Merge remote-tracking branch 'regulator/for-next'
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static struct drm_driver driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59 if (i915_load_fail_count >= i915.inject_load_failure)
60 return false;
61
62 if (++i915_load_fail_count == i915.inject_load_failure) {
63 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64 i915.inject_load_failure, func, line);
65 return true;
66 }
67
68 return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73 "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77 const char *fmt, ...)
78 {
79 static bool shown_bug_once;
80 struct device *kdev = dev_priv->drm.dev;
81 bool is_error = level[1] <= KERN_ERR[1];
82 bool is_debug = level[1] == KERN_DEBUG[1];
83 struct va_format vaf;
84 va_list args;
85
86 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87 return;
88
89 va_start(args, fmt);
90
91 vaf.fmt = fmt;
92 vaf.va = &args;
93
94 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
95 __builtin_return_address(0), &vaf);
96
97 if (is_error && !shown_bug_once) {
98 dev_notice(kdev, "%s", FDO_BUG_MSG);
99 shown_bug_once = true;
100 }
101
102 va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107 return i915.inject_load_failure &&
108 i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...) \
112 __i915_printk(dev_priv, \
113 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114 fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
118 {
119 enum intel_pch ret = PCH_NOP;
120
121 /*
122 * In a virtualized passthrough environment we can be in a
123 * setup where the ISA bridge is not able to be passed through.
124 * In this case, a south bridge can be emulated and we have to
125 * make an educated guess as to which PCH is really there.
126 */
127
128 if (IS_GEN5(dev)) {
129 ret = PCH_IBX;
130 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
132 ret = PCH_CPT;
133 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
135 ret = PCH_LPT;
136 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
138 ret = PCH_SPT;
139 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140 }
141
142 return ret;
143 }
144
145 static void intel_detect_pch(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = to_i915(dev);
148 struct pci_dev *pch = NULL;
149
150 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151 * (which really amounts to a PCH but no South Display).
152 */
153 if (INTEL_INFO(dev)->num_pipes == 0) {
154 dev_priv->pch_type = PCH_NOP;
155 return;
156 }
157
158 /*
159 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160 * make graphics device passthrough work easy for VMM, that only
161 * need to expose ISA bridge to let driver know the real hardware
162 * underneath. This is a requirement from virtualization team.
163 *
164 * In some virtualized environments (e.g. XEN), there is irrelevant
165 * ISA bridge in the system. To work reliably, we should scan trhough
166 * all the ISA bridge devices and check for the first match, instead
167 * of only checking the first one.
168 */
169 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172 dev_priv->pch_id = id;
173
174 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175 dev_priv->pch_type = PCH_IBX;
176 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177 WARN_ON(!IS_GEN5(dev));
178 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179 dev_priv->pch_type = PCH_CPT;
180 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
182 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
183 /* PantherPoint is CPT compatible */
184 dev_priv->pch_type = PCH_CPT;
185 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
186 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
187 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_LPT;
189 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
190 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
191 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
192 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
193 dev_priv->pch_type = PCH_LPT;
194 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
195 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
196 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
197 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
198 dev_priv->pch_type = PCH_SPT;
199 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
200 WARN_ON(!IS_SKYLAKE(dev) &&
201 !IS_KABYLAKE(dev));
202 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
203 dev_priv->pch_type = PCH_SPT;
204 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
205 WARN_ON(!IS_SKYLAKE(dev) &&
206 !IS_KABYLAKE(dev));
207 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
208 dev_priv->pch_type = PCH_KBP;
209 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
210 WARN_ON(!IS_KABYLAKE(dev));
211 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
212 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
213 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
214 pch->subsystem_vendor ==
215 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
216 pch->subsystem_device ==
217 PCI_SUBDEVICE_ID_QEMU)) {
218 dev_priv->pch_type = intel_virt_detect_pch(dev);
219 } else
220 continue;
221
222 break;
223 }
224 }
225 if (!pch)
226 DRM_DEBUG_KMS("No PCH found.\n");
227
228 pci_dev_put(pch);
229 }
230
231 static int i915_getparam(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233 {
234 struct drm_i915_private *dev_priv = to_i915(dev);
235 struct pci_dev *pdev = dev_priv->drm.pdev;
236 drm_i915_getparam_t *param = data;
237 int value;
238
239 switch (param->param) {
240 case I915_PARAM_IRQ_ACTIVE:
241 case I915_PARAM_ALLOW_BATCHBUFFER:
242 case I915_PARAM_LAST_DISPATCH:
243 /* Reject all old ums/dri params. */
244 return -ENODEV;
245 case I915_PARAM_CHIPSET_ID:
246 value = pdev->device;
247 break;
248 case I915_PARAM_REVISION:
249 value = pdev->revision;
250 break;
251 case I915_PARAM_NUM_FENCES_AVAIL:
252 value = dev_priv->num_fence_regs;
253 break;
254 case I915_PARAM_HAS_OVERLAY:
255 value = dev_priv->overlay ? 1 : 0;
256 break;
257 case I915_PARAM_HAS_BSD:
258 value = intel_engine_initialized(&dev_priv->engine[VCS]);
259 break;
260 case I915_PARAM_HAS_BLT:
261 value = intel_engine_initialized(&dev_priv->engine[BCS]);
262 break;
263 case I915_PARAM_HAS_VEBOX:
264 value = intel_engine_initialized(&dev_priv->engine[VECS]);
265 break;
266 case I915_PARAM_HAS_BSD2:
267 value = intel_engine_initialized(&dev_priv->engine[VCS2]);
268 break;
269 case I915_PARAM_HAS_EXEC_CONSTANTS:
270 value = INTEL_GEN(dev_priv) >= 4;
271 break;
272 case I915_PARAM_HAS_LLC:
273 value = HAS_LLC(dev_priv);
274 break;
275 case I915_PARAM_HAS_WT:
276 value = HAS_WT(dev_priv);
277 break;
278 case I915_PARAM_HAS_ALIASING_PPGTT:
279 value = USES_PPGTT(dev_priv);
280 break;
281 case I915_PARAM_HAS_SEMAPHORES:
282 value = i915.semaphores;
283 break;
284 case I915_PARAM_HAS_SECURE_BATCHES:
285 value = capable(CAP_SYS_ADMIN);
286 break;
287 case I915_PARAM_CMD_PARSER_VERSION:
288 value = i915_cmd_parser_get_version(dev_priv);
289 break;
290 case I915_PARAM_SUBSLICE_TOTAL:
291 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
292 if (!value)
293 return -ENODEV;
294 break;
295 case I915_PARAM_EU_TOTAL:
296 value = INTEL_INFO(dev_priv)->sseu.eu_total;
297 if (!value)
298 return -ENODEV;
299 break;
300 case I915_PARAM_HAS_GPU_RESET:
301 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
302 break;
303 case I915_PARAM_HAS_RESOURCE_STREAMER:
304 value = HAS_RESOURCE_STREAMER(dev_priv);
305 break;
306 case I915_PARAM_HAS_POOLED_EU:
307 value = HAS_POOLED_EU(dev_priv);
308 break;
309 case I915_PARAM_MIN_EU_IN_POOL:
310 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
311 break;
312 case I915_PARAM_MMAP_GTT_VERSION:
313 /* Though we've started our numbering from 1, and so class all
314 * earlier versions as 0, in effect their value is undefined as
315 * the ioctl will report EINVAL for the unknown param!
316 */
317 value = i915_gem_mmap_gtt_version();
318 break;
319 case I915_PARAM_MMAP_VERSION:
320 /* Remember to bump this if the version changes! */
321 case I915_PARAM_HAS_GEM:
322 case I915_PARAM_HAS_PAGEFLIPPING:
323 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
324 case I915_PARAM_HAS_RELAXED_FENCING:
325 case I915_PARAM_HAS_COHERENT_RINGS:
326 case I915_PARAM_HAS_RELAXED_DELTA:
327 case I915_PARAM_HAS_GEN7_SOL_RESET:
328 case I915_PARAM_HAS_WAIT_TIMEOUT:
329 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
330 case I915_PARAM_HAS_PINNED_BATCHES:
331 case I915_PARAM_HAS_EXEC_NO_RELOC:
332 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
333 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
334 case I915_PARAM_HAS_EXEC_SOFTPIN:
335 /* For the time being all of these are always true;
336 * if some supported hardware does not have one of these
337 * features this value needs to be provided from
338 * INTEL_INFO(), a feature macro, or similar.
