Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / drivers / gpu / drm / drm_edid.c
1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_displayid.h>
39
40 #define version_greater(edid, maj, min) \
41 (((edid)->version > (maj)) || \
42 ((edid)->version == (maj) && (edid)->revision > (min)))
43
44 #define EDID_EST_TIMINGS 16
45 #define EDID_STD_TIMINGS 8
46 #define EDID_DETAILED_TIMINGS 4
47
48 /*
49 * EDID blocks out in the wild have a variety of bugs, try to collect
50 * them here (note that userspace may work around broken monitors first,
51 * but fixes should make their way here so that the kernel "just works"
52 * on as many displays as possible).
53 */
54
55 /* First detailed mode wrong, use largest 60Hz mode */
56 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
57 /* Reported 135MHz pixel clock is too high, needs adjustment */
58 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
59 /* Prefer the largest mode at 75 Hz */
60 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
61 /* Detail timing is in cm not mm */
62 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
63 /* Detailed timing descriptors have bogus size values, so just take the
64 * maximum size and use that.
65 */
66 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
67 /* Monitor forgot to set the first detailed is preferred bit. */
68 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
69 /* use +hsync +vsync for detailed mode */
70 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
71 /* Force reduced-blanking timings for detailed modes */
72 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
73 /* Force 8bpc */
74 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
75 /* Force 12bpc */
76 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
77 /* Force 6bpc */
78 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
79
80 struct detailed_mode_closure {
81 struct drm_connector *connector;
82 struct edid *edid;
83 bool preferred;
84 u32 quirks;
85 int modes;
86 };
87
88 #define LEVEL_DMT 0
89 #define LEVEL_GTF 1
90 #define LEVEL_GTF2 2
91 #define LEVEL_CVT 3
92
93 static struct edid_quirk {
94 char vendor[4];
95 int product_id;
96 u32 quirks;
97 } edid_quirk_list[] = {
98 /* Acer AL1706 */
99 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
100 /* Acer F51 */
101 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
102 /* Unknown Acer */
103 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
104
105 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
106 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
107
108 /* Belinea 10 15 55 */
109 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
110 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
111
112 /* Envision Peripherals, Inc. EN-7100e */
113 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
114 /* Envision EN2028 */
115 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
116
117 /* Funai Electronics PM36B */
118 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
119 EDID_QUIRK_DETAILED_IN_CM },
120
121 /* LG Philips LCD LP154W01-A5 */
122 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
123 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
124
125 /* Philips 107p5 CRT */
126 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127
128 /* Proview AY765C */
129 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
130
131 /* Samsung SyncMaster 205BW. Note: irony */
132 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
133 /* Samsung SyncMaster 22[5-6]BW */
134 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
135 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
136
137 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
138 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
139
140 /* ViewSonic VA2026w */
141 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
142
143 /* Medion MD 30217 PG */
144 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
145
146 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
147 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
148 };
149
150 /*
151 * Autogenerated from the DMT spec.
152 * This table is copied from xfree86/modes/xf86EdidModes.c.
153 */
154 static const struct drm_display_mode drm_dmt_modes[] = {
155 /* 0x01 - 640x350@85Hz */
156 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
157 736, 832, 0, 350, 382, 385, 445, 0,
158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
159 /* 0x02 - 640x400@85Hz */
160 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
161 736, 832, 0, 400, 401, 404, 445, 0,
162 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
163 /* 0x03 - 720x400@85Hz */
164 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
165 828, 936, 0, 400, 401, 404, 446, 0,
166 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
167 /* 0x04 - 640x480@60Hz */
168 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
169 752, 800, 0, 480, 490, 492, 525, 0,
170 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
171 /* 0x05 - 640x480@72Hz */
172 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
173 704, 832, 0, 480, 489, 492, 520, 0,
174 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
175 /* 0x06 - 640x480@75Hz */
176 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
177 720, 840, 0, 480, 481, 484, 500, 0,
178 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
179 /* 0x07 - 640x480@85Hz */
180 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
181 752, 832, 0, 480, 481, 484, 509, 0,
182 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
183 /* 0x08 - 800x600@56Hz */
184 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
185 896, 1024, 0, 600, 601, 603, 625, 0,
186 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
187 /* 0x09 - 800x600@60Hz */
188 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
189 968, 1056, 0, 600, 601, 605, 628, 0,
190 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
191 /* 0x0a - 800x600@72Hz */
192 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
193 976, 1040, 0, 600, 637, 643, 666, 0,
194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
195 /* 0x0b - 800x600@75Hz */
196 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
197 896, 1056, 0, 600, 601, 604, 625, 0,
198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
199 /* 0x0c - 800x600@85Hz */
200 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
201 896, 1048, 0, 600, 601, 604, 631, 0,
202 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
203 /* 0x0d - 800x600@120Hz RB */
204 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
205 880, 960, 0, 600, 603, 607, 636, 0,
206 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
207 /* 0x0e - 848x480@60Hz */
208 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
209 976, 1088, 0, 480, 486, 494, 517, 0,
210 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
211 /* 0x0f - 1024x768@43Hz, interlace */
212 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
213 1208, 1264, 0, 768, 768, 776, 817, 0,
214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
215 DRM_MODE_FLAG_INTERLACE) },
216 /* 0x10 - 1024x768@60Hz */
217 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
218 1184, 1344, 0, 768, 771, 777, 806, 0,
219 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
220 /* 0x11 - 1024x768@70Hz */
221 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
222 1184, 1328, 0, 768, 771, 777, 806, 0,
223 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
224 /* 0x12 - 1024x768@75Hz */
225 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
226 1136, 1312, 0, 768, 769, 772, 800, 0,
227 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
228 /* 0x13 - 1024x768@85Hz */
229 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
230 1168, 1376, 0, 768, 769, 772, 808, 0,
231 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
232 /* 0x14 - 1024x768@120Hz RB */
233 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
234 1104, 1184, 0, 768, 771, 775, 813, 0,
235 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
236 /* 0x15 - 1152x864@75Hz */
237 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
238 1344, 1600, 0, 864, 865, 868, 900, 0,
239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
240 /* 0x55 - 1280x720@60Hz */
241 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
242 1430, 1650, 0, 720, 725, 730, 750, 0,
243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
244 /* 0x16 - 1280x768@60Hz RB */
245 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
246 1360, 1440, 0, 768, 771, 778, 790, 0,
247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 /* 0x17 - 1280x768@60Hz */
249 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
250 1472, 1664, 0, 768, 771, 778, 798, 0,
251 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 /* 0x18 - 1280x768@75Hz */
253 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
254 1488, 1696, 0, 768, 771, 778, 805, 0,
255 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
256 /* 0x19 - 1280x768@85Hz */
257 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
258 1496, 1712, 0, 768, 771, 778, 809, 0,
259 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
260 /* 0x1a - 1280x768@120Hz RB */
261 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
262 1360, 1440, 0, 768, 771, 778, 813, 0,
263 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
264 /* 0x1b - 1280x800@60Hz RB */
265 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
266 1360, 1440, 0, 800, 803, 809, 823, 0,
267 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 /* 0x1c - 1280x800@60Hz */
269 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
270 1480, 1680, 0, 800, 803, 809, 831, 0,
271 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 /* 0x1d - 1280x800@75Hz */
273 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
274 1488, 1696, 0, 800, 803, 809, 838, 0,
275 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 /* 0x1e - 1280x800@85Hz */
277 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
278 1496, 1712, 0, 800, 803, 809, 843, 0,
279 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 /* 0x1f - 1280x800@120Hz RB */
281 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
282 1360, 1440, 0, 800, 803, 809, 847, 0,
283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
284 /* 0x20 - 1280x960@60Hz */
285 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
286 1488, 1800, 0, 960, 961, 964, 1000, 0,
287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 /* 0x21 - 1280x960@85Hz */
289 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
290 1504, 1728, 0, 960, 961, 964, 1011, 0,
291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 /* 0x22 - 1280x960@120Hz RB */
293 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
294 1360, 1440, 0, 960, 963, 967, 1017, 0,
295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 /* 0x23 - 1280x1024@60Hz */
297 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
298 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 /* 0x24 - 1280x1024@75Hz */
301 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
302 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
304 /* 0x25 - 1280x1024@85Hz */
305 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
306 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
308 /* 0x26 - 1280x1024@120Hz RB */
309 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
310 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
311 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 /* 0x27 - 1360x768@60Hz */
313 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
314 1536, 1792, 0, 768, 771, 777, 795, 0,
315 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
316 /* 0x28 - 1360x768@120Hz RB */
317 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
318 1440, 1520, 0, 768, 771, 776, 813, 0,
319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
320 /* 0x51 - 1366x768@60Hz */
321 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
322 1579, 1792, 0, 768, 771, 774, 798, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 /* 0x56 - 1366x768@60Hz */
325 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
326 1436, 1500, 0, 768, 769, 772, 800, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
328 /* 0x29 - 1400x1050@60Hz RB */
329 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
330 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
332 /* 0x2a - 1400x1050@60Hz */
333 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
334 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
335 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 0x2b - 1400x1050@75Hz */
337 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
338 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
339 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 /* 0x2c - 1400x1050@85Hz */
341 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
342 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
343 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 /* 0x2d - 1400x1050@120Hz RB */
345 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
346 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
347 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
348 /* 0x2e - 1440x900@60Hz RB */
349 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
350 1520, 1600, 0, 900, 903, 909, 926, 0,
351 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
352 /* 0x2f - 1440x900@60Hz */
353 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
354 1672, 1904, 0, 900, 903, 909, 934, 0,
355 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 /* 0x30 - 1440x900@75Hz */
357 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
358 1688, 1936, 0, 900, 903, 909, 942, 0,
359 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
360 /* 0x31 - 1440x900@85Hz */
361 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
362 1696, 1952, 0, 900, 903, 909, 948, 0,
363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 /* 0x32 - 1440x900@120Hz RB */
365 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
366 1520, 1600, 0, 900, 903, 909, 953, 0,
367 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
368 /* 0x53 - 1600x900@60Hz */
369 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
370 1704, 1800, 0, 900, 901, 904, 1000, 0,
371 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 /* 0x33 - 1600x1200@60Hz */
373 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
374 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 /* 0x34 - 1600x1200@65Hz */
377 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
378 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 /* 0x35 - 1600x1200@70Hz */
381 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
382 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 0x36 - 1600x1200@75Hz */
385 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
386 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
388 /* 0x37 - 1600x1200@85Hz */
389 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
390 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 0x38 - 1600x1200@120Hz RB */
393 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
394 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
396 /* 0x39 - 1680x1050@60Hz RB */
397 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
398 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
400 /* 0x3a - 1680x1050@60Hz */
401 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
402 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
403 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
404 /* 0x3b - 1680x1050@75Hz */
405 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
406 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
407 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 /* 0x3c - 1680x1050@85Hz */
409 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
410 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
411 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
412 /* 0x3d - 1680x1050@120Hz RB */
413 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
414 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
416 /* 0x3e - 1792x1344@60Hz */
417 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
418 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
419 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 0x3f - 1792x1344@75Hz */
421 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
422 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
423 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
424 /* 0x40 - 1792x1344@120Hz RB */
425 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
426 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
428 /* 0x41 - 1856x1392@60Hz */
429 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
430 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 /* 0x42 - 1856x1392@75Hz */
433 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
434 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 0x43 - 1856x1392@120Hz RB */
437 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
438 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 /* 0x52 - 1920x1080@60Hz */
441 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
442 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
443 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 /* 0x44 - 1920x1200@60Hz RB */
445 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
446 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
448 /* 0x45 - 1920x1200@60Hz */
449 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
450 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 /* 0x46 - 1920x1200@75Hz */
453 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
454 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 /* 0x47 - 1920x1200@85Hz */
457 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
458 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
459 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
460 /* 0x48 - 1920x1200@120Hz RB */
461 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
462 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
464 /* 0x49 - 1920x1440@60Hz */
465 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
466 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
467 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 /* 0x4a - 1920x1440@75Hz */
469 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
470 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
471 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 /* 0x4b - 1920x1440@120Hz RB */
473 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
474 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
476 /* 0x54 - 2048x1152@60Hz */
477 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
478 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 /* 0x4c - 2560x1600@60Hz RB */
481 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
482 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
483 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
484 /* 0x4d - 2560x1600@60Hz */
485 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
486 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
487 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
488 /* 0x4e - 2560x1600@75Hz */
489 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
490 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
491 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
492 /* 0x4f - 2560x1600@85Hz */
493 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
494 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 /* 0x50 - 2560x1600@120Hz RB */
497 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
498 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
499 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
500 /* 0x57 - 4096x2160@60Hz RB */
501 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
502 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
503 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
504 /* 0x58 - 4096x2160@59.94Hz RB */
505 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
506 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 };
509
510 /*
511 * These more or less come from the DMT spec. The 720x400 modes are
512 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
513 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
514 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
515 * mode.
516 *
517 * The DMT modes have been fact-checked; the rest are mild guesses.
518 */
519 static const struct drm_display_mode edid_est_modes[] = {
520 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
521 968, 1056, 0, 600, 601, 605, 628, 0,
522 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
523 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
524 896, 1024, 0, 600, 601, 603, 625, 0,
525 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
526 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
527 720, 840, 0, 480, 481, 484, 500, 0,
528 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
529 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
530 704, 832, 0, 480, 489, 492, 520, 0,
531 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
532 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
533 768, 864, 0, 480, 483, 486, 525, 0,
534 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
535 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
536 752, 800, 0, 480, 490, 492, 525, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
538 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
539 846, 900, 0, 400, 421, 423, 449, 0,
540 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
541 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
542 846, 900, 0, 400, 412, 414, 449, 0,
543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
544 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
545 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
546 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
547 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
548 1136, 1312, 0, 768, 769, 772, 800, 0,
549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
550 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
551 1184, 1328, 0, 768, 771, 777, 806, 0,
552 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
553 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
554 1184, 1344, 0, 768, 771, 777, 806, 0,
555 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
556 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
557 1208, 1264, 0, 768, 768, 776, 817, 0,
558 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
559 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
560 928, 1152, 0, 624, 625, 628, 667, 0,
561 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
562 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
563 896, 1056, 0, 600, 601, 604, 625, 0,
564 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
565 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
566 976, 1040, 0, 600, 637, 643, 666, 0,
567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
568 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
569 1344, 1600, 0, 864, 865, 868, 900, 0,
570 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
571 };
572
573 struct minimode {
574 short w;
575 short h;
576 short r;
577 short rb;
578 };
579
580 static const struct minimode est3_modes[] = {
581 /* byte 6 */
582 { 640, 350, 85, 0 },
583 { 640, 400, 85, 0 },
584 { 720, 400, 85, 0 },
585 { 640, 480, 85, 0 },
586 { 848, 480, 60, 0 },
587 { 800, 600, 85, 0 },
588 { 1024, 768, 85, 0 },
589 { 1152, 864, 75, 0 },
590 /* byte 7 */
591 { 1280, 768, 60, 1 },
592 { 1280, 768, 60, 0 },
593 { 1280, 768, 75, 0 },
594 { 1280, 768, 85, 0 },
595 { 1280, 960, 60, 0 },
596 { 1280, 960, 85, 0 },
597 { 1280, 1024, 60, 0 },
598 { 1280, 1024, 85, 0 },
599 /* byte 8 */
600 { 1360, 768, 60, 0 },
601 { 1440, 900, 60, 1 },
602 { 1440, 900, 60, 0 },
603 { 1440, 900, 75, 0 },
604 { 1440, 900, 85, 0 },
605 { 1400, 1050, 60, 1 },
606 { 1400, 1050, 60, 0 },
607 { 1400, 1050, 75, 0 },
608 /* byte 9 */
609 { 1400, 1050, 85, 0 },
610 { 1680, 1050, 60, 1 },
611 { 1680, 1050, 60, 0 },
612 { 1680, 1050, 75, 0 },
613 { 1680, 1050, 85, 0 },
614 { 1600, 1200, 60, 0 },
615 { 1600, 1200, 65, 0 },
616 { 1600, 1200, 70, 0 },
617 /* byte 10 */
618 { 1600, 1200, 75, 0 },
619 { 1600, 1200, 85, 0 },
620 { 1792, 1344, 60, 0 },
621 { 1792, 1344, 75, 0 },
622 { 1856, 1392, 60, 0 },
623 { 1856, 1392, 75, 0 },
624 { 1920, 1200, 60, 1 },
625 { 1920, 1200, 60, 0 },
626 /* byte 11 */
627 { 1920, 1200, 75, 0 },
628 { 1920, 1200, 85, 0 },
629 { 1920, 1440, 60, 0 },
630 { 1920, 1440, 75, 0 },
631 };
632
633 static const struct minimode extra_modes[] = {
634 { 1024, 576, 60, 0 },
635 { 1366, 768, 60, 0 },
636 { 1600, 900, 60, 0 },
637 { 1680, 945, 60, 0 },
638 { 1920, 1080, 60, 0 },
639 { 2048, 1152, 60, 0 },
640 { 2048, 1536, 60, 0 },
641 };
642
643 /*
644 * Probably taken from CEA-861 spec.
