lightnvm: NVM should depend on HAS_DMA
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_processpptables.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "tonga_processpptables.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "pp_debug.h"
31 #include "hwmgr.h"
32 #include "cgs_common.h"
33 #include "tonga_pptable.h"
34
35 /**
36 * Private Function used during initialization.
37 * @param hwmgr Pointer to the hardware manager.
38 * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
39 * @param cap Which capability to set/reset.
40 */
41 static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
42 {
43 if (setIt)
44 phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
45 else
46 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
47 }
48
49
50 /**
51 * Private Function used during initialization.
52 * @param hwmgr Pointer to the hardware manager.
53 * @param powerplay_caps the bit array (from BIOS) of capability bits.
54 * @exception the current implementation always returns 1.
55 */
56 static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
57 {
58 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
59 "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
60 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
61 "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
62 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
63 "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
64 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
65 "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
66 PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
67 "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
68
69 set_hw_cap(
70 hwmgr,
71 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
72 PHM_PlatformCaps_PowerPlaySupport
73 );
74
75 set_hw_cap(
76 hwmgr,
77 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
78 PHM_PlatformCaps_BiosPowerSourceControl
79 );
80
81 set_hw_cap(
82 hwmgr,
83 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
84 PHM_PlatformCaps_AutomaticDCTransition
85 );
86
87 set_hw_cap(
88 hwmgr,
89 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
90 PHM_PlatformCaps_EnableMVDDControl
91 );
92
93 set_hw_cap(
94 hwmgr,
95 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
96 PHM_PlatformCaps_ControlVDDCI
97 );
98
99 set_hw_cap(
100 hwmgr,
101 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
102 PHM_PlatformCaps_ControlVDDGFX
103 );
104
105 set_hw_cap(
106 hwmgr,
107 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
108 PHM_PlatformCaps_BACO
109 );
110
111 set_hw_cap(
112 hwmgr,
113 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
114 PHM_PlatformCaps_DisableVoltageIsland
115 );
116
117 set_hw_cap(
118 hwmgr,
119 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
120 PHM_PlatformCaps_CombinePCCWithThermalSignal
121 );
122
123 set_hw_cap(
124 hwmgr,
125 0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
126 PHM_PlatformCaps_LoadPostProductionFirmware
127 );
128
129 return 0;
130 }
131
132 /**
133 * Private Function to get the PowerPlay Table Address.
134 */
135 const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
136 {
137 int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
138
139 u16 size;
140 u8 frev, crev;
141 void *table_address = (void *)hwmgr->soft_pp_table;
142
143 if (!table_address) {
144 table_address = (ATOM_Tonga_POWERPLAYTABLE *)
145 cgs_atom_get_data_table(hwmgr->device,
146 index, &size, &frev, &crev);
147 hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/
148 hwmgr->soft_pp_table_size = size;
149 }
150
151 return table_address;
152 }
153
154 static int get_vddc_lookup_table(
155 struct pp_hwmgr *hwmgr,
156 phm_ppt_v1_voltage_lookup_table **lookup_table,
157 const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables,
158 uint32_t max_levels
159 )
160 {
161 uint32_t table_size, i;
162 phm_ppt_v1_voltage_lookup_table *table;
163
164 PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
165 "Invalid CAC Leakage PowerPlay Table!", return 1);
166
167 table_size = sizeof(uint32_t) +
168 sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
169
170 table = kzalloc(table_size, GFP_KERNEL);
171
172 if (NULL == table)
173 return -ENOMEM;
174
175 memset(table, 0x00, table_size);
176
177 table->count = vddc_lookup_pp_tables->ucNumEntries;
178
179 for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
180 table->entries[i].us_calculated = 0;
181 table->entries[i].us_vdd =
182 vddc_lookup_pp_tables->entries[i].usVdd;
183 table->entries[i].us_cac_low =
184 vddc_lookup_pp_tables->entries[i].usCACLow;
185 table->entries[i].us_cac_mid =
186 vddc_lookup_pp_tables->entries[i].usCACMid;
187 table->entries[i].us_cac_high =
188 vddc_lookup_pp_tables->entries[i].usCACHigh;
189 }
190
191 *lookup_table = table;
192
193 return 0;
194 }
195
196 /**
197 * Private Function used during initialization.
198 * Initialize Platform Power Management Parameter table
199 * @param hwmgr Pointer to the hardware manager.
