Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
36
37 /**
38 * DOC: Global GTT views
39 *
40 * Background and previous state
41 *
42 * Historically objects could exists (be bound) in global GTT space only as
43 * singular instances with a view representing all of the object's backing pages
44 * in a linear fashion. This view will be called a normal view.
45 *
46 * To support multiple views of the same object, where the number of mapped
47 * pages is not equal to the backing store, or where the layout of the pages
48 * is not linear, concept of a GGTT view was added.
49 *
50 * One example of an alternative view is a stereo display driven by a single
51 * image. In this case we would have a framebuffer looking like this
52 * (2x2 pages):
53 *
54 * 12
55 * 34
56 *
57 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58 * rendering. In contrast, fed to the display engine would be an alternative
59 * view which could look something like this:
60 *
61 * 1212
62 * 3434
63 *
64 * In this example both the size and layout of pages in the alternative view is
65 * different from the normal view.
66 *
67 * Implementation and usage
68 *
69 * GGTT views are implemented using VMAs and are distinguished via enum
70 * i915_ggtt_view_type and struct i915_ggtt_view.
71 *
72 * A new flavour of core GEM functions which work with GGTT bound objects were
73 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74 * renaming in large amounts of code. They take the struct i915_ggtt_view
75 * parameter encapsulating all metadata required to implement a view.
76 *
77 * As a helper for callers which are only interested in the normal view,
78 * globally const i915_ggtt_view_normal singleton instance exists. All old core
79 * GEM API functions, the ones not taking the view parameter, are operating on,
80 * or with the normal GGTT view.
81 *
82 * Code wanting to add or use a new GGTT view needs to:
83 *
84 * 1. Add a new enum with a suitable name.
85 * 2. Extend the metadata in the i915_ggtt_view structure if required.
86 * 3. Add support to i915_get_vma_pages().
87 *
88 * New views are required to build a scatter-gather table from within the
89 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90 * exists for the lifetime of an VMA.
91 *
92 * Core API is designed to have copy semantics which means that passed in
93 * struct i915_ggtt_view does not need to be persistent (left around after
94 * calling the core API functions).
95 *
96 */
97
98 static inline struct i915_ggtt *
99 i915_vm_to_ggtt(struct i915_address_space *vm)
100 {
101 GEM_BUG_ON(!i915_is_ggtt(vm));
102 return container_of(vm, struct i915_ggtt, base);
103 }
104
105 static int
106 i915_get_ggtt_vma_pages(struct i915_vma *vma);
107
108 const struct i915_ggtt_view i915_ggtt_view_normal = {
109 .type = I915_GGTT_VIEW_NORMAL,
110 };
111 const struct i915_ggtt_view i915_ggtt_view_rotated = {
112 .type = I915_GGTT_VIEW_ROTATED,
113 };
114
115 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
116 int enable_ppgtt)
117 {
118 bool has_aliasing_ppgtt;
119 bool has_full_ppgtt;
120 bool has_full_48bit_ppgtt;
121
122 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
123 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
124 has_full_48bit_ppgtt =
125 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
126
127 if (intel_vgpu_active(dev_priv)) {
128 /* emulation is too hard */
129 has_full_ppgtt = false;
130 has_full_48bit_ppgtt = false;
131 }
132
133 if (!has_aliasing_ppgtt)
134 return 0;
135
136 /*
137 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
138 * execlists, the sole mechanism available to submit work.
139 */
140 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
141 return 0;
142
143 if (enable_ppgtt == 1)
144 return 1;
145
146 if (enable_ppgtt == 2 && has_full_ppgtt)
147 return 2;
148
149 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
150 return 3;
151
152 #ifdef CONFIG_INTEL_IOMMU
153 /* Disable ppgtt on SNB if VT-d is on. */
154 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
155 DRM_INFO("Disabling PPGTT because VT-d is on\n");
156 return 0;
157 }
158 #endif
159
160 /* Early VLV doesn't have this */
161 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
162 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
163 return 0;
164 }
165
166 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
167 return has_full_48bit_ppgtt ? 3 : 2;
168 else
169 return has_aliasing_ppgtt ? 1 : 0;
170 }
171
172 static int ppgtt_bind_vma(struct i915_vma *vma,
173 enum i915_cache_level cache_level,
174 u32 unused)
175 {
176 u32 pte_flags = 0;
177
178 vma->pages = vma->obj->pages;
179
180 /* Currently applicable only to VLV */
181 if (vma->obj->gt_ro)
182 pte_flags |= PTE_READ_ONLY;
183
184 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
185 cache_level, pte_flags);
186
187 return 0;
188 }
189
190 static void ppgtt_unbind_vma(struct i915_vma *vma)
191 {
192 vma->vm->clear_range(vma->vm,
193 vma->node.start,
194 vma->size,
195 true);
196 }
197
198 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
199 enum i915_cache_level level,
200 bool valid)
201 {
202 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
203 pte |= addr;
204
205 switch (level) {
206 case I915_CACHE_NONE:
207 pte |= PPAT_UNCACHED_INDEX;
208 break;
209 case I915_CACHE_WT:
210 pte |= PPAT_DISPLAY_ELLC_INDEX;
211 break;
212 default:
213 pte |= PPAT_CACHED_INDEX;
214 break;
215 }
216
217 return pte;
218 }
219
220 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
221 const enum i915_cache_level level)
222 {
223 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
224 pde |= addr;
225 if (level != I915_CACHE_NONE)
226 pde |= PPAT_CACHED_PDE_INDEX;
227 else
228 pde |= PPAT_UNCACHED_INDEX;
229 return pde;
230 }
231
232 #define gen8_pdpe_encode gen8_pde_encode
233 #define gen8_pml4e_encode gen8_pde_encode
234
235 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
236 enum i915_cache_level level,
237 bool valid, u32 unused)
238 {
239 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240 pte |= GEN6_PTE_ADDR_ENCODE(addr);
241
242 switch (level) {
243 case I915_CACHE_L3_LLC:
244 case I915_CACHE_LLC:
245 pte |= GEN6_PTE_CACHE_LLC;
246 break;
247 case I915_CACHE_NONE:
248 pte |= GEN6_PTE_UNCACHED;
249 break;
250 default:
251 MISSING_CASE(level);
252 }
253
254 return pte;
255 }
256
257 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
258 enum i915_cache_level level,
259 bool valid, u32 unused)
260 {
261 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
262 pte |= GEN6_PTE_ADDR_ENCODE(addr);
263
264 switch (level) {
265 case I915_CACHE_L3_LLC:
266 pte |= GEN7_PTE_CACHE_L3_LLC;
267 break;
268 case I915_CACHE_LLC:
269 pte |= GEN6_PTE_CACHE_LLC;
270 break;
271 case I915_CACHE_NONE:
272 pte |= GEN6_PTE_UNCACHED;
273 break;
274 default:
275 MISSING_CASE(level);
276 }
277
278 return pte;
279 }
280
281 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
282 enum i915_cache_level level,
283 bool valid, u32 flags)
284 {
285 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
286 pte |= GEN6_PTE_ADDR_ENCODE(addr);
287
288 if (!(flags & PTE_READ_ONLY))
289 pte |= BYT_PTE_WRITEABLE;
290
291 if (level != I915_CACHE_NONE)
292 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
293
294 return pte;
295 }
296
297 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
298 enum i915_cache_level level,
299 bool valid, u32 unused)
300 {
301 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
302 pte |= HSW_PTE_ADDR_ENCODE(addr);
303
304 if (level != I915_CACHE_NONE)
305 pte |= HSW_WB_LLC_AGE3;
306
307 return pte;
308 }
309
310 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
311 enum i915_cache_level level,
312 bool valid, u32 unused)
313 {
314 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
315 pte |= HSW_PTE_ADDR_ENCODE(addr);
316
317 switch (level) {
318 case I915_CACHE_NONE:
319 break;
320 case I915_CACHE_WT:
321 pte |= HSW_WT_ELLC_LLC_AGE3;
322 break;
323 default:
324 pte |= HSW_WB_ELLC_LLC_AGE3;
325 break;
326 }
327
328 return pte;
329 }
330
331 static int __setup_page_dma(struct drm_device *dev,
332 struct i915_page_dma *p, gfp_t flags)
333 {
334 struct device *kdev = &dev->pdev->dev;
335
336 p->page = alloc_page(flags);
337 if (!p->page)
338 return -ENOMEM;
339
340 p->daddr = dma_map_page(kdev,
341 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
342
343 if (dma_mapping_error(kdev, p->daddr)) {
344 __free_page(p->page);
345 return -EINVAL;
346 }
347
348 return 0;
349 }
350
351 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
352 {
353 return __setup_page_dma(dev, p, I915_GFP_DMA);
354 }
355
356 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
357 {
358 struct pci_dev *pdev = dev->pdev;
359
360 if (WARN_ON(!p->page))
361 return;
362
363 dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
364 __free_page(p->page);
365 memset(p, 0, sizeof(*p));
366 }
367
368 static void *kmap_page_dma(struct i915_page_dma *p)
369 {
370 return kmap_atomic(p->page);
371 }
372
373 /* We use the flushing unmap only with ppgtt structures:
374 * page directories, page tables and scratch pages.
375 */
376 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
377 {
378 /* There are only few exceptions for gen >=6. chv and bxt.
379 * And we are not sure about the latter so play safe for now.
