0;
1072 voltage_table->phase_delay = 0;
1073
1074 voltage_table->count = look_up_table->count;
1075
1076 for (i = 0; i < voltage_table->count; i++) {
1077 voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
1078 voltage_table->entries[i].smio_low = 0;
1079 }
1080
1081 return 0;
1082 }
1083
1084 /*
1085 * -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
1086 * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
1087 */
1088
1089 static void tonga_trim_voltage_table_to_fit_state_table(
1090 struct pp_hwmgr *hwmgr,
1091 uint32_t max_voltage_steps,
1092 pp_atomctrl_voltage_table *voltage_table)
1093 {
1094 unsigned int i, diff;
1095
1096 if (voltage_table->count <= max_voltage_steps) {
1097 return;
1098 }
1099
1100 diff = voltage_table->count - max_voltage_steps;
1101
1102 for (i = 0; i < max_voltage_steps; i++) {
1103 voltage_table->entries[i] = voltage_table->entries[i + diff];
1104 }
1105
1106 voltage_table->count = max_voltage_steps;
1107
1108 return;
1109 }
1110
1111 /**
1112 * Create Voltage Tables.
1113 *
1114 * @param hwmgr the address of the powerplay hardware manager.
1115 * @return always 0
1116 */
1117 int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1118 {
1119 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1120 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1121 int result;
1122
1123 /* MVDD has only GPIO voltage control */
1124 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1125 result = atomctrl_get_voltage_table_v3(hwmgr,
1126 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
1127 PP_ASSERT_WITH_CODE((0 == result),
1128 "Failed to retrieve MVDD table.", return result;);
1129 }
1130
1131 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1132 /* GPIO voltage */
1133 result = atomctrl_get_voltage_table_v3(hwmgr,
1134 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
1135 PP_ASSERT_WITH_CODE((0 == result),
1136 "Failed to retrieve VDDCI table.", return result;);
1137 } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1138 /* SVI2 voltage */
1139 result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
1140 pptable_info->vdd_dep_on_mclk);
1141 PP_ASSERT_WITH_CODE((0 == result),
1142 "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
1143 }
1144
1145 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1146 /* VDDGFX has only SVI2 voltage control */
1147 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1148 pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
1149 PP_ASSERT_WITH_CODE((0 == result),
1150 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
1151 }
1152
1153 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1154 /* VDDC has only SVI2 voltage control */
1155 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1156 pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
1157 PP_ASSERT_WITH_CODE((0 == result),
1158 "Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
1159 }
1160
1161 PP_ASSERT_WITH_CODE(
1162 (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
1163 "Too many voltage values for VDDC. Trimming to fit state table.",
1164 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1165 SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
1166 );
1167
1168 PP_ASSERT_WITH_CODE(
1169 (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
1170 "Too many voltage values for VDDGFX. Trimming to fit state table.",
1171 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1172 SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
1173 );
1174
1175 PP_ASSERT_WITH_CODE(
1176 (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
1177 "Too many voltage values for VDDCI. Trimming to fit state table.",
1178 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1179 SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
1180 );
1181
1182 PP_ASSERT_WITH_CODE(
1183 (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
1184 "Too many voltage values for MVDD. Trimming to fit state table.",
1185 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1186 SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
1187 );
1188
1189 return 0;
1190 }
1191
1192 /**
1193 * Vddc table preparation for SMC.
1194 *
1195 * @param hwmgr the address of the hardware manager
1196 * @param table the SMC DPM table structure to be populated
1197 * @return always 0
1198 */
1199 static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
1200 SMU72_Discrete_DpmTable *table)
1201 {
1202 unsigned int count;
1203 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1204
1205 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1206 table->VddcLevelCount = data->vddc_voltage_table.count;
1207 for (count = 0; count < table->VddcLevelCount; count++) {
1208 table->VddcTable[count] =
1209 PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
1210 }
1211 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
1212 }
1213 return 0;
1214 }
1215
1216 /**
1217 * VddGfx table preparation for SMC.
1218 *
1219 * @param hwmgr the address of the hardware manager
1220 * @param table the SMC DPM table structure to be populated
1221 * @return always 0
1222 */
1223 static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
1224 SMU72_Discrete_DpmTable *table)
1225 {
1226 unsigned int count;
1227 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1228
1229 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1230 table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
1231 for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
1232 table->VddGfxTable[count] =
1233 PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
1234 }
1235 CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
1236 }
1237 return 0;
1238 }
1239
1240 /**
1241 * Vddci table preparation for SMC.
1242 *
1243 * @param *hwmgr The address of the hardware manager.
1244 * @param *table The SMC DPM table structure to be populated.
1245 * @return 0
1246 */
1247 static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
1248 SMU72_Discrete_DpmTable *table)
1249 {
1250 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1251 uint32_t count;
1252
1253 table->VddciLevelCount = data->vddci_voltage_table.count;
1254 for (count = 0; count < table->VddciLevelCount; count++) {
1255 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1256 table->VddciTable[count] =
1257 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1258 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1259 table->SmioTable1.Pattern[count].Voltage =
1260 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1261 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
1262 table->SmioTable1.Pattern[count].Smio =
1263 (uint8_t) count;
1264 table->Smio[count] |=
1265 data->vddci_voltage_table.entries[count].smio_low;
1266 table->VddciTable[count] =
1267 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1268 }
1269 }
1270
1271 table->SmioMask1 = data->vddci_voltage_table.mask_low;
1272 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
1273
1274 return 0;
1275 }
1276
1277 /**
1278 * Mvdd table preparation for SMC.
1279 *
1280 * @param *hwmgr The address of the hardware manager.
1281 * @param *table The SMC DPM table structure to be populated.
1282 * @return 0
1283 */
1284 static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
1285 SMU72_Discrete_DpmTable *table)
1286 {
1287 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1288 uint32_t count;
1289
1290 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1291 table->MvddLevelCount = data->mvdd_voltage_table.count;
1292 for (count = 0; count < table->MvddLevelCount; count++) {
1293 table->SmioTable2.Pattern[count].Voltage =
1294 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
1295 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
1296 table->SmioTable2.Pattern[count].Smio =
1297 (uint8_t) count;
1298 table->Smio[count] |=
1299 data->mvdd_voltage_table.entries[count].smio_low;
1300 }
1301 table->SmioMask2 = data->vddci_voltage_table.mask_low;
1302
1303 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
1304 }
1305
1306 return 0;
1307 }
1308
1309 /**
1310 * Convert a voltage value in mv unit to VID number required by SMU firmware
1311 */
1312 static uint8_t convert_to_vid(uint16_t vddc)
1313 {
1314 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
1315 }
1316
1317
1318 /**
1319 * Preparation of vddc and vddgfx CAC tables for SMC.
1320 *
1321 * @param hwmgr the address of the hardware manager
1322 * @param table the SMC DPM table structure to be populated
1323 * @return always 0
1324 */
1325 static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
1326 SMU72_Discrete_DpmTable *table)
1327 {
1328 uint32_t count;
1329 uint8_t index;
1330 int result = 0;
1331 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1332 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1333 struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
1334 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
1335
1336 /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
1337 uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
1338 uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
1339
1340 for (count = 0; count < vddcLevelCount; count++) {
1341 /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
1342 index = tonga_get_voltage_index(vddc_lookup_table,
1343 data->vddc_voltage_table.entries[count].value);
1344 table->BapmVddcVidLoSidd[count] =
1345 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1346 table->BapmVddcVidHiSidd[count] =
1347 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1348 table->BapmVddcVidHiSidd2[count] =
1349 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1350 }
1351
1352 if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
1353 /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
1354 for (count = 0; count < vddgfxLevelCount; count++) {
1355 index = tonga_get_voltage_index(vddgfx_lookup_table,
1356 data->vddgfx_voltage_table.entries[count].value);
1357 table->BapmVddGfxVidLoSidd[count] =
1358 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
1359 table->BapmVddGfxVidHiSidd[count] =
1360 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
1361 table->BapmVddGfxVidHiSidd2[count] =
1362 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
1363 }
1364 } else {
1365 for (count = 0; count < vddcLevelCount; count++) {
1366 index = tonga_get_voltage_index(vddc_lookup_table,
1367 data->vddc_voltage_table.entries[count].value);
1368 table->BapmVddGfxVidLoSidd[count] =
1369 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1370 table->BapmVddGfxVidHiSidd[count] =
1371 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1372 table->BapmVddGfxVidHiSidd2[count] =
1373 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1374 }
1375 }
1376
1377 return result;
1378 }
1379
1380
1381 /**
1382 * Preparation of voltage tables for SMC.
1383 *
1384 * @param hwmgr the address of the hardware manager
1385 * @param table the SMC DPM table structure to be populated
1386 * @return always 0
1387 */
1388
1389 int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1390 SMU72_Discrete_DpmTable *table)
1391 {
1392 int result;
1393
1394 result = tonga_populate_smc_vddc_table(hwmgr, table);
1395 PP_ASSERT_WITH_CODE(0 == result,
1396 "can not populate VDDC voltage table to SMC", return -1);
1397
1398 result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
1399 PP_ASSERT_WITH_CODE(0 == result,
1400 "can not populate VDDCI voltage table to SMC", return -1);
1401
1402 result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
1403 PP_ASSERT_WITH_CODE(0 == result,
1404 "can not populate VDDGFX voltage table to SMC", return -1);
1405
1406 result = tonga_populate_smc_mvdd_table(hwmgr, table);
1407 PP_ASSERT_WITH_CODE(0 == result,
1408 "can not populate MVDD voltage table to SMC", return -1);
1409
1410 result = tonga_populate_cac_tables(hwmgr, table);
1411 PP_ASSERT_WITH_CODE(0 == result,
1412 "can not populate CAC voltage tables to SMC", return -1);
1413
1414 return 0;
1415 }
1416
1417 /**
1418 * Populates the SMC VRConfig field in DPM table.
1419 *
1420 * @param hwmgr the address of the hardware manager
1421 * @param table the SMC DPM table structure to be populated
1422 * @return always 0
1423 */
1424 static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1425 SMU72_Discrete_DpmTable *table)
1426 {
1427 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1428 uint16_t config;
1429
1430 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1431 /* Splitted mode */
1432 config = VR_SVI2_PLANE_1;
1433 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1434
1435 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1436 config = VR_SVI2_PLANE_2;
1437 table->VRConfig |= config;
1438 } else {
1439 printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
1440 }
1441 } else {
1442 /* Merged mode */
1443 config = VR_MERGED_WITH_VDDC;
1444 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1445
1446 /* Set Vddc Voltage Controller */
1447 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1448 config = VR_SVI2_PLANE_1;
1449 table->VRConfig |= config;
1450 } else {
1451 printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
1452 }
1453 }
1454
1455 /* Set Vddci Voltage Controller */
1456 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1457 config = VR_SVI2_PLANE_2; /* only in merged mode */
1458 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1459 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1460 config = VR_SMIO_PATTERN_1;
1461 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1462 }
1463
1464 /* Set Mvdd Voltage Controller */
1465 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1466 config = VR_SMIO_PATTERN_2;
1467 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1468 }
1469
1470 return 0;
1471 }
1472
1473 static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
1474 phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
1475 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1476 {
1477 uint32_t i = 0;
1478 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1479 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1480
1481 /* clock - voltage dependency table is empty table */
1482 if (allowed_clock_voltage_table->count == 0)
1483 return -1;
1484
1485 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
1486 /* find first sclk bigger than request */
1487 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
1488 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1489 allowed_clock_voltage_table->entries[i].vddgfx);
1490
1491 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1492 allowed_clock_voltage_table->entries[i].vddc);
1493
1494 if (allowed_clock_voltage_table->entries[i].vddci) {
1495 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1496 allowed_clock_voltage_table->entries[i].vddci);
1497 } else {
1498 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1499 allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
1500 }
1501
1502 if (allowed_clock_voltage_table->entries[i].mvdd) {
1503 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
1504 }
1505
1506 voltage->Phases = 1;
1507 return 0;
1508 }
1509 }
1510
1511 /* sclk is bigger than max sclk in the dependence table */
1512 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1513 allowed_clock_voltage_table->entries[i-1].vddgfx);
1514 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1515 allowed_clock_voltage_table->entries[i-1].vddc);
1516
1517 if (allowed_clock_voltage_table->entries[i-1].vddci) {
1518 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1519 allowed_clock_voltage_table->entries[i-1].vddci);
1520 }
1521 if (allowed_clock_voltage_table->entries[i-1].mvdd) {
1522 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
1523 }
1524
1525 return 0;
1526 }
1527
1528 /**
1529 * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1530 *
1531 * @param hwmgr the address of the powerplay hardware manager.
1532 * @return always 0
1533 */
1534 int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
1535 {
1536 return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
1537 }
1538
1539 int tonga_populate_memory_timing_parameters(
1540 struct pp_hwmgr *hwmgr,
1541 uint32_t engine_clock,
1542 uint32_t memory_clock,
1543 struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1544 )
1545 {
1546 uint32_t dramTiming;
1547 uint32_t dramTiming2;
1548 uint32_t burstTime;
1549 int result;
1550
1551 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1552 engine_clock, memory_clock);
1553
1554 PP_ASSERT_WITH_CODE(result == 0,
1555 "Error calling VBIOS to set DRAM_TIMING.", return result);
1556
1557 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1558 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1559 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1560
1561 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1562 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1563 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * Setup parameters for the MC ARB.
1570 *
1571 * @param hwmgr the address of the powerplay hardware manager.
1572 * @return always 0
1573 * This function is to be called from the SetPowerState table.