200 * @param atom_ppm_table Pointer to PPM table in VBIOS
201 */
202 static int get_platform_power_management_table(
203 struct pp_hwmgr *hwmgr,
204 ATOM_Tonga_PPM_Table *atom_ppm_table)
205 {
206 struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
207 struct phm_ppt_v1_information *pp_table_information =
208 (struct phm_ppt_v1_information *)(hwmgr->pptable);
209
210 if (NULL == ptr)
211 return -ENOMEM;
212
213 ptr->ppm_design
214 = atom_ppm_table->ucPpmDesign;
215 ptr->cpu_core_number
216 = atom_ppm_table->usCpuCoreNumber;
217 ptr->platform_tdp
218 = atom_ppm_table->ulPlatformTDP;
219 ptr->small_ac_platform_tdp
220 = atom_ppm_table->ulSmallACPlatformTDP;
221 ptr->platform_tdc
222 = atom_ppm_table->ulPlatformTDC;
223 ptr->small_ac_platform_tdc
224 = atom_ppm_table->ulSmallACPlatformTDC;
225 ptr->apu_tdp
226 = atom_ppm_table->ulApuTDP;
227 ptr->dgpu_tdp
228 = atom_ppm_table->ulDGpuTDP;
229 ptr->dgpu_ulv_power
230 = atom_ppm_table->ulDGpuUlvPower;
231 ptr->tj_max
232 = atom_ppm_table->ulTjmax;
233
234 pp_table_information->ppm_parameter_table = ptr;
235
236 return 0;
237 }
238
239 /**
240 * Private Function used during initialization.
241 * Initialize TDP limits for DPM2
242 * @param hwmgr Pointer to the hardware manager.
243 * @param powerplay_table Pointer to the PowerPlay Table.
244 */
245 static int init_dpm_2_parameters(
246 struct pp_hwmgr *hwmgr,
247 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
248 )
249 {
250 int result = 0;
251 struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
252 ATOM_Tonga_PPM_Table *atom_ppm_table;
253 uint32_t disable_ppm = 0;
254 uint32_t disable_power_control = 0;
255
256 pp_table_information->us_ulv_voltage_offset =
257 le16_to_cpu(powerplay_table->usUlvVoltageOffset);
258
259 pp_table_information->ppm_parameter_table = NULL;
260 pp_table_information->vddc_lookup_table = NULL;
261 pp_table_information->vddgfx_lookup_table = NULL;
262 /* TDP limits */
263 hwmgr->platform_descriptor.TDPODLimit =
264 le16_to_cpu(powerplay_table->usPowerControlLimit);
265 hwmgr->platform_descriptor.TDPAdjustment = 0;
266 hwmgr->platform_descriptor.VidAdjustment = 0;
267 hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
268 hwmgr->platform_descriptor.VidMinLimit = 0;
269 hwmgr->platform_descriptor.VidMaxLimit = 1500000;
270 hwmgr->platform_descriptor.VidStep = 6250;
271
272 disable_power_control = 0;
273 if (0 == disable_power_control) {
274 /* enable TDP overdrive (PowerControl) feature as well if supported */
275 if (hwmgr->platform_descriptor.TDPODLimit != 0)
276 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
277 PHM_PlatformCaps_PowerControl);
278 }
279
280 if (0 != powerplay_table->usVddcLookupTableOffset) {
281 const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
282 (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
283 le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
284
285 result = get_vddc_lookup_table(hwmgr,
286 &pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
287 }
288
289 if (0 != powerplay_table->usVddgfxLookupTableOffset) {
290 const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
291 (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
292 le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
293
294 result = get_vddc_lookup_table(hwmgr,
295 &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
296 }
297
298 disable_ppm = 0;
299 if (0 == disable_ppm) {
300 atom_ppm_table = (ATOM_Tonga_PPM_Table *)
301 (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
302
303 if (0 != powerplay_table->usPPMTableOffset) {
304 if (get_platform_power_management_table(hwmgr, atom_ppm_table) == 0) {
305 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
306 PHM_PlatformCaps_EnablePlatformPowerManagement);
307 }
308 }
309 }
310
311 return result;
312 }
313
314 static int get_valid_clk(
315 struct pp_hwmgr *hwmgr,
316 struct phm_clock_array **clk_table,
317 const phm_ppt_v1_clock_voltage_dependency_table * clk_volt_pp_table
318 )
319 {
320 uint32_t table_size, i;
321 struct phm_clock_array *table;
322
323 PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
324 "Invalid PowerPlay Table!", return -1);
325
326 table_size = sizeof(uint32_t) +
327 sizeof(uint32_t) * clk_volt_pp_table->count;
328
329 table = kzalloc(table_size, GFP_KERNEL);
330
331 if (NULL == table)
332 return -ENOMEM;
333
334 memset(table, 0x00, table_size);
335
336 table->count = (uint32_t)clk_volt_pp_table->count;
337
338 for (i = 0; i < table->count; i++)
339 table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk;
340
341 *clk_table = table;
342
343 return 0;
344 }
345
346 static int get_hard_limits(
347 struct pp_hwmgr *hwmgr,
348 struct phm_clock_and_voltage_limits *limits,
349 const ATOM_Tonga_Hard_Limit_Table * limitable
350 )
351 {
352 PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
353
354 /* currently we always take entries[0] parameters */
355 limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit;
356 limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit;
