Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / drivers / gpu / drm / i2c / tda998x_drv.c
1 /*
2 * Copyright (C) 2012 Texas Instruments
3 * Author: Rob Clark <robdclark@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/component.h>
19 #include <linux/hdmi.h>
20 #include <linux/module.h>
21 #include <linux/irq.h>
22 #include <sound/asoundef.h>
23
24 #include <drm/drmP.h>
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_crtc_helper.h>
27 #include <drm/drm_edid.h>
28 #include <drm/drm_of.h>
29 #include <drm/i2c/tda998x.h>
30
31 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
32
33 struct tda998x_priv {
34 struct i2c_client *cec;
35 struct i2c_client *hdmi;
36 struct mutex mutex;
37 u16 rev;
38 u8 current_page;
39 int dpms;
40 bool is_hdmi_sink;
41 u8 vip_cntrl_0;
42 u8 vip_cntrl_1;
43 u8 vip_cntrl_2;
44 struct tda998x_encoder_params params;
45
46 wait_queue_head_t wq_edid;
47 volatile int wq_edid_wait;
48
49 struct work_struct detect_work;
50 struct timer_list edid_delay_timer;
51 wait_queue_head_t edid_delay_waitq;
52 bool edid_delay_active;
53
54 struct drm_encoder encoder;
55 struct drm_connector connector;
56 };
57
58 #define conn_to_tda998x_priv(x) \
59 container_of(x, struct tda998x_priv, connector)
60
61 #define enc_to_tda998x_priv(x) \
62 container_of(x, struct tda998x_priv, encoder)
63
64 /* The TDA9988 series of devices use a paged register scheme.. to simplify
65 * things we encode the page # in upper bits of the register #. To read/
66 * write a given register, we need to make sure CURPAGE register is set
67 * appropriately. Which implies reads/writes are not atomic. Fun!
68 */
69
70 #define REG(page, addr) (((page) << 8) | (addr))
71 #define REG2ADDR(reg) ((reg) & 0xff)
72 #define REG2PAGE(reg) (((reg) >> 8) & 0xff)
73
74 #define REG_CURPAGE 0xff /* write */
75
76
77 /* Page 00h: General Control */
78 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */
79 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
80 # define MAIN_CNTRL0_SR (1 << 0)
81 # define MAIN_CNTRL0_DECS (1 << 1)
82 # define MAIN_CNTRL0_DEHS (1 << 2)
83 # define MAIN_CNTRL0_CECS (1 << 3)
84 # define MAIN_CNTRL0_CEHS (1 << 4)
85 # define MAIN_CNTRL0_SCALER (1 << 7)
86 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */
87 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */
88 # define SOFTRESET_AUDIO (1 << 0)
89 # define SOFTRESET_I2C_MASTER (1 << 1)
90 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
91 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
92 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
93 # define I2C_MASTER_DIS_MM (1 << 0)
94 # define I2C_MASTER_DIS_FILT (1 << 1)
95 # define I2C_MASTER_APP_STRT_LAT (1 << 2)
96 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
97 # define FEAT_POWERDOWN_SPDIF (1 << 3)
98 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
99 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
100 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
101 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
102 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
103 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
104 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
105 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
106 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
107 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
108 # define VIP_CNTRL_0_MIRR_A (1 << 7)
109 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
110 # define VIP_CNTRL_0_MIRR_B (1 << 3)
111 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
112 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
113 # define VIP_CNTRL_1_MIRR_C (1 << 7)
114 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
115 # define VIP_CNTRL_1_MIRR_D (1 << 3)
116 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
117 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
118 # define VIP_CNTRL_2_MIRR_E (1 << 7)
119 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
120 # define VIP_CNTRL_2_MIRR_F (1 << 3)
121 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
122 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
123 # define VIP_CNTRL_3_X_TGL (1 << 0)
124 # define VIP_CNTRL_3_H_TGL (1 << 1)
125 # define VIP_CNTRL_3_V_TGL (1 << 2)
126 # define VIP_CNTRL_3_EMB (1 << 3)
127 # define VIP_CNTRL_3_SYNC_DE (1 << 4)
128 # define VIP_CNTRL_3_SYNC_HS (1 << 5)
129 # define VIP_CNTRL_3_DE_INT (1 << 6)
130 # define VIP_CNTRL_3_EDGE (1 << 7)
131 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
132 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
133 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
134 # define VIP_CNTRL_4_CCIR656 (1 << 4)
135 # define VIP_CNTRL_4_656_ALT (1 << 5)
136 # define VIP_CNTRL_4_TST_656 (1 << 6)
137 # define VIP_CNTRL_4_TST_PAT (1 << 7)
138 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
139 # define VIP_CNTRL_5_CKCASE (1 << 0)
140 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
141 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */
142 # define MUX_AP_SELECT_I2S 0x64
143 # define MUX_AP_SELECT_SPDIF 0x40
144 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
145 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
146 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
147 # define MAT_CONTRL_MAT_BP (1 << 2)
148 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
149 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
150 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
151 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
152 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
153 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
154 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
155 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
156 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
157 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
158 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
159 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
160 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
161 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
162 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
163 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
164 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
165 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
166 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
167 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
168 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
169 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
170 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
171 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
172 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
173 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
174 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