1574 */
1575 int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1576 {
1577 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1578 int result = 0;
1579 SMU72_Discrete_MCArbDramTimingTable arb_regs;
1580 uint32_t i, j;
1581
1582 memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1583
1584 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1585 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1586 result = tonga_populate_memory_timing_parameters
1587 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1588 data->dpm_table.mclk_table.dpm_levels[j].value,
1589 &arb_regs.entries[i][j]);
1590
1591 if (0 != result) {
1592 break;
1593 }
1594 }
1595 }
1596
1597 if (0 == result) {
1598 result = tonga_copy_bytes_to_smc(
1599 hwmgr->smumgr,
1600 data->arb_table_start,
1601 (uint8_t *)&arb_regs,
1602 sizeof(SMU72_Discrete_MCArbDramTimingTable),
1603 data->sram_end
1604 );
1605 }
1606
1607 return result;
1608 }
1609
1610 static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
1611 {
1612 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1613 struct tonga_dpm_table *dpm_table = &data->dpm_table;
1614 uint32_t i;
1615
1616 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
1617 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1618 table->LinkLevel[i].PcieGenSpeed =
1619 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1620 table->LinkLevel[i].PcieLaneCount =
1621 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1622 table->LinkLevel[i].EnabledForActivity =
1623 1;
1624 table->LinkLevel[i].SPC =
1625 (uint8_t)(data->pcie_spc_cap & 0xff);
1626 table->LinkLevel[i].DownThreshold =
1627 PP_HOST_TO_SMC_UL(5);
1628 table->LinkLevel[i].UpThreshold =
1629 PP_HOST_TO_SMC_UL(30);
1630 }
1631
1632 data->smc_state_table.LinkLevelCount =
1633 (uint8_t)dpm_table->pcie_speed_table.count;
1634 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1635 tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1636
1637 return 0;
1638 }
1639
1640 static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1641 SMU72_Discrete_DpmTable *table)
1642 {
1643 int result = 0;
1644
1645 uint8_t count;
1646 pp_atomctrl_clock_dividers_vi dividers;
1647 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1648 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1649 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1650
1651 table->UvdLevelCount = (uint8_t) (mm_table->count);
1652 table->UvdBootLevel = 0;
1653
1654 for (count = 0; count < table->UvdLevelCount; count++) {
1655 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1656 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1657 table->UvdLevel[count].MinVoltage.Vddc =
1658 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1659 mm_table->entries[count].vddc);
1660 table->UvdLevel[count].MinVoltage.VddGfx =
1661 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1662 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1663 mm_table->entries[count].vddgfx) : 0;
1664 table->UvdLevel[count].MinVoltage.Vddci =
1665 tonga_get_voltage_id(&data->vddci_voltage_table,
1666 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1667 table->UvdLevel[count].MinVoltage.Phases = 1;
1668
1669 /* retrieve divider value for VBIOS */
1670 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1671 table->UvdLevel[count].VclkFrequency, &dividers);
1672 PP_ASSERT_WITH_CODE((0 == result),
1673 "can not find divide id for Vclk clock", return result);
1674
1675 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1676
1677 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1678 table->UvdLevel[count].DclkFrequency, &dividers);
1679 PP_ASSERT_WITH_CODE((0 == result),
1680 "can not find divide id for Dclk clock", return result);
1681
1682 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1683
1684 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1685 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1686 //CONVERT_FROM_HOST_TO_SMC_UL((uint32_t)table->UvdLevel[count].MinVoltage);
1687 }
1688
1689 return result;
1690
1691 }
1692
1693 static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1694 SMU72_Discrete_DpmTable *table)
1695 {
1696 int result = 0;
1697
1698 uint8_t count;
1699 pp_atomctrl_clock_dividers_vi dividers;
1700 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1701 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1702 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1703
1704 table->VceLevelCount = (uint8_t) (mm_table->count);
1705 table->VceBootLevel = 0;
1706
1707 for (count = 0; count < table->VceLevelCount; count++) {
1708 table->VceLevel[count].Frequency =
1709 mm_table->entries[count].eclk;
1710 table->VceLevel[count].MinVoltage.Vddc =
1711 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1712 mm_table->entries[count].vddc);
1713 table->VceLevel[count].MinVoltage.VddGfx =
1714 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1715 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1716 mm_table->entries[count].vddgfx) : 0;
1717 table->VceLevel[count].MinVoltage.Vddci =
1718 tonga_get_voltage_id(&data->vddci_voltage_table,
1719 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1720 table->VceLevel[count].MinVoltage.Phases = 1;
1721
1722 /* retrieve divider value for VBIOS */
1723 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1724 table->VceLevel[count].Frequency, &dividers);
1725 PP_ASSERT_WITH_CODE((0 == result),
1726 "can not find divide id for VCE engine clock", return result);
1727
1728 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1729
1730 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1731 }
1732
1733 return result;
1734 }
1735
1736 static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1737 SMU72_Discrete_DpmTable *table)
1738 {
1739 int result = 0;
1740 uint8_t count;
1741 pp_atomctrl_clock_dividers_vi dividers;
1742 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1743 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1744 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1745
1746 table->AcpLevelCount = (uint8_t) (mm_table->count);
1747 table->AcpBootLevel = 0;
1748
1749 for (count = 0; count < table->AcpLevelCount; count++) {
1750 table->AcpLevel[count].Frequency =
1751 pptable_info->mm_dep_table->entries[count].aclk;
1752 table->AcpLevel[count].MinVoltage.Vddc =
1753 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1754 mm_table->entries[count].vddc);
1755 table->AcpLevel[count].MinVoltage.VddGfx =
1756 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1757 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1758 mm_table->entries[count].vddgfx) : 0;
1759 table->AcpLevel[count].MinVoltage.Vddci =
1760 tonga_get_voltage_id(&data->vddci_voltage_table,
1761 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1762 table->AcpLevel[count].MinVoltage.Phases = 1;
1763
1764 /* retrieve divider value for VBIOS */
1765 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1766 table->AcpLevel[count].Frequency, &dividers);
1767 PP_ASSERT_WITH_CODE((0 == result),
1768 "can not find divide id for engine clock", return result);
1769
1770 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1771
1772 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1773 }
1774
1775 return result;
1776 }
1777
1778 static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1779 SMU72_Discrete_DpmTable *table)
1780 {
1781 int result = 0;
1782 uint8_t count;
1783 pp_atomctrl_clock_dividers_vi dividers;
1784 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1785 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1786 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1787
1788 table->SamuBootLevel = 0;
1789 table->SamuLevelCount = (uint8_t) (mm_table->count);
1790
1791 for (count = 0; count < table->SamuLevelCount; count++) {
1792 /* not sure whether we need evclk or not */
1793 table->SamuLevel[count].Frequency =
1794 pptable_info->mm_dep_table->entries[count].samclock;
1795 table->SamuLevel[count].MinVoltage.Vddc =
1796 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1797 mm_table->entries[count].vddc);
1798 table->SamuLevel[count].MinVoltage.VddGfx =
1799 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1800 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1801 mm_table->entries[count].vddgfx) : 0;
1802 table->SamuLevel[count].MinVoltage.Vddci =
1803 tonga_get_voltage_id(&data->vddci_voltage_table,
1804 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1805 table->SamuLevel[count].MinVoltage.Phases = 1;
1806
1807 /* retrieve divider value for VBIOS */
1808 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1809 table->SamuLevel[count].Frequency, &dividers);
1810 PP_ASSERT_WITH_CODE((0 == result),
1811 "can not find divide id for samu clock", return result);
1812
1813 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1814
1815 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1816 }
1817
1818 return result;
1819 }
1820
1821 /**
1822 * Populates the SMC MCLK structure using the provided memory clock
1823 *
1824 * @param hwmgr the address of the hardware manager
1825 * @param memory_clock the memory clock to use to populate the structure
1826 * @param sclk the SMC SCLK structure to be populated
1827 */
1828 static int tonga_calculate_mclk_params(
1829 struct pp_hwmgr *hwmgr,
1830 uint32_t memory_clock,
1831 SMU72_Discrete_MemoryLevel *mclk,
1832 bool strobe_mode,
1833 bool dllStateOn
1834 )
1835 {
1836 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1837 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1838 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1839 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1840 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1841 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1842 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1843 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1844 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1845 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1846
1847 pp_atomctrl_memory_clock_param mpll_param;
1848 int result;
1849
1850 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1851 memory_clock, &mpll_param, strobe_mode);
1852 PP_ASSERT_WITH_CODE(0 == result,
1853 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1854
1855 /* MPLL_FUNC_CNTL setup*/
1856 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1857
1858 /* MPLL_FUNC_CNTL_1 setup*/
1859 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1860 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1861 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1862 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1863 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1864 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1865
1866 /* MPLL_AD_FUNC_CNTL setup*/
1867 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1868 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1869
1870 if (data->is_memory_GDDR5) {
1871 /* MPLL_DQ_FUNC_CNTL setup*/
1872 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1873 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1874 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1875 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1876 }
1877
1878 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1879 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1880 /*
1881 ************************************
1882 Fref = Reference Frequency
1883 NF = Feedback divider ratio
1884 NR = Reference divider ratio
1885 Fnom = Nominal VCO output frequency = Fref * NF / NR
1886 Fs = Spreading Rate
1887 D = Percentage down-spread / 2
1888 Fint = Reference input frequency to PFD = Fref / NR
1889 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1890 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1891 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1892 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1893 *************************************
1894 */
1895 pp_atomctrl_internal_ss_info ss_info;
1896 uint32_t freq_nom;
1897 uint32_t tmp;
1898 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1899
1900 /* for GDDR5 for all modes and DDR3 */
1901 if (1 == mpll_param.qdr)
1902 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1903 else
1904 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1905
1906 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1907 tmp = (freq_nom / reference_clock);
1908 tmp = tmp * tmp;
1909
1910 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1911 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1912 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1913 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1914 /* = reference_clock * 5 / speed_spectrum_rate */
1915 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1916
1917 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1918 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1919 uint32_t clkv =
1920 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1921 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1922
1923 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1924 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1925 }
1926 }
1927
1928 /* MCLK_PWRMGT_CNTL setup */
1929 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1930 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1931 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1932 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1933 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1934 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1935
1936
1937 /* Save the result data to outpupt memory level structure */
1938 mclk->MclkFrequency = memory_clock;
1939 mclk->MpllFuncCntl = mpll_func_cntl;
1940 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1941 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1942 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1943 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1944 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1945 mclk->DllCntl = dll_cntl;
1946 mclk->MpllSs1 = mpll_ss1;
1947 mclk->MpllSs2 = mpll_ss2;
1948
1949 return 0;
1950 }
1951
1952 static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
1953 bool strobe_mode)
1954 {
1955 uint8_t mc_para_index;
1956
1957 if (strobe_mode) {
1958 if (memory_clock < 12500) {
1959 mc_para_index = 0x00;
1960 } else if (memory_clock > 47500) {
1961 mc_para_index = 0x0f;
1962 } else {
1963 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1964 }
1965 } else {
1966 if (memory_clock < 65000) {
1967 mc_para_index = 0x00;
1968 } else if (memory_clock > 135000) {
1969 mc_para_index = 0x0f;
1970 } else {
1971 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1972 }
1973 }
1974
1975 return mc_para_index;
1976 }
1977
1978 static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1979 {
1980 uint8_t mc_para_index;
1981
1982 if (memory_clock < 10000) {
1983 mc_para_index = 0;
1984 } else if (memory_clock >= 80000) {
1985 mc_para_index = 0x0f;
1986 } else {
1987 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1988 }
1989
1990 return mc_para_index;
1991 }
1992
1993 static int tonga_populate_single_memory_level(
1994 struct pp_hwmgr *hwmgr,
1995 uint32_t memory_clock,
1996 SMU72_Discrete_MemoryLevel *memory_level
1997 )
1998 {
1999 uint32_t minMvdd = 0;
2000 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2001 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2002 int result = 0;
2003 bool dllStateOn;
2004 struct cgs_display_info info = {0};
2005
2006
2007 if (NULL != pptable_info->vdd_dep_on_mclk) {
2008 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2009 pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
2010 PP_ASSERT_WITH_CODE((0 == result),
2011 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
2012 }
2013
2014 if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
2015 memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
2016 } else {
2017 memory_level->MinMvdd = minMvdd;
2018 }
2019 memory_level->EnabledForThrottle = 1;
2020 memory_level->EnabledForActivity = 0;
2021 memory_level->UpHyst = 0;
2022 memory_level->DownHyst = 100;
2023 memory_level->VoltageDownHyst = 0;
2024
2025 /* Indicates maximum activity level for this performance level.*/
2026 memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2027 memory_level->StutterEnable = 0;
2028 memory_level->StrobeEnable = 0;
2029 memory_level->EdcReadEnable = 0;
2030 memory_level->EdcWriteEnable = 0;
2031 memory_level->RttEnable = 0;
2032
2033 /* default set to low watermark. Highest level will be set to high later.*/
2034 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2035
2036 cgs_get_active_displays_info(hwmgr->device, &info);
2037 data->display_timing.num_existing_displays = info.display_count;
2038
2039 if ((data->mclk_stutter_mode_threshold != 0) &&
2040 (memory_clock <= data->mclk_stutter_mode_threshold) &&
2041 (data->is_uvd_enabled == 0)
2042 #if defined(LINUX)
2043 && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
2044 && (data->display_timing.num_existing_displays <= 2)
2045 && (data->display_timing.num_existing_displays != 0)
2046 #endif
2047 )
2048 memory_level->StutterEnable = 1;
2049
2050 /* decide strobe mode*/
2051 memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
2052 (memory_clock <= data->mclk_strobe_mode_threshold);
2053
2054 /* decide EDC mode and memory clock ratio*/
2055 if (data->is_memory_GDDR5) {
2056 memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
2057 memory_level->StrobeEnable);
2058
2059 if ((data->mclk_edc_enable_threshold != 0) &&
2060 (memory_clock > data->mclk_edc_enable_threshold)) {
2061 memory_level->EdcReadEnable = 1;
2062 }
2063
2064 if ((data->mclk_edc_wr_enable_threshold != 0) &&
2065 (memory_clock > data->mclk_edc_wr_enable_threshold)) {
2066 memory_level->EdcWriteEnable = 1;
2067 }
2068
2069 if (memory_level->StrobeEnable) {
2070 if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
2071 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
2072 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2073 } else {
2074 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
2075 }
2076
2077 } else {
2078 dllStateOn = data->dll_defaule_on;
2079 }
2080 } else {
2081 memory_level->StrobeRatio =
2082 tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
2083 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2084 }
2085
2086 result = tonga_calculate_mclk_params(hwmgr,
2087 memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
2088
2089 if (0 == result) {
2090 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
2091 /* MCLK frequency in units of 10KHz*/
2092 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
2093 /* Indicates maximum activity level for this performance level.*/
2094 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
2095 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
2096 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
2097 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
2098 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
2099 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
2100 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
2101 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
2102 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
2103 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
2104 }
2105
2106 return result;
2107 }
2108
2109 /**
2110 * Populates the SMC MVDD structure using the provided memory clock.
2111 *
2112 * @param hwmgr the address of the hardware manager
2113 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2114 * @param voltage the SMC VOLTAGE structure to be populated
2115 */
2116 int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
2117 {
2118 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2119 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2120 uint32_t i = 0;
2121
2122 if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2123 /* find mvdd value which clock is more than request */
2124 for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
2125 if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
2126 /* Always round to higher voltage. */
2127 smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
2128 break;
2129 }
2130 }
2131
2132 PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
2133 "MVDD Voltage is outside the supported range.", return -1);
2134
2135 } else {
2136 return -1;
2137 }
2138
2139 return 0;
2140 }
2141
2142
2143 static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
2144 SMU72_Discrete_DpmTable *table)
2145 {
2146 int result = 0;
2147 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2148 pp_atomctrl_clock_dividers_vi dividers;
2149 SMIO_Pattern voltage_level;
2150 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2151 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2152 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
2153 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
2154
2155 /* The ACPI state should not do DPM on DC (or ever).*/
2156 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2157
2158 table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
2159
2160 /* assign zero for now*/
2161 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
2162
2163 /* get the engine clock dividers for this clock value*/
2164 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2165 table->ACPILevel.SclkFrequency, &dividers);
2166
2167 PP_ASSERT_WITH_CODE(result == 0,
2168 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2169
2170 /* divider ID for required SCLK*/
2171 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2172 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2173 table->ACPILevel.DeepSleepDivId = 0;
2174
2175 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2176 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
2177 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2178 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
2179 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
2180 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
2181
2182 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2183 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2184 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2185 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2186 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2187 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2188 table->ACPILevel.CcPwrDynRm = 0;
2189 table->ACPILevel.CcPwrDynRm1 = 0;
2190
2191
2192 /* For various features to be enabled/disabled while this level is active.*/
2193 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2194 /* SCLK frequency in units of 10KHz*/
2195 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2196 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2197 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2198 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2199 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2200 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2201 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2202 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2203 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2204
2205 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
2206 table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
2207
2208 /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
2209
2210 if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
2211 table->MemoryACPILevel.MinMvdd =
2212 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
2213 else
2214 table->MemoryACPILevel.MinMvdd = 0;
2215
2216 /* Force reset on DLL*/
2217 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2218 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
2219 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2220 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
2221
2222 /* Disable DLL in ACPIState*/
2223 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2224 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
2225 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2226 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
2227
2228 /* Enable DLL bypass signal*/
2229 dll_cntl = PHM_SET_FIELD(dll_cntl,
2230 DLL_CNTL, MRDCK0_BYPASS, 0);
2231 dll_cntl = PHM_SET_FIELD(dll_cntl,
2232 DLL_CNTL, MRDCK1_BYPASS, 0);
2233
2234 table->MemoryACPILevel.DllCntl =
2235 PP_HOST_TO_SMC_UL(dll_cntl);
2236 table->MemoryACPILevel.MclkPwrmgtCntl =
2237 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
2238 table->MemoryACPILevel.MpllAdFuncCntl =
2239 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
2240 table->MemoryACPILevel.MpllDqFuncCntl =
2241 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
2242 table->MemoryACPILevel.MpllFuncCntl =
2243 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
2244 table->MemoryACPILevel.MpllFuncCntl_1 =
2245 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
2246 table->MemoryACPILevel.MpllFuncCntl_2 =
2247 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
2248 table->MemoryACPILevel.MpllSs1 =
2249 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
2250 table->MemoryACPILevel.MpllSs2 =
2251 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
2252
2253 table->MemoryACPILevel.EnabledForThrottle = 0;
2254 table->MemoryACPILevel.EnabledForActivity = 0;
2255 table->MemoryACPILevel.UpHyst = 0;
2256 table->MemoryACPILevel.DownHyst = 100;
2257 table->MemoryACPILevel.VoltageDownHyst = 0;
2258 /* Indicates maximum activity level for this performance level.*/
2259 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2260
2261 table->MemoryACPILevel.StutterEnable = 0;
2262 table->MemoryACPILevel.StrobeEnable = 0;
2263 table->MemoryACPILevel.EdcReadEnable = 0;
2264 table->MemoryACPILevel.EdcWriteEnable = 0;
2265 table->MemoryACPILevel.RttEnable = 0;
2266
2267 return result;
2268 }
2269
2270 static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
2271 {
2272 int result = 0;
2273 uint32_t i;
2274
2275 for (i = 0; i < table->count; i++) {
2276 if (value == table->dpm_levels[i].value) {
2277 *boot_level = i;
2278 result = 0;
2279 }
2280 }
2281 return result;
2282 }
2283
2284 static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2285 SMU72_Discrete_DpmTable *table)
2286 {
2287 int result = 0;
2288 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2289
2290 table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2291 table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2292
2293 /* find boot level from dpm table*/
2294 result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
2295 data->vbios_boot_state.sclk_bootup_value,
2296 (uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
2297
2298 if (0 != result) {
2299 data->smc_state_table.GraphicsBootLevel = 0;
2300 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2301 in dependency table. Using Graphics DPM level 0!");
2302 result = 0;
2303 }
2304
2305 result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
2306 data->vbios_boot_state.mclk_bootup_value,
2307 (uint32_t *)&(data->smc_state_table.MemoryBootLevel));
2308
2309 if (0 != result) {
2310 data->smc_state_table.MemoryBootLevel = 0;
2311 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2312 in dependency table. Using Memory DPM level 0!");
2313 result = 0;
2314 }
2315
2316 table->BootVoltage.Vddc =
2317 tonga_get_voltage_id(&(data->vddc_voltage_table),
2318 data->vbios_boot_state.vddc_bootup_value);
2319 table->BootVoltage.VddGfx =
2320 tonga_get_voltage_id(&(data->vddgfx_voltage_table),
2321 data->vbios_boot_state.vddgfx_bootup_value);
2322 table->BootVoltage.Vddci =
2323 tonga_get_voltage_id(&(data->vddci_voltage_table),
2324 data->vbios_boot_state.vddci_bootup_value);
2325 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
2326
2327 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2328
2329 return result;
2330 }
2331
2332
2333 /**
2334 * Calculates the SCLK dividers using the provided engine clock
2335 *
2336 * @param hwmgr the address of the hardware manager
2337 * @param engine_clock the engine clock to use to populate the structure
2338 * @param sclk the SMC SCLK structure to be populated
2339 */
2340 int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
2341 uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
2342 {
2343 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2344 pp_atomctrl_clock_dividers_vi dividers;
2345 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2346 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2347 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2348 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2349 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2350 uint32_t reference_clock;
2351 uint32_t reference_divider;
2352 uint32_t fbdiv;
2353 int result;
2354
2355 /* get the engine clock dividers for this clock value*/
2356 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
2357
2358 PP_ASSERT_WITH_CODE(result == 0,
2359 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2360
2361 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
2362 reference_clock = atomctrl_get_reference_clock(hwmgr);
2363
2364 reference_divider = 1 + dividers.uc_pll_ref_div;
2365
2366 /* low 14 bits is fraction and high 12 bits is divider*/
2367 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
2368
2369 /* SPLL_FUNC_CNTL setup*/
2370 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2371 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
2372 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2373 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
2374
2375 /* SPLL_FUNC_CNTL_3 setup*/
2376 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2377 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
2378
2379 /* set to use fractional accumulation*/
2380 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2381 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
2382
2383 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2384 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
2385 pp_atomctrl_internal_ss_info ss_info;
2386
2387 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
2388 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
2389 /*
2390 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
2391 * ss_info.speed_spectrum_rate -- in unit of khz
2392 */
2393 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
2394 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
2395
2396 /* clkv = 2 * D * fbdiv / NS */
2397 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
2398
2399 cg_spll_spread_spectrum =
2400 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
2401 cg_spll_spread_spectrum =
2402 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
2403 cg_spll_spread_spectrum_2 =
2404 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
2405 }
2406 }
2407
2408 sclk->SclkFrequency = engine_clock;
2409 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
2410 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
2411 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
2412 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
2413 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
2414
2415 return 0;
2416 }
2417
2418 /**
2419 * Populates single SMC SCLK structure using the provided engine clock
2420 *
2421 * @param hwmgr the address of the hardware manager
2422 * @param engine_clock the engine clock to use to populate the structure
2423 * @param sclk the SMC SCLK structure to be populated
2424 */
2425 static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
2426 {
2427 int result;
2428 uint32_t threshold;
2429 uint32_t mvdd;
2430 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2431 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2432
2433 result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
2434
2435
2436 /* populate graphics levels*/
2437 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2438 pptable_info->vdd_dep_on_sclk, engine_clock,
2439 &graphic_level->MinVoltage, &mvdd);
2440 PP_ASSERT_WITH_CODE((0 == result),
2441 "can not find VDDC voltage value for VDDC \
2442 engine clock dependency table", return result);
2443
2444 /* SCLK frequency in units of 10KHz*/
2445 graphic_level->SclkFrequency = engine_clock;
2446
2447 /* Indicates maximum activity level for this performance level. 50% for now*/
2448 graphic_level->ActivityLevel = sclk_activity_level_threshold;
2449
2450 graphic_level->CcPwrDynRm = 0;
2451 graphic_level->CcPwrDynRm1 = 0;
2452 /* this level can be used if activity is high enough.*/
2453 graphic_level->EnabledForActivity = 0;
2454 /* this level can be used for throttling.*/
2455 graphic_level->EnabledForThrottle = 1;
2456 graphic_level->UpHyst = 0;
2457 graphic_level->DownHyst = 0;
2458 graphic_level->VoltageDownHyst = 0;
2459 graphic_level->PowerThrottle = 0;
2460
2461 threshold = engine_clock * data->fast_watemark_threshold / 100;
2462 /*
2463 *get the DAL clock. do it in funture.
