mmc: sdhci-acpi: Set MMC_CAP_CMD_DURING_TFR for Intel eMMC controllers
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: Global GTT views
37 *
38 * Background and previous state
39 *
40 * Historically objects could exists (be bound) in global GTT space only as
41 * singular instances with a view representing all of the object's backing pages
42 * in a linear fashion. This view will be called a normal view.
43 *
44 * To support multiple views of the same object, where the number of mapped
45 * pages is not equal to the backing store, or where the layout of the pages
46 * is not linear, concept of a GGTT view was added.
47 *
48 * One example of an alternative view is a stereo display driven by a single
49 * image. In this case we would have a framebuffer looking like this
50 * (2x2 pages):
51 *
52 * 12
53 * 34
54 *
55 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56 * rendering. In contrast, fed to the display engine would be an alternative
57 * view which could look something like this:
58 *
59 * 1212
60 * 3434
61 *
62 * In this example both the size and layout of pages in the alternative view is
63 * different from the normal view.
64 *
65 * Implementation and usage
66 *
67 * GGTT views are implemented using VMAs and are distinguished via enum
68 * i915_ggtt_view_type and struct i915_ggtt_view.
69 *
70 * A new flavour of core GEM functions which work with GGTT bound objects were
71 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72 * renaming in large amounts of code. They take the struct i915_ggtt_view
73 * parameter encapsulating all metadata required to implement a view.
74 *
75 * As a helper for callers which are only interested in the normal view,
76 * globally const i915_ggtt_view_normal singleton instance exists. All old core
77 * GEM API functions, the ones not taking the view parameter, are operating on,
78 * or with the normal GGTT view.
79 *
80 * Code wanting to add or use a new GGTT view needs to:
81 *
82 * 1. Add a new enum with a suitable name.
83 * 2. Extend the metadata in the i915_ggtt_view structure if required.
84 * 3. Add support to i915_get_vma_pages().
85 *
86 * New views are required to build a scatter-gather table from within the
87 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88 * exists for the lifetime of an VMA.
89 *
90 * Core API is designed to have copy semantics which means that passed in
91 * struct i915_ggtt_view does not need to be persistent (left around after
92 * calling the core API functions).
93 *
94 */
95
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
98 {
99 GEM_BUG_ON(!i915_is_ggtt(vm));
100 return container_of(vm, struct i915_ggtt, base);
101 }
102
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107 .type = I915_GGTT_VIEW_NORMAL,
108 };
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110 .type = I915_GGTT_VIEW_ROTATED,
111 };
112
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
114 int enable_ppgtt)
115 {
116 bool has_aliasing_ppgtt;
117 bool has_full_ppgtt;
118 bool has_full_48bit_ppgtt;
119
120 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122 has_full_48bit_ppgtt =
123 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
124
125 if (intel_vgpu_active(dev_priv))
126 has_full_ppgtt = false; /* emulation is too hard */
127
128 if (!has_aliasing_ppgtt)
129 return 0;
130
131 /*
132 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
133 * execlists, the sole mechanism available to submit work.