175 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
176 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
177 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
178 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
179 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
180 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
181 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
182 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
183 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
184 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
185 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
186 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
187 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
188 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
189 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
190 # define TBG_CNTRL_0_TOP_TGL (1 << 0)
191 # define TBG_CNTRL_0_TOP_SEL (1 << 1)
192 # define TBG_CNTRL_0_DE_EXT (1 << 2)
193 # define TBG_CNTRL_0_TOP_EXT (1 << 3)
194 # define TBG_CNTRL_0_FRAME_DIS (1 << 5)
195 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
196 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
197 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
198 # define TBG_CNTRL_1_H_TGL (1 << 0)
199 # define TBG_CNTRL_1_V_TGL (1 << 1)
200 # define TBG_CNTRL_1_TGL_EN (1 << 2)
201 # define TBG_CNTRL_1_X_EXT (1 << 3)
202 # define TBG_CNTRL_1_H_EXT (1 << 4)
203 # define TBG_CNTRL_1_V_EXT (1 << 5)
204 # define TBG_CNTRL_1_DWIN_DIS (1 << 6)
205 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
206 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
207 # define HVF_CNTRL_0_SM (1 << 7)
208 # define HVF_CNTRL_0_RWB (1 << 6)
209 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
210 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
211 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
212 # define HVF_CNTRL_1_FOR (1 << 0)
213 # define HVF_CNTRL_1_YUVBLK (1 << 1)
214 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
215 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
216 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
217 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
218 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
219 # define I2S_FORMAT(x) (((x) & 3) << 0)
220 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
221 # define AIP_CLKSEL_AIP_SPDIF (0 << 3)
222 # define AIP_CLKSEL_AIP_I2S (1 << 3)
223 # define AIP_CLKSEL_FS_ACLK (0 << 0)
224 # define AIP_CLKSEL_FS_MCLK (1 << 0)
225 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
226
227 /* Page 02h: PLL settings */
228 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
229 # define PLL_SERIAL_1_SRL_FDN (1 << 0)
230 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
231 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
232 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
233 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
234 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
235 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
236 # define PLL_SERIAL_3_SRL_CCIR (1 << 0)
237 # define PLL_SERIAL_3_SRL_DE (1 << 2)
238 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
239 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
240 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
241 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
242 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
243 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
244 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
245 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
246 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
247 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
248 # define AUDIO_DIV_SERCLK_1 0
249 # define AUDIO_DIV_SERCLK_2 1
250 # define AUDIO_DIV_SERCLK_4 2
251 # define AUDIO_DIV_SERCLK_8 3
252 # define AUDIO_DIV_SERCLK_16 4
253 # define AUDIO_DIV_SERCLK_32 5
254 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
255 # define SEL_CLK_SEL_CLK1 (1 << 0)
256 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
257 # define SEL_CLK_ENA_SC_CLK (1 << 3)
258 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
259
260
261 /* Page 09h: EDID Control */
262 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
263 /* next 127 successive registers are the EDID block */
264 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
265 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
266 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
267 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
268 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
269
270
271 /* Page 10h: information frames and packets */
272 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
273 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
274 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
275 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
276 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
277
278
279 /* Page 11h: audio settings and content info packets */
280 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
281 # define AIP_CNTRL_0_RST_FIFO (1 << 0)
282 # define AIP_CNTRL_0_SWAP (1 << 1)
283 # define AIP_CNTRL_0_LAYOUT (1 << 2)
284 # define AIP_CNTRL_0_ACR_MAN (1 << 5)
285 # define AIP_CNTRL_0_RST_CTS (1 << 6)
286 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */
287 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
288 # define CA_I2S_HBR_CHSTAT (1 << 6)
289 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
290 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
291 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
292 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
293 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
294 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
295 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
296 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */
297 # define CTS_N_K(x) (((x) & 7) << 0)
298 # define CTS_N_M(x) (((x) & 3) << 4)
299 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
300 # define ENC_CNTRL_RST_ENC (1 << 0)
301 # define ENC_CNTRL_RST_SEL (1 << 1)
302 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
303 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
304 # define DIP_FLAGS_ACR (1 << 0)
305 # define DIP_FLAGS_GC (1 << 1)
306 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
307 # define DIP_IF_FLAGS_IF1 (1 << 1)
308 # define DIP_IF_FLAGS_IF2 (1 << 2)
309 # define DIP_IF_FLAGS_IF3 (1 << 3)
310 # define DIP_IF_FLAGS_IF4 (1 << 4)
311 # define DIP_IF_FLAGS_IF5 (1 << 5)
312 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
313
314
315 /* Page 12h: HDCP and OTP */
316 #define REG_TX3 REG(0x12, 0x9a) /* read/write */
317 #define REG_TX4 REG(0x12, 0x9b) /* read/write */