357 limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit;
358 limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit;
359 limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit;
360
361 return 0;
362 }
363
364 static int get_mclk_voltage_dependency_table(
365 struct pp_hwmgr *hwmgr,
366 phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
367 const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table
368 )
369 {
370 uint32_t table_size, i;
371 phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
372
373 PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
374 "Invalid PowerPlay Table!", return -1);
375
376 table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
377 * mclk_dep_table->ucNumEntries;
378
379 mclk_table = kzalloc(table_size, GFP_KERNEL);
380
381 if (NULL == mclk_table)
382 return -ENOMEM;
383
384 memset(mclk_table, 0x00, table_size);
385
386 mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
387
388 for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
389 mclk_table->entries[i].vddInd =
390 mclk_dep_table->entries[i].ucVddcInd;
391 mclk_table->entries[i].vdd_offset =
392 mclk_dep_table->entries[i].usVddgfxOffset;
393 mclk_table->entries[i].vddci =
394 mclk_dep_table->entries[i].usVddci;
395 mclk_table->entries[i].mvdd =
396 mclk_dep_table->entries[i].usMvdd;
397 mclk_table->entries[i].clk =
398 mclk_dep_table->entries[i].ulMclk;
399 }
400
401 *pp_tonga_mclk_dep_table = mclk_table;
402
403 return 0;
404 }
405
406 static int get_sclk_voltage_dependency_table(
407 struct pp_hwmgr *hwmgr,
408 phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
409 const PPTable_Generic_SubTable_Header *sclk_dep_table
410 )
411 {
412 uint32_t table_size, i;
413 phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
414
415 if (sclk_dep_table->ucRevId < 1) {
416 const ATOM_Tonga_SCLK_Dependency_Table *tonga_table =
417 (ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table;
418
419 PP_ASSERT_WITH_CODE((0 != tonga_table->ucNumEntries),
420 "Invalid PowerPlay Table!", return -1);
421
422 table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
423 * tonga_table->ucNumEntries;
424
425 sclk_table = kzalloc(table_size, GFP_KERNEL);
426
427 if (NULL == sclk_table)
428 return -ENOMEM;
429
430 memset(sclk_table, 0x00, table_size);
431
432 sclk_table->count = (uint32_t)tonga_table->ucNumEntries;
433
434 for (i = 0; i < tonga_table->ucNumEntries; i++) {
435 sclk_table->entries[i].vddInd =
436 tonga_table->entries[i].ucVddInd;
437 sclk_table->entries[i].vdd_offset =
438 tonga_table->entries[i].usVddcOffset;
439 sclk_table->entries[i].clk =
440 tonga_table->entries[i].ulSclk;
441 sclk_table->entries[i].cks_enable =
442 (((tonga_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
443 sclk_table->entries[i].cks_voffset =
444 (tonga_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
445 }
446 } else {
447 const ATOM_Polaris_SCLK_Dependency_Table *polaris_table =
448 (ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table;
449
450 PP_ASSERT_WITH_CODE((0 != polaris_table->ucNumEntries),
451 "Invalid PowerPlay Table!", return -1);
452
453 table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
454 * polaris_table->ucNumEntries;
455
456 sclk_table = kzalloc(table_size, GFP_KERNEL);
457
458 if (NULL == sclk_table)
459 return -ENOMEM;
460
461 memset(sclk_table, 0x00, table_size);
462
463 sclk_table->count = (uint32_t)polaris_table->ucNumEntries;
464
465 for (i = 0; i < polaris_table->ucNumEntries; i++) {
466 sclk_table->entries[i].vddInd =
467 polaris_table->entries[i].ucVddInd;
468 sclk_table->entries[i].vdd_offset =
469 polaris_table->entries[i].usVddcOffset;
470 sclk_table->entries[i].clk =
471 polaris_table->entries[i].ulSclk;
472 sclk_table->entries[i].cks_enable =
473 (((polaris_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
474 sclk_table->entries[i].cks_voffset =
475 (polaris_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
476 sclk_table->entries[i].sclk_offset = polaris_table->entries[i].ulSclkOffset;
477 }
478 }
479 *pp_tonga_sclk_dep_table = sclk_table;
480
481 return 0;
482 }
483
484 static int get_pcie_table(
485 struct pp_hwmgr *hwmgr,
486 phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
487 const PPTable_Generic_SubTable_Header * pTable
488 )
489 {
490 uint32_t table_size, i, pcie_count;
491 phm_ppt_v1_pcie_table *pcie_table;
492 struct phm_ppt_v1_information *pp_table_information =
493 (struct phm_ppt_v1_information *)(hwmgr->pptable);
494
495 if (pTable->ucRevId < 1) {
496 const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)pTable;
497 PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
498 "Invalid PowerPlay Table!", return -1);
499
500 table_size = sizeof(uint32_t) +
501 sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
502
503 pcie_table = kzalloc(table_size, GFP_KERNEL);
504
505 if (pcie_table == NULL)
506 return -ENOMEM;
507
508 memset(pcie_table, 0x00, table_size);
509
510 /*
511 * Make sure the number of pcie entries are less than or equal to sclk dpm levels.