339 */
340 value = 1;
341 break;
342 default:
343 DRM_DEBUG("Unknown parameter %d\n", param->param);
344 return -EINVAL;
345 }
346
347 if (put_user(value, param->value))
348 return -EFAULT;
349
350 return 0;
351 }
352
353 static int i915_get_bridge_dev(struct drm_device *dev)
354 {
355 struct drm_i915_private *dev_priv = to_i915(dev);
356
357 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
358 if (!dev_priv->bridge_dev) {
359 DRM_ERROR("bridge device not found\n");
360 return -1;
361 }
362 return 0;
363 }
364
365 /* Allocate space for the MCH regs if needed, return nonzero on error */
366 static int
367 intel_alloc_mchbar_resource(struct drm_device *dev)
368 {
369 struct drm_i915_private *dev_priv = to_i915(dev);
370 int reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
371 u32 temp_lo, temp_hi = 0;
372 u64 mchbar_addr;
373 int ret;
374
375 if (INTEL_INFO(dev)->gen >= 4)
376 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
377 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
378 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
379
380 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
381 #ifdef CONFIG_PNP
382 if (mchbar_addr &&
383 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
384 return 0;
385 #endif
386
387 /* Get some space for it */
388 dev_priv->mch_res.name = "i915 MCHBAR";
389 dev_priv->mch_res.flags = IORESOURCE_MEM;
390 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
391 &dev_priv->mch_res,
392 MCHBAR_SIZE, MCHBAR_SIZE,
393 PCIBIOS_MIN_MEM,
394 0, pcibios_align_resource,
395 dev_priv->bridge_dev);
396 if (ret) {
397 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
398 dev_priv->mch_res.start = 0;
399 return ret;
400 }
401
402 if (INTEL_INFO(dev)->gen >= 4)
403 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
404 upper_32_bits(dev_priv->mch_res.start));
405
406 pci_write_config_dword(dev_priv->bridge_dev, reg,
407 lower_32_bits(dev_priv->mch_res.start));
408 return 0;
409 }
410
411 /* Setup MCHBAR if possible, return true if we should disable it again */
412 static void
413 intel_setup_mchbar(struct drm_device *dev)
414 {
415 struct drm_i915_private *dev_priv = to_i915(dev);
416 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
417 u32 temp;
418 bool enabled;
419
420 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
421 return;
422
423 dev_priv->mchbar_need_disable = false;
424
425 if (IS_I915G(dev) || IS_I915GM(dev)) {
426 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
427 enabled = !!(temp & DEVEN_MCHBAR_EN);
428 } else {
429 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
430 enabled = temp & 1;
431 }
432
433 /* If it's already enabled, don't have to do anything */
434 if (enabled)
435 return;
436
437 if (intel_alloc_mchbar_resource(dev))
438 return;
439
440 dev_priv->mchbar_need_disable = true;
441
442 /* Space is allocated or reserved, so enable it. */
443 if (IS_I915G(dev) || IS_I915GM(dev)) {
444 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
445 temp | DEVEN_MCHBAR_EN);
446 } else {
447 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
448 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
449 }
450 }
451
452 static void
453 intel_teardown_mchbar(struct drm_device *dev)
454 {
455 struct drm_i915_private *dev_priv = to_i915(dev);
456 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
457
458 if (dev_priv->mchbar_need_disable) {
459 if (IS_I915G(dev) || IS_I915GM(dev)) {
460 u32 deven_val;
461
462 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
463 &deven_val);
464 deven_val &= ~DEVEN_MCHBAR_EN;
465 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
466 deven_val);
467 } else {
468 u32 mchbar_val;
469
470 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
471 &mchbar_val);
472 mchbar_val &= ~1;
473 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
474 mchbar_val);
475 }
476 }
477
478 if (dev_priv->mch_res.start)
479 release_resource(&dev_priv->mch_res);
480 }
481
482 /* true = enable decode, false = disable decoder */
483 static unsigned int i915_vga_set_decode(void *cookie, bool state)
484 {
485 struct drm_device *dev = cookie;
486
487 intel_modeset_vga_set_state(dev, state);
488 if (state)
489 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
490 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
491 else
492 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
493 }
494
495 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
496 {
497 struct drm_device *dev = pci_get_drvdata(pdev);
498 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
499
500 if (state == VGA_SWITCHEROO_ON) {
501 pr_info("switched on\n");
502 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
503 /* i915 resume handler doesn't set to D0 */
504 pci_set_power_state(pdev, PCI_D0);
505 i915_resume_switcheroo(dev);
506 dev->switch_power_state = DRM_SWITCH_POWER_ON;
507 } else {
508 pr_info("switched off\n");
509 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
510 i915_suspend_switcheroo(dev, pmm);
511 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
512 }
513 }
514
515 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
516 {
517 struct drm_device *dev = pci_get_drvdata(pdev);
518
519 /*
520 * FIXME: open_count is protected by drm_global_mutex but that would lead to
521 * locking inversion with the driver load path. And the access here is
522 * completely racy anyway. So don't bother with locking for now.
523 */
524 return dev->open_count == 0;
525 }
526
527 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
528 .set_gpu_state = i915_switcheroo_set_state,
529 .reprobe = NULL,
530 .can_switch = i915_switcheroo_can_switch,
531 };
532
533 static void i915_gem_fini(struct drm_device *dev)
534 {
535 struct drm_i915_private *dev_priv = to_i915(dev);
536
537 /*
538 * Neither the BIOS, ourselves or any other kernel
539 * expects the system to be in execlists mode on startup,
540 * so we need to reset the GPU back to legacy mode. And the only
541 * known way to disable logical contexts is through a GPU reset.
542 *
543 * So in order to leave the system in a known default configuration,
544 * always reset the GPU upon unload. Afterwards we then clean up the
545 * GEM state tracking, flushing off the requests and leaving the
546 * system in a known idle state.
547 *
548 * Note that is of the upmost importance that the GPU is idle and
549 * all stray writes are flushed *before* we dismantle the backing
550 * storage for the pinned objects.
551 *
552 * However, since we are uncertain that reseting the GPU on older
553 * machines is a good idea, we don't - just in case it leaves the
554 * machine in an unusable condition.
555 */
556 if (HAS_HW_CONTEXTS(dev)) {
557 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
558 WARN_ON(reset && reset != -ENODEV);
559 }
560
561 mutex_lock(&dev->struct_mutex);
562 i915_gem_cleanup_engines(dev);
563 i915_gem_context_fini(dev);
564 mutex_unlock(&dev->struct_mutex);
565
566 WARN_ON(!list_empty(&to_i915(dev)->context_list));
567 }
568
569 static int i915_load_modeset_init(struct drm_device *dev)
570 {
571 struct drm_i915_private *dev_priv = to_i915(dev);
572 struct pci_dev *pdev = dev_priv->drm.pdev;
573 int ret;
574
575 if (i915_inject_load_failure())
576 return -ENODEV;
577
578 ret = intel_bios_init(dev_priv);
579 if (ret)
580 DRM_INFO("failed to find VBIOS tables\n");
581
582 /* If we have > 1 VGA cards, then we need to arbitrate access
583 * to the common VGA resources.
584 *
585 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
586 * then we do not take part in VGA arbitration and the
587 * vga_client_register() fails with -ENODEV.
588 */
589 ret = vga_client_register(pdev, dev, NULL, i915_vga_set_decode);
590 if (ret && ret != -ENODEV)
591 goto out;
592
593 intel_register_dsm_handler();
594
595 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
596 if (ret)
597 goto cleanup_vga_client;
598
599 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
600 intel_update_rawclk(dev_priv);
601
602 intel_power_domains_init_hw(dev_priv, false);
603
604 intel_csr_ucode_init(dev_priv);
605
606 ret = intel_irq_install(dev_priv);
607 if (ret)
608 goto cleanup_csr;
609
610 intel_setup_gmbus(dev);
611
612 /* Important: The output setup functions called by modeset_init need
613 * working irqs for e.g. gmbus and dp aux transfers. */
614 intel_modeset_init(dev);
615
616 intel_guc_init(dev);
617
618 ret = i915_gem_init(dev);
619 if (ret)
620 goto cleanup_irq;
621
622 intel_modeset_gem_init(dev);
623
624 if (INTEL_INFO(dev)->num_pipes == 0)
625 return 0;
626
627 ret = intel_fbdev_init(dev);
628 if (ret)
629 goto cleanup_gem;
630
631 /* Only enable hotplug handling once the fbdev is fully set up. */
632 intel_hpd_init(dev_priv);
633
634 drm_kms_helper_poll_init(dev);
635
636 return 0;
637
638 cleanup_gem:
639 i915_gem_fini(dev);
640 cleanup_irq:
641 intel_guc_fini(dev);
642 drm_irq_uninstall(dev);
643 intel_teardown_gmbus(dev);
644 cleanup_csr:
645 intel_csr_ucode_fini(dev_priv);
646 intel_power_domains_fini(dev_priv);
647 vga_switcheroo_unregister_client(pdev);
648 cleanup_vga_client:
649 vga_client_register(pdev, NULL, NULL, NULL);
650 out:
651 return ret;
652 }
653
654 #if IS_ENABLED(CONFIG_FB)
655 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
656 {
657 struct apertures_struct *ap;
658 struct pci_dev *pdev = dev_priv->drm.pdev;
659 struct i915_ggtt *ggtt = &dev_priv->ggtt;
660 bool primary;
661 int ret;
662
663 ap = alloc_apertures(1);
664 if (!ap)
665 return -ENOMEM;
666
667 ap->ranges[0].base = ggtt->mappable_base;
668 ap->ranges[0].size = ggtt->mappable_end;
669
670 primary =
671 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
672
673 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
674
675 kfree(ap);
676
677 return ret;
678 }
679 #else
680 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
681 {
682 return 0;
683 }
684 #endif
685
686 #if !defined(CONFIG_VGA_CONSOLE)
687 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
688 {
689 return 0;
690 }
691 #elif !defined(CONFIG_DUMMY_CONSOLE)
692 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
693 {
694 return -ENODEV;
695 }
696 #else
697 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
698 {
699 int ret = 0;
700
701 DRM_INFO("Replacing VGA console driver\n");
702
703 console_lock();
704 if (con_is_bound(&vga_con))
705 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
706 if (ret == 0) {
707 ret = do_unregister_con_driver(&vga_con);
708
709 /* Ignore "already unregistered". */
710 if (ret == -ENODEV)
711 ret = 0;
712 }
713 console_unlock();
714
715 return ret;
716 }
717 #endif
718
719 static void intel_init_dpio(struct drm_i915_private *dev_priv)
720 {
721 /*
722 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
723 * CHV x1 PHY (DP/HDMI D)
724 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
725 */
726 if (IS_CHERRYVIEW(dev_priv)) {
727 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
728 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
729 } else if (IS_VALLEYVIEW(dev_priv)) {
730 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
731 }
732 }
733
734 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
735 {
736 /*
737 * The i915 workqueue is primarily used for batched retirement of
738 * requests (and thus managing bo) once the task has been completed
739 * by the GPU. i915_gem_retire_requests() is called directly when we
740 * need high-priority retirement, such as waiting for an explicit
741 * bo.