380 */
381 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
382 drm_clflush_virt_range(vaddr, PAGE_SIZE);
383
384 kunmap_atomic(vaddr);
385 }
386
387 #define kmap_px(px) kmap_page_dma(px_base(px))
388 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
389
390 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
391 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
392 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
393 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
394
395 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
396 const uint64_t val)
397 {
398 int i;
399 uint64_t * const vaddr = kmap_page_dma(p);
400
401 for (i = 0; i < 512; i++)
402 vaddr[i] = val;
403
404 kunmap_page_dma(dev, vaddr);
405 }
406
407 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
408 const uint32_t val32)
409 {
410 uint64_t v = val32;
411
412 v = v << 32 | val32;
413
414 fill_page_dma(dev, p, v);
415 }
416
417 static int
418 setup_scratch_page(struct drm_device *dev,
419 struct i915_page_dma *scratch,
420 gfp_t gfp)
421 {
422 return __setup_page_dma(dev, scratch, gfp | __GFP_ZERO);
423 }
424
425 static void cleanup_scratch_page(struct drm_device *dev,
426 struct i915_page_dma *scratch)
427 {
428 cleanup_page_dma(dev, scratch);
429 }
430
431 static struct i915_page_table *alloc_pt(struct drm_device *dev)
432 {
433 struct i915_page_table *pt;
434 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
435 GEN8_PTES : GEN6_PTES;
436 int ret = -ENOMEM;
437
438 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
439 if (!pt)
440 return ERR_PTR(-ENOMEM);
441
442 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
443 GFP_KERNEL);
444
445 if (!pt->used_ptes)
446 goto fail_bitmap;
447
448 ret = setup_px(dev, pt);
449 if (ret)
450 goto fail_page_m;
451
452 return pt;
453
454 fail_page_m:
455 kfree(pt->used_ptes);
456 fail_bitmap:
457 kfree(pt);
458
459 return ERR_PTR(ret);
460 }
461
462 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
463 {
464 cleanup_px(dev, pt);
465 kfree(pt->used_ptes);
466 kfree(pt);
467 }
468
469 static void gen8_initialize_pt(struct i915_address_space *vm,
470 struct i915_page_table *pt)
471 {
472 gen8_pte_t scratch_pte;
473
474 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
475 I915_CACHE_LLC, true);
476
477 fill_px(vm->dev, pt, scratch_pte);
478 }
479
480 static void gen6_initialize_pt(struct i915_address_space *vm,
481 struct i915_page_table *pt)
482 {
483 gen6_pte_t scratch_pte;
484
485 WARN_ON(vm->scratch_page.daddr == 0);
486
487 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
488 I915_CACHE_LLC, true, 0);
489
490 fill32_px(vm->dev, pt, scratch_pte);
491 }
492
493 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
494 {
495 struct i915_page_directory *pd;
496 int ret = -ENOMEM;
497
498 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
499 if (!pd)
500 return ERR_PTR(-ENOMEM);
501
502 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
503 sizeof(*pd->used_pdes), GFP_KERNEL);
504 if (!pd->used_pdes)
505 goto fail_bitmap;
506
507 ret = setup_px(dev, pd);
508 if (ret)
509 goto fail_page_m;
510
511 return pd;
512
513 fail_page_m:
514 kfree(pd->used_pdes);
515 fail_bitmap:
516 kfree(pd);
517
518 return ERR_PTR(ret);
519 }
520
521 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
522 {
523 if (px_page(pd)) {
524 cleanup_px(dev, pd);
525 kfree(pd->used_pdes);
526 kfree(pd);
527 }
528 }
529
530 static void gen8_initialize_pd(struct i915_address_space *vm,
531 struct i915_page_directory *pd)
532 {
533 gen8_pde_t scratch_pde;
534
535 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
536
537 fill_px(vm->dev, pd, scratch_pde);
538 }
539
540 static int __pdp_init(struct drm_device *dev,
541 struct i915_page_directory_pointer *pdp)
542 {
543 size_t pdpes = I915_PDPES_PER_PDP(dev);
544
545 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
546 sizeof(unsigned long),
547 GFP_KERNEL);
548 if (!pdp->used_pdpes)
549 return -ENOMEM;
550
551 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
552 GFP_KERNEL);
553 if (!pdp->page_directory) {
554 kfree(pdp->used_pdpes);
555 /* the PDP might be the statically allocated top level. Keep it
556 * as clean as possible */
557 pdp->used_pdpes = NULL;
558 return -ENOMEM;
559 }
560
561 return 0;
562 }
563
564 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
565 {
566 kfree(pdp->used_pdpes);
567 kfree(pdp->page_directory);
568 pdp->page_directory = NULL;
569 }
570
571 static struct
572 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
573 {
574 struct i915_page_directory_pointer *pdp;
575 int ret = -ENOMEM;
576
577 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
578
579 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
580 if (!pdp)
581 return ERR_PTR(-ENOMEM);
582
583 ret = __pdp_init(dev, pdp);
584 if (ret)
585 goto fail_bitmap;
586
587 ret = setup_px(dev, pdp);
588 if (ret)
589 goto fail_page_m;
590
591 return pdp;
592
593 fail_page_m:
594 __pdp_fini(pdp);
595 fail_bitmap:
596 kfree(pdp);
597
598 return ERR_PTR(ret);
599 }
600
601 static void free_pdp(struct drm_device *dev,
602 struct i915_page_directory_pointer *pdp)
603 {
604 __pdp_fini(pdp);
605 if (USES_FULL_48BIT_PPGTT(dev)) {
606 cleanup_px(dev, pdp);
607 kfree(pdp);
608 }
609 }
610
611 static void gen8_initialize_pdp(struct i915_address_space *vm,
612 struct i915_page_directory_pointer *pdp)
613 {
614 gen8_ppgtt_pdpe_t scratch_pdpe;
615
616 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
617
618 fill_px(vm->dev, pdp, scratch_pdpe);
619 }
620
621 static void gen8_initialize_pml4(struct i915_address_space *vm,
622 struct i915_pml4 *pml4)
623 {
624 gen8_ppgtt_pml4e_t scratch_pml4e;
625
626 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
627 I915_CACHE_LLC);
628
629 fill_px(vm->dev, pml4, scratch_pml4e);
630 }
631
632 static void
633 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
634 struct i915_page_directory_pointer *pdp,
635 struct i915_page_directory *pd,
636 int index)
637 {
638 gen8_ppgtt_pdpe_t *page_directorypo;
639
640 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
641 return;
642
643 page_directorypo = kmap_px(pdp);
644 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
645 kunmap_px(ppgtt, page_directorypo);
646 }
647
648 static void
649 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
650 struct i915_pml4 *pml4,
651 struct i915_page_directory_pointer *pdp,
652 int index)
653 {
654 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
655
656 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
657 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
658 kunmap_px(ppgtt, pagemap);
659 }
660
661 /* Broadwell Page Directory Pointer Descriptors */
662 static int gen8_write_pdp(struct drm_i915_gem_request *req,
663 unsigned entry,
664 dma_addr_t addr)
665 {
666 struct intel_ring *ring = req->ring;
667 struct intel_engine_cs *engine = req->engine;
668 int ret;
669
670 BUG_ON(entry >= 4);
671
672 ret = intel_ring_begin(req, 6);
673 if (ret)
674 return ret;
675
676 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
678 intel_ring_emit(ring, upper_32_bits(addr));
679 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
680 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
681 intel_ring_emit(ring, lower_32_bits(addr));
682 intel_ring_advance(ring);
683
684 return 0;
685 }
686
687 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
688 struct drm_i915_gem_request *req)
689 {
690 int i, ret;
691
692 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
693 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
694
695 ret = gen8_write_pdp(req, i, pd_daddr);
696 if (ret)
697 return ret;
698 }
699
700 return 0;
701 }
702
703 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
704 struct drm_i915_gem_request *req)
705 {
706 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
707 }
708
709 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
710 struct i915_page_directory_pointer *pdp,
711 uint64_t start,
712 uint64_t length,
713 gen8_pte_t scratch_pte)
714 {
715 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
716 gen8_pte_t *pt_vaddr;
717 unsigned pdpe = gen8_pdpe_index(start);
718 unsigned pde = gen8_pde_index(start);
719 unsigned pte = gen8_pte_index(start);
720 unsigned num_entries = length >> PAGE_SHIFT;
721 unsigned last_pte, i;
722
723 if (WARN_ON(!pdp))
724 return;
725
726 while (num_entries) {
727 struct i915_page_directory *pd;
728 struct i915_page_table *pt;
729
730 if (WARN_ON(!pdp->page_directory[pdpe]))
731 break;
732
733 pd = pdp->page_directory[pdpe];
734
735 if (WARN_ON(!pd->page_table[pde]))
736 break;
737
738 pt = pd->page_table[pde];
739
740 if (WARN_ON(!px_page(pt)))
741 break;
742
743 last_pte = pte + num_entries;
744 if (last_pte > GEN8_PTES)
745 last_pte = GEN8_PTES;
746
747 pt_vaddr = kmap_px(pt);
748
749 for (i = pte; i < last_pte; i++) {
750 pt_vaddr[i] = scratch_pte;
751 num_entries--;
752 }
753
754 kunmap_px(ppgtt, pt_vaddr);
755
756 pte = 0;
757 if (++pde == I915_PDES) {
758 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
759 break;
760 pde = 0;
761 }
762 }
763 }
764
765 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
766 uint64_t start,
767 uint64_t length,
768 bool use_scratch)
769 {
770 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
771 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
772 I915_CACHE_LLC, use_scratch);
773
774 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
775 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
776 scratch_pte);
777 } else {
778 uint64_t pml4e;
779 struct i915_page_directory_pointer *pdp;
780
781 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
782 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
783 scratch_pte);
784 }
785 }
786 }
787
788 static void
789 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
790 struct i915_page_directory_pointer *pdp,
791 struct sg_page_iter *sg_iter,
792 uint64_t start,
793 enum i915_cache_level cache_level)
794 {
795 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
796 gen8_pte_t *pt_vaddr;
797 unsigned pdpe = gen8_pdpe_index(start);
798 unsigned pde = gen8_pde_index(start);
799 unsigned pte = gen8_pte_index(start);
800
801 pt_vaddr = NULL;
802
803 while (__sg_page_iter_next(sg_iter)) {
804 if (pt_vaddr == NULL) {
805 struct i915_page_directory *pd = pdp->page_directory[pdpe];
806 struct i915_page_table *pt = pd->page_table[pde];
807 pt_vaddr = kmap_px(pt);
808 }
809
810 pt_vaddr[pte] =
811 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
812 cache_level, true);
813 if (++pte == GEN8_PTES) {
814 kunmap_px(ppgtt, pt_vaddr);
815 pt_vaddr = NULL;
816 if (++pde == I915_PDES) {
817 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
818 break;
819 pde = 0;
820 }
821 pte = 0;
822 }
823 }
824
825 if (pt_vaddr)
826 kunmap_px(ppgtt, pt_vaddr);
827 }
828
829 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
830 struct sg_table *pages,
831 uint64_t start,
832 enum i915_cache_level cache_level,
833 u32 unused)
834 {
835 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
836 struct sg_page_iter sg_iter;
837
838 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
839
840 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
841 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
842 cache_level);
843 } else {
844 struct i915_page_directory_pointer *pdp;
845 uint64_t pml4e;
846 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
847
848 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
849 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
850 start, cache_level);
851 }
852 }
853 }
854
855 static void gen8_free_page_tables(struct drm_device *dev,
856 struct i915_page_directory *pd)
857 {
858 int i;
859
860 if (!px_page(pd))
861 return;
862
863 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
864 if (WARN_ON(!pd->page_table[i]))
865 continue;
866
867 free_pt(dev, pd->page_table[i]);
868 pd->page_table[i] = NULL;
869 }
870 }
871
872 static int gen8_init_scratch(struct i915_address_space *vm)
873 {
874 struct drm_device *dev = vm->dev;
875 int ret;
876
877 ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
878 if (ret)
879 return ret;
880
881 vm->scratch_pt = alloc_pt(dev);
882 if (IS_ERR(vm->scratch_pt)) {
883 ret = PTR_ERR(vm->scratch_pt);
884 goto free_scratch_page;
885 }
886
887 vm->scratch_pd = alloc_pd(dev);
888 if (IS_ERR(vm->scratch_pd)) {
889 ret = PTR_ERR(vm->scratch_pd);
890 goto free_pt;
891 }
892
893 if (USES_FULL_48BIT_PPGTT(dev)) {
894 vm->scratch_pdp = alloc_pdp(dev);
895 if (IS_ERR(vm->scratch_pdp)) {
896 ret = PTR_ERR(vm->scratch_pdp);
897 goto free_pd;
898 }
899 }
900
901 gen8_initialize_pt(vm, vm->scratch_pt);
902 gen8_initialize_pd(vm, vm->scratch_pd);
903 if (USES_FULL_48BIT_PPGTT(dev))
904 gen8_initialize_pdp(vm, vm->scratch_pdp);
905
906 return 0;
907
908 free_pd:
909 free_pd(dev, vm->scratch_pd);
910 free_pt:
911 free_pt(dev, vm->scratch_pt);
912 free_scratch_page:
913 cleanup_scratch_page(dev, &vm->scratch_page);
914
915 return ret;
916 }
917
918 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
919 {
920 enum vgt_g2v_type msg;
921 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
922 int i;
923
924 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
925 u64 daddr = px_dma(&ppgtt->pml4);
926
927 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
928 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
929
930 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
931 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
932 } else {
933 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
934 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
935
936 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
937 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
938 }
939
940 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
941 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
942 }
943
944 I915_WRITE(vgtif_reg(g2v_notify), msg);
945
946 return 0;
947 }
948
949 static void gen8_free_scratch(struct i915_address_space *vm)
950 {
951 struct drm_device *dev = vm->dev;
952
953 if (USES_FULL_48BIT_PPGTT(dev))
954 free_pdp(dev, vm->scratch_pdp);
955 free_pd(dev, vm->scratch_pd);
956 free_pt(dev, vm->scratch_pt);
957 cleanup_scratch_page(dev, &vm->scratch_page);
958 }
959
960 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
961 struct i915_page_directory_pointer *pdp)
962 {
963 int i;
964
965 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
966 if (WARN_ON(!pdp->page_directory[i]))
967 continue;
968
969 gen8_free_page_tables(dev, pdp->page_directory[i]);
970 free_pd(dev, pdp->page_directory[i]);
971 }
972
973 free_pdp(dev, pdp);
974 }
975
976 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
977 {
978 int i;
979
980 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
981 if (WARN_ON(!ppgtt->pml4.pdps[i]))
982 continue;
983
984 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
985 }
986
987 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
988 }
989
990 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
991 {
992 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
993
994 if (intel_vgpu_active(to_i915(vm->dev)))
995 gen8_ppgtt_notify_vgt(ppgtt, false);
996
997 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
998 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
999 else
1000 gen8_ppgtt_cleanup_4lvl(ppgtt);
1001
1002 gen8_free_scratch(vm);
1003 }
1004
1005 /**
1006 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1007 * @vm: Master vm structure.
1008 * @pd: Page directory for this address range.
1009 * @start: Starting virtual address to begin allocations.
1010 * @length: Size of the allocations.
1011 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1012 * caller to free on error.
1013 *
1014 * Allocate the required number of page tables. Extremely similar to
1015 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1016 * the page directory boundary (instead of the page directory pointer). That
1017 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1018 * possible, and likely that the caller will need to use multiple calls of this
1019 * function to achieve the appropriate allocation.
1020 *
1021 * Return: 0 if success; negative error code otherwise.