512 * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
513 */
514 pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
515 if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
516 pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
517 else
518 printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
519 Disregarding the excess entries... \n");
520
521 pcie_table->count = pcie_count;
522
523 for (i = 0; i < pcie_count; i++) {
524 pcie_table->entries[i].gen_speed =
525 atom_pcie_table->entries[i].ucPCIEGenSpeed;
526 pcie_table->entries[i].lane_width =
527 atom_pcie_table->entries[i].usPCIELaneWidth;
528 }
529
530 *pp_tonga_pcie_table = pcie_table;
531 } else {
532 /* Polaris10/Polaris11 and newer. */
533 const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)pTable;
534 PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
535 "Invalid PowerPlay Table!", return -1);
536
537 table_size = sizeof(uint32_t) +
538 sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
539
540 pcie_table = kzalloc(table_size, GFP_KERNEL);
541
542 if (pcie_table == NULL)
543 return -ENOMEM;
544
545 memset(pcie_table, 0x00, table_size);
546
547 /*
548 * Make sure the number of pcie entries are less than or equal to sclk dpm levels.
549 * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
550 */
551 pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
552 if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
553 pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
554 else
555 printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
556 Disregarding the excess entries... \n");
557
558 pcie_table->count = pcie_count;
559
560 for (i = 0; i < pcie_count; i++) {
561 pcie_table->entries[i].gen_speed =
562 atom_pcie_table->entries[i].ucPCIEGenSpeed;
563 pcie_table->entries[i].lane_width =
564 atom_pcie_table->entries[i].usPCIELaneWidth;
565 pcie_table->entries[i].pcie_sclk =
566 atom_pcie_table->entries[i].ulPCIE_Sclk;
567 }
568
569 *pp_tonga_pcie_table = pcie_table;
570 }
571
572 return 0;
573 }
574
575 static int get_cac_tdp_table(
576 struct pp_hwmgr *hwmgr,
577 struct phm_cac_tdp_table **cac_tdp_table,
578 const PPTable_Generic_SubTable_Header * table
579 )
580 {
581 uint32_t table_size;
582 struct phm_cac_tdp_table *tdp_table;
583
584 table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
585 tdp_table = kzalloc(table_size, GFP_KERNEL);
586
587 if (NULL == tdp_table)
588 return -ENOMEM;
589
590 memset(tdp_table, 0x00, table_size);
591
592 hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
593
594 if (NULL == hwmgr->dyn_state.cac_dtp_table) {
595 kfree(tdp_table);
596 return -ENOMEM;
597 }
598
599 memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size);
600
601 if (table->ucRevId < 3) {
602 const ATOM_Tonga_PowerTune_Table *tonga_table =
603 (ATOM_Tonga_PowerTune_Table *)table;
604 tdp_table->usTDP = tonga_table->usTDP;
605 tdp_table->usConfigurableTDP =
606 tonga_table->usConfigurableTDP;
607 tdp_table->usTDC = tonga_table->usTDC;
608 tdp_table->usBatteryPowerLimit =
609 tonga_table->usBatteryPowerLimit;
610 tdp_table->usSmallPowerLimit =
611 tonga_table->usSmallPowerLimit;
612 tdp_table->usLowCACLeakage =
613 tonga_table->usLowCACLeakage;
614 tdp_table->usHighCACLeakage =
615 tonga_table->usHighCACLeakage;
616 tdp_table->usMaximumPowerDeliveryLimit =
617 tonga_table->usMaximumPowerDeliveryLimit;
618 tdp_table->usDefaultTargetOperatingTemp =
619 tonga_table->usTjMax;
620 tdp_table->usTargetOperatingTemp =
621 tonga_table->usTjMax; /*Set the initial temp to the same as default */
622 tdp_table->usPowerTuneDataSetID =
623 tonga_table->usPowerTuneDataSetID;
624 tdp_table->usSoftwareShutdownTemp =
625 tonga_table->usSoftwareShutdownTemp;
626 tdp_table->usClockStretchAmount =
627 tonga_table->usClockStretchAmount;
628 } else { /* Fiji and newer */
629 const ATOM_Fiji_PowerTune_Table *fijitable =
630 (ATOM_Fiji_PowerTune_Table *)table;
631 tdp_table->usTDP = fijitable->usTDP;
632 tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP;
633 tdp_table->usTDC = fijitable->usTDC;
634 tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit;
635 tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit;
636 tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage;
637 tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage;
638 tdp_table->usMaximumPowerDeliveryLimit =
639 fijitable->usMaximumPowerDeliveryLimit;
640 tdp_table->usDefaultTargetOperatingTemp =
641 fijitable->usTjMax;
642 tdp_table->usTargetOperatingTemp =
643 fijitable->usTjMax; /*Set the initial temp to the same as default */
644 tdp_table->usPowerTuneDataSetID =
645 fijitable->usPowerTuneDataSetID;
646 tdp_table->usSoftwareShutdownTemp =
647 fijitable->usSoftwareShutdownTemp;
648 tdp_table->usClockStretchAmount =
649 fijitable->usClockStretchAmount;
650 tdp_table->usTemperatureLimitHotspot =
651 fijitable->usTemperatureLimitHotspot;
652 tdp_table->usTemperatureLimitLiquid1 =
653 fijitable->usTemperatureLimitLiquid1;
654 tdp_table->usTemperatureLimitLiquid2 =
655 fijitable->usTemperatureLimitLiquid2;
656 tdp_table->usTemperatureLimitVrVddc =
657 fijitable->usTemperatureLimitVrVddc;
658 tdp_table->usTemperatureLimitVrMvdd =
659 fijitable->usTemperatureLimitVrMvdd;
660 tdp_table->usTemperatureLimitPlx =
661 fijitable->usTemperatureLimitPlx;
662 tdp_table->ucLiquid1_I2C_address =
663 fijitable->ucLiquid1_I2C_address;
664 tdp_table->ucLiquid2_I2C_address =
665 fijitable->ucLiquid2_I2C_address;
666 tdp_table->ucLiquid_I2C_Line =
667 fijitable->ucLiquid_I2C_Line;
