Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69 {
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 if (!i915_reset_in_progress(error))
109 return 0;
110
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
116 ret = wait_event_interruptible_timeout(error->reset_queue,
117 !i915_reset_in_progress(error),
118 10*HZ);
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
123 return ret;
124 } else {
125 return 0;
126 }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = to_i915(dev);
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = to_i915(dev);
151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 struct drm_i915_gem_get_aperture *args = data;
153 struct i915_vma *vma;
154 size_t pinned;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 if (vma->pin_count)
163 pinned += vma->node.size;
164 mutex_unlock(&dev->struct_mutex);
165
166 args->aper_size = ggtt->base.total;
167 args->aper_available_size = args->aper_size - pinned;
168
169 return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 struct address_space *mapping = obj->base.filp->f_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
180
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 put_page(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
215
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 if (WARN_ON(ret)) {
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
242 struct address_space *mapping = obj->base.filp->f_mapping;
243 char *vaddr = obj->phys_handle->vaddr;
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
261 mark_page_accessed(page);
262 put_page(page);
263 vaddr += PAGE_SIZE;
264 }
265 obj->dirty = 0;
266 }
267
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = to_i915(dev);
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_object_create(dev, size);
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440 {
441 struct drm_i915_gem_create *args = data;
442
443 return i915_gem_create(file, dev,
444 args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451 {
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
476 int length)
477 {
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497 }
498
499 /*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506 {
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543 char *vaddr;
544 int ret;
545
546 if (unlikely(page_do_bit17_swizzling))
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
558 return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564 {
565 if (unlikely(swizzled)) {
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
609 return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617 {
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638 {
639 struct drm_i915_private *dev_priv = to_i915(dev);
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733 out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744 out:
745 return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
753 {
754 char __user *user_data;
755 ssize_t remain;
756 loff_t offset;
757 int shmem_page_offset, page_length, ret = 0;
758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759 int prefaulted = 0;
760 int needs_clflush = 0;
761 struct sg_page_iter sg_iter;
762
763 if (!i915_gem_object_has_struct_page(obj))
764 return -ENODEV;
765
766 user_data = u64_to_user_ptr(args->data_ptr);
767 remain = args->size;
768
769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 if (ret)
773 return ret;
774
775 offset = args->offset;
776
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
779 struct page *page = sg_page_iter_page(&sg_iter);
780
781 if (remain <= 0)
782 break;
783
784 /* Operation in this page
785 *
786 * shmem_page_offset = offset within page in shmem file
787 * page_length = bytes to copy for this page
788 */
789 shmem_page_offset = offset_in_page(offset);
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
793
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
802
803 mutex_unlock(&dev->struct_mutex);
804
805 if (likely(!i915.prefault_disable) && !prefaulted) {
806 ret = fault_in_multipages_writeable(user_data, remain);
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
814
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
818
819 mutex_lock(&dev->struct_mutex);
820
821 if (ret)
822 goto out;
823
824 next_page:
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 i915_gem_object_unpin_pages(obj);
832
833 return ret;
834 }
835
836 /**
837 * Reads data from the object referenced by handle.
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
841 *
842 * On error, the contents of *data are undefined.
843 */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846 struct drm_file *file)
847 {
848 struct drm_i915_gem_pread *args = data;
849 struct drm_i915_gem_object *obj;
850 int ret = 0;
851
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
856 u64_to_user_ptr(args->data_ptr),
857 args->size))
858 return -EFAULT;
859
860 ret = i915_mutex_lock_interruptible(dev);
861 if (ret)
862 return ret;
863
864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865 if (&obj->base == NULL) {
866 ret = -ENOENT;
867 goto unlock;
868 }
869
870 /* Bounds check source. */
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
873 ret = -EINVAL;
874 goto out;
875 }
876
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879 ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV)
883 ret = i915_gem_gtt_pread(dev, obj, args->size,
884 args->offset, args->data_ptr);
885
886 out:
887 drm_gem_object_unreference(&obj->base);
888 unlock:
889 mutex_unlock(&dev->struct_mutex);
890 return ret;
891 }
892
893 /* This is the fast write path which cannot handle
894 * page faults in the source data
895 */
896
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899 loff_t page_base, int page_offset,
900 char __user *user_data,
901 int length)
902 {
903 void __iomem *vaddr_atomic;
904 void *vaddr;
905 unsigned long unwritten;
906
907 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 /* We can use the cpu mem copy function because this is X86. */
909 vaddr = (void __force*)vaddr_atomic + page_offset;
910 unwritten = __copy_from_user_inatomic_nocache(vaddr,
911 user_data, length);
912 io_mapping_unmap_atomic(vaddr_atomic);
913 return unwritten;
914 }
915
916 /**
917 * This is the fast pwrite path, where we copy the data directly from the
918 * user into the GTT, uncached.
919 * @dev: drm device pointer
920 * @obj: i915 gem object
921 * @args: pwrite arguments structure
922 * @file: drm file pointer
923 */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926 struct drm_i915_gem_object *obj,
927 struct drm_i915_gem_pwrite *args,
928 struct drm_file *file)
929 {
930 struct i915_ggtt *ggtt = &i915->ggtt;
931 struct drm_device *dev = obj->base.dev;
932 struct drm_mm_node node;
933 uint64_t remain, offset;
934 char __user *user_data;
935 int ret;
936 bool hit_slow_path = false;
937
938 if (obj->tiling_mode != I915_TILING_NONE)
939 return -EFAULT;
940
941 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 if (ret) {
943 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 if (ret)
945 goto out;
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret) {
949 remove_mappable_node(&node);
950 goto out;
951 }
952
953 i915_gem_object_pin_pages(obj);
954 } else {
955 node.start = i915_gem_obj_ggtt_offset(obj);
956 node.allocated = false;
957 ret = i915_gem_object_put_fence(obj);
958 if (ret)
959 goto out_unpin;
960 }
961
962 ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 if (ret)
964 goto out_unpin;
965
966 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967 obj->dirty = true;
968
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = args->offset;
971 remain = args->size;
972 while (remain) {
973 /* Operation in this page
974 *
975 * page_base = page offset within aperture
976 * page_offset = offset within page
977 * page_length = bytes to copy for this page
978 */
979 u32 page_base = node.start;
980 unsigned page_offset = offset_in_page(offset);
981 unsigned page_length = PAGE_SIZE - page_offset;
982 page_length = remain < page_length ? remain : page_length;
983 if (node.allocated) {
984 wmb(); /* flush the write before we modify the GGTT */
985 ggtt->base.insert_page(&ggtt->base,
986 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 node.start, I915_CACHE_NONE, 0);
988 wmb(); /* flush modifications to the GGTT (insert_page) */
989 } else {
990 page_base += offset & PAGE_MASK;
991 }
992 /* If we get a fault while copying data, then (presumably) our
993 * source page isn't available. Return the error and we'll
994 * retry in the slow path.
995 * If the object is non-shmem backed, we retry again with the
996 * path that handles page fault.
997 */
998 if (fast_user_write(ggtt->mappable, page_base,
999 page_offset, user_data, page_length)) {
1000 hit_slow_path = true;
1001 mutex_unlock(&dev->struct_mutex);
1002 if (slow_user_access(ggtt->mappable,
1003 page_base,
1004 page_offset, user_data,
1005 page_length, true)) {
1006 ret = -EFAULT;
1007 mutex_lock(&dev->struct_mutex);
1008 goto out_flush;
1009 }
1010
1011 mutex_lock(&dev->struct_mutex);
1012 }
1013
1014 remain -= page_length;
1015 user_data += page_length;
1016 offset += page_length;
1017 }
1018
1019 out_flush:
1020 if (hit_slow_path) {
1021 if (ret == 0 &&
1022 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 /* The user has modified the object whilst we tried
1024 * reading from it, and we now have no idea what domain
1025 * the pages should be in. As we have just been touching
1026 * them directly, flush everything back to the GTT
1027 * domain.
1028 */
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 }
1031 }
1032
1033 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035 if (node.allocated) {
1036 wmb();
1037 ggtt->base.clear_range(&ggtt->base,
1038 node.start, node.size,
1039 true);
1040 i915_gem_object_unpin_pages(obj);
1041 remove_mappable_node(&node);
1042 } else {
1043 i915_gem_object_ggtt_unpin(obj);
1044 }
1045 out:
1046 return ret;
1047 }
1048
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050 * Flushes invalid cachelines before writing to the target if
1051 * needs_clflush_before is set and flushes out any written cachelines after
1052 * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 char __user *user_data,
1056 bool page_do_bit17_swizzling,
1057 bool needs_clflush_before,
1058 bool needs_clflush_after)
1059 {
1060 char *vaddr;
1061 int ret;
1062
1063 if (unlikely(page_do_bit17_swizzling))
1064 return -EINVAL;
1065
1066 vaddr = kmap_atomic(page);
1067 if (needs_clflush_before)
1068 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 page_length);
1070 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 user_data, page_length);
1072 if (needs_clflush_after)
1073 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 page_length);
1075 kunmap_atomic(vaddr);
1076
1077 return ret ? -EFAULT : 0;
1078 }
1079
1080 /* Only difference to the fast-path function is that this can handle bit17
1081 * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 char __user *user_data,
1085 bool page_do_bit17_swizzling,
1086 bool needs_clflush_before,
1087 bool needs_clflush_after)
1088 {
1089 char *vaddr;
1090 int ret;
1091
1092 vaddr = kmap(page);
1093 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 page_length,
1096 page_do_bit17_swizzling);
1097 if (page_do_bit17_swizzling)
1098 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 user_data,
1100 page_length);
1101 else
1102 ret = __copy_from_user(vaddr + shmem_page_offset,
1103 user_data,
1104 page_length);
1105 if (needs_clflush_after)
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
1109 kunmap(page);
1110
1111 return ret ? -EFAULT : 0;
1112 }
1113
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116 struct drm_i915_gem_object *obj,
1117 struct drm_i915_gem_pwrite *args,
1118 struct drm_file *file)
1119 {
1120 ssize_t remain;
1121 loff_t offset;
1122 char __user *user_data;
1123 int shmem_page_offset, page_length, ret = 0;
1124 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125 int hit_slowpath = 0;
1126 int needs_clflush_after = 0;
1127 int needs_clflush_before = 0;
1128 struct sg_page_iter sg_iter;
1129
1130 user_data = u64_to_user_ptr(args->data_ptr);
1131 remain = args->size;
1132
1133 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134
1135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 /* If we're not in the cpu write domain, set ourself into the gtt
1137 * write domain and manually flush cachelines (if required). This
1138 * optimizes for the case when the gpu will use the data
1139 * right away and we therefore have to clflush anyway. */
1140 needs_clflush_after = cpu_write_needs_clflush(obj);
1141 ret = i915_gem_object_wait_rendering(obj, false);
1142 if (ret)
1143 return ret;
1144 }
1145 /* Same trick applies to invalidate partially written cachelines read
1146 * before writing. */
1147 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 needs_clflush_before =
1149 !cpu_cache_is_coherent(dev, obj->cache_level);
1150
1151 ret = i915_gem_object_get_pages(obj);
1152 if (ret)
1153 return ret;
1154
1155 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156
1157 i915_gem_object_pin_pages(obj);
1158
1159 offset = args->offset;
1160 obj->dirty = 1;
1161
1162 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 offset >> PAGE_SHIFT) {
1164 struct page *page = sg_page_iter_page(&sg_iter);
1165 int partial_cacheline_write;
1166
1167 if (remain <= 0)
1168 break;
1169
1170 /* Operation in this page
1171 *
1172 * shmem_page_offset = offset within page in shmem file
1173 * page_length = bytes to copy for this page
1174 */
1175 shmem_page_offset = offset_in_page(offset);
1176
1177 page_length = remain;
1178 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 page_length = PAGE_SIZE - shmem_page_offset;
1180
1181 /* If we don't overwrite a cacheline completely we need to be
1182 * careful to have up-to-date data by first clflushing. Don't
1183 * overcomplicate things and flush the entire patch. */
1184 partial_cacheline_write = needs_clflush_before &&
1185 ((shmem_page_offset | page_length)
1186 & (boot_cpu_data.x86_clflush_size - 1));
1187
1188 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 (page_to_phys(page) & (1 << 17)) != 0;
1190
1191 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 user_data, page_do_bit17_swizzling,
1193 partial_cacheline_write,
1194 needs_clflush_after);
1195 if (ret == 0)
1196 goto next_page;
1197
1198 hit_slowpath = 1;
1199 mutex_unlock(&dev->struct_mutex);
1200 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 user_data, page_do_bit17_swizzling,
1202 partial_cacheline_write,
1203 needs_clflush_after);
1204
1205 mutex_lock(&dev->struct_mutex);
1206
1207 if (ret)
1208 goto out;
1209
1210 next_page:
1211 remain -= page_length;
1212 user_data += page_length;
1213 offset += page_length;
1214 }
1215
1216 out:
1217 i915_gem_object_unpin_pages(obj);
1218
1219 if (hit_slowpath) {
1220 /*
1221 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 * cachelines in-line while writing and the object moved
1223 * out of the cpu write domain while we've dropped the lock.
1224 */
1225 if (!needs_clflush_after &&
1226 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227 if (i915_gem_clflush_object(obj, obj->pin_display))
1228 needs_clflush_after = true;
1229 }
1230 }
1231
1232 if (needs_clflush_after)
1233 i915_gem_chipset_flush(to_i915(dev));
1234 else
1235 obj->cache_dirty = true;
1236
1237 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238 return ret;
1239 }
1240
1241 /**
1242 * Writes data to the object referenced by handle.
1243 * @dev: drm device
1244 * @data: ioctl data blob
1245 * @file: drm file
1246 *
1247 * On error, the contents of the buffer that were to be modified are undefined.
1248 */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251 struct drm_file *file)
1252 {
1253 struct drm_i915_private *dev_priv = to_i915(dev);
1254 struct drm_i915_gem_pwrite *args = data;
1255 struct drm_i915_gem_object *obj;
1256 int ret;
1257
1258 if (args->size == 0)
1259 return 0;
1260
1261 if (!access_ok(VERIFY_READ,
1262 u64_to_user_ptr(args->data_ptr),
1263 args->size))
1264 return -EFAULT;
1265
1266 if (likely(!i915.prefault_disable)) {
1267 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 args->size);
1269 if (ret)
1270 return -EFAULT;
1271 }
1272
1273 intel_runtime_pm_get(dev_priv);
1274
1275 ret = i915_mutex_lock_interruptible(dev);
1276 if (ret)
1277 goto put_rpm;
1278
1279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280 if (&obj->base == NULL) {
1281 ret = -ENOENT;
1282 goto unlock;
1283 }
1284
1285 /* Bounds check destination. */
1286 if (args->offset > obj->base.size ||
1287 args->size > obj->base.size - args->offset) {
1288 ret = -EINVAL;
1289 goto out;
1290 }
1291
1292 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
1294 ret = -EFAULT;
1295 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 * it would end up going through the fenced access, and we'll get
1297 * different detiling behavior between reading and writing.
1298 * pread/pwrite currently are reading and writing from the CPU
1299 * perspective, requiring manual detiling by the client.
1300 */
1301 if (!i915_gem_object_has_struct_page(obj) ||
1302 cpu_write_needs_clflush(obj)) {
1303 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1304 /* Note that the gtt paths might fail with non-page-backed user
1305 * pointers (e.g. gtt mappings when moving data between
1306 * textures). Fallback to the shmem path in that case. */
1307 }
1308
1309 if (ret == -EFAULT) {
1310 if (obj->phys_handle)
1311 ret = i915_gem_phys_pwrite(obj, args, file);
1312 else if (i915_gem_object_has_struct_page(obj))
1313 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 else
1315 ret = -ENODEV;
1316 }
1317
1318 out:
1319 drm_gem_object_unreference(&obj->base);
1320 unlock:
1321 mutex_unlock(&dev->struct_mutex);
1322 put_rpm:
1323 intel_runtime_pm_put(dev_priv);
1324
1325 return ret;
1326 }
1327
1328 static int
1329 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330 {
1331 if (__i915_terminally_wedged(reset_counter))
1332 return -EIO;
1333
1334 if (__i915_reset_in_progress(reset_counter)) {
1335 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336 * -EIO unconditionally for these. */
1337 if (!interruptible)
1338 return -EIO;
1339
1340 return -EAGAIN;
1341 }
1342
1343 return 0;
1344 }
1345
1346 static unsigned long local_clock_us(unsigned *cpu)
1347 {
1348 unsigned long t;
1349
1350 /* Cheaply and approximately convert from nanoseconds to microseconds.
1351 * The result and subsequent calculations are also defined in the same
1352 * approximate microseconds units. The principal source of timing
1353 * error here is from the simple truncation.
1354 *
1355 * Note that local_clock() is only defined wrt to the current CPU;
1356 * the comparisons are no longer valid if we switch CPUs. Instead of
1357 * blocking preemption for the entire busywait, we can detect the CPU
1358 * switch and use that as indicator of system load and a reason to
1359 * stop busywaiting, see busywait_stop().
1360 */
1361 *cpu = get_cpu();
1362 t = local_clock() >> 10;
1363 put_cpu();
1364
1365 return t;
1366 }
1367
1368 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1369 {
1370 unsigned this_cpu;
1371
1372 if (time_after(local_clock_us(&this_cpu), timeout))
1373 return true;
1374
1375 return this_cpu != cpu;
1376 }
1377
1378 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1379 int state, unsigned long timeout_us)
1380 {
1381 unsigned cpu;
1382
1383 /* When waiting for high frequency requests, e.g. during synchronous
1384 * rendering split between the CPU and GPU, the finite amount of time
1385 * required to set up the irq and wait upon it limits the response
1386 * rate. By busywaiting on the request completion for a short while we
1387 * can service the high frequency waits as quick as possible. However,
1388 * if it is a slow request, we want to sleep as quickly as possible.