645 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
646 *
647 * Index using the VIC.
648 */
649 static const struct drm_display_mode edid_cea_modes[] = {
650 /* 0 - dummy, VICs start at 1 */
651 { },
652 /* 1 - 640x480@60Hz */
653 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
654 752, 800, 0, 480, 490, 492, 525, 0,
655 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
656 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
657 /* 2 - 720x480@60Hz */
658 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
659 798, 858, 0, 480, 489, 495, 525, 0,
660 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
661 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
662 /* 3 - 720x480@60Hz */
663 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
664 798, 858, 0, 480, 489, 495, 525, 0,
665 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
666 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
667 /* 4 - 1280x720@60Hz */
668 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
669 1430, 1650, 0, 720, 725, 730, 750, 0,
670 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
671 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
672 /* 5 - 1920x1080i@60Hz */
673 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
674 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
675 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
676 DRM_MODE_FLAG_INTERLACE),
677 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
678 /* 6 - 720(1440)x480i@60Hz */
679 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
680 801, 858, 0, 480, 488, 494, 525, 0,
681 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
682 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
683 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
684 /* 7 - 720(1440)x480i@60Hz */
685 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
686 801, 858, 0, 480, 488, 494, 525, 0,
687 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
688 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
689 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
690 /* 8 - 720(1440)x240@60Hz */
691 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
692 801, 858, 0, 240, 244, 247, 262, 0,
693 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
694 DRM_MODE_FLAG_DBLCLK),
695 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
696 /* 9 - 720(1440)x240@60Hz */
697 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
698 801, 858, 0, 240, 244, 247, 262, 0,
699 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
700 DRM_MODE_FLAG_DBLCLK),
701 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
702 /* 10 - 2880x480i@60Hz */
703 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
704 3204, 3432, 0, 480, 488, 494, 525, 0,
705 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
706 DRM_MODE_FLAG_INTERLACE),
707 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
708 /* 11 - 2880x480i@60Hz */
709 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
710 3204, 3432, 0, 480, 488, 494, 525, 0,
711 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
712 DRM_MODE_FLAG_INTERLACE),
713 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
714 /* 12 - 2880x240@60Hz */
715 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
716 3204, 3432, 0, 240, 244, 247, 262, 0,
717 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
718 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
719 /* 13 - 2880x240@60Hz */
720 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
721 3204, 3432, 0, 240, 244, 247, 262, 0,
722 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
723 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
724 /* 14 - 1440x480@60Hz */
725 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
726 1596, 1716, 0, 480, 489, 495, 525, 0,
727 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
728 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
729 /* 15 - 1440x480@60Hz */
730 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
731 1596, 1716, 0, 480, 489, 495, 525, 0,
732 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
733 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
734 /* 16 - 1920x1080@60Hz */
735 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
736 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
737 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
738 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
739 /* 17 - 720x576@50Hz */
740 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
741 796, 864, 0, 576, 581, 586, 625, 0,
742 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
743 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
744 /* 18 - 720x576@50Hz */
745 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
746 796, 864, 0, 576, 581, 586, 625, 0,
747 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
748 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
749 /* 19 - 1280x720@50Hz */
750 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
751 1760, 1980, 0, 720, 725, 730, 750, 0,
752 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
753 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
754 /* 20 - 1920x1080i@50Hz */
755 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
756 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
757 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
758 DRM_MODE_FLAG_INTERLACE),
759 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
760 /* 21 - 720(1440)x576i@50Hz */
761 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
762 795, 864, 0, 576, 580, 586, 625, 0,
763 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
764 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
765 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
766 /* 22 - 720(1440)x576i@50Hz */
767 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
768 795, 864, 0, 576, 580, 586, 625, 0,
769 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
770 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
771 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 /* 23 - 720(1440)x288@50Hz */
773 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
774 795, 864, 0, 288, 290, 293, 312, 0,
775 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
776 DRM_MODE_FLAG_DBLCLK),
777 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
778 /* 24 - 720(1440)x288@50Hz */
779 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
780 795, 864, 0, 288, 290, 293, 312, 0,
781 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
782 DRM_MODE_FLAG_DBLCLK),
783 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
784 /* 25 - 2880x576i@50Hz */
785 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
786 3180, 3456, 0, 576, 580, 586, 625, 0,
787 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
788 DRM_MODE_FLAG_INTERLACE),
789 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
790 /* 26 - 2880x576i@50Hz */
791 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
792 3180, 3456, 0, 576, 580, 586, 625, 0,
793 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
794 DRM_MODE_FLAG_INTERLACE),
795 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
796 /* 27 - 2880x288@50Hz */
797 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
798 3180, 3456, 0, 288, 290, 293, 312, 0,
799 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
800 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
801 /* 28 - 2880x288@50Hz */
802 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
803 3180, 3456, 0, 288, 290, 293, 312, 0,
804 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
805 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
806 /* 29 - 1440x576@50Hz */
807 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
808 1592, 1728, 0, 576, 581, 586, 625, 0,
809 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
810 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
811 /* 30 - 1440x576@50Hz */
812 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
813 1592, 1728, 0, 576, 581, 586, 625, 0,
814 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
815 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
816 /* 31 - 1920x1080@50Hz */
817 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
818 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
819 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821 /* 32 - 1920x1080@24Hz */
822 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
823 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
824 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
825 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
826 /* 33 - 1920x1080@25Hz */
827 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
828 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
829 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
830 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
831 /* 34 - 1920x1080@30Hz */
832 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
833 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
834 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
835 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
836 /* 35 - 2880x480@60Hz */
837 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
838 3192, 3432, 0, 480, 489, 495, 525, 0,
839 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
840 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
841 /* 36 - 2880x480@60Hz */
842 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
843 3192, 3432, 0, 480, 489, 495, 525, 0,
844 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
845 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
846 /* 37 - 2880x576@50Hz */
847 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
848 3184, 3456, 0, 576, 581, 586, 625, 0,
849 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
850 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
851 /* 38 - 2880x576@50Hz */
852 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
853 3184, 3456, 0, 576, 581, 586, 625, 0,
854 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
855 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
856 /* 39 - 1920x1080i@50Hz */
857 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
858 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
859 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
860 DRM_MODE_FLAG_INTERLACE),
861 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
862 /* 40 - 1920x1080i@100Hz */
863 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
864 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
865 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
866 DRM_MODE_FLAG_INTERLACE),
867 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
868 /* 41 - 1280x720@100Hz */
869 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
870 1760, 1980, 0, 720, 725, 730, 750, 0,
871 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
872 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 /* 42 - 720x576@100Hz */
874 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
875 796, 864, 0, 576, 581, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
877 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
878 /* 43 - 720x576@100Hz */
879 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
880 796, 864, 0, 576, 581, 586, 625, 0,
881 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
882 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
883 /* 44 - 720(1440)x576i@100Hz */
884 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
885 795, 864, 0, 576, 580, 586, 625, 0,
886 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
887 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
888 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
889 /* 45 - 720(1440)x576i@100Hz */
890 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
891 795, 864, 0, 576, 580, 586, 625, 0,
892 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
893 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
894 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 46 - 1920x1080i@120Hz */
896 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
897 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
898 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
899 DRM_MODE_FLAG_INTERLACE),
900 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
901 /* 47 - 1280x720@120Hz */
902 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
903 1430, 1650, 0, 720, 725, 730, 750, 0,
904 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
905 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
906 /* 48 - 720x480@120Hz */
907 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
908 798, 858, 0, 480, 489, 495, 525, 0,
909 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
910 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
911 /* 49 - 720x480@120Hz */
912 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
913 798, 858, 0, 480, 489, 495, 525, 0,
914 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
915 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
916 /* 50 - 720(1440)x480i@120Hz */
917 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
918 801, 858, 0, 480, 488, 494, 525, 0,
919 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
920 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
921 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
922 /* 51 - 720(1440)x480i@120Hz */
923 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
924 801, 858, 0, 480, 488, 494, 525, 0,
925 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
926 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
927 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
928 /* 52 - 720x576@200Hz */
929 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
930 796, 864, 0, 576, 581, 586, 625, 0,
931 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
932 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
933 /* 53 - 720x576@200Hz */
934 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
935 796, 864, 0, 576, 581, 586, 625, 0,
936 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
937 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
938 /* 54 - 720(1440)x576i@200Hz */
939 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
940 795, 864, 0, 576, 580, 586, 625, 0,
941 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
942 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
943 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
944 /* 55 - 720(1440)x576i@200Hz */
945 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
946 795, 864, 0, 576, 580, 586, 625, 0,
947 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
948 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
949 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
950 /* 56 - 720x480@240Hz */
951 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
952 798, 858, 0, 480, 489, 495, 525, 0,
953 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
954 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
955 /* 57 - 720x480@240Hz */
956 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
957 798, 858, 0, 480, 489, 495, 525, 0,
958 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
959 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
960 /* 58 - 720(1440)x480i@240 */
961 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
962 801, 858, 0, 480, 488, 494, 525, 0,
963 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
964 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
965 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
966 /* 59 - 720(1440)x480i@240 */
967 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
968 801, 858, 0, 480, 488, 494, 525, 0,
969 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
970 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
971 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 /* 60 - 1280x720@24Hz */
973 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
974 3080, 3300, 0, 720, 725, 730, 750, 0,
975 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
976 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977 /* 61 - 1280x720@25Hz */
978 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
979 3740, 3960, 0, 720, 725, 730, 750, 0,
980 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
981 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
982 /* 62 - 1280x720@30Hz */
983 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
984 3080, 3300, 0, 720, 725, 730, 750, 0,
985 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
986 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
987 /* 63 - 1920x1080@120Hz */
988 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
989 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
990 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
991 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
992 /* 64 - 1920x1080@100Hz */
993 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
994 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
995 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
996 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
997 };
998
999 /*
1000 * HDMI 1.4 4k modes. Index using the VIC.
1001 */
1002 static const struct drm_display_mode edid_4k_modes[] = {
1003 /* 0 - dummy, VICs start at 1 */
1004 { },
1005 /* 1 - 3840x2160@30Hz */
1006 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1007 3840, 4016, 4104, 4400, 0,
1008 2160, 2168, 2178, 2250, 0,
1009 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1010 .vrefresh = 30, },
1011 /* 2 - 3840x2160@25Hz */
1012 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1013 3840, 4896, 4984, 5280, 0,
1014 2160, 2168, 2178, 2250, 0,
1015 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1016 .vrefresh = 25, },
1017 /* 3 - 3840x2160@24Hz */
1018 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1019 3840, 5116, 5204, 5500, 0,
1020 2160, 2168, 2178, 2250, 0,
1021 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1022 .vrefresh = 24, },
1023 /* 4 - 4096x2160@24Hz (SMPTE) */
1024 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1025 4096, 5116, 5204, 5500, 0,
1026 2160, 2168, 2178, 2250, 0,
1027 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1028 .vrefresh = 24, },
1029 };
1030
1031 /*** DDC fetch and block validation ***/
1032
1033 static const u8 edid_header[] = {
1034 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1035 };
1036
1037 /**
1038 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1039 * @raw_edid: pointer to raw base EDID block
1040 *
1041 * Sanity check the header of the base EDID block.
1042 *
1043 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1044 */
1045 int drm_edid_header_is_valid(const u8 *raw_edid)
1046 {
1047 int i, score = 0;
1048
1049 for (i = 0; i < sizeof(edid_header); i++)
1050 if (raw_edid[i] == edid_header[i])
1051 score++;
1052
1053 return score;
1054 }
1055 EXPORT_SYMBOL(drm_edid_header_is_valid);
1056
1057 static int edid_fixup __read_mostly = 6;
1058 module_param_named(edid_fixup, edid_fixup, int, 0400);
1059 MODULE_PARM_DESC(edid_fixup,
1060 "Minimum number of valid EDID header bytes (0-8, default 6)");
1061
1062 static void drm_get_displayid(struct drm_connector *connector,
1063 struct edid *edid);
1064
1065 static int drm_edid_block_checksum(const u8 *raw_edid)
1066 {
1067 int i;
1068 u8 csum = 0;
1069 for (i = 0; i < EDID_LENGTH; i++)
1070 csum += raw_edid[i];
1071
1072 return csum;
1073 }
1074
1075 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1076 {
1077 if (memchr_inv(in_edid, 0, length))
1078 return false;
1079
1080 return true;
1081 }
1082
1083 /**
1084 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1085 * @raw_edid: pointer to raw EDID block
1086 * @block: type of block to validate (0 for base, extension otherwise)
1087 * @print_bad_edid: if true, dump bad EDID blocks to the console
1088 * @edid_corrupt: if true, the header or checksum is invalid
1089 *
1090 * Validate a base or extension EDID block and optionally dump bad blocks to
1091 * the console.
1092 *
1093 * Return: True if the block is valid, false otherwise.