134 */
135 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
136 return 0;
137
138 if (enable_ppgtt == 1)
139 return 1;
140
141 if (enable_ppgtt == 2 && has_full_ppgtt)
142 return 2;
143
144 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
145 return 3;
146
147 #ifdef CONFIG_INTEL_IOMMU
148 /* Disable ppgtt on SNB if VT-d is on. */
149 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
150 DRM_INFO("Disabling PPGTT because VT-d is on\n");
151 return 0;
152 }
153 #endif
154
155 /* Early VLV doesn't have this */
156 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
157 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
158 return 0;
159 }
160
161 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
162 return has_full_48bit_ppgtt ? 3 : 2;
163 else
164 return has_aliasing_ppgtt ? 1 : 0;
165 }
166
167 static int ppgtt_bind_vma(struct i915_vma *vma,
168 enum i915_cache_level cache_level,
169 u32 unused)
170 {
171 u32 pte_flags = 0;
172
173 /* Currently applicable only to VLV */
174 if (vma->obj->gt_ro)
175 pte_flags |= PTE_READ_ONLY;
176
177 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
178 cache_level, pte_flags);
179
180 return 0;
181 }
182
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185 vma->vm->clear_range(vma->vm,
186 vma->node.start,
187 vma->obj->base.size,
188 true);
189 }
190
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 enum i915_cache_level level,
193 bool valid)
194 {
195 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
196 pte |= addr;
197
198 switch (level) {
199 case I915_CACHE_NONE:
200 pte |= PPAT_UNCACHED_INDEX;
201 break;
202 case I915_CACHE_WT:
203 pte |= PPAT_DISPLAY_ELLC_INDEX;
204 break;
205 default:
206 pte |= PPAT_CACHED_INDEX;
207 break;
208 }
209
210 return pte;
211 }
212
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 const enum i915_cache_level level)
215 {
216 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 pde |= addr;
218 if (level != I915_CACHE_NONE)
219 pde |= PPAT_CACHED_PDE_INDEX;
220 else
221 pde |= PPAT_UNCACHED_INDEX;
222 return pde;
223 }
224
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227
228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
229 enum i915_cache_level level,
230 bool valid, u32 unused)
231 {
232 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233 pte |= GEN6_PTE_ADDR_ENCODE(addr);
234
235 switch (level) {
236 case I915_CACHE_L3_LLC:
237 case I915_CACHE_LLC:
238 pte |= GEN6_PTE_CACHE_LLC;
239 break;
240 case I915_CACHE_NONE:
241 pte |= GEN6_PTE_UNCACHED;
242 break;
243 default:
244 MISSING_CASE(level);
245 }
246
247 return pte;
248 }
249
250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
251 enum i915_cache_level level,
252 bool valid, u32 unused)
253 {
254 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
255 pte |= GEN6_PTE_ADDR_ENCODE(addr);
256
257 switch (level) {
258 case I915_CACHE_L3_LLC:
259 pte |= GEN7_PTE_CACHE_L3_LLC;
260 break;
261 case I915_CACHE_LLC:
262 pte |= GEN6_PTE_CACHE_LLC;
263 break;
264 case I915_CACHE_NONE:
265 pte |= GEN6_PTE_UNCACHED;
266 break;
267 default:
268 MISSING_CASE(level);
269 }
270
271 return pte;
272 }
273
274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
275 enum i915_cache_level level,
276 bool valid, u32 flags)
277 {
278 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279 pte |= GEN6_PTE_ADDR_ENCODE(addr);
280
281 if (!(flags & PTE_READ_ONLY))
282 pte |= BYT_PTE_WRITEABLE;
283
284 if (level != I915_CACHE_NONE)
285 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286
287 return pte;
288 }
289
290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
291 enum i915_cache_level level,
292 bool valid, u32 unused)
293 {
294 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295 pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297 if (level != I915_CACHE_NONE)
298 pte |= HSW_WB_LLC_AGE3;
299
300 return pte;
301 }
302
303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
304 enum i915_cache_level level,
305 bool valid, u32 unused)
306 {
307 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
308 pte |= HSW_PTE_ADDR_ENCODE(addr);
309
310 switch (level) {
311 case I915_CACHE_NONE:
312 break;
313 case I915_CACHE_WT:
314 pte |= HSW_WT_ELLC_LLC_AGE3;
315 break;
316 default:
317 pte |= HSW_WB_ELLC_LLC_AGE3;
318 break;
319 }
320
321 return pte;
322 }
323
324 static int __setup_page_dma(struct drm_device *dev,
325 struct i915_page_dma *p, gfp_t flags)
326 {
327 struct device *device = &dev->pdev->dev;
328
329 p->page = alloc_page(flags);
330 if (!p->page)
331 return -ENOMEM;
332
333 p->daddr = dma_map_page(device,
334 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
335
336 if (dma_mapping_error(device, p->daddr)) {
337 __free_page(p->page);
338 return -EINVAL;
339 }
340
341 return 0;
342 }
343
344 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
345 {
346 return __setup_page_dma(dev, p, GFP_KERNEL);
347 }
348
349 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351 if (WARN_ON(!p->page))
352 return;
353
354 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
355 __free_page(p->page);
356 memset(p, 0, sizeof(*p));
357 }
358
359 static void *kmap_page_dma(struct i915_page_dma *p)
360 {
361 return kmap_atomic(p->page);
362 }
363
364 /* We use the flushing unmap only with ppgtt structures:
365 * page directories, page tables and scratch pages.
366 */
367 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
368 {
369 /* There are only few exceptions for gen >=6. chv and bxt.
370 * And we are not sure about the latter so play safe for now.