1389 * The tradeoff between waiting and sleeping is roughly the time it
1390 * takes to sleep on a request, on the order of a microsecond.
1391 */
1392
1393 timeout_us += local_clock_us(&cpu);
1394 do {
1395 if (i915_gem_request_completed(req))
1396 return true;
1397
1398 if (signal_pending_state(state, current))
1399 break;
1400
1401 if (busywait_stop(timeout_us, cpu))
1402 break;
1403
1404 cpu_relax_lowlatency();
1405 } while (!need_resched());
1406
1407 return false;
1408 }
1409
1410 /**
1411 * __i915_wait_request - wait until execution of request has finished
1412 * @req: duh!
1413 * @interruptible: do an interruptible wait (normally yes)
1414 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415 * @rps: RPS client
1416 *
1417 * Note: It is of utmost importance that the passed in seqno and reset_counter
1418 * values have been read by the caller in an smp safe manner. Where read-side
1419 * locks are involved, it is sufficient to read the reset_counter before
1420 * unlocking the lock that protects the seqno. For lockless tricks, the
1421 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1422 * inserted.
1423 *
1424 * Returns 0 if the request was found within the alloted time. Else returns the
1425 * errno with remaining time filled in timeout argument.
1426 */
1427 int __i915_wait_request(struct drm_i915_gem_request *req,
1428 bool interruptible,
1429 s64 *timeout,
1430 struct intel_rps_client *rps)
1431 {
1432 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433 DEFINE_WAIT(reset);
1434 struct intel_wait wait;
1435 unsigned long timeout_remain;
1436 s64 before = 0; /* Only to silence a compiler warning. */
1437 int ret = 0;
1438
1439 might_sleep();
1440
1441 if (list_empty(&req->list))
1442 return 0;
1443
1444 if (i915_gem_request_completed(req))
1445 return 0;
1446
1447 timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 if (timeout) {
1449 if (WARN_ON(*timeout < 0))
1450 return -EINVAL;
1451
1452 if (*timeout == 0)
1453 return -ETIME;
1454
1455 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456
1457 /*
1458 * Record current time in case interrupted by signal, or wedged.
1459 */
1460 before = ktime_get_raw_ns();
1461 }
1462
1463 trace_i915_gem_request_wait_begin(req);
1464
1465 /* This client is about to stall waiting for the GPU. In many cases
1466 * this is undesirable and limits the throughput of the system, as
1467 * many clients cannot continue processing user input/output whilst
1468 * blocked. RPS autotuning may take tens of milliseconds to respond
1469 * to the GPU load and thus incurs additional latency for the client.
1470 * We can circumvent that by promoting the GPU frequency to maximum
1471 * before we wait. This makes the GPU throttle up much more quickly
1472 * (good for benchmarks and user experience, e.g. window animations),
1473 * but at a cost of spending more power processing the workload
1474 * (bad for battery). Not all clients even want their results
1475 * immediately and for them we should just let the GPU select its own
1476 * frequency to maximise efficiency. To prevent a single client from
1477 * forcing the clocks too high for the whole system, we only allow
1478 * each client to waitboost once in a busy period.
1479 */
1480 if (INTEL_INFO(req->i915)->gen >= 6)
1481 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1482
1483 /* Optimistic spin for the next ~jiffie before touching IRQs */
1484 if (i915_spin_request(req, state, 5))
1485 goto complete;
1486
1487 set_current_state(state);
1488 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1489
1490 intel_wait_init(&wait, req->seqno);
1491 if (intel_engine_add_wait(req->engine, &wait))
1492 /* In order to check that we haven't missed the interrupt
1493 * as we enabled it, we need to kick ourselves to do a
1494 * coherent check on the seqno before we sleep.
1495 */
1496 goto wakeup;
1497
1498 for (;;) {
1499 if (signal_pending_state(state, current)) {
1500 ret = -ERESTARTSYS;
1501 break;
1502 }
1503
1504 timeout_remain = io_schedule_timeout(timeout_remain);
1505 if (timeout_remain == 0) {
1506 ret = -ETIME;
1507 break;
1508 }
1509
1510 if (intel_wait_complete(&wait))
1511 break;
1512
1513 set_current_state(state);
1514
1515 wakeup:
1516 /* Carefully check if the request is complete, giving time
1517 * for the seqno to be visible following the interrupt.
1518 * We also have to check in case we are kicked by the GPU
1519 * reset in order to drop the struct_mutex.
1520 */
1521 if (__i915_request_irq_complete(req))
1522 break;
1523
1524 /* Only spin if we know the GPU is processing this request */
1525 if (i915_spin_request(req, state, 2))
1526 break;
1527 }
1528 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1529
1530 intel_engine_remove_wait(req->engine, &wait);
1531 __set_current_state(TASK_RUNNING);
1532 complete:
1533 trace_i915_gem_request_wait_end(req);
1534
1535 if (timeout) {
1536 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1537
1538 *timeout = tres < 0 ? 0 : tres;
1539
1540 /*
1541 * Apparently ktime isn't accurate enough and occasionally has a
1542 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1543 * things up to make the test happy. We allow up to 1 jiffy.
1544 *
1545 * This is a regrssion from the timespec->ktime conversion.
1546 */
1547 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1548 *timeout = 0;
1549 }
1550
1551 if (rps && req->seqno == req->engine->last_submitted_seqno) {
1552 /* The GPU is now idle and this client has stalled.
1553 * Since no other client has submitted a request in the
1554 * meantime, assume that this client is the only one
1555 * supplying work to the GPU but is unable to keep that
1556 * work supplied because it is waiting. Since the GPU is
1557 * then never kept fully busy, RPS autoclocking will
1558 * keep the clocks relatively low, causing further delays.
1559 * Compensate by giving the synchronous client credit for
1560 * a waitboost next time.
1561 */
1562 spin_lock(&req->i915->rps.client_lock);
1563 list_del_init(&rps->link);
1564 spin_unlock(&req->i915->rps.client_lock);
1565 }
1566
1567 return ret;
1568 }
1569
1570 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1571 struct drm_file *file)
1572 {
1573 struct drm_i915_file_private *file_priv;
1574
1575 WARN_ON(!req || !file || req->file_priv);
1576
1577 if (!req || !file)
1578 return -EINVAL;
1579
1580 if (req->file_priv)
1581 return -EINVAL;
1582
1583 file_priv = file->driver_priv;
1584
1585 spin_lock(&file_priv->mm.lock);
1586 req->file_priv = file_priv;
1587 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1588 spin_unlock(&file_priv->mm.lock);
1589
1590 req->pid = get_pid(task_pid(current));
1591
1592 return 0;
1593 }
1594
1595 static inline void
1596 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1597 {
1598 struct drm_i915_file_private *file_priv = request->file_priv;
1599
1600 if (!file_priv)
1601 return;
1602
1603 spin_lock(&file_priv->mm.lock);
1604 list_del(&request->client_list);
1605 request->file_priv = NULL;
1606 spin_unlock(&file_priv->mm.lock);
1607
1608 put_pid(request->pid);
1609 request->pid = NULL;
1610 }
1611
1612 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1613 {
1614 trace_i915_gem_request_retire(request);
1615
1616 /* We know the GPU must have read the request to have
1617 * sent us the seqno + interrupt, so use the position
1618 * of tail of the request to update the last known position
1619 * of the GPU head.
1620 *
1621 * Note this requires that we are always called in request
1622 * completion order.
1623 */
1624 request->ringbuf->last_retired_head = request->postfix;
1625
1626 list_del_init(&request->list);
1627 i915_gem_request_remove_from_client(request);
1628
1629 if (request->previous_context) {
1630 if (i915.enable_execlists)
1631 intel_lr_context_unpin(request->previous_context,
1632 request->engine);
1633 }
1634
1635 i915_gem_context_unreference(request->ctx);
1636 i915_gem_request_unreference(request);
1637 }
1638
1639 static void
1640 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1641 {
1642 struct intel_engine_cs *engine = req->engine;
1643 struct drm_i915_gem_request *tmp;
1644
1645 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1646
1647 if (list_empty(&req->list))
1648 return;
1649
1650 do {
1651 tmp = list_first_entry(&engine->request_list,
1652 typeof(*tmp), list);
1653
1654 i915_gem_request_retire(tmp);
1655 } while (tmp != req);
1656
1657 WARN_ON(i915_verify_lists(engine->dev));
1658 }
1659
1660 /**
1661 * Waits for a request to be signaled, and cleans up the
1662 * request and object lists appropriately for that event.
1663 * @req: request to wait on
1664 */
1665 int
1666 i915_wait_request(struct drm_i915_gem_request *req)
1667 {
1668 struct drm_i915_private *dev_priv = req->i915;
1669 bool interruptible;
1670 int ret;
1671
1672 interruptible = dev_priv->mm.interruptible;
1673
1674 BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1675
1676 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1677 if (ret)
1678 return ret;
1679
1680 /* If the GPU hung, we want to keep the requests to find the guilty. */
1681 if (!i915_reset_in_progress(&dev_priv->gpu_error))
1682 __i915_gem_request_retire__upto(req);
1683
1684 return 0;
1685 }
1686
1687 /**
1688 * Ensures that all rendering to the object has completed and the object is
1689 * safe to unbind from the GTT or access from the CPU.
1690 * @obj: i915 gem object
1691 * @readonly: waiting for read access or write
1692 */
1693 int
1694 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1695 bool readonly)
1696 {
1697 int ret, i;
1698
1699 if (!obj->active)
1700 return 0;
1701
1702 if (readonly) {
1703 if (obj->last_write_req != NULL) {
1704 ret = i915_wait_request(obj->last_write_req);
1705 if (ret)
1706 return ret;
1707
1708 i = obj->last_write_req->engine->id;
1709 if (obj->last_read_req[i] == obj->last_write_req)
1710 i915_gem_object_retire__read(obj, i);
1711 else
1712 i915_gem_object_retire__write(obj);
1713 }
1714 } else {
1715 for (i = 0; i < I915_NUM_ENGINES; i++) {
1716 if (obj->last_read_req[i] == NULL)
1717 continue;
1718
1719 ret = i915_wait_request(obj->last_read_req[i]);
1720 if (ret)
1721 return ret;
1722
1723 i915_gem_object_retire__read(obj, i);
1724 }
1725 GEM_BUG_ON(obj->active);
1726 }
1727
1728 return 0;
1729 }
1730
1731 static void
1732 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1733 struct drm_i915_gem_request *req)
1734 {
1735 int ring = req->engine->id;
1736
1737 if (obj->last_read_req[ring] == req)
1738 i915_gem_object_retire__read(obj, ring);
1739 else if (obj->last_write_req == req)
1740 i915_gem_object_retire__write(obj);
1741
1742 if (!i915_reset_in_progress(&req->i915->gpu_error))
1743 __i915_gem_request_retire__upto(req);
1744 }
1745
1746 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1747 * as the object state may change during this call.
1748 */
1749 static __must_check int
1750 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1751 struct intel_rps_client *rps,
1752 bool readonly)
1753 {
1754 struct drm_device *dev = obj->base.dev;
1755 struct drm_i915_private *dev_priv = to_i915(dev);
1756 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1757 int ret, i, n = 0;
1758
1759 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1760 BUG_ON(!dev_priv->mm.interruptible);
1761
1762 if (!obj->active)
1763 return 0;
1764
1765 if (readonly) {
1766 struct drm_i915_gem_request *req;
1767
1768 req = obj->last_write_req;
1769 if (req == NULL)
1770 return 0;
1771
1772 requests[n++] = i915_gem_request_reference(req);
1773 } else {
1774 for (i = 0; i < I915_NUM_ENGINES; i++) {
1775 struct drm_i915_gem_request *req;
1776
1777 req = obj->last_read_req[i];
1778 if (req == NULL)
1779 continue;
1780
1781 requests[n++] = i915_gem_request_reference(req);
1782 }
1783 }
1784
1785 mutex_unlock(&dev->struct_mutex);
1786 ret = 0;
1787 for (i = 0; ret == 0 && i < n; i++)
1788 ret = __i915_wait_request(requests[i], true, NULL, rps);
1789 mutex_lock(&dev->struct_mutex);
1790
1791 for (i = 0; i < n; i++) {
1792 if (ret == 0)
1793 i915_gem_object_retire_request(obj, requests[i]);
1794 i915_gem_request_unreference(requests[i]);
1795 }
1796
1797 return ret;
1798 }
1799
1800 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1801 {
1802 struct drm_i915_file_private *fpriv = file->driver_priv;
1803 return &fpriv->rps;
1804 }
1805
1806 static enum fb_op_origin
1807 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1808 {
1809 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1810 ORIGIN_GTT : ORIGIN_CPU;
1811 }
1812
1813 /**
1814 * Called when user space prepares to use an object with the CPU, either
1815 * through the mmap ioctl's mapping or a GTT mapping.
1816 * @dev: drm device
1817 * @data: ioctl data blob
1818 * @file: drm file
1819 */
1820 int
1821 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1822 struct drm_file *file)
1823 {
1824 struct drm_i915_gem_set_domain *args = data;
1825 struct drm_i915_gem_object *obj;
1826 uint32_t read_domains = args->read_domains;
1827 uint32_t write_domain = args->write_domain;
1828 int ret;
1829
1830 /* Only handle setting domains to types used by the CPU. */
1831 if (write_domain & I915_GEM_GPU_DOMAINS)
1832 return -EINVAL;
1833
1834 if (read_domains & I915_GEM_GPU_DOMAINS)
1835 return -EINVAL;
1836
1837 /* Having something in the write domain implies it's in the read
1838 * domain, and only that read domain. Enforce that in the request.
1839 */
1840 if (write_domain != 0 && read_domains != write_domain)
1841 return -EINVAL;
1842
1843 ret = i915_mutex_lock_interruptible(dev);
1844 if (ret)
1845 return ret;
1846
1847 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1848 if (&obj->base == NULL) {
1849 ret = -ENOENT;
1850 goto unlock;
1851 }
1852
1853 /* Try to flush the object off the GPU without holding the lock.
1854 * We will repeat the flush holding the lock in the normal manner
1855 * to catch cases where we are gazumped.
1856 */
1857 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1858 to_rps_client(file),
1859 !write_domain);
1860 if (ret)
1861 goto unref;
1862
1863 if (read_domains & I915_GEM_DOMAIN_GTT)
1864 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1865 else
1866 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1867
1868 if (write_domain != 0)
1869 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1870
1871 unref:
1872 drm_gem_object_unreference(&obj->base);
1873 unlock:
1874 mutex_unlock(&dev->struct_mutex);
1875 return ret;
1876 }
1877
1878 /**
1879 * Called when user space has done writes to this buffer
1880 * @dev: drm device
1881 * @data: ioctl data blob
1882 * @file: drm file
1883 */
1884 int
1885 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1886 struct drm_file *file)
1887 {
1888 struct drm_i915_gem_sw_finish *args = data;
1889 struct drm_i915_gem_object *obj;
1890 int ret = 0;
1891
1892 ret = i915_mutex_lock_interruptible(dev);
1893 if (ret)
1894 return ret;
1895
1896 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1897 if (&obj->base == NULL) {
1898 ret = -ENOENT;
1899 goto unlock;
1900 }
1901
1902 /* Pinned buffers may be scanout, so flush the cache */
1903 if (obj->pin_display)
1904 i915_gem_object_flush_cpu_write_domain(obj);
1905
1906 drm_gem_object_unreference(&obj->base);
1907 unlock:
1908 mutex_unlock(&dev->struct_mutex);
1909 return ret;
1910 }
1911
1912 /**
1913 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1914 * it is mapped to.
1915 * @dev: drm device
1916 * @data: ioctl data blob
1917 * @file: drm file
1918 *
1919 * While the mapping holds a reference on the contents of the object, it doesn't
1920 * imply a ref on the object itself.
1921 *
1922 * IMPORTANT:
1923 *
1924 * DRM driver writers who look a this function as an example for how to do GEM
1925 * mmap support, please don't implement mmap support like here. The modern way
1926 * to implement DRM mmap support is with an mmap offset ioctl (like
1927 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1928 * That way debug tooling like valgrind will understand what's going on, hiding
1929 * the mmap call in a driver private ioctl will break that. The i915 driver only
1930 * does cpu mmaps this way because we didn't know better.
1931 */
1932 int
1933 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1934 struct drm_file *file)
1935 {
1936 struct drm_i915_gem_mmap *args = data;
1937 struct drm_gem_object *obj;
1938 unsigned long addr;
1939
1940 if (args->flags & ~(I915_MMAP_WC))
1941 return -EINVAL;
1942
1943 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1944 return -ENODEV;
1945
1946 obj = drm_gem_object_lookup(file, args->handle);
1947 if (obj == NULL)
1948 return -ENOENT;
1949
1950 /* prime objects have no backing filp to GEM mmap
1951 * pages from.
1952 */
1953 if (!obj->filp) {
1954 drm_gem_object_unreference_unlocked(obj);
1955 return -EINVAL;
1956 }
1957
1958 addr = vm_mmap(obj->filp, 0, args->size,
1959 PROT_READ | PROT_WRITE, MAP_SHARED,
1960 args->offset);
1961 if (args->flags & I915_MMAP_WC) {
1962 struct mm_struct *mm = current->mm;
1963 struct vm_area_struct *vma;
1964
1965 if (down_write_killable(&mm->mmap_sem)) {
1966 drm_gem_object_unreference_unlocked(obj);
1967 return -EINTR;
1968 }
1969 vma = find_vma(mm, addr);
1970 if (vma)
1971 vma->vm_page_prot =
1972 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1973 else
1974 addr = -ENOMEM;
1975 up_write(&mm->mmap_sem);
1976
1977 /* This may race, but that's ok, it only gets set */
1978 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1979 }
1980 drm_gem_object_unreference_unlocked(obj);
1981 if (IS_ERR((void *)addr))
1982 return addr;
1983
1984 args->addr_ptr = (uint64_t) addr;
1985
1986 return 0;
1987 }
1988
1989 /**
1990 * i915_gem_fault - fault a page into the GTT
1991 * @vma: VMA in question
1992 * @vmf: fault info
1993 *
1994 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1995 * from userspace. The fault handler takes care of binding the object to
1996 * the GTT (if needed), allocating and programming a fence register (again,
1997 * only if needed based on whether the old reg is still valid or the object
1998 * is tiled) and inserting a new PTE into the faulting process.