668 tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
669 tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
670 tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
671 tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
672 }
673
674 *cac_tdp_table = tdp_table;
675
676 return 0;
677 }
678
679 static int get_mm_clock_voltage_table(
680 struct pp_hwmgr *hwmgr,
681 phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
682 const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
683 )
684 {
685 uint32_t table_size, i;
686 const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
687 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
688
689 PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
690 "Invalid PowerPlay Table!", return -1);
691 table_size = sizeof(uint32_t) +
692 sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
693 * mm_dependency_table->ucNumEntries;
694 mm_table = kzalloc(table_size, GFP_KERNEL);
695
696 if (NULL == mm_table)
697 return -ENOMEM;
698
699 memset(mm_table, 0x00, table_size);
700
701 mm_table->count = mm_dependency_table->ucNumEntries;
702
703 for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
704 mm_dependency_record = &mm_dependency_table->entries[i];
705 mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd;
706 mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset;
707 mm_table->entries[i].aclk = mm_dependency_record->ulAClk;
708 mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk;
709 mm_table->entries[i].eclk = mm_dependency_record->ulEClk;
710 mm_table->entries[i].vclk = mm_dependency_record->ulVClk;
711 mm_table->entries[i].dclk = mm_dependency_record->ulDClk;
712 }
713
714 *tonga_mm_table = mm_table;
715
716 return 0;
717 }
718
719 /**
720 * Private Function used during initialization.
721 * Initialize clock voltage dependency
722 * @param hwmgr Pointer to the hardware manager.
723 * @param powerplay_table Pointer to the PowerPlay Table.
724 */
725 static int init_clock_voltage_dependency(
726 struct pp_hwmgr *hwmgr,
727 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
728 )
729 {
730 int result = 0;
731 struct phm_ppt_v1_information *pp_table_information =
732 (struct phm_ppt_v1_information *)(hwmgr->pptable);
733
734 const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
735 (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
736 le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
737 const PPTable_Generic_SubTable_Header *pPowerTuneTable =
738 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
739 le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
740 const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
741 (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
742 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
743 const PPTable_Generic_SubTable_Header *sclk_dep_table =
744 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
745 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
746 const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
747 (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
748 le16_to_cpu(powerplay_table->usHardLimitTableOffset));
749 const PPTable_Generic_SubTable_Header *pcie_table =
750 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
751 le16_to_cpu(powerplay_table->usPCIETableOffset));
752
753 pp_table_information->vdd_dep_on_sclk = NULL;
754 pp_table_information->vdd_dep_on_mclk = NULL;
755 pp_table_information->mm_dep_table = NULL;
756 pp_table_information->pcie_table = NULL;
757
758 if (powerplay_table->usMMDependencyTableOffset != 0)
759 result = get_mm_clock_voltage_table(hwmgr,
760 &pp_table_information->mm_dep_table, mm_dependency_table);
761
762 if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
763 result = get_cac_tdp_table(hwmgr,
764 &pp_table_information->cac_dtp_table, pPowerTuneTable);
765
766 if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
767 result = get_sclk_voltage_dependency_table(hwmgr,
768 &pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
769
770 if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
771 result = get_mclk_voltage_dependency_table(hwmgr,
772 &pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
773
774 if (result == 0 && powerplay_table->usPCIETableOffset != 0)
775 result = get_pcie_table(hwmgr,
776 &pp_table_information->pcie_table, pcie_table);
777
778 if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
779 result = get_hard_limits(hwmgr,
780 &pp_table_information->max_clock_voltage_on_dc, pHardLimits);
781
782 hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
783 pp_table_information->max_clock_voltage_on_dc.sclk;
784 hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
785 pp_table_information->max_clock_voltage_on_dc.mclk;
786 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
787 pp_table_information->max_clock_voltage_on_dc.vddc;
788 hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
789 pp_table_information->max_clock_voltage_on_dc.vddci;
790
791 if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
792 && (0 != pp_table_information->vdd_dep_on_mclk->count))
793 result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
794 pp_table_information->vdd_dep_on_mclk);
795
796 if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
797 && (0 != pp_table_information->vdd_dep_on_sclk->count))
798 result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
799 pp_table_information->vdd_dep_on_sclk);
800
801 return result;
802 }
803
804 /** Retrieves the (signed) Overdrive limits from VBIOS.