371 */
372 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
373 drm_clflush_virt_range(vaddr, PAGE_SIZE);
374
375 kunmap_atomic(vaddr);
376 }
377
378 #define kmap_px(px) kmap_page_dma(px_base(px))
379 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
380
381 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
382 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
383 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
384 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
385
386 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
387 const uint64_t val)
388 {
389 int i;
390 uint64_t * const vaddr = kmap_page_dma(p);
391
392 for (i = 0; i < 512; i++)
393 vaddr[i] = val;
394
395 kunmap_page_dma(dev, vaddr);
396 }
397
398 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
399 const uint32_t val32)
400 {
401 uint64_t v = val32;
402
403 v = v << 32 | val32;
404
405 fill_page_dma(dev, p, v);
406 }
407
408 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
409 {
410 struct i915_page_scratch *sp;
411 int ret;
412
413 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
414 if (sp == NULL)
415 return ERR_PTR(-ENOMEM);
416
417 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
418 if (ret) {
419 kfree(sp);
420 return ERR_PTR(ret);
421 }
422
423 set_pages_uc(px_page(sp), 1);
424
425 return sp;
426 }
427
428 static void free_scratch_page(struct drm_device *dev,
429 struct i915_page_scratch *sp)
430 {
431 set_pages_wb(px_page(sp), 1);
432
433 cleanup_px(dev, sp);
434 kfree(sp);
435 }
436
437 static struct i915_page_table *alloc_pt(struct drm_device *dev)
438 {
439 struct i915_page_table *pt;
440 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
441 GEN8_PTES : GEN6_PTES;
442 int ret = -ENOMEM;
443
444 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
445 if (!pt)
446 return ERR_PTR(-ENOMEM);
447
448 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
449 GFP_KERNEL);
450
451 if (!pt->used_ptes)
452 goto fail_bitmap;
453
454 ret = setup_px(dev, pt);
455 if (ret)
456 goto fail_page_m;
457
458 return pt;
459
460 fail_page_m:
461 kfree(pt->used_ptes);
462 fail_bitmap:
463 kfree(pt);
464
465 return ERR_PTR(ret);
466 }
467
468 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
469 {
470 cleanup_px(dev, pt);
471 kfree(pt->used_ptes);
472 kfree(pt);
473 }
474
475 static void gen8_initialize_pt(struct i915_address_space *vm,
476 struct i915_page_table *pt)
477 {
478 gen8_pte_t scratch_pte;
479
480 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
481 I915_CACHE_LLC, true);
482
483 fill_px(vm->dev, pt, scratch_pte);
484 }
485
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487 struct i915_page_table *pt)
488 {
489 gen6_pte_t scratch_pte;
490
491 WARN_ON(px_dma(vm->scratch_page) == 0);
492
493 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
494 I915_CACHE_LLC, true, 0);
495
496 fill32_px(vm->dev, pt, scratch_pte);
497 }
498
499 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
500 {
501 struct i915_page_directory *pd;
502 int ret = -ENOMEM;
503
504 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
505 if (!pd)
506 return ERR_PTR(-ENOMEM);
507
508 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
509 sizeof(*pd->used_pdes), GFP_KERNEL);
510 if (!pd->used_pdes)
511 goto fail_bitmap;
512
513 ret = setup_px(dev, pd);
514 if (ret)
515 goto fail_page_m;
516
517 return pd;
518
519 fail_page_m:
520 kfree(pd->used_pdes);
521 fail_bitmap:
522 kfree(pd);
523
524 return ERR_PTR(ret);
525 }
526
527 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
528 {
529 if (px_page(pd)) {
530 cleanup_px(dev, pd);
531 kfree(pd->used_pdes);
532 kfree(pd);
533 }
534 }
535
536 static void gen8_initialize_pd(struct i915_address_space *vm,
537 struct i915_page_directory *pd)
538 {
539 gen8_pde_t scratch_pde;
540
541 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
542
543 fill_px(vm->dev, pd, scratch_pde);
544 }
545
546 static int __pdp_init(struct drm_device *dev,
547 struct i915_page_directory_pointer *pdp)
548 {
549 size_t pdpes = I915_PDPES_PER_PDP(dev);
550
551 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
552 sizeof(unsigned long),
553 GFP_KERNEL);
554 if (!pdp->used_pdpes)
555 return -ENOMEM;
556
557 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
558 GFP_KERNEL);
559 if (!pdp->page_directory) {
560 kfree(pdp->used_pdpes);
561 /* the PDP might be the statically allocated top level. Keep it