1999 *
2000 * Note that the faulting process may involve evicting existing objects
2001 * from the GTT and/or fence registers to make room. So performance may
2002 * suffer if the GTT working set is large or there are few fence registers
2003 * left.
2004 */
2005 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2006 {
2007 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2008 struct drm_device *dev = obj->base.dev;
2009 struct drm_i915_private *dev_priv = to_i915(dev);
2010 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2011 struct i915_ggtt_view view = i915_ggtt_view_normal;
2012 pgoff_t page_offset;
2013 unsigned long pfn;
2014 int ret = 0;
2015 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2016
2017 intel_runtime_pm_get(dev_priv);
2018
2019 /* We don't use vmf->pgoff since that has the fake offset */
2020 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2021 PAGE_SHIFT;
2022
2023 ret = i915_mutex_lock_interruptible(dev);
2024 if (ret)
2025 goto out;
2026
2027 trace_i915_gem_object_fault(obj, page_offset, true, write);
2028
2029 /* Try to flush the object off the GPU first without holding the lock.
2030 * Upon reacquiring the lock, we will perform our sanity checks and then
2031 * repeat the flush holding the lock in the normal manner to catch cases
2032 * where we are gazumped.
2033 */
2034 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2035 if (ret)
2036 goto unlock;
2037
2038 /* Access to snoopable pages through the GTT is incoherent. */
2039 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2040 ret = -EFAULT;
2041 goto unlock;
2042 }
2043
2044 /* Use a partial view if the object is bigger than the aperture. */
2045 if (obj->base.size >= ggtt->mappable_end &&
2046 obj->tiling_mode == I915_TILING_NONE) {
2047 static const unsigned int chunk_size = 256; // 1 MiB
2048
2049 memset(&view, 0, sizeof(view));
2050 view.type = I915_GGTT_VIEW_PARTIAL;
2051 view.params.partial.offset = rounddown(page_offset, chunk_size);
2052 view.params.partial.size =
2053 min_t(unsigned int,
2054 chunk_size,
2055 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2056 view.params.partial.offset);
2057 }
2058
2059 /* Now pin it into the GTT if needed */
2060 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2061 if (ret)
2062 goto unlock;
2063
2064 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2065 if (ret)
2066 goto unpin;
2067
2068 ret = i915_gem_object_get_fence(obj);
2069 if (ret)
2070 goto unpin;
2071
2072 /* Finally, remap it using the new GTT offset */
2073 pfn = ggtt->mappable_base +
2074 i915_gem_obj_ggtt_offset_view(obj, &view);
2075 pfn >>= PAGE_SHIFT;
2076
2077 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2078 /* Overriding existing pages in partial view does not cause
2079 * us any trouble as TLBs are still valid because the fault
2080 * is due to userspace losing part of the mapping or never
2081 * having accessed it before (at this partials' range).
2082 */
2083 unsigned long base = vma->vm_start +
2084 (view.params.partial.offset << PAGE_SHIFT);
2085 unsigned int i;
2086
2087 for (i = 0; i < view.params.partial.size; i++) {
2088 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2089 if (ret)
2090 break;
2091 }
2092
2093 obj->fault_mappable = true;
2094 } else {
2095 if (!obj->fault_mappable) {
2096 unsigned long size = min_t(unsigned long,
2097 vma->vm_end - vma->vm_start,
2098 obj->base.size);
2099 int i;
2100
2101 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2102 ret = vm_insert_pfn(vma,
2103 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2104 pfn + i);
2105 if (ret)
2106 break;
2107 }
2108
2109 obj->fault_mappable = true;
2110 } else
2111 ret = vm_insert_pfn(vma,
2112 (unsigned long)vmf->virtual_address,
2113 pfn + page_offset);
2114 }
2115 unpin:
2116 i915_gem_object_ggtt_unpin_view(obj, &view);
2117 unlock:
2118 mutex_unlock(&dev->struct_mutex);
2119 out:
2120 switch (ret) {
2121 case -EIO:
2122 /*
2123 * We eat errors when the gpu is terminally wedged to avoid
2124 * userspace unduly crashing (gl has no provisions for mmaps to
2125 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2126 * and so needs to be reported.
2127 */
2128 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2129 ret = VM_FAULT_SIGBUS;
2130 break;
2131 }
2132 case -EAGAIN:
2133 /*
2134 * EAGAIN means the gpu is hung and we'll wait for the error
2135 * handler to reset everything when re-faulting in
2136 * i915_mutex_lock_interruptible.
2137 */
2138 case 0:
2139 case -ERESTARTSYS:
2140 case -EINTR:
2141 case -EBUSY:
2142 /*
2143 * EBUSY is ok: this just means that another thread
2144 * already did the job.
2145 */
2146 ret = VM_FAULT_NOPAGE;
2147 break;
2148 case -ENOMEM:
2149 ret = VM_FAULT_OOM;
2150 break;
2151 case -ENOSPC:
2152 case -EFAULT:
2153 ret = VM_FAULT_SIGBUS;
2154 break;
2155 default:
2156 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2157 ret = VM_FAULT_SIGBUS;
2158 break;
2159 }
2160
2161 intel_runtime_pm_put(dev_priv);
2162 return ret;
2163 }
2164
2165 /**
2166 * i915_gem_release_mmap - remove physical page mappings
2167 * @obj: obj in question
2168 *
2169 * Preserve the reservation of the mmapping with the DRM core code, but
2170 * relinquish ownership of the pages back to the system.
2171 *
2172 * It is vital that we remove the page mapping if we have mapped a tiled
2173 * object through the GTT and then lose the fence register due to
2174 * resource pressure. Similarly if the object has been moved out of the
2175 * aperture, than pages mapped into userspace must be revoked. Removing the
2176 * mapping will then trigger a page fault on the next user access, allowing
2177 * fixup by i915_gem_fault().
2178 */
2179 void
2180 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2181 {
2182 /* Serialisation between user GTT access and our code depends upon
2183 * revoking the CPU's PTE whilst the mutex is held. The next user
2184 * pagefault then has to wait until we release the mutex.
2185 */
2186 lockdep_assert_held(&obj->base.dev->struct_mutex);
2187
2188 if (!obj->fault_mappable)
2189 return;
2190
2191 drm_vma_node_unmap(&obj->base.vma_node,
2192 obj->base.dev->anon_inode->i_mapping);
2193
2194 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2195 * memory transactions from userspace before we return. The TLB
2196 * flushing implied above by changing the PTE above *should* be
2197 * sufficient, an extra barrier here just provides us with a bit
2198 * of paranoid documentation about our requirement to serialise
2199 * memory writes before touching registers / GSM.
2200 */
2201 wmb();
2202
2203 obj->fault_mappable = false;
2204 }
2205
2206 void
2207 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2208 {
2209 struct drm_i915_gem_object *obj;
2210
2211 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2212 i915_gem_release_mmap(obj);
2213 }
2214
2215 uint32_t
2216 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2217 {
2218 uint32_t gtt_size;
2219
2220 if (INTEL_INFO(dev)->gen >= 4 ||
2221 tiling_mode == I915_TILING_NONE)
2222 return size;
2223
2224 /* Previous chips need a power-of-two fence region when tiling */
2225 if (IS_GEN3(dev))
2226 gtt_size = 1024*1024;
2227 else
2228 gtt_size = 512*1024;
2229
2230 while (gtt_size < size)
2231 gtt_size <<= 1;
2232
2233 return gtt_size;
2234 }
2235
2236 /**
2237 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2238 * @dev: drm device
2239 * @size: object size
2240 * @tiling_mode: tiling mode
2241 * @fenced: is fenced alignemned required or not
2242 *
2243 * Return the required GTT alignment for an object, taking into account
2244 * potential fence register mapping.
2245 */
2246 uint32_t
2247 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2248 int tiling_mode, bool fenced)
2249 {
2250 /*
2251 * Minimum alignment is 4k (GTT page size), but might be greater
2252 * if a fence register is needed for the object.
2253 */
2254 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2255 tiling_mode == I915_TILING_NONE)
2256 return 4096;
2257
2258 /*
2259 * Previous chips need to be aligned to the size of the smallest
2260 * fence register that can contain the object.
2261 */
2262 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2263 }
2264
2265 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2266 {
2267 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268 int ret;
2269
2270 dev_priv->mm.shrinker_no_lock_stealing = true;
2271
2272 ret = drm_gem_create_mmap_offset(&obj->base);
2273 if (ret != -ENOSPC)
2274 goto out;
2275
2276 /* Badly fragmented mmap space? The only way we can recover
2277 * space is by destroying unwanted objects. We can't randomly release
2278 * mmap_offsets as userspace expects them to be persistent for the
2279 * lifetime of the objects. The closest we can is to release the
2280 * offsets on purgeable objects by truncating it and marking it purged,
2281 * which prevents userspace from ever using that object again.
2282 */
2283 i915_gem_shrink(dev_priv,
2284 obj->base.size >> PAGE_SHIFT,
2285 I915_SHRINK_BOUND |
2286 I915_SHRINK_UNBOUND |
2287 I915_SHRINK_PURGEABLE);
2288 ret = drm_gem_create_mmap_offset(&obj->base);
2289 if (ret != -ENOSPC)
2290 goto out;
2291
2292 i915_gem_shrink_all(dev_priv);
2293 ret = drm_gem_create_mmap_offset(&obj->base);
2294 out:
2295 dev_priv->mm.shrinker_no_lock_stealing = false;
2296
2297 return ret;
2298 }
2299
2300 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2301 {
2302 drm_gem_free_mmap_offset(&obj->base);
2303 }
2304
2305 int
2306 i915_gem_mmap_gtt(struct drm_file *file,
2307 struct drm_device *dev,
2308 uint32_t handle,
2309 uint64_t *offset)
2310 {
2311 struct drm_i915_gem_object *obj;
2312 int ret;
2313
2314 ret = i915_mutex_lock_interruptible(dev);
2315 if (ret)
2316 return ret;
2317
2318 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2319 if (&obj->base == NULL) {
2320 ret = -ENOENT;
2321 goto unlock;
2322 }
2323
2324 if (obj->madv != I915_MADV_WILLNEED) {
2325 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2326 ret = -EFAULT;
2327 goto out;
2328 }
2329
2330 ret = i915_gem_object_create_mmap_offset(obj);
2331 if (ret)
2332 goto out;
2333
2334 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2335
2336 out:
2337 drm_gem_object_unreference(&obj->base);
2338 unlock:
2339 mutex_unlock(&dev->struct_mutex);
2340 return ret;
2341 }
2342
2343 /**
2344 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2345 * @dev: DRM device
2346 * @data: GTT mapping ioctl data
2347 * @file: GEM object info
2348 *
2349 * Simply returns the fake offset to userspace so it can mmap it.
2350 * The mmap call will end up in drm_gem_mmap(), which will set things
2351 * up so we can get faults in the handler above.
2352 *
2353 * The fault handler will take care of binding the object into the GTT
2354 * (since it may have been evicted to make room for something), allocating
2355 * a fence register, and mapping the appropriate aperture address into
2356 * userspace.
2357 */
2358 int
2359 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2360 struct drm_file *file)
2361 {
2362 struct drm_i915_gem_mmap_gtt *args = data;
2363
2364 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2365 }
2366
2367 /* Immediately discard the backing storage */
2368 static void
2369 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2370 {
2371 i915_gem_object_free_mmap_offset(obj);
2372
2373 if (obj->base.filp == NULL)
2374 return;
2375
2376 /* Our goal here is to return as much of the memory as
2377 * is possible back to the system as we are called from OOM.
2378 * To do this we must instruct the shmfs to drop all of its
2379 * backing pages, *now*.
2380 */
2381 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2382 obj->madv = __I915_MADV_PURGED;
2383 }
2384
2385 /* Try to discard unwanted pages */
2386 static void
2387 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2388 {
2389 struct address_space *mapping;
2390
2391 switch (obj->madv) {
2392 case I915_MADV_DONTNEED:
2393 i915_gem_object_truncate(obj);
2394 case __I915_MADV_PURGED:
2395 return;
2396 }
2397
2398 if (obj->base.filp == NULL)
2399 return;
2400
2401 mapping = obj->base.filp->f_mapping,
2402 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2403 }
2404
2405 static void
2406 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2407 {
2408 struct sgt_iter sgt_iter;
2409 struct page *page;
2410 int ret;
2411
2412 BUG_ON(obj->madv == __I915_MADV_PURGED);
2413
2414 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2415 if (WARN_ON(ret)) {
2416 /* In the event of a disaster, abandon all caches and
2417 * hope for the best.
2418 */
2419 i915_gem_clflush_object(obj, true);
2420 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2421 }
2422
2423 i915_gem_gtt_finish_object(obj);
2424
2425 if (i915_gem_object_needs_bit17_swizzle(obj))
2426 i915_gem_object_save_bit_17_swizzle(obj);
2427
2428 if (obj->madv == I915_MADV_DONTNEED)
2429 obj->dirty = 0;
2430
2431 for_each_sgt_page(page, sgt_iter, obj->pages) {
2432 if (obj->dirty)
2433 set_page_dirty(page);
2434
2435 if (obj->madv == I915_MADV_WILLNEED)
2436 mark_page_accessed(page);
2437
2438 put_page(page);
2439 }
2440 obj->dirty = 0;
2441
2442 sg_free_table(obj->pages);
2443 kfree(obj->pages);
2444 }
2445
2446 int
2447 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2448 {
2449 const struct drm_i915_gem_object_ops *ops = obj->ops;
2450
2451 if (obj->pages == NULL)
2452 return 0;
2453
2454 if (obj->pages_pin_count)
2455 return -EBUSY;
2456
2457 BUG_ON(i915_gem_obj_bound_any(obj));
2458
2459 /* ->put_pages might need to allocate memory for the bit17 swizzle
2460 * array, hence protect them from being reaped by removing them from gtt
2461 * lists early. */
2462 list_del(&obj->global_list);
2463
2464 if (obj->mapping) {
2465 if (is_vmalloc_addr(obj->mapping))
2466 vunmap(obj->mapping);
2467 else
2468 kunmap(kmap_to_page(obj->mapping));
2469 obj->mapping = NULL;
2470 }
2471
2472 ops->put_pages(obj);
2473 obj->pages = NULL;
2474
2475 i915_gem_object_invalidate(obj);
2476
2477 return 0;
2478 }
2479
2480 static int
2481 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2482 {
2483 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2484 int page_count, i;
2485 struct address_space *mapping;
2486 struct sg_table *st;
2487 struct scatterlist *sg;
2488 struct sgt_iter sgt_iter;
2489 struct page *page;
2490 unsigned long last_pfn = 0; /* suppress gcc warning */
2491 int ret;
2492 gfp_t gfp;
2493
2494 /* Assert that the object is not currently in any GPU domain. As it
2495 * wasn't in the GTT, there shouldn't be any way it could have been in
2496 * a GPU cache
2497 */
2498 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2499 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2500
2501 st = kmalloc(sizeof(*st), GFP_KERNEL);
2502 if (st == NULL)
2503 return -ENOMEM;
2504
2505 page_count = obj->base.size / PAGE_SIZE;
2506 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2507 kfree(st);
2508 return -ENOMEM;
2509 }
2510
2511 /* Get the list of pages out of our struct file. They'll be pinned
2512 * at this point until we release them.
2513 *
2514 * Fail silently without starting the shrinker
2515 */
2516 mapping = obj->base.filp->f_mapping;
2517 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2518 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2519 sg = st->sgl;
2520 st->nents = 0;
2521 for (i = 0; i < page_count; i++) {
2522 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2523 if (IS_ERR(page)) {
2524 i915_gem_shrink(dev_priv,
2525 page_count,
2526 I915_SHRINK_BOUND |
2527 I915_SHRINK_UNBOUND |
2528 I915_SHRINK_PURGEABLE);
2529 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2530 }
2531 if (IS_ERR(page)) {
2532 /* We've tried hard to allocate the memory by reaping
2533 * our own buffer, now let the real VM do its job and
2534 * go down in flames if truly OOM.
2535 */
2536 i915_gem_shrink_all(dev_priv);
2537 page = shmem_read_mapping_page(mapping, i);
2538 if (IS_ERR(page)) {
2539 ret = PTR_ERR(page);
2540 goto err_pages;
2541 }
2542 }
2543 #ifdef CONFIG_SWIOTLB
2544 if (swiotlb_nr_tbl()) {
2545 st->nents++;
2546 sg_set_page(sg, page, PAGE_SIZE, 0);
2547 sg = sg_next(sg);
2548 continue;
2549 }
2550 #endif
2551 if (!i || page_to_pfn(page) != last_pfn + 1) {
2552 if (i)
2553 sg = sg_next(sg);
2554 st->nents++;
2555 sg_set_page(sg, page, PAGE_SIZE, 0);
2556 } else {
2557 sg->length += PAGE_SIZE;
2558 }
2559 last_pfn = page_to_pfn(page);
2560
2561 /* Check that the i965g/gm workaround works. */
2562 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2563 }
2564 #ifdef CONFIG_SWIOTLB
2565 if (!swiotlb_nr_tbl())
2566 #endif
2567 sg_mark_end(sg);
2568 obj->pages = st;
2569
2570 ret = i915_gem_gtt_prepare_object(obj);
2571 if (ret)
2572 goto err_pages;
2573
2574 if (i915_gem_object_needs_bit17_swizzle(obj))
2575 i915_gem_object_do_bit_17_swizzle(obj);
2576
2577 if (obj->tiling_mode != I915_TILING_NONE &&
2578 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2579 i915_gem_object_pin_pages(obj);
2580
2581 return 0;
2582
2583 err_pages:
2584 sg_mark_end(sg);
2585 for_each_sgt_page(page, sgt_iter, st)
2586 put_page(page);
2587 sg_free_table(st);
2588 kfree(st);
2589
2590 /* shmemfs first checks if there is enough memory to allocate the page
2591 * and reports ENOSPC should there be insufficient, along with the usual
2592 * ENOMEM for a genuine allocation failure.
