2b6494b19869c6620171420ed67e05244365f461
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static struct drm_driver driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59 if (i915_load_fail_count >= i915.inject_load_failure)
60 return false;
61
62 if (++i915_load_fail_count == i915.inject_load_failure) {
63 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64 i915.inject_load_failure, func, line);
65 return true;
66 }
67
68 return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73 "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77 const char *fmt, ...)
78 {
79 static bool shown_bug_once;
80 struct device *dev = dev_priv->dev->dev;
81 bool is_error = level[1] <= KERN_ERR[1];
82 bool is_debug = level[1] == KERN_DEBUG[1];
83 struct va_format vaf;
84 va_list args;
85
86 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87 return;
88
89 va_start(args, fmt);
90
91 vaf.fmt = fmt;
92 vaf.va = &args;
93
94 dev_printk(level, dev, "[" DRM_NAME ":%ps] %pV",
95 __builtin_return_address(0), &vaf);
96
97 if (is_error && !shown_bug_once) {
98 dev_notice(dev, "%s", FDO_BUG_MSG);
99 shown_bug_once = true;
100 }
101
102 va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107 return i915.inject_load_failure &&
108 i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...) \
112 __i915_printk(dev_priv, \
113 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114 fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
118 {
119 enum intel_pch ret = PCH_NOP;
120
121 /*
122 * In a virtualized passthrough environment we can be in a
123 * setup where the ISA bridge is not able to be passed through.
124 * In this case, a south bridge can be emulated and we have to
125 * make an educated guess as to which PCH is really there.
126 */
127
128 if (IS_GEN5(dev)) {
129 ret = PCH_IBX;
130 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
132 ret = PCH_CPT;
133 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
135 ret = PCH_LPT;
136 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
138 ret = PCH_SPT;
139 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140 }
141
142 return ret;
143 }
144
145 static void intel_detect_pch(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 struct pci_dev *pch = NULL;
149
150 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151 * (which really amounts to a PCH but no South Display).
152 */
153 if (INTEL_INFO(dev)->num_pipes == 0) {
154 dev_priv->pch_type = PCH_NOP;
155 return;
156 }
157
158 /*
159 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160 * make graphics device passthrough work easy for VMM, that only
161 * need to expose ISA bridge to let driver know the real hardware
162 * underneath. This is a requirement from virtualization team.
163 *
164 * In some virtualized environments (e.g. XEN), there is irrelevant
165 * ISA bridge in the system. To work reliably, we should scan trhough
166 * all the ISA bridge devices and check for the first match, instead
167 * of only checking the first one.
168 */
169 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172 dev_priv->pch_id = id;
173
174 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175 dev_priv->pch_type = PCH_IBX;
176 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177 WARN_ON(!IS_GEN5(dev));
178 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179 dev_priv->pch_type = PCH_CPT;
180 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
182 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
183 /* PantherPoint is CPT compatible */
184 dev_priv->pch_type = PCH_CPT;
185 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
186 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
187 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_LPT;
189 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
190 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
191 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
192 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
193 dev_priv->pch_type = PCH_LPT;
194 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
195 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
196 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
197 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
198 dev_priv->pch_type = PCH_SPT;
199 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
200 WARN_ON(!IS_SKYLAKE(dev) &&
201 !IS_KABYLAKE(dev));
202 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
203 dev_priv->pch_type = PCH_SPT;
204 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
205 WARN_ON(!IS_SKYLAKE(dev) &&
206 !IS_KABYLAKE(dev));
207 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
208 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
209 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
210 pch->subsystem_vendor ==
211 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
212 pch->subsystem_device ==
213 PCI_SUBDEVICE_ID_QEMU)) {
214 dev_priv->pch_type = intel_virt_detect_pch(dev);
215 } else
216 continue;
217
218 break;
219 }
220 }
221 if (!pch)
222 DRM_DEBUG_KMS("No PCH found.\n");
223
224 pci_dev_put(pch);
225 }
226
227 bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv)
228 {
229 if (INTEL_GEN(dev_priv) < 6)
230 return false;
231
232 if (i915.semaphores >= 0)
233 return i915.semaphores;
234
235 /* TODO: make semaphores and Execlists play nicely together */
236 if (i915.enable_execlists)
237 return false;
238
239 #ifdef CONFIG_INTEL_IOMMU
240 /* Enable semaphores on SNB when IO remapping is off */
241 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped)
242 return false;
243 #endif
244
245 return true;
246 }
247
248 static int i915_getparam(struct drm_device *dev, void *data,
249 struct drm_file *file_priv)
250 {
251 struct drm_i915_private *dev_priv = dev->dev_private;
252 drm_i915_getparam_t *param = data;
253 int value;
254
255 switch (param->param) {
256 case I915_PARAM_IRQ_ACTIVE:
257 case I915_PARAM_ALLOW_BATCHBUFFER:
258 case I915_PARAM_LAST_DISPATCH:
259 /* Reject all old ums/dri params. */
260 return -ENODEV;
261 case I915_PARAM_CHIPSET_ID:
262 value = dev->pdev->device;
263 break;
264 case I915_PARAM_REVISION:
265 value = dev->pdev->revision;
266 break;
267 case I915_PARAM_HAS_GEM:
268 value = 1;
269 break;
270 case I915_PARAM_NUM_FENCES_AVAIL:
271 value = dev_priv->num_fence_regs;
272 break;
273 case I915_PARAM_HAS_OVERLAY:
274 value = dev_priv->overlay ? 1 : 0;
275 break;
276 case I915_PARAM_HAS_PAGEFLIPPING:
277 value = 1;
278 break;
279 case I915_PARAM_HAS_EXECBUF2:
280 /* depends on GEM */
281 value = 1;
282 break;
283 case I915_PARAM_HAS_BSD:
284 value = intel_engine_initialized(&dev_priv->engine[VCS]);
285 break;
286 case I915_PARAM_HAS_BLT:
287 value = intel_engine_initialized(&dev_priv->engine[BCS]);
288 break;
289 case I915_PARAM_HAS_VEBOX:
290 value = intel_engine_initialized(&dev_priv->engine[VECS]);
291 break;
292 case I915_PARAM_HAS_BSD2:
293 value = intel_engine_initialized(&dev_priv->engine[VCS2]);
294 break;
295 case I915_PARAM_HAS_RELAXED_FENCING:
296 value = 1;
297 break;
298 case I915_PARAM_HAS_COHERENT_RINGS:
299 value = 1;
300 break;
301 case I915_PARAM_HAS_EXEC_CONSTANTS:
302 value = INTEL_INFO(dev)->gen >= 4;
303 break;
304 case I915_PARAM_HAS_RELAXED_DELTA:
305 value = 1;
306 break;
307 case I915_PARAM_HAS_GEN7_SOL_RESET:
308 value = 1;
309 break;
310 case I915_PARAM_HAS_LLC:
311 value = HAS_LLC(dev);
312 break;
313 case I915_PARAM_HAS_WT:
314 value = HAS_WT(dev);
315 break;
316 case I915_PARAM_HAS_ALIASING_PPGTT:
317 value = USES_PPGTT(dev);
318 break;
319 case I915_PARAM_HAS_WAIT_TIMEOUT:
320 value = 1;
321 break;
322 case I915_PARAM_HAS_SEMAPHORES:
323 value = i915_semaphore_is_enabled(dev_priv);
324 break;
325 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
326 value = 1;
327 break;
328 case I915_PARAM_HAS_SECURE_BATCHES:
329 value = capable(CAP_SYS_ADMIN);
330 break;
331 case I915_PARAM_HAS_PINNED_BATCHES:
332 value = 1;
333 break;
334 case I915_PARAM_HAS_EXEC_NO_RELOC:
335 value = 1;
336 break;
337 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
338 value = 1;
339 break;
340 case I915_PARAM_CMD_PARSER_VERSION:
341 value = i915_cmd_parser_get_version(dev_priv);
342 break;
343 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
344 value = 1;
345 break;
346 case I915_PARAM_MMAP_VERSION:
347 value = 1;
348 break;
349 case I915_PARAM_SUBSLICE_TOTAL:
350 value = INTEL_INFO(dev)->subslice_total;
351 if (!value)
352 return -ENODEV;
353 break;
354 case I915_PARAM_EU_TOTAL:
355 value = INTEL_INFO(dev)->eu_total;
356 if (!value)
357 return -ENODEV;
358 break;
359 case I915_PARAM_HAS_GPU_RESET:
360 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
361 break;
362 case I915_PARAM_HAS_RESOURCE_STREAMER:
363 value = HAS_RESOURCE_STREAMER(dev);
364 break;
365 case I915_PARAM_HAS_EXEC_SOFTPIN:
366 value = 1;
367 break;
368 case I915_PARAM_HAS_POOLED_EU:
369 value = HAS_POOLED_EU(dev);
370 break;
371 case I915_PARAM_MIN_EU_IN_POOL:
372 value = INTEL_INFO(dev)->min_eu_in_pool;
373 break;
374 default:
375 DRM_DEBUG("Unknown parameter %d\n", param->param);
376 return -EINVAL;
377 }
378
379 if (put_user(value, param->value))
380 return -EFAULT;
381
382 return 0;
383 }
384
385 static int i915_get_bridge_dev(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
390 if (!dev_priv->bridge_dev) {
391 DRM_ERROR("bridge device not found\n");
392 return -1;
393 }
394 return 0;
395 }
396
397 /* Allocate space for the MCH regs if needed, return nonzero on error */
398 static int
399 intel_alloc_mchbar_resource(struct drm_device *dev)
400 {
401 struct drm_i915_private *dev_priv = dev->dev_private;
402 int reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
403 u32 temp_lo, temp_hi = 0;
404 u64 mchbar_addr;
405 int ret;
406
407 if (INTEL_INFO(dev)->gen >= 4)
408 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
409 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
410 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
411
412 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
413 #ifdef CONFIG_PNP
414 if (mchbar_addr &&
415 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
416 return 0;
417 #endif
418
419 /* Get some space for it */
420 dev_priv->mch_res.name = "i915 MCHBAR";
421 dev_priv->mch_res.flags = IORESOURCE_MEM;
422 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
423 &dev_priv->mch_res,
424 MCHBAR_SIZE, MCHBAR_SIZE,
425 PCIBIOS_MIN_MEM,
426 0, pcibios_align_resource,
427 dev_priv->bridge_dev);
428 if (ret) {
429 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
430 dev_priv->mch_res.start = 0;
431 return ret;
432 }
433
434 if (INTEL_INFO(dev)->gen >= 4)
435 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
436 upper_32_bits(dev_priv->mch_res.start));
437
438 pci_write_config_dword(dev_priv->bridge_dev, reg,
439 lower_32_bits(dev_priv->mch_res.start));
440 return 0;
441 }
442
443 /* Setup MCHBAR if possible, return true if we should disable it again */
444 static void
445 intel_setup_mchbar(struct drm_device *dev)
446 {
447 struct drm_i915_private *dev_priv = dev->dev_private;
448 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
449 u32 temp;
450 bool enabled;
451
452 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
453 return;
454
455 dev_priv->mchbar_need_disable = false;
456
457 if (IS_I915G(dev) || IS_I915GM(dev)) {
458 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
459 enabled = !!(temp & DEVEN_MCHBAR_EN);
460 } else {
461 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
462 enabled = temp & 1;
463 }
464
465 /* If it's already enabled, don't have to do anything */
466 if (enabled)
467 return;
468
469 if (intel_alloc_mchbar_resource(dev))
470 return;
471
472 dev_priv->mchbar_need_disable = true;
473
474 /* Space is allocated or reserved, so enable it. */
475 if (IS_I915G(dev) || IS_I915GM(dev)) {
476 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
477 temp | DEVEN_MCHBAR_EN);
478 } else {
479 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
480 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
481 }
482 }
483
484 static void
485 intel_teardown_mchbar(struct drm_device *dev)
486 {
487 struct drm_i915_private *dev_priv = dev->dev_private;
488 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
489
490 if (dev_priv->mchbar_need_disable) {
491 if (IS_I915G(dev) || IS_I915GM(dev)) {
492 u32 deven_val;
493
494 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
495 &deven_val);
496 deven_val &= ~DEVEN_MCHBAR_EN;
497 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
498 deven_val);
499 } else {
500 u32 mchbar_val;
501
502 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
503 &mchbar_val);
504 mchbar_val &= ~1;
505 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
506 mchbar_val);
507 }
508 }
509
510 if (dev_priv->mch_res.start)
511 release_resource(&dev_priv->mch_res);
512 }
513
514 /* true = enable decode, false = disable decoder */
515 static unsigned int i915_vga_set_decode(void *cookie, bool state)
516 {
517 struct drm_device *dev = cookie;
518
519 intel_modeset_vga_set_state(dev, state);
520 if (state)
521 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
522 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
523 else
524 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
525 }
526
527 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
528 {
529 struct drm_device *dev = pci_get_drvdata(pdev);
530 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
531
532 if (state == VGA_SWITCHEROO_ON) {
533 pr_info("switched on\n");
534 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
535 /* i915 resume handler doesn't set to D0 */
536 pci_set_power_state(dev->pdev, PCI_D0);
537 i915_resume_switcheroo(dev);
538 dev->switch_power_state = DRM_SWITCH_POWER_ON;
539 } else {
540 pr_info("switched off\n");
541 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
542 i915_suspend_switcheroo(dev, pmm);
543 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
544 }
545 }
546
547 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
548 {
549 struct drm_device *dev = pci_get_drvdata(pdev);
550
551 /*
552 * FIXME: open_count is protected by drm_global_mutex but that would lead to
553 * locking inversion with the driver load path. And the access here is
554 * completely racy anyway. So don't bother with locking for now.