562 * as clean as possible */
563 pdp->used_pdpes = NULL;
564 return -ENOMEM;
565 }
566
567 return 0;
568 }
569
570 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
571 {
572 kfree(pdp->used_pdpes);
573 kfree(pdp->page_directory);
574 pdp->page_directory = NULL;
575 }
576
577 static struct
578 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
579 {
580 struct i915_page_directory_pointer *pdp;
581 int ret = -ENOMEM;
582
583 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
584
585 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
586 if (!pdp)
587 return ERR_PTR(-ENOMEM);
588
589 ret = __pdp_init(dev, pdp);
590 if (ret)
591 goto fail_bitmap;
592
593 ret = setup_px(dev, pdp);
594 if (ret)
595 goto fail_page_m;
596
597 return pdp;
598
599 fail_page_m:
600 __pdp_fini(pdp);
601 fail_bitmap:
602 kfree(pdp);
603
604 return ERR_PTR(ret);
605 }
606
607 static void free_pdp(struct drm_device *dev,
608 struct i915_page_directory_pointer *pdp)
609 {
610 __pdp_fini(pdp);
611 if (USES_FULL_48BIT_PPGTT(dev)) {
612 cleanup_px(dev, pdp);
613 kfree(pdp);
614 }
615 }
616
617 static void gen8_initialize_pdp(struct i915_address_space *vm,
618 struct i915_page_directory_pointer *pdp)
619 {
620 gen8_ppgtt_pdpe_t scratch_pdpe;
621
622 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
623
624 fill_px(vm->dev, pdp, scratch_pdpe);
625 }
626
627 static void gen8_initialize_pml4(struct i915_address_space *vm,
628 struct i915_pml4 *pml4)
629 {
630 gen8_ppgtt_pml4e_t scratch_pml4e;
631
632 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
633 I915_CACHE_LLC);
634
635 fill_px(vm->dev, pml4, scratch_pml4e);
636 }
637
638 static void
639 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
640 struct i915_page_directory_pointer *pdp,
641 struct i915_page_directory *pd,
642 int index)
643 {
644 gen8_ppgtt_pdpe_t *page_directorypo;
645
646 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
647 return;
648
649 page_directorypo = kmap_px(pdp);
650 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
651 kunmap_px(ppgtt, page_directorypo);
652 }
653
654 static void
655 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
656 struct i915_pml4 *pml4,
657 struct i915_page_directory_pointer *pdp,
658 int index)
659 {
660 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
661
662 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
663 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
664 kunmap_px(ppgtt, pagemap);
665 }
666
667 /* Broadwell Page Directory Pointer Descriptors */
668 static int gen8_write_pdp(struct drm_i915_gem_request *req,
669 unsigned entry,
670 dma_addr_t addr)
671 {
672 struct intel_engine_cs *engine = req->engine;
673 int ret;
674
675 BUG_ON(entry >= 4);
676
677 ret = intel_ring_begin(req, 6);
678 if (ret)
679 return ret;
680
681 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
682 intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
683 intel_ring_emit(engine, upper_32_bits(addr));
684 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
685 intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
686 intel_ring_emit(engine, lower_32_bits(addr));
687 intel_ring_advance(engine);
688
689 return 0;
690 }
691
692 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
693 struct drm_i915_gem_request *req)
694 {
695 int i, ret;
696
697 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
698 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
699
700 ret = gen8_write_pdp(req, i, pd_daddr);
701 if (ret)
702 return ret;
703 }
704
705 return 0;
706 }
707
708 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
709 struct drm_i915_gem_request *req)
710 {
711 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
712 }
713
714 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
715 struct i915_page_directory_pointer *pdp,
716 uint64_t start,
717 uint64_t length,
718 gen8_pte_t scratch_pte)
719 {
720 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
721 gen8_pte_t *pt_vaddr;
722 unsigned pdpe = gen8_pdpe_index(start);
723 unsigned pde = gen8_pde_index(start);
724 unsigned pte = gen8_pte_index(start);
725 unsigned num_entries = length >> PAGE_SHIFT;
726 unsigned last_pte, i;
727
728 if (WARN_ON(!pdp))
729 return;
730
731 while (num_entries) {
732 struct i915_page_directory *pd;
733 struct i915_page_table *pt;
734
735 if (WARN_ON(!pdp->page_directory[pdpe]))