1094 */
1095 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1096 bool *edid_corrupt)
1097 {
1098 u8 csum;
1099 struct edid *edid = (struct edid *)raw_edid;
1100
1101 if (WARN_ON(!raw_edid))
1102 return false;
1103
1104 if (edid_fixup > 8 || edid_fixup < 0)
1105 edid_fixup = 6;
1106
1107 if (block == 0) {
1108 int score = drm_edid_header_is_valid(raw_edid);
1109 if (score == 8) {
1110 if (edid_corrupt)
1111 *edid_corrupt = false;
1112 } else if (score >= edid_fixup) {
1113 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1114 * The corrupt flag needs to be set here otherwise, the
1115 * fix-up code here will correct the problem, the
1116 * checksum is correct and the test fails
1117 */
1118 if (edid_corrupt)
1119 *edid_corrupt = true;
1120 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1121 memcpy(raw_edid, edid_header, sizeof(edid_header));
1122 } else {
1123 if (edid_corrupt)
1124 *edid_corrupt = true;
1125 goto bad;
1126 }
1127 }
1128
1129 csum = drm_edid_block_checksum(raw_edid);
1130 if (csum) {
1131 if (print_bad_edid) {
1132 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1133 }
1134
1135 if (edid_corrupt)
1136 *edid_corrupt = true;
1137
1138 /* allow CEA to slide through, switches mangle this */
1139 if (raw_edid[0] != 0x02)
1140 goto bad;
1141 }
1142
1143 /* per-block-type checks */
1144 switch (raw_edid[0]) {
1145 case 0: /* base */
1146 if (edid->version != 1) {
1147 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1148 goto bad;
1149 }
1150
1151 if (edid->revision > 4)
1152 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1153 break;
1154
1155 default:
1156 break;
1157 }
1158
1159 return true;
1160
1161 bad:
1162 if (print_bad_edid) {
1163 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1164 printk(KERN_ERR "EDID block is all zeroes\n");
1165 } else {
1166 printk(KERN_ERR "Raw EDID:\n");
1167 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1168 raw_edid, EDID_LENGTH, false);
1169 }
1170 }
1171 return false;
1172 }
1173 EXPORT_SYMBOL(drm_edid_block_valid);
1174
1175 /**
1176 * drm_edid_is_valid - sanity check EDID data
1177 * @edid: EDID data
1178 *
1179 * Sanity-check an entire EDID record (including extensions)
1180 *
1181 * Return: True if the EDID data is valid, false otherwise.
1182 */
1183 bool drm_edid_is_valid(struct edid *edid)
1184 {
1185 int i;
1186 u8 *raw = (u8 *)edid;
1187
1188 if (!edid)
1189 return false;
1190
1191 for (i = 0; i <= edid->extensions; i++)
1192 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1193 return false;
1194
1195 return true;
1196 }
1197 EXPORT_SYMBOL(drm_edid_is_valid);
1198
1199 #define DDC_SEGMENT_ADDR 0x30
1200 /**
1201 * drm_do_probe_ddc_edid() - get EDID information via I2C
1202 * @data: I2C device adapter
1203 * @buf: EDID data buffer to be filled
1204 * @block: 128 byte EDID block to start fetching from
1205 * @len: EDID data buffer length to fetch
1206 *
1207 * Try to fetch EDID information by calling I2C driver functions.
1208 *
1209 * Return: 0 on success or -1 on failure.
1210 */
1211 static int
1212 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1213 {
1214 struct i2c_adapter *adapter = data;
1215 unsigned char start = block * EDID_LENGTH;
1216 unsigned char segment = block >> 1;
1217 unsigned char xfers = segment ? 3 : 2;
1218 int ret, retries = 5;
1219
1220 /*
1221 * The core I2C driver will automatically retry the transfer if the
1222 * adapter reports EAGAIN. However, we find that bit-banging transfers
1223 * are susceptible to errors under a heavily loaded machine and
1224 * generate spurious NAKs and timeouts. Retrying the transfer
1225 * of the individual block a few times seems to overcome this.
1226 */
1227 do {
1228 struct i2c_msg msgs[] = {
1229 {
1230 .addr = DDC_SEGMENT_ADDR,
1231 .flags = 0,
1232 .len = 1,
1233 .buf = &segment,
1234 }, {
1235 .addr = DDC_ADDR,
1236 .flags = 0,
1237 .len = 1,
1238 .buf = &start,
1239 }, {
1240 .addr = DDC_ADDR,
1241 .flags = I2C_M_RD,
1242 .len = len,
1243 .buf = buf,
1244 }
1245 };
1246
1247 /*
1248 * Avoid sending the segment addr to not upset non-compliant
1249 * DDC monitors.
1250 */
1251 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1252
1253 if (ret == -ENXIO) {
1254 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1255 adapter->name);
1256 break;
1257 }
1258 } while (ret != xfers && --retries);
1259
1260 return ret == xfers ? 0 : -1;
1261 }
1262
1263 /**
1264 * drm_do_get_edid - get EDID data using a custom EDID block read function
1265 * @connector: connector we're probing
1266 * @get_edid_block: EDID block read function
1267 * @data: private data passed to the block read function
1268 *
1269 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1270 * exposes a different interface to read EDID blocks this function can be used
1271 * to get EDID data using a custom block read function.
1272 *
1273 * As in the general case the DDC bus is accessible by the kernel at the I2C
1274 * level, drivers must make all reasonable efforts to expose it as an I2C
1275 * adapter and use drm_get_edid() instead of abusing this function.
1276 *
1277 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1278 */
1279 struct edid *drm_do_get_edid(struct drm_connector *connector,
1280 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1281 size_t len),
1282 void *data)
1283 {
1284 int i, j = 0, valid_extensions = 0;
1285 u8 *block, *new;
1286 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1287
1288 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1289 return NULL;
1290
1291 /* base block fetch */
1292 for (i = 0; i < 4; i++) {
1293 if (get_edid_block(data, block, 0, EDID_LENGTH))
1294 goto out;
1295 if (drm_edid_block_valid(block, 0, print_bad_edid,
1296 &connector->edid_corrupt))
1297 break;
1298 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1299 connector->null_edid_counter++;
1300 goto carp;
1301 }
1302 }
1303 if (i == 4)
1304 goto carp;
1305
1306 /* if there's no extensions, we're done */
1307 if (block[0x7e] == 0)
1308 return (struct edid *)block;
1309
1310 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1311 if (!new)
1312 goto out;
1313 block = new;
1314
1315 for (j = 1; j <= block[0x7e]; j++) {
1316 for (i = 0; i < 4; i++) {
1317 if (get_edid_block(data,
1318 block + (valid_extensions + 1) * EDID_LENGTH,
1319 j, EDID_LENGTH))
1320 goto out;
1321 if (drm_edid_block_valid(block + (valid_extensions + 1)
1322 * EDID_LENGTH, j,
1323 print_bad_edid,
1324 NULL)) {
1325 valid_extensions++;
1326 break;
1327 }
1328 }
1329
1330 if (i == 4 && print_bad_edid) {
1331 dev_warn(connector->dev->dev,
1332 "%s: Ignoring invalid EDID block %d.\n",
1333 connector->name, j);
1334
1335 connector->bad_edid_counter++;
1336 }
1337 }
1338
1339 if (valid_extensions != block[0x7e]) {
1340 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1341 block[0x7e] = valid_extensions;
1342 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1343 if (!new)
1344 goto out;
1345 block = new;
1346 }
1347
1348 return (struct edid *)block;
1349
1350 carp:
1351 if (print_bad_edid) {
1352 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1353 connector->name, j);
1354 }
1355 connector->bad_edid_counter++;
1356
1357 out:
1358 kfree(block);
1359 return NULL;
1360 }
1361 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1362
1363 /**
1364 * drm_probe_ddc() - probe DDC presence
1365 * @adapter: I2C adapter to probe
1366 *
1367 * Return: True on success, false on failure.
1368 */
1369 bool
1370 drm_probe_ddc(struct i2c_adapter *adapter)
1371 {
1372 unsigned char out;
1373
1374 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1375 }
1376 EXPORT_SYMBOL(drm_probe_ddc);
1377
1378 /**
1379 * drm_get_edid - get EDID data, if available
1380 * @connector: connector we're probing
1381 * @adapter: I2C adapter to use for DDC
1382 *
1383 * Poke the given I2C channel to grab EDID data if possible. If found,
1384 * attach it to the connector.
1385 *
1386 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1387 */
1388 struct edid *drm_get_edid(struct drm_connector *connector,
1389 struct i2c_adapter *adapter)
1390 {
1391 struct edid *edid;
1392
1393 if (!drm_probe_ddc(adapter))
1394 return NULL;
1395
1396 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1397 if (edid)
1398 drm_get_displayid(connector, edid);
1399 return edid;
1400 }
1401 EXPORT_SYMBOL(drm_get_edid);
1402
1403 /**
1404 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1405 * @connector: connector we're probing
1406 * @adapter: I2C adapter to use for DDC
1407 *
1408 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1409 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1410 * switch DDC to the GPU which is retrieving EDID.
1411 *
1412 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1413 */
1414 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1415 struct i2c_adapter *adapter)
1416 {
1417 struct pci_dev *pdev = connector->dev->pdev;
1418 struct edid *edid;
1419
1420 vga_switcheroo_lock_ddc(pdev);
1421 edid = drm_get_edid(connector, adapter);
1422 vga_switcheroo_unlock_ddc(pdev);
1423
1424 return edid;
1425 }
1426 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1427
1428 /**
1429 * drm_edid_duplicate - duplicate an EDID and the extensions
1430 * @edid: EDID to duplicate
1431 *
1432 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1433 */
1434 struct edid *drm_edid_duplicate(const struct edid *edid)
1435 {
1436 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1437 }
1438 EXPORT_SYMBOL(drm_edid_duplicate);
1439
1440 /*** EDID parsing ***/
1441
1442 /**
1443 * edid_vendor - match a string against EDID's obfuscated vendor field
1444 * @edid: EDID to match
1445 * @vendor: vendor string
1446 *
1447 * Returns true if @vendor is in @edid, false otherwise
1448 */
1449 static bool edid_vendor(struct edid *edid, char *vendor)
1450 {
1451 char edid_vendor[3];
1452
1453 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1454 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1455 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1456 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1457
1458 return !strncmp(edid_vendor, vendor, 3);
1459 }
1460
1461 /**
1462 * edid_get_quirks - return quirk flags for a given EDID
1463 * @edid: EDID to process
1464 *
1465 * This tells subsequent routines what fixes they need to apply.
1466 */
1467 static u32 edid_get_quirks(struct edid *edid)
1468 {
1469 struct edid_quirk *quirk;
1470 int i;
1471
1472 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1473 quirk = &edid_quirk_list[i];
1474
1475 if (edid_vendor(edid, quirk->vendor) &&
1476 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1477 return quirk->quirks;
1478 }
1479
1480 return 0;
1481 }
1482
1483 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1484 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1485
1486 /**
1487 * edid_fixup_preferred - set preferred modes based on quirk list
1488 * @connector: has mode list to fix up
1489 * @quirks: quirks list
1490 *
1491 * Walk the mode list for @connector, clearing the preferred status
1492 * on existing modes and setting it anew for the right mode ala @quirks.
1493 */
1494 static void edid_fixup_preferred(struct drm_connector *connector,
1495 u32 quirks)
1496 {
1497 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1498 int target_refresh = 0;
1499 int cur_vrefresh, preferred_vrefresh;
1500
1501 if (list_empty(&connector->probed_modes))
1502 return;
1503
1504 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1505 target_refresh = 60;
1506 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1507 target_refresh = 75;
1508
1509 preferred_mode = list_first_entry(&connector->probed_modes,
1510 struct drm_display_mode, head);
1511
1512 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1513 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1514
1515 if (cur_mode == preferred_mode)
1516 continue;
1517
1518 /* Largest mode is preferred */
1519 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1520 preferred_mode = cur_mode;
1521
1522 cur_vrefresh = cur_mode->vrefresh ?
1523 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1524 preferred_vrefresh = preferred_mode->vrefresh ?
1525 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1526 /* At a given size, try to get closest to target refresh */
1527 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1528 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1529 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1530 preferred_mode = cur_mode;
1531 }
1532 }
1533
1534 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1535 }
1536
1537 static bool
1538 mode_is_rb(const struct drm_display_mode *mode)
1539 {
1540 return (mode->htotal - mode->hdisplay == 160) &&
1541 (mode->hsync_end - mode->hdisplay == 80) &&
1542 (mode->hsync_end - mode->hsync_start == 32) &&
1543 (mode->vsync_start - mode->vdisplay == 3);
1544 }
1545
1546 /*
1547 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1548 * @dev: Device to duplicate against
1549 * @hsize: Mode width
1550 * @vsize: Mode height
1551 * @fresh: Mode refresh rate
1552 * @rb: Mode reduced-blanking-ness
1553 *
1554 * Walk the DMT mode list looking for a match for the given parameters.
1555 *
1556 * Return: A newly allocated copy of the mode, or NULL if not found.
1557 */
1558 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1559 int hsize, int vsize, int fresh,
1560 bool rb)
1561 {
1562 int i;
1563
1564 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1565 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1566 if (hsize != ptr->hdisplay)
1567 continue;
1568 if (vsize != ptr->vdisplay)
1569 continue;
1570 if (fresh != drm_mode_vrefresh(ptr))
1571 continue;
1572 if (rb != mode_is_rb(ptr))
1573 continue;
1574
1575 return drm_mode_duplicate(dev, ptr);
1576 }
1577
1578 return NULL;
1579 }
1580 EXPORT_SYMBOL(drm_mode_find_dmt);
1581
1582 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1583
1584 static void
1585 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1586 {
1587 int i, n = 0;
1588 u8 d = ext[0x02];
1589 u8 *det_base = ext + d;
1590
1591 n = (127 - d) / 18;
1592 for (i = 0; i < n; i++)
1593 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1594 }
1595
1596 static void
1597 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1598 {
1599 unsigned int i, n = min((int)ext[0x02], 6);
1600 u8 *det_base = ext + 5;
1601
1602 if (ext[0x01] != 1)
1603 return; /* unknown version */
1604
1605 for (i = 0; i < n; i++)
1606 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1607 }
1608
1609 static void
1610 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1611 {
1612 int i;
1613 struct edid *edid = (struct edid *)raw_edid;
1614
1615 if (edid == NULL)
1616 return;
1617
1618 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1619 cb(&(edid->detailed_timings[i]), closure);
1620
1621 for (i = 1; i <= raw_edid[0x7e]; i++) {
1622 u8 *ext = raw_edid + (i * EDID_LENGTH);
1623 switch (*ext) {
1624 case CEA_EXT:
1625 cea_for_each_detailed_block(ext, cb, closure);
1626 break;
1627 case VTB_EXT:
1628 vtb_for_each_detailed_block(ext, cb, closure);
1629 break;
1630 default:
1631 break;
1632 }
1633 }
1634 }
1635
1636 static void
1637 is_rb(struct detailed_timing *t, void *data)
1638 {
1639 u8 *r = (u8 *)t;
1640 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1641 if (r[15] & 0x10)
1642 *(bool *)data = true;
1643 }
1644
1645 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1646 static bool
1647 drm_monitor_supports_rb(struct edid *edid)
1648 {
1649 if (edid->revision >= 4) {
1650 bool ret = false;
1651 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1652 return ret;
1653 }
1654
1655 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1656 }
1657
1658 static void
1659 find_gtf2(struct detailed_timing *t, void *data)
1660 {
1661 u8 *r = (u8 *)t;
1662 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1663 *(u8 **)data = r;
1664 }
1665
1666 /* Secondary GTF curve kicks in above some break frequency */
1667 static int
1668 drm_gtf2_hbreak(struct edid *edid)
1669 {
1670 u8 *r = NULL;
1671 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1672 return r ? (r[12] * 2) : 0;
1673 }
1674
1675 static int
1676 drm_gtf2_2c(struct edid *edid)
1677 {
1678 u8 *r = NULL;
1679 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1680 return r ? r[13] : 0;
1681 }
1682
1683 static int
1684 drm_gtf2_m(struct edid *edid)
1685 {
1686 u8 *r = NULL;
1687 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1688 return r ? (r[15] << 8) + r[14] : 0;
1689 }
1690
1691 static int
1692 drm_gtf2_k(struct edid *edid)
1693 {
1694 u8 *r = NULL;
1695 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1696 return r ? r[16] : 0;
1697 }
1698
1699 static int
1700 drm_gtf2_2j(struct edid *edid)
1701 {
1702 u8 *r = NULL;
1703 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1704 return r ? r[17] : 0;
1705 }
1706
1707 /**
1708 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1709 * @edid: EDID block to scan
1710 */
1711 static int standard_timing_level(struct edid *edid)
1712 {
1713 if (edid->revision >= 2) {
1714 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1715 return LEVEL_CVT;
1716 if (drm_gtf2_hbreak(edid))
1717 return LEVEL_GTF2;
1718 return LEVEL_GTF;
1719 }
1720 return LEVEL_DMT;
1721 }
1722
1723 /*
1724 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1725 * monitors fill with ascii space (0x20) instead.