1022 */
1023 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1024 struct i915_page_directory *pd,
1025 uint64_t start,
1026 uint64_t length,
1027 unsigned long *new_pts)
1028 {
1029 struct drm_device *dev = vm->dev;
1030 struct i915_page_table *pt;
1031 uint32_t pde;
1032
1033 gen8_for_each_pde(pt, pd, start, length, pde) {
1034 /* Don't reallocate page tables */
1035 if (test_bit(pde, pd->used_pdes)) {
1036 /* Scratch is never allocated this way */
1037 WARN_ON(pt == vm->scratch_pt);
1038 continue;
1039 }
1040
1041 pt = alloc_pt(dev);
1042 if (IS_ERR(pt))
1043 goto unwind_out;
1044
1045 gen8_initialize_pt(vm, pt);
1046 pd->page_table[pde] = pt;
1047 __set_bit(pde, new_pts);
1048 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1049 }
1050
1051 return 0;
1052
1053 unwind_out:
1054 for_each_set_bit(pde, new_pts, I915_PDES)
1055 free_pt(dev, pd->page_table[pde]);
1056
1057 return -ENOMEM;
1058 }
1059
1060 /**
1061 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1062 * @vm: Master vm structure.
1063 * @pdp: Page directory pointer for this address range.
1064 * @start: Starting virtual address to begin allocations.
1065 * @length: Size of the allocations.
1066 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1067 * caller to free on error.
1068 *
1069 * Allocate the required number of page directories starting at the pde index of
1070 * @start, and ending at the pde index @start + @length. This function will skip
1071 * over already allocated page directories within the range, and only allocate
1072 * new ones, setting the appropriate pointer within the pdp as well as the
1073 * correct position in the bitmap @new_pds.
1074 *
1075 * The function will only allocate the pages within the range for a give page
1076 * directory pointer. In other words, if @start + @length straddles a virtually
1077 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1078 * required by the caller, This is not currently possible, and the BUG in the
1079 * code will prevent it.
1080 *
1081 * Return: 0 if success; negative error code otherwise.
1082 */
1083 static int
1084 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1085 struct i915_page_directory_pointer *pdp,
1086 uint64_t start,
1087 uint64_t length,
1088 unsigned long *new_pds)
1089 {
1090 struct drm_device *dev = vm->dev;
1091 struct i915_page_directory *pd;
1092 uint32_t pdpe;
1093 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1094
1095 WARN_ON(!bitmap_empty(new_pds, pdpes));
1096
1097 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1098 if (test_bit(pdpe, pdp->used_pdpes))
1099 continue;
1100
1101 pd = alloc_pd(dev);
1102 if (IS_ERR(pd))
1103 goto unwind_out;
1104
1105 gen8_initialize_pd(vm, pd);
1106 pdp->page_directory[pdpe] = pd;
1107 __set_bit(pdpe, new_pds);
1108 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1109 }
1110
1111 return 0;
1112
1113 unwind_out:
1114 for_each_set_bit(pdpe, new_pds, pdpes)
1115 free_pd(dev, pdp->page_directory[pdpe]);
1116
1117 return -ENOMEM;
1118 }
1119
1120 /**
1121 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1122 * @vm: Master vm structure.
1123 * @pml4: Page map level 4 for this address range.
1124 * @start: Starting virtual address to begin allocations.
1125 * @length: Size of the allocations.
1126 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1127 * caller to free on error.
1128 *
1129 * Allocate the required number of page directory pointers. Extremely similar to
1130 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1131 * The main difference is here we are limited by the pml4 boundary (instead of
1132 * the page directory pointer).
1133 *
1134 * Return: 0 if success; negative error code otherwise.
1135 */
1136 static int
1137 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1138 struct i915_pml4 *pml4,
1139 uint64_t start,
1140 uint64_t length,
1141 unsigned long *new_pdps)
1142 {
1143 struct drm_device *dev = vm->dev;
1144 struct i915_page_directory_pointer *pdp;
1145 uint32_t pml4e;
1146
1147 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1148
1149 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1150 if (!test_bit(pml4e, pml4->used_pml4es)) {
1151 pdp = alloc_pdp(dev);
1152 if (IS_ERR(pdp))
1153 goto unwind_out;
1154
1155 gen8_initialize_pdp(vm, pdp);
1156 pml4->pdps[pml4e] = pdp;
1157 __set_bit(pml4e, new_pdps);
1158 trace_i915_page_directory_pointer_entry_alloc(vm,
1159 pml4e,
1160 start,
1161 GEN8_PML4E_SHIFT);
1162 }
1163 }
1164
1165 return 0;
1166
1167 unwind_out:
1168 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1169 free_pdp(dev, pml4->pdps[pml4e]);
1170
1171 return -ENOMEM;
1172 }
1173
1174 static void
1175 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1176 {
1177 kfree(new_pts);
1178 kfree(new_pds);
1179 }
1180
1181 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1182 * of these are based on the number of PDPEs in the system.
1183 */
1184 static
1185 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1186 unsigned long **new_pts,
1187 uint32_t pdpes)
1188 {
1189 unsigned long *pds;
1190 unsigned long *pts;
1191
1192 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1193 if (!pds)
1194 return -ENOMEM;
1195
1196 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1197 GFP_TEMPORARY);
1198 if (!pts)
1199 goto err_out;
1200
1201 *new_pds = pds;
1202 *new_pts = pts;
1203
1204 return 0;
1205
1206 err_out:
1207 free_gen8_temp_bitmaps(pds, pts);
1208 return -ENOMEM;
1209 }
1210
1211 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1212 * the page table structures, we mark them dirty so that
1213 * context switching/execlist queuing code takes extra steps
1214 * to ensure that tlbs are flushed.
1215 */
1216 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1217 {
1218 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1219 }
1220
1221 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1222 struct i915_page_directory_pointer *pdp,
1223 uint64_t start,
1224 uint64_t length)
1225 {
1226 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1227 unsigned long *new_page_dirs, *new_page_tables;
1228 struct drm_device *dev = vm->dev;
1229 struct i915_page_directory *pd;
1230 const uint64_t orig_start = start;
1231 const uint64_t orig_length = length;
1232 uint32_t pdpe;
1233 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1234 int ret;
1235
1236 /* Wrap is never okay since we can only represent 48b, and we don't
1237 * actually use the other side of the canonical address space.
1238 */
1239 if (WARN_ON(start + length < start))
1240 return -ENODEV;
1241
1242 if (WARN_ON(start + length > vm->total))
1243 return -ENODEV;
1244
1245 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1246 if (ret)
1247 return ret;
1248
1249 /* Do the allocations first so we can easily bail out */
1250 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1251 new_page_dirs);
1252 if (ret) {
1253 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1254 return ret;
1255 }
1256
1257 /* For every page directory referenced, allocate page tables */
1258 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1259 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1260 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1261 if (ret)
1262 goto err_out;
1263 }
1264
1265 start = orig_start;
1266 length = orig_length;
1267
1268 /* Allocations have completed successfully, so set the bitmaps, and do
1269 * the mappings. */
1270 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1271 gen8_pde_t *const page_directory = kmap_px(pd);
1272 struct i915_page_table *pt;
1273 uint64_t pd_len = length;
1274 uint64_t pd_start = start;
1275 uint32_t pde;
1276
1277 /* Every pd should be allocated, we just did that above. */
1278 WARN_ON(!pd);
1279
1280 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1281 /* Same reasoning as pd */
1282 WARN_ON(!pt);
1283 WARN_ON(!pd_len);
1284 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1285
1286 /* Set our used ptes within the page table */
1287 bitmap_set(pt->used_ptes,
1288 gen8_pte_index(pd_start),
1289 gen8_pte_count(pd_start, pd_len));
1290
1291 /* Our pde is now pointing to the pagetable, pt */
1292 __set_bit(pde, pd->used_pdes);
1293
1294 /* Map the PDE to the page table */
1295 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1296 I915_CACHE_LLC);
1297 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1298 gen8_pte_index(start),
1299 gen8_pte_count(start, length),
1300 GEN8_PTES);
1301
1302 /* NB: We haven't yet mapped ptes to pages. At this
1303 * point we're still relying on insert_entries() */
1304 }
1305
1306 kunmap_px(ppgtt, page_directory);
1307 __set_bit(pdpe, pdp->used_pdpes);
1308 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1309 }
1310
1311 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1312 mark_tlbs_dirty(ppgtt);
1313 return 0;
1314
1315 err_out:
1316 while (pdpe--) {
1317 unsigned long temp;
1318
1319 for_each_set_bit(temp, new_page_tables + pdpe *
1320 BITS_TO_LONGS(I915_PDES), I915_PDES)
1321 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1322 }
1323
1324 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1325 free_pd(dev, pdp->page_directory[pdpe]);
1326
1327 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1328 mark_tlbs_dirty(ppgtt);
1329 return ret;
1330 }
1331
1332 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1333 struct i915_pml4 *pml4,
1334 uint64_t start,
1335 uint64_t length)
1336 {
1337 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1338 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1339 struct i915_page_directory_pointer *pdp;
1340 uint64_t pml4e;
1341 int ret = 0;
1342
1343 /* Do the pml4 allocations first, so we don't need to track the newly
1344 * allocated tables below the pdp */
1345 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1346
1347 /* The pagedirectory and pagetable allocations are done in the shared 3
1348 * and 4 level code. Just allocate the pdps.
1349 */
1350 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1351 new_pdps);
1352 if (ret)
1353 return ret;
1354
1355 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1356 "The allocation has spanned more than 512GB. "
1357 "It is highly likely this is incorrect.");
1358
1359 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1360 WARN_ON(!pdp);
1361
1362 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1363 if (ret)
1364 goto err_out;
1365
1366 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1367 }
1368
1369 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1370 GEN8_PML4ES_PER_PML4);
1371
1372 return 0;
1373
1374 err_out:
1375 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1376 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1377
1378 return ret;
1379 }
1380
1381 static int gen8_alloc_va_range(struct i915_address_space *vm,
1382 uint64_t start, uint64_t length)
1383 {
1384 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1385
1386 if (USES_FULL_48BIT_PPGTT(vm->dev))
1387 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1388 else
1389 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1390 }
1391
1392 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1393 uint64_t start, uint64_t length,
1394 gen8_pte_t scratch_pte,
1395 struct seq_file *m)
1396 {
1397 struct i915_page_directory *pd;
1398 uint32_t pdpe;
1399
1400 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1401 struct i915_page_table *pt;
1402 uint64_t pd_len = length;
1403 uint64_t pd_start = start;
1404 uint32_t pde;
1405
1406 if (!test_bit(pdpe, pdp->used_pdpes))
1407 continue;
1408
1409 seq_printf(m, "\tPDPE #%d\n", pdpe);
1410 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1411 uint32_t pte;
1412 gen8_pte_t *pt_vaddr;
1413
1414 if (!test_bit(pde, pd->used_pdes))
1415 continue;
1416
1417 pt_vaddr = kmap_px(pt);
1418 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1419 uint64_t va =
1420 (pdpe << GEN8_PDPE_SHIFT) |
1421 (pde << GEN8_PDE_SHIFT) |
1422 (pte << GEN8_PTE_SHIFT);
1423 int i;
1424 bool found = false;
1425
1426 for (i = 0; i < 4; i++)
1427 if (pt_vaddr[pte + i] != scratch_pte)
1428 found = true;
1429 if (!found)
1430 continue;
1431
1432 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1433 for (i = 0; i < 4; i++) {
1434 if (pt_vaddr[pte + i] != scratch_pte)
1435 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1436 else
1437 seq_puts(m, " SCRATCH ");
1438 }
1439 seq_puts(m, "\n");
1440 }
1441 /* don't use kunmap_px, it could trigger
1442 * an unnecessary flush.
1443 */
1444 kunmap_atomic(pt_vaddr);
1445 }
1446 }
1447 }
1448
1449 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1450 {
1451 struct i915_address_space *vm = &ppgtt->base;
1452 uint64_t start = ppgtt->base.start;
1453 uint64_t length = ppgtt->base.total;
1454 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1455 I915_CACHE_LLC, true);
1456
1457 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1458 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1459 } else {
1460 uint64_t pml4e;
1461 struct i915_pml4 *pml4 = &ppgtt->pml4;
1462 struct i915_page_directory_pointer *pdp;
1463
1464 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1465 if (!test_bit(pml4e, pml4->used_pml4es))
1466 continue;
1467
1468 seq_printf(m, " PML4E #%llu\n", pml4e);
1469 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1470 }
1471 }
1472 }
1473
1474 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1475 {
1476 unsigned long *new_page_dirs, *new_page_tables;
1477 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1478 int ret;
1479
1480 /* We allocate temp bitmap for page tables for no gain
1481 * but as this is for init only, lets keep the things simple
1482 */
1483 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1484 if (ret)
1485 return ret;
1486
1487 /* Allocate for all pdps regardless of how the ppgtt
1488 * was defined.