2464 PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
2465 data->display_timing.min_clock_insr = minClocks.engineClockInSR;
2466
2467 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
2468 {
2469 graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR);
2470 }
2471 */
2472
2473 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
2474 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2475
2476 if (0 == result) {
2477 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
2478 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
2479 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
2480 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
2481 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
2482 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
2483 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
2484 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
2485 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
2486 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
2487 }
2488
2489 return result;
2490 }
2491
2492 /**
2493 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2494 *
2495 * @param hwmgr the address of the hardware manager
2496 */
2497 static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2498 {
2499 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2500 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2501 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2502 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2503 uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
2504 int result = 0;
2505 uint32_t level_array_adress = data->dpm_table_start +
2506 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
2507 uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
2508 SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/
2509 SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
2510 uint32_t i, maxEntry;
2511 uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
2512 PECI_RegistryValue reg_value;
2513 memset(levels, 0x00, level_array_size);
2514
2515 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2516 result = tonga_populate_single_graphic_level(hwmgr,
2517 dpm_table->sclk_table.dpm_levels[i].value,
2518 (uint16_t)data->activity_target[i],
2519 &(data->smc_state_table.GraphicsLevel[i]));
2520
2521 if (0 != result)
2522 return result;
2523
2524 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2525 if (i > 1)
2526 data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
2527
2528 if (0 == i) {
2529 reg_value = 0;
2530 if (reg_value != 0)
2531 data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
2532 }
2533
2534 if (1 == i) {
2535 reg_value = 0;
2536 if (reg_value != 0)
2537 data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
2538 }
2539 }
2540
2541 /* Only enable level 0 for now. */
2542 data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
2543
2544 /* set highest level watermark to high */
2545 if (dpm_table->sclk_table.count > 1)
2546 data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
2547 PPSMC_DISPLAY_WATERMARK_HIGH;
2548
2549 data->smc_state_table.GraphicsDpmLevelCount =
2550 (uint8_t)dpm_table->sclk_table.count;
2551 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2552 tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2553
2554 if (pcie_table != NULL) {
2555 PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
2556 "There must be 1 or more PCIE levels defined in PPTable.", return -1);
2557 maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
2558 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2559 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
2560 (uint8_t) ((i < maxEntry) ? i : maxEntry);
2561 }
2562 } else {
2563 if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
2564 printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
2565
2566 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2567 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2568 (1<<(highest_pcie_level_enabled+1))) != 0)) {
2569 highest_pcie_level_enabled++;
2570 }
2571
2572 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2573 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2574 (1<<lowest_pcie_level_enabled)) == 0)) {
2575 lowest_pcie_level_enabled++;
2576 }
2577
2578 while ((count < highest_pcie_level_enabled) &&
2579 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2580 (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
2581 count++;
2582 }
2583 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
2584 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
2585
2586
2587 /* set pcieDpmLevel to highest_pcie_level_enabled*/
2588 for (i = 2; i < dpm_table->sclk_table.count; i++) {
2589 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
2590 }
2591
2592 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
2593 data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
2594
2595 /* set pcieDpmLevel to mid_pcie_level_enabled*/
2596 data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
2597 }
2598 /* level count will send to smc once at init smc table and never change*/
2599 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2600
2601 if (0 != result)
2602 return result;
2603
2604 return 0;
2605 }
2606
2607 /**
2608 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2609 *
2610 * @param hwmgr the address of the hardware manager
2611 */
2612
2613 static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2614 {
2615 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2616 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2617 int result;
2618 /* populate MCLK dpm table to SMU7 */
2619 uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
2620 uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
2621 SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
2622 uint32_t i;
2623
2624 memset(levels, 0x00, level_array_size);
2625
2626 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2627 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2628 "can not populate memory level as memory clock is zero", return -1);
2629 result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
2630 &(data->smc_state_table.MemoryLevel[i]));
2631 if (0 != result) {
2632 return result;
2633 }
2634 }
2635
2636 /* Only enable level 0 for now.*/
2637 data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
2638
2639 /*
2640 * in order to prevent MC activity from stutter mode to push DPM up.
2641 * the UVD change complements this by putting the MCLK in a higher state
2642 * by default such that we are not effected by up threshold or and MCLK DPM latency.
2643 */
2644 data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
2645 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
2646
2647 data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
2648 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2649 /* set highest level watermark to high*/
2650 data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
2651
2652 /* level count will send to smc once at init smc table and never change*/
2653 result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
2654 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2655
2656 if (0 != result) {
2657 return result;
2658 }
2659
2660 return 0;
2661 }
2662
2663 struct TONGA_DLL_SPEED_SETTING {
2664 uint16_t Min; /* Minimum Data Rate*/
2665 uint16_t Max; /* Maximum Data Rate*/
2666 uint32_t dll_speed; /* The desired DLL_SPEED setting*/
2667 };
2668
2669 static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2670 {
2671 return 0;
2672 }
2673
2674 /* ---------------------------------------- ULV related functions ----------------------------------------------------*/
2675
2676
2677 static int tonga_reset_single_dpm_table(
2678 struct pp_hwmgr *hwmgr,
2679 struct tonga_single_dpm_table *dpm_table,
2680 uint32_t count)
2681 {
2682 uint32_t i;
2683 if (!(count <= MAX_REGULAR_DPM_NUMBER))
2684 printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
2685 table entries to exceed max number! \n");
2686
2687 dpm_table->count = count;
2688 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
2689 dpm_table->dpm_levels[i].enabled = 0;
2690 }
2691
2692 return 0;
2693 }
2694
2695 static void tonga_setup_pcie_table_entry(
2696 struct tonga_single_dpm_table *dpm_table,
2697 uint32_t index, uint32_t pcie_gen,
2698 uint32_t pcie_lanes)
2699 {
2700 dpm_table->dpm_levels[index].value = pcie_gen;
2701 dpm_table->dpm_levels[index].param1 = pcie_lanes;
2702 dpm_table->dpm_levels[index].enabled = 1;
2703 }
2704
2705 static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
2706 {
2707 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2708 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2709 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2710 uint32_t i, maxEntry;
2711
2712 if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
2713 data->pcie_gen_power_saving = data->pcie_gen_performance;
2714 data->pcie_lane_power_saving = data->pcie_lane_performance;
2715 } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
2716 data->pcie_gen_performance = data->pcie_gen_power_saving;
2717 data->pcie_lane_performance = data->pcie_lane_power_saving;
2718 }
2719
2720 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
2721
2722 if (pcie_table != NULL) {
2723 /*
2724 * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
2725 * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
2726 */
2727 maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
2728 SMU72_MAX_LEVELS_LINK : pcie_table->count;
2729 for (i = 1; i < maxEntry; i++) {
2730 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
2731 get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
2732 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2733 }
2734 data->dpm_table.pcie_speed_table.count = maxEntry - 1;
2735 } else {
2736 /* Hardcode Pcie Table */
2737 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
2738 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2739 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2740 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
2741 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2742 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2743 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
2744 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2745 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2746 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
2747 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2748 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2749 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
2750 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2751 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2752 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
2753 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2754 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2755 data->dpm_table.pcie_speed_table.count = 6;
2756 }
2757 /* Populate last level for boot PCIE level, but do not increment count. */
2758 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
2759 data->dpm_table.pcie_speed_table.count,
2760 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2761 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2762
2763 return 0;
2764
2765 }
2766
2767 /*
2768 * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
2769 * Dynamic state patching function will then trim these state tables to the allowed range based
2770 * on the power policy or external client requests, such as UVD request, etc.
2771 */
2772 static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
2773 {
2774 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2775 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2776 uint32_t i;
2777
2778 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
2779 pptable_info->vdd_dep_on_sclk;
2780 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
2781 pptable_info->vdd_dep_on_mclk;
2782
2783 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2784 "SCLK dependency table is missing. This table is mandatory", return -1);
2785 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
2786 "SCLK dependency table has to have is missing. This table is mandatory", return -1);
2787
2788 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2789 "MCLK dependency table is missing. This table is mandatory", return -1);
2790 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
2791 "VMCLK dependency table has to have is missing. This table is mandatory", return -1);
2792
2793 /* clear the state table to reset everything to default */
2794 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
2795 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
2796 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
2797 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
2798 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
2799 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
2800 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
2801
2802 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2803 "SCLK dependency table is missing. This table is mandatory", return -1);
2804 /* Initialize Sclk DPM table based on allow Sclk values*/
2805 data->dpm_table.sclk_table.count = 0;
2806
2807 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2808 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
2809 allowed_vdd_sclk_table->entries[i].clk) {
2810 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
2811 allowed_vdd_sclk_table->entries[i].clk;
2812 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
2813 data->dpm_table.sclk_table.count++;
2814 }
2815 }
2816
2817 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2818 "MCLK dependency table is missing. This table is mandatory", return -1);
2819 /* Initialize Mclk DPM table based on allow Mclk values */
2820 data->dpm_table.mclk_table.count = 0;
2821 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2822 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
2823 allowed_vdd_mclk_table->entries[i].clk) {
2824 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
2825 allowed_vdd_mclk_table->entries[i].clk;
2826 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
2827 data->dpm_table.mclk_table.count++;
2828 }
2829 }
2830
2831 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
2832 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2833 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
2834 /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
2835 /* param1 is for corresponding std voltage */
2836 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
2837 }
2838 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
2839
2840 if (NULL != allowed_vdd_mclk_table) {
2841 /* Initialize Vddci DPM table based on allow Mclk values */
2842 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2843 data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
2844 data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
2845 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
2846 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
2847 }
2848 data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
2849 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
2850 }
2851
2852 /* setup PCIE gen speed levels*/
2853 tonga_setup_default_pcie_tables(hwmgr);
2854
2855 /* save a copy of the default DPM table*/
2856 memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
2857
2858 return 0;
2859 }
2860
2861 int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
2862 const struct tonga_power_state *bootState)
2863 {
2864 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2865 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2866 uint8_t count, level;
2867
2868 count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
2869 for (level = 0; level < count; level++) {
2870 if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
2871 bootState->performance_levels[0].engine_clock) {
2872 data->smc_state_table.GraphicsBootLevel = level;
2873 break;
2874 }
2875 }
2876
2877 count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
2878 for (level = 0; level < count; level++) {
2879 if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
2880 bootState->performance_levels[0].memory_clock) {
2881 data->smc_state_table.MemoryBootLevel = level;
2882 break;
2883 }
2884 }
2885
2886 return 0;
2887 }
2888
2889 /**
2890 * Initializes the SMC table and uploads it
2891 *
2892 * @param hwmgr the address of the powerplay hardware manager.