736 break;
737
738 pd = pdp->page_directory[pdpe];
739
740 if (WARN_ON(!pd->page_table[pde]))
741 break;
742
743 pt = pd->page_table[pde];
744
745 if (WARN_ON(!px_page(pt)))
746 break;
747
748 last_pte = pte + num_entries;
749 if (last_pte > GEN8_PTES)
750 last_pte = GEN8_PTES;
751
752 pt_vaddr = kmap_px(pt);
753
754 for (i = pte; i < last_pte; i++) {
755 pt_vaddr[i] = scratch_pte;
756 num_entries--;
757 }
758
759 kunmap_px(ppgtt, pt_vaddr);
760
761 pte = 0;
762 if (++pde == I915_PDES) {
763 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
764 break;
765 pde = 0;
766 }
767 }
768 }
769
770 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
771 uint64_t start,
772 uint64_t length,
773 bool use_scratch)
774 {
775 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
776 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
777 I915_CACHE_LLC, use_scratch);
778
779 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
780 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
781 scratch_pte);
782 } else {
783 uint64_t pml4e;
784 struct i915_page_directory_pointer *pdp;
785
786 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
787 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
788 scratch_pte);
789 }
790 }
791 }
792
793 static void
794 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
795 struct i915_page_directory_pointer *pdp,
796 struct sg_page_iter *sg_iter,
797 uint64_t start,
798 enum i915_cache_level cache_level)
799 {
800 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
801 gen8_pte_t *pt_vaddr;
802 unsigned pdpe = gen8_pdpe_index(start);
803 unsigned pde = gen8_pde_index(start);
804 unsigned pte = gen8_pte_index(start);
805
806 pt_vaddr = NULL;
807
808 while (__sg_page_iter_next(sg_iter)) {
809 if (pt_vaddr == NULL) {
810 struct i915_page_directory *pd = pdp->page_directory[pdpe];
811 struct i915_page_table *pt = pd->page_table[pde];
812 pt_vaddr = kmap_px(pt);
813 }
814
815 pt_vaddr[pte] =
816 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
817 cache_level, true);
818 if (++pte == GEN8_PTES) {
819 kunmap_px(ppgtt, pt_vaddr);
820 pt_vaddr = NULL;
821 if (++pde == I915_PDES) {
822 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
823 break;
824 pde = 0;
825 }
826 pte = 0;
827 }
828 }
829
830 if (pt_vaddr)
831 kunmap_px(ppgtt, pt_vaddr);
832 }
833
834 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
835 struct sg_table *pages,
836 uint64_t start,
837 enum i915_cache_level cache_level,
838 u32 unused)
839 {
840 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
841 struct sg_page_iter sg_iter;
842
843 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
844
845 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
846 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
847 cache_level);
848 } else {
849 struct i915_page_directory_pointer *pdp;
850 uint64_t pml4e;
851 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
852
853 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
854 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
855 start, cache_level);
856 }
857 }
858 }
859
860 static void gen8_free_page_tables(struct drm_device *dev,
861 struct i915_page_directory *pd)
862 {
863 int i;
864
865 if (!px_page(pd))
866 return;
867
868 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
869 if (WARN_ON(!pd->page_table[i]))
870 continue;
871
872 free_pt(dev, pd->page_table[i]);
873 pd->page_table[i] = NULL;
874 }
875 }
876
877 static int gen8_init_scratch(struct i915_address_space *vm)
878 {
879 struct drm_device *dev = vm->dev;
880 int ret;
881
882 vm->scratch_page = alloc_scratch_page(dev);
883 if (IS_ERR(vm->scratch_page))
884 return PTR_ERR(vm->scratch_page);
885
886 vm->scratch_pt = alloc_pt(dev);
887 if (IS_ERR(vm->scratch_pt)) {
888 ret = PTR_ERR(vm->scratch_pt);
889 goto free_scratch_page;
890 }
891
892 vm->scratch_pd = alloc_pd(dev);
893 if (IS_ERR(vm->scratch_pd)) {
894 ret = PTR_ERR(vm->scratch_pd);
895 goto free_pt;
896 }
897
898 if (USES_FULL_48BIT_PPGTT(dev)) {
899 vm->scratch_pdp = alloc_pdp(dev);
900 if (IS_ERR(vm->scratch_pdp)) {
901 ret = PTR_ERR(vm->scratch_pdp);
902 goto free_pd;
903 }
904 }
905
906 gen8_initialize_pt(vm, vm->scratch_pt);
907 gen8_initialize_pd(vm, vm->scratch_pd);
908 if (USES_FULL_48BIT_PPGTT(dev))
909 gen8_initialize_pdp(vm, vm->scratch_pdp);
910
911 return 0;
912
913 free_pd:
914 free_pd(dev, vm->scratch_pd);
915 free_pt:
916 free_pt(dev, vm->scratch_pt);
917 free_scratch_page:
918 free_scratch_page(dev, vm->scratch_page);
919
920 return ret;
921 }
922
923 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
924 {
925 enum vgt_g2v_type msg;
926 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
927 int i;
928
929 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
930 u64 daddr = px_dma(&ppgtt->pml4);
931
932 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
933 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
934
935 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
936 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
937 } else {
938 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
939 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
940
941 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
942 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
943 }
944
945 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
946 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
947 }
948
949 I915_WRITE(vgtif_reg(g2v_notify), msg);
950
951 return 0;
952 }
953
954 static void gen8_free_scratch(struct i915_address_space *vm)
955 {
956 struct drm_device *dev = vm->dev;
957
958 if (USES_FULL_48BIT_PPGTT(dev))
959 free_pdp(dev, vm->scratch_pdp);
960 free_pd(dev, vm->scratch_pd);
961 free_pt(dev, vm->scratch_pt);
962 free_scratch_page(dev, vm->scratch_page);
963 }
964
965 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
966 struct i915_page_directory_pointer *pdp)
967 {
968 int i;
969
970 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
971 if (WARN_ON(!pdp->page_directory[i]))
972 continue;
973
974 gen8_free_page_tables(dev, pdp->page_directory[i]);
975 free_pd(dev, pdp->page_directory[i]);
976 }
977
978 free_pdp(dev, pdp);
979 }
980
981 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
982 {
983 int i;
984
985 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
986 if (WARN_ON(!ppgtt->pml4.pdps[i]))
987 continue;
988
989 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
990 }
991
992 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
993 }
994
995 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
996 {
997 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
998
999 if (intel_vgpu_active(to_i915(vm->dev)))
1000 gen8_ppgtt_notify_vgt(ppgtt, false);
1001
1002 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1003 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1004 else
1005 gen8_ppgtt_cleanup_4lvl(ppgtt);
1006
1007 gen8_free_scratch(vm);
1008 }
1009
1010 /**
1011 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1012 * @vm: Master vm structure.
1013 * @pd: Page directory for this address range.
1014 * @start: Starting virtual address to begin allocations.
1015 * @length: Size of the allocations.
1016 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1017 * caller to free on error.
1018 *
1019 * Allocate the required number of page tables. Extremely similar to
1020 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1021 * the page directory boundary (instead of the page directory pointer). That
1022 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1023 * possible, and likely that the caller will need to use multiple calls of this
1024 * function to achieve the appropriate allocation.
1025 *
1026 * Return: 0 if success; negative error code otherwise.
1027 */
1028 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1029 struct i915_page_directory *pd,
1030 uint64_t start,
1031 uint64_t length,
1032 unsigned long *new_pts)
1033 {
1034 struct drm_device *dev = vm->dev;
1035 struct i915_page_table *pt;
1036 uint32_t pde;
1037
1038 gen8_for_each_pde(pt, pd, start, length, pde) {
1039 /* Don't reallocate page tables */
1040 if (test_bit(pde, pd->used_pdes)) {
1041 /* Scratch is never allocated this way */
1042 WARN_ON(pt == vm->scratch_pt);
1043 continue;
1044 }
1045
1046 pt = alloc_pt(dev);
1047 if (IS_ERR(pt))
1048 goto unwind_out;
1049
1050 gen8_initialize_pt(vm, pt);
1051 pd->page_table[pde] = pt;
1052 __set_bit(pde, new_pts);
1053 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1054 }
1055
1056 return 0;
1057
1058 unwind_out:
1059 for_each_set_bit(pde, new_pts, I915_PDES)
1060 free_pt(dev, pd->page_table[pde]);
1061
1062 return -ENOMEM;
1063 }
1064
1065 /**
1066 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1067 * @vm: Master vm structure.