1489 */
1490 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1491 0, 1ULL << 32,
1492 new_page_dirs);
1493 if (!ret)
1494 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1495
1496 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1497
1498 return ret;
1499 }
1500
1501 /*
1502 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1503 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1504 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1505 * space.
1506 *
1507 */
1508 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1509 {
1510 int ret;
1511
1512 ret = gen8_init_scratch(&ppgtt->base);
1513 if (ret)
1514 return ret;
1515
1516 ppgtt->base.start = 0;
1517 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1518 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1519 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1520 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1521 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1522 ppgtt->base.bind_vma = ppgtt_bind_vma;
1523 ppgtt->debug_dump = gen8_dump_ppgtt;
1524
1525 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1526 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1527 if (ret)
1528 goto free_scratch;
1529
1530 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1531
1532 ppgtt->base.total = 1ULL << 48;
1533 ppgtt->switch_mm = gen8_48b_mm_switch;
1534 } else {
1535 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1536 if (ret)
1537 goto free_scratch;
1538
1539 ppgtt->base.total = 1ULL << 32;
1540 ppgtt->switch_mm = gen8_legacy_mm_switch;
1541 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1542 0, 0,
1543 GEN8_PML4E_SHIFT);
1544
1545 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1546 ret = gen8_preallocate_top_level_pdps(ppgtt);
1547 if (ret)
1548 goto free_scratch;
1549 }
1550 }
1551
1552 if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1553 gen8_ppgtt_notify_vgt(ppgtt, true);
1554
1555 return 0;
1556
1557 free_scratch:
1558 gen8_free_scratch(&ppgtt->base);
1559 return ret;
1560 }
1561
1562 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1563 {
1564 struct i915_address_space *vm = &ppgtt->base;
1565 struct i915_page_table *unused;
1566 gen6_pte_t scratch_pte;
1567 uint32_t pd_entry;
1568 uint32_t pte, pde;
1569 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1570
1571 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1572 I915_CACHE_LLC, true, 0);
1573
1574 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1575 u32 expected;
1576 gen6_pte_t *pt_vaddr;
1577 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1578 pd_entry = readl(ppgtt->pd_addr + pde);
1579 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1580
1581 if (pd_entry != expected)
1582 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1583 pde,
1584 pd_entry,
1585 expected);
1586 seq_printf(m, "\tPDE: %x\n", pd_entry);
1587
1588 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1589
1590 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1591 unsigned long va =
1592 (pde * PAGE_SIZE * GEN6_PTES) +
1593 (pte * PAGE_SIZE);
1594 int i;
1595 bool found = false;
1596 for (i = 0; i < 4; i++)
1597 if (pt_vaddr[pte + i] != scratch_pte)
1598 found = true;
1599 if (!found)
1600 continue;
1601
1602 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1603 for (i = 0; i < 4; i++) {
1604 if (pt_vaddr[pte + i] != scratch_pte)
1605 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1606 else
1607 seq_puts(m, " SCRATCH ");
1608 }
1609 seq_puts(m, "\n");
1610 }
1611 kunmap_px(ppgtt, pt_vaddr);
1612 }
1613 }
1614
1615 /* Write pde (index) from the page directory @pd to the page table @pt */
1616 static void gen6_write_pde(struct i915_page_directory *pd,
1617 const int pde, struct i915_page_table *pt)
1618 {
1619 /* Caller needs to make sure the write completes if necessary */
1620 struct i915_hw_ppgtt *ppgtt =
1621 container_of(pd, struct i915_hw_ppgtt, pd);
1622 u32 pd_entry;
1623
1624 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1625 pd_entry |= GEN6_PDE_VALID;
1626
1627 writel(pd_entry, ppgtt->pd_addr + pde);
1628 }
1629
1630 /* Write all the page tables found in the ppgtt structure to incrementing page
1631 * directories. */
1632 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1633 struct i915_page_directory *pd,
1634 uint32_t start, uint32_t length)
1635 {
1636 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1637 struct i915_page_table *pt;
1638 uint32_t pde;
1639
1640 gen6_for_each_pde(pt, pd, start, length, pde)
1641 gen6_write_pde(pd, pde, pt);
1642
1643 /* Make sure write is complete before other code can use this page
1644 * table. Also require for WC mapped PTEs */
1645 readl(ggtt->gsm);
1646 }
1647
1648 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1649 {
1650 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1651
1652 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1653 }
1654
1655 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1656 struct drm_i915_gem_request *req)
1657 {
1658 struct intel_ring *ring = req->ring;
1659 struct intel_engine_cs *engine = req->engine;
1660 int ret;
1661
1662 /* NB: TLBs must be flushed and invalidated before a switch */
1663 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1664 if (ret)
1665 return ret;
1666
1667 ret = intel_ring_begin(req, 6);
1668 if (ret)
1669 return ret;
1670
1671 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1672 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1673 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1674 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1675 intel_ring_emit(ring, get_pd_offset(ppgtt));
1676 intel_ring_emit(ring, MI_NOOP);
1677 intel_ring_advance(ring);
1678
1679 return 0;
1680 }
1681
1682 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1683 struct drm_i915_gem_request *req)
1684 {
1685 struct intel_ring *ring = req->ring;
1686 struct intel_engine_cs *engine = req->engine;
1687 int ret;
1688
1689 /* NB: TLBs must be flushed and invalidated before a switch */
1690 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1691 if (ret)
1692 return ret;
1693
1694 ret = intel_ring_begin(req, 6);
1695 if (ret)
1696 return ret;
1697
1698 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1699 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1700 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1701 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1702 intel_ring_emit(ring, get_pd_offset(ppgtt));
1703 intel_ring_emit(ring, MI_NOOP);
1704 intel_ring_advance(ring);
1705
1706 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1707 if (engine->id != RCS) {
1708 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1709 if (ret)
1710 return ret;
1711 }
1712
1713 return 0;
1714 }
1715
1716 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1717 struct drm_i915_gem_request *req)
1718 {
1719 struct intel_engine_cs *engine = req->engine;
1720 struct drm_i915_private *dev_priv = req->i915;
1721
1722 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1723 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1724 return 0;
1725 }
1726
1727 static void gen8_ppgtt_enable(struct drm_device *dev)
1728 {
1729 struct drm_i915_private *dev_priv = to_i915(dev);
1730 struct intel_engine_cs *engine;
1731
1732 for_each_engine(engine, dev_priv) {
1733 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1734 I915_WRITE(RING_MODE_GEN7(engine),
1735 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1736 }
1737 }
1738
1739 static void gen7_ppgtt_enable(struct drm_device *dev)
1740 {
1741 struct drm_i915_private *dev_priv = to_i915(dev);
1742 struct intel_engine_cs *engine;
1743 uint32_t ecochk, ecobits;
1744
1745 ecobits = I915_READ(GAC_ECO_BITS);
1746 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1747
1748 ecochk = I915_READ(GAM_ECOCHK);
1749 if (IS_HASWELL(dev)) {
1750 ecochk |= ECOCHK_PPGTT_WB_HSW;
1751 } else {
1752 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1753 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1754 }
1755 I915_WRITE(GAM_ECOCHK, ecochk);
1756
1757 for_each_engine(engine, dev_priv) {
1758 /* GFX_MODE is per-ring on gen7+ */
1759 I915_WRITE(RING_MODE_GEN7(engine),
1760 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1761 }
1762 }
1763
1764 static void gen6_ppgtt_enable(struct drm_device *dev)
1765 {
1766 struct drm_i915_private *dev_priv = to_i915(dev);
1767 uint32_t ecochk, gab_ctl, ecobits;
1768
1769 ecobits = I915_READ(GAC_ECO_BITS);
1770 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1771 ECOBITS_PPGTT_CACHE64B);
1772
1773 gab_ctl = I915_READ(GAB_CTL);
1774 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1775
1776 ecochk = I915_READ(GAM_ECOCHK);
1777 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1778
1779 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1780 }
1781
1782 /* PPGTT support for Sandybdrige/Gen6 and later */
1783 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1784 uint64_t start,
1785 uint64_t length,
1786 bool use_scratch)
1787 {
1788 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1789 gen6_pte_t *pt_vaddr, scratch_pte;
1790 unsigned first_entry = start >> PAGE_SHIFT;
1791 unsigned num_entries = length >> PAGE_SHIFT;
1792 unsigned act_pt = first_entry / GEN6_PTES;
1793 unsigned first_pte = first_entry % GEN6_PTES;
1794 unsigned last_pte, i;
1795
1796 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1797 I915_CACHE_LLC, true, 0);
1798
1799 while (num_entries) {
1800 last_pte = first_pte + num_entries;
1801 if (last_pte > GEN6_PTES)
1802 last_pte = GEN6_PTES;
1803
1804 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1805
1806 for (i = first_pte; i < last_pte; i++)
1807 pt_vaddr[i] = scratch_pte;
1808
1809 kunmap_px(ppgtt, pt_vaddr);
1810
1811 num_entries -= last_pte - first_pte;
1812 first_pte = 0;
1813 act_pt++;
1814 }
1815 }
1816
1817 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1818 struct sg_table *pages,
1819 uint64_t start,
1820 enum i915_cache_level cache_level, u32 flags)
1821 {
1822 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1823 unsigned first_entry = start >> PAGE_SHIFT;
1824 unsigned act_pt = first_entry / GEN6_PTES;
1825 unsigned act_pte = first_entry % GEN6_PTES;
1826 gen6_pte_t *pt_vaddr = NULL;
1827 struct sgt_iter sgt_iter;
1828 dma_addr_t addr;
1829
1830 for_each_sgt_dma(addr, sgt_iter, pages) {
1831 if (pt_vaddr == NULL)
1832 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1833
1834 pt_vaddr[act_pte] =
1835 vm->pte_encode(addr, cache_level, true, flags);
1836
1837 if (++act_pte == GEN6_PTES) {
1838 kunmap_px(ppgtt, pt_vaddr);
1839 pt_vaddr = NULL;
1840 act_pt++;
1841 act_pte = 0;
1842 }
1843 }
1844
1845 if (pt_vaddr)
1846 kunmap_px(ppgtt, pt_vaddr);
1847 }
1848
1849 static int gen6_alloc_va_range(struct i915_address_space *vm,
1850 uint64_t start_in, uint64_t length_in)
1851 {
1852 DECLARE_BITMAP(new_page_tables, I915_PDES);
1853 struct drm_device *dev = vm->dev;
1854 struct drm_i915_private *dev_priv = to_i915(dev);
1855 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1856 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1857 struct i915_page_table *pt;
1858 uint32_t start, length, start_save, length_save;
1859 uint32_t pde;
1860 int ret;
1861
1862 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1863 return -ENODEV;
1864
1865 start = start_save = start_in;
1866 length = length_save = length_in;
1867
1868 bitmap_zero(new_page_tables, I915_PDES);
1869
1870 /* The allocation is done in two stages so that we can bail out with
1871 * minimal amount of pain. The first stage finds new page tables that
1872 * need allocation. The second stage marks use ptes within the page
1873 * tables.