2893 * @param pInput the pointer to input data (PowerState)
2894 * @return always 0
2895 */
2896 int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2897 {
2898 int result;
2899 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2900 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2901 SMU72_Discrete_DpmTable *table = &(data->smc_state_table);
2902 const phw_tonga_ulv_parm *ulv = &(data->ulv);
2903 uint8_t i;
2904 PECI_RegistryValue reg_value;
2905 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2906
2907 result = tonga_setup_default_dpm_tables(hwmgr);
2908 PP_ASSERT_WITH_CODE(0 == result,
2909 "Failed to setup default DPM tables!", return result;);
2910 memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
2911 if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
2912 tonga_populate_smc_voltage_tables(hwmgr, table);
2913 }
2914
2915 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2916 PHM_PlatformCaps_AutomaticDCTransition)) {
2917 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2918 }
2919
2920 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2921 PHM_PlatformCaps_StepVddc)) {
2922 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2923 }
2924
2925 if (data->is_memory_GDDR5) {
2926 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2927 }
2928
2929 i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2930
2931 if (i == 1 || i == 0) {
2932 table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
2933 }
2934
2935 if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
2936 PP_ASSERT_WITH_CODE(0 == result,
2937 "Failed to initialize ULV state!", return result;);
2938
2939 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2940 ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
2941 }
2942
2943 result = tonga_populate_smc_link_level(hwmgr, table);
2944 PP_ASSERT_WITH_CODE(0 == result,
2945 "Failed to initialize Link Level!", return result;);
2946
2947 result = tonga_populate_all_graphic_levels(hwmgr);
2948 PP_ASSERT_WITH_CODE(0 == result,
2949 "Failed to initialize Graphics Level!", return result;);
2950
2951 result = tonga_populate_all_memory_levels(hwmgr);
2952 PP_ASSERT_WITH_CODE(0 == result,
2953 "Failed to initialize Memory Level!", return result;);
2954
2955 result = tonga_populate_smv_acpi_level(hwmgr, table);
2956 PP_ASSERT_WITH_CODE(0 == result,
2957 "Failed to initialize ACPI Level!", return result;);
2958
2959 result = tonga_populate_smc_vce_level(hwmgr, table);
2960 PP_ASSERT_WITH_CODE(0 == result,
2961 "Failed to initialize VCE Level!", return result;);
2962
2963 result = tonga_populate_smc_acp_level(hwmgr, table);
2964 PP_ASSERT_WITH_CODE(0 == result,
2965 "Failed to initialize ACP Level!", return result;);
2966
2967 result = tonga_populate_smc_samu_level(hwmgr, table);
2968 PP_ASSERT_WITH_CODE(0 == result,
2969 "Failed to initialize SAMU Level!", return result;);
2970
2971 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2972 /* need to populate the ARB settings for the initial state. */
2973 result = tonga_program_memory_timing_parameters(hwmgr);
2974 PP_ASSERT_WITH_CODE(0 == result,
2975 "Failed to Write ARB settings for the initial state.", return result;);
2976
2977 result = tonga_populate_smc_uvd_level(hwmgr, table);
2978 PP_ASSERT_WITH_CODE(0 == result,
2979 "Failed to initialize UVD Level!", return result;);
2980
2981 result = tonga_populate_smc_boot_level(hwmgr, table);
2982 PP_ASSERT_WITH_CODE(0 == result,
2983 "Failed to initialize Boot Level!", return result;);
2984
2985 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2986 PHM_PlatformCaps_ClockStretcher)) {
2987 result = tonga_populate_clock_stretcher_data_table(hwmgr);
2988 PP_ASSERT_WITH_CODE(0 == result,
2989 "Failed to populate Clock Stretcher Data Table!", return result;);
2990 }
2991 table->GraphicsVoltageChangeEnable = 1;
2992 table->GraphicsThermThrottleEnable = 1;
2993 table->GraphicsInterval = 1;
2994 table->VoltageInterval = 1;
2995 table->ThermalInterval = 1;
2996 table->TemperatureLimitHigh =
2997 pptable_info->cac_dtp_table->usTargetOperatingTemp *
2998 TONGA_Q88_FORMAT_CONVERSION_UNIT;
2999 table->TemperatureLimitLow =
3000 (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3001 TONGA_Q88_FORMAT_CONVERSION_UNIT;
3002 table->MemoryVoltageChangeEnable = 1;
3003 table->MemoryInterval = 1;
3004 table->VoltageResponseTime = 0;
3005 table->PhaseResponseTime = 0;
3006 table->MemoryThermThrottleEnable = 1;
3007
3008 /*
3009 * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
3010 * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
3011 * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
3012 * To avoid it, we set PCIeBootLinkLevel to highest dpm level
3013 */
3014 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
3015 "There must be 1 or more PCIE levels defined in PPTable.",
3016 return -1);
3017
3018 table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
3019
3020 table->PCIeGenInterval = 1;
3021
3022 result = tonga_populate_vr_config(hwmgr, table);
3023 PP_ASSERT_WITH_CODE(0 == result,
3024 "Failed to populate VRConfig setting!", return result);
3025
3026 table->ThermGpio = 17;
3027 table->SclkStepSize = 0x4000;
3028
3029 reg_value = 0;
3030 if ((0 == reg_value) &&
3031 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3032 VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
3033 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3034 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3035 PHM_PlatformCaps_RegulatorHot);
3036 } else {
3037 table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
3038 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3039 PHM_PlatformCaps_RegulatorHot);
3040 }
3041
3042 /* ACDC Switch GPIO */
3043 reg_value = 0;
3044 if ((0 == reg_value) &&
3045 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3046 PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
3047 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3048 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3049 PHM_PlatformCaps_AutomaticDCTransition);
3050 } else {
3051 table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
3052 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3053 PHM_PlatformCaps_AutomaticDCTransition);
3054 }
3055
3056 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3057 PHM_PlatformCaps_Falcon_QuickTransition);
3058
3059 reg_value = 0;
3060 if (1 == reg_value) {
3061 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3062 PHM_PlatformCaps_AutomaticDCTransition);
3063 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3064 PHM_PlatformCaps_Falcon_QuickTransition);
3065 }
3066
3067 reg_value = 0;
3068 if ((0 == reg_value) &&
3069 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3070 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
3071 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3072 PHM_PlatformCaps_ThermalOutGPIO);
3073
3074 table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3075
3076 table->ThermOutPolarity =
3077 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3078 (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
3079
3080 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3081
3082 /* if required, combine VRHot/PCC with thermal out GPIO*/
3083 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3084 PHM_PlatformCaps_RegulatorHot) &&
3085 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3086 PHM_PlatformCaps_CombinePCCWithThermalSignal)){
3087 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3088 }
3089 } else {
3090 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3091 PHM_PlatformCaps_ThermalOutGPIO);
3092
3093 table->ThermOutGpio = 17;
3094 table->ThermOutPolarity = 1;
3095 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3096 }
3097
3098 for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
3099 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3100 }
3101 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3102 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3103 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3104 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3105 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3106 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3107 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3108 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3109 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3110
3111 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3112 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
3113 offsetof(SMU72_Discrete_DpmTable, SystemFlags),
3114 (uint8_t *)&(table->SystemFlags),
3115 sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
3116 data->sram_end);
3117
3118 PP_ASSERT_WITH_CODE(0 == result,
3119 "Failed to upload dpm data to SMC memory!", return result;);
3120
3121 return result;
3122 }
3123
3124 /* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
3125 static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
3126 {
3127 return;
3128 }
3129
3130 int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3131 {
3132 PPSMC_Result result;
3133 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3134
3135 /* Apply minimum voltage based on DAL's request level */
3136 tonga_apply_dal_minimum_voltage_request(hwmgr);
3137
3138 if (0 == data->sclk_dpm_key_disabled) {
3139 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3140 if (0 != tonga_is_dpm_running(hwmgr))
3141 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3142
3143 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3144 result = smum_send_msg_to_smc_with_parameter(
3145 hwmgr->smumgr,
3146 (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
3147 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3148 PP_ASSERT_WITH_CODE((0 == result),
3149 "Set Sclk Dpm enable Mask failed", return -1);
3150 }
3151 }
3152
3153 if (0 == data->mclk_dpm_key_disabled) {
3154 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3155 if (0 != tonga_is_dpm_running(hwmgr))
3156 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3157
3158 if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3159 result = smum_send_msg_to_smc_with_parameter(
3160 hwmgr->smumgr,
3161 (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
3162 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3163 PP_ASSERT_WITH_CODE((0 == result),
3164 "Set Mclk Dpm enable Mask failed", return -1);
3165 }
3166 }
3167
3168 return 0;
3169 }
3170
3171
3172 int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
3173 {
3174 uint32_t level, tmp;
3175 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3176
3177 if (0 == data->pcie_dpm_key_disabled) {
3178 /* PCIE */
3179 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3180 level = 0;
3181 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3182 while (tmp >>= 1)
3183 level++ ;
3184
3185 if (0 != level) {
3186 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3187 "force highest pcie dpm state failed!", return -1);
3188 }
3189 }
3190 }
3191
3192 if (0 == data->sclk_dpm_key_disabled) {
3193 /* SCLK */
3194 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
3195 level = 0;
3196 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3197 while (tmp >>= 1)
3198 level++ ;
3199
3200 if (0 != level) {
3201 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3202 "force highest sclk dpm state failed!", return -1);
3203 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3204 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3205 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3206 Curr_Sclk_Index does not match the level \n");
3207
3208 }
3209 }
3210 }
3211
3212 if (0 == data->mclk_dpm_key_disabled) {
3213 /* MCLK */
3214 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3215 level = 0;
3216 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3217 while (tmp >>= 1)
3218 level++ ;
3219
3220 if (0 != level) {
3221 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3222 "force highest mclk dpm state failed!", return -1);
3223 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3224 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3225 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3226 Curr_Mclk_Index does not match the level \n");
3227 }
3228 }
3229 }
3230
3231 return 0;
3232 }
3233
3234 /**
3235 * Find the MC microcode version and store it in the HwMgr struct
3236 *
3237 * @param hwmgr the address of the powerplay hardware manager.
3238 * @return always 0
3239 */
3240 int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
3241 {
3242 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
3243
3244 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
3245
3246 return 0;
3247 }
3248
3249 /**
3250 * Initialize Dynamic State Adjustment Rule Settings
3251 *
3252 * @param hwmgr the address of the powerplay hardware manager.
3253 */
3254 int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
3255 {
3256 uint32_t table_size;
3257 struct phm_clock_voltage_dependency_table *table_clk_vlt;
3258 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3259
3260 hwmgr->dyn_state.mclk_sclk_ratio = 4;
3261 hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */
3262 hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */
3263
3264 /* initialize vddc_dep_on_dal_pwrl table */
3265 table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
3266 table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
3267
3268 if (NULL == table_clk_vlt) {
3269 printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
3270 return -ENOMEM;
3271 } else {
3272 table_clk_vlt->count = 4;
3273 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
3274 table_clk_vlt->entries[0].v = 0;
3275 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
3276 table_clk_vlt->entries[1].v = 720;
3277 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
3278 table_clk_vlt->entries[2].v = 810;
3279 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
3280 table_clk_vlt->entries[3].v = 900;
3281 pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
3282 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
3283 }
3284
3285 return 0;
3286 }
3287
3288 static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
3289 {
3290 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3291 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3292
3293 phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
3294 pptable_info->vdd_dep_on_sclk;
3295 phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
3296 pptable_info->vdd_dep_on_mclk;
3297
3298 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
3299 "VDD dependency on SCLK table is missing. \
3300 This table is mandatory", return -1);
3301 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
3302 "VDD dependency on SCLK table has to have is missing. \
3303 This table is mandatory", return -1);
3304
3305 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
3306 "VDD dependency on MCLK table is missing. \
3307 This table is mandatory", return -1);
3308 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
3309 "VDD dependency on MCLK table has to have is missing. \
3310 This table is mandatory", return -1);
3311
3312 data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
3313 data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3314
3315 pptable_info->max_clock_voltage_on_ac.sclk =
3316 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
3317 pptable_info->max_clock_voltage_on_ac.mclk =
3318 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
3319 pptable_info->max_clock_voltage_on_ac.vddc =
3320 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3321 pptable_info->max_clock_voltage_on_ac.vddci =
3322 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
3323
3324 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
3325 pptable_info->max_clock_voltage_on_ac.sclk;
3326 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
3327 pptable_info->max_clock_voltage_on_ac.mclk;
3328 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
3329 pptable_info->max_clock_voltage_on_ac.vddc;
3330 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
3331 pptable_info->max_clock_voltage_on_ac.vddci;
3332
3333 return 0;
3334 }
3335
3336 int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3337 {
3338 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3339 int result = 1;
3340
3341 PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
3342 "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
3343 return result);
3344
3345 if (0 == data->pcie_dpm_key_disabled) {
3346 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
3347 hwmgr->smumgr,
3348 PPSMC_MSG_PCIeDPM_UnForceLevel)),
3349 "unforce pcie level failed!",
3350 return -1);
3351 }
3352
3353 result = tonga_upload_dpm_level_enable_mask(hwmgr);
3354
3355 return result;
3356 }
3357
3358 static uint32_t tonga_get_lowest_enable_level(
3359 struct pp_hwmgr *hwmgr, uint32_t level_mask)
3360 {
3361 uint32_t level = 0;
3362
3363 while (0 == (level_mask & (1 << level)))
3364 level++;
3365
3366 return level;
3367 }
3368
3369 static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3370 {
3371 uint32_t level;
3372 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3373
3374 if (0 == data->pcie_dpm_key_disabled) {
3375 /* PCIE */
3376 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3377 level = tonga_get_lowest_enable_level(hwmgr,
3378 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3379 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3380 "force lowest pcie dpm state failed!", return -1);
3381 }
3382 }
3383
3384 if (0 == data->sclk_dpm_key_disabled) {
3385 /* SCLK */
3386 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3387 level = tonga_get_lowest_enable_level(hwmgr,
3388 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3389
3390 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3391 "force sclk dpm state failed!", return -1);
3392
3393 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3394 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3395 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3396 Curr_Sclk_Index does not match the level \n");
3397 }
3398 }
3399
3400 if (0 == data->mclk_dpm_key_disabled) {
3401 /* MCLK */
3402 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3403 level = tonga_get_lowest_enable_level(hwmgr,
3404 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3405 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3406 "force lowest mclk dpm state failed!", return -1);
3407 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3408 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3409 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3410 Curr_Mclk_Index does not match the level \n");
3411 }
3412 }
3413
3414 return 0;
3415 }
3416
3417 static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
3418 {
3419 uint8_t entryId;
3420 uint8_t voltageId;
3421 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3422 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3423
3424 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3425 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3426 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3427
3428 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3429 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3430 voltageId = sclk_table->entries[entryId].vddInd;
3431 sclk_table->entries[entryId].vddgfx =
3432 pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
3433 }
3434 } else {
3435 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3436 voltageId = sclk_table->entries[entryId].vddInd;
3437 sclk_table->entries[entryId].vddc =
3438 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3439 }
3440 }
3441
3442 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3443 voltageId = mclk_table->entries[entryId].vddInd;
3444 mclk_table->entries[entryId].vddc =
3445 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3446 }
3447
3448 for (entryId = 0; entryId < mm_table->count; ++entryId) {
3449 voltageId = mm_table->entries[entryId].vddcInd;
3450 mm_table->entries[entryId].vddc =
3451 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3452 }
3453
3454 return 0;
3455
3456 }
3457
3458 static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
3459 {
3460 uint8_t entryId;
3461 phm_ppt_v1_voltage_lookup_record v_record;
3462 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3463 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3464
3465 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3466 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3467
3468 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3469 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3470 if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
3471 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3472 sclk_table->entries[entryId].vdd_offset - 0xFFFF;
3473 else
3474 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3475 sclk_table->entries[entryId].vdd_offset;
3476
3477 sclk_table->entries[entryId].vddc =
3478 v_record.us_cac_low = v_record.us_cac_mid =
3479 v_record.us_cac_high = v_record.us_vdd;
3480
3481 tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
3482 }
3483
3484 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3485 if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
3486 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3487 mclk_table->entries[entryId].vdd_offset - 0xFFFF;
3488 else
3489 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3490 mclk_table->entries[entryId].vdd_offset;
3491
3492 mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
3493 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3494 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3495 }
3496 }
3497
3498 return 0;
3499
3500 }
3501
3502 static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
3503 {
3504 uint32_t entryId;
3505 phm_ppt_v1_voltage_lookup_record v_record;
3506 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3507 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3508 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3509
3510 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3511 for (entryId = 0; entryId < mm_table->count; entryId++) {
3512 if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
3513 v_record.us_vdd = mm_table->entries[entryId].vddc +
3514 mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
3515 else
3516 v_record.us_vdd = mm_table->entries[entryId].vddc +
3517 mm_table->entries[entryId].vddgfx_offset;
3518
3519 /* Add the calculated VDDGFX to the VDDGFX lookup table */
3520 mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
3521 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3522 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3523 }
3524 }
3525 return 0;
3526 }
3527
3528
3529 /**
3530 * Change virtual leakage voltage to actual value.
3531 *
3532 * @param hwmgr the address of the powerplay hardware manager.
3533 * @param pointer to changing voltage
3534 * @param pointer to leakage table
3535 */
3536 static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
3537 uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
3538 {
3539 uint32_t leakage_index;
3540
3541 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
3542 for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
3543 /* if this voltage matches a leakage voltage ID */
3544 /* patch with actual leakage voltage */
3545 if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
3546 *voltage = pLeakageTable->actual_voltage[leakage_index];
3547 break;
3548 }
3549 }
3550
3551 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
3552 printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
3553 }
3554
3555 /**
3556 * Patch voltage lookup table by EVV leakages.
3557 *
3558 * @param hwmgr the address of the powerplay hardware manager.