555 */
556 return dev->open_count == 0;
557 }
558
559 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
560 .set_gpu_state = i915_switcheroo_set_state,
561 .reprobe = NULL,
562 .can_switch = i915_switcheroo_can_switch,
563 };
564
565 static void i915_gem_fini(struct drm_device *dev)
566 {
567 struct drm_i915_private *dev_priv = to_i915(dev);
568
569 /*
570 * Neither the BIOS, ourselves or any other kernel
571 * expects the system to be in execlists mode on startup,
572 * so we need to reset the GPU back to legacy mode. And the only
573 * known way to disable logical contexts is through a GPU reset.
574 *
575 * So in order to leave the system in a known default configuration,
576 * always reset the GPU upon unload. Afterwards we then clean up the
577 * GEM state tracking, flushing off the requests and leaving the
578 * system in a known idle state.
579 *
580 * Note that is of the upmost importance that the GPU is idle and
581 * all stray writes are flushed *before* we dismantle the backing
582 * storage for the pinned objects.
583 *
584 * However, since we are uncertain that reseting the GPU on older
585 * machines is a good idea, we don't - just in case it leaves the
586 * machine in an unusable condition.
587 */
588 if (HAS_HW_CONTEXTS(dev)) {
589 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
590 WARN_ON(reset && reset != -ENODEV);
591 }
592
593 mutex_lock(&dev->struct_mutex);
594 i915_gem_reset(dev);
595 i915_gem_cleanup_engines(dev);
596 i915_gem_context_fini(dev);
597 mutex_unlock(&dev->struct_mutex);
598
599 WARN_ON(!list_empty(&to_i915(dev)->context_list));
600 }
601
602 static int i915_load_modeset_init(struct drm_device *dev)
603 {
604 struct drm_i915_private *dev_priv = dev->dev_private;
605 int ret;
606
607 if (i915_inject_load_failure())
608 return -ENODEV;
609
610 ret = intel_bios_init(dev_priv);
611 if (ret)
612 DRM_INFO("failed to find VBIOS tables\n");
613
614 /* If we have > 1 VGA cards, then we need to arbitrate access
615 * to the common VGA resources.
616 *
617 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
618 * then we do not take part in VGA arbitration and the
619 * vga_client_register() fails with -ENODEV.
620 */
621 ret = vga_client_register(dev->pdev, dev, NULL, i915_vga_set_decode);
622 if (ret && ret != -ENODEV)
623 goto out;
624
625 intel_register_dsm_handler();
626
627 ret = vga_switcheroo_register_client(dev->pdev, &i915_switcheroo_ops, false);
628 if (ret)
629 goto cleanup_vga_client;
630
631 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
632 intel_update_rawclk(dev_priv);
633
634 intel_power_domains_init_hw(dev_priv, false);
635
636 intel_csr_ucode_init(dev_priv);
637
638 ret = intel_irq_install(dev_priv);
639 if (ret)
640 goto cleanup_csr;
641
642 intel_setup_gmbus(dev);
643
644 /* Important: The output setup functions called by modeset_init need
645 * working irqs for e.g. gmbus and dp aux transfers. */
646 intel_modeset_init(dev);
647
648 intel_guc_init(dev);
649
650 ret = i915_gem_init(dev);
651 if (ret)
652 goto cleanup_irq;
653
654 intel_modeset_gem_init(dev);
655
656 if (INTEL_INFO(dev)->num_pipes == 0)
657 return 0;
658
659 ret = intel_fbdev_init(dev);
660 if (ret)
661 goto cleanup_gem;
662
663 /* Only enable hotplug handling once the fbdev is fully set up. */
664 intel_hpd_init(dev_priv);
665
666 drm_kms_helper_poll_init(dev);
667
668 return 0;
669
670 cleanup_gem:
671 i915_gem_fini(dev);
672 cleanup_irq:
673 intel_guc_fini(dev);
674 drm_irq_uninstall(dev);
675 intel_teardown_gmbus(dev);
676 cleanup_csr:
677 intel_csr_ucode_fini(dev_priv);
678 intel_power_domains_fini(dev_priv);
679 vga_switcheroo_unregister_client(dev->pdev);
680 cleanup_vga_client:
681 vga_client_register(dev->pdev, NULL, NULL, NULL);
682 out:
683 return ret;
684 }
685
686 #if IS_ENABLED(CONFIG_FB)
687 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
688 {
689 struct apertures_struct *ap;
690 struct pci_dev *pdev = dev_priv->dev->pdev;
691 struct i915_ggtt *ggtt = &dev_priv->ggtt;
692 bool primary;
693 int ret;
694
695 ap = alloc_apertures(1);
696 if (!ap)
697 return -ENOMEM;
698
699 ap->ranges[0].base = ggtt->mappable_base;
700 ap->ranges[0].size = ggtt->mappable_end;
701
702 primary =
703 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
704
705 ret = remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
706
707 kfree(ap);
708
709 return ret;
710 }
711 #else
712 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
713 {
714 return 0;
715 }
716 #endif
717
718 #if !defined(CONFIG_VGA_CONSOLE)
719 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
720 {
721 return 0;
722 }
723 #elif !defined(CONFIG_DUMMY_CONSOLE)
724 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
725 {
726 return -ENODEV;
727 }
728 #else
729 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
730 {
731 int ret = 0;
732
733 DRM_INFO("Replacing VGA console driver\n");
734
735 console_lock();
736 if (con_is_bound(&vga_con))
737 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
738 if (ret == 0) {
739 ret = do_unregister_con_driver(&vga_con);
740
741 /* Ignore "already unregistered". */
742 if (ret == -ENODEV)
743 ret = 0;
744 }
745 console_unlock();
746
747 return ret;
748 }
749 #endif
750
751 static void i915_dump_device_info(struct drm_i915_private *dev_priv)
752 {
753 const struct intel_device_info *info = &dev_priv->info;
754
755 #define PRINT_S(name) "%s"
756 #define SEP_EMPTY
757 #define PRINT_FLAG(name) info->name ? #name "," : ""
758 #define SEP_COMMA ,
759 DRM_DEBUG_DRIVER("i915 device info: gen=%i, pciid=0x%04x rev=0x%02x flags="
760 DEV_INFO_FOR_EACH_FLAG(PRINT_S, SEP_EMPTY),
761 info->gen,
762 dev_priv->dev->pdev->device,
763 dev_priv->dev->pdev->revision,
764 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_COMMA));
765 #undef PRINT_S
766 #undef SEP_EMPTY
767 #undef PRINT_FLAG
768 #undef SEP_COMMA
769 }
770
771 static void cherryview_sseu_info_init(struct drm_device *dev)
772 {
773 struct drm_i915_private *dev_priv = dev->dev_private;
774 struct intel_device_info *info;
775 u32 fuse, eu_dis;
776
777 info = (struct intel_device_info *)&dev_priv->info;
778 fuse = I915_READ(CHV_FUSE_GT);
779
780 info->slice_total = 1;
781
782 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
783 info->subslice_per_slice++;
784 eu_dis = fuse & (CHV_FGT_EU_DIS_SS0_R0_MASK |
785 CHV_FGT_EU_DIS_SS0_R1_MASK);
786 info->eu_total += 8 - hweight32(eu_dis);
787 }
788
789 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
790 info->subslice_per_slice++;
791 eu_dis = fuse & (CHV_FGT_EU_DIS_SS1_R0_MASK |
792 CHV_FGT_EU_DIS_SS1_R1_MASK);
793 info->eu_total += 8 - hweight32(eu_dis);
794 }
795
796 info->subslice_total = info->subslice_per_slice;
797 /*
798 * CHV expected to always have a uniform distribution of EU
799 * across subslices.
800 */
801 info->eu_per_subslice = info->subslice_total ?
802 info->eu_total / info->subslice_total :
803 0;
804 /*
805 * CHV supports subslice power gating on devices with more than
806 * one subslice, and supports EU power gating on devices with
807 * more than one EU pair per subslice.
808 */
809 info->has_slice_pg = 0;
810 info->has_subslice_pg = (info->subslice_total > 1);
811 info->has_eu_pg = (info->eu_per_subslice > 2);
812 }
813
814 static void gen9_sseu_info_init(struct drm_device *dev)
815 {
816 struct drm_i915_private *dev_priv = dev->dev_private;
817 struct intel_device_info *info;
818 int s_max = 3, ss_max = 4, eu_max = 8;
819 int s, ss;
820 u32 fuse2, s_enable, ss_disable, eu_disable;
821 u8 eu_mask = 0xff;
822
823 info = (struct intel_device_info *)&dev_priv->info;
824 fuse2 = I915_READ(GEN8_FUSE2);
825 s_enable = (fuse2 & GEN8_F2_S_ENA_MASK) >>
826 GEN8_F2_S_ENA_SHIFT;
827 ss_disable = (fuse2 & GEN9_F2_SS_DIS_MASK) >>
828 GEN9_F2_SS_DIS_SHIFT;
829
830 info->slice_total = hweight32(s_enable);
831 /*
832 * The subslice disable field is global, i.e. it applies
833 * to each of the enabled slices.