1874 */
1875 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1876 if (pt != vm->scratch_pt) {
1877 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1878 continue;
1879 }
1880
1881 /* We've already allocated a page table */
1882 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1883
1884 pt = alloc_pt(dev);
1885 if (IS_ERR(pt)) {
1886 ret = PTR_ERR(pt);
1887 goto unwind_out;
1888 }
1889
1890 gen6_initialize_pt(vm, pt);
1891
1892 ppgtt->pd.page_table[pde] = pt;
1893 __set_bit(pde, new_page_tables);
1894 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1895 }
1896
1897 start = start_save;
1898 length = length_save;
1899
1900 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1901 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1902
1903 bitmap_zero(tmp_bitmap, GEN6_PTES);
1904 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1905 gen6_pte_count(start, length));
1906
1907 if (__test_and_clear_bit(pde, new_page_tables))
1908 gen6_write_pde(&ppgtt->pd, pde, pt);
1909
1910 trace_i915_page_table_entry_map(vm, pde, pt,
1911 gen6_pte_index(start),
1912 gen6_pte_count(start, length),
1913 GEN6_PTES);
1914 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1915 GEN6_PTES);
1916 }
1917
1918 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1919
1920 /* Make sure write is complete before other code can use this page
1921 * table. Also require for WC mapped PTEs */
1922 readl(ggtt->gsm);
1923
1924 mark_tlbs_dirty(ppgtt);
1925 return 0;
1926
1927 unwind_out:
1928 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1929 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1930
1931 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1932 free_pt(vm->dev, pt);
1933 }
1934
1935 mark_tlbs_dirty(ppgtt);
1936 return ret;
1937 }
1938
1939 static int gen6_init_scratch(struct i915_address_space *vm)
1940 {
1941 struct drm_device *dev = vm->dev;
1942 int ret;
1943
1944 ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
1945 if (ret)
1946 return ret;
1947
1948 vm->scratch_pt = alloc_pt(dev);
1949 if (IS_ERR(vm->scratch_pt)) {
1950 cleanup_scratch_page(dev, &vm->scratch_page);
1951 return PTR_ERR(vm->scratch_pt);
1952 }
1953
1954 gen6_initialize_pt(vm, vm->scratch_pt);
1955
1956 return 0;
1957 }
1958
1959 static void gen6_free_scratch(struct i915_address_space *vm)
1960 {
1961 struct drm_device *dev = vm->dev;
1962
1963 free_pt(dev, vm->scratch_pt);
1964 cleanup_scratch_page(dev, &vm->scratch_page);
1965 }
1966
1967 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1968 {
1969 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1970 struct i915_page_directory *pd = &ppgtt->pd;
1971 struct drm_device *dev = vm->dev;
1972 struct i915_page_table *pt;
1973 uint32_t pde;
1974
1975 drm_mm_remove_node(&ppgtt->node);
1976
1977 gen6_for_all_pdes(pt, pd, pde)
1978 if (pt != vm->scratch_pt)
1979 free_pt(dev, pt);
1980
1981 gen6_free_scratch(vm);
1982 }
1983
1984 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1985 {
1986 struct i915_address_space *vm = &ppgtt->base;
1987 struct drm_device *dev = ppgtt->base.dev;
1988 struct drm_i915_private *dev_priv = to_i915(dev);
1989 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1990 bool retried = false;
1991 int ret;
1992
1993 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1994 * allocator works in address space sizes, so it's multiplied by page
1995 * size. We allocate at the top of the GTT to avoid fragmentation.
1996 */
1997 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1998
1999 ret = gen6_init_scratch(vm);
2000 if (ret)
2001 return ret;
2002
2003 alloc:
2004 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2005 &ppgtt->node, GEN6_PD_SIZE,
2006 GEN6_PD_ALIGN, 0,
2007 0, ggtt->base.total,
2008 DRM_MM_TOPDOWN);
2009 if (ret == -ENOSPC && !retried) {
2010 ret = i915_gem_evict_something(&ggtt->base,
2011 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2012 I915_CACHE_NONE,
2013 0, ggtt->base.total,
2014 0);
2015 if (ret)
2016 goto err_out;
2017
2018 retried = true;
2019 goto alloc;
2020 }
2021
2022 if (ret)
2023 goto err_out;
2024
2025
2026 if (ppgtt->node.start < ggtt->mappable_end)
2027 DRM_DEBUG("Forced to use aperture for PDEs\n");
2028
2029 return 0;
2030
2031 err_out:
2032 gen6_free_scratch(vm);
2033 return ret;
2034 }
2035
2036 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2037 {
2038 return gen6_ppgtt_allocate_page_directories(ppgtt);
2039 }
2040
2041 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2042 uint64_t start, uint64_t length)
2043 {
2044 struct i915_page_table *unused;
2045 uint32_t pde;
2046
2047 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2048 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2049 }
2050
2051 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2052 {
2053 struct drm_device *dev = ppgtt->base.dev;
2054 struct drm_i915_private *dev_priv = to_i915(dev);
2055 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2056 int ret;
2057
2058 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2059 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2060 ppgtt->switch_mm = gen6_mm_switch;
2061 else if (IS_HASWELL(dev))
2062 ppgtt->switch_mm = hsw_mm_switch;
2063 else if (IS_GEN7(dev))
2064 ppgtt->switch_mm = gen7_mm_switch;
2065 else
2066 BUG();
2067
2068 ret = gen6_ppgtt_alloc(ppgtt);
2069 if (ret)
2070 return ret;
2071
2072 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2073 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2074 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2075 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2076 ppgtt->base.bind_vma = ppgtt_bind_vma;
2077 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2078 ppgtt->base.start = 0;
2079 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2080 ppgtt->debug_dump = gen6_dump_ppgtt;
2081
2082 ppgtt->pd.base.ggtt_offset =
2083 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2084
2085 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2086 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2087
2088 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2089
2090 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2091
2092 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2093 ppgtt->node.size >> 20,
2094 ppgtt->node.start / PAGE_SIZE);
2095
2096 DRM_DEBUG("Adding PPGTT at offset %x\n",
2097 ppgtt->pd.base.ggtt_offset << 10);
2098
2099 return 0;
2100 }
2101
2102 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2103 struct drm_i915_private *dev_priv)
2104 {
2105 ppgtt->base.dev = &dev_priv->drm;
2106
2107 if (INTEL_INFO(dev_priv)->gen < 8)
2108 return gen6_ppgtt_init(ppgtt);
2109 else
2110 return gen8_ppgtt_init(ppgtt);
2111 }
2112
2113 static void i915_address_space_init(struct i915_address_space *vm,
2114 struct drm_i915_private *dev_priv)
2115 {
2116 drm_mm_init(&vm->mm, vm->start, vm->total);
2117 INIT_LIST_HEAD(&vm->active_list);
2118 INIT_LIST_HEAD(&vm->inactive_list);
2119 INIT_LIST_HEAD(&vm->unbound_list);
2120 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2121 }
2122
2123 static void gtt_write_workarounds(struct drm_device *dev)
2124 {
2125 struct drm_i915_private *dev_priv = to_i915(dev);
2126
2127 /* This function is for gtt related workarounds. This function is
2128 * called on driver load and after a GPU reset, so you can place
2129 * workarounds here even if they get overwritten by GPU reset.
2130 */
2131 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2132 if (IS_BROADWELL(dev))
2133 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2134 else if (IS_CHERRYVIEW(dev))
2135 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2136 else if (IS_SKYLAKE(dev))
2137 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2138 else if (IS_BROXTON(dev))
2139 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2140 }
2141
2142 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2143 struct drm_i915_private *dev_priv,
2144 struct drm_i915_file_private *file_priv)
2145 {
2146 int ret;
2147
2148 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2149 if (ret == 0) {
2150 kref_init(&ppgtt->ref);
2151 i915_address_space_init(&ppgtt->base, dev_priv);
2152 ppgtt->base.file = file_priv;
2153 }
2154
2155 return ret;
2156 }
2157
2158 int i915_ppgtt_init_hw(struct drm_device *dev)
2159 {
2160 gtt_write_workarounds(dev);
2161
2162 /* In the case of execlists, PPGTT is enabled by the context descriptor
2163 * and the PDPs are contained within the context itself. We don't
2164 * need to do anything here. */
2165 if (i915.enable_execlists)
2166 return 0;
2167
2168 if (!USES_PPGTT(dev))
2169 return 0;
2170
2171 if (IS_GEN6(dev))
2172 gen6_ppgtt_enable(dev);
2173 else if (IS_GEN7(dev))
2174 gen7_ppgtt_enable(dev);
2175 else if (INTEL_INFO(dev)->gen >= 8)
2176 gen8_ppgtt_enable(dev);
2177 else
2178 MISSING_CASE(INTEL_INFO(dev)->gen);
2179
2180 return 0;
2181 }
2182
2183 struct i915_hw_ppgtt *
2184 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2185 struct drm_i915_file_private *fpriv)
2186 {
2187 struct i915_hw_ppgtt *ppgtt;
2188 int ret;
2189
2190 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2191 if (!ppgtt)
2192 return ERR_PTR(-ENOMEM);
2193
2194 ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv);
2195 if (ret) {
2196 kfree(ppgtt);
2197 return ERR_PTR(ret);
2198 }
2199
2200 trace_i915_ppgtt_create(&ppgtt->base);
2201
2202 return ppgtt;
2203 }
2204
2205 void i915_ppgtt_release(struct kref *kref)
2206 {
2207 struct i915_hw_ppgtt *ppgtt =
2208 container_of(kref, struct i915_hw_ppgtt, ref);
2209
2210 trace_i915_ppgtt_release(&ppgtt->base);
2211
2212 /* vmas should already be unbound and destroyed */
2213 WARN_ON(!list_empty(&ppgtt->base.active_list));
2214 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2215 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2216
2217 list_del(&ppgtt->base.global_link);
2218 drm_mm_takedown(&ppgtt->base.mm);
2219
2220 ppgtt->base.cleanup(&ppgtt->base);
2221 kfree(ppgtt);
2222 }
2223
2224 /* Certain Gen5 chipsets require require idling the GPU before
2225 * unmapping anything from the GTT when VT-d is enabled.
2226 */
2227 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230 /* Query intel_iommu to see if we need the workaround. Presumably that
2231 * was loaded first.
2232 */
2233 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2234 return true;
2235 #endif
2236 return false;
2237 }
2238
2239 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2240 {
2241 struct intel_engine_cs *engine;
2242
2243 if (INTEL_INFO(dev_priv)->gen < 6)
2244 return;
2245
2246 for_each_engine(engine, dev_priv) {
2247 u32 fault_reg;
2248 fault_reg = I915_READ(RING_FAULT_REG(engine));
2249 if (fault_reg & RING_FAULT_VALID) {
2250 DRM_DEBUG_DRIVER("Unexpected fault\n"
2251 "\tAddr: 0x%08lx\n"
2252 "\tAddress space: %s\n"
2253 "\tSource ID: %d\n"
2254 "\tType: %d\n",
2255 fault_reg & PAGE_MASK,
2256 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2257 RING_FAULT_SRCID(fault_reg),
2258 RING_FAULT_FAULT_TYPE(fault_reg));
2259 I915_WRITE(RING_FAULT_REG(engine),
2260 fault_reg & ~RING_FAULT_VALID);
2261 }
2262 }
2263 POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2264 }
2265
2266 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2267 {
2268 if (INTEL_INFO(dev_priv)->gen < 6) {
2269 intel_gtt_chipset_flush();
2270 } else {
2271 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2272 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2273 }
2274 }
2275
2276 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2277 {
2278 struct drm_i915_private *dev_priv = to_i915(dev);
2279 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2280
2281 /* Don't bother messing with faults pre GEN6 as we have little
2282 * documentation supporting that it's a good idea.
2283 */
2284 if (INTEL_INFO(dev)->gen < 6)
2285 return;
2286
2287 i915_check_and_clear_faults(dev_priv);
2288
2289 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2290 true);
2291
2292 i915_ggtt_flush(dev_priv);
2293 }
2294
2295 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2296 {
2297 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2298 obj->pages->sgl, obj->pages->nents,
2299 PCI_DMA_BIDIRECTIONAL))
2300 return -ENOSPC;
2301
2302 return 0;
2303 }
2304
2305 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2306 {
2307 writeq(pte, addr);
2308 }
2309
2310 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2311 dma_addr_t addr,
2312 uint64_t offset,
2313 enum i915_cache_level level,
2314 u32 unused)
2315 {
2316 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2317 gen8_pte_t __iomem *pte =
2318 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2319 (offset >> PAGE_SHIFT);
2320 int rpm_atomic_seq;
2321
2322 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2323
2324 gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2325
2326 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2327 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2328
2329 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2330 }
2331
2332 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2333 struct sg_table *st,
2334 uint64_t start,
2335 enum i915_cache_level level, u32 unused)
2336 {
2337 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2338 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2339 struct sgt_iter sgt_iter;
2340 gen8_pte_t __iomem *gtt_entries;
2341 gen8_pte_t gtt_entry;
2342 dma_addr_t addr;
2343 int rpm_atomic_seq;
2344 int i = 0;
2345
2346 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2347
2348 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2349
2350 for_each_sgt_dma(addr, sgt_iter, st) {
2351 gtt_entry = gen8_pte_encode(addr, level, true);
2352 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2353 }
2354
2355 /*
2356 * XXX: This serves as a posting read to make sure that the PTE has
2357 * actually been updated. There is some concern that even though
2358 * registers and PTEs are within the same BAR that they are potentially
2359 * of NUMA access patterns. Therefore, even with the way we assume
2360 * hardware should work, we must keep this posting read for paranoia.
2361 */
2362 if (i != 0)
2363 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2364
2365 /* This next bit makes the above posting read even more important. We
2366 * want to flush the TLBs only after we're certain all the PTE updates
2367 * have finished.