3559 * @param pointer to voltage lookup table
3560 * @param pointer to leakage table
3561 * @return always 0
3562 */
3563 static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
3564 phm_ppt_v1_voltage_lookup_table *lookup_table,
3565 phw_tonga_leakage_voltage *pLeakageTable)
3566 {
3567 uint32_t i;
3568
3569 for (i = 0; i < lookup_table->count; i++) {
3570 tonga_patch_with_vdd_leakage(hwmgr,
3571 &lookup_table->entries[i].us_vdd, pLeakageTable);
3572 }
3573
3574 return 0;
3575 }
3576
3577 static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
3578 phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
3579 {
3580 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3581
3582 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
3583 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
3584 pptable_info->max_clock_voltage_on_dc.vddc;
3585
3586 return 0;
3587 }
3588
3589 static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
3590 struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
3591 uint16_t *Vddgfx)
3592 {
3593 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
3594 return 0;
3595 }
3596
3597 int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
3598 phm_ppt_v1_voltage_lookup_table *lookup_table)
3599 {
3600 uint32_t table_size, i, j;
3601 phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
3602 table_size = lookup_table->count;
3603
3604 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
3605 "Lookup table is empty", return -1);
3606
3607 /* Sorting voltages */
3608 for (i = 0; i < table_size - 1; i++) {
3609 for (j = i + 1; j > 0; j--) {
3610 if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
3611 tmp_voltage_lookup_record = lookup_table->entries[j-1];
3612 lookup_table->entries[j-1] = lookup_table->entries[j];
3613 lookup_table->entries[j] = tmp_voltage_lookup_record;
3614 }
3615 }
3616 }
3617
3618 return 0;
3619 }
3620
3621 static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
3622 {
3623 int result = 0;
3624 int tmp_result;
3625 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3626 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3627
3628 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3629 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3630 pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
3631 if (tmp_result != 0)
3632 result = tmp_result;
3633
3634 tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
3635 &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
3636 if (tmp_result != 0)
3637 result = tmp_result;
3638 } else {
3639 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3640 pptable_info->vddc_lookup_table, &(data->vddc_leakage));
3641 if (tmp_result != 0)
3642 result = tmp_result;
3643
3644 tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
3645 &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
3646 if (tmp_result != 0)
3647 result = tmp_result;
3648 }
3649
3650 tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
3651 if (tmp_result != 0)
3652 result = tmp_result;
3653
3654 tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
3655 if (tmp_result != 0)
3656 result = tmp_result;
3657
3658 tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
3659 if (tmp_result != 0)
3660 result = tmp_result;
3661
3662 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
3663 if (tmp_result != 0)
3664 result = tmp_result;
3665
3666 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
3667 if (tmp_result != 0)
3668 result = tmp_result;
3669
3670 return result;
3671 }
3672
3673 int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
3674 {
3675 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3676 data->low_sclk_interrupt_threshold = 0;
3677
3678 return 0;
3679 }
3680
3681 int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
3682 {
3683 int tmp_result, result = 0;
3684
3685 tmp_result = tonga_read_clock_registers(hwmgr);
3686 PP_ASSERT_WITH_CODE((0 == tmp_result),
3687 "Failed to read clock registers!", result = tmp_result);
3688
3689 tmp_result = tonga_get_memory_type(hwmgr);
3690 PP_ASSERT_WITH_CODE((0 == tmp_result),
3691 "Failed to get memory type!", result = tmp_result);
3692
3693 tmp_result = tonga_enable_acpi_power_management(hwmgr);
3694 PP_ASSERT_WITH_CODE((0 == tmp_result),
3695 "Failed to enable ACPI power management!", result = tmp_result);
3696
3697 tmp_result = tonga_init_power_gate_state(hwmgr);
3698 PP_ASSERT_WITH_CODE((0 == tmp_result),
3699 "Failed to init power gate state!", result = tmp_result);
3700
3701 tmp_result = tonga_get_mc_microcode_version(hwmgr);
3702 PP_ASSERT_WITH_CODE((0 == tmp_result),
3703 "Failed to get MC microcode version!", result = tmp_result);
3704
3705 tmp_result = tonga_init_sclk_threshold(hwmgr);
3706 PP_ASSERT_WITH_CODE((0 == tmp_result),
3707 "Failed to init sclk threshold!", result = tmp_result);
3708
3709 return result;
3710 }
3711
3712 /**
3713 * Enable voltage control
3714 *
3715 * @param hwmgr the address of the powerplay hardware manager.
3716 * @return always 0
3717 */
3718 int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
3719 {
3720 /* enable voltage control */
3721 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
3722
3723 return 0;
3724 }
3725
3726 /**
3727 * Checks if we want to support voltage control
3728 *
3729 * @param hwmgr the address of the powerplay hardware manager.
3730 */
3731 bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
3732 {
3733 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3734
3735 return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
3736 }
3737
3738 /*---------------------------MC----------------------------*/
3739
3740 uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
3741 {
3742 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
3743 }
3744
3745 bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
3746 {
3747 bool result = 1;
3748
3749 switch (inReg) {
3750 case mmMC_SEQ_RAS_TIMING:
3751 *outReg = mmMC_SEQ_RAS_TIMING_LP;
3752 break;
3753
3754 case mmMC_SEQ_DLL_STBY:
3755 *outReg = mmMC_SEQ_DLL_STBY_LP;
3756 break;
3757
3758 case mmMC_SEQ_G5PDX_CMD0:
3759 *outReg = mmMC_SEQ_G5PDX_CMD0_LP;
3760 break;
3761
3762 case mmMC_SEQ_G5PDX_CMD1:
3763 *outReg = mmMC_SEQ_G5PDX_CMD1_LP;
3764 break;
3765
3766 case mmMC_SEQ_G5PDX_CTRL:
3767 *outReg = mmMC_SEQ_G5PDX_CTRL_LP;
3768 break;
3769
3770 case mmMC_SEQ_CAS_TIMING:
3771 *outReg = mmMC_SEQ_CAS_TIMING_LP;
3772 break;
3773
3774 case mmMC_SEQ_MISC_TIMING:
3775 *outReg = mmMC_SEQ_MISC_TIMING_LP;
3776 break;
3777
3778 case mmMC_SEQ_MISC_TIMING2:
3779 *outReg = mmMC_SEQ_MISC_TIMING2_LP;
3780 break;
3781
3782 case mmMC_SEQ_PMG_DVS_CMD:
3783 *outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
3784 break;
3785
3786 case mmMC_SEQ_PMG_DVS_CTL:
3787 *outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
3788 break;
3789
3790 case mmMC_SEQ_RD_CTL_D0:
3791 *outReg = mmMC_SEQ_RD_CTL_D0_LP;
3792 break;
3793
3794 case mmMC_SEQ_RD_CTL_D1:
3795 *outReg = mmMC_SEQ_RD_CTL_D1_LP;
3796 break;
3797
3798 case mmMC_SEQ_WR_CTL_D0:
3799 *outReg = mmMC_SEQ_WR_CTL_D0_LP;
3800 break;
3801
3802 case mmMC_SEQ_WR_CTL_D1:
3803 *outReg = mmMC_SEQ_WR_CTL_D1_LP;
3804 break;
3805
3806 case mmMC_PMG_CMD_EMRS:
3807 *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
3808 break;
3809
3810 case mmMC_PMG_CMD_MRS:
3811 *outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
3812 break;
3813
3814 case mmMC_PMG_CMD_MRS1:
3815 *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
3816 break;
3817
3818 case mmMC_SEQ_PMG_TIMING:
3819 *outReg = mmMC_SEQ_PMG_TIMING_LP;
3820 break;
3821
3822 case mmMC_PMG_CMD_MRS2:
3823 *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
3824 break;
3825
3826 case mmMC_SEQ_WR_CTL_2:
3827 *outReg = mmMC_SEQ_WR_CTL_2_LP;
3828 break;
3829
3830 default:
3831 result = 0;
3832 break;
3833 }
3834
3835 return result;
3836 }
3837
3838 int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
3839 {
3840 uint32_t i;
3841 uint16_t address;
3842
3843 for (i = 0; i < table->last; i++) {
3844 table->mc_reg_address[i].s0 =
3845 tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
3846 ? address : table->mc_reg_address[i].s1;
3847 }
3848 return 0;
3849 }
3850
3851 int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
3852 {
3853 uint8_t i, j;
3854
3855 PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3856 "Invalid VramInfo table.", return -1);
3857 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
3858 "Invalid VramInfo table.", return -1);
3859
3860 for (i = 0; i < table->last; i++) {
3861 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
3862 }
3863 ni_table->last = table->last;
3864
3865 for (i = 0; i < table->num_entries; i++) {
3866 ni_table->mc_reg_table_entry[i].mclk_max =
3867 table->mc_reg_table_entry[i].mclk_max;
3868 for (j = 0; j < table->last; j++) {
3869 ni_table->mc_reg_table_entry[i].mc_data[j] =
3870 table->mc_reg_table_entry[i].mc_data[j];
3871 }
3872 }
3873
3874 ni_table->num_entries = table->num_entries;
3875
3876 return 0;
3877 }
3878
3879 /**
3880 * VBIOS omits some information to reduce size, we need to recover them here.
3881 * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3882 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3883 * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
3884 * 3. need to set these data for each clock range
3885 *
3886 * @param hwmgr the address of the powerplay hardware manager.
3887 * @param table the address of MCRegTable
3888 * @return always 0
3889 */
3890 int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
3891 {
3892 uint8_t i, j, k;
3893 uint32_t temp_reg;
3894 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3895
3896 for (i = 0, j = table->last; i < table->last; i++) {
3897 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3898 "Invalid VramInfo table.", return -1);
3899 switch (table->mc_reg_address[i].s1) {
3900 /*
3901 * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3902 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3903 */
3904 case mmMC_SEQ_MISC1:
3905 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
3906 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
3907 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
3908 for (k = 0; k < table->num_entries; k++) {
3909 table->mc_reg_table_entry[k].mc_data[j] =
3910 ((temp_reg & 0xffff0000)) |
3911 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
3912 }
3913 j++;
3914 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3915 "Invalid VramInfo table.", return -1);
3916
3917 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3918 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3919 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3920 for (k = 0; k < table->num_entries; k++) {
3921 table->mc_reg_table_entry[k].mc_data[j] =
3922 (temp_reg & 0xffff0000) |
3923 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3924
3925 if (!data->is_memory_GDDR5) {
3926 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3927 }
3928 }
3929 j++;
3930 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3931 "Invalid VramInfo table.", return -1);
3932
3933 if (!data->is_memory_GDDR5) {
3934 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3935 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3936 for (k = 0; k < table->num_entries; k++) {
3937 table->mc_reg_table_entry[k].mc_data[j] =
3938 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3939 }
3940 j++;
3941 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3942 "Invalid VramInfo table.", return -1);
3943 }
3944
3945 break;
3946
3947 case mmMC_SEQ_RESERVE_M:
3948 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3949 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3950 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3951 for (k = 0; k < table->num_entries; k++) {
3952 table->mc_reg_table_entry[k].mc_data[j] =
3953 (temp_reg & 0xffff0000) |
3954 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3955 }
3956 j++;
3957 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3958 "Invalid VramInfo table.", return -1);
3959 break;
3960
3961 default:
3962 break;
3963 }
3964
3965 }
3966
3967 table->last = j;
3968
3969 return 0;
3970 }
3971
3972 int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
3973 {
3974 uint8_t i, j;
3975 for (i = 0; i < table->last; i++) {
3976 for (j = 1; j < table->num_entries; j++) {
3977 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3978 table->mc_reg_table_entry[j].mc_data[i]) {
3979 table->validflag |= (1<<i);
3980 break;
3981 }
3982 }
3983 }
3984
3985 return 0;
3986 }
3987
3988 int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
3989 {
3990 int result;
3991 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3992 pp_atomctrl_mc_reg_table *table;
3993 phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
3994 uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
3995
3996 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
3997
3998 if (NULL == table)
3999 return -ENOMEM;
4000
4001 /* Program additional LP registers that are no longer programmed by VBIOS */
4002 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
4003 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
4004 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
4005 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
4006 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
4007 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
4008 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
4009 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
4010 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
4011 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
4012 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
4013 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
4014 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
4015 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
4016 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
4017 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
4018 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
4019 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
4020 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
4021 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
4022
4023 memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
4024
4025 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
4026
4027 if (0 == result)
4028 result = tonga_copy_vbios_smc_reg_table(table, ni_table);
4029
4030 if (0 == result) {
4031 tonga_set_s0_mc_reg_index(ni_table);
4032 result = tonga_set_mc_special_registers(hwmgr, ni_table);
4033 }
4034
4035 if (0 == result)
4036 tonga_set_valid_flag(ni_table);
4037
4038 kfree(table);
4039 return result;
4040 }
4041
4042 /*
4043 * Copy one arb setting to another and then switch the active set.
4044 * arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
4045 */
4046 int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
4047 uint32_t arbFreqSrc, uint32_t arbFreqDest)
4048 {
4049 uint32_t mc_arb_dram_timing;
4050 uint32_t mc_arb_dram_timing2;
4051 uint32_t burst_time;
4052 uint32_t mc_cg_config;
4053
4054 switch (arbFreqSrc) {
4055 case MC_CG_ARB_FREQ_F0:
4056 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
4057 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
4058 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
4059 break;
4060
4061 case MC_CG_ARB_FREQ_F1:
4062 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
4063 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
4064 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
4065 break;
4066
4067 default:
4068 return -1;
4069 }
4070
4071 switch (arbFreqDest) {
4072 case MC_CG_ARB_FREQ_F0:
4073 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
4074 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
4075 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
4076 break;
4077
4078 case MC_CG_ARB_FREQ_F1:
4079 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
4080 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
4081 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
4082 break;
4083
4084 default:
4085 return -1;
4086 }
4087
4088 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
4089 mc_cg_config |= 0x0000000F;
4090 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
4091 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
4092
4093 return 0;
4094 }
4095
4096 /**
4097 * Initial switch from ARB F0->F1
4098 *
4099 * @param hwmgr the address of the powerplay hardware manager.
4100 * @return always 0
4101 * This function is to be called from the SetPowerState table.
4102 */
4103 int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
4104 {
4105 return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
4106 }
4107
4108 /**
4109 * Initialize the ARB DRAM timing table's index field.
4110 *
4111 * @param hwmgr the address of the powerplay hardware manager.
4112 * @return always 0
4113 */
4114 int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
4115 {
4116 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4117 uint32_t tmp;
4118 int result;
4119
4120 /*
4121 * This is a read-modify-write on the first byte of the ARB table.
4122 * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
4123 * This solution is ugly, but we never write the whole table only individual fields in it.
4124 * In reality this field should not be in that structure but in a soft register.
4125 */
4126 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
4127 data->arb_table_start, &tmp, data->sram_end);
4128
4129 if (0 != result)
4130 return result;
4131
4132 tmp &= 0x00FFFFFF;
4133 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
4134
4135 return tonga_write_smc_sram_dword(hwmgr->smumgr,
4136 data->arb_table_start, tmp, data->sram_end);
4137 }
4138
4139 int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
4140 {
4141 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4142
4143 uint32_t i, j;
4144
4145 for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
4146 if (data->tonga_mc_reg_table.validflag & 1<<j) {
4147 PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
4148 "Index of mc_reg_table->address[] array out of boundary", return -1);
4149 mc_reg_table->address[i].s0 =
4150 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
4151 mc_reg_table->address[i].s1 =
4152 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
4153 i++;
4154 }
4155 }
4156
4157 mc_reg_table->last = (uint8_t)i;
4158
4159 return 0;
4160 }
4161
4162 /*convert register values from driver to SMC format */
4163 void tonga_convert_mc_registers(
4164 const phw_tonga_mc_reg_entry * pEntry,
4165 SMU72_Discrete_MCRegisterSet *pData,
4166 uint32_t numEntries, uint32_t validflag)
4167 {
4168 uint32_t i, j;
4169
4170 for (i = 0, j = 0; j < numEntries; j++) {
4171 if (validflag & 1<<j) {
4172 pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
4173 i++;
4174 }
4175 }
4176 }
4177
4178 /* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
4179 int tonga_convert_mc_reg_table_entry_to_smc(
4180 struct pp_hwmgr *hwmgr,
4181 const uint32_t memory_clock,
4182 SMU72_Discrete_MCRegisterSet *mc_reg_table_data
4183 )
4184 {
4185 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4186 uint32_t i = 0;
4187
4188 for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
4189 if (memory_clock <=
4190 data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
4191 break;
4192 }
4193 }
4194
4195 if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
4196 --i;
4197
4198 tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
4199 mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
4200
4201 return 0;
4202 }
4203
4204 int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
4205 SMU72_Discrete_MCRegisters *mc_reg_table)
4206 {
4207 int result = 0;
4208 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4209 int res;
4210 uint32_t i;
4211
4212 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
4213 res = tonga_convert_mc_reg_table_entry_to_smc(
4214 hwmgr,
4215 data->dpm_table.mclk_table.dpm_levels[i].value,
4216 &mc_reg_table->data[i]
4217 );
4218
4219 if (0 != res)
4220 result = res;
4221 }
4222
4223 return result;
4224 }
4225
4226 int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
4227 {
4228 int result;
4229 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4230
4231 memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
4232 result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
4233 PP_ASSERT_WITH_CODE(0 == result,
4234 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
4235
4236 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
4237 PP_ASSERT_WITH_CODE(0 == result,
4238 "Failed to initialize MCRegTable for driver state!", return result;);
4239
4240 return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
4241 (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
4242 }
4243
4244 /**
4245 * Programs static screed detection parameters
4246 *
4247 * @param hwmgr the address of the powerplay hardware manager.