742 *
743 * It is also used for periodic low-priority events, such as
744 * idle-timers and recording error state.
745 *
746 * All tasks on the workqueue are expected to acquire the dev mutex
747 * so there is no point in running more than one instance of the
748 * workqueue at any time. Use an ordered one.
749 */
750 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
751 if (dev_priv->wq == NULL)
752 goto out_err;
753
754 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
755 if (dev_priv->hotplug.dp_wq == NULL)
756 goto out_free_wq;
757
758 return 0;
759
760 out_free_wq:
761 destroy_workqueue(dev_priv->wq);
762 out_err:
763 DRM_ERROR("Failed to allocate workqueues.\n");
764
765 return -ENOMEM;
766 }
767
768 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
769 {
770 destroy_workqueue(dev_priv->hotplug.dp_wq);
771 destroy_workqueue(dev_priv->wq);
772 }
773
774 /**
775 * i915_driver_init_early - setup state not requiring device access
776 * @dev_priv: device private
777 *
778 * Initialize everything that is a "SW-only" state, that is state not
779 * requiring accessing the device or exposing the driver via kernel internal
780 * or userspace interfaces. Example steps belonging here: lock initialization,
781 * system memory allocation, setting up device specific attributes and
782 * function hooks not requiring accessing the device.
783 */
784 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
785 const struct pci_device_id *ent)
786 {
787 const struct intel_device_info *match_info =
788 (struct intel_device_info *)ent->driver_data;
789 struct intel_device_info *device_info;
790 int ret = 0;
791
792 if (i915_inject_load_failure())
793 return -ENODEV;
794
795 /* Setup the write-once "constant" device info */
796 device_info = mkwrite_device_info(dev_priv);
797 memcpy(device_info, match_info, sizeof(*device_info));
798 device_info->device_id = dev_priv->drm.pdev->device;
799
800 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
801 device_info->gen_mask = BIT(device_info->gen - 1);
802
803 spin_lock_init(&dev_priv->irq_lock);
804 spin_lock_init(&dev_priv->gpu_error.lock);
805 mutex_init(&dev_priv->backlight_lock);
806 spin_lock_init(&dev_priv->uncore.lock);
807 spin_lock_init(&dev_priv->mm.object_stat_lock);
808 spin_lock_init(&dev_priv->mmio_flip_lock);
809 mutex_init(&dev_priv->sb_lock);
810 mutex_init(&dev_priv->modeset_restore_lock);
811 mutex_init(&dev_priv->av_mutex);
812 mutex_init(&dev_priv->wm.wm_mutex);
813 mutex_init(&dev_priv->pps_mutex);
814
815 i915_memcpy_init_early(dev_priv);
816
817 ret = i915_workqueues_init(dev_priv);
818 if (ret < 0)
819 return ret;
820
821 ret = intel_gvt_init(dev_priv);
822 if (ret < 0)
823 goto err_workqueues;
824
825 /* This must be called before any calls to HAS_PCH_* */
826 intel_detect_pch(&dev_priv->drm);
827
828 intel_pm_setup(&dev_priv->drm);
829 intel_init_dpio(dev_priv);
830 intel_power_domains_init(dev_priv);
831 intel_irq_init(dev_priv);
832 intel_init_display_hooks(dev_priv);
833 intel_init_clock_gating_hooks(dev_priv);
834 intel_init_audio_hooks(dev_priv);
835 i915_gem_load_init(&dev_priv->drm);
836
837 intel_display_crc_init(dev_priv);
838
839 intel_device_info_dump(dev_priv);
840
841 /* Not all pre-production machines fall into this category, only the
842 * very first ones. Almost everything should work, except for maybe
843 * suspend/resume. And we don't implement workarounds that affect only
844 * pre-production machines. */
845 if (IS_HSW_EARLY_SDV(dev_priv))
846 DRM_INFO("This is an early pre-production Haswell machine. "
847 "It may not be fully functional.\n");
848
849 return 0;
850
851 err_workqueues:
852 i915_workqueues_cleanup(dev_priv);
853 return ret;
854 }
855
856 /**
857 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
858 * @dev_priv: device private
859 */
860 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
861 {
862 i915_gem_load_cleanup(&dev_priv->drm);
863 i915_workqueues_cleanup(dev_priv);
864 }
865
866 static int i915_mmio_setup(struct drm_device *dev)
867 {
868 struct drm_i915_private *dev_priv = to_i915(dev);
869 struct pci_dev *pdev = dev_priv->drm.pdev;
870 int mmio_bar;
871 int mmio_size;
872
873 mmio_bar = IS_GEN2(dev) ? 1 : 0;
874 /*
875 * Before gen4, the registers and the GTT are behind different BARs.
876 * However, from gen4 onwards, the registers and the GTT are shared
877 * in the same BAR, so we want to restrict this ioremap from
878 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
879 * the register BAR remains the same size for all the earlier
880 * generations up to Ironlake.
881 */
882 if (INTEL_INFO(dev)->gen < 5)
883 mmio_size = 512 * 1024;
884 else
885 mmio_size = 2 * 1024 * 1024;
886 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
887 if (dev_priv->regs == NULL) {
888 DRM_ERROR("failed to map registers\n");
889
890 return -EIO;
891 }
892
893 /* Try to make sure MCHBAR is enabled before poking at it */
894 intel_setup_mchbar(dev);
895
896 return 0;
897 }
898
899 static void i915_mmio_cleanup(struct drm_device *dev)
900 {
901 struct drm_i915_private *dev_priv = to_i915(dev);
902 struct pci_dev *pdev = dev_priv->drm.pdev;
903
904 intel_teardown_mchbar(dev);
905 pci_iounmap(pdev, dev_priv->regs);
906 }
907
908 /**
909 * i915_driver_init_mmio - setup device MMIO
910 * @dev_priv: device private
911 *
912 * Setup minimal device state necessary for MMIO accesses later in the
913 * initialization sequence. The setup here should avoid any other device-wide
914 * side effects or exposing the driver via kernel internal or user space
915 * interfaces.
916 */
917 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
918 {
919 struct drm_device *dev = &dev_priv->drm;
920 int ret;
921
922 if (i915_inject_load_failure())
923 return -ENODEV;
924
925 if (i915_get_bridge_dev(dev))
926 return -EIO;
927
928 ret = i915_mmio_setup(dev);
929 if (ret < 0)
930 goto put_bridge;
931
932 intel_uncore_init(dev_priv);
933
934 return 0;
935
936 put_bridge:
937 pci_dev_put(dev_priv->bridge_dev);
938
939 return ret;
940 }
941
942 /**
943 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
944 * @dev_priv: device private
945 */
946 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
947 {
948 struct drm_device *dev = &dev_priv->drm;
949
950 intel_uncore_fini(dev_priv);
951 i915_mmio_cleanup(dev);
952 pci_dev_put(dev_priv->bridge_dev);
953 }
954
955 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
956 {
957 i915.enable_execlists =
958 intel_sanitize_enable_execlists(dev_priv,
959 i915.enable_execlists);
960
961 /*
962 * i915.enable_ppgtt is read-only, so do an early pass to validate the
963 * user's requested state against the hardware/driver capabilities. We
964 * do this now so that we can print out any log messages once rather
965 * than every time we check intel_enable_ppgtt().
966 */
967 i915.enable_ppgtt =
968 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
969 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
970
971 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
972 DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
973 }
974
975 /**
976 * i915_driver_init_hw - setup state requiring device access
977 * @dev_priv: device private
978 *
979 * Setup state that requires accessing the device, but doesn't require
980 * exposing the driver via kernel internal or userspace interfaces.
981 */
982 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
983 {
984 struct pci_dev *pdev = dev_priv->drm.pdev;
985 struct drm_device *dev = &dev_priv->drm;
986 int ret;
987
988 if (i915_inject_load_failure())
989 return -ENODEV;
990
991 intel_device_info_runtime_init(dev_priv);
992
993 intel_sanitize_options(dev_priv);
994
995 ret = i915_ggtt_probe_hw(dev_priv);
996 if (ret)
997 return ret;
998
999 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1000 * otherwise the vga fbdev driver falls over. */
1001 ret = i915_kick_out_firmware_fb(dev_priv);
1002 if (ret) {
1003 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1004 goto out_ggtt;
1005 }
1006
1007 ret = i915_kick_out_vgacon(dev_priv);
1008 if (ret) {
1009 DRM_ERROR("failed to remove conflicting VGA console\n");
1010 goto out_ggtt;
1011 }
1012
1013 ret = i915_ggtt_init_hw(dev_priv);
1014 if (ret)
1015 return ret;
1016
1017 ret = i915_ggtt_enable_hw(dev_priv);
1018 if (ret) {
1019 DRM_ERROR("failed to enable GGTT\n");
1020 goto out_ggtt;
1021 }
1022
1023 pci_set_master(pdev);
1024
1025 /* overlay on gen2 is broken and can't address above 1G */
1026 if (IS_GEN2(dev)) {
1027 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1028 if (ret) {
1029 DRM_ERROR("failed to set DMA mask\n");
1030
1031 goto out_ggtt;
1032 }
1033 }
1034
1035 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1036 * using 32bit addressing, overwriting memory if HWS is located
1037 * above 4GB.