2368 */
2369 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2370 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2371
2372 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2373 }
2374
2375 struct insert_entries {
2376 struct i915_address_space *vm;
2377 struct sg_table *st;
2378 uint64_t start;
2379 enum i915_cache_level level;
2380 u32 flags;
2381 };
2382
2383 static int gen8_ggtt_insert_entries__cb(void *_arg)
2384 {
2385 struct insert_entries *arg = _arg;
2386 gen8_ggtt_insert_entries(arg->vm, arg->st,
2387 arg->start, arg->level, arg->flags);
2388 return 0;
2389 }
2390
2391 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2392 struct sg_table *st,
2393 uint64_t start,
2394 enum i915_cache_level level,
2395 u32 flags)
2396 {
2397 struct insert_entries arg = { vm, st, start, level, flags };
2398 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2399 }
2400
2401 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2402 dma_addr_t addr,
2403 uint64_t offset,
2404 enum i915_cache_level level,
2405 u32 flags)
2406 {
2407 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2408 gen6_pte_t __iomem *pte =
2409 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2410 (offset >> PAGE_SHIFT);
2411 int rpm_atomic_seq;
2412
2413 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2414
2415 iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2416
2417 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2418 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2419
2420 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2421 }
2422
2423 /*
2424 * Binds an object into the global gtt with the specified cache level. The object
2425 * will be accessible to the GPU via commands whose operands reference offsets
2426 * within the global GTT as well as accessible by the GPU through the GMADR
2427 * mapped BAR (dev_priv->mm.gtt->gtt).
2428 */
2429 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2430 struct sg_table *st,
2431 uint64_t start,
2432 enum i915_cache_level level, u32 flags)
2433 {
2434 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2435 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2436 struct sgt_iter sgt_iter;
2437 gen6_pte_t __iomem *gtt_entries;
2438 gen6_pte_t gtt_entry;
2439 dma_addr_t addr;
2440 int rpm_atomic_seq;
2441 int i = 0;
2442
2443 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2444
2445 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2446
2447 for_each_sgt_dma(addr, sgt_iter, st) {
2448 gtt_entry = vm->pte_encode(addr, level, true, flags);
2449 iowrite32(gtt_entry, &gtt_entries[i++]);
2450 }
2451
2452 /* XXX: This serves as a posting read to make sure that the PTE has
2453 * actually been updated. There is some concern that even though
2454 * registers and PTEs are within the same BAR that they are potentially
2455 * of NUMA access patterns. Therefore, even with the way we assume
2456 * hardware should work, we must keep this posting read for paranoia.
2457 */
2458 if (i != 0)
2459 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2460
2461 /* This next bit makes the above posting read even more important. We
2462 * want to flush the TLBs only after we're certain all the PTE updates
2463 * have finished.
2464 */
2465 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2466 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2467
2468 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2469 }
2470
2471 static void nop_clear_range(struct i915_address_space *vm,
2472 uint64_t start,
2473 uint64_t length,
2474 bool use_scratch)
2475 {
2476 }
2477
2478 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2479 uint64_t start,
2480 uint64_t length,
2481 bool use_scratch)
2482 {
2483 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2484 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2485 unsigned first_entry = start >> PAGE_SHIFT;
2486 unsigned num_entries = length >> PAGE_SHIFT;
2487 gen8_pte_t scratch_pte, __iomem *gtt_base =
2488 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2489 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2490 int i;
2491 int rpm_atomic_seq;
2492
2493 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2494
2495 if (WARN(num_entries > max_entries,
2496 "First entry = %d; Num entries = %d (max=%d)\n",
2497 first_entry, num_entries, max_entries))
2498 num_entries = max_entries;
2499
2500 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2501 I915_CACHE_LLC,
2502 use_scratch);
2503 for (i = 0; i < num_entries; i++)
2504 gen8_set_pte(&gtt_base[i], scratch_pte);
2505 readl(gtt_base);
2506
2507 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2508 }
2509
2510 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2511 uint64_t start,
2512 uint64_t length,
2513 bool use_scratch)
2514 {
2515 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2516 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2517 unsigned first_entry = start >> PAGE_SHIFT;
2518 unsigned num_entries = length >> PAGE_SHIFT;
2519 gen6_pte_t scratch_pte, __iomem *gtt_base =
2520 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2521 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2522 int i;
2523 int rpm_atomic_seq;
2524
2525 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2526
2527 if (WARN(num_entries > max_entries,
2528 "First entry = %d; Num entries = %d (max=%d)\n",
2529 first_entry, num_entries, max_entries))
2530 num_entries = max_entries;
2531
2532 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2533 I915_CACHE_LLC, use_scratch, 0);
2534
2535 for (i = 0; i < num_entries; i++)
2536 iowrite32(scratch_pte, &gtt_base[i]);
2537 readl(gtt_base);
2538
2539 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2540 }
2541
2542 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2543 dma_addr_t addr,
2544 uint64_t offset,
2545 enum i915_cache_level cache_level,
2546 u32 unused)
2547 {
2548 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2549 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2550 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2551 int rpm_atomic_seq;
2552
2553 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2554
2555 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2556
2557 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2558 }
2559
2560 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2561 struct sg_table *pages,
2562 uint64_t start,
2563 enum i915_cache_level cache_level, u32 unused)
2564 {
2565 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2566 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2567 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2568 int rpm_atomic_seq;
2569
2570 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2571
2572 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2573
2574 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575
2576 }
2577
2578 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2579 uint64_t start,
2580 uint64_t length,
2581 bool unused)
2582 {
2583 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2584 unsigned first_entry = start >> PAGE_SHIFT;
2585 unsigned num_entries = length >> PAGE_SHIFT;
2586 int rpm_atomic_seq;
2587
2588 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2589
2590 intel_gtt_clear_range(first_entry, num_entries);
2591
2592 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2593 }
2594
2595 static int ggtt_bind_vma(struct i915_vma *vma,
2596 enum i915_cache_level cache_level,
2597 u32 flags)
2598 {
2599 struct drm_i915_gem_object *obj = vma->obj;
2600 u32 pte_flags = 0;
2601 int ret;
2602
2603 ret = i915_get_ggtt_vma_pages(vma);
2604 if (ret)
2605 return ret;
2606
2607 /* Currently applicable only to VLV */
2608 if (obj->gt_ro)
2609 pte_flags |= PTE_READ_ONLY;
2610
2611 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2612 cache_level, pte_flags);
2613
2614 /*
2615 * Without aliasing PPGTT there's no difference between
2616 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2617 * upgrade to both bound if we bind either to avoid double-binding.
2618 */
2619 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2620
2621 return 0;
2622 }
2623
2624 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2625 enum i915_cache_level cache_level,
2626 u32 flags)
2627 {
2628 u32 pte_flags;
2629 int ret;
2630
2631 ret = i915_get_ggtt_vma_pages(vma);
2632 if (ret)
2633 return ret;
2634
2635 /* Currently applicable only to VLV */
2636 pte_flags = 0;
2637 if (vma->obj->gt_ro)
2638 pte_flags |= PTE_READ_ONLY;
2639
2640
2641 if (flags & I915_VMA_GLOBAL_BIND) {
2642 vma->vm->insert_entries(vma->vm,
2643 vma->pages, vma->node.start,
2644 cache_level, pte_flags);
2645 }
2646
2647 if (flags & I915_VMA_LOCAL_BIND) {
2648 struct i915_hw_ppgtt *appgtt =
2649 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2650 appgtt->base.insert_entries(&appgtt->base,
2651 vma->pages, vma->node.start,
2652 cache_level, pte_flags);
2653 }
2654
2655 return 0;
2656 }
2657
2658 static void ggtt_unbind_vma(struct i915_vma *vma)
2659 {
2660 struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2661 const u64 size = min(vma->size, vma->node.size);
2662
2663 if (vma->flags & I915_VMA_GLOBAL_BIND)
2664 vma->vm->clear_range(vma->vm,
2665 vma->node.start, size,
2666 true);
2667
2668 if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2669 appgtt->base.clear_range(&appgtt->base,
2670 vma->node.start, size,
2671 true);
2672 }
2673
2674 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2675 {
2676 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2677 struct device *kdev = &dev_priv->drm.pdev->dev;
2678 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2679
2680 if (unlikely(ggtt->do_idle_maps)) {
2681 if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2682 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2683 /* Wait a bit, in hopes it avoids the hang */
2684 udelay(10);
2685 }
2686 }
2687
2688 dma_unmap_sg(kdev, obj->pages->sgl, obj->pages->nents,
2689 PCI_DMA_BIDIRECTIONAL);
2690 }
2691
2692 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2693 unsigned long color,
2694 u64 *start,
2695 u64 *end)
2696 {
2697 if (node->color != color)
2698 *start += 4096;
2699
2700 node = list_first_entry_or_null(&node->node_list,
2701 struct drm_mm_node,
2702 node_list);
2703 if (node && node->allocated && node->color != color)
2704 *end -= 4096;
2705 }
2706
2707 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2708 {
2709 /* Let GEM Manage all of the aperture.
2710 *
2711 * However, leave one page at the end still bound to the scratch page.
2712 * There are a number of places where the hardware apparently prefetches
2713 * past the end of the object, and we've seen multiple hangs with the
2714 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2715 * aperture. One page should be enough to keep any prefetching inside
2716 * of the aperture.
2717 */
2718 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2719 unsigned long hole_start, hole_end;
2720 struct drm_mm_node *entry;
2721 int ret;
2722
2723 ret = intel_vgt_balloon(dev_priv);
2724 if (ret)
2725 return ret;
2726
2727 /* Clear any non-preallocated blocks */
2728 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2729 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2730 hole_start, hole_end);
2731 ggtt->base.clear_range(&ggtt->base, hole_start,
2732 hole_end - hole_start, true);
2733 }
2734
2735 /* And finally clear the reserved guard page */
2736 ggtt->base.clear_range(&ggtt->base,
2737 ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2738 true);
2739
2740 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2741 struct i915_hw_ppgtt *ppgtt;
2742
2743 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2744 if (!ppgtt)
2745 return -ENOMEM;
2746
2747 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2748 if (ret) {
2749 kfree(ppgtt);
2750 return ret;
2751 }
2752
2753 if (ppgtt->base.allocate_va_range)
2754 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2755 ppgtt->base.total);
2756 if (ret) {
2757 ppgtt->base.cleanup(&ppgtt->base);
2758 kfree(ppgtt);
2759 return ret;
2760 }
2761
2762 ppgtt->base.clear_range(&ppgtt->base,
2763 ppgtt->base.start,
2764 ppgtt->base.total,
2765 true);
2766
2767 dev_priv->mm.aliasing_ppgtt = ppgtt;
2768 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2769 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2770 }
2771
2772 return 0;
2773 }
2774
2775 /**
2776 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2777 * @dev_priv: i915 device
2778 */
2779 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2780 {
2781 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2782
2783 if (dev_priv->mm.aliasing_ppgtt) {
2784 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2785 ppgtt->base.cleanup(&ppgtt->base);
2786 kfree(ppgtt);
2787 }
2788
2789 i915_gem_cleanup_stolen(&dev_priv->drm);
2790
2791 if (drm_mm_initialized(&ggtt->base.mm)) {
2792 intel_vgt_deballoon(dev_priv);
2793
2794 drm_mm_takedown(&ggtt->base.mm);
2795 list_del(&ggtt->base.global_link);
2796 }
2797
2798 ggtt->base.cleanup(&ggtt->base);
2799
2800 arch_phys_wc_del(ggtt->mtrr);
2801 io_mapping_fini(&ggtt->mappable);
2802 }
2803
2804 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2805 {
2806 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2807 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2808 return snb_gmch_ctl << 20;
2809 }
2810
2811 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2812 {
2813 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2814 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2815 if (bdw_gmch_ctl)
2816 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2817
2818 #ifdef CONFIG_X86_32
2819 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2820 if (bdw_gmch_ctl > 4)
2821 bdw_gmch_ctl = 4;
2822 #endif
2823
2824 return bdw_gmch_ctl << 20;
2825 }
2826
2827 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2828 {
2829 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2830 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2831
2832 if (gmch_ctrl)
2833 return 1 << (20 + gmch_ctrl);
2834
2835 return 0;
2836 }
2837
2838 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2839 {
2840 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2841 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2842 return snb_gmch_ctl << 25; /* 32 MB units */
2843 }
2844
2845 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2846 {
2847 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2848 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2849 return bdw_gmch_ctl << 25; /* 32 MB units */
2850 }
2851
2852 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2853 {
2854 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2855 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2856
2857 /*
2858 * 0x0 to 0x10: 32MB increments starting at 0MB
2859 * 0x11 to 0x16: 4MB increments starting at 8MB
2860 * 0x17 to 0x1d: 4MB increments start at 36MB
2861 */
2862 if (gmch_ctrl < 0x11)
2863 return gmch_ctrl << 25;
2864 else if (gmch_ctrl < 0x17)
2865 return (gmch_ctrl - 0x11 + 2) << 22;
2866 else
2867 return (gmch_ctrl - 0x17 + 9) << 22;
2868 }
2869
2870 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2871 {
2872 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2873 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2874
2875 if (gen9_gmch_ctl < 0xf0)
2876 return gen9_gmch_ctl << 25; /* 32 MB units */
2877 else
2878 /* 4MB increments starting at 0xf0 for 4MB */
2879 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2880 }
2881
2882 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2883 {
2884 struct pci_dev *pdev = ggtt->base.dev->pdev;
2885 phys_addr_t phys_addr;
2886 int ret;
2887
2888 /* For Modern GENs the PTEs and register space are split in the BAR */
2889 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2890
2891 /*
2892 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2893 * dropped. For WC mappings in general we have 64 byte burst writes
2894 * when the WC buffer is flushed, so we can't use it, but have to
2895 * resort to an uncached mapping. The WC issue is easily caught by the
2896 * readback check when writing GTT PTE entries.