2593 *
2594 * We use ENOSPC in our driver to mean that we have run out of aperture
2595 * space and so want to translate the error from shmemfs back to our
2596 * usual understanding of ENOMEM.
2597 */
2598 if (ret == -ENOSPC)
2599 ret = -ENOMEM;
2600
2601 return ret;
2602 }
2603
2604 /* Ensure that the associated pages are gathered from the backing storage
2605 * and pinned into our object. i915_gem_object_get_pages() may be called
2606 * multiple times before they are released by a single call to
2607 * i915_gem_object_put_pages() - once the pages are no longer referenced
2608 * either as a result of memory pressure (reaping pages under the shrinker)
2609 * or as the object is itself released.
2610 */
2611 int
2612 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2613 {
2614 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2615 const struct drm_i915_gem_object_ops *ops = obj->ops;
2616 int ret;
2617
2618 if (obj->pages)
2619 return 0;
2620
2621 if (obj->madv != I915_MADV_WILLNEED) {
2622 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2623 return -EFAULT;
2624 }
2625
2626 BUG_ON(obj->pages_pin_count);
2627
2628 ret = ops->get_pages(obj);
2629 if (ret)
2630 return ret;
2631
2632 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2633
2634 obj->get_page.sg = obj->pages->sgl;
2635 obj->get_page.last = 0;
2636
2637 return 0;
2638 }
2639
2640 /* The 'mapping' part of i915_gem_object_pin_map() below */
2641 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2642 {
2643 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2644 struct sg_table *sgt = obj->pages;
2645 struct sgt_iter sgt_iter;
2646 struct page *page;
2647 struct page *stack_pages[32];
2648 struct page **pages = stack_pages;
2649 unsigned long i = 0;
2650 void *addr;
2651
2652 /* A single page can always be kmapped */
2653 if (n_pages == 1)
2654 return kmap(sg_page(sgt->sgl));
2655
2656 if (n_pages > ARRAY_SIZE(stack_pages)) {
2657 /* Too big for stack -- allocate temporary array instead */
2658 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2659 if (!pages)
2660 return NULL;
2661 }
2662
2663 for_each_sgt_page(page, sgt_iter, sgt)
2664 pages[i++] = page;
2665
2666 /* Check that we have the expected number of pages */
2667 GEM_BUG_ON(i != n_pages);
2668
2669 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2670
2671 if (pages != stack_pages)
2672 drm_free_large(pages);
2673
2674 return addr;
2675 }
2676
2677 /* get, pin, and map the pages of the object into kernel space */
2678 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2679 {
2680 int ret;
2681
2682 lockdep_assert_held(&obj->base.dev->struct_mutex);
2683
2684 ret = i915_gem_object_get_pages(obj);
2685 if (ret)
2686 return ERR_PTR(ret);
2687
2688 i915_gem_object_pin_pages(obj);
2689
2690 if (!obj->mapping) {
2691 obj->mapping = i915_gem_object_map(obj);
2692 if (!obj->mapping) {
2693 i915_gem_object_unpin_pages(obj);
2694 return ERR_PTR(-ENOMEM);
2695 }
2696 }
2697
2698 return obj->mapping;
2699 }
2700
2701 void i915_vma_move_to_active(struct i915_vma *vma,
2702 struct drm_i915_gem_request *req)
2703 {
2704 struct drm_i915_gem_object *obj = vma->obj;
2705 struct intel_engine_cs *engine;
2706
2707 engine = i915_gem_request_get_engine(req);
2708
2709 /* Add a reference if we're newly entering the active list. */
2710 if (obj->active == 0)
2711 drm_gem_object_reference(&obj->base);
2712 obj->active |= intel_engine_flag(engine);
2713
2714 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2715 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2716
2717 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2718 }
2719
2720 static void
2721 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2722 {
2723 GEM_BUG_ON(obj->last_write_req == NULL);
2724 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2725
2726 i915_gem_request_assign(&obj->last_write_req, NULL);
2727 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2728 }
2729
2730 static void
2731 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2732 {
2733 struct i915_vma *vma;
2734
2735 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2736 GEM_BUG_ON(!(obj->active & (1 << ring)));
2737
2738 list_del_init(&obj->engine_list[ring]);
2739 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2740
2741 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2742 i915_gem_object_retire__write(obj);
2743
2744 obj->active &= ~(1 << ring);
2745 if (obj->active)
2746 return;
2747
2748 /* Bump our place on the bound list to keep it roughly in LRU order
2749 * so that we don't steal from recently used but inactive objects
2750 * (unless we are forced to ofc!)
2751 */
2752 list_move_tail(&obj->global_list,
2753 &to_i915(obj->base.dev)->mm.bound_list);
2754
2755 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2756 if (!list_empty(&vma->vm_link))
2757 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2758 }
2759
2760 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2761 drm_gem_object_unreference(&obj->base);
2762 }
2763
2764 static int
2765 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2766 {
2767 struct intel_engine_cs *engine;
2768 int ret;
2769
2770 /* Carefully retire all requests without writing to the rings */
2771 for_each_engine(engine, dev_priv) {
2772 ret = intel_engine_idle(engine);
2773 if (ret)
2774 return ret;
2775 }
2776 i915_gem_retire_requests(dev_priv);
2777
2778 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2779 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2780 while (intel_kick_waiters(dev_priv) ||
2781 intel_kick_signalers(dev_priv))
2782 yield();
2783 }
2784
2785 /* Finally reset hw state */
2786 for_each_engine(engine, dev_priv)
2787 intel_ring_init_seqno(engine, seqno);
2788
2789 return 0;
2790 }
2791
2792 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2793 {
2794 struct drm_i915_private *dev_priv = to_i915(dev);
2795 int ret;
2796
2797 if (seqno == 0)
2798 return -EINVAL;
2799
2800 /* HWS page needs to be set less than what we
2801 * will inject to ring
2802 */
2803 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2804 if (ret)
2805 return ret;
2806
2807 /* Carefully set the last_seqno value so that wrap
2808 * detection still works
2809 */
2810 dev_priv->next_seqno = seqno;
2811 dev_priv->last_seqno = seqno - 1;
2812 if (dev_priv->last_seqno == 0)
2813 dev_priv->last_seqno--;
2814
2815 return 0;
2816 }
2817
2818 int
2819 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2820 {
2821 /* reserve 0 for non-seqno */
2822 if (dev_priv->next_seqno == 0) {
2823 int ret = i915_gem_init_seqno(dev_priv, 0);
2824 if (ret)
2825 return ret;
2826
2827 dev_priv->next_seqno = 1;
2828 }
2829
2830 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2831 return 0;
2832 }
2833
2834 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2835 {
2836 struct drm_i915_private *dev_priv = engine->i915;
2837
2838 dev_priv->gt.active_engines |= intel_engine_flag(engine);
2839 if (dev_priv->gt.awake)
2840 return;
2841
2842 intel_runtime_pm_get_noresume(dev_priv);
2843 dev_priv->gt.awake = true;
2844
2845 i915_update_gfx_val(dev_priv);
2846 if (INTEL_GEN(dev_priv) >= 6)
2847 gen6_rps_busy(dev_priv);
2848
2849 queue_delayed_work(dev_priv->wq,
2850 &dev_priv->gt.retire_work,
2851 round_jiffies_up_relative(HZ));
2852 }
2853
2854 /*
2855 * NB: This function is not allowed to fail. Doing so would mean the the
2856 * request is not being tracked for completion but the work itself is
2857 * going to happen on the hardware. This would be a Bad Thing(tm).
2858 */
2859 void __i915_add_request(struct drm_i915_gem_request *request,
2860 struct drm_i915_gem_object *obj,
2861 bool flush_caches)
2862 {
2863 struct intel_engine_cs *engine;
2864 struct intel_ringbuffer *ringbuf;
2865 u32 request_start;
2866 u32 reserved_tail;
2867 int ret;
2868
2869 if (WARN_ON(request == NULL))
2870 return;
2871
2872 engine = request->engine;
2873 ringbuf = request->ringbuf;
2874
2875 /*
2876 * To ensure that this call will not fail, space for its emissions
2877 * should already have been reserved in the ring buffer. Let the ring
2878 * know that it is time to use that space up.
2879 */
2880 request_start = intel_ring_get_tail(ringbuf);
2881 reserved_tail = request->reserved_space;
2882 request->reserved_space = 0;
2883
2884 /*
2885 * Emit any outstanding flushes - execbuf can fail to emit the flush
2886 * after having emitted the batchbuffer command. Hence we need to fix
2887 * things up similar to emitting the lazy request. The difference here
2888 * is that the flush _must_ happen before the next request, no matter
2889 * what.
2890 */
2891 if (flush_caches) {
2892 if (i915.enable_execlists)
2893 ret = logical_ring_flush_all_caches(request);
2894 else
2895 ret = intel_ring_flush_all_caches(request);
2896 /* Not allowed to fail! */
2897 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2898 }
2899
2900 trace_i915_gem_request_add(request);
2901
2902 request->head = request_start;
2903
2904 /* Whilst this request exists, batch_obj will be on the
2905 * active_list, and so will hold the active reference. Only when this
2906 * request is retired will the the batch_obj be moved onto the
2907 * inactive_list and lose its active reference. Hence we do not need
2908 * to explicitly hold another reference here.
2909 */
2910 request->batch_obj = obj;
2911
2912 /* Seal the request and mark it as pending execution. Note that
2913 * we may inspect this state, without holding any locks, during
2914 * hangcheck. Hence we apply the barrier to ensure that we do not
2915 * see a more recent value in the hws than we are tracking.
2916 */
2917 request->emitted_jiffies = jiffies;
2918 request->previous_seqno = engine->last_submitted_seqno;
2919 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2920 list_add_tail(&request->list, &engine->request_list);
2921
2922 /* Record the position of the start of the request so that
2923 * should we detect the updated seqno part-way through the
2924 * GPU processing the request, we never over-estimate the
2925 * position of the head.
2926 */
2927 request->postfix = intel_ring_get_tail(ringbuf);
2928
2929 if (i915.enable_execlists)
2930 ret = engine->emit_request(request);
2931 else {
2932 ret = engine->add_request(request);
2933
2934 request->tail = intel_ring_get_tail(ringbuf);
2935 }
2936 /* Not allowed to fail! */
2937 WARN(ret, "emit|add_request failed: %d!\n", ret);
2938 /* Sanity check that the reserved size was large enough. */
2939 ret = intel_ring_get_tail(ringbuf) - request_start;
2940 if (ret < 0)
2941 ret += ringbuf->size;
2942 WARN_ONCE(ret > reserved_tail,
2943 "Not enough space reserved (%d bytes) "
2944 "for adding the request (%d bytes)\n",
2945 reserved_tail, ret);
2946
2947 i915_gem_mark_busy(engine);
2948 }
2949
2950 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2951 {
2952 unsigned long elapsed;
2953
2954 if (ctx->hang_stats.banned)
2955 return true;
2956
2957 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2958 if (ctx->hang_stats.ban_period_seconds &&
2959 elapsed <= ctx->hang_stats.ban_period_seconds) {
2960 DRM_DEBUG("context hanging too fast, banning!\n");
2961 return true;
2962 }
2963
2964 return false;
2965 }
2966
2967 static void i915_set_reset_status(struct i915_gem_context *ctx,
2968 const bool guilty)
2969 {
2970 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2971
2972 if (guilty) {
2973 hs->banned = i915_context_is_banned(ctx);
2974 hs->batch_active++;
2975 hs->guilty_ts = get_seconds();
2976 } else {
2977 hs->batch_pending++;
2978 }
2979 }
2980
2981 void i915_gem_request_free(struct kref *req_ref)
2982 {
2983 struct drm_i915_gem_request *req = container_of(req_ref,
2984 typeof(*req), ref);
2985 kmem_cache_free(req->i915->requests, req);
2986 }
2987
2988 static inline int
2989 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2990 struct i915_gem_context *ctx,
2991 struct drm_i915_gem_request **req_out)
2992 {
2993 struct drm_i915_private *dev_priv = engine->i915;
2994 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2995 struct drm_i915_gem_request *req;
2996 int ret;
2997
2998 if (!req_out)
2999 return -EINVAL;
3000
3001 *req_out = NULL;
3002
3003 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3004 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3005 * and restart.
3006 */
3007 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3008 if (ret)
3009 return ret;
3010
3011 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3012 if (req == NULL)
3013 return -ENOMEM;
3014
3015 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3016 if (ret)
3017 goto err;
3018
3019 kref_init(&req->ref);
3020 req->i915 = dev_priv;
3021 req->engine = engine;
3022 req->ctx = ctx;
3023 i915_gem_context_reference(req->ctx);
3024
3025 /*
3026 * Reserve space in the ring buffer for all the commands required to
3027 * eventually emit this request. This is to guarantee that the
3028 * i915_add_request() call can't fail. Note that the reserve may need
3029 * to be redone if the request is not actually submitted straight
3030 * away, e.g. because a GPU scheduler has deferred it.
3031 */
3032 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3033
3034 if (i915.enable_execlists)
3035 ret = intel_logical_ring_alloc_request_extras(req);
3036 else
3037 ret = intel_ring_alloc_request_extras(req);
3038 if (ret)
3039 goto err_ctx;
3040
3041 *req_out = req;
3042 return 0;
3043
3044 err_ctx:
3045 i915_gem_context_unreference(ctx);
3046 err:
3047 kmem_cache_free(dev_priv->requests, req);
3048 return ret;
3049 }
3050
3051 /**
3052 * i915_gem_request_alloc - allocate a request structure
3053 *
3054 * @engine: engine that we wish to issue the request on.
3055 * @ctx: context that the request will be associated with.
3056 * This can be NULL if the request is not directly related to
3057 * any specific user context, in which case this function will
3058 * choose an appropriate context to use.
3059 *
3060 * Returns a pointer to the allocated request if successful,
3061 * or an error code if not.
3062 */
3063 struct drm_i915_gem_request *
3064 i915_gem_request_alloc(struct intel_engine_cs *engine,
3065 struct i915_gem_context *ctx)
3066 {
3067 struct drm_i915_gem_request *req;
3068 int err;
3069
3070 if (ctx == NULL)
3071 ctx = engine->i915->kernel_context;
3072 err = __i915_gem_request_alloc(engine, ctx, &req);
3073 return err ? ERR_PTR(err) : req;
3074 }
3075
3076 struct drm_i915_gem_request *
3077 i915_gem_find_active_request(struct intel_engine_cs *engine)
3078 {
3079 struct drm_i915_gem_request *request;
3080
3081 /* We are called by the error capture and reset at a random
3082 * point in time. In particular, note that neither is crucially
3083 * ordered with an interrupt. After a hang, the GPU is dead and we
3084 * assume that no more writes can happen (we waited long enough for
3085 * all writes that were in transaction to be flushed) - adding an
3086 * extra delay for a recent interrupt is pointless. Hence, we do
3087 * not need an engine->irq_seqno_barrier() before the seqno reads.
3088 */
3089 list_for_each_entry(request, &engine->request_list, list) {
3090 if (i915_gem_request_completed(request))
3091 continue;
3092
3093 return request;
3094 }
3095
3096 return NULL;
3097 }
3098
3099 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3100 {
3101 struct drm_i915_gem_request *request;
3102 bool ring_hung;
3103
3104 request = i915_gem_find_active_request(engine);
3105 if (request == NULL)
3106 return;
3107
3108 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3109
3110 i915_set_reset_status(request->ctx, ring_hung);
3111 list_for_each_entry_continue(request, &engine->request_list, list)
3112 i915_set_reset_status(request->ctx, false);
3113 }
3114
3115 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3116 {
3117 struct intel_ringbuffer *buffer;
3118
3119 while (!list_empty(&engine->active_list)) {
3120 struct drm_i915_gem_object *obj;
3121
3122 obj = list_first_entry(&engine->active_list,
3123 struct drm_i915_gem_object,
3124 engine_list[engine->id]);
3125
3126 i915_gem_object_retire__read(obj, engine->id);
3127 }
3128
3129 /*
3130 * Clear the execlists queue up before freeing the requests, as those
3131 * are the ones that keep the context and ringbuffer backing objects
3132 * pinned in place.
3133 */
3134
3135 if (i915.enable_execlists) {
3136 /* Ensure irq handler finishes or is cancelled. */
3137 tasklet_kill(&engine->irq_tasklet);
3138
3139 intel_execlists_cancel_requests(engine);
3140 }
3141
3142 /*
3143 * We must free the requests after all the corresponding objects have
3144 * been moved off active lists. Which is the same order as the normal
3145 * retire_requests function does. This is important if object hold
3146 * implicit references on things like e.g. ppgtt address spaces through
3147 * the request.
3148 */
3149 while (!list_empty(&engine->request_list)) {
3150 struct drm_i915_gem_request *request;
3151
3152 request = list_first_entry(&engine->request_list,
3153 struct drm_i915_gem_request,
3154 list);
3155
3156 i915_gem_request_retire(request);
3157 }
3158
3159 /* Having flushed all requests from all queues, we know that all
3160 * ringbuffers must now be empty. However, since we do not reclaim
3161 * all space when retiring the request (to prevent HEADs colliding
3162 * with rapid ringbuffer wraparound) the amount of available space
3163 * upon reset is less than when we start. Do one more pass over
3164 * all the ringbuffers to reset last_retired_head.