1038 *
1039 * The documentation also mentions an issue with undefined
1040 * behaviour if any general state is accessed within a page above 4GB,
1041 * which also needs to be handled carefully.
1042 */
1043 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) {
1044 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1045
1046 if (ret) {
1047 DRM_ERROR("failed to set DMA mask\n");
1048
1049 goto out_ggtt;
1050 }
1051 }
1052
1053 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1054 PM_QOS_DEFAULT_VALUE);
1055
1056 intel_uncore_sanitize(dev_priv);
1057
1058 intel_opregion_setup(dev_priv);
1059
1060 i915_gem_load_init_fences(dev_priv);
1061
1062 /* On the 945G/GM, the chipset reports the MSI capability on the
1063 * integrated graphics even though the support isn't actually there
1064 * according to the published specs. It doesn't appear to function
1065 * correctly in testing on 945G.
1066 * This may be a side effect of MSI having been made available for PEG
1067 * and the registers being closely associated.
1068 *
1069 * According to chipset errata, on the 965GM, MSI interrupts may
1070 * be lost or delayed, but we use them anyways to avoid
1071 * stuck interrupts on some machines.
1072 */
1073 if (!IS_I945G(dev) && !IS_I945GM(dev)) {
1074 if (pci_enable_msi(pdev) < 0)
1075 DRM_DEBUG_DRIVER("can't enable MSI");
1076 }
1077
1078 return 0;
1079
1080 out_ggtt:
1081 i915_ggtt_cleanup_hw(dev_priv);
1082
1083 return ret;
1084 }
1085
1086 /**
1087 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1088 * @dev_priv: device private
1089 */
1090 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1091 {
1092 struct pci_dev *pdev = dev_priv->drm.pdev;
1093
1094 if (pdev->msi_enabled)
1095 pci_disable_msi(pdev);
1096
1097 pm_qos_remove_request(&dev_priv->pm_qos);
1098 i915_ggtt_cleanup_hw(dev_priv);
1099 }
1100
1101 /**
1102 * i915_driver_register - register the driver with the rest of the system
1103 * @dev_priv: device private
1104 *
1105 * Perform any steps necessary to make the driver available via kernel
1106 * internal or userspace interfaces.
1107 */
1108 static void i915_driver_register(struct drm_i915_private *dev_priv)
1109 {
1110 struct drm_device *dev = &dev_priv->drm;
1111
1112 i915_gem_shrinker_init(dev_priv);
1113
1114 /*
1115 * Notify a valid surface after modesetting,
1116 * when running inside a VM.
1117 */
1118 if (intel_vgpu_active(dev_priv))
1119 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1120
1121 /* Reveal our presence to userspace */
1122 if (drm_dev_register(dev, 0) == 0) {
1123 i915_debugfs_register(dev_priv);
1124 i915_setup_sysfs(dev_priv);
1125 } else
1126 DRM_ERROR("Failed to register driver for userspace access!\n");
1127
1128 if (INTEL_INFO(dev_priv)->num_pipes) {
1129 /* Must be done after probing outputs */
1130 intel_opregion_register(dev_priv);
1131 acpi_video_register();
1132 }
1133
1134 if (IS_GEN5(dev_priv))
1135 intel_gpu_ips_init(dev_priv);
1136
1137 i915_audio_component_init(dev_priv);
1138
1139 /*
1140 * Some ports require correctly set-up hpd registers for detection to
1141 * work properly (leading to ghost connected connector status), e.g. VGA
1142 * on gm45. Hence we can only set up the initial fbdev config after hpd
1143 * irqs are fully enabled. We do it last so that the async config
1144 * cannot run before the connectors are registered.
1145 */
1146 intel_fbdev_initial_config_async(dev);
1147 }
1148
1149 /**
1150 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1151 * @dev_priv: device private
1152 */
1153 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1154 {
1155 i915_audio_component_cleanup(dev_priv);
1156
1157 intel_gpu_ips_teardown();
1158 acpi_video_unregister();
1159 intel_opregion_unregister(dev_priv);
1160
1161 i915_teardown_sysfs(dev_priv);
1162 i915_debugfs_unregister(dev_priv);
1163 drm_dev_unregister(&dev_priv->drm);
1164
1165 i915_gem_shrinker_cleanup(dev_priv);
1166 }
1167
1168 /**
1169 * i915_driver_load - setup chip and create an initial config
1170 * @dev: DRM device
1171 * @flags: startup flags
1172 *
1173 * The driver load routine has to do several things:
1174 * - drive output discovery via intel_modeset_init()
1175 * - initialize the memory manager
1176 * - allocate initial config memory
1177 * - setup the DRM framebuffer with the allocated memory
1178 */
1179 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1180 {
1181 struct drm_i915_private *dev_priv;
1182 int ret;
1183
1184 if (i915.nuclear_pageflip)
1185 driver.driver_features |= DRIVER_ATOMIC;
1186
1187 ret = -ENOMEM;
1188 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1189 if (dev_priv)
1190 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1191 if (ret) {
1192 dev_printk(KERN_ERR, &pdev->dev,
1193 "[" DRM_NAME ":%s] allocation failed\n", __func__);
1194 kfree(dev_priv);
1195 return ret;
1196 }
1197
1198 dev_priv->drm.pdev = pdev;
1199 dev_priv->drm.dev_private = dev_priv;
1200
1201 ret = pci_enable_device(pdev);
1202 if (ret)
1203 goto out_free_priv;
1204
1205 pci_set_drvdata(pdev, &dev_priv->drm);
1206
1207 ret = i915_driver_init_early(dev_priv, ent);
1208 if (ret < 0)
1209 goto out_pci_disable;
1210
1211 intel_runtime_pm_get(dev_priv);
1212
1213 ret = i915_driver_init_mmio(dev_priv);
1214 if (ret < 0)
1215 goto out_runtime_pm_put;
1216
1217 ret = i915_driver_init_hw(dev_priv);
1218 if (ret < 0)
1219 goto out_cleanup_mmio;
1220
1221 /*
1222 * TODO: move the vblank init and parts of modeset init steps into one
1223 * of the i915_driver_init_/i915_driver_register functions according
1224 * to the role/effect of the given init step.
1225 */
1226 if (INTEL_INFO(dev_priv)->num_pipes) {
1227 ret = drm_vblank_init(&dev_priv->drm,
1228 INTEL_INFO(dev_priv)->num_pipes);
1229 if (ret)
1230 goto out_cleanup_hw;
1231 }
1232
1233 ret = i915_load_modeset_init(&dev_priv->drm);
1234 if (ret < 0)
1235 goto out_cleanup_vblank;
1236
1237 i915_driver_register(dev_priv);
1238
1239 intel_runtime_pm_enable(dev_priv);
1240
1241 /* Everything is in place, we can now relax! */
1242 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1243 driver.name, driver.major, driver.minor, driver.patchlevel,
1244 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1245
1246 intel_runtime_pm_put(dev_priv);
1247
1248 return 0;
1249
1250 out_cleanup_vblank:
1251 drm_vblank_cleanup(&dev_priv->drm);
1252 out_cleanup_hw:
1253 i915_driver_cleanup_hw(dev_priv);
1254 out_cleanup_mmio:
1255 i915_driver_cleanup_mmio(dev_priv);
1256 out_runtime_pm_put:
1257 intel_runtime_pm_put(dev_priv);
1258 i915_driver_cleanup_early(dev_priv);
1259 out_pci_disable:
1260 pci_disable_device(pdev);
1261 out_free_priv:
1262 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1263 drm_dev_unref(&dev_priv->drm);
1264 return ret;
1265 }
1266
1267 void i915_driver_unload(struct drm_device *dev)
1268 {
1269 struct drm_i915_private *dev_priv = to_i915(dev);
1270 struct pci_dev *pdev = dev_priv->drm.pdev;
1271
1272 intel_fbdev_fini(dev);
1273
1274 if (i915_gem_suspend(dev))
1275 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1276
1277 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1278
1279 i915_driver_unregister(dev_priv);
1280
1281 drm_vblank_cleanup(dev);
1282
1283 intel_modeset_cleanup(dev);
1284
1285 /*
1286 * free the memory space allocated for the child device
1287 * config parsed from VBT
1288 */
1289 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1290 kfree(dev_priv->vbt.child_dev);
1291 dev_priv->vbt.child_dev = NULL;
1292 dev_priv->vbt.child_dev_num = 0;
1293 }
1294 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1295 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1296 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1297 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1298
1299 vga_switcheroo_unregister_client(pdev);
1300 vga_client_register(pdev, NULL, NULL, NULL);
1301
1302 intel_csr_ucode_fini(dev_priv);
1303
1304 /* Free error state after interrupts are fully disabled. */
1305 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1306 i915_destroy_error_state(dev);
1307
1308 /* Flush any outstanding unpin_work. */
1309 drain_workqueue(dev_priv->wq);
1310
1311 intel_guc_fini(dev);
1312 i915_gem_fini(dev);
1313 intel_fbc_cleanup_cfb(dev_priv);
1314
1315 intel_power_domains_fini(dev_priv);
1316
1317 i915_driver_cleanup_hw(dev_priv);
1318 i915_driver_cleanup_mmio(dev_priv);
1319
1320 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1321
1322 i915_driver_cleanup_early(dev_priv);
1323 }
1324
1325 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1326 {
1327 int ret;
1328
1329 ret = i915_gem_open(dev, file);
1330 if (ret)
1331 return ret;
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * i915_driver_lastclose - clean up after all DRM clients have exited
1338 * @dev: DRM device
1339 *
1340 * Take care of cleaning up after all DRM clients have exited. In the
1341 * mode setting case, we want to restore the kernel's initial mode (just
1342 * in case the last client left us in a bad state).