2897 */
2898 if (IS_BROXTON(ggtt->base.dev))
2899 ggtt->gsm = ioremap_nocache(phys_addr, size);
2900 else
2901 ggtt->gsm = ioremap_wc(phys_addr, size);
2902 if (!ggtt->gsm) {
2903 DRM_ERROR("Failed to map the ggtt page table\n");
2904 return -ENOMEM;
2905 }
2906
2907 ret = setup_scratch_page(ggtt->base.dev,
2908 &ggtt->base.scratch_page,
2909 GFP_DMA32);
2910 if (ret) {
2911 DRM_ERROR("Scratch setup failed\n");
2912 /* iounmap will also get called at remove, but meh */
2913 iounmap(ggtt->gsm);
2914 return ret;
2915 }
2916
2917 return 0;
2918 }
2919
2920 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2921 * bits. When using advanced contexts each context stores its own PAT, but
2922 * writing this data shouldn't be harmful even in those cases. */
2923 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2924 {
2925 uint64_t pat;
2926
2927 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2928 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2929 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2930 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2931 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2932 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2933 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2934 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2935
2936 if (!USES_PPGTT(dev_priv))
2937 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2938 * so RTL will always use the value corresponding to
2939 * pat_sel = 000".
2940 * So let's disable cache for GGTT to avoid screen corruptions.
2941 * MOCS still can be used though.
2942 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2943 * before this patch, i.e. the same uncached + snooping access
2944 * like on gen6/7 seems to be in effect.
2945 * - So this just fixes blitter/render access. Again it looks
2946 * like it's not just uncached access, but uncached + snooping.
2947 * So we can still hold onto all our assumptions wrt cpu
2948 * clflushing on LLC machines.
2949 */
2950 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2951
2952 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2953 * write would work. */
2954 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2955 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2956 }
2957
2958 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2959 {
2960 uint64_t pat;
2961
2962 /*
2963 * Map WB on BDW to snooped on CHV.
2964 *
2965 * Only the snoop bit has meaning for CHV, the rest is
2966 * ignored.
2967 *
2968 * The hardware will never snoop for certain types of accesses:
2969 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2970 * - PPGTT page tables
2971 * - some other special cycles
2972 *
2973 * As with BDW, we also need to consider the following for GT accesses:
2974 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2975 * so RTL will always use the value corresponding to
2976 * pat_sel = 000".
2977 * Which means we must set the snoop bit in PAT entry 0
2978 * in order to keep the global status page working.
2979 */
2980 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2981 GEN8_PPAT(1, 0) |
2982 GEN8_PPAT(2, 0) |
2983 GEN8_PPAT(3, 0) |
2984 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2985 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2986 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2987 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2988
2989 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2990 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2991 }
2992
2993 static void gen6_gmch_remove(struct i915_address_space *vm)
2994 {
2995 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2996
2997 iounmap(ggtt->gsm);
2998 cleanup_scratch_page(vm->dev, &vm->scratch_page);
2999 }
3000
3001 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3002 {
3003 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3004 struct pci_dev *pdev = dev_priv->drm.pdev;
3005 unsigned int size;
3006 u16 snb_gmch_ctl;
3007
3008 /* TODO: We're not aware of mappable constraints on gen8 yet */
3009 ggtt->mappable_base = pci_resource_start(pdev, 2);
3010 ggtt->mappable_end = pci_resource_len(pdev, 2);
3011
3012 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3013 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3014
3015 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3016
3017 if (INTEL_GEN(dev_priv) >= 9) {
3018 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3019 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3020 } else if (IS_CHERRYVIEW(dev_priv)) {
3021 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3022 size = chv_get_total_gtt_size(snb_gmch_ctl);
3023 } else {
3024 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3025 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3026 }
3027
3028 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3029
3030 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3031 chv_setup_private_ppat(dev_priv);
3032 else
3033 bdw_setup_private_ppat(dev_priv);
3034
3035 ggtt->base.cleanup = gen6_gmch_remove;
3036 ggtt->base.bind_vma = ggtt_bind_vma;
3037 ggtt->base.unbind_vma = ggtt_unbind_vma;
3038 ggtt->base.insert_page = gen8_ggtt_insert_page;
3039 ggtt->base.clear_range = nop_clear_range;
3040 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3041 ggtt->base.clear_range = gen8_ggtt_clear_range;
3042
3043 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3044 if (IS_CHERRYVIEW(dev_priv))
3045 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3046
3047 return ggtt_probe_common(ggtt, size);
3048 }
3049
3050 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3051 {
3052 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3053 struct pci_dev *pdev = dev_priv->drm.pdev;
3054 unsigned int size;
3055 u16 snb_gmch_ctl;
3056
3057 ggtt->mappable_base = pci_resource_start(pdev, 2);
3058 ggtt->mappable_end = pci_resource_len(pdev, 2);
3059
3060 /* 64/512MB is the current min/max we actually know of, but this is just
3061 * a coarse sanity check.
3062 */
3063 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3064 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3065 return -ENXIO;
3066 }
3067
3068 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3069 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3070 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3071
3072 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3073
3074 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3075 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3076
3077 ggtt->base.clear_range = gen6_ggtt_clear_range;
3078 ggtt->base.insert_page = gen6_ggtt_insert_page;
3079 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3080 ggtt->base.bind_vma = ggtt_bind_vma;
3081 ggtt->base.unbind_vma = ggtt_unbind_vma;
3082 ggtt->base.cleanup = gen6_gmch_remove;
3083
3084 if (HAS_EDRAM(dev_priv))
3085 ggtt->base.pte_encode = iris_pte_encode;
3086 else if (IS_HASWELL(dev_priv))
3087 ggtt->base.pte_encode = hsw_pte_encode;
3088 else if (IS_VALLEYVIEW(dev_priv))
3089 ggtt->base.pte_encode = byt_pte_encode;
3090 else if (INTEL_GEN(dev_priv) >= 7)
3091 ggtt->base.pte_encode = ivb_pte_encode;
3092 else
3093 ggtt->base.pte_encode = snb_pte_encode;
3094
3095 return ggtt_probe_common(ggtt, size);
3096 }
3097
3098 static void i915_gmch_remove(struct i915_address_space *vm)
3099 {
3100 intel_gmch_remove();
3101 }
3102
3103 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3104 {
3105 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3106 int ret;
3107
3108 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3109 if (!ret) {
3110 DRM_ERROR("failed to set up gmch\n");
3111 return -EIO;
3112 }
3113
3114 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3115 &ggtt->mappable_base, &ggtt->mappable_end);
3116
3117 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3118 ggtt->base.insert_page = i915_ggtt_insert_page;
3119 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3120 ggtt->base.clear_range = i915_ggtt_clear_range;
3121 ggtt->base.bind_vma = ggtt_bind_vma;
3122 ggtt->base.unbind_vma = ggtt_unbind_vma;
3123 ggtt->base.cleanup = i915_gmch_remove;
3124
3125 if (unlikely(ggtt->do_idle_maps))
3126 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3127
3128 return 0;
3129 }
3130
3131 /**
3132 * i915_ggtt_probe_hw - Probe GGTT hardware location
3133 * @dev_priv: i915 device
3134 */
3135 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3136 {
3137 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3138 int ret;
3139
3140 ggtt->base.dev = &dev_priv->drm;
3141
3142 if (INTEL_GEN(dev_priv) <= 5)
3143 ret = i915_gmch_probe(ggtt);
3144 else if (INTEL_GEN(dev_priv) < 8)
3145 ret = gen6_gmch_probe(ggtt);
3146 else
3147 ret = gen8_gmch_probe(ggtt);
3148 if (ret)
3149 return ret;
3150
3151 if ((ggtt->base.total - 1) >> 32) {
3152 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3153 " of address space! Found %lldM!\n",
3154 ggtt->base.total >> 20);
3155 ggtt->base.total = 1ULL << 32;
3156 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3157 }
3158
3159 if (ggtt->mappable_end > ggtt->base.total) {
3160 DRM_ERROR("mappable aperture extends past end of GGTT,"
3161 " aperture=%llx, total=%llx\n",
3162 ggtt->mappable_end, ggtt->base.total);
3163 ggtt->mappable_end = ggtt->base.total;
3164 }
3165
3166 /* GMADR is the PCI mmio aperture into the global GTT. */
3167 DRM_INFO("Memory usable by graphics device = %lluM\n",
3168 ggtt->base.total >> 20);
3169 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3170 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3171 #ifdef CONFIG_INTEL_IOMMU
3172 if (intel_iommu_gfx_mapped)
3173 DRM_INFO("VT-d active for gfx access\n");
3174 #endif
3175
3176 return 0;
3177 }
3178
3179 /**
3180 * i915_ggtt_init_hw - Initialize GGTT hardware
3181 * @dev_priv: i915 device
3182 */
3183 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3184 {
3185 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3186 int ret;
3187
3188 INIT_LIST_HEAD(&dev_priv->vm_list);
3189
3190 /* Subtract the guard page before address space initialization to
3191 * shrink the range used by drm_mm.
3192 */
3193 ggtt->base.total -= PAGE_SIZE;
3194 i915_address_space_init(&ggtt->base, dev_priv);
3195 ggtt->base.total += PAGE_SIZE;
3196 if (!HAS_LLC(dev_priv))
3197 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3198
3199 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3200 dev_priv->ggtt.mappable_base,
3201 dev_priv->ggtt.mappable_end)) {
3202 ret = -EIO;
3203 goto out_gtt_cleanup;
3204 }
3205
3206 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3207
3208 /*
3209 * Initialise stolen early so that we may reserve preallocated
3210 * objects for the BIOS to KMS transition.