1726 */
1727 static int
1728 bad_std_timing(u8 a, u8 b)
1729 {
1730 return (a == 0x00 && b == 0x00) ||
1731 (a == 0x01 && b == 0x01) ||
1732 (a == 0x20 && b == 0x20);
1733 }
1734
1735 /**
1736 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1737 * @connector: connector of for the EDID block
1738 * @edid: EDID block to scan
1739 * @t: standard timing params
1740 *
1741 * Take the standard timing params (in this case width, aspect, and refresh)
1742 * and convert them into a real mode using CVT/GTF/DMT.
1743 */
1744 static struct drm_display_mode *
1745 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1746 struct std_timing *t)
1747 {
1748 struct drm_device *dev = connector->dev;
1749 struct drm_display_mode *m, *mode = NULL;
1750 int hsize, vsize;
1751 int vrefresh_rate;
1752 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1753 >> EDID_TIMING_ASPECT_SHIFT;
1754 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1755 >> EDID_TIMING_VFREQ_SHIFT;
1756 int timing_level = standard_timing_level(edid);
1757
1758 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1759 return NULL;
1760
1761 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1762 hsize = t->hsize * 8 + 248;
1763 /* vrefresh_rate = vfreq + 60 */
1764 vrefresh_rate = vfreq + 60;
1765 /* the vdisplay is calculated based on the aspect ratio */
1766 if (aspect_ratio == 0) {
1767 if (edid->revision < 3)
1768 vsize = hsize;
1769 else
1770 vsize = (hsize * 10) / 16;
1771 } else if (aspect_ratio == 1)
1772 vsize = (hsize * 3) / 4;
1773 else if (aspect_ratio == 2)
1774 vsize = (hsize * 4) / 5;
1775 else
1776 vsize = (hsize * 9) / 16;
1777
1778 /* HDTV hack, part 1 */
1779 if (vrefresh_rate == 60 &&
1780 ((hsize == 1360 && vsize == 765) ||
1781 (hsize == 1368 && vsize == 769))) {
1782 hsize = 1366;
1783 vsize = 768;
1784 }
1785
1786 /*
1787 * If this connector already has a mode for this size and refresh
1788 * rate (because it came from detailed or CVT info), use that
1789 * instead. This way we don't have to guess at interlace or
1790 * reduced blanking.
1791 */
1792 list_for_each_entry(m, &connector->probed_modes, head)
1793 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1794 drm_mode_vrefresh(m) == vrefresh_rate)
1795 return NULL;
1796
1797 /* HDTV hack, part 2 */
1798 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1799 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1800 false);
1801 mode->hdisplay = 1366;
1802 mode->hsync_start = mode->hsync_start - 1;
1803 mode->hsync_end = mode->hsync_end - 1;
1804 return mode;
1805 }
1806
1807 /* check whether it can be found in default mode table */
1808 if (drm_monitor_supports_rb(edid)) {
1809 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1810 true);
1811 if (mode)
1812 return mode;
1813 }
1814 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1815 if (mode)
1816 return mode;
1817
1818 /* okay, generate it */
1819 switch (timing_level) {
1820 case LEVEL_DMT:
1821 break;
1822 case LEVEL_GTF:
1823 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1824 break;
1825 case LEVEL_GTF2:
1826 /*
1827 * This is potentially wrong if there's ever a monitor with
1828 * more than one ranges section, each claiming a different
1829 * secondary GTF curve. Please don't do that.
1830 */
1831 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1832 if (!mode)
1833 return NULL;
1834 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1835 drm_mode_destroy(dev, mode);
1836 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1837 vrefresh_rate, 0, 0,
1838 drm_gtf2_m(edid),
1839 drm_gtf2_2c(edid),
1840 drm_gtf2_k(edid),
1841 drm_gtf2_2j(edid));
1842 }
1843 break;
1844 case LEVEL_CVT:
1845 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1846 false);
1847 break;
1848 }
1849 return mode;
1850 }
1851
1852 /*
1853 * EDID is delightfully ambiguous about how interlaced modes are to be
1854 * encoded. Our internal representation is of frame height, but some
1855 * HDTV detailed timings are encoded as field height.
1856 *
1857 * The format list here is from CEA, in frame size. Technically we
1858 * should be checking refresh rate too. Whatever.
1859 */
1860 static void
1861 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1862 struct detailed_pixel_timing *pt)
1863 {
1864 int i;
1865 static const struct {
1866 int w, h;
1867 } cea_interlaced[] = {
1868 { 1920, 1080 },
1869 { 720, 480 },
1870 { 1440, 480 },
1871 { 2880, 480 },
1872 { 720, 576 },
1873 { 1440, 576 },
1874 { 2880, 576 },
1875 };
1876
1877 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1878 return;
1879
1880 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1881 if ((mode->hdisplay == cea_interlaced[i].w) &&
1882 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1883 mode->vdisplay *= 2;
1884 mode->vsync_start *= 2;
1885 mode->vsync_end *= 2;
1886 mode->vtotal *= 2;
1887 mode->vtotal |= 1;
1888 }
1889 }
1890
1891 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1892 }
1893
1894 /**
1895 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1896 * @dev: DRM device (needed to create new mode)
1897 * @edid: EDID block
1898 * @timing: EDID detailed timing info
1899 * @quirks: quirks to apply
1900 *
1901 * An EDID detailed timing block contains enough info for us to create and
1902 * return a new struct drm_display_mode.
1903 */
1904 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1905 struct edid *edid,
1906 struct detailed_timing *timing,
1907 u32 quirks)
1908 {
1909 struct drm_display_mode *mode;
1910 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1911 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1912 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1913 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1914 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1915 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1916 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1917 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1918 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1919
1920 /* ignore tiny modes */
1921 if (hactive < 64 || vactive < 64)
1922 return NULL;
1923
1924 if (pt->misc & DRM_EDID_PT_STEREO) {
1925 DRM_DEBUG_KMS("stereo mode not supported\n");
1926 return NULL;
1927 }
1928 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1929 DRM_DEBUG_KMS("composite sync not supported\n");
1930 }
1931
1932 /* it is incorrect if hsync/vsync width is zero */
1933 if (!hsync_pulse_width || !vsync_pulse_width) {
1934 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1935 "Wrong Hsync/Vsync pulse width\n");
1936 return NULL;
1937 }
1938
1939 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1940 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1941 if (!mode)
1942 return NULL;
1943
1944 goto set_size;
1945 }
1946
1947 mode = drm_mode_create(dev);
1948 if (!mode)
1949 return NULL;
1950
1951 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1952 timing->pixel_clock = cpu_to_le16(1088);
1953
1954 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1955
1956 mode->hdisplay = hactive;
1957 mode->hsync_start = mode->hdisplay + hsync_offset;
1958 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1959 mode->htotal = mode->hdisplay + hblank;
1960
1961 mode->vdisplay = vactive;
1962 mode->vsync_start = mode->vdisplay + vsync_offset;
1963 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1964 mode->vtotal = mode->vdisplay + vblank;
1965
1966 /* Some EDIDs have bogus h/vtotal values */
1967 if (mode->hsync_end > mode->htotal)
1968 mode->htotal = mode->hsync_end + 1;
1969 if (mode->vsync_end > mode->vtotal)
1970 mode->vtotal = mode->vsync_end + 1;
1971
1972 drm_mode_do_interlace_quirk(mode, pt);
1973
1974 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1975 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1976 }
1977
1978 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1979 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1980 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1981 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1982
1983 set_size:
1984 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1985 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1986
1987 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1988 mode->width_mm *= 10;
1989 mode->height_mm *= 10;
1990 }
1991
1992 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1993 mode->width_mm = edid->width_cm * 10;
1994 mode->height_mm = edid->height_cm * 10;
1995 }
1996
1997 mode->type = DRM_MODE_TYPE_DRIVER;
1998 mode->vrefresh = drm_mode_vrefresh(mode);
1999 drm_mode_set_name(mode);
2000
2001 return mode;
2002 }
2003
2004 static bool
2005 mode_in_hsync_range(const struct drm_display_mode *mode,
2006 struct edid *edid, u8 *t)
2007 {
2008 int hsync, hmin, hmax;
2009
2010 hmin = t[7];
2011 if (edid->revision >= 4)
2012 hmin += ((t[4] & 0x04) ? 255 : 0);
2013 hmax = t[8];
2014 if (edid->revision >= 4)
2015 hmax += ((t[4] & 0x08) ? 255 : 0);
2016 hsync = drm_mode_hsync(mode);
2017
2018 return (hsync <= hmax && hsync >= hmin);
2019 }
2020
2021 static bool
2022 mode_in_vsync_range(const struct drm_display_mode *mode,
2023 struct edid *edid, u8 *t)
2024 {
2025 int vsync, vmin, vmax;
2026
2027 vmin = t[5];
2028 if (edid->revision >= 4)
2029 vmin += ((t[4] & 0x01) ? 255 : 0);
2030 vmax = t[6];
2031 if (edid->revision >= 4)
2032 vmax += ((t[4] & 0x02) ? 255 : 0);
2033 vsync = drm_mode_vrefresh(mode);
2034
2035 return (vsync <= vmax && vsync >= vmin);
2036 }
2037
2038 static u32
2039 range_pixel_clock(struct edid *edid, u8 *t)
2040 {
2041 /* unspecified */
2042 if (t[9] == 0 || t[9] == 255)
2043 return 0;
2044
2045 /* 1.4 with CVT support gives us real precision, yay */
2046 if (edid->revision >= 4 && t[10] == 0x04)
2047 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2048
2049 /* 1.3 is pathetic, so fuzz up a bit */
2050 return t[9] * 10000 + 5001;
2051 }
2052
2053 static bool
2054 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2055 struct detailed_timing *timing)
2056 {
2057 u32 max_clock;
2058 u8 *t = (u8 *)timing;
2059
2060 if (!mode_in_hsync_range(mode, edid, t))
2061 return false;
2062
2063 if (!mode_in_vsync_range(mode, edid, t))
2064 return false;
2065
2066 if ((max_clock = range_pixel_clock(edid, t)))
2067 if (mode->clock > max_clock)
2068 return false;
2069
2070 /* 1.4 max horizontal check */
2071 if (edid->revision >= 4 && t[10] == 0x04)
2072 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2073 return false;
2074
2075 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2076 return false;
2077
2078 return true;
2079 }
2080
2081 static bool valid_inferred_mode(const struct drm_connector *connector,
2082 const struct drm_display_mode *mode)
2083 {
2084 const struct drm_display_mode *m;
2085 bool ok = false;
2086
2087 list_for_each_entry(m, &connector->probed_modes, head) {
2088 if (mode->hdisplay == m->hdisplay &&
2089 mode->vdisplay == m->vdisplay &&
2090 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2091 return false; /* duplicated */
2092 if (mode->hdisplay <= m->hdisplay &&
2093 mode->vdisplay <= m->vdisplay)
2094 ok = true;
2095 }
2096 return ok;
2097 }
2098
2099 static int
2100 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2101 struct detailed_timing *timing)
2102 {
2103 int i, modes = 0;
2104 struct drm_display_mode *newmode;
2105 struct drm_device *dev = connector->dev;
2106
2107 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2108 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2109 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2110 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2111 if (newmode) {
2112 drm_mode_probed_add(connector, newmode);
2113 modes++;
2114 }
2115 }
2116 }
2117
2118 return modes;
2119 }
2120
2121 /* fix up 1366x768 mode from 1368x768;
2122 * GFT/CVT can't express 1366 width which isn't dividable by 8
2123 */
2124 static void fixup_mode_1366x768(struct drm_display_mode *mode)
2125 {
2126 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2127 mode->hdisplay = 1366;
2128 mode->hsync_start--;
2129 mode->hsync_end--;
2130 drm_mode_set_name(mode);
2131 }
2132 }
2133
2134 static int
2135 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2136 struct detailed_timing *timing)
2137 {
2138 int i, modes = 0;
2139 struct drm_display_mode *newmode;
2140 struct drm_device *dev = connector->dev;
2141
2142 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2143 const struct minimode *m = &extra_modes[i];
2144 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2145 if (!newmode)
2146 return modes;
2147
2148 fixup_mode_1366x768(newmode);
2149 if (!mode_in_range(newmode, edid, timing) ||
2150 !valid_inferred_mode(connector, newmode)) {
2151 drm_mode_destroy(dev, newmode);
2152 continue;
2153 }
2154
2155 drm_mode_probed_add(connector, newmode);
2156 modes++;
2157 }
2158
2159 return modes;
2160 }
2161
2162 static int
2163 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2164 struct detailed_timing *timing)
2165 {
2166 int i, modes = 0;
2167 struct drm_display_mode *newmode;
2168 struct drm_device *dev = connector->dev;
2169 bool rb = drm_monitor_supports_rb(edid);
2170
2171 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2172 const struct minimode *m = &extra_modes[i];
2173 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2174 if (!newmode)
2175 return modes;
2176
2177 fixup_mode_1366x768(newmode);
2178 if (!mode_in_range(newmode, edid, timing) ||
2179 !valid_inferred_mode(connector, newmode)) {
2180 drm_mode_destroy(dev, newmode);
2181 continue;
2182 }
2183
2184 drm_mode_probed_add(connector, newmode);
2185 modes++;
2186 }
2187
2188 return modes;
2189 }
2190
2191 static void
2192 do_inferred_modes(struct detailed_timing *timing, void *c)
2193 {
2194 struct detailed_mode_closure *closure = c;
2195 struct detailed_non_pixel *data = &timing->data.other_data;
2196 struct detailed_data_monitor_range *range = &data->data.range;
2197
2198 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2199 return;
2200
2201 closure->modes += drm_dmt_modes_for_range(closure->connector,
2202 closure->edid,
2203 timing);
2204
2205 if (!version_greater(closure->edid, 1, 1))
2206 return; /* GTF not defined yet */
2207
2208 switch (range->flags) {
2209 case 0x02: /* secondary gtf, XXX could do more */
2210 case 0x00: /* default gtf */
2211 closure->modes += drm_gtf_modes_for_range(closure->connector,
2212 closure->edid,
2213 timing);
2214 break;
2215 case 0x04: /* cvt, only in 1.4+ */
2216 if (!version_greater(closure->edid, 1, 3))
2217 break;
2218
2219 closure->modes += drm_cvt_modes_for_range(closure->connector,
2220 closure->edid,
2221 timing);
2222 break;
2223 case 0x01: /* just the ranges, no formula */
2224 default:
2225 break;
2226 }
2227 }
2228
2229 static int
2230 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2231 {
2232 struct detailed_mode_closure closure = {
2233 .connector = connector,
2234 .edid = edid,
2235 };
2236
2237 if (version_greater(edid, 1, 0))
2238 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2239 &closure);
2240
2241 return closure.modes;
2242 }
2243
2244 static int
2245 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2246 {
2247 int i, j, m, modes = 0;
2248 struct drm_display_mode *mode;
2249 u8 *est = ((u8 *)timing) + 6;
2250
2251 for (i = 0; i < 6; i++) {
2252 for (j = 7; j >= 0; j--) {
2253 m = (i * 8) + (7 - j);
2254 if (m >= ARRAY_SIZE(est3_modes))
2255 break;
2256 if (est[i] & (1 << j)) {
2257 mode = drm_mode_find_dmt(connector->dev,
2258 est3_modes[m].w,
2259 est3_modes[m].h,
2260 est3_modes[m].r,
2261 est3_modes[m].rb);
2262 if (mode) {
2263 drm_mode_probed_add(connector, mode);
2264 modes++;
2265 }
2266 }
2267 }
2268 }
2269
2270 return modes;
2271 }
2272
2273 static void
2274 do_established_modes(struct detailed_timing *timing, void *c)
2275 {
2276 struct detailed_mode_closure *closure = c;
2277 struct detailed_non_pixel *data = &timing->data.other_data;
2278
2279 if (data->type == EDID_DETAIL_EST_TIMINGS)
2280 closure->modes += drm_est3_modes(closure->connector, timing);
2281 }
2282
2283 /**
2284 * add_established_modes - get est. modes from EDID and add them
2285 * @connector: connector to add mode(s) to
2286 * @edid: EDID block to scan
2287 *
2288 * Each EDID block contains a bitmap of the supported "established modes" list
2289 * (defined above). Tease them out and add them to the global modes list.