1343 *
1344 * Additionally, in the non-mode setting case, we'll tear down the GTT
1345 * and DMA structures, since the kernel won't be using them, and clea
1346 * up any GEM state.
1347 */
1348 static void i915_driver_lastclose(struct drm_device *dev)
1349 {
1350 intel_fbdev_restore_mode(dev);
1351 vga_switcheroo_process_delayed_switch();
1352 }
1353
1354 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1355 {
1356 mutex_lock(&dev->struct_mutex);
1357 i915_gem_context_close(dev, file);
1358 i915_gem_release(dev, file);
1359 mutex_unlock(&dev->struct_mutex);
1360 }
1361
1362 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1363 {
1364 struct drm_i915_file_private *file_priv = file->driver_priv;
1365
1366 kfree(file_priv);
1367 }
1368
1369 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1370 {
1371 struct drm_device *dev = &dev_priv->drm;
1372 struct intel_encoder *encoder;
1373
1374 drm_modeset_lock_all(dev);
1375 for_each_intel_encoder(dev, encoder)
1376 if (encoder->suspend)
1377 encoder->suspend(encoder);
1378 drm_modeset_unlock_all(dev);
1379 }
1380
1381 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1382 bool rpm_resume);
1383 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1384
1385 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1386 {
1387 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1388 if (acpi_target_system_state() < ACPI_STATE_S3)
1389 return true;
1390 #endif
1391 return false;
1392 }
1393
1394 static int i915_drm_suspend(struct drm_device *dev)
1395 {
1396 struct drm_i915_private *dev_priv = to_i915(dev);
1397 struct pci_dev *pdev = dev_priv->drm.pdev;
1398 pci_power_t opregion_target_state;
1399 int error;
1400
1401 /* ignore lid events during suspend */
1402 mutex_lock(&dev_priv->modeset_restore_lock);
1403 dev_priv->modeset_restore = MODESET_SUSPENDED;
1404 mutex_unlock(&dev_priv->modeset_restore_lock);
1405
1406 disable_rpm_wakeref_asserts(dev_priv);
1407
1408 /* We do a lot of poking in a lot of registers, make sure they work
1409 * properly. */
1410 intel_display_set_init_power(dev_priv, true);
1411
1412 drm_kms_helper_poll_disable(dev);
1413
1414 pci_save_state(pdev);
1415
1416 error = i915_gem_suspend(dev);
1417 if (error) {
1418 dev_err(&pdev->dev,
1419 "GEM idle failed, resume might fail\n");
1420 goto out;
1421 }
1422
1423 intel_guc_suspend(dev);
1424
1425 intel_display_suspend(dev);
1426
1427 intel_dp_mst_suspend(dev);
1428
1429 intel_runtime_pm_disable_interrupts(dev_priv);
1430 intel_hpd_cancel_work(dev_priv);
1431
1432 intel_suspend_encoders(dev_priv);
1433
1434 intel_suspend_hw(dev);
1435
1436 i915_gem_suspend_gtt_mappings(dev);
1437
1438 i915_save_state(dev);
1439
1440 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1441 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1442
1443 intel_uncore_forcewake_reset(dev_priv, false);
1444 intel_opregion_unregister(dev_priv);
1445
1446 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1447
1448 dev_priv->suspend_count++;
1449
1450 intel_display_set_init_power(dev_priv, false);
1451
1452 intel_csr_ucode_suspend(dev_priv);
1453
1454 out:
1455 enable_rpm_wakeref_asserts(dev_priv);
1456
1457 return error;
1458 }
1459
1460 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1461 {
1462 struct drm_i915_private *dev_priv = to_i915(dev);
1463 struct pci_dev *pdev = dev_priv->drm.pdev;
1464 bool fw_csr;
1465 int ret;
1466
1467 disable_rpm_wakeref_asserts(dev_priv);
1468
1469 fw_csr = !IS_BROXTON(dev_priv) &&
1470 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1471 /*
1472 * In case of firmware assisted context save/restore don't manually
1473 * deinit the power domains. This also means the CSR/DMC firmware will
1474 * stay active, it will power down any HW resources as required and
1475 * also enable deeper system power states that would be blocked if the
1476 * firmware was inactive.
1477 */
1478 if (!fw_csr)
1479 intel_power_domains_suspend(dev_priv);
1480
1481 ret = 0;
1482 if (IS_BROXTON(dev_priv))
1483 bxt_enable_dc9(dev_priv);
1484 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1485 hsw_enable_pc8(dev_priv);
1486 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1487 ret = vlv_suspend_complete(dev_priv);
1488
1489 if (ret) {
1490 DRM_ERROR("Suspend complete failed: %d\n", ret);
1491 if (!fw_csr)
1492 intel_power_domains_init_hw(dev_priv, true);
1493
1494 goto out;
1495 }
1496
1497 pci_disable_device(pdev);
1498 /*
1499 * During hibernation on some platforms the BIOS may try to access
1500 * the device even though it's already in D3 and hang the machine. So
1501 * leave the device in D0 on those platforms and hope the BIOS will
1502 * power down the device properly. The issue was seen on multiple old
1503 * GENs with different BIOS vendors, so having an explicit blacklist
1504 * is inpractical; apply the workaround on everything pre GEN6. The
1505 * platforms where the issue was seen:
1506 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1507 * Fujitsu FSC S7110
1508 * Acer Aspire 1830T
1509 */
1510 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
1511 pci_set_power_state(pdev, PCI_D3hot);
1512
1513 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1514
1515 out:
1516 enable_rpm_wakeref_asserts(dev_priv);
1517
1518 return ret;
1519 }
1520
1521 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1522 {
1523 int error;
1524
1525 if (!dev) {
1526 DRM_ERROR("dev: %p\n", dev);
1527 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1528 return -ENODEV;
1529 }
1530
1531 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1532 state.event != PM_EVENT_FREEZE))
1533 return -EINVAL;
1534
1535 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1536 return 0;
1537
1538 error = i915_drm_suspend(dev);
1539 if (error)
1540 return error;
1541
1542 return i915_drm_suspend_late(dev, false);
1543 }
1544
1545 static int i915_drm_resume(struct drm_device *dev)
1546 {
1547 struct drm_i915_private *dev_priv = to_i915(dev);
1548 int ret;
1549
1550 disable_rpm_wakeref_asserts(dev_priv);
1551 intel_sanitize_gt_powersave(dev_priv);
1552
1553 ret = i915_ggtt_enable_hw(dev_priv);
1554 if (ret)
1555 DRM_ERROR("failed to re-enable GGTT\n");
1556
1557 intel_csr_ucode_resume(dev_priv);
1558
1559 i915_gem_resume(dev);
1560
1561 i915_restore_state(dev);
1562 intel_pps_unlock_regs_wa(dev_priv);
1563 intel_opregion_setup(dev_priv);
1564
1565 intel_init_pch_refclk(dev);
1566 drm_mode_config_reset(dev);
1567
1568 /*
1569 * Interrupts have to be enabled before any batches are run. If not the
1570 * GPU will hang. i915_gem_init_hw() will initiate batches to
1571 * update/restore the context.
1572 *
1573 * Modeset enabling in intel_modeset_init_hw() also needs working
1574 * interrupts.
1575 */
1576 intel_runtime_pm_enable_interrupts(dev_priv);
1577
1578 mutex_lock(&dev->struct_mutex);
1579 if (i915_gem_init_hw(dev)) {
1580 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1581 i915_gem_set_wedged(dev_priv);
1582 }
1583 mutex_unlock(&dev->struct_mutex);
1584
1585 intel_guc_resume(dev);
1586
1587 intel_modeset_init_hw(dev);
1588
1589 spin_lock_irq(&dev_priv->irq_lock);
1590 if (dev_priv->display.hpd_irq_setup)
1591 dev_priv->display.hpd_irq_setup(dev_priv);
1592 spin_unlock_irq(&dev_priv->irq_lock);
1593
1594 intel_dp_mst_resume(dev);
1595
1596 intel_display_resume(dev);
1597
1598 /*
1599 * ... but also need to make sure that hotplug processing
1600 * doesn't cause havoc. Like in the driver load code we don't
1601 * bother with the tiny race here where we might loose hotplug
1602 * notifications.