318 # define TX4_PD_RAM (1 << 1)
319 #define REG_TX33 REG(0x12, 0xb8) /* read/write */
320 # define TX33_HDMI (1 << 1)
321
322
323 /* Page 13h: Gamut related metadata packets */
324
325
326
327 /* CEC registers: (not paged)
328 */
329 #define REG_CEC_INTSTATUS 0xee /* read */
330 # define CEC_INTSTATUS_CEC (1 << 0)
331 # define CEC_INTSTATUS_HDMI (1 << 1)
332 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
333 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
334 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
335 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
336 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
337 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
338 #define REG_CEC_RXSHPDINT 0xfd /* read */
339 # define CEC_RXSHPDINT_RXSENS BIT(0)
340 # define CEC_RXSHPDINT_HPD BIT(1)
341 #define REG_CEC_RXSHPDLEV 0xfe /* read */
342 # define CEC_RXSHPDLEV_RXSENS (1 << 0)
343 # define CEC_RXSHPDLEV_HPD (1 << 1)
344
345 #define REG_CEC_ENAMODS 0xff /* read/write */
346 # define CEC_ENAMODS_DIS_FRO (1 << 6)
347 # define CEC_ENAMODS_DIS_CCLK (1 << 5)
348 # define CEC_ENAMODS_EN_RXSENS (1 << 2)
349 # define CEC_ENAMODS_EN_HDMI (1 << 1)
350 # define CEC_ENAMODS_EN_CEC (1 << 0)
351
352
353 /* Device versions: */
354 #define TDA9989N2 0x0101
355 #define TDA19989 0x0201
356 #define TDA19989N2 0x0202
357 #define TDA19988 0x0301
358
359 static void
360 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
361 {
362 struct i2c_client *client = priv->cec;
363 u8 buf[] = {addr, val};
364 int ret;
365
366 ret = i2c_master_send(client, buf, sizeof(buf));
367 if (ret < 0)
368 dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
369 }
370
371 static u8
372 cec_read(struct tda998x_priv *priv, u8 addr)
373 {
374 struct i2c_client *client = priv->cec;
375 u8 val;
376 int ret;
377
378 ret = i2c_master_send(client, &addr, sizeof(addr));
379 if (ret < 0)
380 goto fail;
381
382 ret = i2c_master_recv(client, &val, sizeof(val));
383 if (ret < 0)
384 goto fail;
385
386 return val;
387
388 fail:
389 dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
390 return 0;
391 }
392
393 static int
394 set_page(struct tda998x_priv *priv, u16 reg)
395 {
396 if (REG2PAGE(reg) != priv->current_page) {
397 struct i2c_client *client = priv->hdmi;
398 u8 buf[] = {
399 REG_CURPAGE, REG2PAGE(reg)
400 };
401 int ret = i2c_master_send(client, buf, sizeof(buf));
402 if (ret < 0) {
403 dev_err(&client->dev, "%s %04x err %d\n", __func__,
404 reg, ret);
405 return ret;
406 }
407
408 priv->current_page = REG2PAGE(reg);
409 }
410 return 0;
411 }
412
413 static int
414 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
415 {
416 struct i2c_client *client = priv->hdmi;
417 u8 addr = REG2ADDR(reg);
418 int ret;
419
420 mutex_lock(&priv->mutex);
421 ret = set_page(priv, reg);
422 if (ret < 0)
423 goto out;
424
425 ret = i2c_master_send(client, &addr, sizeof(addr));
426 if (ret < 0)
427 goto fail;
428
429 ret = i2c_master_recv(client, buf, cnt);
430 if (ret < 0)
431 goto fail;
432
433 goto out;
434
435 fail:
436 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
437 out:
438 mutex_unlock(&priv->mutex);
439 return ret;
440 }
441
442 static void
443 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
444 {
445 struct i2c_client *client = priv->hdmi;
446 u8 buf[cnt+1];
447 int ret;
448
449 buf[0] = REG2ADDR(reg);
450 memcpy(&buf[1], p, cnt);
451
452 mutex_lock(&priv->mutex);
453 ret = set_page(priv, reg);
454 if (ret < 0)
455 goto out;
456
457 ret = i2c_master_send(client, buf, cnt + 1);
458 if (ret < 0)
459 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
460 out:
461 mutex_unlock(&priv->mutex);
462 }
463
464 static int
465 reg_read(struct tda998x_priv *priv, u16 reg)
466 {
467 u8 val = 0;
468 int ret;
469
470 ret = reg_read_range(priv, reg, &val, sizeof(val));
471 if (ret < 0)
472 return ret;
473 return val;
474 }
475
476 static void
477 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
478 {
479 struct i2c_client *client = priv->hdmi;
480 u8 buf[] = {REG2ADDR(reg), val};
481 int ret;
482
483 mutex_lock(&priv->mutex);
484 ret = set_page(priv, reg);
485 if (ret < 0)
486 goto out;
487
488 ret = i2c_master_send(client, buf, sizeof(buf));
489 if (ret < 0)
490 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
491 out:
492 mutex_unlock(&priv->mutex);
493 }
494
495 static void
496 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
497 {
498 struct i2c_client *client = priv->hdmi;
499 u8 buf[] = {REG2ADDR(reg), val >> 8, val};
500 int ret;
501
502 mutex_lock(&priv->mutex);
503 ret = set_page(priv, reg);
504 if (ret < 0)
505 goto out;
506
507 ret = i2c_master_send(client, buf, sizeof(buf));
508 if (ret < 0)
509 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
510 out:
511 mutex_unlock(&priv->mutex);
512 }
513
514 static void
515 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
516 {
517 int old_val;
518
519 old_val = reg_read(priv, reg);
520 if (old_val >= 0)
521 reg_write(priv, reg, old_val | val);
522 }
523
524 static void
525 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
526 {
527 int old_val;
528
529 old_val = reg_read(priv, reg);
530 if (old_val >= 0)
531 reg_write(priv, reg, old_val & ~val);
532 }
533
534 static void
535 tda998x_reset(struct tda998x_priv *priv)
536 {
537 /* reset audio and i2c master: */
538 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
539 msleep(50);
540 reg_write(priv, REG_SOFTRESET, 0);
541 msleep(50);
542
543 /* reset transmitter: */
544 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
545 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
546
547 /* PLL registers common configuration */
548 reg_write(priv, REG_PLL_SERIAL_1, 0x00);
549 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
550 reg_write(priv, REG_PLL_SERIAL_3, 0x00);
551 reg_write(priv, REG_SERIALIZER, 0x00);
552 reg_write(priv, REG_BUFFER_OUT, 0x00);
553 reg_write(priv, REG_PLL_SCG1, 0x00);
554 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
555 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
556 reg_write(priv, REG_PLL_SCGN1, 0xfa);
557 reg_write(priv, REG_PLL_SCGN2, 0x00);
558 reg_write(priv, REG_PLL_SCGR1, 0x5b);
559 reg_write(priv, REG_PLL_SCGR2, 0x00);
560 reg_write(priv, REG_PLL_SCG2, 0x10);
561
562 /* Write the default value MUX register */
563 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
564 }
565
566 /*
567 * The TDA998x has a problem when trying to read the EDID close to a
568 * HPD assertion: it needs a delay of 100ms to avoid timing out while
569 * trying to read EDID data.
570 *
571 * However, tda998x_encoder_get_modes() may be called at any moment
572 * after tda998x_connector_detect() indicates that we are connected, so
573 * we need to delay probing modes in tda998x_encoder_get_modes() after
574 * we have seen a HPD inactive->active transition. This code implements
575 * that delay.