2290 */
2291 static int
2292 add_established_modes(struct drm_connector *connector, struct edid *edid)
2293 {
2294 struct drm_device *dev = connector->dev;
2295 unsigned long est_bits = edid->established_timings.t1 |
2296 (edid->established_timings.t2 << 8) |
2297 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2298 int i, modes = 0;
2299 struct detailed_mode_closure closure = {
2300 .connector = connector,
2301 .edid = edid,
2302 };
2303
2304 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2305 if (est_bits & (1<<i)) {
2306 struct drm_display_mode *newmode;
2307 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2308 if (newmode) {
2309 drm_mode_probed_add(connector, newmode);
2310 modes++;
2311 }
2312 }
2313 }
2314
2315 if (version_greater(edid, 1, 0))
2316 drm_for_each_detailed_block((u8 *)edid,
2317 do_established_modes, &closure);
2318
2319 return modes + closure.modes;
2320 }
2321
2322 static void
2323 do_standard_modes(struct detailed_timing *timing, void *c)
2324 {
2325 struct detailed_mode_closure *closure = c;
2326 struct detailed_non_pixel *data = &timing->data.other_data;
2327 struct drm_connector *connector = closure->connector;
2328 struct edid *edid = closure->edid;
2329
2330 if (data->type == EDID_DETAIL_STD_MODES) {
2331 int i;
2332 for (i = 0; i < 6; i++) {
2333 struct std_timing *std;
2334 struct drm_display_mode *newmode;
2335
2336 std = &data->data.timings[i];
2337 newmode = drm_mode_std(connector, edid, std);
2338 if (newmode) {
2339 drm_mode_probed_add(connector, newmode);
2340 closure->modes++;
2341 }
2342 }
2343 }
2344 }
2345
2346 /**
2347 * add_standard_modes - get std. modes from EDID and add them
2348 * @connector: connector to add mode(s) to
2349 * @edid: EDID block to scan
2350 *
2351 * Standard modes can be calculated using the appropriate standard (DMT,
2352 * GTF or CVT. Grab them from @edid and add them to the list.
2353 */
2354 static int
2355 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2356 {
2357 int i, modes = 0;
2358 struct detailed_mode_closure closure = {
2359 .connector = connector,
2360 .edid = edid,
2361 };
2362
2363 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2364 struct drm_display_mode *newmode;
2365
2366 newmode = drm_mode_std(connector, edid,
2367 &edid->standard_timings[i]);
2368 if (newmode) {
2369 drm_mode_probed_add(connector, newmode);
2370 modes++;
2371 }
2372 }
2373
2374 if (version_greater(edid, 1, 0))
2375 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2376 &closure);
2377
2378 /* XXX should also look for standard codes in VTB blocks */
2379
2380 return modes + closure.modes;
2381 }
2382
2383 static int drm_cvt_modes(struct drm_connector *connector,
2384 struct detailed_timing *timing)
2385 {
2386 int i, j, modes = 0;
2387 struct drm_display_mode *newmode;
2388 struct drm_device *dev = connector->dev;
2389 struct cvt_timing *cvt;
2390 const int rates[] = { 60, 85, 75, 60, 50 };
2391 const u8 empty[3] = { 0, 0, 0 };
2392
2393 for (i = 0; i < 4; i++) {
2394 int uninitialized_var(width), height;
2395 cvt = &(timing->data.other_data.data.cvt[i]);
2396
2397 if (!memcmp(cvt->code, empty, 3))
2398 continue;
2399
2400 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2401 switch (cvt->code[1] & 0x0c) {
2402 case 0x00:
2403 width = height * 4 / 3;
2404 break;
2405 case 0x04:
2406 width = height * 16 / 9;
2407 break;
2408 case 0x08:
2409 width = height * 16 / 10;
2410 break;
2411 case 0x0c:
2412 width = height * 15 / 9;
2413 break;
2414 }
2415
2416 for (j = 1; j < 5; j++) {
2417 if (cvt->code[2] & (1 << j)) {
2418 newmode = drm_cvt_mode(dev, width, height,
2419 rates[j], j == 0,
2420 false, false);
2421 if (newmode) {
2422 drm_mode_probed_add(connector, newmode);
2423 modes++;
2424 }
2425 }
2426 }
2427 }
2428
2429 return modes;
2430 }
2431
2432 static void
2433 do_cvt_mode(struct detailed_timing *timing, void *c)
2434 {
2435 struct detailed_mode_closure *closure = c;
2436 struct detailed_non_pixel *data = &timing->data.other_data;
2437
2438 if (data->type == EDID_DETAIL_CVT_3BYTE)
2439 closure->modes += drm_cvt_modes(closure->connector, timing);
2440 }
2441
2442 static int
2443 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2444 {
2445 struct detailed_mode_closure closure = {
2446 .connector = connector,
2447 .edid = edid,
2448 };
2449
2450 if (version_greater(edid, 1, 2))
2451 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2452
2453 /* XXX should also look for CVT codes in VTB blocks */
2454
2455 return closure.modes;
2456 }
2457
2458 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2459
2460 static void
2461 do_detailed_mode(struct detailed_timing *timing, void *c)
2462 {
2463 struct detailed_mode_closure *closure = c;
2464 struct drm_display_mode *newmode;
2465
2466 if (timing->pixel_clock) {
2467 newmode = drm_mode_detailed(closure->connector->dev,
2468 closure->edid, timing,
2469 closure->quirks);
2470 if (!newmode)
2471 return;
2472
2473 if (closure->preferred)
2474 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2475
2476 /*
2477 * Detailed modes are limited to 10kHz pixel clock resolution,
2478 * so fix up anything that looks like CEA/HDMI mode, but the clock
2479 * is just slightly off.
2480 */
2481 fixup_detailed_cea_mode_clock(newmode);
2482
2483 drm_mode_probed_add(closure->connector, newmode);
2484 closure->modes++;
2485 closure->preferred = 0;
2486 }
2487 }
2488
2489 /*
2490 * add_detailed_modes - Add modes from detailed timings
2491 * @connector: attached connector
2492 * @edid: EDID block to scan
2493 * @quirks: quirks to apply
2494 */
2495 static int
2496 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2497 u32 quirks)
2498 {
2499 struct detailed_mode_closure closure = {
2500 .connector = connector,
2501 .edid = edid,
2502 .preferred = 1,
2503 .quirks = quirks,
2504 };
2505
2506 if (closure.preferred && !version_greater(edid, 1, 3))
2507 closure.preferred =
2508 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2509
2510 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2511
2512 return closure.modes;
2513 }
2514
2515 #define AUDIO_BLOCK 0x01
2516 #define VIDEO_BLOCK 0x02
2517 #define VENDOR_BLOCK 0x03
2518 #define SPEAKER_BLOCK 0x04
2519 #define VIDEO_CAPABILITY_BLOCK 0x07
2520 #define EDID_BASIC_AUDIO (1 << 6)
2521 #define EDID_CEA_YCRCB444 (1 << 5)
2522 #define EDID_CEA_YCRCB422 (1 << 4)
2523 #define EDID_CEA_VCDB_QS (1 << 6)
2524
2525 /*
2526 * Search EDID for CEA extension block.
2527 */
2528 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2529 {
2530 u8 *edid_ext = NULL;
2531 int i;
2532
2533 /* No EDID or EDID extensions */
2534 if (edid == NULL || edid->extensions == 0)
2535 return NULL;
2536
2537 /* Find CEA extension */
2538 for (i = 0; i < edid->extensions; i++) {
2539 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2540 if (edid_ext[0] == ext_id)
2541 break;
2542 }
2543
2544 if (i == edid->extensions)
2545 return NULL;
2546
2547 return edid_ext;
2548 }
2549
2550 static u8 *drm_find_cea_extension(struct edid *edid)
2551 {
2552 return drm_find_edid_extension(edid, CEA_EXT);
2553 }
2554
2555 static u8 *drm_find_displayid_extension(struct edid *edid)
2556 {
2557 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2558 }
2559
2560 /*
2561 * Calculate the alternate clock for the CEA mode
2562 * (60Hz vs. 59.94Hz etc.)
2563 */
2564 static unsigned int
2565 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2566 {
2567 unsigned int clock = cea_mode->clock;
2568
2569 if (cea_mode->vrefresh % 6 != 0)
2570 return clock;
2571
2572 /*
2573 * edid_cea_modes contains the 59.94Hz
2574 * variant for 240 and 480 line modes,
2575 * and the 60Hz variant otherwise.
2576 */
2577 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2578 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2579 else
2580 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2581
2582 return clock;
2583 }
2584
2585 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2586 unsigned int clock_tolerance)
2587 {
2588 u8 vic;
2589
2590 if (!to_match->clock)
2591 return 0;
2592
2593 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2594 const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
2595 unsigned int clock1, clock2;
2596
2597 /* Check both 60Hz and 59.94Hz */
2598 clock1 = cea_mode->clock;
2599 clock2 = cea_mode_alternate_clock(cea_mode);
2600
2601 if (abs(to_match->clock - clock1) > clock_tolerance &&
2602 abs(to_match->clock - clock2) > clock_tolerance)
2603 continue;
2604
2605 if (drm_mode_equal_no_clocks(to_match, cea_mode))
2606 return vic;
2607 }
2608
2609 return 0;
2610 }
2611
2612 /**
2613 * drm_match_cea_mode - look for a CEA mode matching given mode
2614 * @to_match: display mode
2615 *
2616 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2617 * mode.
2618 */
2619 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2620 {
2621 u8 vic;
2622
2623 if (!to_match->clock)
2624 return 0;
2625
2626 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2627 const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
2628 unsigned int clock1, clock2;
2629
2630 /* Check both 60Hz and 59.94Hz */
2631 clock1 = cea_mode->clock;
2632 clock2 = cea_mode_alternate_clock(cea_mode);
2633
2634 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2635 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2636 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2637 return vic;
2638 }
2639 return 0;
2640 }
2641 EXPORT_SYMBOL(drm_match_cea_mode);
2642
2643 static bool drm_valid_cea_vic(u8 vic)
2644 {
2645 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2646 }
2647
2648 /**
2649 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2650 * the input VIC from the CEA mode list
2651 * @video_code: ID given to each of the CEA modes
2652 *
2653 * Returns picture aspect ratio
2654 */
2655 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2656 {
2657 return edid_cea_modes[video_code].picture_aspect_ratio;
2658 }
2659 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2660
2661 /*
2662 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2663 * specific block).
2664 *
2665 * It's almost like cea_mode_alternate_clock(), we just need to add an
2666 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2667 * one.
2668 */
2669 static unsigned int
2670 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2671 {
2672 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2673 return hdmi_mode->clock;
2674
2675 return cea_mode_alternate_clock(hdmi_mode);
2676 }
2677
2678 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
2679 unsigned int clock_tolerance)
2680 {
2681 u8 vic;
2682
2683 if (!to_match->clock)
2684 return 0;
2685
2686 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2687 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2688 unsigned int clock1, clock2;
2689
2690 /* Make sure to also match alternate clocks */
2691 clock1 = hdmi_mode->clock;
2692 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2693
2694 if (abs(to_match->clock - clock1) > clock_tolerance &&
2695 abs(to_match->clock - clock2) > clock_tolerance)
2696 continue;
2697
2698 if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
2699 return vic;
2700 }
2701
2702 return 0;
2703 }
2704
2705 /*
2706 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2707 * @to_match: display mode
2708 *
2709 * An HDMI mode is one defined in the HDMI vendor specific block.
2710 *
2711 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2712 */
2713 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2714 {
2715 u8 vic;
2716
2717 if (!to_match->clock)
2718 return 0;
2719
2720 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2721 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2722 unsigned int clock1, clock2;
2723
2724 /* Make sure to also match alternate clocks */
2725 clock1 = hdmi_mode->clock;
2726 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2727
2728 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2729 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2730 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2731 return vic;
2732 }
2733 return 0;
2734 }
2735
2736 static bool drm_valid_hdmi_vic(u8 vic)
2737 {
2738 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2739 }
2740
2741 static int
2742 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2743 {
2744 struct drm_device *dev = connector->dev;
2745 struct drm_display_mode *mode, *tmp;
2746 LIST_HEAD(list);
2747 int modes = 0;
2748
2749 /* Don't add CEA modes if the CEA extension block is missing */
2750 if (!drm_find_cea_extension(edid))
2751 return 0;
2752
2753 /*
2754 * Go through all probed modes and create a new mode
2755 * with the alternate clock for certain CEA modes.