3165 */
3166 list_for_each_entry(buffer, &engine->buffers, link) {
3167 buffer->last_retired_head = buffer->tail;
3168 intel_ring_update_space(buffer);
3169 }
3170
3171 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3172 }
3173
3174 void i915_gem_reset(struct drm_device *dev)
3175 {
3176 struct drm_i915_private *dev_priv = to_i915(dev);
3177 struct intel_engine_cs *engine;
3178
3179 /*
3180 * Before we free the objects from the requests, we need to inspect
3181 * them for finding the guilty party. As the requests only borrow
3182 * their reference to the objects, the inspection must be done first.
3183 */
3184 for_each_engine(engine, dev_priv)
3185 i915_gem_reset_engine_status(engine);
3186
3187 for_each_engine(engine, dev_priv)
3188 i915_gem_reset_engine_cleanup(engine);
3189
3190 i915_gem_context_reset(dev);
3191
3192 i915_gem_restore_fences(dev);
3193
3194 WARN_ON(i915_verify_lists(dev));
3195 }
3196
3197 /**
3198 * This function clears the request list as sequence numbers are passed.
3199 * @engine: engine to retire requests on
3200 */
3201 void
3202 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3203 {
3204 WARN_ON(i915_verify_lists(engine->dev));
3205
3206 /* Retire requests first as we use it above for the early return.
3207 * If we retire requests last, we may use a later seqno and so clear
3208 * the requests lists without clearing the active list, leading to
3209 * confusion.
3210 */
3211 while (!list_empty(&engine->request_list)) {
3212 struct drm_i915_gem_request *request;
3213
3214 request = list_first_entry(&engine->request_list,
3215 struct drm_i915_gem_request,
3216 list);
3217
3218 if (!i915_gem_request_completed(request))
3219 break;
3220
3221 i915_gem_request_retire(request);
3222 }
3223
3224 /* Move any buffers on the active list that are no longer referenced
3225 * by the ringbuffer to the flushing/inactive lists as appropriate,
3226 * before we free the context associated with the requests.
3227 */
3228 while (!list_empty(&engine->active_list)) {
3229 struct drm_i915_gem_object *obj;
3230
3231 obj = list_first_entry(&engine->active_list,
3232 struct drm_i915_gem_object,
3233 engine_list[engine->id]);
3234
3235 if (!list_empty(&obj->last_read_req[engine->id]->list))
3236 break;
3237
3238 i915_gem_object_retire__read(obj, engine->id);
3239 }
3240
3241 WARN_ON(i915_verify_lists(engine->dev));
3242 }
3243
3244 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3245 {
3246 struct intel_engine_cs *engine;
3247
3248 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3249
3250 if (dev_priv->gt.active_engines == 0)
3251 return;
3252
3253 GEM_BUG_ON(!dev_priv->gt.awake);
3254
3255 for_each_engine(engine, dev_priv) {
3256 i915_gem_retire_requests_ring(engine);
3257 if (list_empty(&engine->request_list))
3258 dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3259 }
3260
3261 if (dev_priv->gt.active_engines == 0)
3262 queue_delayed_work(dev_priv->wq,
3263 &dev_priv->gt.idle_work,
3264 msecs_to_jiffies(100));
3265 }
3266
3267 static void
3268 i915_gem_retire_work_handler(struct work_struct *work)
3269 {
3270 struct drm_i915_private *dev_priv =
3271 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3272 struct drm_device *dev = &dev_priv->drm;
3273
3274 /* Come back later if the device is busy... */
3275 if (mutex_trylock(&dev->struct_mutex)) {
3276 i915_gem_retire_requests(dev_priv);
3277 mutex_unlock(&dev->struct_mutex);
3278 }
3279
3280 /* Keep the retire handler running until we are finally idle.
3281 * We do not need to do this test under locking as in the worst-case
3282 * we queue the retire worker once too often.
3283 */
3284 if (READ_ONCE(dev_priv->gt.awake))
3285 queue_delayed_work(dev_priv->wq,
3286 &dev_priv->gt.retire_work,
3287 round_jiffies_up_relative(HZ));
3288 }
3289
3290 static void
3291 i915_gem_idle_work_handler(struct work_struct *work)
3292 {
3293 struct drm_i915_private *dev_priv =
3294 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3295 struct drm_device *dev = &dev_priv->drm;
3296 struct intel_engine_cs *engine;
3297 unsigned int stuck_engines;
3298 bool rearm_hangcheck;
3299
3300 if (!READ_ONCE(dev_priv->gt.awake))
3301 return;
3302
3303 if (READ_ONCE(dev_priv->gt.active_engines))
3304 return;
3305
3306 rearm_hangcheck =
3307 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3308
3309 if (!mutex_trylock(&dev->struct_mutex)) {
3310 /* Currently busy, come back later */
3311 mod_delayed_work(dev_priv->wq,
3312 &dev_priv->gt.idle_work,
3313 msecs_to_jiffies(50));
3314 goto out_rearm;
3315 }
3316
3317 if (dev_priv->gt.active_engines)
3318 goto out_unlock;
3319
3320 for_each_engine(engine, dev_priv)
3321 i915_gem_batch_pool_fini(&engine->batch_pool);
3322
3323 GEM_BUG_ON(!dev_priv->gt.awake);
3324 dev_priv->gt.awake = false;
3325 rearm_hangcheck = false;
3326
3327 stuck_engines = intel_kick_waiters(dev_priv);
3328 if (unlikely(stuck_engines)) {
3329 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3330 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3331 }
3332
3333 if (INTEL_GEN(dev_priv) >= 6)
3334 gen6_rps_idle(dev_priv);
3335 intel_runtime_pm_put(dev_priv);
3336 out_unlock:
3337 mutex_unlock(&dev->struct_mutex);
3338
3339 out_rearm:
3340 if (rearm_hangcheck) {
3341 GEM_BUG_ON(!dev_priv->gt.awake);
3342 i915_queue_hangcheck(dev_priv);
3343 }
3344 }
3345
3346 /**
3347 * Ensures that an object will eventually get non-busy by flushing any required
3348 * write domains, emitting any outstanding lazy request and retiring and
3349 * completed requests.
3350 * @obj: object to flush
3351 */
3352 static int
3353 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3354 {
3355 int i;
3356
3357 if (!obj->active)
3358 return 0;
3359
3360 for (i = 0; i < I915_NUM_ENGINES; i++) {
3361 struct drm_i915_gem_request *req;
3362
3363 req = obj->last_read_req[i];
3364 if (req == NULL)
3365 continue;
3366
3367 if (i915_gem_request_completed(req))
3368 i915_gem_object_retire__read(obj, i);
3369 }
3370
3371 return 0;
3372 }
3373
3374 /**
3375 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3376 * @dev: drm device pointer
3377 * @data: ioctl data blob
3378 * @file: drm file pointer
3379 *
3380 * Returns 0 if successful, else an error is returned with the remaining time in
3381 * the timeout parameter.
3382 * -ETIME: object is still busy after timeout
3383 * -ERESTARTSYS: signal interrupted the wait
3384 * -ENONENT: object doesn't exist
3385 * Also possible, but rare:
3386 * -EAGAIN: GPU wedged
3387 * -ENOMEM: damn
3388 * -ENODEV: Internal IRQ fail
3389 * -E?: The add request failed
3390 *
3391 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3392 * non-zero timeout parameter the wait ioctl will wait for the given number of
3393 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3394 * without holding struct_mutex the object may become re-busied before this
3395 * function completes. A similar but shorter * race condition exists in the busy
3396 * ioctl
3397 */
3398 int
3399 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3400 {
3401 struct drm_i915_gem_wait *args = data;
3402 struct drm_i915_gem_object *obj;
3403 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3404 int i, n = 0;
3405 int ret;
3406
3407 if (args->flags != 0)
3408 return -EINVAL;
3409
3410 ret = i915_mutex_lock_interruptible(dev);
3411 if (ret)
3412 return ret;
3413
3414 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3415 if (&obj->base == NULL) {
3416 mutex_unlock(&dev->struct_mutex);
3417 return -ENOENT;
3418 }
3419
3420 /* Need to make sure the object gets inactive eventually. */
3421 ret = i915_gem_object_flush_active(obj);
3422 if (ret)
3423 goto out;
3424
3425 if (!obj->active)
3426 goto out;
3427
3428 /* Do this after OLR check to make sure we make forward progress polling
3429 * on this IOCTL with a timeout == 0 (like busy ioctl)
3430 */
3431 if (args->timeout_ns == 0) {
3432 ret = -ETIME;
3433 goto out;
3434 }
3435
3436 drm_gem_object_unreference(&obj->base);
3437
3438 for (i = 0; i < I915_NUM_ENGINES; i++) {
3439 if (obj->last_read_req[i] == NULL)
3440 continue;
3441
3442 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3443 }
3444
3445 mutex_unlock(&dev->struct_mutex);
3446
3447 for (i = 0; i < n; i++) {
3448 if (ret == 0)
3449 ret = __i915_wait_request(req[i], true,
3450 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3451 to_rps_client(file));
3452 i915_gem_request_unreference(req[i]);
3453 }
3454 return ret;
3455
3456 out:
3457 drm_gem_object_unreference(&obj->base);
3458 mutex_unlock(&dev->struct_mutex);
3459 return ret;
3460 }
3461
3462 static int
3463 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3464 struct intel_engine_cs *to,
3465 struct drm_i915_gem_request *from_req,
3466 struct drm_i915_gem_request **to_req)
3467 {
3468 struct intel_engine_cs *from;
3469 int ret;
3470
3471 from = i915_gem_request_get_engine(from_req);
3472 if (to == from)
3473 return 0;
3474
3475 if (i915_gem_request_completed(from_req))
3476 return 0;
3477
3478 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3479 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3480 ret = __i915_wait_request(from_req,
3481 i915->mm.interruptible,
3482 NULL,
3483 &i915->rps.semaphores);
3484 if (ret)
3485 return ret;
3486
3487 i915_gem_object_retire_request(obj, from_req);
3488 } else {
3489 int idx = intel_ring_sync_index(from, to);
3490 u32 seqno = i915_gem_request_get_seqno(from_req);
3491
3492 WARN_ON(!to_req);
3493
3494 if (seqno <= from->semaphore.sync_seqno[idx])
3495 return 0;
3496
3497 if (*to_req == NULL) {
3498 struct drm_i915_gem_request *req;
3499
3500 req = i915_gem_request_alloc(to, NULL);
3501 if (IS_ERR(req))
3502 return PTR_ERR(req);
3503
3504 *to_req = req;
3505 }
3506
3507 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3508 ret = to->semaphore.sync_to(*to_req, from, seqno);
3509 if (ret)
3510 return ret;
3511
3512 /* We use last_read_req because sync_to()
3513 * might have just caused seqno wrap under
3514 * the radar.
3515 */
3516 from->semaphore.sync_seqno[idx] =
3517 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3518 }
3519
3520 return 0;
3521 }
3522
3523 /**
3524 * i915_gem_object_sync - sync an object to a ring.
3525 *
3526 * @obj: object which may be in use on another ring.
3527 * @to: ring we wish to use the object on. May be NULL.
3528 * @to_req: request we wish to use the object for. See below.
3529 * This will be allocated and returned if a request is
3530 * required but not passed in.
3531 *
3532 * This code is meant to abstract object synchronization with the GPU.
3533 * Calling with NULL implies synchronizing the object with the CPU
3534 * rather than a particular GPU ring. Conceptually we serialise writes
3535 * between engines inside the GPU. We only allow one engine to write
3536 * into a buffer at any time, but multiple readers. To ensure each has
3537 * a coherent view of memory, we must:
3538 *
3539 * - If there is an outstanding write request to the object, the new
3540 * request must wait for it to complete (either CPU or in hw, requests
3541 * on the same ring will be naturally ordered).
3542 *
3543 * - If we are a write request (pending_write_domain is set), the new
3544 * request must wait for outstanding read requests to complete.
3545 *
3546 * For CPU synchronisation (NULL to) no request is required. For syncing with
3547 * rings to_req must be non-NULL. However, a request does not have to be
3548 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3549 * request will be allocated automatically and returned through *to_req. Note
3550 * that it is not guaranteed that commands will be emitted (because the system
3551 * might already be idle). Hence there is no need to create a request that
3552 * might never have any work submitted. Note further that if a request is
3553 * returned in *to_req, it is the responsibility of the caller to submit
3554 * that request (after potentially adding more work to it).
3555 *
3556 * Returns 0 if successful, else propagates up the lower layer error.
3557 */
3558 int
3559 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3560 struct intel_engine_cs *to,
3561 struct drm_i915_gem_request **to_req)
3562 {
3563 const bool readonly = obj->base.pending_write_domain == 0;
3564 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3565 int ret, i, n;
3566
3567 if (!obj->active)
3568 return 0;
3569
3570 if (to == NULL)
3571 return i915_gem_object_wait_rendering(obj, readonly);
3572
3573 n = 0;
3574 if (readonly) {
3575 if (obj->last_write_req)
3576 req[n++] = obj->last_write_req;
3577 } else {
3578 for (i = 0; i < I915_NUM_ENGINES; i++)
3579 if (obj->last_read_req[i])
3580 req[n++] = obj->last_read_req[i];
3581 }
3582 for (i = 0; i < n; i++) {
3583 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3584 if (ret)
3585 return ret;
3586 }
3587
3588 return 0;
3589 }
3590
3591 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3592 {
3593 u32 old_write_domain, old_read_domains;
3594
3595 /* Force a pagefault for domain tracking on next user access */
3596 i915_gem_release_mmap(obj);
3597
3598 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3599 return;
3600
3601 old_read_domains = obj->base.read_domains;
3602 old_write_domain = obj->base.write_domain;
3603
3604 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3605 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3606
3607 trace_i915_gem_object_change_domain(obj,
3608 old_read_domains,
3609 old_write_domain);
3610 }
3611
3612 static void __i915_vma_iounmap(struct i915_vma *vma)
3613 {
3614 GEM_BUG_ON(vma->pin_count);
3615
3616 if (vma->iomap == NULL)
3617 return;
3618
3619 io_mapping_unmap(vma->iomap);
3620 vma->iomap = NULL;
3621 }
3622
3623 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3624 {
3625 struct drm_i915_gem_object *obj = vma->obj;
3626 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3627 int ret;
3628
3629 if (list_empty(&vma->obj_link))
3630 return 0;
3631
3632 if (!drm_mm_node_allocated(&vma->node)) {
3633 i915_gem_vma_destroy(vma);
3634 return 0;
3635 }
3636
3637 if (vma->pin_count)
3638 return -EBUSY;
3639
3640 BUG_ON(obj->pages == NULL);
3641
3642 if (wait) {
3643 ret = i915_gem_object_wait_rendering(obj, false);
3644 if (ret)
3645 return ret;
3646 }
3647
3648 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3649 i915_gem_object_finish_gtt(obj);
3650
3651 /* release the fence reg _after_ flushing */
3652 ret = i915_gem_object_put_fence(obj);
3653 if (ret)
3654 return ret;
3655
3656 __i915_vma_iounmap(vma);
3657 }
3658
3659 trace_i915_vma_unbind(vma);
3660
3661 vma->vm->unbind_vma(vma);
3662 vma->bound = 0;
3663
3664 list_del_init(&vma->vm_link);
3665 if (vma->is_ggtt) {
3666 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3667 obj->map_and_fenceable = false;
3668 } else if (vma->ggtt_view.pages) {
3669 sg_free_table(vma->ggtt_view.pages);
3670 kfree(vma->ggtt_view.pages);
3671 }
3672 vma->ggtt_view.pages = NULL;
3673 }
3674
3675 drm_mm_remove_node(&vma->node);
3676 i915_gem_vma_destroy(vma);
3677
3678 /* Since the unbound list is global, only move to that list if
3679 * no more VMAs exist. */
3680 if (list_empty(&obj->vma_list))
3681 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3682
3683 /* And finally now the object is completely decoupled from this vma,
3684 * we can drop its hold on the backing storage and allow it to be
3685 * reaped by the shrinker.
3686 */
3687 i915_gem_object_unpin_pages(obj);
3688
3689 return 0;
3690 }
3691
3692 int i915_vma_unbind(struct i915_vma *vma)
3693 {
3694 return __i915_vma_unbind(vma, true);
3695 }
3696
3697 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3698 {
3699 return __i915_vma_unbind(vma, false);
3700 }
3701
3702 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3703 {
3704 struct intel_engine_cs *engine;
3705 int ret;
3706
3707 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3708
3709 for_each_engine(engine, dev_priv) {
3710 if (engine->last_context == NULL)
3711 continue;
3712
3713 ret = intel_engine_idle(engine);
3714 if (ret)
3715 return ret;
3716 }
3717
3718 WARN_ON(i915_verify_lists(dev));
3719 return 0;
3720 }
3721
3722 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3723 unsigned long cache_level)
3724 {
3725 struct drm_mm_node *gtt_space = &vma->node;
3726 struct drm_mm_node *other;
3727
3728 /*
3729 * On some machines we have to be careful when putting differing types
3730 * of snoopable memory together to avoid the prefetcher crossing memory
3731 * domains and dying. During vm initialisation, we decide whether or not
3732 * these constraints apply and set the drm_mm.color_adjust
3733 * appropriately.
3734 */
3735 if (vma->vm->mm.color_adjust == NULL)
3736 return true;
3737
3738 if (!drm_mm_node_allocated(gtt_space))
3739 return true;
3740
3741 if (list_empty(&gtt_space->node_list))
3742 return true;
3743
3744 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3745 if (other->allocated && !other->hole_follows && other->color != cache_level)
3746 return false;
3747
3748 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3749 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3750 return false;
3751
3752 return true;
3753 }
3754
3755 /**
3756 * Finds free space in the GTT aperture and binds the object or a view of it
3757 * there.