1603 * */
1604 intel_hpd_init(dev_priv);
1605 /* Config may have changed between suspend and resume */
1606 drm_helper_hpd_irq_event(dev);
1607
1608 intel_opregion_register(dev_priv);
1609
1610 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1611
1612 mutex_lock(&dev_priv->modeset_restore_lock);
1613 dev_priv->modeset_restore = MODESET_DONE;
1614 mutex_unlock(&dev_priv->modeset_restore_lock);
1615
1616 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1617
1618 intel_autoenable_gt_powersave(dev_priv);
1619 drm_kms_helper_poll_enable(dev);
1620
1621 enable_rpm_wakeref_asserts(dev_priv);
1622
1623 return 0;
1624 }
1625
1626 static int i915_drm_resume_early(struct drm_device *dev)
1627 {
1628 struct drm_i915_private *dev_priv = to_i915(dev);
1629 struct pci_dev *pdev = dev_priv->drm.pdev;
1630 int ret;
1631
1632 /*
1633 * We have a resume ordering issue with the snd-hda driver also
1634 * requiring our device to be power up. Due to the lack of a
1635 * parent/child relationship we currently solve this with an early
1636 * resume hook.
1637 *
1638 * FIXME: This should be solved with a special hdmi sink device or
1639 * similar so that power domains can be employed.
1640 */
1641
1642 /*
1643 * Note that we need to set the power state explicitly, since we
1644 * powered off the device during freeze and the PCI core won't power
1645 * it back up for us during thaw. Powering off the device during
1646 * freeze is not a hard requirement though, and during the
1647 * suspend/resume phases the PCI core makes sure we get here with the
1648 * device powered on. So in case we change our freeze logic and keep
1649 * the device powered we can also remove the following set power state
1650 * call.
1651 */
1652 ret = pci_set_power_state(pdev, PCI_D0);
1653 if (ret) {
1654 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1655 goto out;
1656 }
1657
1658 /*
1659 * Note that pci_enable_device() first enables any parent bridge
1660 * device and only then sets the power state for this device. The
1661 * bridge enabling is a nop though, since bridge devices are resumed
1662 * first. The order of enabling power and enabling the device is
1663 * imposed by the PCI core as described above, so here we preserve the
1664 * same order for the freeze/thaw phases.
1665 *
1666 * TODO: eventually we should remove pci_disable_device() /
1667 * pci_enable_enable_device() from suspend/resume. Due to how they
1668 * depend on the device enable refcount we can't anyway depend on them
1669 * disabling/enabling the device.
1670 */
1671 if (pci_enable_device(pdev)) {
1672 ret = -EIO;
1673 goto out;
1674 }
1675
1676 pci_set_master(pdev);
1677
1678 disable_rpm_wakeref_asserts(dev_priv);
1679
1680 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1681 ret = vlv_resume_prepare(dev_priv, false);
1682 if (ret)
1683 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1684 ret);
1685
1686 intel_uncore_early_sanitize(dev_priv, true);
1687
1688 if (IS_BROXTON(dev_priv)) {
1689 if (!dev_priv->suspended_to_idle)
1690 gen9_sanitize_dc_state(dev_priv);
1691 bxt_disable_dc9(dev_priv);
1692 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1693 hsw_disable_pc8(dev_priv);
1694 }
1695
1696 intel_uncore_sanitize(dev_priv);
1697
1698 if (IS_BROXTON(dev_priv) ||
1699 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1700 intel_power_domains_init_hw(dev_priv, true);
1701
1702 enable_rpm_wakeref_asserts(dev_priv);
1703
1704 out:
1705 dev_priv->suspended_to_idle = false;
1706
1707 return ret;
1708 }
1709
1710 int i915_resume_switcheroo(struct drm_device *dev)
1711 {
1712 int ret;
1713
1714 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1715 return 0;
1716
1717 ret = i915_drm_resume_early(dev);
1718 if (ret)
1719 return ret;
1720
1721 return i915_drm_resume(dev);
1722 }
1723
1724 /**
1725 * i915_reset - reset chip after a hang
1726 * @dev: drm device to reset
1727 *
1728 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1729 * on failure.
1730 *
1731 * Caller must hold the struct_mutex.
1732 *
1733 * Procedure is fairly simple:
1734 * - reset the chip using the reset reg
1735 * - re-init context state
1736 * - re-init hardware status page
1737 * - re-init ring buffer
1738 * - re-init interrupt state
1739 * - re-init display
1740 */
1741 void i915_reset(struct drm_i915_private *dev_priv)
1742 {
1743 struct drm_device *dev = &dev_priv->drm;
1744 struct i915_gpu_error *error = &dev_priv->gpu_error;
1745 int ret;
1746
1747 lockdep_assert_held(&dev->struct_mutex);
1748
1749 if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1750 return;
1751
1752 /* Clear any previous failed attempts at recovery. Time to try again. */
1753 __clear_bit(I915_WEDGED, &error->flags);
1754 error->reset_count++;
1755
1756 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1757 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1758 if (ret) {
1759 if (ret != -ENODEV)
1760 DRM_ERROR("Failed to reset chip: %i\n", ret);
1761 else
1762 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1763 goto error;
1764 }
1765
1766 i915_gem_reset(dev_priv);
1767 intel_overlay_reset(dev_priv);
1768
1769 /* Ok, now get things going again... */
1770
1771 /*
1772 * Everything depends on having the GTT running, so we need to start
1773 * there. Fortunately we don't need to do this unless we reset the
1774 * chip at a PCI level.
1775 *
1776 * Next we need to restore the context, but we don't use those
1777 * yet either...
1778 *
1779 * Ring buffer needs to be re-initialized in the KMS case, or if X
1780 * was running at the time of the reset (i.e. we weren't VT
1781 * switched away).
1782 */
1783 ret = i915_gem_init_hw(dev);
1784 if (ret) {
1785 DRM_ERROR("Failed hw init on reset %d\n", ret);
1786 goto error;
1787 }
1788
1789 /*
1790 * rps/rc6 re-init is necessary to restore state lost after the
1791 * reset and the re-install of gt irqs. Skip for ironlake per
1792 * previous concerns that it doesn't respond well to some forms
1793 * of re-init after reset.
1794 */
1795 intel_sanitize_gt_powersave(dev_priv);
1796 intel_autoenable_gt_powersave(dev_priv);
1797
1798 wakeup:
1799 wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1800 return;
1801
1802 error:
1803 i915_gem_set_wedged(dev_priv);
1804 goto wakeup;
1805 }
1806
1807 static int i915_pm_suspend(struct device *kdev)
1808 {
1809 struct pci_dev *pdev = to_pci_dev(kdev);
1810 struct drm_device *dev = pci_get_drvdata(pdev);
1811
1812 if (!dev) {
1813 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1814 return -ENODEV;
1815 }
1816
1817 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1818 return 0;
1819
1820 return i915_drm_suspend(dev);
1821 }
1822
1823 static int i915_pm_suspend_late(struct device *kdev)
1824 {
1825 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1826
1827 /*
1828 * We have a suspend ordering issue with the snd-hda driver also
1829 * requiring our device to be power up. Due to the lack of a
1830 * parent/child relationship we currently solve this with an late
1831 * suspend hook.
1832 *
1833 * FIXME: This should be solved with a special hdmi sink device or
1834 * similar so that power domains can be employed.
1835 */
1836 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1837 return 0;
1838
1839 return i915_drm_suspend_late(dev, false);
1840 }
1841
1842 static int i915_pm_poweroff_late(struct device *kdev)
1843 {
1844 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1845
1846 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1847 return 0;
1848
1849 return i915_drm_suspend_late(dev, true);
1850 }
1851
1852 static int i915_pm_resume_early(struct device *kdev)
1853 {
1854 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1855
1856 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1857 return 0;
1858
1859 return i915_drm_resume_early(dev);
1860 }
1861
1862 static int i915_pm_resume(struct device *kdev)
1863 {
1864 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1865
1866 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1867 return 0;
1868
1869 return i915_drm_resume(dev);
1870 }
1871
1872 /* freeze: before creating the hibernation_image */
1873 static int i915_pm_freeze(struct device *kdev)
1874 {
1875 return i915_pm_suspend(kdev);
1876 }
1877
1878 static int i915_pm_freeze_late(struct device *kdev)
1879 {
1880 int ret;
1881
1882 ret = i915_pm_suspend_late(kdev);
1883 if (ret)
1884 return ret;
1885
1886 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1887 if (ret)
1888 return ret;
1889
1890 return 0;
1891 }
1892
1893 /* thaw: called after creating the hibernation image, but before turning off. */
1894 static int i915_pm_thaw_early(struct device *kdev)
1895 {
1896 return i915_pm_resume_early(kdev);
1897 }
1898
1899 static int i915_pm_thaw(struct device *kdev)
1900 {
1901 return i915_pm_resume(kdev);
1902 }
1903
1904 /* restore: called after loading the hibernation image. */
1905 static int i915_pm_restore_early(struct device *kdev)
1906 {
1907 return i915_pm_resume_early(kdev);
1908 }
1909
1910 static int i915_pm_restore(struct device *kdev)
1911 {
1912 return i915_pm_resume(kdev);
1913 }
1914
1915 /*
1916 * Save all Gunit registers that may be lost after a D3 and a subsequent
1917 * S0i[R123] transition. The list of registers needing a save/restore is
1918 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1919 * registers in the following way:
1920 * - Driver: saved/restored by the driver
1921 * - Punit : saved/restored by the Punit firmware
1922 * - No, w/o marking: no need to save/restore, since the register is R/O or
1923 * used internally by the HW in a way that doesn't depend
1924 * keeping the content across a suspend/resume.