576 */
577 static void tda998x_edid_delay_done(unsigned long data)
578 {
579 struct tda998x_priv *priv = (struct tda998x_priv *)data;
580
581 priv->edid_delay_active = false;
582 wake_up(&priv->edid_delay_waitq);
583 schedule_work(&priv->detect_work);
584 }
585
586 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
587 {
588 priv->edid_delay_active = true;
589 mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
590 }
591
592 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
593 {
594 return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
595 }
596
597 /*
598 * We need to run the KMS hotplug event helper outside of our threaded
599 * interrupt routine as this can call back into our get_modes method,
600 * which will want to make use of interrupts.
601 */
602 static void tda998x_detect_work(struct work_struct *work)
603 {
604 struct tda998x_priv *priv =
605 container_of(work, struct tda998x_priv, detect_work);
606 struct drm_device *dev = priv->encoder.dev;
607
608 if (dev)
609 drm_kms_helper_hotplug_event(dev);
610 }
611
612 /*
613 * only 2 interrupts may occur: screen plug/unplug and EDID read
614 */
615 static irqreturn_t tda998x_irq_thread(int irq, void *data)
616 {
617 struct tda998x_priv *priv = data;
618 u8 sta, cec, lvl, flag0, flag1, flag2;
619 bool handled = false;
620
621 sta = cec_read(priv, REG_CEC_INTSTATUS);
622 cec = cec_read(priv, REG_CEC_RXSHPDINT);
623 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
624 flag0 = reg_read(priv, REG_INT_FLAGS_0);
625 flag1 = reg_read(priv, REG_INT_FLAGS_1);
626 flag2 = reg_read(priv, REG_INT_FLAGS_2);
627 DRM_DEBUG_DRIVER(
628 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
629 sta, cec, lvl, flag0, flag1, flag2);
630
631 if (cec & CEC_RXSHPDINT_HPD) {
632 if (lvl & CEC_RXSHPDLEV_HPD)
633 tda998x_edid_delay_start(priv);
634 else
635 schedule_work(&priv->detect_work);
636
637 handled = true;
638 }
639
640 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
641 priv->wq_edid_wait = 0;
642 wake_up(&priv->wq_edid);
643 handled = true;
644 }
645
646 return IRQ_RETVAL(handled);
647 }
648
649 static void
650 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
651 union hdmi_infoframe *frame)
652 {
653 u8 buf[32];
654 ssize_t len;
655
656 len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
657 if (len < 0) {
658 dev_err(&priv->hdmi->dev,
659 "hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
660 frame->any.type, len);
661 return;
662 }
663
664 reg_clear(priv, REG_DIP_IF_FLAGS, bit);
665 reg_write_range(priv, addr, buf, len);
666 reg_set(priv, REG_DIP_IF_FLAGS, bit);
667 }
668
669 static void
670 tda998x_write_aif(struct tda998x_priv *priv, struct tda998x_encoder_params *p)
671 {
672 union hdmi_infoframe frame;
673
674 hdmi_audio_infoframe_init(&frame.audio);
675
676 frame.audio.channels = p->audio_frame[1] & 0x07;
677 frame.audio.channel_allocation = p->audio_frame[4];
678 frame.audio.level_shift_value = (p->audio_frame[5] & 0x78) >> 3;
679 frame.audio.downmix_inhibit = (p->audio_frame[5] & 0x80) >> 7;
680
681 /*
682 * L-PCM and IEC61937 compressed audio shall always set sample
683 * frequency to "refer to stream". For others, see the HDMI
684 * specification.
685 */
686 frame.audio.sample_frequency = (p->audio_frame[2] & 0x1c) >> 2;
687
688 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
689 }
690
691 static void
692 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
693 {
694 union hdmi_infoframe frame;
695
696 drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode);
697 frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
698
699 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
700 }
701
702 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
703 {
704 if (on) {
705 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
706 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
707 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
708 } else {
709 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
710 }
711 }
712
713 static void
714 tda998x_configure_audio(struct tda998x_priv *priv,
715 struct drm_display_mode *mode, struct tda998x_encoder_params *p)
716 {
717 u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
718 u32 n;
719
720 /* Enable audio ports */
721 reg_write(priv, REG_ENA_AP, p->audio_cfg);
722 reg_write(priv, REG_ENA_ACLK, p->audio_clk_cfg);
723
724 /* Set audio input source */
725 switch (p->audio_format) {
726 case AFMT_SPDIF:
727 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
728 clksel_aip = AIP_CLKSEL_AIP_SPDIF;
729 clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
730 cts_n = CTS_N_M(3) | CTS_N_K(3);
731 break;
732
733 case AFMT_I2S:
734 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
735 clksel_aip = AIP_CLKSEL_AIP_I2S;
736 clksel_fs = AIP_CLKSEL_FS_ACLK;
737 cts_n = CTS_N_M(3) | CTS_N_K(3);
738 break;
739
740 default:
741 BUG();
742 return;
743 }
744
745 reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
746 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
747 AIP_CNTRL_0_ACR_MAN); /* auto CTS */
748 reg_write(priv, REG_CTS_N, cts_n);
749
750 /*
751 * Audio input somehow depends on HDMI line rate which is
752 * related to pixclk. Testing showed that modes with pixclk
753 * >100MHz need a larger divider while <40MHz need the default.
754 * There is no detailed info in the datasheet, so we just
755 * assume 100MHz requires larger divider.
756 */
757 adiv = AUDIO_DIV_SERCLK_8;
758 if (mode->clock > 100000)
759 adiv++; /* AUDIO_DIV_SERCLK_16 */
760
761 /* S/PDIF asks for a larger divider */
762 if (p->audio_format == AFMT_SPDIF)
763 adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */
764
765 reg_write(priv, REG_AUDIO_DIV, adiv);
766
767 /*
768 * This is the approximate value of N, which happens to be
769 * the recommended values for non-coherent clocks.