834 */
835 info->subslice_per_slice = ss_max - hweight32(ss_disable);
836 info->subslice_total = info->slice_total *
837 info->subslice_per_slice;
838
839 /*
840 * Iterate through enabled slices and subslices to
841 * count the total enabled EU.
842 */
843 for (s = 0; s < s_max; s++) {
844 if (!(s_enable & (0x1 << s)))
845 /* skip disabled slice */
846 continue;
847
848 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
849 for (ss = 0; ss < ss_max; ss++) {
850 int eu_per_ss;
851
852 if (ss_disable & (0x1 << ss))
853 /* skip disabled subslice */
854 continue;
855
856 eu_per_ss = eu_max - hweight8((eu_disable >> (ss*8)) &
857 eu_mask);
858
859 /*
860 * Record which subslice(s) has(have) 7 EUs. we
861 * can tune the hash used to spread work among
862 * subslices if they are unbalanced.
863 */
864 if (eu_per_ss == 7)
865 info->subslice_7eu[s] |= 1 << ss;
866
867 info->eu_total += eu_per_ss;
868 }
869 }
870
871 /*
872 * SKL is expected to always have a uniform distribution
873 * of EU across subslices with the exception that any one
874 * EU in any one subslice may be fused off for die
875 * recovery. BXT is expected to be perfectly uniform in EU
876 * distribution.
877 */
878 info->eu_per_subslice = info->subslice_total ?
879 DIV_ROUND_UP(info->eu_total,
880 info->subslice_total) : 0;
881 /*
882 * SKL supports slice power gating on devices with more than
883 * one slice, and supports EU power gating on devices with
884 * more than one EU pair per subslice. BXT supports subslice
885 * power gating on devices with more than one subslice, and
886 * supports EU power gating on devices with more than one EU
887 * pair per subslice.
888 */
889 info->has_slice_pg = ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
890 (info->slice_total > 1));
891 info->has_subslice_pg = (IS_BROXTON(dev) && (info->subslice_total > 1));
892 info->has_eu_pg = (info->eu_per_subslice > 2);
893
894 if (IS_BROXTON(dev)) {
895 #define IS_SS_DISABLED(_ss_disable, ss) (_ss_disable & (0x1 << ss))
896 /*
897 * There is a HW issue in 2x6 fused down parts that requires
898 * Pooled EU to be enabled as a WA. The pool configuration
899 * changes depending upon which subslice is fused down. This
900 * doesn't affect if the device has all 3 subslices enabled.
901 */
902 /* WaEnablePooledEuFor2x6:bxt */
903 info->has_pooled_eu = ((info->subslice_per_slice == 3) ||
904 (info->subslice_per_slice == 2 &&
905 INTEL_REVID(dev) < BXT_REVID_C0));
906
907 info->min_eu_in_pool = 0;
908 if (info->has_pooled_eu) {
909 if (IS_SS_DISABLED(ss_disable, 0) ||
910 IS_SS_DISABLED(ss_disable, 2))
911 info->min_eu_in_pool = 3;
912 else if (IS_SS_DISABLED(ss_disable, 1))
913 info->min_eu_in_pool = 6;
914 else
915 info->min_eu_in_pool = 9;
916 }
917 #undef IS_SS_DISABLED
918 }
919 }
920
921 static void broadwell_sseu_info_init(struct drm_device *dev)
922 {
923 struct drm_i915_private *dev_priv = dev->dev_private;
924 struct intel_device_info *info;
925 const int s_max = 3, ss_max = 3, eu_max = 8;
926 int s, ss;
927 u32 fuse2, eu_disable[s_max], s_enable, ss_disable;
928
929 fuse2 = I915_READ(GEN8_FUSE2);
930 s_enable = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
931 ss_disable = (fuse2 & GEN8_F2_SS_DIS_MASK) >> GEN8_F2_SS_DIS_SHIFT;
932
933 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
934 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
935 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
936 (32 - GEN8_EU_DIS0_S1_SHIFT));
937 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
938 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
939 (32 - GEN8_EU_DIS1_S2_SHIFT));
940
941
942 info = (struct intel_device_info *)&dev_priv->info;
943 info->slice_total = hweight32(s_enable);
944
945 /*
946 * The subslice disable field is global, i.e. it applies
947 * to each of the enabled slices.
948 */
949 info->subslice_per_slice = ss_max - hweight32(ss_disable);
950 info->subslice_total = info->slice_total * info->subslice_per_slice;
951
952 /*
953 * Iterate through enabled slices and subslices to
954 * count the total enabled EU.
955 */
956 for (s = 0; s < s_max; s++) {
957 if (!(s_enable & (0x1 << s)))
958 /* skip disabled slice */
959 continue;
960
961 for (ss = 0; ss < ss_max; ss++) {
962 u32 n_disabled;
963
964 if (ss_disable & (0x1 << ss))
965 /* skip disabled subslice */
966 continue;
967
968 n_disabled = hweight8(eu_disable[s] >> (ss * eu_max));
969
970 /*
971 * Record which subslices have 7 EUs.
972 */
973 if (eu_max - n_disabled == 7)
974 info->subslice_7eu[s] |= 1 << ss;
975
976 info->eu_total += eu_max - n_disabled;
977 }
978 }
979
980 /*
981 * BDW is expected to always have a uniform distribution of EU across
982 * subslices with the exception that any one EU in any one subslice may
983 * be fused off for die recovery.
984 */
985 info->eu_per_subslice = info->subslice_total ?
986 DIV_ROUND_UP(info->eu_total, info->subslice_total) : 0;
987
988 /*
989 * BDW supports slice power gating on devices with more than
990 * one slice.
991 */
992 info->has_slice_pg = (info->slice_total > 1);
993 info->has_subslice_pg = 0;
994 info->has_eu_pg = 0;
995 }
996
997 /*
998 * Determine various intel_device_info fields at runtime.
999 *
1000 * Use it when either:
1001 * - it's judged too laborious to fill n static structures with the limit
1002 * when a simple if statement does the job,
1003 * - run-time checks (eg read fuse/strap registers) are needed.
1004 *
1005 * This function needs to be called:
1006 * - after the MMIO has been setup as we are reading registers,
1007 * - after the PCH has been detected,
1008 * - before the first usage of the fields it can tweak.
1009 */
1010 static void intel_device_info_runtime_init(struct drm_device *dev)
1011 {
1012 struct drm_i915_private *dev_priv = dev->dev_private;
1013 struct intel_device_info *info;
1014 enum pipe pipe;
1015
1016 info = (struct intel_device_info *)&dev_priv->info;
1017
1018 /*
1019 * Skylake and Broxton currently don't expose the topmost plane as its
1020 * use is exclusive with the legacy cursor and we only want to expose
1021 * one of those, not both. Until we can safely expose the topmost plane
1022 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
1023 * we don't expose the topmost plane at all to prevent ABI breakage
1024 * down the line.
1025 */
1026 if (IS_BROXTON(dev)) {
1027 info->num_sprites[PIPE_A] = 2;
1028 info->num_sprites[PIPE_B] = 2;
1029 info->num_sprites[PIPE_C] = 1;
1030 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1031 for_each_pipe(dev_priv, pipe)
1032 info->num_sprites[pipe] = 2;
1033 else
1034 for_each_pipe(dev_priv, pipe)
1035 info->num_sprites[pipe] = 1;
1036
1037 if (i915.disable_display) {
1038 DRM_INFO("Display disabled (module parameter)\n");
1039 info->num_pipes = 0;
1040 } else if (info->num_pipes > 0 &&
1041 (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
1042 HAS_PCH_SPLIT(dev)) {
1043 u32 fuse_strap = I915_READ(FUSE_STRAP);
1044 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
1045
1046 /*
1047 * SFUSE_STRAP is supposed to have a bit signalling the display
1048 * is fused off. Unfortunately it seems that, at least in
1049 * certain cases, fused off display means that PCH display
1050 * reads don't land anywhere. In that case, we read 0s.
1051 *
1052 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
1053 * should be set when taking over after the firmware.
1054 */
1055 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
1056 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
1057 (dev_priv->pch_type == PCH_CPT &&
1058 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
1059 DRM_INFO("Display fused off, disabling\n");
1060 info->num_pipes = 0;
1061 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
1062 DRM_INFO("PipeC fused off\n");
1063 info->num_pipes -= 1;
1064 }
1065 } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
1066 u32 dfsm = I915_READ(SKL_DFSM);
1067 u8 disabled_mask = 0;
1068 bool invalid;
1069 int num_bits;
1070
1071 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
1072 disabled_mask |= BIT(PIPE_A);
1073 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
1074 disabled_mask |= BIT(PIPE_B);
1075 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
1076 disabled_mask |= BIT(PIPE_C);
1077
1078 num_bits = hweight8(disabled_mask);
1079
1080 switch (disabled_mask) {
1081 case BIT(PIPE_A):
1082 case BIT(PIPE_B):
1083 case BIT(PIPE_A) | BIT(PIPE_B):
1084 case BIT(PIPE_A) | BIT(PIPE_C):
1085 invalid = true;
1086 break;
1087 default:
1088 invalid = false;
1089 }
1090
1091 if (num_bits > info->num_pipes || invalid)
1092 DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
1093 disabled_mask);
1094 else
1095 info->num_pipes -= num_bits;
1096 }
1097
1098 /* Initialize slice/subslice/EU info */
1099 if (IS_CHERRYVIEW(dev))
1100 cherryview_sseu_info_init(dev);
1101 else if (IS_BROADWELL(dev))
1102 broadwell_sseu_info_init(dev);
1103 else if (INTEL_INFO(dev)->gen >= 9)
1104 gen9_sseu_info_init(dev);
1105
1106 info->has_snoop = !info->has_llc;
1107
1108 /* Snooping is broken on BXT A stepping. */
1109 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1110 info->has_snoop = false;
1111
1112 DRM_DEBUG_DRIVER("slice total: %u\n", info->slice_total);
1113 DRM_DEBUG_DRIVER("subslice total: %u\n", info->subslice_total);
1114 DRM_DEBUG_DRIVER("subslice per slice: %u\n", info->subslice_per_slice);
1115 DRM_DEBUG_DRIVER("EU total: %u\n", info->eu_total);
1116 DRM_DEBUG_DRIVER("EU per subslice: %u\n", info->eu_per_subslice);
1117 DRM_DEBUG_DRIVER("has slice power gating: %s\n",
1118 info->has_slice_pg ? "y" : "n");
1119 DRM_DEBUG_DRIVER("has subslice power gating: %s\n",
1120 info->has_subslice_pg ? "y" : "n");
1121 DRM_DEBUG_DRIVER("has EU power gating: %s\n",
1122 info->has_eu_pg ? "y" : "n");
1123
1124 i915.enable_execlists =
1125 intel_sanitize_enable_execlists(dev_priv,
1126 i915.enable_execlists);
1127
1128 /*
1129 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1130 * user's requested state against the hardware/driver capabilities. We
1131 * do this now so that we can print out any log messages once rather
1132 * than every time we check intel_enable_ppgtt().