1925 * - Debug : used for debugging
1926 *
1927 * We save/restore all registers marked with 'Driver', with the following
1928 * exceptions:
1929 * - Registers out of use, including also registers marked with 'Debug'.
1930 * These have no effect on the driver's operation, so we don't save/restore
1931 * them to reduce the overhead.
1932 * - Registers that are fully setup by an initialization function called from
1933 * the resume path. For example many clock gating and RPS/RC6 registers.
1934 * - Registers that provide the right functionality with their reset defaults.
1935 *
1936 * TODO: Except for registers that based on the above 3 criteria can be safely
1937 * ignored, we save/restore all others, practically treating the HW context as
1938 * a black-box for the driver. Further investigation is needed to reduce the
1939 * saved/restored registers even further, by following the same 3 criteria.
1940 */
1941 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1942 {
1943 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1944 int i;
1945
1946 /* GAM 0x4000-0x4770 */
1947 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1948 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1949 s->arb_mode = I915_READ(ARB_MODE);
1950 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1951 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1952
1953 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1954 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1955
1956 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1957 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1958
1959 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1960 s->ecochk = I915_READ(GAM_ECOCHK);
1961 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1962 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1963
1964 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1965
1966 /* MBC 0x9024-0x91D0, 0x8500 */
1967 s->g3dctl = I915_READ(VLV_G3DCTL);
1968 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1969 s->mbctl = I915_READ(GEN6_MBCTL);
1970
1971 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1972 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1973 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1974 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1975 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1976 s->rstctl = I915_READ(GEN6_RSTCTL);
1977 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1978
1979 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1980 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1981 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1982 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1983 s->ecobus = I915_READ(ECOBUS);
1984 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1985 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1986 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1987 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1988 s->rcedata = I915_READ(VLV_RCEDATA);
1989 s->spare2gh = I915_READ(VLV_SPAREG2H);
1990
1991 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1992 s->gt_imr = I915_READ(GTIMR);
1993 s->gt_ier = I915_READ(GTIER);
1994 s->pm_imr = I915_READ(GEN6_PMIMR);
1995 s->pm_ier = I915_READ(GEN6_PMIER);
1996
1997 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1998 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1999
2000 /* GT SA CZ domain, 0x100000-0x138124 */
2001 s->tilectl = I915_READ(TILECTL);
2002 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2003 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2004 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2005 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2006
2007 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2008 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2009 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2010 s->pcbr = I915_READ(VLV_PCBR);
2011 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2012
2013 /*
2014 * Not saving any of:
2015 * DFT, 0x9800-0x9EC0
2016 * SARB, 0xB000-0xB1FC
2017 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2018 * PCI CFG
2019 */
2020 }
2021
2022 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2023 {
2024 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2025 u32 val;
2026 int i;
2027
2028 /* GAM 0x4000-0x4770 */
2029 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2030 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2031 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2032 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2033 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2034
2035 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2036 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2037
2038 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2039 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2040
2041 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2042 I915_WRITE(GAM_ECOCHK, s->ecochk);
2043 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2044 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2045
2046 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2047
2048 /* MBC 0x9024-0x91D0, 0x8500 */
2049 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2050 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2051 I915_WRITE(GEN6_MBCTL, s->mbctl);
2052
2053 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2054 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2055 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2056 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2057 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2058 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2059 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2060
2061 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2062 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2063 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2064 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2065 I915_WRITE(ECOBUS, s->ecobus);
2066 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2067 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2068 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2069 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2070 I915_WRITE(VLV_RCEDATA, s->rcedata);
2071 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2072
2073 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2074 I915_WRITE(GTIMR, s->gt_imr);
2075 I915_WRITE(GTIER, s->gt_ier);
2076 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2077 I915_WRITE(GEN6_PMIER, s->pm_ier);
2078
2079 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2080 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2081
2082 /* GT SA CZ domain, 0x100000-0x138124 */
2083 I915_WRITE(TILECTL, s->tilectl);
2084 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2085 /*
2086 * Preserve the GT allow wake and GFX force clock bit, they are not
2087 * be restored, as they are used to control the s0ix suspend/resume
2088 * sequence by the caller.
2089 */
2090 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2091 val &= VLV_GTLC_ALLOWWAKEREQ;
2092 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2093 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2094
2095 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2096 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2097 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2098 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2099
2100 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2101
2102 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2103 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2104 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2105 I915_WRITE(VLV_PCBR, s->pcbr);
2106 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2107 }
2108
2109 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2110 {
2111 u32 val;
2112 int err;
2113
2114 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2115 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2116 if (force_on)
2117 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2118 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2119
2120 if (!force_on)
2121 return 0;
2122
2123 err = intel_wait_for_register(dev_priv,
2124 VLV_GTLC_SURVIVABILITY_REG,
2125 VLV_GFX_CLK_STATUS_BIT,
2126 VLV_GFX_CLK_STATUS_BIT,
2127 20);
2128 if (err)
2129 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2130 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2131
2132 return err;
2133 }
2134
2135 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2136 {
2137 u32 val;
2138 int err = 0;
2139
2140 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2141 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2142 if (allow)
2143 val |= VLV_GTLC_ALLOWWAKEREQ;
2144 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2145 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2146
2147 err = intel_wait_for_register(dev_priv,
2148 VLV_GTLC_PW_STATUS,
2149 VLV_GTLC_ALLOWWAKEACK,
2150 allow,
2151 1);
2152 if (err)
2153 DRM_ERROR("timeout disabling GT waking\n");
2154
2155 return err;
2156 }
2157
2158 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2159 bool wait_for_on)
2160 {
2161 u32 mask;
2162 u32 val;
2163 int err;
2164
2165 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2166 val = wait_for_on ? mask : 0;
2167 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2168 return 0;
2169
2170 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2171 onoff(wait_for_on),
2172 I915_READ(VLV_GTLC_PW_STATUS));
2173
2174 /*
2175 * RC6 transitioning can be delayed up to 2 msec (see
2176 * valleyview_enable_rps), use 3 msec for safety.
2177 */
2178 err = intel_wait_for_register(dev_priv,
2179 VLV_GTLC_PW_STATUS, mask, val,
2180 3);
2181 if (err)
2182 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2183 onoff(wait_for_on));
2184
2185 return err;
2186 }
2187
2188 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2189 {
2190 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2191 return;
2192
2193 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2194 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2195 }
2196
2197 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2198 {
2199 u32 mask;
2200 int err;
2201
2202 /*
2203 * Bspec defines the following GT well on flags as debug only, so
2204 * don't treat them as hard failures.
2205 */
2206 (void)vlv_wait_for_gt_wells(dev_priv, false);
2207
2208 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2209 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2210
2211 vlv_check_no_gt_access(dev_priv);
2212
2213 err = vlv_force_gfx_clock(dev_priv, true);
2214 if (err)
2215 goto err1;
2216
2217 err = vlv_allow_gt_wake(dev_priv, false);
2218 if (err)
2219 goto err2;
2220
2221 if (!IS_CHERRYVIEW(dev_priv))
2222 vlv_save_gunit_s0ix_state(dev_priv);
2223
2224 err = vlv_force_gfx_clock(dev_priv, false);
2225 if (err)
2226 goto err2;
2227
2228 return 0;
2229
2230 err2:
2231 /* For safety always re-enable waking and disable gfx clock forcing */
2232 vlv_allow_gt_wake(dev_priv, true);
2233 err1:
2234 vlv_force_gfx_clock(dev_priv, false);
2235
2236 return err;
2237 }
2238
2239 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2240 bool rpm_resume)
2241 {
2242 struct drm_device *dev = &dev_priv->drm;
2243 int err;
2244 int ret;
2245
2246 /*
2247 * If any of the steps fail just try to continue, that's the best we
2248 * can do at this point. Return the first error code (which will also
2249 * leave RPM permanently disabled).
2250 */
2251 ret = vlv_force_gfx_clock(dev_priv, true);
2252
2253 if (!IS_CHERRYVIEW(dev_priv))
2254 vlv_restore_gunit_s0ix_state(dev_priv);
2255
2256 err = vlv_allow_gt_wake(dev_priv, true);
2257 if (!ret)
2258 ret = err;
2259
2260 err = vlv_force_gfx_clock(dev_priv, false);
2261 if (!ret)
2262 ret = err;
2263
2264 vlv_check_no_gt_access(dev_priv);
2265
2266 if (rpm_resume) {
2267 intel_init_clock_gating(dev);
2268 i915_gem_restore_fences(dev);
2269 }
2270
2271 return ret;
2272 }
2273
2274 static int intel_runtime_suspend(struct device *kdev)
2275 {
2276 struct pci_dev *pdev = to_pci_dev(kdev);
2277 struct drm_device *dev = pci_get_drvdata(pdev);
2278 struct drm_i915_private *dev_priv = to_i915(dev);
2279 int ret;
2280
2281 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2282 return -ENODEV;
2283
2284 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2285 return -ENODEV;
2286
2287 DRM_DEBUG_KMS("Suspending device\n");
2288
2289 /*
2290 * We could deadlock here in case another thread holding struct_mutex
2291 * calls RPM suspend concurrently, since the RPM suspend will wait
2292 * first for this RPM suspend to finish. In this case the concurrent
2293 * RPM resume will be followed by its RPM suspend counterpart. Still
2294 * for consistency return -EAGAIN, which will reschedule this suspend.