770 */
771 n = 128 * p->audio_sample_rate / 1000;
772
773 /* Write the CTS and N values */
774 buf[0] = 0x44;
775 buf[1] = 0x42;
776 buf[2] = 0x01;
777 buf[3] = n;
778 buf[4] = n >> 8;
779 buf[5] = n >> 16;
780 reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
781
782 /* Set CTS clock reference */
783 reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
784
785 /* Reset CTS generator */
786 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
787 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
788
789 /* Write the channel status */
790 buf[0] = IEC958_AES0_CON_NOT_COPYRIGHT;
791 buf[1] = 0x00;
792 buf[2] = IEC958_AES3_CON_FS_NOTID;
793 buf[3] = IEC958_AES4_CON_ORIGFS_NOTID |
794 IEC958_AES4_CON_MAX_WORDLEN_24;
795 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
796
797 tda998x_audio_mute(priv, true);
798 msleep(20);
799 tda998x_audio_mute(priv, false);
800
801 /* Write the audio information packet */
802 tda998x_write_aif(priv, p);
803 }
804
805 /* DRM encoder functions */
806
807 static void tda998x_encoder_set_config(struct tda998x_priv *priv,
808 const struct tda998x_encoder_params *p)
809 {
810 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
811 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
812 VIP_CNTRL_0_SWAP_B(p->swap_b) |
813 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
814 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
815 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
816 VIP_CNTRL_1_SWAP_D(p->swap_d) |
817 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
818 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
819 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
820 VIP_CNTRL_2_SWAP_F(p->swap_f) |
821 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
822
823 priv->params = *p;
824 }
825
826 static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
827 {
828 struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
829
830 /* we only care about on or off: */
831 if (mode != DRM_MODE_DPMS_ON)
832 mode = DRM_MODE_DPMS_OFF;
833
834 if (mode == priv->dpms)
835 return;
836
837 switch (mode) {
838 case DRM_MODE_DPMS_ON:
839 /* enable video ports, audio will be enabled later */
840 reg_write(priv, REG_ENA_VP_0, 0xff);
841 reg_write(priv, REG_ENA_VP_1, 0xff);
842 reg_write(priv, REG_ENA_VP_2, 0xff);
843 /* set muxing after enabling ports: */
844 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
845 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
846 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
847 break;
848 case DRM_MODE_DPMS_OFF:
849 /* disable video ports */
850 reg_write(priv, REG_ENA_VP_0, 0x00);
851 reg_write(priv, REG_ENA_VP_1, 0x00);
852 reg_write(priv, REG_ENA_VP_2, 0x00);
853 break;
854 }
855
856 priv->dpms = mode;
857 }
858
859 static int tda998x_connector_mode_valid(struct drm_connector *connector,
860 struct drm_display_mode *mode)
861 {
862 /* TDA19988 dotclock can go up to 165MHz */
863 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
864
865 if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
866 return MODE_CLOCK_HIGH;
867 if (mode->htotal >= BIT(13))
868 return MODE_BAD_HVALUE;
869 if (mode->vtotal >= BIT(11))
870 return MODE_BAD_VVALUE;
871 return MODE_OK;
872 }
873
874 static void
875 tda998x_encoder_mode_set(struct drm_encoder *encoder,
876 struct drm_display_mode *mode,
877 struct drm_display_mode *adjusted_mode)
878 {
879 struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
880 u16 ref_pix, ref_line, n_pix, n_line;
881 u16 hs_pix_s, hs_pix_e;
882 u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
883 u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
884 u16 vwin1_line_s, vwin1_line_e;
885 u16 vwin2_line_s, vwin2_line_e;
886 u16 de_pix_s, de_pix_e;
887 u8 reg, div, rep;
888
889 /*
890 * Internally TDA998x is using ITU-R BT.656 style sync but
891 * we get VESA style sync. TDA998x is using a reference pixel
892 * relative to ITU to sync to the input frame and for output
893 * sync generation. Currently, we are using reference detection
894 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
895 * which is position of rising VS with coincident rising HS.
896 *
897 * Now there is some issues to take care of:
898 * - HDMI data islands require sync-before-active
899 * - TDA998x register values must be > 0 to be enabled
900 * - REFLINE needs an additional offset of +1
901 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
902 *
903 * So we add +1 to all horizontal and vertical register values,
904 * plus an additional +3 for REFPIX as we are using RGB input only.
905 */
906 n_pix = mode->htotal;
907 n_line = mode->vtotal;
908
909 hs_pix_e = mode->hsync_end - mode->hdisplay;
910 hs_pix_s = mode->hsync_start - mode->hdisplay;
911 de_pix_e = mode->htotal;
912 de_pix_s = mode->htotal - mode->hdisplay;
913 ref_pix = 3 + hs_pix_s;
914
915 /*
916 * Attached LCD controllers may generate broken sync. Allow
917 * those to adjust the position of the rising VS edge by adding
918 * HSKEW to ref_pix.