4248 * @return always 0
4249 */
4250 int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
4251 {
4252 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4253
4254 /* Set static screen threshold unit*/
4255 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4256 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
4257 data->static_screen_threshold_unit);
4258 /* Set static screen threshold*/
4259 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4260 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
4261 data->static_screen_threshold);
4262
4263 return 0;
4264 }
4265
4266 /**
4267 * Setup display gap for glitch free memory clock switching.
4268 *
4269 * @param hwmgr the address of the powerplay hardware manager.
4270 * @return always 0
4271 */
4272 int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
4273 {
4274 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4275 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4276
4277 display_gap = PHM_SET_FIELD(display_gap,
4278 CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
4279
4280 display_gap = PHM_SET_FIELD(display_gap,
4281 CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
4282
4283 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4284 ixCG_DISPLAY_GAP_CNTL, display_gap);
4285
4286 return 0;
4287 }
4288
4289 /**
4290 * Programs activity state transition voting clients
4291 *
4292 * @param hwmgr the address of the powerplay hardware manager.
4293 * @return always 0
4294 */
4295 int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
4296 {
4297 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4298
4299 /* Clear reset for voting clients before enabling DPM */
4300 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4301 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
4302 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4303 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
4304
4305 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4306 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
4307 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4308 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
4309 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4310 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
4311 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4312 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
4313 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4314 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
4315 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4316 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
4317 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4318 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
4319 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4320 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
4321
4322 return 0;
4323 }
4324
4325
4326 int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
4327 {
4328 int tmp_result, result = 0;
4329
4330 tmp_result = tonga_check_for_dpm_stopped(hwmgr);
4331
4332 if (cf_tonga_voltage_control(hwmgr)) {
4333 tmp_result = tonga_enable_voltage_control(hwmgr);
4334 PP_ASSERT_WITH_CODE((0 == tmp_result),
4335 "Failed to enable voltage control!", result = tmp_result);
4336
4337 tmp_result = tonga_construct_voltage_tables(hwmgr);
4338 PP_ASSERT_WITH_CODE((0 == tmp_result),
4339 "Failed to contruct voltage tables!", result = tmp_result);
4340 }
4341
4342 tmp_result = tonga_initialize_mc_reg_table(hwmgr);
4343 PP_ASSERT_WITH_CODE((0 == tmp_result),
4344 "Failed to initialize MC reg table!", result = tmp_result);
4345
4346 tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
4347 PP_ASSERT_WITH_CODE((0 == tmp_result),
4348 "Failed to program static screen threshold parameters!", result = tmp_result);
4349
4350 tmp_result = tonga_enable_display_gap(hwmgr);
4351 PP_ASSERT_WITH_CODE((0 == tmp_result),
4352 "Failed to enable display gap!", result = tmp_result);
4353
4354 tmp_result = tonga_program_voting_clients(hwmgr);
4355 PP_ASSERT_WITH_CODE((0 == tmp_result),
4356 "Failed to program voting clients!", result = tmp_result);
4357
4358 tmp_result = tonga_process_firmware_header(hwmgr);
4359 PP_ASSERT_WITH_CODE((0 == tmp_result),
4360 "Failed to process firmware header!", result = tmp_result);
4361
4362 tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
4363 PP_ASSERT_WITH_CODE((0 == tmp_result),
4364 "Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
4365
4366 tmp_result = tonga_init_smc_table(hwmgr);
4367 PP_ASSERT_WITH_CODE((0 == tmp_result),
4368 "Failed to initialize SMC table!", result = tmp_result);
4369
4370 tmp_result = tonga_init_arb_table_index(hwmgr);
4371 PP_ASSERT_WITH_CODE((0 == tmp_result),
4372 "Failed to initialize ARB table index!", result = tmp_result);
4373
4374 tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
4375 PP_ASSERT_WITH_CODE((0 == tmp_result),
4376 "Failed to populate initialize MC Reg table!", result = tmp_result);
4377
4378 tmp_result = tonga_notify_smc_display_change(hwmgr, false);
4379 PP_ASSERT_WITH_CODE((0 == tmp_result),
4380 "Failed to notify no display!", result = tmp_result);
4381
4382 /* enable SCLK control */
4383 tmp_result = tonga_enable_sclk_control(hwmgr);
4384 PP_ASSERT_WITH_CODE((0 == tmp_result),
4385 "Failed to enable SCLK control!", result = tmp_result);
4386
4387 /* enable DPM */
4388 tmp_result = tonga_start_dpm(hwmgr);
4389 PP_ASSERT_WITH_CODE((0 == tmp_result),
4390 "Failed to start DPM!", result = tmp_result);
4391
4392 return result;
4393 }
4394
4395 int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4396 {
4397 int tmp_result, result = 0;
4398
4399 tmp_result = tonga_check_for_dpm_running(hwmgr);
4400 PP_ASSERT_WITH_CODE((0 == tmp_result),
4401 "SMC is still running!", return 0);
4402
4403 tmp_result = tonga_stop_dpm(hwmgr);
4404 PP_ASSERT_WITH_CODE((0 == tmp_result),
4405 "Failed to stop DPM!", result = tmp_result);
4406
4407 tmp_result = tonga_reset_to_default(hwmgr);
4408 PP_ASSERT_WITH_CODE((0 == tmp_result),
4409 "Failed to reset to default!", result = tmp_result);
4410
4411 return result;
4412 }
4413
4414 int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
4415 {
4416 int result;
4417
4418 result = tonga_set_boot_state(hwmgr);
4419 if (0 != result)
4420 printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
4421
4422 return result;
4423 }
4424
4425 int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
4426 {
4427 if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
4428 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
4429 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
4430 }
4431
4432 if (NULL != hwmgr->backend) {
4433 kfree(hwmgr->backend);
4434 hwmgr->backend = NULL;
4435 }
4436
4437 return 0;
4438 }
4439
4440 /**
4441 * Initializes the Volcanic Islands Hardware Manager
4442 *
4443 * @param hwmgr the address of the powerplay hardware manager.
4444 * @return 1 if success; otherwise appropriate error code.
4445 */
4446 int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
4447 {
4448 int result = 0;
4449 SMU72_Discrete_DpmTable *table = NULL;
4450 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4451 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
4452 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4453 phw_tonga_ulv_parm *ulv;
4454
4455 PP_ASSERT_WITH_CODE((NULL != hwmgr),
4456 "Invalid Parameter!", return -1;);
4457
4458 data->dll_defaule_on = 0;
4459 data->sram_end = SMC_RAM_END;
4460
4461 data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
4462 data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
4463 data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
4464 data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
4465 data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
4466 data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
4467 data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
4468 data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
4469
4470 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
4471 data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
4472 data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
4473
4474 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4475 PHM_PlatformCaps_DisableVoltageIsland);
4476
4477 data->sclk_dpm_key_disabled = 0;
4478 data->mclk_dpm_key_disabled = 0;
4479 data->pcie_dpm_key_disabled = 0;
4480 data->pcc_monitor_enabled = 0;
4481
4482 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4483 PHM_PlatformCaps_UnTabledHardwareInterface);
4484
4485 data->gpio_debug = 0;
4486 data->engine_clock_data = 0;
4487 data->memory_clock_data = 0;
4488 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4489 PHM_PlatformCaps_DynamicPatchPowerState);
4490
4491 /* need to set voltage control types before EVV patching*/
4492 data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
4493 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
4494 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
4495 data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
4496
4497 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4498 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
4499 data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4500 }
4501
4502 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4503 PHM_PlatformCaps_ControlVDDGFX)) {
4504 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4505 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
4506 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4507 }
4508 }
4509
4510 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
4511 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4512 PHM_PlatformCaps_ControlVDDGFX);
4513 }
4514
4515 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4516 PHM_PlatformCaps_EnableMVDDControl)) {
4517 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4518 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
4519 data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4520 }
4521 }
4522
4523 if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
4524 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4525 PHM_PlatformCaps_EnableMVDDControl);
4526 }
4527
4528 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4529 PHM_PlatformCaps_ControlVDDCI)) {
4530 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4531 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
4532 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4533 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4534 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
4535 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4536 }
4537
4538 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
4539 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4540 PHM_PlatformCaps_ControlVDDCI);
4541
4542 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4543 PHM_PlatformCaps_TablelessHardwareInterface);
4544
4545 if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
4546 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4547 PHM_PlatformCaps_ClockStretcher);
4548
4549 /* Initializes DPM default values*/
4550 tonga_initialize_dpm_defaults(hwmgr);
4551
4552 /* Get leakage voltage based on leakage ID.*/
4553 PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
4554 "Get EVV Voltage Failed. Abort Driver loading!", return -1);
4555
4556 tonga_complete_dependency_tables(hwmgr);
4557
4558 /* Parse pptable data read from VBIOS*/
4559 tonga_set_private_var_based_on_pptale(hwmgr);
4560
4561 /* ULV Support*/
4562 ulv = &(data->ulv);
4563 ulv->ulv_supported = 0;
4564
4565 /* Initalize Dynamic State Adjustment Rule Settings*/
4566 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
4567 if (result)
4568 printk(KERN_ERR "[ powerplay ] tonga_initializa_dynamic_state_adjustment_rule_settings failed!\n");
4569 data->uvd_enabled = 0;
4570
4571 table = &(data->smc_state_table);
4572
4573 /*
4574 * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
4575 * Peak Current Control feature is enabled and we should program PCC HW register
4576 */
4577 if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
4578 uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
4579 CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
4580
4581 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
4582 case 0:
4583 temp_reg = PHM_SET_FIELD(temp_reg,
4584 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
4585 break;
4586 case 1:
4587 temp_reg = PHM_SET_FIELD(temp_reg,
4588 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
4589 break;
4590 case 2:
4591 temp_reg = PHM_SET_FIELD(temp_reg,
4592 CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
4593 break;
4594 case 3:
4595 temp_reg = PHM_SET_FIELD(temp_reg,
4596 CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
4597 break;
4598 case 4:
4599 temp_reg = PHM_SET_FIELD(temp_reg,
4600 CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
4601 break;
4602 default:
4603 printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \
4604 Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
4605 break;
4606 }
4607 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4608 ixCNB_PWRMGT_CNTL, temp_reg);
4609 }
4610
4611 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4612 PHM_PlatformCaps_EnableSMU7ThermalManagement);
4613 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4614 PHM_PlatformCaps_SMU7);
4615
4616 data->vddc_phase_shed_control = 0;
4617
4618 if (0 == result) {
4619 struct cgs_system_info sys_info = {0};
4620
4621 data->is_tlu_enabled = 0;
4622 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
4623 TONGA_MAX_HARDWARE_POWERLEVELS;
4624 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
4625 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
4626
4627 sys_info.size = sizeof(struct cgs_system_info);
4628 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
4629 result = cgs_query_system_info(hwmgr->device, &sys_info);
4630 if (result)
4631 data->pcie_gen_cap = 0x30007;
4632 else
4633 data->pcie_gen_cap = (uint32_t)sys_info.value;
4634 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
4635 data->pcie_spc_cap = 20;
4636 sys_info.size = sizeof(struct cgs_system_info);
4637 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
4638 result = cgs_query_system_info(hwmgr->device, &sys_info);
4639 if (result)
4640 data->pcie_lane_cap = 0x2f0000;
4641 else
4642 data->pcie_lane_cap = (uint32_t)sys_info.value;
4643 } else {
4644 /* Ignore return value in here, we are cleaning up a mess. */
4645 tonga_hwmgr_backend_fini(hwmgr);
4646 }
4647
4648 return result;
4649 }
4650
4651 static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
4652 enum amd_dpm_forced_level level)
4653 {
4654 int ret = 0;
4655
4656 switch (level) {
4657 case AMD_DPM_FORCED_LEVEL_HIGH:
4658 ret = tonga_force_dpm_highest(hwmgr);
4659 if (ret)
4660 return ret;
4661 break;
4662 case AMD_DPM_FORCED_LEVEL_LOW:
4663 ret = tonga_force_dpm_lowest(hwmgr);
4664 if (ret)
4665 return ret;
4666 break;
4667 case AMD_DPM_FORCED_LEVEL_AUTO:
4668 ret = tonga_unforce_dpm_levels(hwmgr);
4669 if (ret)
4670 return ret;
4671 break;
4672 default:
4673 break;
4674 }
4675
4676 hwmgr->dpm_level = level;
4677 return ret;
4678 }
4679
4680 static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4681 struct pp_power_state *prequest_ps,
4682 const struct pp_power_state *pcurrent_ps)
4683 {
4684 struct tonga_power_state *tonga_ps =
4685 cast_phw_tonga_power_state(&prequest_ps->hardware);
4686
4687 uint32_t sclk;
4688 uint32_t mclk;
4689 struct PP_Clocks minimum_clocks = {0};
4690 bool disable_mclk_switching;
4691 bool disable_mclk_switching_for_frame_lock;
4692 struct cgs_display_info info = {0};
4693 const struct phm_clock_and_voltage_limits *max_limits;
4694 uint32_t i;
4695 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4696 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4697
4698 int32_t count;
4699 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4700
4701 data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
4702
4703 PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
4704 "VI should always have 2 performance levels",
4705 );
4706
4707 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4708 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4709 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4710
4711 if (PP_PowerSource_DC == hwmgr->power_source) {
4712 for (i = 0; i < tonga_ps->performance_level_count; i++) {
4713 if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
4714 tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
4715 if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
4716 tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
4717 }
4718 }
4719
4720 tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
4721 tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
4722
4723 tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4724
4725 cgs_get_active_displays_info(hwmgr->device, &info);
4726
4727 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4728
4729 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4730
4731 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4732
4733 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4734 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4735
4736 for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
4737 if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
4738 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
4739 break;
4740 }
4741 }
4742
4743 if (count < 0)
4744 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
4745
4746 stable_pstate_mclk = max_limits->mclk;
4747
4748 minimum_clocks.engineClock = stable_pstate_sclk;
4749 minimum_clocks.memoryClock = stable_pstate_mclk;
4750 }
4751
4752 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4753 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4754
4755 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4756 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4757
4758 tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4759
4760 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4761 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
4762 "Overdrive sclk exceeds limit",
4763 hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
4764
4765 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4766 tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
4767 }
4768
4769 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4770 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4771 "Overdrive mclk exceeds limit",
4772 hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4773
4774 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4775 tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
4776 }
4777
4778 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4779 hwmgr->platform_descriptor.platformCaps,
4780 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4781
4782 disable_mclk_switching = (1 < info.display_count) ||
4783 disable_mclk_switching_for_frame_lock;
4784
4785 sclk = tonga_ps->performance_levels[0].engine_clock;
4786 mclk = tonga_ps->performance_levels[0].memory_clock;
4787
4788 if (disable_mclk_switching)
4789 mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
4790
4791 if (sclk < minimum_clocks.engineClock)
4792 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
4793
4794 if (mclk < minimum_clocks.memoryClock)
4795 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
4796
4797 tonga_ps->performance_levels[0].engine_clock = sclk;
4798 tonga_ps->performance_levels[0].memory_clock = mclk;
4799
4800 tonga_ps->performance_levels[1].engine_clock =
4801 (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
4802 tonga_ps->performance_levels[1].engine_clock :
4803 tonga_ps->performance_levels[0].engine_clock;
4804
4805 if (disable_mclk_switching) {
4806 if (mclk < tonga_ps->performance_levels[1].memory_clock)
4807 mclk = tonga_ps->performance_levels[1].memory_clock;
4808
4809 tonga_ps->performance_levels[0].memory_clock = mclk;
4810 tonga_ps->performance_levels[1].memory_clock = mclk;
4811 } else {
4812 if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
4813 tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
4814 }
4815
4816 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4817 for (i=0; i < tonga_ps->performance_level_count; i++) {
4818 tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4819 tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4820 tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4821 tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4822 }
4823 }
4824
4825 return 0;
4826 }
4827
4828 int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
4829 {
4830 return sizeof(struct tonga_power_state);
4831 }
4832
4833 static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4834 {
4835 struct pp_power_state *ps;
4836 struct tonga_power_state *tonga_ps;
4837
4838 if (hwmgr == NULL)
4839 return -EINVAL;
4840
4841 ps = hwmgr->request_ps;
4842
4843 if (ps == NULL)
4844 return -EINVAL;
4845
4846 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4847
4848 if (low)
4849 return tonga_ps->performance_levels[0].memory_clock;
4850 else
4851 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
4852 }
4853
4854 static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4855 {
4856 struct pp_power_state *ps;
4857 struct tonga_power_state *tonga_ps;
4858
4859 if (hwmgr == NULL)
4860 return -EINVAL;
4861
4862 ps = hwmgr->request_ps;
4863
4864 if (ps == NULL)
4865 return -EINVAL;
4866
4867 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4868
4869 if (low)
4870 return tonga_ps->performance_levels[0].engine_clock;
4871 else
4872 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
4873 }
4874
4875 static uint16_t tonga_get_current_pcie_speed(
4876 struct pp_hwmgr *hwmgr)
4877 {
4878 uint32_t speed_cntl = 0;
4879
4880 speed_cntl = cgs_read_ind_register(hwmgr->device,
4881 CGS_IND_REG__PCIE,
4882 ixPCIE_LC_SPEED_CNTL);
4883 return((uint16_t)PHM_GET_FIELD(speed_cntl,
4884 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4885 }
4886
4887 static int tonga_get_current_pcie_lane_number(
4888 struct pp_hwmgr *hwmgr)
4889 {
4890 uint32_t link_width;
4891
4892 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4893 CGS_IND_REG__PCIE,
4894 PCIE_LC_LINK_WIDTH_CNTL,
4895 LC_LINK_WIDTH_RD);
4896
4897 PP_ASSERT_WITH_CODE((7 >= link_width),
4898 "Invalid PCIe lane width!", return 0);
4899
4900 return decode_pcie_lane_width(link_width);
4901 }
4902
4903 static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
4904 struct pp_hw_power_state *hw_ps)
4905 {
4906 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4907 struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
4908 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
4909 uint16_t size;
4910 uint8_t frev, crev;
4911 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
4912
4913 /* First retrieve the Boot clocks and VDDC from the firmware info table.