3758 * @obj: object to bind
3759 * @vm: address space to bind into
3760 * @ggtt_view: global gtt view if applicable
3761 * @alignment: requested alignment
3762 * @flags: mask of PIN_* flags to use
3763 */
3764 static struct i915_vma *
3765 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3766 struct i915_address_space *vm,
3767 const struct i915_ggtt_view *ggtt_view,
3768 unsigned alignment,
3769 uint64_t flags)
3770 {
3771 struct drm_device *dev = obj->base.dev;
3772 struct drm_i915_private *dev_priv = to_i915(dev);
3773 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3774 u32 fence_alignment, unfenced_alignment;
3775 u32 search_flag, alloc_flag;
3776 u64 start, end;
3777 u64 size, fence_size;
3778 struct i915_vma *vma;
3779 int ret;
3780
3781 if (i915_is_ggtt(vm)) {
3782 u32 view_size;
3783
3784 if (WARN_ON(!ggtt_view))
3785 return ERR_PTR(-EINVAL);
3786
3787 view_size = i915_ggtt_view_size(obj, ggtt_view);
3788
3789 fence_size = i915_gem_get_gtt_size(dev,
3790 view_size,
3791 obj->tiling_mode);
3792 fence_alignment = i915_gem_get_gtt_alignment(dev,
3793 view_size,
3794 obj->tiling_mode,
3795 true);
3796 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3797 view_size,
3798 obj->tiling_mode,
3799 false);
3800 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3801 } else {
3802 fence_size = i915_gem_get_gtt_size(dev,
3803 obj->base.size,
3804 obj->tiling_mode);
3805 fence_alignment = i915_gem_get_gtt_alignment(dev,
3806 obj->base.size,
3807 obj->tiling_mode,
3808 true);
3809 unfenced_alignment =
3810 i915_gem_get_gtt_alignment(dev,
3811 obj->base.size,
3812 obj->tiling_mode,
3813 false);
3814 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3815 }
3816
3817 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3818 end = vm->total;
3819 if (flags & PIN_MAPPABLE)
3820 end = min_t(u64, end, ggtt->mappable_end);
3821 if (flags & PIN_ZONE_4G)
3822 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3823
3824 if (alignment == 0)
3825 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3826 unfenced_alignment;
3827 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3828 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3829 ggtt_view ? ggtt_view->type : 0,
3830 alignment);
3831 return ERR_PTR(-EINVAL);
3832 }
3833
3834 /* If binding the object/GGTT view requires more space than the entire
3835 * aperture has, reject it early before evicting everything in a vain
3836 * attempt to find space.
3837 */
3838 if (size > end) {
3839 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3840 ggtt_view ? ggtt_view->type : 0,
3841 size,
3842 flags & PIN_MAPPABLE ? "mappable" : "total",
3843 end);
3844 return ERR_PTR(-E2BIG);
3845 }
3846
3847 ret = i915_gem_object_get_pages(obj);
3848 if (ret)
3849 return ERR_PTR(ret);
3850
3851 i915_gem_object_pin_pages(obj);
3852
3853 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3854 i915_gem_obj_lookup_or_create_vma(obj, vm);
3855
3856 if (IS_ERR(vma))
3857 goto err_unpin;
3858
3859 if (flags & PIN_OFFSET_FIXED) {
3860 uint64_t offset = flags & PIN_OFFSET_MASK;
3861
3862 if (offset & (alignment - 1) || offset + size > end) {
3863 ret = -EINVAL;
3864 goto err_free_vma;
3865 }
3866 vma->node.start = offset;
3867 vma->node.size = size;
3868 vma->node.color = obj->cache_level;
3869 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3870 if (ret) {
3871 ret = i915_gem_evict_for_vma(vma);
3872 if (ret == 0)
3873 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3874 }
3875 if (ret)
3876 goto err_free_vma;
3877 } else {
3878 if (flags & PIN_HIGH) {
3879 search_flag = DRM_MM_SEARCH_BELOW;
3880 alloc_flag = DRM_MM_CREATE_TOP;
3881 } else {
3882 search_flag = DRM_MM_SEARCH_DEFAULT;
3883 alloc_flag = DRM_MM_CREATE_DEFAULT;
3884 }
3885
3886 search_free:
3887 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3888 size, alignment,
3889 obj->cache_level,
3890 start, end,
3891 search_flag,
3892 alloc_flag);
3893 if (ret) {
3894 ret = i915_gem_evict_something(dev, vm, size, alignment,
3895 obj->cache_level,
3896 start, end,
3897 flags);
3898 if (ret == 0)
3899 goto search_free;
3900
3901 goto err_free_vma;
3902 }
3903 }
3904 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3905 ret = -EINVAL;
3906 goto err_remove_node;
3907 }
3908
3909 trace_i915_vma_bind(vma, flags);
3910 ret = i915_vma_bind(vma, obj->cache_level, flags);
3911 if (ret)
3912 goto err_remove_node;
3913
3914 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3915 list_add_tail(&vma->vm_link, &vm->inactive_list);
3916
3917 return vma;
3918
3919 err_remove_node:
3920 drm_mm_remove_node(&vma->node);
3921 err_free_vma:
3922 i915_gem_vma_destroy(vma);
3923 vma = ERR_PTR(ret);
3924 err_unpin:
3925 i915_gem_object_unpin_pages(obj);
3926 return vma;
3927 }
3928
3929 bool
3930 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3931 bool force)
3932 {
3933 /* If we don't have a page list set up, then we're not pinned
3934 * to GPU, and we can ignore the cache flush because it'll happen
3935 * again at bind time.
3936 */
3937 if (obj->pages == NULL)
3938 return false;
3939
3940 /*
3941 * Stolen memory is always coherent with the GPU as it is explicitly
3942 * marked as wc by the system, or the system is cache-coherent.
3943 */
3944 if (obj->stolen || obj->phys_handle)
3945 return false;
3946
3947 /* If the GPU is snooping the contents of the CPU cache,
3948 * we do not need to manually clear the CPU cache lines. However,
3949 * the caches are only snooped when the render cache is
3950 * flushed/invalidated. As we always have to emit invalidations
3951 * and flushes when moving into and out of the RENDER domain, correct
3952 * snooping behaviour occurs naturally as the result of our domain
3953 * tracking.
3954 */
3955 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3956 obj->cache_dirty = true;
3957 return false;
3958 }
3959
3960 trace_i915_gem_object_clflush(obj);
3961 drm_clflush_sg(obj->pages);
3962 obj->cache_dirty = false;
3963
3964 return true;
3965 }
3966
3967 /** Flushes the GTT write domain for the object if it's dirty. */
3968 static void
3969 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3970 {
3971 uint32_t old_write_domain;
3972
3973 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3974 return;
3975
3976 /* No actual flushing is required for the GTT write domain. Writes
3977 * to it immediately go to main memory as far as we know, so there's
3978 * no chipset flush. It also doesn't land in render cache.
3979 *
3980 * However, we do have to enforce the order so that all writes through
3981 * the GTT land before any writes to the device, such as updates to
3982 * the GATT itself.
3983 */
3984 wmb();
3985
3986 old_write_domain = obj->base.write_domain;
3987 obj->base.write_domain = 0;
3988
3989 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3990
3991 trace_i915_gem_object_change_domain(obj,
3992 obj->base.read_domains,
3993 old_write_domain);
3994 }
3995
3996 /** Flushes the CPU write domain for the object if it's dirty. */
3997 static void
3998 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3999 {
4000 uint32_t old_write_domain;
4001
4002 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4003 return;
4004
4005 if (i915_gem_clflush_object(obj, obj->pin_display))
4006 i915_gem_chipset_flush(to_i915(obj->base.dev));
4007
4008 old_write_domain = obj->base.write_domain;
4009 obj->base.write_domain = 0;
4010
4011 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4012
4013 trace_i915_gem_object_change_domain(obj,
4014 obj->base.read_domains,
4015 old_write_domain);
4016 }
4017
4018 /**
4019 * Moves a single object to the GTT read, and possibly write domain.
4020 * @obj: object to act on
4021 * @write: ask for write access or read only
4022 *
4023 * This function returns when the move is complete, including waiting on
4024 * flushes to occur.
4025 */
4026 int
4027 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4028 {
4029 struct drm_device *dev = obj->base.dev;
4030 struct drm_i915_private *dev_priv = to_i915(dev);
4031 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4032 uint32_t old_write_domain, old_read_domains;
4033 struct i915_vma *vma;
4034 int ret;
4035
4036 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4037 return 0;
4038
4039 ret = i915_gem_object_wait_rendering(obj, !write);
4040 if (ret)
4041 return ret;
4042
4043 /* Flush and acquire obj->pages so that we are coherent through
4044 * direct access in memory with previous cached writes through
4045 * shmemfs and that our cache domain tracking remains valid.
4046 * For example, if the obj->filp was moved to swap without us
4047 * being notified and releasing the pages, we would mistakenly
4048 * continue to assume that the obj remained out of the CPU cached
4049 * domain.
4050 */
4051 ret = i915_gem_object_get_pages(obj);
4052 if (ret)
4053 return ret;
4054
4055 i915_gem_object_flush_cpu_write_domain(obj);
4056
4057 /* Serialise direct access to this object with the barriers for
4058 * coherent writes from the GPU, by effectively invalidating the
4059 * GTT domain upon first access.
4060 */
4061 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4062 mb();
4063
4064 old_write_domain = obj->base.write_domain;
4065 old_read_domains = obj->base.read_domains;
4066
4067 /* It should now be out of any other write domains, and we can update
4068 * the domain values for our changes.
4069 */
4070 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4071 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4072 if (write) {
4073 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4074 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4075 obj->dirty = 1;
4076 }
4077
4078 trace_i915_gem_object_change_domain(obj,
4079 old_read_domains,
4080 old_write_domain);
4081
4082 /* And bump the LRU for this access */
4083 vma = i915_gem_obj_to_ggtt(obj);
4084 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4085 list_move_tail(&vma->vm_link,
4086 &ggtt->base.inactive_list);
4087
4088 return 0;
4089 }
4090
4091 /**
4092 * Changes the cache-level of an object across all VMA.
4093 * @obj: object to act on
4094 * @cache_level: new cache level to set for the object
4095 *
4096 * After this function returns, the object will be in the new cache-level
4097 * across all GTT and the contents of the backing storage will be coherent,
4098 * with respect to the new cache-level. In order to keep the backing storage
4099 * coherent for all users, we only allow a single cache level to be set
4100 * globally on the object and prevent it from being changed whilst the
4101 * hardware is reading from the object. That is if the object is currently
4102 * on the scanout it will be set to uncached (or equivalent display
4103 * cache coherency) and all non-MOCS GPU access will also be uncached so
4104 * that all direct access to the scanout remains coherent.
4105 */
4106 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4107 enum i915_cache_level cache_level)
4108 {
4109 struct drm_device *dev = obj->base.dev;
4110 struct i915_vma *vma, *next;
4111 bool bound = false;
4112 int ret = 0;
4113
4114 if (obj->cache_level == cache_level)
4115 goto out;
4116
4117 /* Inspect the list of currently bound VMA and unbind any that would
4118 * be invalid given the new cache-level. This is principally to
4119 * catch the issue of the CS prefetch crossing page boundaries and
4120 * reading an invalid PTE on older architectures.
4121 */
4122 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4123 if (!drm_mm_node_allocated(&vma->node))
4124 continue;
4125
4126 if (vma->pin_count) {
4127 DRM_DEBUG("can not change the cache level of pinned objects\n");
4128 return -EBUSY;
4129 }
4130
4131 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4132 ret = i915_vma_unbind(vma);
4133 if (ret)
4134 return ret;
4135 } else
4136 bound = true;
4137 }
4138
4139 /* We can reuse the existing drm_mm nodes but need to change the
4140 * cache-level on the PTE. We could simply unbind them all and
4141 * rebind with the correct cache-level on next use. However since
4142 * we already have a valid slot, dma mapping, pages etc, we may as
4143 * rewrite the PTE in the belief that doing so tramples upon less
4144 * state and so involves less work.
4145 */
4146 if (bound) {
4147 /* Before we change the PTE, the GPU must not be accessing it.
4148 * If we wait upon the object, we know that all the bound
4149 * VMA are no longer active.
4150 */
4151 ret = i915_gem_object_wait_rendering(obj, false);
4152 if (ret)
4153 return ret;
4154
4155 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4156 /* Access to snoopable pages through the GTT is
4157 * incoherent and on some machines causes a hard
4158 * lockup. Relinquish the CPU mmaping to force
4159 * userspace to refault in the pages and we can
4160 * then double check if the GTT mapping is still
4161 * valid for that pointer access.
4162 */
4163 i915_gem_release_mmap(obj);
4164
4165 /* As we no longer need a fence for GTT access,
4166 * we can relinquish it now (and so prevent having
4167 * to steal a fence from someone else on the next
4168 * fence request). Note GPU activity would have
4169 * dropped the fence as all snoopable access is
4170 * supposed to be linear.
4171 */
4172 ret = i915_gem_object_put_fence(obj);
4173 if (ret)
4174 return ret;
4175 } else {
4176 /* We either have incoherent backing store and
4177 * so no GTT access or the architecture is fully
4178 * coherent. In such cases, existing GTT mmaps
4179 * ignore the cache bit in the PTE and we can
4180 * rewrite it without confusing the GPU or having
4181 * to force userspace to fault back in its mmaps.
4182 */
4183 }
4184
4185 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4186 if (!drm_mm_node_allocated(&vma->node))
4187 continue;
4188
4189 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4190 if (ret)
4191 return ret;
4192 }
4193 }
4194
4195 list_for_each_entry(vma, &obj->vma_list, obj_link)
4196 vma->node.color = cache_level;
4197 obj->cache_level = cache_level;
4198
4199 out:
4200 /* Flush the dirty CPU caches to the backing storage so that the
4201 * object is now coherent at its new cache level (with respect
4202 * to the access domain).
4203 */
4204 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4205 if (i915_gem_clflush_object(obj, true))
4206 i915_gem_chipset_flush(to_i915(obj->base.dev));
4207 }
4208
4209 return 0;
4210 }
4211
4212 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4213 struct drm_file *file)
4214 {
4215 struct drm_i915_gem_caching *args = data;
4216 struct drm_i915_gem_object *obj;
4217
4218 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4219 if (&obj->base == NULL)
4220 return -ENOENT;
4221
4222 switch (obj->cache_level) {
4223 case I915_CACHE_LLC:
4224 case I915_CACHE_L3_LLC:
4225 args->caching = I915_CACHING_CACHED;
4226 break;
4227
4228 case I915_CACHE_WT:
4229 args->caching = I915_CACHING_DISPLAY;
4230 break;
4231
4232 default:
4233 args->caching = I915_CACHING_NONE;
4234 break;
4235 }
4236
4237 drm_gem_object_unreference_unlocked(&obj->base);
4238 return 0;
4239 }
4240
4241 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4242 struct drm_file *file)
4243 {
4244 struct drm_i915_private *dev_priv = to_i915(dev);
4245 struct drm_i915_gem_caching *args = data;
4246 struct drm_i915_gem_object *obj;
4247 enum i915_cache_level level;
4248 int ret;
4249
4250 switch (args->caching) {
4251 case I915_CACHING_NONE:
4252 level = I915_CACHE_NONE;
4253 break;
4254 case I915_CACHING_CACHED:
4255 /*
4256 * Due to a HW issue on BXT A stepping, GPU stores via a
4257 * snooped mapping may leave stale data in a corresponding CPU
4258 * cacheline, whereas normally such cachelines would get
4259 * invalidated.
4260 */
4261 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4262 return -ENODEV;
4263
4264 level = I915_CACHE_LLC;
4265 break;
4266 case I915_CACHING_DISPLAY:
4267 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4268 break;
4269 default:
4270 return -EINVAL;
4271 }
4272
4273 intel_runtime_pm_get(dev_priv);
4274
4275 ret = i915_mutex_lock_interruptible(dev);
4276 if (ret)
4277 goto rpm_put;
4278
4279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4280 if (&obj->base == NULL) {
4281 ret = -ENOENT;
4282 goto unlock;
4283 }
4284
4285 ret = i915_gem_object_set_cache_level(obj, level);
4286
4287 drm_gem_object_unreference(&obj->base);
4288 unlock:
4289 mutex_unlock(&dev->struct_mutex);
4290 rpm_put:
4291 intel_runtime_pm_put(dev_priv);
4292
4293 return ret;
4294 }
4295
4296 /*
4297 * Prepare buffer for display plane (scanout, cursors, etc).
4298 * Can be called from an uninterruptible phase (modesetting) and allows
4299 * any flushes to be pipelined (for pageflips).
4300 */
4301 int
4302 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4303 u32 alignment,
4304 const struct i915_ggtt_view *view)
4305 {
4306 u32 old_read_domains, old_write_domain;
4307 int ret;
4308
4309 /* Mark the pin_display early so that we account for the
4310 * display coherency whilst setting up the cache domains.
4311 */
4312 obj->pin_display++;
4313
4314 /* The display engine is not coherent with the LLC cache on gen6. As
4315 * a result, we make sure that the pinning that is about to occur is
4316 * done with uncached PTEs. This is lowest common denominator for all
4317 * chipsets.
4318 *
4319 * However for gen6+, we could do better by using the GFDT bit instead
4320 * of uncaching, which would allow us to flush all the LLC-cached data
4321 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4322 */
4323 ret = i915_gem_object_set_cache_level(obj,
4324 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4325 if (ret)
4326 goto err_unpin_display;
4327
4328 /* As the user may map the buffer once pinned in the display plane
4329 * (e.g. libkms for the bootup splash), we have to ensure that we
4330 * always use map_and_fenceable for all scanout buffers.
4331 */
4332 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4333 view->type == I915_GGTT_VIEW_NORMAL ?