2756 */
2757 list_for_each_entry(mode, &connector->probed_modes, head) {
2758 const struct drm_display_mode *cea_mode = NULL;
2759 struct drm_display_mode *newmode;
2760 u8 vic = drm_match_cea_mode(mode);
2761 unsigned int clock1, clock2;
2762
2763 if (drm_valid_cea_vic(vic)) {
2764 cea_mode = &edid_cea_modes[vic];
2765 clock2 = cea_mode_alternate_clock(cea_mode);
2766 } else {
2767 vic = drm_match_hdmi_mode(mode);
2768 if (drm_valid_hdmi_vic(vic)) {
2769 cea_mode = &edid_4k_modes[vic];
2770 clock2 = hdmi_mode_alternate_clock(cea_mode);
2771 }
2772 }
2773
2774 if (!cea_mode)
2775 continue;
2776
2777 clock1 = cea_mode->clock;
2778
2779 if (clock1 == clock2)
2780 continue;
2781
2782 if (mode->clock != clock1 && mode->clock != clock2)
2783 continue;
2784
2785 newmode = drm_mode_duplicate(dev, cea_mode);
2786 if (!newmode)
2787 continue;
2788
2789 /* Carry over the stereo flags */
2790 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2791
2792 /*
2793 * The current mode could be either variant. Make
2794 * sure to pick the "other" clock for the new mode.
2795 */
2796 if (mode->clock != clock1)
2797 newmode->clock = clock1;
2798 else
2799 newmode->clock = clock2;
2800
2801 list_add_tail(&newmode->head, &list);
2802 }
2803
2804 list_for_each_entry_safe(mode, tmp, &list, head) {
2805 list_del(&mode->head);
2806 drm_mode_probed_add(connector, mode);
2807 modes++;
2808 }
2809
2810 return modes;
2811 }
2812
2813 static struct drm_display_mode *
2814 drm_display_mode_from_vic_index(struct drm_connector *connector,
2815 const u8 *video_db, u8 video_len,
2816 u8 video_index)
2817 {
2818 struct drm_device *dev = connector->dev;
2819 struct drm_display_mode *newmode;
2820 u8 vic;
2821
2822 if (video_db == NULL || video_index >= video_len)
2823 return NULL;
2824
2825 /* CEA modes are numbered 1..127 */
2826 vic = (video_db[video_index] & 127);
2827 if (!drm_valid_cea_vic(vic))
2828 return NULL;
2829
2830 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
2831 if (!newmode)
2832 return NULL;
2833
2834 newmode->vrefresh = 0;
2835
2836 return newmode;
2837 }
2838
2839 static int
2840 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2841 {
2842 int i, modes = 0;
2843
2844 for (i = 0; i < len; i++) {
2845 struct drm_display_mode *mode;
2846 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2847 if (mode) {
2848 drm_mode_probed_add(connector, mode);
2849 modes++;
2850 }
2851 }
2852
2853 return modes;
2854 }
2855
2856 struct stereo_mandatory_mode {
2857 int width, height, vrefresh;
2858 unsigned int flags;
2859 };
2860
2861 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2862 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2863 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2864 { 1920, 1080, 50,
2865 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2866 { 1920, 1080, 60,
2867 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2868 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2869 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2870 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2871 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2872 };
2873
2874 static bool
2875 stereo_match_mandatory(const struct drm_display_mode *mode,
2876 const struct stereo_mandatory_mode *stereo_mode)
2877 {
2878 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2879
2880 return mode->hdisplay == stereo_mode->width &&
2881 mode->vdisplay == stereo_mode->height &&
2882 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2883 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2884 }
2885
2886 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2887 {
2888 struct drm_device *dev = connector->dev;
2889 const struct drm_display_mode *mode;
2890 struct list_head stereo_modes;
2891 int modes = 0, i;
2892
2893 INIT_LIST_HEAD(&stereo_modes);
2894
2895 list_for_each_entry(mode, &connector->probed_modes, head) {
2896 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2897 const struct stereo_mandatory_mode *mandatory;
2898 struct drm_display_mode *new_mode;
2899
2900 if (!stereo_match_mandatory(mode,
2901 &stereo_mandatory_modes[i]))
2902 continue;
2903
2904 mandatory = &stereo_mandatory_modes[i];
2905 new_mode = drm_mode_duplicate(dev, mode);
2906 if (!new_mode)
2907 continue;
2908
2909 new_mode->flags |= mandatory->flags;
2910 list_add_tail(&new_mode->head, &stereo_modes);
2911 modes++;
2912 }
2913 }
2914
2915 list_splice_tail(&stereo_modes, &connector->probed_modes);
2916
2917 return modes;
2918 }
2919
2920 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2921 {
2922 struct drm_device *dev = connector->dev;
2923 struct drm_display_mode *newmode;
2924
2925 if (!drm_valid_hdmi_vic(vic)) {
2926 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2927 return 0;
2928 }
2929
2930 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2931 if (!newmode)
2932 return 0;
2933
2934 drm_mode_probed_add(connector, newmode);
2935
2936 return 1;
2937 }
2938
2939 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2940 const u8 *video_db, u8 video_len, u8 video_index)
2941 {
2942 struct drm_display_mode *newmode;
2943 int modes = 0;
2944
2945 if (structure & (1 << 0)) {
2946 newmode = drm_display_mode_from_vic_index(connector, video_db,
2947 video_len,
2948 video_index);
2949 if (newmode) {
2950 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2951 drm_mode_probed_add(connector, newmode);
2952 modes++;
2953 }
2954 }
2955 if (structure & (1 << 6)) {
2956 newmode = drm_display_mode_from_vic_index(connector, video_db,
2957 video_len,
2958 video_index);
2959 if (newmode) {
2960 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2961 drm_mode_probed_add(connector, newmode);
2962 modes++;
2963 }
2964 }
2965 if (structure & (1 << 8)) {
2966 newmode = drm_display_mode_from_vic_index(connector, video_db,
2967 video_len,
2968 video_index);
2969 if (newmode) {
2970 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2971 drm_mode_probed_add(connector, newmode);
2972 modes++;
2973 }
2974 }
2975
2976 return modes;
2977 }
2978
2979 /*
2980 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2981 * @connector: connector corresponding to the HDMI sink
2982 * @db: start of the CEA vendor specific block
2983 * @len: length of the CEA block payload, ie. one can access up to db[len]
2984 *
2985 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2986 * also adds the stereo 3d modes when applicable.
2987 */
2988 static int
2989 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2990 const u8 *video_db, u8 video_len)
2991 {
2992 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2993 u8 vic_len, hdmi_3d_len = 0;
2994 u16 mask;
2995 u16 structure_all;
2996
2997 if (len < 8)
2998 goto out;
2999
3000 /* no HDMI_Video_Present */
3001 if (!(db[8] & (1 << 5)))
3002 goto out;
3003
3004 /* Latency_Fields_Present */
3005 if (db[8] & (1 << 7))
3006 offset += 2;
3007
3008 /* I_Latency_Fields_Present */
3009 if (db[8] & (1 << 6))
3010 offset += 2;
3011
3012 /* the declared length is not long enough for the 2 first bytes
3013 * of additional video format capabilities */
3014 if (len < (8 + offset + 2))
3015 goto out;
3016
3017 /* 3D_Present */
3018 offset++;
3019 if (db[8 + offset] & (1 << 7)) {
3020 modes += add_hdmi_mandatory_stereo_modes(connector);
3021
3022 /* 3D_Multi_present */
3023 multi_present = (db[8 + offset] & 0x60) >> 5;
3024 }
3025
3026 offset++;
3027 vic_len = db[8 + offset] >> 5;
3028 hdmi_3d_len = db[8 + offset] & 0x1f;
3029
3030 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3031 u8 vic;
3032
3033 vic = db[9 + offset + i];
3034 modes += add_hdmi_mode(connector, vic);
3035 }
3036 offset += 1 + vic_len;
3037
3038 if (multi_present == 1)
3039 multi_len = 2;
3040 else if (multi_present == 2)
3041 multi_len = 4;
3042 else
3043 multi_len = 0;
3044
3045 if (len < (8 + offset + hdmi_3d_len - 1))
3046 goto out;
3047
3048 if (hdmi_3d_len < multi_len)
3049 goto out;
3050
3051 if (multi_present == 1 || multi_present == 2) {
3052 /* 3D_Structure_ALL */
3053 structure_all = (db[8 + offset] << 8) | db[9 + offset];
3054
3055 /* check if 3D_MASK is present */
3056 if (multi_present == 2)
3057 mask = (db[10 + offset] << 8) | db[11 + offset];
3058 else
3059 mask = 0xffff;
3060
3061 for (i = 0; i < 16; i++) {
3062 if (mask & (1 << i))
3063 modes += add_3d_struct_modes(connector,
3064 structure_all,
3065 video_db,
3066 video_len, i);
3067 }
3068 }
3069
3070 offset += multi_len;
3071
3072 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3073 int vic_index;
3074 struct drm_display_mode *newmode = NULL;
3075 unsigned int newflag = 0;
3076 bool detail_present;
3077
3078 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3079
3080 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3081 break;
3082
3083 /* 2D_VIC_order_X */
3084 vic_index = db[8 + offset + i] >> 4;
3085
3086 /* 3D_Structure_X */
3087 switch (db[8 + offset + i] & 0x0f) {
3088 case 0:
3089 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3090 break;
3091 case 6:
3092 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3093 break;
3094 case 8:
3095 /* 3D_Detail_X */
3096 if ((db[9 + offset + i] >> 4) == 1)
3097 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3098 break;
3099 }
3100
3101 if (newflag != 0) {
3102 newmode = drm_display_mode_from_vic_index(connector,
3103 video_db,
3104 video_len,
3105 vic_index);
3106
3107 if (newmode) {
3108 newmode->flags |= newflag;
3109 drm_mode_probed_add(connector, newmode);
3110 modes++;
3111 }
3112 }
3113
3114 if (detail_present)
3115 i++;
3116 }
3117
3118 out:
3119 return modes;
3120 }
3121
3122 static int
3123 cea_db_payload_len(const u8 *db)
3124 {
3125 return db[0] & 0x1f;
3126 }
3127
3128 static int
3129 cea_db_tag(const u8 *db)
3130 {
3131 return db[0] >> 5;
3132 }
3133
3134 static int
3135 cea_revision(const u8 *cea)
3136 {
3137 return cea[1];
3138 }
3139
3140 static int
3141 cea_db_offsets(const u8 *cea, int *start, int *end)
3142 {
3143 /* Data block offset in CEA extension block */
3144 *start = 4;
3145 *end = cea[2];
3146 if (*end == 0)
3147 *end = 127;
3148 if (*end < 4 || *end > 127)
3149 return -ERANGE;
3150 return 0;
3151 }
3152
3153 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3154 {
3155 int hdmi_id;
3156
3157 if (cea_db_tag(db) != VENDOR_BLOCK)
3158 return false;
3159
3160 if (cea_db_payload_len(db) < 5)
3161 return false;
3162
3163 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3164
3165 return hdmi_id == HDMI_IEEE_OUI;
3166 }
3167
3168 #define for_each_cea_db(cea, i, start, end) \
3169 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3170
3171 static int
3172 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3173 {
3174 const u8 *cea = drm_find_cea_extension(edid);
3175 const u8 *db, *hdmi = NULL, *video = NULL;
3176 u8 dbl, hdmi_len, video_len = 0;
3177 int modes = 0;
3178
3179 if (cea && cea_revision(cea) >= 3) {
3180 int i, start, end;
3181
3182 if (cea_db_offsets(cea, &start, &end))
3183 return 0;
3184
3185 for_each_cea_db(cea, i, start, end) {
3186 db = &cea[i];
3187 dbl = cea_db_payload_len(db);
3188
3189 if (cea_db_tag(db) == VIDEO_BLOCK) {
3190 video = db + 1;
3191 video_len = dbl;
3192 modes += do_cea_modes(connector, video, dbl);
3193 }
3194 else if (cea_db_is_hdmi_vsdb(db)) {
3195 hdmi = db;
3196 hdmi_len = dbl;
3197 }
3198 }
3199 }
3200
3201 /*
3202 * We parse the HDMI VSDB after having added the cea modes as we will
3203 * be patching their flags when the sink supports stereo 3D.
3204 */
3205 if (hdmi)
3206 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3207 video_len);
3208
3209 return modes;
3210 }
3211
3212 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3213 {
3214 const struct drm_display_mode *cea_mode;
3215 int clock1, clock2, clock;
3216 u8 vic;
3217 const char *type;
3218
3219 /*
3220 * allow 5kHz clock difference either way to account for
3221 * the 10kHz clock resolution limit of detailed timings.
3222 */
3223 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3224 if (drm_valid_cea_vic(vic)) {
3225 type = "CEA";
3226 cea_mode = &edid_cea_modes[vic];
3227 clock1 = cea_mode->clock;
3228 clock2 = cea_mode_alternate_clock(cea_mode);
3229 } else {
3230 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3231 if (drm_valid_hdmi_vic(vic)) {
3232 type = "HDMI";
3233 cea_mode = &edid_4k_modes[vic];
3234 clock1 = cea_mode->clock;
3235 clock2 = hdmi_mode_alternate_clock(cea_mode);
3236 } else {
3237 return;
3238 }
3239 }
3240
3241 /* pick whichever is closest */
3242 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3243 clock = clock1;
3244 else
3245 clock = clock2;
3246
3247 if (mode->clock == clock)
3248 return;
3249
3250 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3251 type, vic, mode->clock, clock);
3252 mode->clock = clock;
3253 }
3254
3255 static void
3256 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
3257 {
3258 u8 len = cea_db_payload_len(db);
3259
3260 if (len >= 6) {
3261 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
3262 connector->dvi_dual = db[6] & 1;
3263 }
3264 if (len >= 7)
3265 connector->max_tmds_clock = db[7] * 5;
3266 if (len >= 8) {
3267 connector->latency_present[0] = db[8] >> 7;
3268 connector->latency_present[1] = (db[8] >> 6) & 1;
3269 }
3270 if (len >= 9)
3271 connector->video_latency[0] = db[9];
3272 if (len >= 10)
3273 connector->audio_latency[0] = db[10];
3274 if (len >= 11)
3275 connector->video_latency[1] = db[11];
3276 if (len >= 12)
3277 connector->audio_latency[1] = db[12];
3278
3279 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3280 "max TMDS clock %d, "
3281 "latency present %d %d, "
3282 "video latency %d %d, "
3283 "audio latency %d %d\n",
3284 connector->dvi_dual,
3285 connector->max_tmds_clock,
3286 (int) connector->latency_present[0],
3287 (int) connector->latency_present[1],
3288 connector->video_latency[0],
3289 connector->video_latency[1],
3290 connector->audio_latency[0],
3291 connector->audio_latency[1]);
3292 }
3293
3294 static void
3295 monitor_name(struct detailed_timing *t, void *data)
3296 {
3297 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3298 *(u8 **)data = t->data.other_data.data.str.str;
3299 }
3300
3301 static int get_monitor_name(struct edid *edid, char name[13])
3302 {
3303 char *edid_name = NULL;
3304 int mnl;
3305
3306 if (!edid || !name)
3307 return 0;
3308
3309 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3310 for (mnl = 0; edid_name && mnl < 13; mnl++) {
3311 if (edid_name[mnl] == 0x0a)
3312 break;
3313
3314 name[mnl] = edid_name[mnl];
3315 }
3316
3317 return mnl;
3318 }
3319
3320 /**
3321 * drm_edid_get_monitor_name - fetch the monitor name from the edid
3322 * @edid: monitor EDID information
3323 * @name: pointer to a character array to hold the name of the monitor
3324 * @bufsize: The size of the name buffer (should be at least 14 chars.)