805 * The max engine clock, memory clock and max temperature come from the firmware info table.
806 *
807 * The information is placed into the platform descriptor.
808 *
809 * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
810 * @param powerplay_table the address of the PowerPlay table.
811 *
812 * @return 1 as long as the firmware info table was present and of a supported version.
813 */
814 static int init_over_drive_limits(
815 struct pp_hwmgr *hwmgr,
816 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
817 {
818 hwmgr->platform_descriptor.overdriveLimit.engineClock =
819 le16_to_cpu(powerplay_table->ulMaxODEngineClock);
820 hwmgr->platform_descriptor.overdriveLimit.memoryClock =
821 le16_to_cpu(powerplay_table->ulMaxODMemoryClock);
822
823 hwmgr->platform_descriptor.minOverdriveVDDC = 0;
824 hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
825 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
826
827 if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \
828 && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) {
829 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
830 PHM_PlatformCaps_ACOverdriveSupport);
831 }
832
833 return 0;
834 }
835
836 /**
837 * Private Function used during initialization.
838 * Inspect the PowerPlay table for obvious signs of corruption.
839 * @param hwmgr Pointer to the hardware manager.
840 * @param powerplay_table Pointer to the PowerPlay Table.
841 * @exception This implementation always returns 1.
842 */
843 static int init_thermal_controller(
844 struct pp_hwmgr *hwmgr,
845 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
846 )
847 {
848 const PPTable_Generic_SubTable_Header *fan_table;
849 ATOM_Tonga_Thermal_Controller *thermal_controller;
850
851 thermal_controller = (ATOM_Tonga_Thermal_Controller *)
852 (((unsigned long)powerplay_table) +
853 le16_to_cpu(powerplay_table->usThermalControllerOffset));
854 PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
855 "Thermal controller table not set!", return -1);
856
857 hwmgr->thermal_controller.ucType = thermal_controller->ucType;
858 hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
859 hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
860
861 hwmgr->thermal_controller.fanInfo.bNoFan =
862 (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
863
864 hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
865 thermal_controller->ucFanParameters &
866 ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
867
868 hwmgr->thermal_controller.fanInfo.ulMinRPM
869 = thermal_controller->ucFanMinRPM * 100UL;
870 hwmgr->thermal_controller.fanInfo.ulMaxRPM
871 = thermal_controller->ucFanMaxRPM * 100UL;
872
873 set_hw_cap(
874 hwmgr,
875 ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
876 PHM_PlatformCaps_ThermalController
877 );
878
879 if (0 == powerplay_table->usFanTableOffset)
880 return 0;
881
882 fan_table = (const PPTable_Generic_SubTable_Header *)
883 (((unsigned long)powerplay_table) +
884 le16_to_cpu(powerplay_table->usFanTableOffset));
885
886 PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
887 "Fan table not set!", return -1);
888 PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
889 "Unsupported fan table format!", return -1);
890
891 hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
892 = 100000;
893 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
894 PHM_PlatformCaps_MicrocodeFanControl);
895
896 if (fan_table->ucRevId < 8) {
897 const ATOM_Tonga_Fan_Table *tonga_fan_table =
898 (ATOM_Tonga_Fan_Table *)fan_table;
899 hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
900 = tonga_fan_table->ucTHyst;
901 hwmgr->thermal_controller.advanceFanControlParameters.usTMin
902 = tonga_fan_table->usTMin;
903 hwmgr->thermal_controller.advanceFanControlParameters.usTMed
904 = tonga_fan_table->usTMed;
905 hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
906 = tonga_fan_table->usTHigh;
907 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
908 = tonga_fan_table->usPWMMin;
909 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
910 = tonga_fan_table->usPWMMed;
911 hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
912 = tonga_fan_table->usPWMHigh;
913 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
914 = 10900; /* hard coded */
915 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
916 = tonga_fan_table->usTMax;
917 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
918 = tonga_fan_table->ucFanControlMode;
919 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
920 = tonga_fan_table->usFanPWMMax;
921 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
922 = 4836;
923 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
924 = tonga_fan_table->usFanOutputSensitivity;
925 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
926 = tonga_fan_table->usFanRPMMax;
927 hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
928 = (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
929 hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
930 = tonga_fan_table->ucTargetTemperature;
931 hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
932 = tonga_fan_table->ucMinimumPWMLimit;
933 } else {
934 const ATOM_Fiji_Fan_Table *fiji_fan_table =
935 (ATOM_Fiji_Fan_Table *)fan_table;