1133 */
1134 i915.enable_ppgtt =
1135 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
1136 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
1137 }
1138
1139 static void intel_init_dpio(struct drm_i915_private *dev_priv)
1140 {
1141 /*
1142 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1143 * CHV x1 PHY (DP/HDMI D)
1144 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1145 */
1146 if (IS_CHERRYVIEW(dev_priv)) {
1147 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1148 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1149 } else if (IS_VALLEYVIEW(dev_priv)) {
1150 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1151 }
1152 }
1153
1154 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
1155 {
1156 /*
1157 * The i915 workqueue is primarily used for batched retirement of
1158 * requests (and thus managing bo) once the task has been completed
1159 * by the GPU. i915_gem_retire_requests() is called directly when we
1160 * need high-priority retirement, such as waiting for an explicit
1161 * bo.
1162 *
1163 * It is also used for periodic low-priority events, such as
1164 * idle-timers and recording error state.
1165 *
1166 * All tasks on the workqueue are expected to acquire the dev mutex
1167 * so there is no point in running more than one instance of the
1168 * workqueue at any time. Use an ordered one.
1169 */
1170 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
1171 if (dev_priv->wq == NULL)
1172 goto out_err;
1173
1174 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
1175 if (dev_priv->hotplug.dp_wq == NULL)
1176 goto out_free_wq;
1177
1178 return 0;
1179
1180 out_free_wq:
1181 destroy_workqueue(dev_priv->wq);
1182 out_err:
1183 DRM_ERROR("Failed to allocate workqueues.\n");
1184
1185 return -ENOMEM;
1186 }
1187
1188 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
1189 {
1190 destroy_workqueue(dev_priv->hotplug.dp_wq);
1191 destroy_workqueue(dev_priv->wq);
1192 }
1193
1194 /**
1195 * i915_driver_init_early - setup state not requiring device access
1196 * @dev_priv: device private
1197 *
1198 * Initialize everything that is a "SW-only" state, that is state not
1199 * requiring accessing the device or exposing the driver via kernel internal
1200 * or userspace interfaces. Example steps belonging here: lock initialization,
1201 * system memory allocation, setting up device specific attributes and
1202 * function hooks not requiring accessing the device.
1203 */
1204 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
1205 const struct pci_device_id *ent)
1206 {
1207 const struct intel_device_info *match_info =
1208 (struct intel_device_info *)ent->driver_data;
1209 struct intel_device_info *device_info;
1210 int ret = 0;
1211
1212 if (i915_inject_load_failure())
1213 return -ENODEV;
1214
1215 /* Setup the write-once "constant" device info */
1216 device_info = (struct intel_device_info *)&dev_priv->info;
1217 memcpy(device_info, match_info, sizeof(*device_info));
1218 device_info->device_id = dev_priv->drm.pdev->device;
1219
1220 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
1221 device_info->gen_mask = BIT(device_info->gen - 1);
1222
1223 spin_lock_init(&dev_priv->irq_lock);
1224 spin_lock_init(&dev_priv->gpu_error.lock);
1225 mutex_init(&dev_priv->backlight_lock);
1226 spin_lock_init(&dev_priv->uncore.lock);
1227 spin_lock_init(&dev_priv->mm.object_stat_lock);
1228 spin_lock_init(&dev_priv->mmio_flip_lock);
1229 mutex_init(&dev_priv->sb_lock);
1230 mutex_init(&dev_priv->modeset_restore_lock);
1231 mutex_init(&dev_priv->av_mutex);
1232 mutex_init(&dev_priv->wm.wm_mutex);
1233 mutex_init(&dev_priv->pps_mutex);
1234
1235 ret = i915_workqueues_init(dev_priv);
1236 if (ret < 0)
1237 return ret;
1238
1239 ret = intel_gvt_init(dev_priv);
1240 if (ret < 0)
1241 goto err_workqueues;
1242
1243 /* This must be called before any calls to HAS_PCH_* */
1244 intel_detect_pch(&dev_priv->drm);
1245
1246 intel_pm_setup(&dev_priv->drm);
1247 intel_init_dpio(dev_priv);
1248 intel_power_domains_init(dev_priv);
1249 intel_irq_init(dev_priv);
1250 intel_init_display_hooks(dev_priv);
1251 intel_init_clock_gating_hooks(dev_priv);
1252 intel_init_audio_hooks(dev_priv);
1253 i915_gem_load_init(&dev_priv->drm);
1254
1255 intel_display_crc_init(&dev_priv->drm);
1256
1257 i915_dump_device_info(dev_priv);
1258
1259 /* Not all pre-production machines fall into this category, only the
1260 * very first ones. Almost everything should work, except for maybe
1261 * suspend/resume. And we don't implement workarounds that affect only
1262 * pre-production machines. */
1263 if (IS_HSW_EARLY_SDV(dev_priv))
1264 DRM_INFO("This is an early pre-production Haswell machine. "
1265 "It may not be fully functional.\n");
1266
1267 return 0;
1268
1269 err_workqueues:
1270 i915_workqueues_cleanup(dev_priv);
1271 return ret;
1272 }
1273
1274 /**
1275 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
1276 * @dev_priv: device private
1277 */
1278 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
1279 {
1280 i915_gem_load_cleanup(dev_priv->dev);
1281 i915_workqueues_cleanup(dev_priv);
1282 }
1283
1284 static int i915_mmio_setup(struct drm_device *dev)
1285 {
1286 struct drm_i915_private *dev_priv = to_i915(dev);
1287 int mmio_bar;
1288 int mmio_size;
1289
1290 mmio_bar = IS_GEN2(dev) ? 1 : 0;
1291 /*
1292 * Before gen4, the registers and the GTT are behind different BARs.
1293 * However, from gen4 onwards, the registers and the GTT are shared
1294 * in the same BAR, so we want to restrict this ioremap from
1295 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
1296 * the register BAR remains the same size for all the earlier
1297 * generations up to Ironlake.
1298 */
1299 if (INTEL_INFO(dev)->gen < 5)
1300 mmio_size = 512 * 1024;
1301 else
1302 mmio_size = 2 * 1024 * 1024;
1303 dev_priv->regs = pci_iomap(dev->pdev, mmio_bar, mmio_size);
1304 if (dev_priv->regs == NULL) {
1305 DRM_ERROR("failed to map registers\n");
1306
1307 return -EIO;
1308 }
1309
1310 /* Try to make sure MCHBAR is enabled before poking at it */
1311 intel_setup_mchbar(dev);
1312
1313 return 0;
1314 }
1315
1316 static void i915_mmio_cleanup(struct drm_device *dev)
1317 {
1318 struct drm_i915_private *dev_priv = to_i915(dev);
1319
1320 intel_teardown_mchbar(dev);
1321 pci_iounmap(dev->pdev, dev_priv->regs);
1322 }
1323
1324 /**
1325 * i915_driver_init_mmio - setup device MMIO
1326 * @dev_priv: device private
1327 *
1328 * Setup minimal device state necessary for MMIO accesses later in the
1329 * initialization sequence. The setup here should avoid any other device-wide
1330 * side effects or exposing the driver via kernel internal or user space
1331 * interfaces.
1332 */
1333 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1334 {
1335 struct drm_device *dev = dev_priv->dev;
1336 int ret;
1337
1338 if (i915_inject_load_failure())
1339 return -ENODEV;
1340
1341 if (i915_get_bridge_dev(dev))
1342 return -EIO;
1343
1344 ret = i915_mmio_setup(dev);
1345 if (ret < 0)
1346 goto put_bridge;
1347
1348 intel_uncore_init(dev_priv);
1349
1350 return 0;
1351
1352 put_bridge:
1353 pci_dev_put(dev_priv->bridge_dev);
1354
1355 return ret;
1356 }
1357
1358 /**
1359 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1360 * @dev_priv: device private
1361 */
1362 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1363 {
1364 struct drm_device *dev = dev_priv->dev;
1365
1366 intel_uncore_fini(dev_priv);
1367 i915_mmio_cleanup(dev);
1368 pci_dev_put(dev_priv->bridge_dev);
1369 }
1370
1371 /**
1372 * i915_driver_init_hw - setup state requiring device access
1373 * @dev_priv: device private
1374 *
1375 * Setup state that requires accessing the device, but doesn't require
1376 * exposing the driver via kernel internal or userspace interfaces.
1377 */
1378 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1379 {
1380 struct drm_device *dev = dev_priv->dev;
1381 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1382 uint32_t aperture_size;
1383 int ret;
1384
1385 if (i915_inject_load_failure())
1386 return -ENODEV;
1387
1388 intel_device_info_runtime_init(dev);
1389
1390 ret = i915_ggtt_init_hw(dev);
1391 if (ret)
1392 return ret;
1393
1394 ret = i915_ggtt_enable_hw(dev);
1395 if (ret) {
1396 DRM_ERROR("failed to enable GGTT\n");
1397 goto out_ggtt;
1398 }
1399
1400 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1401 * otherwise the vga fbdev driver falls over. */
1402 ret = i915_kick_out_firmware_fb(dev_priv);
1403 if (ret) {
1404 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1405 goto out_ggtt;
1406 }
1407
1408 ret = i915_kick_out_vgacon(dev_priv);
1409 if (ret) {
1410 DRM_ERROR("failed to remove conflicting VGA console\n");
1411 goto out_ggtt;
1412 }
1413
1414 pci_set_master(dev->pdev);
1415
1416 /* overlay on gen2 is broken and can't address above 1G */
1417 if (IS_GEN2(dev)) {
1418 ret = dma_set_coherent_mask(&dev->pdev->dev, DMA_BIT_MASK(30));
1419 if (ret) {
1420 DRM_ERROR("failed to set DMA mask\n");
1421
1422 goto out_ggtt;
1423 }
1424 }
1425
1426
1427 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1428 * using 32bit addressing, overwriting memory if HWS is located
1429 * above 4GB.
1430 *
1431 * The documentation also mentions an issue with undefined
1432 * behaviour if any general state is accessed within a page above 4GB,
1433 * which also needs to be handled carefully.
1434 */
1435 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) {
1436 ret = dma_set_coherent_mask(&dev->pdev->dev, DMA_BIT_MASK(32));
1437
1438 if (ret) {
1439 DRM_ERROR("failed to set DMA mask\n");
1440
1441 goto out_ggtt;
1442 }
1443 }
1444
1445 aperture_size = ggtt->mappable_end;
1446
1447 ggtt->mappable =
1448 io_mapping_create_wc(ggtt->mappable_base,
1449 aperture_size);
1450 if (!ggtt->mappable) {
1451 ret = -EIO;
1452 goto out_ggtt;
1453 }
1454
1455 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base,
1456 aperture_size);
1457
1458 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1459 PM_QOS_DEFAULT_VALUE);
1460
1461 intel_uncore_sanitize(dev_priv);
1462
1463 intel_opregion_setup(dev_priv);
1464
1465 i915_gem_load_init_fences(dev_priv);
1466
1467 /* On the 945G/GM, the chipset reports the MSI capability on the
1468 * integrated graphics even though the support isn't actually there
1469 * according to the published specs. It doesn't appear to function
1470 * correctly in testing on 945G.
1471 * This may be a side effect of MSI having been made available for PEG
1472 * and the registers being closely associated.
1473 *
1474 * According to chipset errata, on the 965GM, MSI interrupts may
1475 * be lost or delayed, but we use them anyways to avoid
1476 * stuck interrupts on some machines.