3325 *
3326 */
3327 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3328 {
3329 int name_length;
3330 char buf[13];
3331
3332 if (bufsize <= 0)
3333 return;
3334
3335 name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3336 memcpy(name, buf, name_length);
3337 name[name_length] = '\0';
3338 }
3339 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3340
3341 /**
3342 * drm_edid_to_eld - build ELD from EDID
3343 * @connector: connector corresponding to the HDMI/DP sink
3344 * @edid: EDID to parse
3345 *
3346 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3347 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3348 * fill in.
3349 */
3350 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3351 {
3352 uint8_t *eld = connector->eld;
3353 u8 *cea;
3354 u8 *db;
3355 int total_sad_count = 0;
3356 int mnl;
3357 int dbl;
3358
3359 memset(eld, 0, sizeof(connector->eld));
3360
3361 cea = drm_find_cea_extension(edid);
3362 if (!cea) {
3363 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3364 return;
3365 }
3366
3367 mnl = get_monitor_name(edid, eld + 20);
3368
3369 eld[4] = (cea[1] << 5) | mnl;
3370 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3371
3372 eld[0] = 2 << 3; /* ELD version: 2 */
3373
3374 eld[16] = edid->mfg_id[0];
3375 eld[17] = edid->mfg_id[1];
3376 eld[18] = edid->prod_code[0];
3377 eld[19] = edid->prod_code[1];
3378
3379 if (cea_revision(cea) >= 3) {
3380 int i, start, end;
3381
3382 if (cea_db_offsets(cea, &start, &end)) {
3383 start = 0;
3384 end = 0;
3385 }
3386
3387 for_each_cea_db(cea, i, start, end) {
3388 db = &cea[i];
3389 dbl = cea_db_payload_len(db);
3390
3391 switch (cea_db_tag(db)) {
3392 int sad_count;
3393
3394 case AUDIO_BLOCK:
3395 /* Audio Data Block, contains SADs */
3396 sad_count = min(dbl / 3, 15 - total_sad_count);
3397 if (sad_count >= 1)
3398 memcpy(eld + 20 + mnl + total_sad_count * 3,
3399 &db[1], sad_count * 3);
3400 total_sad_count += sad_count;
3401 break;
3402 case SPEAKER_BLOCK:
3403 /* Speaker Allocation Data Block */
3404 if (dbl >= 1)
3405 eld[7] = db[1];
3406 break;
3407 case VENDOR_BLOCK:
3408 /* HDMI Vendor-Specific Data Block */
3409 if (cea_db_is_hdmi_vsdb(db))
3410 parse_hdmi_vsdb(connector, db);
3411 break;
3412 default:
3413 break;
3414 }
3415 }
3416 }
3417 eld[5] |= total_sad_count << 4;
3418
3419 eld[DRM_ELD_BASELINE_ELD_LEN] =
3420 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3421
3422 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3423 drm_eld_size(eld), total_sad_count);
3424 }
3425 EXPORT_SYMBOL(drm_edid_to_eld);
3426
3427 /**
3428 * drm_edid_to_sad - extracts SADs from EDID
3429 * @edid: EDID to parse
3430 * @sads: pointer that will be set to the extracted SADs
3431 *
3432 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3433 *
3434 * Note: The returned pointer needs to be freed using kfree().
3435 *
3436 * Return: The number of found SADs or negative number on error.
3437 */
3438 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3439 {
3440 int count = 0;
3441 int i, start, end, dbl;
3442 u8 *cea;
3443
3444 cea = drm_find_cea_extension(edid);
3445 if (!cea) {
3446 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3447 return -ENOENT;
3448 }
3449
3450 if (cea_revision(cea) < 3) {
3451 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3452 return -ENOTSUPP;
3453 }
3454
3455 if (cea_db_offsets(cea, &start, &end)) {
3456 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3457 return -EPROTO;
3458 }
3459
3460 for_each_cea_db(cea, i, start, end) {
3461 u8 *db = &cea[i];
3462
3463 if (cea_db_tag(db) == AUDIO_BLOCK) {
3464 int j;
3465 dbl = cea_db_payload_len(db);
3466
3467 count = dbl / 3; /* SAD is 3B */
3468 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3469 if (!*sads)
3470 return -ENOMEM;
3471 for (j = 0; j < count; j++) {
3472 u8 *sad = &db[1 + j * 3];
3473
3474 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3475 (*sads)[j].channels = sad[0] & 0x7;
3476 (*sads)[j].freq = sad[1] & 0x7F;
3477 (*sads)[j].byte2 = sad[2];
3478 }
3479 break;
3480 }
3481 }
3482
3483 return count;
3484 }
3485 EXPORT_SYMBOL(drm_edid_to_sad);
3486
3487 /**
3488 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3489 * @edid: EDID to parse
3490 * @sadb: pointer to the speaker block
3491 *
3492 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3493 *
3494 * Note: The returned pointer needs to be freed using kfree().
3495 *
3496 * Return: The number of found Speaker Allocation Blocks or negative number on
3497 * error.
3498 */
3499 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3500 {
3501 int count = 0;
3502 int i, start, end, dbl;
3503 const u8 *cea;
3504
3505 cea = drm_find_cea_extension(edid);
3506 if (!cea) {
3507 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3508 return -ENOENT;
3509 }
3510
3511 if (cea_revision(cea) < 3) {
3512 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3513 return -ENOTSUPP;
3514 }
3515
3516 if (cea_db_offsets(cea, &start, &end)) {
3517 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3518 return -EPROTO;
3519 }
3520
3521 for_each_cea_db(cea, i, start, end) {
3522 const u8 *db = &cea[i];
3523
3524 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3525 dbl = cea_db_payload_len(db);
3526
3527 /* Speaker Allocation Data Block */
3528 if (dbl == 3) {
3529 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3530 if (!*sadb)
3531 return -ENOMEM;
3532 count = dbl;
3533 break;
3534 }
3535 }
3536 }
3537
3538 return count;
3539 }
3540 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3541
3542 /**
3543 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3544 * @connector: connector associated with the HDMI/DP sink
3545 * @mode: the display mode
3546 *
3547 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3548 * the sink doesn't support audio or video.
3549 */
3550 int drm_av_sync_delay(struct drm_connector *connector,
3551 const struct drm_display_mode *mode)
3552 {
3553 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3554 int a, v;
3555
3556 if (!connector->latency_present[0])
3557 return 0;
3558 if (!connector->latency_present[1])
3559 i = 0;
3560
3561 a = connector->audio_latency[i];
3562 v = connector->video_latency[i];
3563
3564 /*
3565 * HDMI/DP sink doesn't support audio or video?
3566 */
3567 if (a == 255 || v == 255)
3568 return 0;
3569
3570 /*
3571 * Convert raw EDID values to millisecond.
3572 * Treat unknown latency as 0ms.
3573 */
3574 if (a)
3575 a = min(2 * (a - 1), 500);
3576 if (v)
3577 v = min(2 * (v - 1), 500);
3578
3579 return max(v - a, 0);
3580 }
3581 EXPORT_SYMBOL(drm_av_sync_delay);
3582
3583 /**
3584 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3585 * @encoder: the encoder just changed display mode
3586 *
3587 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3588 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3589 *
3590 * Return: The connector associated with the first HDMI/DP sink that has ELD
3591 * attached to it.
3592 */
3593 struct drm_connector *drm_select_eld(struct drm_encoder *encoder)
3594 {
3595 struct drm_connector *connector;
3596 struct drm_device *dev = encoder->dev;
3597
3598 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
3599 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3600
3601 drm_for_each_connector(connector, dev)
3602 if (connector->encoder == encoder && connector->eld[0])
3603 return connector;
3604
3605 return NULL;
3606 }
3607 EXPORT_SYMBOL(drm_select_eld);
3608
3609 /**
3610 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3611 * @edid: monitor EDID information
3612 *
3613 * Parse the CEA extension according to CEA-861-B.
3614 *
3615 * Return: True if the monitor is HDMI, false if not or unknown.
3616 */
3617 bool drm_detect_hdmi_monitor(struct edid *edid)
3618 {
3619 u8 *edid_ext;
3620 int i;
3621 int start_offset, end_offset;
3622
3623 edid_ext = drm_find_cea_extension(edid);
3624 if (!edid_ext)
3625 return false;
3626
3627 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3628 return false;
3629
3630 /*
3631 * Because HDMI identifier is in Vendor Specific Block,
3632 * search it from all data blocks of CEA extension.
3633 */
3634 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3635 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3636 return true;
3637 }
3638
3639 return false;
3640 }
3641 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3642
3643 /**
3644 * drm_detect_monitor_audio - check monitor audio capability
3645 * @edid: EDID block to scan
3646 *
3647 * Monitor should have CEA extension block.
3648 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3649 * audio' only. If there is any audio extension block and supported
3650 * audio format, assume at least 'basic audio' support, even if 'basic
3651 * audio' is not defined in EDID.
3652 *
3653 * Return: True if the monitor supports audio, false otherwise.
3654 */
3655 bool drm_detect_monitor_audio(struct edid *edid)
3656 {
3657 u8 *edid_ext;
3658 int i, j;
3659 bool has_audio = false;
3660 int start_offset, end_offset;
3661
3662 edid_ext = drm_find_cea_extension(edid);
3663 if (!edid_ext)
3664 goto end;
3665
3666 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3667
3668 if (has_audio) {
3669 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3670 goto end;
3671 }
3672
3673 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3674 goto end;
3675
3676 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3677 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3678 has_audio = true;
3679 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3680 DRM_DEBUG_KMS("CEA audio format %d\n",
3681 (edid_ext[i + j] >> 3) & 0xf);
3682 goto end;
3683 }
3684 }
3685 end:
3686 return has_audio;
3687 }
3688 EXPORT_SYMBOL(drm_detect_monitor_audio);
3689
3690 /**
3691 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3692 * @edid: EDID block to scan
3693 *
3694 * Check whether the monitor reports the RGB quantization range selection
3695 * as supported. The AVI infoframe can then be used to inform the monitor
3696 * which quantization range (full or limited) is used.
3697 *
3698 * Return: True if the RGB quantization range is selectable, false otherwise.
3699 */
3700 bool drm_rgb_quant_range_selectable(struct edid *edid)
3701 {
3702 u8 *edid_ext;
3703 int i, start, end;
3704
3705 edid_ext = drm_find_cea_extension(edid);
3706 if (!edid_ext)
3707 return false;
3708
3709 if (cea_db_offsets(edid_ext, &start, &end))
3710 return false;
3711
3712 for_each_cea_db(edid_ext, i, start, end) {
3713 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3714 cea_db_payload_len(&edid_ext[i]) == 2) {
3715 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3716 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3717 }
3718 }
3719
3720 return false;
3721 }
3722 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3723
3724 /*
3725 * Parse the CEA extension according to CEA-861-B.
3726 * Return true if HDMI deep color supported, false if not or unknown.
3727 */
3728 static bool drm_assign_hdmi_deep_color_info(struct edid *edid,
3729 struct drm_display_info *info,
3730 struct drm_connector *connector)
3731 {
3732 u8 *edid_ext, *hdmi;
3733 int i;
3734 int start_offset, end_offset;
3735 unsigned int dc_bpc = 0;
3736
3737 edid_ext = drm_find_cea_extension(edid);
3738 if (!edid_ext)
3739 return false;
3740
3741 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3742 return false;
3743
3744 /*
3745 * Because HDMI identifier is in Vendor Specific Block,
3746 * search it from all data blocks of CEA extension.
3747 */
3748 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3749 if (cea_db_is_hdmi_vsdb(&edid_ext[i])) {
3750 /* HDMI supports at least 8 bpc */
3751 info->bpc = 8;
3752
3753 hdmi = &edid_ext[i];
3754 if (cea_db_payload_len(hdmi) < 6)
3755 return false;
3756
3757 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3758 dc_bpc = 10;
3759 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3760 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3761 connector->name);
3762 }
3763
3764 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3765 dc_bpc = 12;
3766 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3767 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3768 connector->name);
3769 }
3770
3771 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3772 dc_bpc = 16;
3773 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3774 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3775 connector->name);
3776 }
3777
3778 if (dc_bpc > 0) {
3779 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3780 connector->name, dc_bpc);
3781 info->bpc = dc_bpc;
3782
3783 /*
3784 * Deep color support mandates RGB444 support for all video
3785 * modes and forbids YCRCB422 support for all video modes per
3786 * HDMI 1.3 spec.
3787 */
3788 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3789
3790 /* YCRCB444 is optional according to spec. */
3791 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3792 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3793 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3794 connector->name);
3795 }
3796
3797 /*
3798 * Spec says that if any deep color mode is supported at all,
3799 * then deep color 36 bit must be supported.
3800 */
3801 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3802 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3803 connector->name);
3804 }
3805
3806 return true;
3807 }
3808 else {
3809 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3810 connector->name);
3811 }
3812 }
3813 }
3814
3815 return false;
3816 }
3817
3818 static void drm_add_display_info(struct edid *edid,
3819 struct drm_display_info *info,
3820 struct drm_connector *connector)
3821 {
3822 u8 *edid_ext;
3823
3824 info->width_mm = edid->width_cm * 10;
3825 info->height_mm = edid->height_cm * 10;
3826
3827 /* driver figures it out in this case */
3828 info->bpc = 0;
3829 info->color_formats = 0;
3830
3831 if (edid->revision < 3)
3832 return;
3833
3834 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3835 return;
3836
3837 /* Get data from CEA blocks if present */
3838 edid_ext = drm_find_cea_extension(edid);
3839 if (edid_ext) {
3840 info->cea_rev = edid_ext[1];
3841
3842 /* The existence of a CEA block should imply RGB support */
3843 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3844 if (edid_ext[3] & EDID_CEA_YCRCB444)
3845 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3846 if (edid_ext[3] & EDID_CEA_YCRCB422)
3847 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3848 }
3849
3850 /* HDMI deep color modes supported? Assign to info, if so */
3851 drm_assign_hdmi_deep_color_info(edid, info, connector);
3852
3853 /*
3854 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3855 *
3856 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3857 * tells us to assume 8 bpc color depth if the EDID doesn't have
3858 * extensions which tell otherwise.