4914 * We assume here that fw_info is unchanged if this call fails.
4915 */
4916 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
4917 hwmgr->device, index,
4918 &size, &frev, &crev);
4919 if (!fw_info)
4920 /* During a test, there is no firmware info table. */
4921 return 0;
4922
4923 /* Patch the state. */
4924 data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock);
4925 data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock);
4926 data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
4927 data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
4928 data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
4929 data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
4930 data->vbios_boot_state.pcie_lane_bootup_value =
4931 (uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
4932
4933 /* set boot power state */
4934 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
4935 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
4936 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
4937 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
4938
4939 return 0;
4940 }
4941
4942 static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
4943 void *state, struct pp_power_state *power_state,
4944 void *pp_table, uint32_t classification_flag)
4945 {
4946 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4947
4948 struct tonga_power_state *tonga_ps =
4949 (struct tonga_power_state *)(&(power_state->hardware));
4950
4951 struct tonga_performance_level *performance_level;
4952
4953 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
4954
4955 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
4956 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
4957
4958 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
4959 (ATOM_Tonga_SCLK_Dependency_Table *)
4960 (((unsigned long)powerplay_table) +
4961 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
4962
4963 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
4964 (ATOM_Tonga_MCLK_Dependency_Table *)
4965 (((unsigned long)powerplay_table) +
4966 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
4967
4968 /* The following fields are not initialized here: id orderedList allStatesList */
4969 power_state->classification.ui_label =
4970 (le16_to_cpu(state_entry->usClassification) &
4971 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
4972 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
4973 power_state->classification.flags = classification_flag;
4974 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
4975
4976 power_state->classification.temporary_state = false;
4977 power_state->classification.to_be_deleted = false;
4978
4979 power_state->validation.disallowOnDC =
4980 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
4981
4982 power_state->pcie.lanes = 0;
4983
4984 power_state->display.disableFrameModulation = false;
4985 power_state->display.limitRefreshrate = false;
4986 power_state->display.enableVariBright =
4987 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
4988
4989 power_state->validation.supportedPowerLevels = 0;
4990 power_state->uvd_clocks.VCLK = 0;
4991 power_state->uvd_clocks.DCLK = 0;
4992 power_state->temperatures.min = 0;
4993 power_state->temperatures.max = 0;
4994
4995 performance_level = &(tonga_ps->performance_levels
4996 [tonga_ps->performance_level_count++]);
4997
4998 PP_ASSERT_WITH_CODE(
4999 (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
5000 "Performance levels exceeds SMC limit!",
5001 return -1);
5002
5003 PP_ASSERT_WITH_CODE(
5004 (tonga_ps->performance_level_count <=
5005 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
5006 "Performance levels exceeds Driver limit!",
5007 return -1);
5008
5009 /* Performance levels are arranged from low to high. */
5010 performance_level->memory_clock =
5011 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
5012
5013 performance_level->engine_clock =
5014 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
5015
5016 performance_level->pcie_gen = get_pcie_gen_support(
5017 data->pcie_gen_cap,
5018 state_entry->ucPCIEGenLow);
5019
5020 performance_level->pcie_lane = get_pcie_lane_support(
5021 data->pcie_lane_cap,
5022 state_entry->ucPCIELaneHigh);
5023
5024 performance_level =
5025 &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
5026
5027 performance_level->memory_clock =
5028 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
5029
5030 performance_level->engine_clock =
5031 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
5032
5033 performance_level->pcie_gen = get_pcie_gen_support(
5034 data->pcie_gen_cap,
5035 state_entry->ucPCIEGenHigh);
5036
5037 performance_level->pcie_lane = get_pcie_lane_support(
5038 data->pcie_lane_cap,
5039 state_entry->ucPCIELaneHigh);
5040
5041 return 0;
5042 }
5043
5044 static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
5045 unsigned long entry_index, struct pp_power_state *ps)
5046 {
5047 int result;
5048 struct tonga_power_state *tonga_ps;
5049 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5050
5051 struct phm_ppt_v1_information *table_info =
5052 (struct phm_ppt_v1_information *)(hwmgr->pptable);
5053
5054 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5055 table_info->vdd_dep_on_mclk;
5056
5057 ps->hardware.magic = PhwTonga_Magic;
5058
5059 tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
5060
5061 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
5062 tonga_get_pp_table_entry_callback_func);
5063
5064 /* This is the earliest time we have all the dependency table and the VBIOS boot state
5065 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
5066 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
5067 */
5068 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
5069 if (dep_mclk_table->entries[0].clk !=
5070 data->vbios_boot_state.mclk_bootup_value)
5071 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
5072 "does not match VBIOS boot MCLK level");
5073 if (dep_mclk_table->entries[0].vddci !=
5074 data->vbios_boot_state.vddci_bootup_value)
5075 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
5076 "does not match VBIOS boot VDDCI level");
5077 }
5078
5079 /* set DC compatible flag if this state supports DC */
5080 if (!ps->validation.disallowOnDC)
5081 tonga_ps->dc_compatible = true;
5082
5083 if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
5084 data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
5085 else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
5086 if (data->bacos.best_match == 0xffff) {
5087 /* For V.I. use boot state as base BACO state */
5088 data->bacos.best_match = PP_StateClassificationFlag_Boot;
5089 data->bacos.performance_level = tonga_ps->performance_levels[0];
5090 }
5091 }
5092
5093 tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
5094 tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
5095
5096 if (!result) {
5097 uint32_t i;
5098
5099 switch (ps->classification.ui_label) {
5100 case PP_StateUILabel_Performance:
5101 data->use_pcie_performance_levels = true;
5102
5103 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5104 if (data->pcie_gen_performance.max <
5105 tonga_ps->performance_levels[i].pcie_gen)
5106 data->pcie_gen_performance.max =
5107 tonga_ps->performance_levels[i].pcie_gen;
5108
5109 if (data->pcie_gen_performance.min >
5110 tonga_ps->performance_levels[i].pcie_gen)
5111 data->pcie_gen_performance.min =
5112 tonga_ps->performance_levels[i].pcie_gen;
5113
5114 if (data->pcie_lane_performance.max <
5115 tonga_ps->performance_levels[i].pcie_lane)
5116 data->pcie_lane_performance.max =
5117 tonga_ps->performance_levels[i].pcie_lane;
5118
5119 if (data->pcie_lane_performance.min >
5120 tonga_ps->performance_levels[i].pcie_lane)
5121 data->pcie_lane_performance.min =
5122 tonga_ps->performance_levels[i].pcie_lane;
5123 }
5124 break;
5125 case PP_StateUILabel_Battery:
5126 data->use_pcie_power_saving_levels = true;
5127
5128 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5129 if (data->pcie_gen_power_saving.max <
5130 tonga_ps->performance_levels[i].pcie_gen)
5131 data->pcie_gen_power_saving.max =
5132 tonga_ps->performance_levels[i].pcie_gen;
5133
5134 if (data->pcie_gen_power_saving.min >
5135 tonga_ps->performance_levels[i].pcie_gen)
5136 data->pcie_gen_power_saving.min =
5137 tonga_ps->performance_levels[i].pcie_gen;
5138
5139 if (data->pcie_lane_power_saving.max <
5140 tonga_ps->performance_levels[i].pcie_lane)
5141 data->pcie_lane_power_saving.max =
5142 tonga_ps->performance_levels[i].pcie_lane;
5143
5144 if (data->pcie_lane_power_saving.min >
5145 tonga_ps->performance_levels[i].pcie_lane)
5146 data->pcie_lane_power_saving.min =
5147 tonga_ps->performance_levels[i].pcie_lane;
5148 }
5149 break;
5150 default:
5151 break;
5152 }
5153 }
5154 return 0;
5155 }
5156
5157 static void
5158 tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
5159 {
5160 uint32_t sclk, mclk, activity_percent;
5161 uint32_t offset;
5162 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5163
5164 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
5165
5166 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5167
5168 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
5169
5170 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5171 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100);
5172
5173
5174 offset = data->soft_regs_start + offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
5175 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
5176 activity_percent += 0x80;
5177 activity_percent >>= 8;
5178
5179 seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
5180
5181 }
5182
5183 static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
5184 {
5185 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5186 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5187 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5188 struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
5189 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5190 struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
5191 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5192 struct PP_Clocks min_clocks = {0};
5193 uint32_t i;
5194 struct cgs_display_info info = {0};
5195
5196 data->need_update_smu7_dpm_table = 0;
5197
5198 for (i = 0; i < psclk_table->count; i++) {
5199 if (sclk == psclk_table->dpm_levels[i].value)
5200 break;
5201 }
5202
5203 if (i >= psclk_table->count)
5204 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5205 else {
5206 /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
5207 if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
5208 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
5209 }
5210
5211 for (i=0; i < pmclk_table->count; i++) {
5212 if (mclk == pmclk_table->dpm_levels[i].value)
5213 break;
5214 }
5215
5216 if (i >= pmclk_table->count)
5217 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5218
5219 cgs_get_active_displays_info(hwmgr->device, &info);
5220
5221 if (data->display_timing.num_existing_displays != info.display_count)
5222 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
5223
5224 return 0;
5225 }
5226
5227 static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
5228 {
5229 uint32_t i;
5230 uint32_t sclk, max_sclk = 0;
5231 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5232 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5233
5234 for (i = 0; i < hw_ps->performance_level_count; i++) {
5235 sclk = hw_ps->performance_levels[i].engine_clock;
5236 if (max_sclk < sclk)
5237 max_sclk = sclk;
5238 }
5239
5240 for (i = 0; i < pdpm_table->sclk_table.count; i++) {
5241 if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
5242 return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
5243 pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
5244 pdpm_table->pcie_speed_table.dpm_levels[i].value);
5245 }
5246
5247 return 0;
5248 }
5249
5250 static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
5251 {
5252 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5253 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5254 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5255 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5256
5257 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
5258 uint16_t current_link_speed;
5259
5260 if (data->force_pcie_gen == PP_PCIEGenInvalid)
5261 current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
5262 else
5263 current_link_speed = data->force_pcie_gen;
5264
5265 data->force_pcie_gen = PP_PCIEGenInvalid;
5266 data->pspp_notify_required = false;
5267 if (target_link_speed > current_link_speed) {
5268 switch(target_link_speed) {
5269 case PP_PCIEGen3:
5270 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
5271 break;
5272 data->force_pcie_gen = PP_PCIEGen2;
5273 if (current_link_speed == PP_PCIEGen2)
5274 break;
5275 case PP_PCIEGen2:
5276 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
5277 break;
5278 default:
5279 data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
5280 break;
5281 }
5282 } else {
5283 if (target_link_speed < current_link_speed)
5284 data->pspp_notify_required = true;
5285 }
5286
5287 return 0;
5288 }
5289
5290 static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5291 {
5292 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5293
5294 if (0 == data->need_update_smu7_dpm_table)
5295 return 0;
5296
5297 if ((0 == data->sclk_dpm_key_disabled) &&
5298 (data->need_update_smu7_dpm_table &
5299 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5300 PP_ASSERT_WITH_CODE(
5301 true == tonga_is_dpm_running(hwmgr),
5302 "Trying to freeze SCLK DPM when DPM is disabled",
5303 );
5304 PP_ASSERT_WITH_CODE(
5305 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5306 PPSMC_MSG_SCLKDPM_FreezeLevel),
5307 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
5308 return -1);
5309 }
5310
5311 if ((0 == data->mclk_dpm_key_disabled) &&
5312 (data->need_update_smu7_dpm_table &
5313 DPMTABLE_OD_UPDATE_MCLK)) {
5314 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5315 "Trying to freeze MCLK DPM when DPM is disabled",
5316 );
5317 PP_ASSERT_WITH_CODE(
5318 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5319 PPSMC_MSG_MCLKDPM_FreezeLevel),
5320 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
5321 return -1);
5322 }
5323
5324 return 0;
5325 }
5326
5327 static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
5328 {
5329 int result = 0;
5330
5331 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5332 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5333 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5334 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5335 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5336 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5337
5338 struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
5339 uint32_t dpm_count, clock_percent;
5340 uint32_t i;
5341
5342 if (0 == data->need_update_smu7_dpm_table)
5343 return 0;
5344
5345 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
5346 pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
5347
5348 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5349 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5350 /* Need to do calculation based on the golden DPM table
5351 * as the Heatmap GPU Clock axis is also based on the default values
5352 */
5353 PP_ASSERT_WITH_CODE(
5354 (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
5355 "Divide by 0!",
5356 return -1);
5357 dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
5358 for (i = dpm_count; i > 1; i--) {
5359 if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
5360 clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
5361 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5362
5363 pdpm_table->sclk_table.dpm_levels[i].value =
5364 pgolden_dpm_table->sclk_table.dpm_levels[i].value +
5365 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5366
5367 } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
5368 clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
5369 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5370
5371 pdpm_table->sclk_table.dpm_levels[i].value =
5372 pgolden_dpm_table->sclk_table.dpm_levels[i].value -
5373 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5374 } else
5375 pdpm_table->sclk_table.dpm_levels[i].value =
5376 pgolden_dpm_table->sclk_table.dpm_levels[i].value;
5377 }
5378 }
5379 }
5380
5381 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
5382 pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
5383
5384 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5385 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5386
5387 PP_ASSERT_WITH_CODE(
5388 (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
5389 "Divide by 0!",
5390 return -1);
5391 dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
5392 for (i = dpm_count; i > 1; i--) {
5393 if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
5394 clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
5395 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5396
5397 pdpm_table->mclk_table.dpm_levels[i].value =
5398 pgolden_dpm_table->mclk_table.dpm_levels[i].value +
5399 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5400
5401 } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
5402 clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
5403 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5404
5405 pdpm_table->mclk_table.dpm_levels[i].value =
5406 pgolden_dpm_table->mclk_table.dpm_levels[i].value -
5407 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5408 } else
5409 pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
5410 }
5411 }
5412 }
5413
5414 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
5415 result = tonga_populate_all_memory_levels(hwmgr);
5416 PP_ASSERT_WITH_CODE((0 == result),
5417 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
5418 return result);
5419 }
5420
5421 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
5422 /*populate MCLK dpm table to SMU7 */
5423 result = tonga_populate_all_memory_levels(hwmgr);
5424 PP_ASSERT_WITH_CODE((0 == result),
5425 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
5426 return result);
5427 }
5428
5429 return result;
5430 }
5431
5432 static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
5433 struct tonga_single_dpm_table * pdpm_table,
5434 uint32_t low_limit, uint32_t high_limit)
5435 {
5436 uint32_t i;
5437
5438 for (i = 0; i < pdpm_table->count; i++) {
5439 if ((pdpm_table->dpm_levels[i].value < low_limit) ||
5440 (pdpm_table->dpm_levels[i].value > high_limit))
5441 pdpm_table->dpm_levels[i].enabled = false;
5442 else
5443 pdpm_table->dpm_levels[i].enabled = true;
5444 }
5445 return 0;
5446 }
5447
5448 static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
5449 {
5450 int result = 0;
5451 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5452 uint32_t high_limit_count;
5453
5454 PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
5455 "power state did not have any performance level",
5456 return -1);
5457
5458 high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
5459
5460 tonga_trim_single_dpm_states(hwmgr,
5461 &(data->dpm_table.sclk_table),
5462 hw_state->performance_levels[0].engine_clock,
5463 hw_state->performance_levels[high_limit_count].engine_clock);
5464
5465 tonga_trim_single_dpm_states(hwmgr,
5466 &(data->dpm_table.mclk_table),
5467 hw_state->performance_levels[0].memory_clock,
5468 hw_state->performance_levels[high_limit_count].memory_clock);
5469
5470 return result;
5471 }
5472
5473 static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
5474 {
5475 int result;
5476 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5477 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5478 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5479
5480 result = tonga_trim_dpm_states(hwmgr, tonga_ps);
5481 if (0 != result)
5482 return result;
5483
5484 data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
5485 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
5486 data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