1477 */
1478 if (!IS_I945G(dev) && !IS_I945GM(dev)) {
1479 if (pci_enable_msi(dev->pdev) < 0)
1480 DRM_DEBUG_DRIVER("can't enable MSI");
1481 }
1482
1483 return 0;
1484
1485 out_ggtt:
1486 i915_ggtt_cleanup_hw(dev);
1487
1488 return ret;
1489 }
1490
1491 /**
1492 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1493 * @dev_priv: device private
1494 */
1495 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1496 {
1497 struct drm_device *dev = dev_priv->dev;
1498 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1499
1500 if (dev->pdev->msi_enabled)
1501 pci_disable_msi(dev->pdev);
1502
1503 pm_qos_remove_request(&dev_priv->pm_qos);
1504 arch_phys_wc_del(ggtt->mtrr);
1505 io_mapping_free(ggtt->mappable);
1506 i915_ggtt_cleanup_hw(dev);
1507 }
1508
1509 /**
1510 * i915_driver_register - register the driver with the rest of the system
1511 * @dev_priv: device private
1512 *
1513 * Perform any steps necessary to make the driver available via kernel
1514 * internal or userspace interfaces.
1515 */
1516 static void i915_driver_register(struct drm_i915_private *dev_priv)
1517 {
1518 struct drm_device *dev = dev_priv->dev;
1519
1520 i915_gem_shrinker_init(dev_priv);
1521
1522 /*
1523 * Notify a valid surface after modesetting,
1524 * when running inside a VM.
1525 */
1526 if (intel_vgpu_active(dev_priv))
1527 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1528
1529 /* Reveal our presence to userspace */
1530 if (drm_dev_register(dev, 0) == 0) {
1531 i915_debugfs_register(dev_priv);
1532 i915_setup_sysfs(dev);
1533 } else
1534 DRM_ERROR("Failed to register driver for userspace access!\n");
1535
1536 if (INTEL_INFO(dev_priv)->num_pipes) {
1537 /* Must be done after probing outputs */
1538 intel_opregion_register(dev_priv);
1539 acpi_video_register();
1540 }
1541
1542 if (IS_GEN5(dev_priv))
1543 intel_gpu_ips_init(dev_priv);
1544
1545 i915_audio_component_init(dev_priv);
1546
1547 /*
1548 * Some ports require correctly set-up hpd registers for detection to
1549 * work properly (leading to ghost connected connector status), e.g. VGA
1550 * on gm45. Hence we can only set up the initial fbdev config after hpd
1551 * irqs are fully enabled. We do it last so that the async config
1552 * cannot run before the connectors are registered.
1553 */
1554 intel_fbdev_initial_config_async(dev);
1555 }
1556
1557 /**
1558 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1559 * @dev_priv: device private
1560 */
1561 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1562 {
1563 i915_audio_component_cleanup(dev_priv);
1564
1565 intel_gpu_ips_teardown();
1566 acpi_video_unregister();
1567 intel_opregion_unregister(dev_priv);
1568
1569 i915_teardown_sysfs(dev_priv->dev);
1570 i915_debugfs_unregister(dev_priv);
1571 drm_dev_unregister(dev_priv->dev);
1572
1573 i915_gem_shrinker_cleanup(dev_priv);
1574 }
1575
1576 /**
1577 * i915_driver_load - setup chip and create an initial config
1578 * @dev: DRM device
1579 * @flags: startup flags
1580 *
1581 * The driver load routine has to do several things:
1582 * - drive output discovery via intel_modeset_init()
1583 * - initialize the memory manager
1584 * - allocate initial config memory
1585 * - setup the DRM framebuffer with the allocated memory
1586 */
1587 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1588 {
1589 struct drm_i915_private *dev_priv;
1590 int ret;
1591
1592 if (i915.nuclear_pageflip)
1593 driver.driver_features |= DRIVER_ATOMIC;
1594
1595 ret = -ENOMEM;
1596 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1597 if (dev_priv)
1598 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1599 if (ret) {
1600 dev_printk(KERN_ERR, &pdev->dev,
1601 "[" DRM_NAME ":%s] allocation failed\n", __func__);
1602 kfree(dev_priv);
1603 return ret;
1604 }
1605
1606 /* Must be set before calling __i915_printk */
1607 dev_priv->drm.pdev = pdev;
1608 dev_priv->drm.dev_private = dev_priv;
1609 dev_priv->dev = &dev_priv->drm;
1610
1611 ret = pci_enable_device(pdev);
1612 if (ret)
1613 goto out_free_priv;
1614
1615 pci_set_drvdata(pdev, &dev_priv->drm);
1616
1617 ret = i915_driver_init_early(dev_priv, ent);
1618 if (ret < 0)
1619 goto out_pci_disable;
1620
1621 intel_runtime_pm_get(dev_priv);
1622
1623 ret = i915_driver_init_mmio(dev_priv);
1624 if (ret < 0)
1625 goto out_runtime_pm_put;
1626
1627 ret = i915_driver_init_hw(dev_priv);
1628 if (ret < 0)
1629 goto out_cleanup_mmio;
1630
1631 /*
1632 * TODO: move the vblank init and parts of modeset init steps into one
1633 * of the i915_driver_init_/i915_driver_register functions according
1634 * to the role/effect of the given init step.
1635 */
1636 if (INTEL_INFO(dev_priv)->num_pipes) {
1637 ret = drm_vblank_init(dev_priv->dev,
1638 INTEL_INFO(dev_priv)->num_pipes);
1639 if (ret)
1640 goto out_cleanup_hw;
1641 }
1642
1643 ret = i915_load_modeset_init(dev_priv->dev);
1644 if (ret < 0)
1645 goto out_cleanup_vblank;
1646
1647 i915_driver_register(dev_priv);
1648
1649 intel_runtime_pm_enable(dev_priv);
1650
1651 intel_runtime_pm_put(dev_priv);
1652
1653 return 0;
1654
1655 out_cleanup_vblank:
1656 drm_vblank_cleanup(dev_priv->dev);
1657 out_cleanup_hw:
1658 i915_driver_cleanup_hw(dev_priv);
1659 out_cleanup_mmio:
1660 i915_driver_cleanup_mmio(dev_priv);
1661 out_runtime_pm_put:
1662 intel_runtime_pm_put(dev_priv);
1663 i915_driver_cleanup_early(dev_priv);
1664 out_pci_disable:
1665 pci_disable_device(pdev);
1666 out_free_priv:
1667 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1668 drm_dev_unref(&dev_priv->drm);
1669 return ret;
1670 }
1671
1672 void i915_driver_unload(struct drm_device *dev)
1673 {
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675
1676 intel_fbdev_fini(dev);
1677
1678 if (i915_gem_suspend(dev))
1679 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1680
1681 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1682
1683 i915_driver_unregister(dev_priv);
1684
1685 drm_vblank_cleanup(dev);
1686
1687 intel_modeset_cleanup(dev);
1688
1689 /*
1690 * free the memory space allocated for the child device
1691 * config parsed from VBT
1692 */
1693 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1694 kfree(dev_priv->vbt.child_dev);
1695 dev_priv->vbt.child_dev = NULL;
1696 dev_priv->vbt.child_dev_num = 0;
1697 }
1698 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1699 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1700 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1701 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1702
1703 vga_switcheroo_unregister_client(dev->pdev);
1704 vga_client_register(dev->pdev, NULL, NULL, NULL);
1705
1706 intel_csr_ucode_fini(dev_priv);
1707
1708 /* Free error state after interrupts are fully disabled. */
1709 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1710 i915_destroy_error_state(dev);
1711
1712 /* Flush any outstanding unpin_work. */
1713 flush_workqueue(dev_priv->wq);
1714
1715 intel_guc_fini(dev);
1716 i915_gem_fini(dev);
1717 intel_fbc_cleanup_cfb(dev_priv);
1718
1719 intel_power_domains_fini(dev_priv);
1720
1721 i915_driver_cleanup_hw(dev_priv);
1722 i915_driver_cleanup_mmio(dev_priv);
1723
1724 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1725
1726 i915_driver_cleanup_early(dev_priv);
1727 }
1728
1729 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1730 {
1731 int ret;
1732
1733 ret = i915_gem_open(dev, file);
1734 if (ret)
1735 return ret;
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * i915_driver_lastclose - clean up after all DRM clients have exited
1742 * @dev: DRM device
1743 *
1744 * Take care of cleaning up after all DRM clients have exited. In the
1745 * mode setting case, we want to restore the kernel's initial mode (just
1746 * in case the last client left us in a bad state).
1747 *
1748 * Additionally, in the non-mode setting case, we'll tear down the GTT
1749 * and DMA structures, since the kernel won't be using them, and clea
1750 * up any GEM state.
1751 */
1752 static void i915_driver_lastclose(struct drm_device *dev)
1753 {
1754 intel_fbdev_restore_mode(dev);
1755 vga_switcheroo_process_delayed_switch();
1756 }
1757
1758 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1759 {
1760 mutex_lock(&dev->struct_mutex);
1761 i915_gem_context_close(dev, file);
1762 i915_gem_release(dev, file);
1763 mutex_unlock(&dev->struct_mutex);
1764 }
1765
1766 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1767 {
1768 struct drm_i915_file_private *file_priv = file->driver_priv;
1769
1770 kfree(file_priv);
1771 }
1772
1773 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1774 {
1775 struct drm_device *dev = dev_priv->dev;
1776 struct intel_encoder *encoder;
1777
1778 drm_modeset_lock_all(dev);
1779 for_each_intel_encoder(dev, encoder)
1780 if (encoder->suspend)
1781 encoder->suspend(encoder);
1782 drm_modeset_unlock_all(dev);
1783 }
1784
1785 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1786 bool rpm_resume);
1787 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1788
1789 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1790 {
1791 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1792 if (acpi_target_system_state() < ACPI_STATE_S3)
1793 return true;
1794 #endif
1795 return false;
1796 }
1797
1798 static int i915_drm_suspend(struct drm_device *dev)
1799 {
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 pci_power_t opregion_target_state;
1802 int error;
1803
1804 /* ignore lid events during suspend */
1805 mutex_lock(&dev_priv->modeset_restore_lock);
1806 dev_priv->modeset_restore = MODESET_SUSPENDED;
1807 mutex_unlock(&dev_priv->modeset_restore_lock);
1808
1809 disable_rpm_wakeref_asserts(dev_priv);
1810
1811 /* We do a lot of poking in a lot of registers, make sure they work
1812 * properly. */
1813 intel_display_set_init_power(dev_priv, true);
1814
1815 drm_kms_helper_poll_disable(dev);
1816
1817 pci_save_state(dev->pdev);
1818
1819 error = i915_gem_suspend(dev);
1820 if (error) {
1821 dev_err(&dev->pdev->dev,
1822 "GEM idle failed, resume might fail\n");
1823 goto out;
1824 }
1825
1826 intel_guc_suspend(dev);
1827
1828 intel_suspend_gt_powersave(dev_priv);
1829
1830 intel_display_suspend(dev);
1831
1832 intel_dp_mst_suspend(dev);
1833
1834 intel_runtime_pm_disable_interrupts(dev_priv);
1835 intel_hpd_cancel_work(dev_priv);
1836
1837 intel_suspend_encoders(dev_priv);
1838
1839 intel_suspend_hw(dev);
1840
1841 i915_gem_suspend_gtt_mappings(dev);
1842
1843 i915_save_state(dev);
1844
1845 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1846 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1847
1848 intel_uncore_forcewake_reset(dev_priv, false);
1849 intel_opregion_unregister(dev_priv);
1850
1851 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1852
1853 dev_priv->suspend_count++;
1854
1855 intel_display_set_init_power(dev_priv, false);
1856
1857 intel_csr_ucode_suspend(dev_priv);
1858
1859 out:
1860 enable_rpm_wakeref_asserts(dev_priv);
1861
1862 return error;
1863 }
1864
1865 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
1866 {
1867 struct drm_i915_private *dev_priv = drm_dev->dev_private;
1868 bool fw_csr;
1869 int ret;
1870
1871 disable_rpm_wakeref_asserts(dev_priv);
1872
1873 fw_csr = !IS_BROXTON(dev_priv) &&
1874 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1875 /*
1876 * In case of firmware assisted context save/restore don't manually
1877 * deinit the power domains. This also means the CSR/DMC firmware will
1878 * stay active, it will power down any HW resources as required and
1879 * also enable deeper system power states that would be blocked if the
1880 * firmware was inactive.