936 hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
937 = fiji_fan_table->ucTHyst;
938 hwmgr->thermal_controller.advanceFanControlParameters.usTMin
939 = fiji_fan_table->usTMin;
940 hwmgr->thermal_controller.advanceFanControlParameters.usTMed
941 = fiji_fan_table->usTMed;
942 hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
943 = fiji_fan_table->usTHigh;
944 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
945 = fiji_fan_table->usPWMMin;
946 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
947 = fiji_fan_table->usPWMMed;
948 hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
949 = fiji_fan_table->usPWMHigh;
950 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
951 = fiji_fan_table->usTMax;
952 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
953 = fiji_fan_table->ucFanControlMode;
954 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
955 = fiji_fan_table->usFanPWMMax;
956 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
957 = 4836;
958 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
959 = fiji_fan_table->usFanOutputSensitivity;
960 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
961 = fiji_fan_table->usFanRPMMax;
962 hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
963 = (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
964 hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
965 = fiji_fan_table->ucTargetTemperature;
966 hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
967 = fiji_fan_table->ucMinimumPWMLimit;
968
969 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
970 = fiji_fan_table->usFanGainEdge;
971 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
972 = fiji_fan_table->usFanGainHotspot;
973 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
974 = fiji_fan_table->usFanGainLiquid;
975 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
976 = fiji_fan_table->usFanGainVrVddc;
977 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
978 = fiji_fan_table->usFanGainVrMvdd;
979 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
980 = fiji_fan_table->usFanGainPlx;
981 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
982 = fiji_fan_table->usFanGainHbm;
983 }
984
985 return 0;
986 }
987
988 /**
989 * Private Function used during initialization.
990 * Inspect the PowerPlay table for obvious signs of corruption.
991 * @param hwmgr Pointer to the hardware manager.
992 * @param powerplay_table Pointer to the PowerPlay Table.
993 * @exception 2 if the powerplay table is incorrect.
994 */
995 static int check_powerplay_tables(
996 struct pp_hwmgr *hwmgr,
997 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
998 )
999 {
1000 const ATOM_Tonga_State_Array *state_arrays;
1001
1002 state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
1003 le16_to_cpu(powerplay_table->usStateArrayOffset));
1004
1005 PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
1006 powerplay_table->sHeader.ucTableFormatRevision),
1007 "Unsupported PPTable format!", return -1);
1008 PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
1009 "State table is not set!", return -1);
1010 PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
1011 "Invalid PowerPlay Table!", return -1);
1012 PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
1013 "Invalid PowerPlay Table!", return -1);
1014
1015 return 0;
1016 }
1017
1018 int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr)
1019 {
1020 int result = 0;
1021 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
1022
1023 hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
1024
1025 PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable),
1026 "Failed to allocate hwmgr->pptable!", return -ENOMEM);
1027
1028 memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
1029
1030 powerplay_table = get_powerplay_table(hwmgr);
1031
1032 PP_ASSERT_WITH_CODE((NULL != powerplay_table),
1033 "Missing PowerPlay Table!", return -1);
1034
1035 result = check_powerplay_tables(hwmgr, powerplay_table);
1036
1037 PP_ASSERT_WITH_CODE((result == 0),
1038 "check_powerplay_tables failed", return result);
1039
1040 result = set_platform_caps(hwmgr,
1041 le32_to_cpu(powerplay_table->ulPlatformCaps));
1042
1043 PP_ASSERT_WITH_CODE((result == 0),
1044 "set_platform_caps failed", return result);
1045
1046 result = init_thermal_controller(hwmgr, powerplay_table);
1047
1048 PP_ASSERT_WITH_CODE((result == 0),
1049 "init_thermal_controller failed", return result);
1050
1051 result = init_over_drive_limits(hwmgr, powerplay_table);
1052
1053 PP_ASSERT_WITH_CODE((result == 0),
1054 "init_over_drive_limits failed", return result);
1055
1056 result = init_clock_voltage_dependency(hwmgr, powerplay_table);
1057
1058 PP_ASSERT_WITH_CODE((result == 0),
1059 "init_clock_voltage_dependency failed", return result);
1060
1061 result = init_dpm_2_parameters(hwmgr, powerplay_table);
1062
1063 PP_ASSERT_WITH_CODE((result == 0),
1064 "init_dpm_2_parameters failed", return result);
1065
1066 return result;
1067 }
1068
1069 int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
1070 {
1071 struct phm_ppt_v1_information *pp_table_information =
1072 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1073
1074 kfree(pp_table_information->vdd_dep_on_sclk);