1068 * @pdp: Page directory pointer for this address range.
1069 * @start: Starting virtual address to begin allocations.
1070 * @length: Size of the allocations.
1071 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1072 * caller to free on error.
1073 *
1074 * Allocate the required number of page directories starting at the pde index of
1075 * @start, and ending at the pde index @start + @length. This function will skip
1076 * over already allocated page directories within the range, and only allocate
1077 * new ones, setting the appropriate pointer within the pdp as well as the
1078 * correct position in the bitmap @new_pds.
1079 *
1080 * The function will only allocate the pages within the range for a give page
1081 * directory pointer. In other words, if @start + @length straddles a virtually
1082 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1083 * required by the caller, This is not currently possible, and the BUG in the
1084 * code will prevent it.
1085 *
1086 * Return: 0 if success; negative error code otherwise.
1087 */
1088 static int
1089 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1090 struct i915_page_directory_pointer *pdp,
1091 uint64_t start,
1092 uint64_t length,
1093 unsigned long *new_pds)
1094 {
1095 struct drm_device *dev = vm->dev;
1096 struct i915_page_directory *pd;
1097 uint32_t pdpe;
1098 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1099
1100 WARN_ON(!bitmap_empty(new_pds, pdpes));
1101
1102 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1103 if (test_bit(pdpe, pdp->used_pdpes))
1104 continue;
1105
1106 pd = alloc_pd(dev);
1107 if (IS_ERR(pd))
1108 goto unwind_out;
1109
1110 gen8_initialize_pd(vm, pd);
1111 pdp->page_directory[pdpe] = pd;
1112 __set_bit(pdpe, new_pds);
1113 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1114 }
1115
1116 return 0;
1117
1118 unwind_out:
1119 for_each_set_bit(pdpe, new_pds, pdpes)
1120 free_pd(dev, pdp->page_directory[pdpe]);
1121
1122 return -ENOMEM;
1123 }
1124
1125 /**
1126 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1127 * @vm: Master vm structure.
1128 * @pml4: Page map level 4 for this address range.
1129 * @start: Starting virtual address to begin allocations.
1130 * @length: Size of the allocations.
1131 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1132 * caller to free on error.
1133 *
1134 * Allocate the required number of page directory pointers. Extremely similar to
1135 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1136 * The main difference is here we are limited by the pml4 boundary (instead of
1137 * the page directory pointer).
1138 *
1139 * Return: 0 if success; negative error code otherwise.
1140 */
1141 static int
1142 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1143 struct i915_pml4 *pml4,
1144 uint64_t start,
1145 uint64_t length,
1146 unsigned long *new_pdps)
1147 {
1148 struct drm_device *dev = vm->dev;
1149 struct i915_page_directory_pointer *pdp;
1150 uint32_t pml4e;
1151
1152 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1153
1154 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1155 if (!test_bit(pml4e, pml4->used_pml4es)) {
1156 pdp = alloc_pdp(dev);
1157 if (IS_ERR(pdp))
1158 goto unwind_out;
1159
1160 gen8_initialize_pdp(vm, pdp);
1161 pml4->pdps[pml4e] = pdp;
1162 __set_bit(pml4e, new_pdps);
1163 trace_i915_page_directory_pointer_entry_alloc(vm,
1164 pml4e,
1165 start,
1166 GEN8_PML4E_SHIFT);
1167 }
1168 }
1169
1170 return 0;
1171
1172 unwind_out:
1173 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1174 free_pdp(dev, pml4->pdps[pml4e]);
1175
1176 return -ENOMEM;
1177 }
1178
1179 static void
1180 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1181 {
1182 kfree(new_pts);
1183 kfree(new_pds);
1184 }
1185
1186 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1187 * of these are based on the number of PDPEs in the system.
1188 */
1189 static
1190 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1191 unsigned long **new_pts,
1192 uint32_t pdpes)
1193 {
1194 unsigned long *pds;
1195 unsigned long *pts;
1196
1197 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1198 if (!pds)
1199 return -ENOMEM;
1200
1201 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1202 GFP_TEMPORARY);
1203 if (!pts)
1204 goto err_out;
1205
1206 *new_pds = pds;
1207 *new_pts = pts;
1208
1209 return 0;
1210
1211 err_out:
1212 free_gen8_temp_bitmaps(pds, pts);
1213 return -ENOMEM;
1214 }
1215
1216 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1217 * the page table structures, we mark them dirty so that
1218 * context switching/execlist queuing code takes extra steps
1219 * to ensure that tlbs are flushed.