1881 */
1882 if (!fw_csr)
1883 intel_power_domains_suspend(dev_priv);
1884
1885 ret = 0;
1886 if (IS_BROXTON(dev_priv))
1887 bxt_enable_dc9(dev_priv);
1888 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1889 hsw_enable_pc8(dev_priv);
1890 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1891 ret = vlv_suspend_complete(dev_priv);
1892
1893 if (ret) {
1894 DRM_ERROR("Suspend complete failed: %d\n", ret);
1895 if (!fw_csr)
1896 intel_power_domains_init_hw(dev_priv, true);
1897
1898 goto out;
1899 }
1900
1901 pci_disable_device(drm_dev->pdev);
1902 /*
1903 * During hibernation on some platforms the BIOS may try to access
1904 * the device even though it's already in D3 and hang the machine. So
1905 * leave the device in D0 on those platforms and hope the BIOS will
1906 * power down the device properly. The issue was seen on multiple old
1907 * GENs with different BIOS vendors, so having an explicit blacklist
1908 * is inpractical; apply the workaround on everything pre GEN6. The
1909 * platforms where the issue was seen:
1910 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1911 * Fujitsu FSC S7110
1912 * Acer Aspire 1830T
1913 */
1914 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
1915 pci_set_power_state(drm_dev->pdev, PCI_D3hot);
1916
1917 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1918
1919 out:
1920 enable_rpm_wakeref_asserts(dev_priv);
1921
1922 return ret;
1923 }
1924
1925 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1926 {
1927 int error;
1928
1929 if (!dev || !dev->dev_private) {
1930 DRM_ERROR("dev: %p\n", dev);
1931 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1932 return -ENODEV;
1933 }
1934
1935 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1936 state.event != PM_EVENT_FREEZE))
1937 return -EINVAL;
1938
1939 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1940 return 0;
1941
1942 error = i915_drm_suspend(dev);
1943 if (error)
1944 return error;
1945
1946 return i915_drm_suspend_late(dev, false);
1947 }
1948
1949 static int i915_drm_resume(struct drm_device *dev)
1950 {
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 int ret;
1953
1954 disable_rpm_wakeref_asserts(dev_priv);
1955
1956 ret = i915_ggtt_enable_hw(dev);
1957 if (ret)
1958 DRM_ERROR("failed to re-enable GGTT\n");
1959
1960 intel_csr_ucode_resume(dev_priv);
1961
1962 mutex_lock(&dev->struct_mutex);
1963 i915_gem_restore_gtt_mappings(dev);
1964 mutex_unlock(&dev->struct_mutex);
1965
1966 i915_restore_state(dev);
1967 intel_opregion_setup(dev_priv);
1968
1969 intel_init_pch_refclk(dev);
1970 drm_mode_config_reset(dev);
1971
1972 /*
1973 * Interrupts have to be enabled before any batches are run. If not the
1974 * GPU will hang. i915_gem_init_hw() will initiate batches to
1975 * update/restore the context.
1976 *
1977 * Modeset enabling in intel_modeset_init_hw() also needs working
1978 * interrupts.
1979 */
1980 intel_runtime_pm_enable_interrupts(dev_priv);
1981
1982 mutex_lock(&dev->struct_mutex);
1983 if (i915_gem_init_hw(dev)) {
1984 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1985 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
1986 }
1987 mutex_unlock(&dev->struct_mutex);
1988
1989 intel_guc_resume(dev);
1990
1991 intel_modeset_init_hw(dev);
1992
1993 spin_lock_irq(&dev_priv->irq_lock);
1994 if (dev_priv->display.hpd_irq_setup)
1995 dev_priv->display.hpd_irq_setup(dev_priv);
1996 spin_unlock_irq(&dev_priv->irq_lock);
1997
1998 intel_dp_mst_resume(dev);
1999
2000 intel_display_resume(dev);
2001
2002 /*
2003 * ... but also need to make sure that hotplug processing
2004 * doesn't cause havoc. Like in the driver load code we don't
2005 * bother with the tiny race here where we might loose hotplug
2006 * notifications.
2007 * */
2008 intel_hpd_init(dev_priv);
2009 /* Config may have changed between suspend and resume */
2010 drm_helper_hpd_irq_event(dev);
2011
2012 intel_opregion_register(dev_priv);
2013
2014 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
2015
2016 mutex_lock(&dev_priv->modeset_restore_lock);
2017 dev_priv->modeset_restore = MODESET_DONE;
2018 mutex_unlock(&dev_priv->modeset_restore_lock);
2019
2020 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2021
2022 drm_kms_helper_poll_enable(dev);
2023
2024 enable_rpm_wakeref_asserts(dev_priv);
2025
2026 return 0;
2027 }
2028
2029 static int i915_drm_resume_early(struct drm_device *dev)
2030 {
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 int ret;
2033
2034 /*
2035 * We have a resume ordering issue with the snd-hda driver also
2036 * requiring our device to be power up. Due to the lack of a
2037 * parent/child relationship we currently solve this with an early
2038 * resume hook.
2039 *
2040 * FIXME: This should be solved with a special hdmi sink device or
2041 * similar so that power domains can be employed.
2042 */
2043
2044 /*
2045 * Note that we need to set the power state explicitly, since we
2046 * powered off the device during freeze and the PCI core won't power
2047 * it back up for us during thaw. Powering off the device during
2048 * freeze is not a hard requirement though, and during the
2049 * suspend/resume phases the PCI core makes sure we get here with the
2050 * device powered on. So in case we change our freeze logic and keep
2051 * the device powered we can also remove the following set power state
2052 * call.
2053 */
2054 ret = pci_set_power_state(dev->pdev, PCI_D0);
2055 if (ret) {
2056 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2057 goto out;
2058 }
2059
2060 /*
2061 * Note that pci_enable_device() first enables any parent bridge
2062 * device and only then sets the power state for this device. The
2063 * bridge enabling is a nop though, since bridge devices are resumed
2064 * first. The order of enabling power and enabling the device is
2065 * imposed by the PCI core as described above, so here we preserve the
2066 * same order for the freeze/thaw phases.
2067 *
2068 * TODO: eventually we should remove pci_disable_device() /
2069 * pci_enable_enable_device() from suspend/resume. Due to how they
2070 * depend on the device enable refcount we can't anyway depend on them
2071 * disabling/enabling the device.
2072 */
2073 if (pci_enable_device(dev->pdev)) {
2074 ret = -EIO;
2075 goto out;
2076 }
2077
2078 pci_set_master(dev->pdev);
2079
2080 disable_rpm_wakeref_asserts(dev_priv);
2081
2082 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2083 ret = vlv_resume_prepare(dev_priv, false);
2084 if (ret)
2085 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2086 ret);
2087
2088 intel_uncore_early_sanitize(dev_priv, true);
2089
2090 if (IS_BROXTON(dev_priv)) {
2091 if (!dev_priv->suspended_to_idle)
2092 gen9_sanitize_dc_state(dev_priv);
2093 bxt_disable_dc9(dev_priv);
2094 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2095 hsw_disable_pc8(dev_priv);
2096 }
2097
2098 intel_uncore_sanitize(dev_priv);
2099
2100 if (IS_BROXTON(dev_priv) ||
2101 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
2102 intel_power_domains_init_hw(dev_priv, true);
2103
2104 enable_rpm_wakeref_asserts(dev_priv);
2105
2106 out:
2107 dev_priv->suspended_to_idle = false;
2108
2109 return ret;
2110 }
2111
2112 int i915_resume_switcheroo(struct drm_device *dev)
2113 {
2114 int ret;
2115
2116 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2117 return 0;
2118
2119 ret = i915_drm_resume_early(dev);
2120 if (ret)
2121 return ret;
2122
2123 return i915_drm_resume(dev);
2124 }
2125
2126 /**
2127 * i915_reset - reset chip after a hang
2128 * @dev: drm device to reset
2129 *
2130 * Reset the chip. Useful if a hang is detected. Returns zero on successful
2131 * reset or otherwise an error code.
2132 *
2133 * Procedure is fairly simple:
2134 * - reset the chip using the reset reg
2135 * - re-init context state
2136 * - re-init hardware status page
2137 * - re-init ring buffer
2138 * - re-init interrupt state
2139 * - re-init display
2140 */
2141 int i915_reset(struct drm_i915_private *dev_priv)
2142 {
2143 struct drm_device *dev = dev_priv->dev;
2144 struct i915_gpu_error *error = &dev_priv->gpu_error;
2145 unsigned reset_counter;
2146 int ret;
2147
2148 intel_reset_gt_powersave(dev_priv);
2149
2150 mutex_lock(&dev->struct_mutex);
2151
2152 /* Clear any previous failed attempts at recovery. Time to try again. */
2153 atomic_andnot(I915_WEDGED, &error->reset_counter);
2154
2155 /* Clear the reset-in-progress flag and increment the reset epoch. */
2156 reset_counter = atomic_inc_return(&error->reset_counter);
2157 if (WARN_ON(__i915_reset_in_progress(reset_counter))) {
2158 ret = -EIO;
2159 goto error;
2160 }
2161
2162 i915_gem_reset(dev);
2163
2164 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
2165
2166 /* Also reset the gpu hangman. */
2167 if (error->stop_rings != 0) {
2168 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
2169 error->stop_rings = 0;
2170 if (ret == -ENODEV) {
2171 DRM_INFO("Reset not implemented, but ignoring "
2172 "error for simulated gpu hangs\n");
2173 ret = 0;
2174 }
2175 }
2176
2177 if (i915_stop_ring_allow_warn(dev_priv))
2178 pr_notice("drm/i915: Resetting chip after gpu hang\n");
2179
2180 if (ret) {
2181 if (ret != -ENODEV)
2182 DRM_ERROR("Failed to reset chip: %i\n", ret);
2183 else
2184 DRM_DEBUG_DRIVER("GPU reset disabled\n");
2185 goto error;
2186 }
2187
2188 intel_overlay_reset(dev_priv);
2189
2190 /* Ok, now get things going again... */
2191
2192 /*
2193 * Everything depends on having the GTT running, so we need to start
2194 * there. Fortunately we don't need to do this unless we reset the
2195 * chip at a PCI level.
2196 *
2197 * Next we need to restore the context, but we don't use those
2198 * yet either...
2199 *
2200 * Ring buffer needs to be re-initialized in the KMS case, or if X
2201 * was running at the time of the reset (i.e. we weren't VT
2202 * switched away).