4334 PIN_MAPPABLE : 0);
4335 if (ret)
4336 goto err_unpin_display;
4337
4338 i915_gem_object_flush_cpu_write_domain(obj);
4339
4340 old_write_domain = obj->base.write_domain;
4341 old_read_domains = obj->base.read_domains;
4342
4343 /* It should now be out of any other write domains, and we can update
4344 * the domain values for our changes.
4345 */
4346 obj->base.write_domain = 0;
4347 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4348
4349 trace_i915_gem_object_change_domain(obj,
4350 old_read_domains,
4351 old_write_domain);
4352
4353 return 0;
4354
4355 err_unpin_display:
4356 obj->pin_display--;
4357 return ret;
4358 }
4359
4360 void
4361 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4362 const struct i915_ggtt_view *view)
4363 {
4364 if (WARN_ON(obj->pin_display == 0))
4365 return;
4366
4367 i915_gem_object_ggtt_unpin_view(obj, view);
4368
4369 obj->pin_display--;
4370 }
4371
4372 /**
4373 * Moves a single object to the CPU read, and possibly write domain.
4374 * @obj: object to act on
4375 * @write: requesting write or read-only access
4376 *
4377 * This function returns when the move is complete, including waiting on
4378 * flushes to occur.
4379 */
4380 int
4381 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4382 {
4383 uint32_t old_write_domain, old_read_domains;
4384 int ret;
4385
4386 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4387 return 0;
4388
4389 ret = i915_gem_object_wait_rendering(obj, !write);
4390 if (ret)
4391 return ret;
4392
4393 i915_gem_object_flush_gtt_write_domain(obj);
4394
4395 old_write_domain = obj->base.write_domain;
4396 old_read_domains = obj->base.read_domains;
4397
4398 /* Flush the CPU cache if it's still invalid. */
4399 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4400 i915_gem_clflush_object(obj, false);
4401
4402 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4403 }
4404
4405 /* It should now be out of any other write domains, and we can update
4406 * the domain values for our changes.
4407 */
4408 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4409
4410 /* If we're writing through the CPU, then the GPU read domains will
4411 * need to be invalidated at next use.
4412 */
4413 if (write) {
4414 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4415 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4416 }
4417
4418 trace_i915_gem_object_change_domain(obj,
4419 old_read_domains,
4420 old_write_domain);
4421
4422 return 0;
4423 }
4424
4425 /* Throttle our rendering by waiting until the ring has completed our requests
4426 * emitted over 20 msec ago.
4427 *
4428 * Note that if we were to use the current jiffies each time around the loop,
4429 * we wouldn't escape the function with any frames outstanding if the time to
4430 * render a frame was over 20ms.
4431 *
4432 * This should get us reasonable parallelism between CPU and GPU but also
4433 * relatively low latency when blocking on a particular request to finish.
4434 */
4435 static int
4436 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4437 {
4438 struct drm_i915_private *dev_priv = to_i915(dev);
4439 struct drm_i915_file_private *file_priv = file->driver_priv;
4440 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4441 struct drm_i915_gem_request *request, *target = NULL;
4442 int ret;
4443
4444 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4445 if (ret)
4446 return ret;
4447
4448 /* ABI: return -EIO if already wedged */
4449 if (i915_terminally_wedged(&dev_priv->gpu_error))
4450 return -EIO;
4451
4452 spin_lock(&file_priv->mm.lock);
4453 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4454 if (time_after_eq(request->emitted_jiffies, recent_enough))
4455 break;
4456
4457 /*
4458 * Note that the request might not have been submitted yet.
4459 * In which case emitted_jiffies will be zero.
4460 */
4461 if (!request->emitted_jiffies)
4462 continue;
4463
4464 target = request;
4465 }
4466 if (target)
4467 i915_gem_request_reference(target);
4468 spin_unlock(&file_priv->mm.lock);
4469
4470 if (target == NULL)
4471 return 0;
4472
4473 ret = __i915_wait_request(target, true, NULL, NULL);
4474 i915_gem_request_unreference(target);
4475
4476 return ret;
4477 }
4478
4479 static bool
4480 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4481 {
4482 struct drm_i915_gem_object *obj = vma->obj;
4483
4484 if (alignment &&
4485 vma->node.start & (alignment - 1))
4486 return true;
4487
4488 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4489 return true;
4490
4491 if (flags & PIN_OFFSET_BIAS &&
4492 vma->node.start < (flags & PIN_OFFSET_MASK))
4493 return true;
4494
4495 if (flags & PIN_OFFSET_FIXED &&
4496 vma->node.start != (flags & PIN_OFFSET_MASK))
4497 return true;
4498
4499 return false;
4500 }
4501
4502 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4503 {
4504 struct drm_i915_gem_object *obj = vma->obj;
4505 bool mappable, fenceable;
4506 u32 fence_size, fence_alignment;
4507
4508 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4509 obj->base.size,
4510 obj->tiling_mode);
4511 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4512 obj->base.size,
4513 obj->tiling_mode,
4514 true);
4515
4516 fenceable = (vma->node.size == fence_size &&
4517 (vma->node.start & (fence_alignment - 1)) == 0);
4518
4519 mappable = (vma->node.start + fence_size <=
4520 to_i915(obj->base.dev)->ggtt.mappable_end);
4521
4522 obj->map_and_fenceable = mappable && fenceable;
4523 }
4524
4525 static int
4526 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4527 struct i915_address_space *vm,
4528 const struct i915_ggtt_view *ggtt_view,
4529 uint32_t alignment,
4530 uint64_t flags)
4531 {
4532 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4533 struct i915_vma *vma;
4534 unsigned bound;
4535 int ret;
4536
4537 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4538 return -ENODEV;
4539
4540 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4541 return -EINVAL;
4542
4543 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4544 return -EINVAL;
4545
4546 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4547 return -EINVAL;
4548
4549 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4550 i915_gem_obj_to_vma(obj, vm);
4551
4552 if (vma) {
4553 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4554 return -EBUSY;
4555
4556 if (i915_vma_misplaced(vma, alignment, flags)) {
4557 WARN(vma->pin_count,
4558 "bo is already pinned in %s with incorrect alignment:"
4559 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4560 " obj->map_and_fenceable=%d\n",
4561 ggtt_view ? "ggtt" : "ppgtt",
4562 upper_32_bits(vma->node.start),
4563 lower_32_bits(vma->node.start),
4564 alignment,
4565 !!(flags & PIN_MAPPABLE),
4566 obj->map_and_fenceable);
4567 ret = i915_vma_unbind(vma);
4568 if (ret)
4569 return ret;
4570
4571 vma = NULL;
4572 }
4573 }
4574
4575 bound = vma ? vma->bound : 0;
4576 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4577 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4578 flags);
4579 if (IS_ERR(vma))
4580 return PTR_ERR(vma);
4581 } else {
4582 ret = i915_vma_bind(vma, obj->cache_level, flags);
4583 if (ret)
4584 return ret;
4585 }
4586
4587 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4588 (bound ^ vma->bound) & GLOBAL_BIND) {
4589 __i915_vma_set_map_and_fenceable(vma);
4590 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4591 }
4592
4593 vma->pin_count++;
4594 return 0;
4595 }
4596
4597 int
4598 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4599 struct i915_address_space *vm,
4600 uint32_t alignment,
4601 uint64_t flags)
4602 {
4603 return i915_gem_object_do_pin(obj, vm,
4604 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4605 alignment, flags);
4606 }
4607
4608 int
4609 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4610 const struct i915_ggtt_view *view,
4611 uint32_t alignment,
4612 uint64_t flags)
4613 {
4614 struct drm_device *dev = obj->base.dev;
4615 struct drm_i915_private *dev_priv = to_i915(dev);
4616 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4617
4618 BUG_ON(!view);
4619
4620 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4621 alignment, flags | PIN_GLOBAL);
4622 }
4623
4624 void
4625 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4626 const struct i915_ggtt_view *view)
4627 {
4628 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4629
4630 WARN_ON(vma->pin_count == 0);
4631 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4632
4633 --vma->pin_count;
4634 }
4635
4636 int
4637 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4638 struct drm_file *file)
4639 {
4640 struct drm_i915_gem_busy *args = data;
4641 struct drm_i915_gem_object *obj;
4642 int ret;
4643
4644 ret = i915_mutex_lock_interruptible(dev);
4645 if (ret)
4646 return ret;
4647
4648 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4649 if (&obj->base == NULL) {
4650 ret = -ENOENT;
4651 goto unlock;
4652 }
4653
4654 /* Count all active objects as busy, even if they are currently not used
4655 * by the gpu. Users of this interface expect objects to eventually
4656 * become non-busy without any further actions, therefore emit any
4657 * necessary flushes here.
4658 */
4659 ret = i915_gem_object_flush_active(obj);
4660 if (ret)
4661 goto unref;
4662
4663 args->busy = 0;
4664 if (obj->active) {
4665 int i;
4666
4667 for (i = 0; i < I915_NUM_ENGINES; i++) {
4668 struct drm_i915_gem_request *req;
4669
4670 req = obj->last_read_req[i];
4671 if (req)
4672 args->busy |= 1 << (16 + req->engine->exec_id);
4673 }
4674 if (obj->last_write_req)
4675 args->busy |= obj->last_write_req->engine->exec_id;
4676 }
4677
4678 unref:
4679 drm_gem_object_unreference(&obj->base);
4680 unlock:
4681 mutex_unlock(&dev->struct_mutex);
4682 return ret;
4683 }
4684
4685 int
4686 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4687 struct drm_file *file_priv)
4688 {
4689 return i915_gem_ring_throttle(dev, file_priv);
4690 }
4691
4692 int
4693 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4694 struct drm_file *file_priv)
4695 {
4696 struct drm_i915_private *dev_priv = to_i915(dev);
4697 struct drm_i915_gem_madvise *args = data;
4698 struct drm_i915_gem_object *obj;
4699 int ret;
4700
4701 switch (args->madv) {
4702 case I915_MADV_DONTNEED:
4703 case I915_MADV_WILLNEED:
4704 break;
4705 default:
4706 return -EINVAL;
4707 }
4708
4709 ret = i915_mutex_lock_interruptible(dev);
4710 if (ret)
4711 return ret;
4712
4713 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4714 if (&obj->base == NULL) {
4715 ret = -ENOENT;
4716 goto unlock;
4717 }
4718
4719 if (i915_gem_obj_is_pinned(obj)) {
4720 ret = -EINVAL;
4721 goto out;
4722 }
4723
4724 if (obj->pages &&
4725 obj->tiling_mode != I915_TILING_NONE &&
4726 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4727 if (obj->madv == I915_MADV_WILLNEED)
4728 i915_gem_object_unpin_pages(obj);
4729 if (args->madv == I915_MADV_WILLNEED)
4730 i915_gem_object_pin_pages(obj);
4731 }
4732
4733 if (obj->madv != __I915_MADV_PURGED)
4734 obj->madv = args->madv;
4735
4736 /* if the object is no longer attached, discard its backing storage */
4737 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4738 i915_gem_object_truncate(obj);
4739
4740 args->retained = obj->madv != __I915_MADV_PURGED;
4741
4742 out:
4743 drm_gem_object_unreference(&obj->base);
4744 unlock:
4745 mutex_unlock(&dev->struct_mutex);
4746 return ret;
4747 }
4748
4749 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4750 const struct drm_i915_gem_object_ops *ops)
4751 {
4752 int i;
4753
4754 INIT_LIST_HEAD(&obj->global_list);
4755 for (i = 0; i < I915_NUM_ENGINES; i++)
4756 INIT_LIST_HEAD(&obj->engine_list[i]);
4757 INIT_LIST_HEAD(&obj->obj_exec_link);
4758 INIT_LIST_HEAD(&obj->vma_list);
4759 INIT_LIST_HEAD(&obj->batch_pool_link);
4760
4761 obj->ops = ops;
4762
4763 obj->fence_reg = I915_FENCE_REG_NONE;
4764 obj->madv = I915_MADV_WILLNEED;
4765
4766 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4767 }
4768
4769 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4770 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4771 .get_pages = i915_gem_object_get_pages_gtt,
4772 .put_pages = i915_gem_object_put_pages_gtt,
4773 };
4774
4775 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4776 size_t size)
4777 {
4778 struct drm_i915_gem_object *obj;
4779 struct address_space *mapping;
4780 gfp_t mask;
4781 int ret;
4782
4783 obj = i915_gem_object_alloc(dev);
4784 if (obj == NULL)
4785 return ERR_PTR(-ENOMEM);
4786
4787 ret = drm_gem_object_init(dev, &obj->base, size);
4788 if (ret)
4789 goto fail;
4790
4791 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4792 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4793 /* 965gm cannot relocate objects above 4GiB. */
4794 mask &= ~__GFP_HIGHMEM;
4795 mask |= __GFP_DMA32;
4796 }
4797
4798 mapping = obj->base.filp->f_mapping;
4799 mapping_set_gfp_mask(mapping, mask);
4800
4801 i915_gem_object_init(obj, &i915_gem_object_ops);
4802
4803 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4804 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4805
4806 if (HAS_LLC(dev)) {
4807 /* On some devices, we can have the GPU use the LLC (the CPU
4808 * cache) for about a 10% performance improvement
4809 * compared to uncached. Graphics requests other than
4810 * display scanout are coherent with the CPU in
4811 * accessing this cache. This means in this mode we
4812 * don't need to clflush on the CPU side, and on the
4813 * GPU side we only need to flush internal caches to
4814 * get data visible to the CPU.
4815 *
4816 * However, we maintain the display planes as UC, and so
4817 * need to rebind when first used as such.
4818 */
4819 obj->cache_level = I915_CACHE_LLC;
4820 } else
4821 obj->cache_level = I915_CACHE_NONE;
4822
4823 trace_i915_gem_object_create(obj);
4824
4825 return obj;
4826
4827 fail:
4828 i915_gem_object_free(obj);
4829
4830 return ERR_PTR(ret);
4831 }
4832
4833 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4834 {
4835 /* If we are the last user of the backing storage (be it shmemfs
4836 * pages or stolen etc), we know that the pages are going to be
4837 * immediately released. In this case, we can then skip copying
4838 * back the contents from the GPU.
4839 */
4840
4841 if (obj->madv != I915_MADV_WILLNEED)
4842 return false;
4843
4844 if (obj->base.filp == NULL)
4845 return true;
4846
4847 /* At first glance, this looks racy, but then again so would be
4848 * userspace racing mmap against close. However, the first external
4849 * reference to the filp can only be obtained through the
4850 * i915_gem_mmap_ioctl() which safeguards us against the user
4851 * acquiring such a reference whilst we are in the middle of
4852 * freeing the object.
4853 */
4854 return atomic_long_read(&obj->base.filp->f_count) == 1;
4855 }
4856
4857 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4858 {
4859 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4860 struct drm_device *dev = obj->base.dev;
4861 struct drm_i915_private *dev_priv = to_i915(dev);
4862 struct i915_vma *vma, *next;
4863
4864 intel_runtime_pm_get(dev_priv);
4865
4866 trace_i915_gem_object_destroy(obj);
4867
4868 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4869 int ret;
4870
4871 vma->pin_count = 0;
4872 ret = i915_vma_unbind(vma);
4873 if (WARN_ON(ret == -ERESTARTSYS)) {
4874 bool was_interruptible;
4875
4876 was_interruptible = dev_priv->mm.interruptible;
4877 dev_priv->mm.interruptible = false;
4878
4879 WARN_ON(i915_vma_unbind(vma));
4880
4881 dev_priv->mm.interruptible = was_interruptible;
4882 }
4883 }
4884
4885 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4886 * before progressing. */
4887 if (obj->stolen)
4888 i915_gem_object_unpin_pages(obj);
4889
4890 WARN_ON(obj->frontbuffer_bits);
4891
4892 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4893 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4894 obj->tiling_mode != I915_TILING_NONE)
4895 i915_gem_object_unpin_pages(obj);
4896
4897 if (WARN_ON(obj->pages_pin_count))
4898 obj->pages_pin_count = 0;
4899 if (discard_backing_storage(obj))
4900 obj->madv = I915_MADV_DONTNEED;
4901 i915_gem_object_put_pages(obj);
4902 i915_gem_object_free_mmap_offset(obj);
4903
4904 BUG_ON(obj->pages);
4905
4906 if (obj->base.import_attach)
4907 drm_prime_gem_destroy(&obj->base, NULL);
4908
4909 if (obj->ops->release)
4910 obj->ops->release(obj);
4911
4912 drm_gem_object_release(&obj->base);
4913 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4914
4915 kfree(obj->bit_17);
4916 i915_gem_object_free(obj);
4917
4918 intel_runtime_pm_put(dev_priv);
4919 }
4920
4921 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4922 struct i915_address_space *vm)
4923 {
4924 struct i915_vma *vma;
4925 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4926 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4927 vma->vm == vm)
4928 return vma;
4929 }
4930 return NULL;
4931 }
4932
4933 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4934 const struct i915_ggtt_view *view)
4935 {
4936 struct i915_vma *vma;
4937
4938 GEM_BUG_ON(!view);
4939
4940 list_for_each_entry(vma, &obj->vma_list, obj_link)
4941 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4942 return vma;
4943 return NULL;
4944 }
4945
4946 void i915_gem_vma_destroy(struct i915_vma *vma)
4947 {
4948 WARN_ON(vma->node.allocated);
4949
4950 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4951 if (!list_empty(&vma->exec_list))
4952 return;
4953
4954 if (!vma->is_ggtt)
4955 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4956
4957 list_del(&vma->obj_link);
4958
4959 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4960 }
4961
4962 static void
4963 i915_gem_stop_engines(struct drm_device *dev)
4964 {
4965 struct drm_i915_private *dev_priv = to_i915(dev);
4966 struct intel_engine_cs *engine;
4967
4968 for_each_engine(engine, dev_priv)
4969 dev_priv->gt.stop_engine(engine);
4970 }
4971
4972 int
4973 i915_gem_suspend(struct drm_device *dev)
4974 {
4975 struct drm_i915_private *dev_priv = to_i915(dev);
4976 int ret = 0;
4977
4978 mutex_lock(&dev->struct_mutex);
4979 ret = i915_gem_wait_for_idle(dev_priv);
4980 if (ret)
4981 goto err;
4982
4983 i915_gem_retire_requests(dev_priv);
4984
4985 i915_gem_stop_engines(dev);
4986 i915_gem_context_lost(dev_priv);
4987 mutex_unlock(&dev->struct_mutex);
4988
4989 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4990 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4991 flush_delayed_work(&dev_priv->gt.idle_work);
4992
4993 /* Assert that we sucessfully flushed all the work and
4994 * reset the GPU back to its idle, low power state.