2295 */
2296 if (!mutex_trylock(&dev->struct_mutex)) {
2297 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
2298 /*
2299 * Bump the expiration timestamp, otherwise the suspend won't
2300 * be rescheduled.
2301 */
2302 pm_runtime_mark_last_busy(kdev);
2303
2304 return -EAGAIN;
2305 }
2306
2307 disable_rpm_wakeref_asserts(dev_priv);
2308
2309 /*
2310 * We are safe here against re-faults, since the fault handler takes
2311 * an RPM reference.
2312 */
2313 i915_gem_release_all_mmaps(dev_priv);
2314 mutex_unlock(&dev->struct_mutex);
2315
2316 intel_guc_suspend(dev);
2317
2318 intel_runtime_pm_disable_interrupts(dev_priv);
2319
2320 ret = 0;
2321 if (IS_BROXTON(dev_priv)) {
2322 bxt_display_core_uninit(dev_priv);
2323 bxt_enable_dc9(dev_priv);
2324 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2325 hsw_enable_pc8(dev_priv);
2326 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2327 ret = vlv_suspend_complete(dev_priv);
2328 }
2329
2330 if (ret) {
2331 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2332 intel_runtime_pm_enable_interrupts(dev_priv);
2333
2334 enable_rpm_wakeref_asserts(dev_priv);
2335
2336 return ret;
2337 }
2338
2339 intel_uncore_forcewake_reset(dev_priv, false);
2340
2341 enable_rpm_wakeref_asserts(dev_priv);
2342 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2343
2344 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2345 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2346
2347 dev_priv->pm.suspended = true;
2348
2349 /*
2350 * FIXME: We really should find a document that references the arguments
2351 * used below!
2352 */
2353 if (IS_BROADWELL(dev_priv)) {
2354 /*
2355 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2356 * being detected, and the call we do at intel_runtime_resume()
2357 * won't be able to restore them. Since PCI_D3hot matches the
2358 * actual specification and appears to be working, use it.
2359 */
2360 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2361 } else {
2362 /*
2363 * current versions of firmware which depend on this opregion
2364 * notification have repurposed the D1 definition to mean
2365 * "runtime suspended" vs. what you would normally expect (D3)
2366 * to distinguish it from notifications that might be sent via
2367 * the suspend path.
2368 */
2369 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2370 }
2371
2372 assert_forcewakes_inactive(dev_priv);
2373
2374 if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
2375 intel_hpd_poll_init(dev_priv);
2376
2377 DRM_DEBUG_KMS("Device suspended\n");
2378 return 0;
2379 }
2380
2381 static int intel_runtime_resume(struct device *kdev)
2382 {
2383 struct pci_dev *pdev = to_pci_dev(kdev);
2384 struct drm_device *dev = pci_get_drvdata(pdev);
2385 struct drm_i915_private *dev_priv = to_i915(dev);
2386 int ret = 0;
2387
2388 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2389 return -ENODEV;
2390
2391 DRM_DEBUG_KMS("Resuming device\n");
2392
2393 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2394 disable_rpm_wakeref_asserts(dev_priv);
2395
2396 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2397 dev_priv->pm.suspended = false;
2398 if (intel_uncore_unclaimed_mmio(dev_priv))
2399 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2400
2401 intel_guc_resume(dev);
2402
2403 if (IS_GEN6(dev_priv))
2404 intel_init_pch_refclk(dev);
2405
2406 if (IS_BROXTON(dev)) {
2407 bxt_disable_dc9(dev_priv);
2408 bxt_display_core_init(dev_priv, true);
2409 if (dev_priv->csr.dmc_payload &&
2410 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2411 gen9_enable_dc5(dev_priv);
2412 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2413 hsw_disable_pc8(dev_priv);
2414 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2415 ret = vlv_resume_prepare(dev_priv, true);
2416 }
2417
2418 /*
2419 * No point of rolling back things in case of an error, as the best
2420 * we can do is to hope that things will still work (and disable RPM).
2421 */
2422 i915_gem_init_swizzling(dev);
2423
2424 intel_runtime_pm_enable_interrupts(dev_priv);
2425
2426 /*
2427 * On VLV/CHV display interrupts are part of the display
2428 * power well, so hpd is reinitialized from there. For
2429 * everyone else do it here.
2430 */
2431 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2432 intel_hpd_init(dev_priv);
2433
2434 enable_rpm_wakeref_asserts(dev_priv);
2435
2436 if (ret)
2437 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2438 else
2439 DRM_DEBUG_KMS("Device resumed\n");
2440
2441 return ret;
2442 }
2443
2444 const struct dev_pm_ops i915_pm_ops = {
2445 /*
2446 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2447 * PMSG_RESUME]
2448 */
2449 .suspend = i915_pm_suspend,
2450 .suspend_late = i915_pm_suspend_late,
2451 .resume_early = i915_pm_resume_early,
2452 .resume = i915_pm_resume,
2453
2454 /*
2455 * S4 event handlers
2456 * @freeze, @freeze_late : called (1) before creating the
2457 * hibernation image [PMSG_FREEZE] and
2458 * (2) after rebooting, before restoring
2459 * the image [PMSG_QUIESCE]
2460 * @thaw, @thaw_early : called (1) after creating the hibernation
2461 * image, before writing it [PMSG_THAW]
2462 * and (2) after failing to create or
2463 * restore the image [PMSG_RECOVER]
2464 * @poweroff, @poweroff_late: called after writing the hibernation
2465 * image, before rebooting [PMSG_HIBERNATE]
2466 * @restore, @restore_early : called after rebooting and restoring the
2467 * hibernation image [PMSG_RESTORE]
2468 */
2469 .freeze = i915_pm_freeze,
2470 .freeze_late = i915_pm_freeze_late,
2471 .thaw_early = i915_pm_thaw_early,
2472 .thaw = i915_pm_thaw,
2473 .poweroff = i915_pm_suspend,
2474 .poweroff_late = i915_pm_poweroff_late,
2475 .restore_early = i915_pm_restore_early,
2476 .restore = i915_pm_restore,
2477
2478 /* S0ix (via runtime suspend) event handlers */
2479 .runtime_suspend = intel_runtime_suspend,
2480 .runtime_resume = intel_runtime_resume,
2481 };
2482
2483 static const struct vm_operations_struct i915_gem_vm_ops = {
2484 .fault = i915_gem_fault,
2485 .open = drm_gem_vm_open,
2486 .close = drm_gem_vm_close,
2487 };
2488
2489 static const struct file_operations i915_driver_fops = {
2490 .owner = THIS_MODULE,
2491 .open = drm_open,
2492 .release = drm_release,
2493 .unlocked_ioctl = drm_ioctl,
2494 .mmap = drm_gem_mmap,
2495 .poll = drm_poll,
2496 .read = drm_read,
2497 #ifdef CONFIG_COMPAT
2498 .compat_ioctl = i915_compat_ioctl,
2499 #endif
2500 .llseek = noop_llseek,
2501 };
2502
2503 static int
2504 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2505 struct drm_file *file)
2506 {
2507 return -ENODEV;
2508 }
2509
2510 static const struct drm_ioctl_desc i915_ioctls[] = {
2511 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2512 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2513 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2514 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2515 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2516 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2517 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2518 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2519 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2520 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2521 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2522 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2523 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2524 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2525 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2526 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2527 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2528 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2530 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2531 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2532 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2533 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2534 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2535 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2536 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2537 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2538 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2539 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2540 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2541 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2542 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2543 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2544 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2545 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2546 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2547 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2548 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2549 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2550 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2551 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2552 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2553 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2554 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2555 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2556 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2557 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2558 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2559 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2560 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2561 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2562 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2563 };
2564
2565 static struct drm_driver driver = {
2566 /* Don't use MTRRs here; the Xserver or userspace app should
2567 * deal with them for Intel hardware.
2568 */
2569 .driver_features =
2570 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2571 DRIVER_RENDER | DRIVER_MODESET,
2572 .open = i915_driver_open,
2573 .lastclose = i915_driver_lastclose,
2574 .preclose = i915_driver_preclose,
2575 .postclose = i915_driver_postclose,
2576 .set_busid = drm_pci_set_busid,
2577
2578 .gem_close_object = i915_gem_close_object,
2579 .gem_free_object = i915_gem_free_object,
2580 .gem_vm_ops = &i915_gem_vm_ops,
2581
2582 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2583 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2584 .gem_prime_export = i915_gem_prime_export,
2585 .gem_prime_import = i915_gem_prime_import,
2586
2587 .dumb_create = i915_gem_dumb_create,
2588 .dumb_map_offset = i915_gem_mmap_gtt,
2589 .dumb_destroy = drm_gem_dumb_destroy,
2590 .ioctls = i915_ioctls,
2591 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2592 .fops = &i915_driver_fops,
2593 .name = DRIVER_NAME,
2594 .desc = DRIVER_DESC,
2595 .date = DRIVER_DATE,
2596 .major = DRIVER_MAJOR,
2597 .minor = DRIVER_MINOR,
2598 .patchlevel = DRIVER_PATCHLEVEL,
2599 };
This page took 0.125786 seconds and 5 git commands to generate.