2203 */
2204 ret = i915_gem_init_hw(dev);
2205 if (ret) {
2206 DRM_ERROR("Failed hw init on reset %d\n", ret);
2207 goto error;
2208 }
2209
2210 mutex_unlock(&dev->struct_mutex);
2211
2212 /*
2213 * rps/rc6 re-init is necessary to restore state lost after the
2214 * reset and the re-install of gt irqs. Skip for ironlake per
2215 * previous concerns that it doesn't respond well to some forms
2216 * of re-init after reset.
2217 */
2218 if (INTEL_INFO(dev)->gen > 5)
2219 intel_enable_gt_powersave(dev_priv);
2220
2221 return 0;
2222
2223 error:
2224 atomic_or(I915_WEDGED, &error->reset_counter);
2225 mutex_unlock(&dev->struct_mutex);
2226 return ret;
2227 }
2228
2229 static int i915_pm_suspend(struct device *dev)
2230 {
2231 struct pci_dev *pdev = to_pci_dev(dev);
2232 struct drm_device *drm_dev = pci_get_drvdata(pdev);
2233
2234 if (!drm_dev || !drm_dev->dev_private) {
2235 dev_err(dev, "DRM not initialized, aborting suspend.\n");
2236 return -ENODEV;
2237 }
2238
2239 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2240 return 0;
2241
2242 return i915_drm_suspend(drm_dev);
2243 }
2244
2245 static int i915_pm_suspend_late(struct device *dev)
2246 {
2247 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
2248
2249 /*
2250 * We have a suspend ordering issue with the snd-hda driver also
2251 * requiring our device to be power up. Due to the lack of a
2252 * parent/child relationship we currently solve this with an late
2253 * suspend hook.
2254 *
2255 * FIXME: This should be solved with a special hdmi sink device or
2256 * similar so that power domains can be employed.
2257 */
2258 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2259 return 0;
2260
2261 return i915_drm_suspend_late(drm_dev, false);
2262 }
2263
2264 static int i915_pm_poweroff_late(struct device *dev)
2265 {
2266 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
2267
2268 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2269 return 0;
2270
2271 return i915_drm_suspend_late(drm_dev, true);
2272 }
2273
2274 static int i915_pm_resume_early(struct device *dev)
2275 {
2276 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
2277
2278 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2279 return 0;
2280
2281 return i915_drm_resume_early(drm_dev);
2282 }
2283
2284 static int i915_pm_resume(struct device *dev)
2285 {
2286 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
2287
2288 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2289 return 0;
2290
2291 return i915_drm_resume(drm_dev);
2292 }
2293
2294 /* freeze: before creating the hibernation_image */
2295 static int i915_pm_freeze(struct device *dev)
2296 {
2297 return i915_pm_suspend(dev);
2298 }
2299
2300 static int i915_pm_freeze_late(struct device *dev)
2301 {
2302 int ret;
2303
2304 ret = i915_pm_suspend_late(dev);
2305 if (ret)
2306 return ret;
2307
2308 ret = i915_gem_freeze_late(dev_to_i915(dev));
2309 if (ret)
2310 return ret;
2311
2312 return 0;
2313 }
2314
2315 /* thaw: called after creating the hibernation image, but before turning off. */
2316 static int i915_pm_thaw_early(struct device *dev)
2317 {
2318 return i915_pm_resume_early(dev);
2319 }
2320
2321 static int i915_pm_thaw(struct device *dev)
2322 {
2323 return i915_pm_resume(dev);
2324 }
2325
2326 /* restore: called after loading the hibernation image. */
2327 static int i915_pm_restore_early(struct device *dev)
2328 {
2329 return i915_pm_resume_early(dev);
2330 }
2331
2332 static int i915_pm_restore(struct device *dev)
2333 {
2334 return i915_pm_resume(dev);
2335 }
2336
2337 /*
2338 * Save all Gunit registers that may be lost after a D3 and a subsequent
2339 * S0i[R123] transition. The list of registers needing a save/restore is
2340 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2341 * registers in the following way:
2342 * - Driver: saved/restored by the driver
2343 * - Punit : saved/restored by the Punit firmware
2344 * - No, w/o marking: no need to save/restore, since the register is R/O or
2345 * used internally by the HW in a way that doesn't depend
2346 * keeping the content across a suspend/resume.
2347 * - Debug : used for debugging
2348 *
2349 * We save/restore all registers marked with 'Driver', with the following
2350 * exceptions:
2351 * - Registers out of use, including also registers marked with 'Debug'.
2352 * These have no effect on the driver's operation, so we don't save/restore
2353 * them to reduce the overhead.
2354 * - Registers that are fully setup by an initialization function called from
2355 * the resume path. For example many clock gating and RPS/RC6 registers.
2356 * - Registers that provide the right functionality with their reset defaults.
2357 *
2358 * TODO: Except for registers that based on the above 3 criteria can be safely
2359 * ignored, we save/restore all others, practically treating the HW context as
2360 * a black-box for the driver. Further investigation is needed to reduce the
2361 * saved/restored registers even further, by following the same 3 criteria.
2362 */
2363 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2364 {
2365 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2366 int i;
2367
2368 /* GAM 0x4000-0x4770 */
2369 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2370 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2371 s->arb_mode = I915_READ(ARB_MODE);
2372 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2373 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2374
2375 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2376 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2377
2378 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2379 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2380
2381 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2382 s->ecochk = I915_READ(GAM_ECOCHK);
2383 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2384 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2385
2386 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2387
2388 /* MBC 0x9024-0x91D0, 0x8500 */
2389 s->g3dctl = I915_READ(VLV_G3DCTL);
2390 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2391 s->mbctl = I915_READ(GEN6_MBCTL);
2392
2393 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2394 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2395 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2396 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2397 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2398 s->rstctl = I915_READ(GEN6_RSTCTL);
2399 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2400
2401 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2402 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2403 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2404 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2405 s->ecobus = I915_READ(ECOBUS);
2406 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2407 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2408 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2409 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2410 s->rcedata = I915_READ(VLV_RCEDATA);
2411 s->spare2gh = I915_READ(VLV_SPAREG2H);
2412
2413 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2414 s->gt_imr = I915_READ(GTIMR);
2415 s->gt_ier = I915_READ(GTIER);
2416 s->pm_imr = I915_READ(GEN6_PMIMR);
2417 s->pm_ier = I915_READ(GEN6_PMIER);
2418
2419 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2420 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2421
2422 /* GT SA CZ domain, 0x100000-0x138124 */
2423 s->tilectl = I915_READ(TILECTL);
2424 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2425 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2426 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2427 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2428
2429 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2430 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2431 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2432 s->pcbr = I915_READ(VLV_PCBR);
2433 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2434
2435 /*
2436 * Not saving any of:
2437 * DFT, 0x9800-0x9EC0
2438 * SARB, 0xB000-0xB1FC
2439 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2440 * PCI CFG
2441 */
2442 }
2443
2444 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2445 {
2446 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2447 u32 val;
2448 int i;
2449
2450 /* GAM 0x4000-0x4770 */
2451 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2452 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2453 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2454 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2455 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2456
2457 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2458 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2459
2460 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2461 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2462
2463 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2464 I915_WRITE(GAM_ECOCHK, s->ecochk);
2465 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2466 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2467
2468 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2469
2470 /* MBC 0x9024-0x91D0, 0x8500 */
2471 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2472 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2473 I915_WRITE(GEN6_MBCTL, s->mbctl);
2474
2475 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2476 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2477 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2478 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2479 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2480 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2481 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2482
2483 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2484 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2485 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2486 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2487 I915_WRITE(ECOBUS, s->ecobus);
2488 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2489 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2490 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2491 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2492 I915_WRITE(VLV_RCEDATA, s->rcedata);
2493 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2494
2495 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2496 I915_WRITE(GTIMR, s->gt_imr);
2497 I915_WRITE(GTIER, s->gt_ier);
2498 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2499 I915_WRITE(GEN6_PMIER, s->pm_ier);
2500
2501 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2502 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2503
2504 /* GT SA CZ domain, 0x100000-0x138124 */
2505 I915_WRITE(TILECTL, s->tilectl);
2506 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2507 /*
2508 * Preserve the GT allow wake and GFX force clock bit, they are not
2509 * be restored, as they are used to control the s0ix suspend/resume
2510 * sequence by the caller.
2511 */
2512 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2513 val &= VLV_GTLC_ALLOWWAKEREQ;
2514 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2515 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2516
2517 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2518 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2519 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2520 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2521
2522 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2523
2524 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2525 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2526 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2527 I915_WRITE(VLV_PCBR, s->pcbr);
2528 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2529 }
2530
2531 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2532 {
2533 u32 val;
2534 int err;
2535
2536 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2537 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2538 if (force_on)
2539 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2540 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2541
2542 if (!force_on)
2543 return 0;
2544
2545 err = intel_wait_for_register(dev_priv,
2546 VLV_GTLC_SURVIVABILITY_REG,
2547 VLV_GFX_CLK_STATUS_BIT,
2548 VLV_GFX_CLK_STATUS_BIT,
2549 20);
2550 if (err)
2551 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2552 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2553
2554 return err;
2555 }
2556
2557 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2558 {
2559 u32 val;
2560 int err = 0;
2561
2562 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2563 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2564 if (allow)
2565 val |= VLV_GTLC_ALLOWWAKEREQ;
2566 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2567 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2568
2569 err = intel_wait_for_register(dev_priv,
2570 VLV_GTLC_PW_STATUS,
2571 VLV_GTLC_ALLOWWAKEACK,
2572 allow,
2573 1);
2574 if (err)
2575 DRM_ERROR("timeout disabling GT waking\n");
2576
2577 return err;
2578 }
2579
2580 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2581 bool wait_for_on)
2582 {
2583 u32 mask;
2584 u32 val;
2585 int err;
2586
2587 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2588 val = wait_for_on ? mask : 0;
2589 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2590 return 0;
2591
2592 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2593 onoff(wait_for_on),
2594 I915_READ(VLV_GTLC_PW_STATUS));
2595
2596 /*
2597 * RC6 transitioning can be delayed up to 2 msec (see
2598 * valleyview_enable_rps), use 3 msec for safety.
2599 */
2600 err = intel_wait_for_register(dev_priv,
2601 VLV_GTLC_PW_STATUS, mask, val,
2602 3);
2603 if (err)
2604 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2605 onoff(wait_for_on));
2606
2607 return err;
2608 }
2609
2610 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2611 {
2612 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2613 return;
2614
2615 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2616 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2617 }
2618
2619 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2620 {
2621 u32 mask;
2622 int err;
2623
2624 /*
2625 * Bspec defines the following GT well on flags as debug only, so
2626 * don't treat them as hard failures.