4995 */
4996 WARN_ON(dev_priv->gt.awake);
4997
4998 return 0;
4999
5000 err:
5001 mutex_unlock(&dev->struct_mutex);
5002 return ret;
5003 }
5004
5005 void i915_gem_init_swizzling(struct drm_device *dev)
5006 {
5007 struct drm_i915_private *dev_priv = to_i915(dev);
5008
5009 if (INTEL_INFO(dev)->gen < 5 ||
5010 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5011 return;
5012
5013 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5014 DISP_TILE_SURFACE_SWIZZLING);
5015
5016 if (IS_GEN5(dev))
5017 return;
5018
5019 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5020 if (IS_GEN6(dev))
5021 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5022 else if (IS_GEN7(dev))
5023 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5024 else if (IS_GEN8(dev))
5025 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5026 else
5027 BUG();
5028 }
5029
5030 static void init_unused_ring(struct drm_device *dev, u32 base)
5031 {
5032 struct drm_i915_private *dev_priv = to_i915(dev);
5033
5034 I915_WRITE(RING_CTL(base), 0);
5035 I915_WRITE(RING_HEAD(base), 0);
5036 I915_WRITE(RING_TAIL(base), 0);
5037 I915_WRITE(RING_START(base), 0);
5038 }
5039
5040 static void init_unused_rings(struct drm_device *dev)
5041 {
5042 if (IS_I830(dev)) {
5043 init_unused_ring(dev, PRB1_BASE);
5044 init_unused_ring(dev, SRB0_BASE);
5045 init_unused_ring(dev, SRB1_BASE);
5046 init_unused_ring(dev, SRB2_BASE);
5047 init_unused_ring(dev, SRB3_BASE);
5048 } else if (IS_GEN2(dev)) {
5049 init_unused_ring(dev, SRB0_BASE);
5050 init_unused_ring(dev, SRB1_BASE);
5051 } else if (IS_GEN3(dev)) {
5052 init_unused_ring(dev, PRB1_BASE);
5053 init_unused_ring(dev, PRB2_BASE);
5054 }
5055 }
5056
5057 int i915_gem_init_engines(struct drm_device *dev)
5058 {
5059 struct drm_i915_private *dev_priv = to_i915(dev);
5060 int ret;
5061
5062 ret = intel_init_render_ring_buffer(dev);
5063 if (ret)
5064 return ret;
5065
5066 if (HAS_BSD(dev)) {
5067 ret = intel_init_bsd_ring_buffer(dev);
5068 if (ret)
5069 goto cleanup_render_ring;
5070 }
5071
5072 if (HAS_BLT(dev)) {
5073 ret = intel_init_blt_ring_buffer(dev);
5074 if (ret)
5075 goto cleanup_bsd_ring;
5076 }
5077
5078 if (HAS_VEBOX(dev)) {
5079 ret = intel_init_vebox_ring_buffer(dev);
5080 if (ret)
5081 goto cleanup_blt_ring;
5082 }
5083
5084 if (HAS_BSD2(dev)) {
5085 ret = intel_init_bsd2_ring_buffer(dev);
5086 if (ret)
5087 goto cleanup_vebox_ring;
5088 }
5089
5090 return 0;
5091
5092 cleanup_vebox_ring:
5093 intel_cleanup_engine(&dev_priv->engine[VECS]);
5094 cleanup_blt_ring:
5095 intel_cleanup_engine(&dev_priv->engine[BCS]);
5096 cleanup_bsd_ring:
5097 intel_cleanup_engine(&dev_priv->engine[VCS]);
5098 cleanup_render_ring:
5099 intel_cleanup_engine(&dev_priv->engine[RCS]);
5100
5101 return ret;
5102 }
5103
5104 int
5105 i915_gem_init_hw(struct drm_device *dev)
5106 {
5107 struct drm_i915_private *dev_priv = to_i915(dev);
5108 struct intel_engine_cs *engine;
5109 int ret;
5110
5111 /* Double layer security blanket, see i915_gem_init() */
5112 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5113
5114 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5115 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5116
5117 if (IS_HASWELL(dev))
5118 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5119 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5120
5121 if (HAS_PCH_NOP(dev)) {
5122 if (IS_IVYBRIDGE(dev)) {
5123 u32 temp = I915_READ(GEN7_MSG_CTL);
5124 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5125 I915_WRITE(GEN7_MSG_CTL, temp);
5126 } else if (INTEL_INFO(dev)->gen >= 7) {
5127 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5128 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5129 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5130 }
5131 }
5132
5133 i915_gem_init_swizzling(dev);
5134
5135 /*
5136 * At least 830 can leave some of the unused rings
5137 * "active" (ie. head != tail) after resume which
5138 * will prevent c3 entry. Makes sure all unused rings
5139 * are totally idle.
5140 */
5141 init_unused_rings(dev);
5142
5143 BUG_ON(!dev_priv->kernel_context);
5144
5145 ret = i915_ppgtt_init_hw(dev);
5146 if (ret) {
5147 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5148 goto out;
5149 }
5150
5151 /* Need to do basic initialisation of all rings first: */
5152 for_each_engine(engine, dev_priv) {
5153 ret = engine->init_hw(engine);
5154 if (ret)
5155 goto out;
5156 }
5157
5158 intel_mocs_init_l3cc_table(dev);
5159
5160 /* We can't enable contexts until all firmware is loaded */
5161 ret = intel_guc_setup(dev);
5162 if (ret)
5163 goto out;
5164
5165 out:
5166 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5167 return ret;
5168 }
5169
5170 int i915_gem_init(struct drm_device *dev)
5171 {
5172 struct drm_i915_private *dev_priv = to_i915(dev);
5173 int ret;
5174
5175 mutex_lock(&dev->struct_mutex);
5176
5177 if (!i915.enable_execlists) {
5178 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5179 dev_priv->gt.init_engines = i915_gem_init_engines;
5180 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5181 dev_priv->gt.stop_engine = intel_stop_engine;
5182 } else {
5183 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5184 dev_priv->gt.init_engines = intel_logical_rings_init;
5185 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5186 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5187 }
5188
5189 /* This is just a security blanket to placate dragons.
5190 * On some systems, we very sporadically observe that the first TLBs
5191 * used by the CS may be stale, despite us poking the TLB reset. If
5192 * we hold the forcewake during initialisation these problems
5193 * just magically go away.
5194 */
5195 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5196
5197 i915_gem_init_userptr(dev_priv);
5198 i915_gem_init_ggtt(dev);
5199
5200 ret = i915_gem_context_init(dev);
5201 if (ret)
5202 goto out_unlock;
5203
5204 ret = dev_priv->gt.init_engines(dev);
5205 if (ret)
5206 goto out_unlock;
5207
5208 ret = i915_gem_init_hw(dev);
5209 if (ret == -EIO) {
5210 /* Allow ring initialisation to fail by marking the GPU as
5211 * wedged. But we only want to do this where the GPU is angry,
5212 * for all other failure, such as an allocation failure, bail.
5213 */
5214 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5215 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5216 ret = 0;
5217 }
5218
5219 out_unlock:
5220 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5221 mutex_unlock(&dev->struct_mutex);
5222
5223 return ret;
5224 }
5225
5226 void
5227 i915_gem_cleanup_engines(struct drm_device *dev)
5228 {
5229 struct drm_i915_private *dev_priv = to_i915(dev);
5230 struct intel_engine_cs *engine;
5231
5232 for_each_engine(engine, dev_priv)
5233 dev_priv->gt.cleanup_engine(engine);
5234 }
5235
5236 static void
5237 init_engine_lists(struct intel_engine_cs *engine)
5238 {
5239 INIT_LIST_HEAD(&engine->active_list);
5240 INIT_LIST_HEAD(&engine->request_list);
5241 }
5242
5243 void
5244 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5245 {
5246 struct drm_device *dev = &dev_priv->drm;
5247
5248 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5249 !IS_CHERRYVIEW(dev_priv))
5250 dev_priv->num_fence_regs = 32;
5251 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5252 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5253 dev_priv->num_fence_regs = 16;
5254 else
5255 dev_priv->num_fence_regs = 8;
5256
5257 if (intel_vgpu_active(dev_priv))
5258 dev_priv->num_fence_regs =
5259 I915_READ(vgtif_reg(avail_rs.fence_num));
5260
5261 /* Initialize fence registers to zero */
5262 i915_gem_restore_fences(dev);
5263
5264 i915_gem_detect_bit_6_swizzle(dev);
5265 }
5266
5267 void
5268 i915_gem_load_init(struct drm_device *dev)
5269 {
5270 struct drm_i915_private *dev_priv = to_i915(dev);
5271 int i;
5272
5273 dev_priv->objects =
5274 kmem_cache_create("i915_gem_object",
5275 sizeof(struct drm_i915_gem_object), 0,
5276 SLAB_HWCACHE_ALIGN,
5277 NULL);
5278 dev_priv->vmas =
5279 kmem_cache_create("i915_gem_vma",
5280 sizeof(struct i915_vma), 0,
5281 SLAB_HWCACHE_ALIGN,
5282 NULL);
5283 dev_priv->requests =
5284 kmem_cache_create("i915_gem_request",
5285 sizeof(struct drm_i915_gem_request), 0,
5286 SLAB_HWCACHE_ALIGN,
5287 NULL);
5288
5289 INIT_LIST_HEAD(&dev_priv->vm_list);
5290 INIT_LIST_HEAD(&dev_priv->context_list);
5291 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5292 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5293 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5294 for (i = 0; i < I915_NUM_ENGINES; i++)
5295 init_engine_lists(&dev_priv->engine[i]);
5296 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5297 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5298 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5299 i915_gem_retire_work_handler);
5300 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5301 i915_gem_idle_work_handler);
5302 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5303 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5304
5305 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5306
5307 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5308
5309 init_waitqueue_head(&dev_priv->pending_flip_queue);
5310
5311 dev_priv->mm.interruptible = true;
5312
5313 mutex_init(&dev_priv->fb_tracking.lock);
5314 }
5315
5316 void i915_gem_load_cleanup(struct drm_device *dev)
5317 {
5318 struct drm_i915_private *dev_priv = to_i915(dev);
5319
5320 kmem_cache_destroy(dev_priv->requests);
5321 kmem_cache_destroy(dev_priv->vmas);
5322 kmem_cache_destroy(dev_priv->objects);
5323 }
5324
5325 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5326 {
5327 struct drm_i915_gem_object *obj;
5328
5329 /* Called just before we write the hibernation image.
5330 *
5331 * We need to update the domain tracking to reflect that the CPU
5332 * will be accessing all the pages to create and restore from the
5333 * hibernation, and so upon restoration those pages will be in the
5334 * CPU domain.
5335 *
5336 * To make sure the hibernation image contains the latest state,
5337 * we update that state just before writing out the image.
5338 */
5339
5340 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5341 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5342 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5343 }
5344
5345 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5346 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5347 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5348 }
5349
5350 return 0;
5351 }
5352
5353 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5354 {
5355 struct drm_i915_file_private *file_priv = file->driver_priv;
5356
5357 /* Clean up our request list when the client is going away, so that
5358 * later retire_requests won't dereference our soon-to-be-gone
5359 * file_priv.
5360 */
5361 spin_lock(&file_priv->mm.lock);
5362 while (!list_empty(&file_priv->mm.request_list)) {
5363 struct drm_i915_gem_request *request;
5364
5365 request = list_first_entry(&file_priv->mm.request_list,
5366 struct drm_i915_gem_request,
5367 client_list);
5368 list_del(&request->client_list);
5369 request->file_priv = NULL;
5370 }
5371 spin_unlock(&file_priv->mm.lock);
5372
5373 if (!list_empty(&file_priv->rps.link)) {
5374 spin_lock(&to_i915(dev)->rps.client_lock);
5375 list_del(&file_priv->rps.link);
5376 spin_unlock(&to_i915(dev)->rps.client_lock);
5377 }
5378 }
5379
5380 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5381 {
5382 struct drm_i915_file_private *file_priv;
5383 int ret;
5384
5385 DRM_DEBUG_DRIVER("\n");
5386
5387 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5388 if (!file_priv)
5389 return -ENOMEM;
5390
5391 file->driver_priv = file_priv;
5392 file_priv->dev_priv = to_i915(dev);
5393 file_priv->file = file;
5394 INIT_LIST_HEAD(&file_priv->rps.link);
5395
5396 spin_lock_init(&file_priv->mm.lock);
5397 INIT_LIST_HEAD(&file_priv->mm.request_list);
5398
5399 file_priv->bsd_ring = -1;
5400
5401 ret = i915_gem_context_open(dev, file);
5402 if (ret)
5403 kfree(file_priv);
5404
5405 return ret;
5406 }
5407
5408 /**
5409 * i915_gem_track_fb - update frontbuffer tracking
5410 * @old: current GEM buffer for the frontbuffer slots
5411 * @new: new GEM buffer for the frontbuffer slots
5412 * @frontbuffer_bits: bitmask of frontbuffer slots
5413 *
5414 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5415 * from @old and setting them in @new. Both @old and @new can be NULL.
5416 */
5417 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5418 struct drm_i915_gem_object *new,
5419 unsigned frontbuffer_bits)
5420 {
5421 if (old) {
5422 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5423 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5424 old->frontbuffer_bits &= ~frontbuffer_bits;
5425 }
5426
5427 if (new) {
5428 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5429 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5430 new->frontbuffer_bits |= frontbuffer_bits;
5431 }
5432 }
5433
5434 /* All the new VM stuff */
5435 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5436 struct i915_address_space *vm)
5437 {
5438 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5439 struct i915_vma *vma;
5440
5441 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5442
5443 list_for_each_entry(vma, &o->vma_list, obj_link) {
5444 if (vma->is_ggtt &&
5445 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5446 continue;
5447 if (vma->vm == vm)
5448 return vma->node.start;
5449 }
5450
5451 WARN(1, "%s vma for this object not found.\n",
5452 i915_is_ggtt(vm) ? "global" : "ppgtt");
5453 return -1;
5454 }
5455
5456 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5457 const struct i915_ggtt_view *view)
5458 {
5459 struct i915_vma *vma;
5460
5461 list_for_each_entry(vma, &o->vma_list, obj_link)
5462 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5463 return vma->node.start;
5464
5465 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5466 return -1;
5467 }
5468
5469 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5470 struct i915_address_space *vm)
5471 {
5472 struct i915_vma *vma;
5473
5474 list_for_each_entry(vma, &o->vma_list, obj_link) {
5475 if (vma->is_ggtt &&
5476 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5477 continue;
5478 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5479 return true;
5480 }
5481
5482 return false;
5483 }
5484
5485 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5486 const struct i915_ggtt_view *view)
5487 {
5488 struct i915_vma *vma;
5489
5490 list_for_each_entry(vma, &o->vma_list, obj_link)
5491 if (vma->is_ggtt &&
5492 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5493 drm_mm_node_allocated(&vma->node))
5494 return true;
5495
5496 return false;
5497 }
5498
5499 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5500 {
5501 struct i915_vma *vma;
5502
5503 list_for_each_entry(vma, &o->vma_list, obj_link)
5504 if (drm_mm_node_allocated(&vma->node))
5505 return true;
5506
5507 return false;
5508 }
5509
5510 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5511 {
5512 struct i915_vma *vma;
5513
5514 GEM_BUG_ON(list_empty(&o->vma_list));
5515
5516 list_for_each_entry(vma, &o->vma_list, obj_link) {
5517 if (vma->is_ggtt &&
5518 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5519 return vma->node.size;
5520 }
5521
5522 return 0;
5523 }
5524
5525 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5526 {
5527 struct i915_vma *vma;
5528 list_for_each_entry(vma, &obj->vma_list, obj_link)
5529 if (vma->pin_count > 0)
5530 return true;
5531
5532 return false;
5533 }
5534
5535 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5536 struct page *
5537 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5538 {
5539 struct page *page;
5540
5541 /* Only default objects have per-page dirty tracking */
5542 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5543 return NULL;
5544
5545 page = i915_gem_object_get_page(obj, n);
5546 set_page_dirty(page);
5547 return page;
5548 }
5549
5550 /* Allocate a new GEM object and fill it with the supplied data */
5551 struct drm_i915_gem_object *
5552 i915_gem_object_create_from_data(struct drm_device *dev,
5553 const void *data, size_t size)
5554 {
5555 struct drm_i915_gem_object *obj;
5556 struct sg_table *sg;
5557 size_t bytes;
5558 int ret;
5559
5560 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5561 if (IS_ERR(obj))
5562 return obj;
5563
5564 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5565 if (ret)
5566 goto fail;
5567
5568 ret = i915_gem_object_get_pages(obj);
5569 if (ret)
5570 goto fail;
5571
5572 i915_gem_object_pin_pages(obj);
5573 sg = obj->pages;
5574 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5575 obj->dirty = 1; /* Backing store is now out of date */
5576 i915_gem_object_unpin_pages(obj);
5577
5578 if (WARN_ON(bytes != size)) {
5579 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5580 ret = -EFAULT;
5581 goto fail;
5582 }
5583
5584 return obj;
5585
5586 fail:
5587 drm_gem_object_unreference(&obj->base);
5588 return ERR_PTR(ret);
5589 }
This page took 0.195039 seconds and 5 git commands to generate.