5487 if (data->uvd_enabled)
5488 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
5489
5490 data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
5491
5492 return 0;
5493 }
5494
5495 int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
5496 {
5497 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
5498 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
5499 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
5500 }
5501
5502 int tonga_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
5503 {
5504 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
5505 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
5506 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
5507 }
5508
5509 int tonga_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
5510 {
5511 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5512 uint32_t mm_boot_level_offset, mm_boot_level_value;
5513 struct phm_ppt_v1_information *ptable_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5514
5515 if (!bgate) {
5516 data->smc_state_table.UvdBootLevel = (uint8_t) (ptable_information->mm_dep_table->count - 1);
5517 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
5518 mm_boot_level_offset /= 4;
5519 mm_boot_level_offset *= 4;
5520 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5521 mm_boot_level_value &= 0x00FFFFFF;
5522 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
5523 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5524
5525 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) ||
5526 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5527 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5528 PPSMC_MSG_UVDDPM_SetEnabledMask,
5529 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
5530 }
5531
5532 return tonga_enable_disable_uvd_dpm(hwmgr, !bgate);
5533 }
5534
5535 int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
5536 {
5537 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5538 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5539 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5540 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5541
5542 uint32_t mm_boot_level_offset, mm_boot_level_value;
5543 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5544
5545 if (tonga_nps->vce_clocks.EVCLK > 0 && (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
5546 data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
5547
5548 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
5549 mm_boot_level_offset /= 4;
5550 mm_boot_level_offset *= 4;
5551 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5552 mm_boot_level_value &= 0xFF00FFFF;
5553 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
5554 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5555
5556 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5557 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5558 PPSMC_MSG_VCEDPM_SetEnabledMask,
5559 (uint32_t)(1 << data->smc_state_table.VceBootLevel));
5560
5561 tonga_enable_disable_vce_dpm(hwmgr, true);
5562 } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
5563 tonga_enable_disable_vce_dpm(hwmgr, false);
5564
5565 return 0;
5566 }
5567
5568 static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
5569 {
5570 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5571
5572 uint32_t address;
5573 int32_t result;
5574
5575 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
5576 return 0;
5577
5578
5579 memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
5580
5581 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
5582
5583 if(result != 0)
5584 return result;
5585
5586
5587 address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
5588
5589 return tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
5590 (uint8_t *)&data->mc_reg_table.data[0],
5591 sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
5592 data->sram_end);
5593 }
5594
5595 static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
5596 {
5597 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5598
5599 if (data->need_update_smu7_dpm_table &
5600 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
5601 return tonga_program_memory_timing_parameters(hwmgr);
5602
5603 return 0;
5604 }
5605
5606 static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5607 {
5608 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5609
5610 if (0 == data->need_update_smu7_dpm_table)
5611 return 0;
5612
5613 if ((0 == data->sclk_dpm_key_disabled) &&
5614 (data->need_update_smu7_dpm_table &
5615 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5616
5617 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5618 "Trying to Unfreeze SCLK DPM when DPM is disabled",
5619 );
5620 PP_ASSERT_WITH_CODE(
5621 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5622 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5623 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
5624 return -1);
5625 }
5626
5627 if ((0 == data->mclk_dpm_key_disabled) &&
5628 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
5629
5630 PP_ASSERT_WITH_CODE(
5631 true == tonga_is_dpm_running(hwmgr),
5632 "Trying to Unfreeze MCLK DPM when DPM is disabled",
5633 );
5634 PP_ASSERT_WITH_CODE(
5635 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5636 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5637 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
5638 return -1);
5639 }
5640
5641 data->need_update_smu7_dpm_table = 0;
5642
5643 return 0;
5644 }
5645
5646 static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
5647 {
5648 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5649 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5650 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5651 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
5652 uint8_t request;
5653
5654 if (data->pspp_notify_required ||
5655 data->pcie_performance_request) {
5656 if (target_link_speed == PP_PCIEGen3)
5657 request = PCIE_PERF_REQ_GEN3;
5658 else if (target_link_speed == PP_PCIEGen2)
5659 request = PCIE_PERF_REQ_GEN2;
5660 else
5661 request = PCIE_PERF_REQ_GEN1;
5662
5663 if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
5664 data->pcie_performance_request = false;
5665 return 0;
5666 }
5667
5668 if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
5669 if (PP_PCIEGen2 == target_link_speed)
5670 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
5671 else
5672 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
5673 }
5674 }
5675
5676 data->pcie_performance_request = false;
5677 return 0;
5678 }
5679
5680 static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
5681 {
5682 int tmp_result, result = 0;
5683
5684 tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
5685 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
5686
5687 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5688 tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
5689 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
5690 }
5691
5692 tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
5693 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
5694
5695 tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
5696 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
5697
5698 tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
5699 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
5700
5701 tmp_result = tonga_update_vce_dpm(hwmgr, input);
5702 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
5703
5704 tmp_result = tonga_update_sclk_threshold(hwmgr);
5705 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
5706
5707 tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
5708 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
5709
5710 tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
5711 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
5712
5713 tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
5714 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
5715
5716 tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
5717 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
5718
5719 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5720 tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
5721 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
5722 }
5723
5724 return result;
5725 }
5726
5727 /**
5728 * Set maximum target operating fan output PWM
5729 *
5730 * @param pHwMgr: the address of the powerplay hardware manager.
5731 * @param usMaxFanPwm: max operating fan PWM in percents
5732 * @return The response that came from the SMC.
5733 */
5734 static int tonga_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5735 {
5736 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5737
5738 if (phm_is_hw_access_blocked(hwmgr))
5739 return 0;
5740
5741 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -1);
5742 }
5743
5744 int tonga_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
5745 {
5746 uint32_t num_active_displays = 0;
5747 struct cgs_display_info info = {0};
5748 info.mode_info = NULL;
5749
5750 cgs_get_active_displays_info(hwmgr->device, &info);
5751
5752 num_active_displays = info.display_count;
5753
5754 if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
5755 tonga_notify_smc_display_change(hwmgr, false);
5756 else
5757 tonga_notify_smc_display_change(hwmgr, true);
5758
5759 return 0;
5760 }
5761
5762 /**
5763 * Programs the display gap
5764 *
5765 * @param hwmgr the address of the powerplay hardware manager.
5766 * @return always OK
5767 */
5768 int tonga_program_display_gap(struct pp_hwmgr *hwmgr)
5769 {
5770 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5771 uint32_t num_active_displays = 0;
5772 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5773 uint32_t display_gap2;
5774 uint32_t pre_vbi_time_in_us;
5775 uint32_t frame_time_in_us;
5776 uint32_t ref_clock;
5777 uint32_t refresh_rate = 0;
5778 struct cgs_display_info info = {0};
5779 struct cgs_mode_info mode_info;
5780
5781 info.mode_info = &mode_info;
5782
5783 cgs_get_active_displays_info(hwmgr->device, &info);
5784 num_active_displays = info.display_count;
5785
5786 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5787 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
5788
5789 ref_clock = mode_info.ref_clock;
5790 refresh_rate = mode_info.refresh_rate;
5791
5792 if(0 == refresh_rate)
5793 refresh_rate = 60;
5794
5795 frame_time_in_us = 1000000 / refresh_rate;
5796
5797 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5798 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5799
5800 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5801
5802 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, PreVBlankGap), 0x64);
5803
5804 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
5805
5806 if (num_active_displays == 1)
5807 tonga_notify_smc_display_change(hwmgr, true);
5808
5809 return 0;
5810 }
5811
5812 int tonga_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5813 {
5814
5815 tonga_program_display_gap(hwmgr);
5816
5817 /* to do PhwTonga_CacUpdateDisplayConfiguration(pHwMgr); */
5818 return 0;
5819 }
5820
5821 /**
5822 * Set maximum target operating fan output RPM
5823 *
5824 * @param pHwMgr: the address of the powerplay hardware manager.
5825 * @param usMaxFanRpm: max operating fan RPM value.
5826 * @return The response that came from the SMC.
5827 */
5828 static int tonga_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5829 {
5830 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm;
5831
5832 if (phm_is_hw_access_blocked(hwmgr))
5833 return 0;
5834
5835 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -1);
5836 }
5837
5838 uint32_t tonga_get_xclk(struct pp_hwmgr *hwmgr)
5839 {
5840 uint32_t reference_clock;
5841 uint32_t tc;
5842 uint32_t divide;
5843
5844 ATOM_FIRMWARE_INFO *fw_info;
5845 uint16_t size;
5846 uint8_t frev, crev;
5847 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
5848
5849 tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
5850
5851 if (tc)
5852 return TCLK;
5853
5854 fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index,
5855 &size, &frev, &crev);
5856
5857 if (!fw_info)
5858 return 0;
5859
5860 reference_clock = le16_to_cpu(fw_info->usMinPixelClockPLL_Output);
5861
5862 divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
5863
5864 if (0 != divide)
5865 return reference_clock / 4;
5866
5867 return reference_clock;
5868 }
5869
5870 int tonga_dpm_set_interrupt_state(void *private_data,
5871 unsigned src_id, unsigned type,
5872 int enabled)
5873 {
5874 uint32_t cg_thermal_int;
5875 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5876
5877 if (hwmgr == NULL)
5878 return -EINVAL;
5879
5880 switch (type) {
5881 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5882 if (enabled) {
5883 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5884 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5885 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5886 } else {
5887 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5888 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5889 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5890 }
5891 break;
5892
5893 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5894 if (enabled) {
5895 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5896 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5897 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5898 } else {
5899 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5900 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5901 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5902 }
5903 break;
5904 default:
5905 break;
5906 }
5907 return 0;
5908 }
5909
5910 int tonga_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5911 const void *thermal_interrupt_info)
5912 {
5913 int result;
5914 const struct pp_interrupt_registration_info *info =
5915 (const struct pp_interrupt_registration_info *)thermal_interrupt_info;
5916
5917 if (info == NULL)
5918 return -EINVAL;
5919
5920 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5921 tonga_dpm_set_interrupt_state,
5922 info->call_back, info->context);
5923
5924 if (result)
5925 return -EINVAL;
5926
5927 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5928 tonga_dpm_set_interrupt_state,
5929 info->call_back, info->context);
5930
5931 if (result)
5932 return -EINVAL;
5933
5934 return 0;
5935 }
5936
5937 bool tonga_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5938 {
5939 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5940 bool is_update_required = false;
5941 struct cgs_display_info info = {0,0,NULL};
5942
5943 cgs_get_active_displays_info(hwmgr->device, &info);
5944
5945 if (data->display_timing.num_existing_displays != info.display_count)
5946 is_update_required = true;
5947 /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
5948 if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5949 cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
5950 if(min_clocks.engineClockInSR != data->display_timing.minClockInSR)
5951 is_update_required = true;
5952 */
5953 return is_update_required;
5954 }
5955
5956 static inline bool tonga_are_power_levels_equal(const struct tonga_performance_level *pl1,
5957 const struct tonga_performance_level *pl2)
5958 {
5959 return ((pl1->memory_clock == pl2->memory_clock) &&
5960 (pl1->engine_clock == pl2->engine_clock) &&
5961 (pl1->pcie_gen == pl2->pcie_gen) &&
5962 (pl1->pcie_lane == pl2->pcie_lane));
5963 }
5964
5965 int tonga_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5966 {
5967 const struct tonga_power_state *psa = cast_const_phw_tonga_power_state(pstate1);
5968 const struct tonga_power_state *psb = cast_const_phw_tonga_power_state(pstate2);
5969 int i;
5970
5971 if (equal == NULL || psa == NULL || psb == NULL)
5972 return -EINVAL;
5973
5974 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5975 if (psa->performance_level_count != psb->performance_level_count) {
5976 *equal = false;
5977 return 0;
5978 }
5979
5980 for (i = 0; i < psa->performance_level_count; i++) {
5981 if (!tonga_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5982 /* If we have found even one performance level pair that is different the states are different. */
5983 *equal = false;
5984 return 0;
5985 }
5986 }
5987
5988 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5989 *equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK));
5990 *equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK));
5991 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5992 *equal &= (psa->acp_clk == psb->acp_clk);
5993
5994 return 0;
5995 }
5996
5997 static int tonga_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5998 {
5999 if (mode) {
6000 /* stop auto-manage */
6001 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
6002 PHM_PlatformCaps_MicrocodeFanControl))
6003 tonga_fan_ctrl_stop_smc_fan_control(hwmgr);
6004 tonga_fan_ctrl_set_static_mode(hwmgr, mode);
6005 } else
6006 /* restart auto-manage */
6007 tonga_fan_ctrl_reset_fan_speed_to_default(hwmgr);
6008
6009 return 0;
6010 }
6011
6012 static int tonga_get_fan_control_mode(struct pp_hwmgr *hwmgr)
6013 {
6014 if (hwmgr->fan_ctrl_is_in_default_mode)
6015 return hwmgr->fan_ctrl_default_mode;
6016 else
6017 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
6018 CG_FDO_CTRL2, FDO_PWM_MODE);
6019 }
6020
6021 static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
6022 .backend_init = &tonga_hwmgr_backend_init,
6023 .backend_fini = &tonga_hwmgr_backend_fini,
6024 .asic_setup = &tonga_setup_asic_task,
6025 .dynamic_state_management_enable = &tonga_enable_dpm_tasks,
6026 .apply_state_adjust_rules = tonga_apply_state_adjust_rules,
6027 .force_dpm_level = &tonga_force_dpm_level,
6028 .power_state_set = tonga_set_power_state_tasks,
6029 .get_power_state_size = tonga_get_power_state_size,
6030 .get_mclk = tonga_dpm_get_mclk,
6031 .get_sclk = tonga_dpm_get_sclk,
6032 .patch_boot_state = tonga_dpm_patch_boot_state,
6033 .get_pp_table_entry = tonga_get_pp_table_entry,
6034 .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
6035 .print_current_perforce_level = tonga_print_current_perforce_level,
6036 .powerdown_uvd = tonga_phm_powerdown_uvd,
6037 .powergate_uvd = tonga_phm_powergate_uvd,
6038 .powergate_vce = tonga_phm_powergate_vce,
6039 .disable_clock_power_gating = tonga_phm_disable_clock_power_gating,
6040 .notify_smc_display_config_after_ps_adjustment = tonga_notify_smc_display_config_after_ps_adjustment,
6041 .display_config_changed = tonga_display_configuration_changed_task,
6042 .set_max_fan_pwm_output = tonga_set_max_fan_pwm_output,
6043 .set_max_fan_rpm_output = tonga_set_max_fan_rpm_output,
6044 .get_temperature = tonga_thermal_get_temperature,
6045 .stop_thermal_controller = tonga_thermal_stop_thermal_controller,
6046 .get_fan_speed_info = tonga_fan_ctrl_get_fan_speed_info,
6047 .get_fan_speed_percent = tonga_fan_ctrl_get_fan_speed_percent,
6048 .set_fan_speed_percent = tonga_fan_ctrl_set_fan_speed_percent,
6049 .reset_fan_speed_to_default = tonga_fan_ctrl_reset_fan_speed_to_default,
6050 .get_fan_speed_rpm = tonga_fan_ctrl_get_fan_speed_rpm,
6051 .set_fan_speed_rpm = tonga_fan_ctrl_set_fan_speed_rpm,
6052 .uninitialize_thermal_controller = tonga_thermal_ctrl_uninitialize_thermal_controller,
6053 .register_internal_thermal_interrupt = tonga_register_internal_thermal_interrupt,
6054 .check_smc_update_required_for_display_configuration = tonga_check_smc_update_required_for_display_configuration,
6055 .check_states_equal = tonga_check_states_equal,
6056 .set_fan_control_mode = tonga_set_fan_control_mode,
6057 .get_fan_control_mode = tonga_get_fan_control_mode,
6058 };
6059
6060 int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
6061 {
6062 tonga_hwmgr *data;
6063
6064 data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
6065 if (data == NULL)
6066 return -ENOMEM;
6067 memset(data, 0x00, sizeof(tonga_hwmgr));
6068
6069 hwmgr->backend = data;
6070 hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
6071 hwmgr->pptable_func = &tonga_pptable_funcs;
6072 pp_tonga_thermal_initialize(hwmgr);
6073 return 0;
6074 }
6075
This page took 0.194351 seconds and 5 git commands to generate.