919 */
920 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
921 ref_pix += adjusted_mode->hskew;
922
923 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
924 ref_line = 1 + mode->vsync_start - mode->vdisplay;
925 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
926 vwin1_line_e = vwin1_line_s + mode->vdisplay;
927 vs1_pix_s = vs1_pix_e = hs_pix_s;
928 vs1_line_s = mode->vsync_start - mode->vdisplay;
929 vs1_line_e = vs1_line_s +
930 mode->vsync_end - mode->vsync_start;
931 vwin2_line_s = vwin2_line_e = 0;
932 vs2_pix_s = vs2_pix_e = 0;
933 vs2_line_s = vs2_line_e = 0;
934 } else {
935 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
936 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
937 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
938 vs1_pix_s = vs1_pix_e = hs_pix_s;
939 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
940 vs1_line_e = vs1_line_s +
941 (mode->vsync_end - mode->vsync_start)/2;
942 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
943 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
944 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
945 vs2_line_s = vs1_line_s + mode->vtotal/2 ;
946 vs2_line_e = vs2_line_s +
947 (mode->vsync_end - mode->vsync_start)/2;
948 }
949
950 div = 148500 / mode->clock;
951 if (div != 0) {
952 div--;
953 if (div > 3)
954 div = 3;
955 }
956
957 /* mute the audio FIFO: */
958 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
959
960 /* set HDMI HDCP mode off: */
961 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
962 reg_clear(priv, REG_TX33, TX33_HDMI);
963 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
964
965 /* no pre-filter or interpolator: */
966 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
967 HVF_CNTRL_0_INTPOL(0));
968 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
969 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
970 VIP_CNTRL_4_BLC(0));
971
972 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
973 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
974 PLL_SERIAL_3_SRL_DE);
975 reg_write(priv, REG_SERIALIZER, 0);
976 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
977
978 /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
979 rep = 0;
980 reg_write(priv, REG_RPT_CNTRL, 0);
981 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
982 SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
983
984 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
985 PLL_SERIAL_2_SRL_PR(rep));
986
987 /* set color matrix bypass flag: */
988 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
989 MAT_CONTRL_MAT_SC(1));
990
991 /* set BIAS tmds value: */
992 reg_write(priv, REG_ANA_GENERAL, 0x09);
993
994 /*
995 * Sync on rising HSYNC/VSYNC
996 */
997 reg = VIP_CNTRL_3_SYNC_HS;
998
999 /*
1000 * TDA19988 requires high-active sync at input stage,
1001 * so invert low-active sync provided by master encoder here
1002 */
1003 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1004 reg |= VIP_CNTRL_3_H_TGL;
1005 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1006 reg |= VIP_CNTRL_3_V_TGL;
1007 reg_write(priv, REG_VIP_CNTRL_3, reg);
1008
1009 reg_write(priv, REG_VIDFORMAT, 0x00);
1010 reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1011 reg_write16(priv, REG_REFLINE_MSB, ref_line);
1012 reg_write16(priv, REG_NPIX_MSB, n_pix);
1013 reg_write16(priv, REG_NLINE_MSB, n_line);
1014 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1015 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1016 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1017 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1018 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1019 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1020 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1021 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1022 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1023 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1024 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1025 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1026 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1027 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1028 reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1029 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1030
1031 if (priv->rev == TDA19988) {
1032 /* let incoming pixels fill the active space (if any) */
1033 reg_write(priv, REG_ENABLE_SPACE, 0x00);
1034 }
1035
1036 /*
1037 * Always generate sync polarity relative to input sync and
1038 * revert input stage toggled sync at output stage
1039 */
1040 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1041 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1042 reg |= TBG_CNTRL_1_H_TGL;
1043 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1044 reg |= TBG_CNTRL_1_V_TGL;
1045 reg_write(priv, REG_TBG_CNTRL_1, reg);
1046
1047 /* must be last register set: */
1048 reg_write(priv, REG_TBG_CNTRL_0, 0);
1049
1050 /* Only setup the info frames if the sink is HDMI */
1051 if (priv->is_hdmi_sink) {
1052 /* We need to turn HDMI HDCP stuff on to get audio through */
1053 reg &= ~TBG_CNTRL_1_DWIN_DIS;
1054 reg_write(priv, REG_TBG_CNTRL_1, reg);
1055 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1056 reg_set(priv, REG_TX33, TX33_HDMI);
1057
1058 tda998x_write_avi(priv, adjusted_mode);
1059
1060 if (priv->params.audio_cfg)
1061 tda998x_configure_audio(priv, adjusted_mode,
1062 &priv->params);
1063 }
1064 }
1065
1066 static enum drm_connector_status
1067 tda998x_connector_detect(struct drm_connector *connector, bool force)
1068 {
1069 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1070 u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1071
1072 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1073 connector_status_disconnected;
1074 }
1075
1076 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1077 {
1078 struct tda998x_priv *priv = data;
1079 u8 offset, segptr;
1080 int ret, i;
1081
1082 offset = (blk & 1) ? 128 : 0;
1083 segptr = blk / 2;
1084
1085 reg_write(priv, REG_DDC_ADDR, 0xa0);
1086 reg_write(priv, REG_DDC_OFFS, offset);
1087 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1088 reg_write(priv, REG_DDC_SEGM, segptr);
1089
1090 /* enable reading EDID: */
1091 priv->wq_edid_wait = 1;
1092 reg_write(priv, REG_EDID_CTRL, 0x1);
1093
1094 /* flag must be cleared by sw: */
1095 reg_write(priv, REG_EDID_CTRL, 0x0);
1096
1097 /* wait for block read to complete: */
1098 if (priv->hdmi->irq) {
1099 i = wait_event_timeout(priv->wq_edid,
1100 !priv->wq_edid_wait,
1101 msecs_to_jiffies(100));
1102 if (i < 0) {
1103 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1104 return i;
1105 }
1106 } else {
1107 for (i = 100; i > 0; i--) {
1108 msleep(1);
1109 ret = reg_read(priv, REG_INT_FLAGS_2);
1110 if (ret < 0)
1111 return ret;
1112 if (ret & INT_FLAGS_2_EDID_BLK_RD)
1113 break;
1114 }
1115 }
1116
1117 if (i == 0) {
1118 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1119 return -ETIMEDOUT;
1120 }
1121
1122 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1123 if (ret != length) {
1124 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1125 blk, ret);
1126 return ret;
1127 }
1128
1129 return 0;
1130 }
1131
1132 static int tda998x_connector_get_modes(struct drm_connector *connector)
1133 {
1134 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1135 struct edid *edid;
1136 int n;
1137
1138 /*
1139 * If we get killed while waiting for the HPD timeout, return
1140 * no modes found: we are not in a restartable path, so we
1141 * can't handle signals gracefully.