3859 */
3860 if ((info->bpc == 0) && (edid->revision < 4) &&
3861 (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3862 info->bpc = 8;
3863 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
3864 connector->name, info->bpc);
3865 }
3866
3867 /* Only defined for 1.4 with digital displays */
3868 if (edid->revision < 4)
3869 return;
3870
3871 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3872 case DRM_EDID_DIGITAL_DEPTH_6:
3873 info->bpc = 6;
3874 break;
3875 case DRM_EDID_DIGITAL_DEPTH_8:
3876 info->bpc = 8;
3877 break;
3878 case DRM_EDID_DIGITAL_DEPTH_10:
3879 info->bpc = 10;
3880 break;
3881 case DRM_EDID_DIGITAL_DEPTH_12:
3882 info->bpc = 12;
3883 break;
3884 case DRM_EDID_DIGITAL_DEPTH_14:
3885 info->bpc = 14;
3886 break;
3887 case DRM_EDID_DIGITAL_DEPTH_16:
3888 info->bpc = 16;
3889 break;
3890 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3891 default:
3892 info->bpc = 0;
3893 break;
3894 }
3895
3896 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3897 connector->name, info->bpc);
3898
3899 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3900 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3901 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3902 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3903 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3904 }
3905
3906 static int validate_displayid(u8 *displayid, int length, int idx)
3907 {
3908 int i;
3909 u8 csum = 0;
3910 struct displayid_hdr *base;
3911
3912 base = (struct displayid_hdr *)&displayid[idx];
3913
3914 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
3915 base->rev, base->bytes, base->prod_id, base->ext_count);
3916
3917 if (base->bytes + 5 > length - idx)
3918 return -EINVAL;
3919 for (i = idx; i <= base->bytes + 5; i++) {
3920 csum += displayid[i];
3921 }
3922 if (csum) {
3923 DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
3924 return -EINVAL;
3925 }
3926 return 0;
3927 }
3928
3929 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
3930 struct displayid_detailed_timings_1 *timings)
3931 {
3932 struct drm_display_mode *mode;
3933 unsigned pixel_clock = (timings->pixel_clock[0] |
3934 (timings->pixel_clock[1] << 8) |
3935 (timings->pixel_clock[2] << 16));
3936 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
3937 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
3938 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
3939 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
3940 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
3941 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
3942 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
3943 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
3944 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
3945 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
3946 mode = drm_mode_create(dev);
3947 if (!mode)
3948 return NULL;
3949
3950 mode->clock = pixel_clock * 10;
3951 mode->hdisplay = hactive;
3952 mode->hsync_start = mode->hdisplay + hsync;
3953 mode->hsync_end = mode->hsync_start + hsync_width;
3954 mode->htotal = mode->hdisplay + hblank;
3955
3956 mode->vdisplay = vactive;
3957 mode->vsync_start = mode->vdisplay + vsync;
3958 mode->vsync_end = mode->vsync_start + vsync_width;
3959 mode->vtotal = mode->vdisplay + vblank;
3960
3961 mode->flags = 0;
3962 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3963 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3964 mode->type = DRM_MODE_TYPE_DRIVER;
3965
3966 if (timings->flags & 0x80)
3967 mode->type |= DRM_MODE_TYPE_PREFERRED;
3968 mode->vrefresh = drm_mode_vrefresh(mode);
3969 drm_mode_set_name(mode);
3970
3971 return mode;
3972 }
3973
3974 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
3975 struct displayid_block *block)
3976 {
3977 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
3978 int i;
3979 int num_timings;
3980 struct drm_display_mode *newmode;
3981 int num_modes = 0;
3982 /* blocks must be multiple of 20 bytes length */
3983 if (block->num_bytes % 20)
3984 return 0;
3985
3986 num_timings = block->num_bytes / 20;
3987 for (i = 0; i < num_timings; i++) {
3988 struct displayid_detailed_timings_1 *timings = &det->timings[i];
3989
3990 newmode = drm_mode_displayid_detailed(connector->dev, timings);
3991 if (!newmode)
3992 continue;
3993
3994 drm_mode_probed_add(connector, newmode);
3995 num_modes++;
3996 }
3997 return num_modes;
3998 }
3999
4000 static int add_displayid_detailed_modes(struct drm_connector *connector,
4001 struct edid *edid)
4002 {
4003 u8 *displayid;
4004 int ret;
4005 int idx = 1;
4006 int length = EDID_LENGTH;
4007 struct displayid_block *block;
4008 int num_modes = 0;
4009
4010 displayid = drm_find_displayid_extension(edid);
4011 if (!displayid)
4012 return 0;
4013
4014 ret = validate_displayid(displayid, length, idx);
4015 if (ret)
4016 return 0;
4017
4018 idx += sizeof(struct displayid_hdr);
4019 while (block = (struct displayid_block *)&displayid[idx],
4020 idx + sizeof(struct displayid_block) <= length &&
4021 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4022 block->num_bytes > 0) {
4023 idx += block->num_bytes + sizeof(struct displayid_block);
4024 switch (block->tag) {
4025 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4026 num_modes += add_displayid_detailed_1_modes(connector, block);
4027 break;
4028 }
4029 }
4030 return num_modes;
4031 }
4032
4033 /**
4034 * drm_add_edid_modes - add modes from EDID data, if available
4035 * @connector: connector we're probing
4036 * @edid: EDID data
4037 *
4038 * Add the specified modes to the connector's mode list. Also fills out the
4039 * &drm_display_info structure in @connector with any information which can be
4040 * derived from the edid.
4041 *
4042 * Return: The number of modes added or 0 if we couldn't find any.
4043 */
4044 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4045 {
4046 int num_modes = 0;
4047 u32 quirks;
4048
4049 if (edid == NULL) {
4050 return 0;
4051 }
4052 if (!drm_edid_is_valid(edid)) {
4053 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4054 connector->name);
4055 return 0;
4056 }
4057
4058 quirks = edid_get_quirks(edid);
4059
4060 /*
4061 * EDID spec says modes should be preferred in this order:
4062 * - preferred detailed mode
4063 * - other detailed modes from base block
4064 * - detailed modes from extension blocks
4065 * - CVT 3-byte code modes
4066 * - standard timing codes
4067 * - established timing codes
4068 * - modes inferred from GTF or CVT range information
4069 *
4070 * We get this pretty much right.
4071 *
4072 * XXX order for additional mode types in extension blocks?
4073 */
4074 num_modes += add_detailed_modes(connector, edid, quirks);
4075 num_modes += add_cvt_modes(connector, edid);
4076 num_modes += add_standard_modes(connector, edid);
4077 num_modes += add_established_modes(connector, edid);
4078 num_modes += add_cea_modes(connector, edid);
4079 num_modes += add_alternate_cea_modes(connector, edid);
4080 num_modes += add_displayid_detailed_modes(connector, edid);
4081 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4082 num_modes += add_inferred_modes(connector, edid);
4083
4084 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4085 edid_fixup_preferred(connector, quirks);
4086
4087 drm_add_display_info(edid, &connector->display_info, connector);
4088
4089 if (quirks & EDID_QUIRK_FORCE_6BPC)
4090 connector->display_info.bpc = 6;
4091
4092 if (quirks & EDID_QUIRK_FORCE_8BPC)
4093 connector->display_info.bpc = 8;
4094
4095 if (quirks & EDID_QUIRK_FORCE_12BPC)
4096 connector->display_info.bpc = 12;
4097
4098 return num_modes;
4099 }
4100 EXPORT_SYMBOL(drm_add_edid_modes);
4101
4102 /**
4103 * drm_add_modes_noedid - add modes for the connectors without EDID
4104 * @connector: connector we're probing
4105 * @hdisplay: the horizontal display limit
4106 * @vdisplay: the vertical display limit
4107 *
4108 * Add the specified modes to the connector's mode list. Only when the
4109 * hdisplay/vdisplay is not beyond the given limit, it will be added.
4110 *
4111 * Return: The number of modes added or 0 if we couldn't find any.
4112 */
4113 int drm_add_modes_noedid(struct drm_connector *connector,
4114 int hdisplay, int vdisplay)
4115 {
4116 int i, count, num_modes = 0;
4117 struct drm_display_mode *mode;
4118 struct drm_device *dev = connector->dev;
4119
4120 count = ARRAY_SIZE(drm_dmt_modes);
4121 if (hdisplay < 0)
4122 hdisplay = 0;
4123 if (vdisplay < 0)
4124 vdisplay = 0;
4125
4126 for (i = 0; i < count; i++) {
4127 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4128 if (hdisplay && vdisplay) {
4129 /*
4130 * Only when two are valid, they will be used to check
4131 * whether the mode should be added to the mode list of
4132 * the connector.
4133 */
4134 if (ptr->hdisplay > hdisplay ||
4135 ptr->vdisplay > vdisplay)
4136 continue;
4137 }
4138 if (drm_mode_vrefresh(ptr) > 61)
4139 continue;
4140 mode = drm_mode_duplicate(dev, ptr);
4141 if (mode) {
4142 drm_mode_probed_add(connector, mode);
4143 num_modes++;
4144 }
4145 }
4146 return num_modes;
4147 }
4148 EXPORT_SYMBOL(drm_add_modes_noedid);
4149
4150 /**
4151 * drm_set_preferred_mode - Sets the preferred mode of a connector
4152 * @connector: connector whose mode list should be processed
4153 * @hpref: horizontal resolution of preferred mode
4154 * @vpref: vertical resolution of preferred mode
4155 *
4156 * Marks a mode as preferred if it matches the resolution specified by @hpref
4157 * and @vpref.
4158 */
4159 void drm_set_preferred_mode(struct drm_connector *connector,
4160 int hpref, int vpref)
4161 {
4162 struct drm_display_mode *mode;
4163
4164 list_for_each_entry(mode, &connector->probed_modes, head) {
4165 if (mode->hdisplay == hpref &&
4166 mode->vdisplay == vpref)
4167 mode->type |= DRM_MODE_TYPE_PREFERRED;
4168 }
4169 }
4170 EXPORT_SYMBOL(drm_set_preferred_mode);
4171
4172 /**
4173 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4174 * data from a DRM display mode
4175 * @frame: HDMI AVI infoframe
4176 * @mode: DRM display mode
4177 *
4178 * Return: 0 on success or a negative error code on failure.
4179 */
4180 int
4181 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4182 const struct drm_display_mode *mode)
4183 {
4184 int err;
4185
4186 if (!frame || !mode)
4187 return -EINVAL;
4188
4189 err = hdmi_avi_infoframe_init(frame);
4190 if (err < 0)
4191 return err;
4192
4193 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4194 frame->pixel_repeat = 1;
4195
4196 frame->video_code = drm_match_cea_mode(mode);
4197
4198 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4199
4200 /*
4201 * Populate picture aspect ratio from either
4202 * user input (if specified) or from the CEA mode list.
4203 */
4204 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4205 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4206 frame->picture_aspect = mode->picture_aspect_ratio;
4207 else if (frame->video_code > 0)
4208 frame->picture_aspect = drm_get_cea_aspect_ratio(
4209 frame->video_code);
4210
4211 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4212 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4213
4214 return 0;
4215 }
4216 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4217
4218 static enum hdmi_3d_structure
4219 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4220 {
4221 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4222
4223 switch (layout) {
4224 case DRM_MODE_FLAG_3D_FRAME_PACKING:
4225 return HDMI_3D_STRUCTURE_FRAME_PACKING;
4226 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4227 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4228 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4229 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4230 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4231 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4232 case DRM_MODE_FLAG_3D_L_DEPTH:
4233 return HDMI_3D_STRUCTURE_L_DEPTH;
4234 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4235 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4236 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4237 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4238 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4239 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4240 default:
4241 return HDMI_3D_STRUCTURE_INVALID;
4242 }
4243 }
4244
4245 /**
4246 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4247 * data from a DRM display mode
4248 * @frame: HDMI vendor infoframe
4249 * @mode: DRM display mode
4250 *
4251 * Note that there's is a need to send HDMI vendor infoframes only when using a
4252 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4253 * function will return -EINVAL, error that can be safely ignored.
4254 *
4255 * Return: 0 on success or a negative error code on failure.
4256 */
4257 int
4258 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4259 const struct drm_display_mode *mode)
4260 {
4261 int err;
4262 u32 s3d_flags;
4263 u8 vic;
4264
4265 if (!frame || !mode)
4266 return -EINVAL;
4267
4268 vic = drm_match_hdmi_mode(mode);
4269 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4270
4271 if (!vic && !s3d_flags)
4272 return -EINVAL;
4273
4274 if (vic && s3d_flags)
4275 return -EINVAL;
4276
4277 err = hdmi_vendor_infoframe_init(frame);
4278 if (err < 0)
4279 return err;
4280
4281 if (vic)
4282 frame->vic = vic;
4283 else
4284 frame->s3d_struct = s3d_structure_from_display_mode(mode);
4285
4286 return 0;
4287 }
4288 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4289
4290 static int drm_parse_tiled_block(struct drm_connector *connector,
4291 struct displayid_block *block)
4292 {
4293 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4294 u16 w, h;
4295 u8 tile_v_loc, tile_h_loc;
4296 u8 num_v_tile, num_h_tile;
4297 struct drm_tile_group *tg;
4298
4299 w = tile->tile_size[0] | tile->tile_size[1] << 8;
4300 h = tile->tile_size[2] | tile->tile_size[3] << 8;
4301
4302 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4303 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4304 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4305 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4306
4307 connector->has_tile = true;
4308 if (tile->tile_cap & 0x80)
4309 connector->tile_is_single_monitor = true;
4310
4311 connector->num_h_tile = num_h_tile + 1;
4312 connector->num_v_tile = num_v_tile + 1;
4313 connector->tile_h_loc = tile_h_loc;
4314 connector->tile_v_loc = tile_v_loc;
4315 connector->tile_h_size = w + 1;
4316 connector->tile_v_size = h + 1;
4317
4318 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4319 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4320 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4321 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4322 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4323
4324 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4325 if (!tg) {
4326 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4327 }
4328 if (!tg)
4329 return -ENOMEM;
4330
4331 if (connector->tile_group != tg) {
4332 /* if we haven't got a pointer,
4333 take the reference, drop ref to old tile group */
4334 if (connector->tile_group) {
4335 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4336 }
4337 connector->tile_group = tg;
4338 } else
4339 /* if same tile group, then release the ref we just took. */
4340 drm_mode_put_tile_group(connector->dev, tg);
4341 return 0;
4342 }
4343
4344 static int drm_parse_display_id(struct drm_connector *connector,
4345 u8 *displayid, int length,
4346 bool is_edid_extension)
4347 {
4348 /* if this is an EDID extension the first byte will be 0x70 */
4349 int idx = 0;
4350 struct displayid_block *block;
4351 int ret;
4352
4353 if (is_edid_extension)
4354 idx = 1;
4355
4356 ret = validate_displayid(displayid, length, idx);
4357 if (ret)
4358 return ret;
4359
4360 idx += sizeof(struct displayid_hdr);
4361 while (block = (struct displayid_block *)&displayid[idx],
4362 idx + sizeof(struct displayid_block) <= length &&
4363 idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4364 block->num_bytes > 0) {
4365 idx += block->num_bytes + sizeof(struct displayid_block);
4366 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
4367 block->tag, block->rev, block->num_bytes);
4368
4369 switch (block->tag) {
4370 case DATA_BLOCK_TILED_DISPLAY:
4371 ret = drm_parse_tiled_block(connector, block);
4372 if (ret)
4373 return ret;
4374 break;
4375 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4376 /* handled in mode gathering code. */
4377 break;
4378 default:
4379 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
4380 break;
4381 }
4382 }
4383 return 0;
4384 }
4385
4386 static void drm_get_displayid(struct drm_connector *connector,
4387 struct edid *edid)
4388 {
4389 void *displayid = NULL;
4390 int ret;
4391 connector->has_tile = false;
4392 displayid = drm_find_displayid_extension(edid);
4393 if (!displayid) {
4394 /* drop reference to any tile group we had */
4395 goto out_drop_ref;
4396 }
4397
4398 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4399 if (ret < 0)
4400 goto out_drop_ref;
4401 if (!connector->has_tile)
4402 goto out_drop_ref;
4403 return;
4404 out_drop_ref:
4405 if (connector->tile_group) {
4406 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4407 connector->tile_group = NULL;
4408 }
4409 return;
4410 }
This page took 0.132263 seconds and 5 git commands to generate.