1075 pp_table_information->vdd_dep_on_sclk = NULL;
1076
1077 kfree(pp_table_information->vdd_dep_on_mclk);
1078 pp_table_information->vdd_dep_on_mclk = NULL;
1079
1080 kfree(pp_table_information->valid_mclk_values);
1081 pp_table_information->valid_mclk_values = NULL;
1082
1083 kfree(pp_table_information->valid_sclk_values);
1084 pp_table_information->valid_sclk_values = NULL;
1085
1086 kfree(pp_table_information->vddc_lookup_table);
1087 pp_table_information->vddc_lookup_table = NULL;
1088
1089 kfree(pp_table_information->vddgfx_lookup_table);
1090 pp_table_information->vddgfx_lookup_table = NULL;
1091
1092 kfree(pp_table_information->mm_dep_table);
1093 pp_table_information->mm_dep_table = NULL;
1094
1095 kfree(pp_table_information->cac_dtp_table);
1096 pp_table_information->cac_dtp_table = NULL;
1097
1098 kfree(hwmgr->dyn_state.cac_dtp_table);
1099 hwmgr->dyn_state.cac_dtp_table = NULL;
1100
1101 kfree(pp_table_information->ppm_parameter_table);
1102 pp_table_information->ppm_parameter_table = NULL;
1103
1104 kfree(pp_table_information->pcie_table);
1105 pp_table_information->pcie_table = NULL;
1106
1107 kfree(hwmgr->pptable);
1108 hwmgr->pptable = NULL;
1109
1110 return 0;
1111 }
1112
1113 const struct pp_table_func tonga_pptable_funcs = {
1114 .pptable_init = tonga_pp_tables_initialize,
1115 .pptable_fini = tonga_pp_tables_uninitialize,
1116 };
1117
1118 int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
1119 {
1120 const ATOM_Tonga_State_Array * state_arrays;
1121 const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
1122
1123 PP_ASSERT_WITH_CODE((NULL != pp_table),
1124 "Missing PowerPlay Table!", return -1);
1125 PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
1126 ATOM_Tonga_TABLE_REVISION_TONGA),
1127 "Incorrect PowerPlay table revision!", return -1);
1128
1129 state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
1130 le16_to_cpu(pp_table->usStateArrayOffset));
1131
1132 return (uint32_t)(state_arrays->ucNumEntries);
1133 }
1134
1135 /**
1136 * Private function to convert flags stored in the BIOS to software flags in PowerPlay.
1137 */
1138 static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
1139 uint16_t classification, uint16_t classification2)
1140 {
1141 uint32_t result = 0;
1142
1143 if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
1144 result |= PP_StateClassificationFlag_Boot;
1145
1146 if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
1147 result |= PP_StateClassificationFlag_Thermal;
1148
1149 if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
1150 result |= PP_StateClassificationFlag_LimitedPowerSource;
1151
1152 if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
1153 result |= PP_StateClassificationFlag_Rest;
1154
1155 if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
1156 result |= PP_StateClassificationFlag_Forced;
1157
1158 if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
1159 result |= PP_StateClassificationFlag_ACPI;
1160
1161 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
1162 result |= PP_StateClassificationFlag_LimitedPowerSource_2;
1163
1164 return result;
1165 }
1166
1167 /**
1168 * Create a Power State out of an entry in the PowerPlay table.
1169 * This function is called by the hardware back-end.
1170 * @param hwmgr Pointer to the hardware manager.
1171 * @param entry_index The index of the entry to be extracted from the table.
1172 * @param power_state The address of the PowerState instance being created.
1173 * @return -1 if the entry cannot be retrieved.
1174 */
1175 int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr,
1176 uint32_t entry_index, struct pp_power_state *power_state,
1177 int (*call_back_func)(struct pp_hwmgr *, void *,
1178 struct pp_power_state *, void *, uint32_t))
1179 {
1180 int result = 0;
1181 const ATOM_Tonga_State_Array * state_arrays;
1182 const ATOM_Tonga_State *state_entry;
1183 const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
1184
1185 PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
1186 power_state->classification.bios_index = entry_index;
1187
1188 if (pp_table->sHeader.ucTableFormatRevision >=
1189 ATOM_Tonga_TABLE_REVISION_TONGA) {
1190 state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
1191 le16_to_cpu(pp_table->usStateArrayOffset));
1192
1193 PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
1194 "Invalid PowerPlay Table State Array Offset.", return -1);
1195 PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
1196 "Invalid PowerPlay Table State Array.", return -1);
1197 PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
1198 "Invalid PowerPlay Table State Array Entry.", return -1);
1199
1200 state_entry = &(state_arrays->states[entry_index]);
1201
1202 result = call_back_func(hwmgr, (void *)state_entry, power_state,
1203 (void *)pp_table,
1204 make_classification_flags(hwmgr,
1205 le16_to_cpu(state_entry->usClassification),
1206 le16_to_cpu(state_entry->usClassification2)));
1207 }
1208
1209 if (!result && (power_state->classification.flags &
1210 PP_StateClassificationFlag_Boot))
1211 result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
1212
1213 return result;
1214 }
This page took 0.058139 seconds and 5 git commands to generate.