1142 */
1143 if (tda998x_edid_delay_wait(priv))
1144 return 0;
1145
1146 if (priv->rev == TDA19988)
1147 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1148
1149 edid = drm_do_get_edid(connector, read_edid_block, priv);
1150
1151 if (priv->rev == TDA19988)
1152 reg_set(priv, REG_TX4, TX4_PD_RAM);
1153
1154 if (!edid) {
1155 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1156 return 0;
1157 }
1158
1159 drm_mode_connector_update_edid_property(connector, edid);
1160 n = drm_add_edid_modes(connector, edid);
1161 priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
1162 kfree(edid);
1163
1164 return n;
1165 }
1166
1167 static void tda998x_encoder_set_polling(struct tda998x_priv *priv,
1168 struct drm_connector *connector)
1169 {
1170 if (priv->hdmi->irq)
1171 connector->polled = DRM_CONNECTOR_POLL_HPD;
1172 else
1173 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1174 DRM_CONNECTOR_POLL_DISCONNECT;
1175 }
1176
1177 static void tda998x_destroy(struct tda998x_priv *priv)
1178 {
1179 /* disable all IRQs and free the IRQ handler */
1180 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1181 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1182
1183 if (priv->hdmi->irq)
1184 free_irq(priv->hdmi->irq, priv);
1185
1186 del_timer_sync(&priv->edid_delay_timer);
1187 cancel_work_sync(&priv->detect_work);
1188
1189 i2c_unregister_device(priv->cec);
1190 }
1191
1192 /* I2C driver functions */
1193
1194 static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv)
1195 {
1196 struct device_node *np = client->dev.of_node;
1197 u32 video;
1198 int rev_lo, rev_hi, ret;
1199 unsigned short cec_addr;
1200
1201 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1202 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1203 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1204
1205 priv->current_page = 0xff;
1206 priv->hdmi = client;
1207 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1208 cec_addr = 0x34 + (client->addr & 0x03);
1209 priv->cec = i2c_new_dummy(client->adapter, cec_addr);
1210 if (!priv->cec)
1211 return -ENODEV;
1212
1213 priv->dpms = DRM_MODE_DPMS_OFF;
1214
1215 mutex_init(&priv->mutex); /* protect the page access */
1216 init_waitqueue_head(&priv->edid_delay_waitq);
1217 setup_timer(&priv->edid_delay_timer, tda998x_edid_delay_done,
1218 (unsigned long)priv);
1219 INIT_WORK(&priv->detect_work, tda998x_detect_work);
1220
1221 /* wake up the device: */
1222 cec_write(priv, REG_CEC_ENAMODS,
1223 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1224
1225 tda998x_reset(priv);
1226
1227 /* read version: */
1228 rev_lo = reg_read(priv, REG_VERSION_LSB);
1229 rev_hi = reg_read(priv, REG_VERSION_MSB);
1230 if (rev_lo < 0 || rev_hi < 0) {
1231 ret = rev_lo < 0 ? rev_lo : rev_hi;
1232 goto fail;
1233 }
1234
1235 priv->rev = rev_lo | rev_hi << 8;
1236
1237 /* mask off feature bits: */
1238 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1239
1240 switch (priv->rev) {
1241 case TDA9989N2:
1242 dev_info(&client->dev, "found TDA9989 n2");
1243 break;
1244 case TDA19989:
1245 dev_info(&client->dev, "found TDA19989");
1246 break;
1247 case TDA19989N2:
1248 dev_info(&client->dev, "found TDA19989 n2");
1249 break;
1250 case TDA19988:
1251 dev_info(&client->dev, "found TDA19988");
1252 break;
1253 default:
1254 dev_err(&client->dev, "found unsupported device: %04x\n",
1255 priv->rev);
1256 goto fail;
1257 }
1258
1259 /* after reset, enable DDC: */
1260 reg_write(priv, REG_DDC_DISABLE, 0x00);
1261
1262 /* set clock on DDC channel: */
1263 reg_write(priv, REG_TX3, 39);
1264
1265 /* if necessary, disable multi-master: */
1266 if (priv->rev == TDA19989)
1267 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1268
1269 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1270 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1271
1272 /* initialize the optional IRQ */
1273 if (client->irq) {
1274 int irqf_trigger;
1275
1276 /* init read EDID waitqueue and HDP work */
1277 init_waitqueue_head(&priv->wq_edid);
1278
1279 /* clear pending interrupts */
1280 reg_read(priv, REG_INT_FLAGS_0);
1281 reg_read(priv, REG_INT_FLAGS_1);
1282 reg_read(priv, REG_INT_FLAGS_2);
1283
1284 irqf_trigger =
1285 irqd_get_trigger_type(irq_get_irq_data(client->irq));
1286 ret = request_threaded_irq(client->irq, NULL,
1287 tda998x_irq_thread,
1288 irqf_trigger | IRQF_ONESHOT,
1289 "tda998x", priv);
1290 if (ret) {
1291 dev_err(&client->dev,
1292 "failed to request IRQ#%u: %d\n",
1293 client->irq, ret);
1294 goto fail;
1295 }
1296
1297 /* enable HPD irq */
1298 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1299 }
1300
1301 /* enable EDID read irq: */
1302 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1303
1304 if (!np)
1305 return 0; /* non-DT */
1306
1307 /* get the optional video properties */
1308 ret = of_property_read_u32(np, "video-ports", &video);
1309 if (ret == 0) {
1310 priv->vip_cntrl_0 = video >> 16;
1311 priv->vip_cntrl_1 = video >> 8;
1312 priv->vip_cntrl_2 = video;
1313 }
1314
1315 return 0;
1316
1317 fail:
1318 /* if encoder_init fails, the encoder slave is never registered,
1319 * so cleanup here:
1320 */
1321 if (priv->cec)
1322 i2c_unregister_device(priv->cec);
1323 return -ENXIO;
1324 }
1325
1326 static void tda998x_encoder_prepare(struct drm_encoder *encoder)
1327 {
1328 tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
1329 }
1330
1331 static void tda998x_encoder_commit(struct drm_encoder *encoder)
1332 {