2627 */
2628 (void)vlv_wait_for_gt_wells(dev_priv, false);
2629
2630 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2631 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2632
2633 vlv_check_no_gt_access(dev_priv);
2634
2635 err = vlv_force_gfx_clock(dev_priv, true);
2636 if (err)
2637 goto err1;
2638
2639 err = vlv_allow_gt_wake(dev_priv, false);
2640 if (err)
2641 goto err2;
2642
2643 if (!IS_CHERRYVIEW(dev_priv))
2644 vlv_save_gunit_s0ix_state(dev_priv);
2645
2646 err = vlv_force_gfx_clock(dev_priv, false);
2647 if (err)
2648 goto err2;
2649
2650 return 0;
2651
2652 err2:
2653 /* For safety always re-enable waking and disable gfx clock forcing */
2654 vlv_allow_gt_wake(dev_priv, true);
2655 err1:
2656 vlv_force_gfx_clock(dev_priv, false);
2657
2658 return err;
2659 }
2660
2661 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2662 bool rpm_resume)
2663 {
2664 struct drm_device *dev = dev_priv->dev;
2665 int err;
2666 int ret;
2667
2668 /*
2669 * If any of the steps fail just try to continue, that's the best we
2670 * can do at this point. Return the first error code (which will also
2671 * leave RPM permanently disabled).
2672 */
2673 ret = vlv_force_gfx_clock(dev_priv, true);
2674
2675 if (!IS_CHERRYVIEW(dev_priv))
2676 vlv_restore_gunit_s0ix_state(dev_priv);
2677
2678 err = vlv_allow_gt_wake(dev_priv, true);
2679 if (!ret)
2680 ret = err;
2681
2682 err = vlv_force_gfx_clock(dev_priv, false);
2683 if (!ret)
2684 ret = err;
2685
2686 vlv_check_no_gt_access(dev_priv);
2687
2688 if (rpm_resume) {
2689 intel_init_clock_gating(dev);
2690 i915_gem_restore_fences(dev);
2691 }
2692
2693 return ret;
2694 }
2695
2696 static int intel_runtime_suspend(struct device *device)
2697 {
2698 struct pci_dev *pdev = to_pci_dev(device);
2699 struct drm_device *dev = pci_get_drvdata(pdev);
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 int ret;
2702
2703 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2704 return -ENODEV;
2705
2706 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2707 return -ENODEV;
2708
2709 DRM_DEBUG_KMS("Suspending device\n");
2710
2711 /*
2712 * We could deadlock here in case another thread holding struct_mutex
2713 * calls RPM suspend concurrently, since the RPM suspend will wait
2714 * first for this RPM suspend to finish. In this case the concurrent
2715 * RPM resume will be followed by its RPM suspend counterpart. Still
2716 * for consistency return -EAGAIN, which will reschedule this suspend.
2717 */
2718 if (!mutex_trylock(&dev->struct_mutex)) {
2719 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
2720 /*
2721 * Bump the expiration timestamp, otherwise the suspend won't
2722 * be rescheduled.
2723 */
2724 pm_runtime_mark_last_busy(device);
2725
2726 return -EAGAIN;
2727 }
2728
2729 disable_rpm_wakeref_asserts(dev_priv);
2730
2731 /*
2732 * We are safe here against re-faults, since the fault handler takes
2733 * an RPM reference.
2734 */
2735 i915_gem_release_all_mmaps(dev_priv);
2736 mutex_unlock(&dev->struct_mutex);
2737
2738 intel_guc_suspend(dev);
2739
2740 intel_suspend_gt_powersave(dev_priv);
2741 intel_runtime_pm_disable_interrupts(dev_priv);
2742
2743 ret = 0;
2744 if (IS_BROXTON(dev_priv)) {
2745 bxt_display_core_uninit(dev_priv);
2746 bxt_enable_dc9(dev_priv);
2747 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2748 hsw_enable_pc8(dev_priv);
2749 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2750 ret = vlv_suspend_complete(dev_priv);
2751 }
2752
2753 if (ret) {
2754 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2755 intel_runtime_pm_enable_interrupts(dev_priv);
2756
2757 enable_rpm_wakeref_asserts(dev_priv);
2758
2759 return ret;
2760 }
2761
2762 intel_uncore_forcewake_reset(dev_priv, false);
2763
2764 enable_rpm_wakeref_asserts(dev_priv);
2765 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2766
2767 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2768 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2769
2770 dev_priv->pm.suspended = true;
2771
2772 /*
2773 * FIXME: We really should find a document that references the arguments
2774 * used below!
2775 */
2776 if (IS_BROADWELL(dev_priv)) {
2777 /*
2778 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2779 * being detected, and the call we do at intel_runtime_resume()
2780 * won't be able to restore them. Since PCI_D3hot matches the
2781 * actual specification and appears to be working, use it.
2782 */
2783 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2784 } else {
2785 /*
2786 * current versions of firmware which depend on this opregion
2787 * notification have repurposed the D1 definition to mean
2788 * "runtime suspended" vs. what you would normally expect (D3)
2789 * to distinguish it from notifications that might be sent via
2790 * the suspend path.
2791 */
2792 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2793 }
2794
2795 assert_forcewakes_inactive(dev_priv);
2796
2797 DRM_DEBUG_KMS("Device suspended\n");
2798 return 0;
2799 }
2800
2801 static int intel_runtime_resume(struct device *device)
2802 {
2803 struct pci_dev *pdev = to_pci_dev(device);
2804 struct drm_device *dev = pci_get_drvdata(pdev);
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806 int ret = 0;
2807
2808 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2809 return -ENODEV;
2810
2811 DRM_DEBUG_KMS("Resuming device\n");
2812
2813 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2814 disable_rpm_wakeref_asserts(dev_priv);
2815
2816 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2817 dev_priv->pm.suspended = false;
2818 if (intel_uncore_unclaimed_mmio(dev_priv))
2819 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2820
2821 intel_guc_resume(dev);
2822
2823 if (IS_GEN6(dev_priv))
2824 intel_init_pch_refclk(dev);
2825
2826 if (IS_BROXTON(dev)) {
2827 bxt_disable_dc9(dev_priv);
2828 bxt_display_core_init(dev_priv, true);
2829 if (dev_priv->csr.dmc_payload &&
2830 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2831 gen9_enable_dc5(dev_priv);
2832 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2833 hsw_disable_pc8(dev_priv);
2834 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2835 ret = vlv_resume_prepare(dev_priv, true);
2836 }
2837
2838 /*
2839 * No point of rolling back things in case of an error, as the best
2840 * we can do is to hope that things will still work (and disable RPM).
2841 */
2842 i915_gem_init_swizzling(dev);
2843 gen6_update_ring_freq(dev_priv);
2844
2845 intel_runtime_pm_enable_interrupts(dev_priv);
2846
2847 /*
2848 * On VLV/CHV display interrupts are part of the display
2849 * power well, so hpd is reinitialized from there. For
2850 * everyone else do it here.
2851 */
2852 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2853 intel_hpd_init(dev_priv);
2854
2855 intel_enable_gt_powersave(dev_priv);
2856
2857 enable_rpm_wakeref_asserts(dev_priv);
2858
2859 if (ret)
2860 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2861 else
2862 DRM_DEBUG_KMS("Device resumed\n");
2863
2864 return ret;
2865 }
2866
2867 const struct dev_pm_ops i915_pm_ops = {
2868 /*
2869 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2870 * PMSG_RESUME]
2871 */
2872 .suspend = i915_pm_suspend,
2873 .suspend_late = i915_pm_suspend_late,
2874 .resume_early = i915_pm_resume_early,
2875 .resume = i915_pm_resume,
2876
2877 /*
2878 * S4 event handlers
2879 * @freeze, @freeze_late : called (1) before creating the
2880 * hibernation image [PMSG_FREEZE] and
2881 * (2) after rebooting, before restoring
2882 * the image [PMSG_QUIESCE]
2883 * @thaw, @thaw_early : called (1) after creating the hibernation
2884 * image, before writing it [PMSG_THAW]
2885 * and (2) after failing to create or
2886 * restore the image [PMSG_RECOVER]
2887 * @poweroff, @poweroff_late: called after writing the hibernation
2888 * image, before rebooting [PMSG_HIBERNATE]
2889 * @restore, @restore_early : called after rebooting and restoring the
2890 * hibernation image [PMSG_RESTORE]
2891 */
2892 .freeze = i915_pm_freeze,
2893 .freeze_late = i915_pm_freeze_late,
2894 .thaw_early = i915_pm_thaw_early,
2895 .thaw = i915_pm_thaw,
2896 .poweroff = i915_pm_suspend,
2897 .poweroff_late = i915_pm_poweroff_late,
2898 .restore_early = i915_pm_restore_early,
2899 .restore = i915_pm_restore,
2900
2901 /* S0ix (via runtime suspend) event handlers */
2902 .runtime_suspend = intel_runtime_suspend,
2903 .runtime_resume = intel_runtime_resume,
2904 };
2905
2906 static const struct vm_operations_struct i915_gem_vm_ops = {
2907 .fault = i915_gem_fault,
2908 .open = drm_gem_vm_open,
2909 .close = drm_gem_vm_close,
2910 };
2911
2912 static const struct file_operations i915_driver_fops = {
2913 .owner = THIS_MODULE,
2914 .open = drm_open,
2915 .release = drm_release,
2916 .unlocked_ioctl = drm_ioctl,
2917 .mmap = drm_gem_mmap,
2918 .poll = drm_poll,
2919 .read = drm_read,
2920 #ifdef CONFIG_COMPAT
2921 .compat_ioctl = i915_compat_ioctl,
2922 #endif
2923 .llseek = noop_llseek,
2924 };
2925
2926 static int
2927 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2928 struct drm_file *file)
2929 {
2930 return -ENODEV;
2931 }
2932
2933 static const struct drm_ioctl_desc i915_ioctls[] = {
2934 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2935 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2936 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2937 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2938 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2939 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2940 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2941 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2942 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2943 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2944 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2945 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2946 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2947 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2948 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2949 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2950 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2951 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2952 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2953 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2954 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2955 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2956 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2957 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2958 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2959 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2960 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2961 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2962 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2963 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2964 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2965 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2966 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2967 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2968 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2969 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2970 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2971 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2972 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2973 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2974 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2975 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2976 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2977 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2978 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2979 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2980 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2981 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2982 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2983 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2984 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2985 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2986 };
2987
2988 static struct drm_driver driver = {
2989 /* Don't use MTRRs here; the Xserver or userspace app should
2990 * deal with them for Intel hardware.
2991 */
2992 .driver_features =
2993 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2994 DRIVER_RENDER | DRIVER_MODESET,
2995 .open = i915_driver_open,
2996 .lastclose = i915_driver_lastclose,
2997 .preclose = i915_driver_preclose,
2998 .postclose = i915_driver_postclose,
2999 .set_busid = drm_pci_set_busid,
3000
3001 .gem_free_object = i915_gem_free_object,
3002 .gem_vm_ops = &i915_gem_vm_ops,
3003
3004 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
3005 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
3006 .gem_prime_export = i915_gem_prime_export,
3007 .gem_prime_import = i915_gem_prime_import,
3008
3009 .dumb_create = i915_gem_dumb_create,
3010 .dumb_map_offset = i915_gem_mmap_gtt,
3011 .dumb_destroy = drm_gem_dumb_destroy,
3012 .ioctls = i915_ioctls,
3013 .num_ioctls = ARRAY_SIZE(i915_ioctls),
3014 .fops = &i915_driver_fops,
3015 .name = DRIVER_NAME,
3016 .desc = DRIVER_DESC,
3017 .date = DRIVER_DATE,
3018 .major = DRIVER_MAJOR,
3019 .minor = DRIVER_MINOR,
3020 .patchlevel = DRIVER_PATCHLEVEL,
3021 };
This page took 0.132052 seconds and 4 git commands to generate.