3211 */
3212 ret = i915_gem_init_stolen(&dev_priv->drm);
3213 if (ret)
3214 goto out_gtt_cleanup;
3215
3216 return 0;
3217
3218 out_gtt_cleanup:
3219 ggtt->base.cleanup(&ggtt->base);
3220 return ret;
3221 }
3222
3223 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3224 {
3225 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3226 return -EIO;
3227
3228 return 0;
3229 }
3230
3231 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3232 {
3233 struct drm_i915_private *dev_priv = to_i915(dev);
3234 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3235 struct drm_i915_gem_object *obj, *on;
3236
3237 i915_check_and_clear_faults(dev_priv);
3238
3239 /* First fill our portion of the GTT with scratch pages */
3240 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3241 true);
3242
3243 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3244
3245 /* clflush objects bound into the GGTT and rebind them. */
3246 list_for_each_entry_safe(obj, on,
3247 &dev_priv->mm.bound_list, global_list) {
3248 bool ggtt_bound = false;
3249 struct i915_vma *vma;
3250
3251 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3252 if (vma->vm != &ggtt->base)
3253 continue;
3254
3255 if (!i915_vma_unbind(vma))
3256 continue;
3257
3258 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3259 PIN_UPDATE));
3260 ggtt_bound = true;
3261 }
3262
3263 if (ggtt_bound)
3264 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3265 }
3266
3267 ggtt->base.closed = false;
3268
3269 if (INTEL_INFO(dev)->gen >= 8) {
3270 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3271 chv_setup_private_ppat(dev_priv);
3272 else
3273 bdw_setup_private_ppat(dev_priv);
3274
3275 return;
3276 }
3277
3278 if (USES_PPGTT(dev)) {
3279 struct i915_address_space *vm;
3280
3281 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3282 /* TODO: Perhaps it shouldn't be gen6 specific */
3283
3284 struct i915_hw_ppgtt *ppgtt;
3285
3286 if (i915_is_ggtt(vm))
3287 ppgtt = dev_priv->mm.aliasing_ppgtt;
3288 else
3289 ppgtt = i915_vm_to_ppgtt(vm);
3290
3291 gen6_write_page_range(dev_priv, &ppgtt->pd,
3292 0, ppgtt->base.total);
3293 }
3294 }
3295
3296 i915_ggtt_flush(dev_priv);
3297 }
3298
3299 static void
3300 i915_vma_retire(struct i915_gem_active *active,
3301 struct drm_i915_gem_request *rq)
3302 {
3303 const unsigned int idx = rq->engine->id;
3304 struct i915_vma *vma =
3305 container_of(active, struct i915_vma, last_read[idx]);
3306
3307 GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx));
3308
3309 i915_vma_clear_active(vma, idx);
3310 if (i915_vma_is_active(vma))
3311 return;
3312
3313 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3314 if (unlikely(i915_vma_is_closed(vma) && !i915_vma_is_pinned(vma)))
3315 WARN_ON(i915_vma_unbind(vma));
3316 }
3317
3318 void i915_vma_destroy(struct i915_vma *vma)
3319 {
3320 GEM_BUG_ON(vma->node.allocated);
3321 GEM_BUG_ON(i915_vma_is_active(vma));
3322 GEM_BUG_ON(!i915_vma_is_closed(vma));
3323 GEM_BUG_ON(vma->fence);
3324
3325 list_del(&vma->vm_link);
3326 if (!i915_vma_is_ggtt(vma))
3327 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
3328
3329 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
3330 }
3331
3332 void i915_vma_close(struct i915_vma *vma)
3333 {
3334 GEM_BUG_ON(i915_vma_is_closed(vma));
3335 vma->flags |= I915_VMA_CLOSED;
3336
3337 list_del_init(&vma->obj_link);
3338 if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma))
3339 WARN_ON(i915_vma_unbind(vma));
3340 }
3341
3342 static struct i915_vma *
3343 __i915_vma_create(struct drm_i915_gem_object *obj,
3344 struct i915_address_space *vm,
3345 const struct i915_ggtt_view *view)
3346 {
3347 struct i915_vma *vma;
3348 int i;
3349
3350 GEM_BUG_ON(vm->closed);
3351
3352 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3353 if (vma == NULL)
3354 return ERR_PTR(-ENOMEM);
3355
3356 INIT_LIST_HEAD(&vma->exec_list);
3357 for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
3358 init_request_active(&vma->last_read[i], i915_vma_retire);
3359 init_request_active(&vma->last_fence, NULL);
3360 list_add(&vma->vm_link, &vm->unbound_list);
3361 vma->vm = vm;
3362 vma->obj = obj;
3363 vma->size = obj->base.size;
3364
3365 if (view) {
3366 vma->ggtt_view = *view;
3367 if (view->type == I915_GGTT_VIEW_PARTIAL) {
3368 vma->size = view->params.partial.size;
3369 vma->size <<= PAGE_SHIFT;
3370 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3371 vma->size =
3372 intel_rotation_info_size(&view->params.rotated);
3373 vma->size <<= PAGE_SHIFT;
3374 }
3375 }
3376
3377 if (i915_is_ggtt(vm)) {
3378 vma->flags |= I915_VMA_GGTT;
3379 } else {
3380 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3381 }
3382
3383 list_add_tail(&vma->obj_link, &obj->vma_list);
3384 return vma;
3385 }
3386
3387 static inline bool vma_matches(struct i915_vma *vma,
3388 struct i915_address_space *vm,
3389 const struct i915_ggtt_view *view)
3390 {
3391 if (vma->vm != vm)
3392 return false;
3393
3394 if (!i915_vma_is_ggtt(vma))
3395 return true;
3396
3397 if (!view)
3398 return vma->ggtt_view.type == 0;
3399
3400 if (vma->ggtt_view.type != view->type)
3401 return false;
3402
3403 return memcmp(&vma->ggtt_view.params,
3404 &view->params,
3405 sizeof(view->params)) == 0;
3406 }
3407
3408 struct i915_vma *
3409 i915_vma_create(struct drm_i915_gem_object *obj,
3410 struct i915_address_space *vm,
3411 const struct i915_ggtt_view *view)
3412 {
3413 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3414 GEM_BUG_ON(i915_gem_obj_to_vma(obj, vm, view));
3415
3416 return __i915_vma_create(obj, vm, view);
3417 }
3418
3419 struct i915_vma *
3420 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3421 struct i915_address_space *vm,
3422 const struct i915_ggtt_view *view)
3423 {
3424 struct i915_vma *vma;
3425
3426 list_for_each_entry_reverse(vma, &obj->vma_list, obj_link)
3427 if (vma_matches(vma, vm, view))
3428 return vma;
3429
3430 return NULL;
3431 }
3432
3433 struct i915_vma *
3434 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3435 struct i915_address_space *vm,
3436 const struct i915_ggtt_view *view)
3437 {
3438 struct i915_vma *vma;
3439
3440 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3441
3442 vma = i915_gem_obj_to_vma(obj, vm, view);
3443 if (!vma)
3444 vma = __i915_vma_create(obj, vm, view);
3445
3446 GEM_BUG_ON(i915_vma_is_closed(vma));
3447 return vma;
3448 }
3449
3450 static struct scatterlist *
3451 rotate_pages(const dma_addr_t *in, unsigned int offset,
3452 unsigned int width, unsigned int height,
3453 unsigned int stride,
3454 struct sg_table *st, struct scatterlist *sg)
3455 {
3456 unsigned int column, row;
3457 unsigned int src_idx;
3458
3459 for (column = 0; column < width; column++) {
3460 src_idx = stride * (height - 1) + column;
3461 for (row = 0; row < height; row++) {
3462 st->nents++;
3463 /* We don't need the pages, but need to initialize
3464 * the entries so the sg list can be happily traversed.
3465 * The only thing we need are DMA addresses.
3466 */
3467 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3468 sg_dma_address(sg) = in[offset + src_idx];
3469 sg_dma_len(sg) = PAGE_SIZE;
3470 sg = sg_next(sg);
3471 src_idx -= stride;
3472 }
3473 }
3474
3475 return sg;
3476 }
3477
3478 static struct sg_table *
3479 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3480 struct drm_i915_gem_object *obj)
3481 {
3482 const size_t n_pages = obj->base.size / PAGE_SIZE;
3483 unsigned int size = intel_rotation_info_size(rot_info);
3484 struct sgt_iter sgt_iter;
3485 dma_addr_t dma_addr;
3486 unsigned long i;
3487 dma_addr_t *page_addr_list;
3488 struct sg_table *st;
3489 struct scatterlist *sg;
3490 int ret = -ENOMEM;
3491
3492 /* Allocate a temporary list of source pages for random access. */
3493 page_addr_list = drm_malloc_gfp(n_pages,
3494 sizeof(dma_addr_t),
3495 GFP_TEMPORARY);
3496 if (!page_addr_list)
3497 return ERR_PTR(ret);
3498
3499 /* Allocate target SG list. */
3500 st = kmalloc(sizeof(*st), GFP_KERNEL);
3501 if (!st)
3502 goto err_st_alloc;
3503
3504 ret = sg_alloc_table(st, size, GFP_KERNEL);
3505 if (ret)
3506 goto err_sg_alloc;
3507
3508 /* Populate source page list from the object. */
3509 i = 0;
3510 for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3511 page_addr_list[i++] = dma_addr;
3512
3513 GEM_BUG_ON(i != n_pages);
3514 st->nents = 0;
3515 sg = st->sgl;
3516
3517 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3518 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3519 rot_info->plane[i].width, rot_info->plane[i].height,
3520 rot_info->plane[i].stride, st, sg);
3521 }
3522
3523 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3524 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3525
3526 drm_free_large(page_addr_list);
3527
3528 return st;
3529
3530 err_sg_alloc:
3531 kfree(st);
3532 err_st_alloc:
3533 drm_free_large(page_addr_list);
3534
3535 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3536 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3537
3538 return ERR_PTR(ret);
3539 }
3540
3541 static struct sg_table *
3542 intel_partial_pages(const struct i915_ggtt_view *view,
3543 struct drm_i915_gem_object *obj)
3544 {
3545 struct sg_table *st;
3546 struct scatterlist *sg;
3547 struct sg_page_iter obj_sg_iter;
3548 int ret = -ENOMEM;
3549
3550 st = kmalloc(sizeof(*st), GFP_KERNEL);
3551 if (!st)
3552 goto err_st_alloc;
3553
3554 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3555 if (ret)
3556 goto err_sg_alloc;
3557
3558 sg = st->sgl;
3559 st->nents = 0;
3560 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3561 view->params.partial.offset)
3562 {
3563 if (st->nents >= view->params.partial.size)
3564 break;
3565
3566 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3567 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3568 sg_dma_len(sg) = PAGE_SIZE;
3569
3570 sg = sg_next(sg);
3571 st->nents++;
3572 }
3573
3574 return st;
3575
3576 err_sg_alloc:
3577 kfree(st);
3578 err_st_alloc:
3579 return ERR_PTR(ret);
3580 }
3581
3582 static int
3583 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3584 {
3585 int ret = 0;
3586
3587 if (vma->pages)
3588 return 0;
3589
3590 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3591 vma->pages = vma->obj->pages;
3592 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3593 vma->pages =
3594 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3595 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3596 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3597 else
3598 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3599 vma->ggtt_view.type);
3600
3601 if (!vma->pages) {
3602 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3603 vma->ggtt_view.type);
3604 ret = -EINVAL;
3605 } else if (IS_ERR(vma->pages)) {
3606 ret = PTR_ERR(vma->pages);
3607 vma->pages = NULL;
3608 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3609 vma->ggtt_view.type, ret);
3610 }
3611
3612 return ret;
3613 }
3614
3615 /**
3616 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3617 * @vma: VMA to map
3618 * @cache_level: mapping cache level
3619 * @flags: flags like global or local mapping
3620 *
3621 * DMA addresses are taken from the scatter-gather table of this object (or of
3622 * this VMA in case of non-default GGTT views) and PTE entries set up.
3623 * Note that DMA addresses are also the only part of the SG table we care about.
3624 */
3625 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3626 u32 flags)
3627 {
3628 u32 bind_flags;
3629 u32 vma_flags;
3630 int ret;
3631
3632 if (WARN_ON(flags == 0))
3633 return -EINVAL;
3634
3635 bind_flags = 0;
3636 if (flags & PIN_GLOBAL)
3637 bind_flags |= I915_VMA_GLOBAL_BIND;
3638 if (flags & PIN_USER)
3639 bind_flags |= I915_VMA_LOCAL_BIND;
3640
3641 vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3642 if (flags & PIN_UPDATE)
3643 bind_flags |= vma_flags;
3644 else
3645 bind_flags &= ~vma_flags;
3646 if (bind_flags == 0)
3647 return 0;
3648
3649 if (vma_flags == 0 && vma->vm->allocate_va_range) {
3650 trace_i915_va_alloc(vma);
3651 ret = vma->vm->allocate_va_range(vma->vm,
3652 vma->node.start,
3653 vma->node.size);
3654 if (ret)
3655 return ret;
3656 }
3657
3658 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3659 if (ret)
3660 return ret;
3661
3662 vma->flags |= bind_flags;
3663 return 0;
3664 }
3665
3666 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3667 {
3668 void __iomem *ptr;
3669
3670 /* Access through the GTT requires the device to be awake. */
3671 assert_rpm_wakelock_held(to_i915(vma->vm->dev));
3672
3673 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3674 if (WARN_ON(!i915_vma_is_map_and_fenceable(vma)))
3675 return IO_ERR_PTR(-ENODEV);
3676
3677 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3678 GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0);
3679
3680 ptr = vma->iomap;
3681 if (ptr == NULL) {
3682 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->mappable,
3683 vma->node.start,
3684 vma->node.size);
3685 if (ptr == NULL)
3686 return IO_ERR_PTR(-ENOMEM);
3687
3688 vma->iomap = ptr;
3689 }
3690
3691 __i915_vma_pin(vma);
3692 return ptr;
3693 }
3694
3695 void i915_vma_unpin_and_release(struct i915_vma **p_vma)
3696 {
3697 struct i915_vma *vma;
3698
3699 vma = fetch_and_zero(p_vma);
3700 if (!vma)
3701 return;
3702
3703 i915_vma_unpin(vma);
3704 i915_vma_put(vma);
3705 }
This page took 0.122088 seconds and 5 git commands to generate.