1333 tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
1334 }
1335
1336 static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = {
1337 .dpms = tda998x_encoder_dpms,
1338 .prepare = tda998x_encoder_prepare,
1339 .commit = tda998x_encoder_commit,
1340 .mode_set = tda998x_encoder_mode_set,
1341 };
1342
1343 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1344 {
1345 struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
1346
1347 tda998x_destroy(priv);
1348 drm_encoder_cleanup(encoder);
1349 }
1350
1351 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
1352 .destroy = tda998x_encoder_destroy,
1353 };
1354
1355 static struct drm_encoder *
1356 tda998x_connector_best_encoder(struct drm_connector *connector)
1357 {
1358 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1359
1360 return &priv->encoder;
1361 }
1362
1363 static
1364 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1365 .get_modes = tda998x_connector_get_modes,
1366 .mode_valid = tda998x_connector_mode_valid,
1367 .best_encoder = tda998x_connector_best_encoder,
1368 };
1369
1370 static void tda998x_connector_destroy(struct drm_connector *connector)
1371 {
1372 drm_connector_unregister(connector);
1373 drm_connector_cleanup(connector);
1374 }
1375
1376 static int tda998x_connector_dpms(struct drm_connector *connector, int mode)
1377 {
1378 if (drm_core_check_feature(connector->dev, DRIVER_ATOMIC))
1379 return drm_atomic_helper_connector_dpms(connector, mode);
1380 else
1381 return drm_helper_connector_dpms(connector, mode);
1382 }
1383
1384 static const struct drm_connector_funcs tda998x_connector_funcs = {
1385 .dpms = tda998x_connector_dpms,
1386 .reset = drm_atomic_helper_connector_reset,
1387 .fill_modes = drm_helper_probe_single_connector_modes,
1388 .detect = tda998x_connector_detect,
1389 .destroy = tda998x_connector_destroy,
1390 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1391 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1392 };
1393
1394 static int tda998x_bind(struct device *dev, struct device *master, void *data)
1395 {
1396 struct tda998x_encoder_params *params = dev->platform_data;
1397 struct i2c_client *client = to_i2c_client(dev);
1398 struct drm_device *drm = data;
1399 struct tda998x_priv *priv;
1400 u32 crtcs = 0;
1401 int ret;
1402
1403 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1404 if (!priv)
1405 return -ENOMEM;
1406
1407 dev_set_drvdata(dev, priv);
1408
1409 if (dev->of_node)
1410 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1411
1412 /* If no CRTCs were found, fall back to our old behaviour */
1413 if (crtcs == 0) {
1414 dev_warn(dev, "Falling back to first CRTC\n");
1415 crtcs = 1 << 0;
1416 }
1417
1418 priv->connector.interlace_allowed = 1;
1419 priv->encoder.possible_crtcs = crtcs;
1420
1421 ret = tda998x_create(client, priv);
1422 if (ret)
1423 return ret;
1424
1425 if (!dev->of_node && params)
1426 tda998x_encoder_set_config(priv, params);
1427
1428 tda998x_encoder_set_polling(priv, &priv->connector);
1429
1430 drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs);
1431 ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
1432 DRM_MODE_ENCODER_TMDS, NULL);
1433 if (ret)
1434 goto err_encoder;
1435
1436 drm_connector_helper_add(&priv->connector,
1437 &tda998x_connector_helper_funcs);
1438 ret = drm_connector_init(drm, &priv->connector,
1439 &tda998x_connector_funcs,
1440 DRM_MODE_CONNECTOR_HDMIA);
1441 if (ret)
1442 goto err_connector;
1443
1444 ret = drm_connector_register(&priv->connector);
1445 if (ret)
1446 goto err_sysfs;
1447
1448 drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder);
1449
1450 return 0;
1451
1452 err_sysfs:
1453 drm_connector_cleanup(&priv->connector);
1454 err_connector:
1455 drm_encoder_cleanup(&priv->encoder);
1456 err_encoder:
1457 tda998x_destroy(priv);
1458 return ret;
1459 }
1460
1461 static void tda998x_unbind(struct device *dev, struct device *master,
1462 void *data)
1463 {
1464 struct tda998x_priv *priv = dev_get_drvdata(dev);
1465
1466 drm_connector_unregister(&priv->connector);
1467 drm_connector_cleanup(&priv->connector);
1468 drm_encoder_cleanup(&priv->encoder);
1469 tda998x_destroy(priv);
1470 }
1471
1472 static const struct component_ops tda998x_ops = {
1473 .bind = tda998x_bind,
1474 .unbind = tda998x_unbind,
1475 };
1476
1477 static int
1478 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1479 {
1480 return component_add(&client->dev, &tda998x_ops);
1481 }
1482
1483 static int tda998x_remove(struct i2c_client *client)
1484 {
1485 component_del(&client->dev, &tda998x_ops);
1486 return 0;
1487 }
1488
1489 #ifdef CONFIG_OF
1490 static const struct of_device_id tda998x_dt_ids[] = {
1491 { .compatible = "nxp,tda998x", },
1492 { }
1493 };
1494 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1495 #endif
1496
1497 static struct i2c_device_id tda998x_ids[] = {
1498 { "tda998x", 0 },
1499 { }
1500 };
1501 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1502
1503 static struct i2c_driver tda998x_driver = {
1504 .probe = tda998x_probe,
1505 .remove = tda998x_remove,
1506 .driver = {
1507 .name = "tda998x",
1508 .of_match_table = of_match_ptr(tda998x_dt_ids),
1509 },
1510 .id_table = tda998x_ids,
1511 };
1512
1513 module_i2c_driver(tda998x_driver);
1514
1515 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1516 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1517 MODULE_LICENSE("GPL");
This page took 0.063211 seconds and 5 git commands to generate.