1220 */
1221 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1222 {
1223 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1224 }
1225
1226 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1227 struct i915_page_directory_pointer *pdp,
1228 uint64_t start,
1229 uint64_t length)
1230 {
1231 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1232 unsigned long *new_page_dirs, *new_page_tables;
1233 struct drm_device *dev = vm->dev;
1234 struct i915_page_directory *pd;
1235 const uint64_t orig_start = start;
1236 const uint64_t orig_length = length;
1237 uint32_t pdpe;
1238 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1239 int ret;
1240
1241 /* Wrap is never okay since we can only represent 48b, and we don't
1242 * actually use the other side of the canonical address space.
1243 */
1244 if (WARN_ON(start + length < start))
1245 return -ENODEV;
1246
1247 if (WARN_ON(start + length > vm->total))
1248 return -ENODEV;
1249
1250 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1251 if (ret)
1252 return ret;
1253
1254 /* Do the allocations first so we can easily bail out */
1255 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1256 new_page_dirs);
1257 if (ret) {
1258 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1259 return ret;
1260 }
1261
1262 /* For every page directory referenced, allocate page tables */
1263 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1264 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1265 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1266 if (ret)
1267 goto err_out;
1268 }
1269
1270 start = orig_start;
1271 length = orig_length;
1272
1273 /* Allocations have completed successfully, so set the bitmaps, and do
1274 * the mappings. */
1275 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1276 gen8_pde_t *const page_directory = kmap_px(pd);
1277 struct i915_page_table *pt;
1278 uint64_t pd_len = length;
1279 uint64_t pd_start = start;
1280 uint32_t pde;
1281
1282 /* Every pd should be allocated, we just did that above. */
1283 WARN_ON(!pd);
1284
1285 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1286 /* Same reasoning as pd */
1287 WARN_ON(!pt);
1288 WARN_ON(!pd_len);
1289 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1290
1291 /* Set our used ptes within the page table */
1292 bitmap_set(pt->used_ptes,
1293 gen8_pte_index(pd_start),
1294 gen8_pte_count(pd_start, pd_len));
1295
1296 /* Our pde is now pointing to the pagetable, pt */
1297 __set_bit(pde, pd->used_pdes);
1298
1299 /* Map the PDE to the page table */
1300 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1301 I915_CACHE_LLC);
1302 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1303 gen8_pte_index(start),
1304 gen8_pte_count(start, length),
1305 GEN8_PTES);
1306
1307 /* NB: We haven't yet mapped ptes to pages. At this
1308 * point we're still relying on insert_entries() */
1309 }
1310
1311 kunmap_px(ppgtt, page_directory);
1312 __set_bit(pdpe, pdp->used_pdpes);
1313 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1314 }
1315
1316 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1317 mark_tlbs_dirty(ppgtt);
1318 return 0;
1319
1320 err_out:
1321 while (pdpe--) {
1322 unsigned long temp;
1323
1324 for_each_set_bit(temp, new_page_tables + pdpe *
1325 BITS_TO_LONGS(I915_PDES), I915_PDES)
1326 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1327 }
1328
1329 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1330 free_pd(dev, pdp->page_directory[pdpe]);
1331
1332 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1333 mark_tlbs_dirty(ppgtt);
1334 return ret;
1335 }
1336
1337 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1338 struct i915_pml4 *pml4,
1339 uint64_t start,
1340 uint64_t length)
1341 {
1342 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1343 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1344 struct i915_page_directory_pointer *pdp;
1345 uint64_t pml4e;
1346 int ret = 0;
1347
1348 /* Do the pml4 allocations first, so we don't need to track the newly
1349 * allocated tables below the pdp */
1350 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1351
1352 /* The pagedirectory and pagetable allocations are done in the shared 3
1353 * and 4 level code. Just allocate the pdps.
1354 */
1355 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1356 new_pdps);
1357 if (ret)
1358 return ret;
1359
1360 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1361 "The allocation has spanned more than 512GB. "
1362 "It is highly likely this is incorrect.");
1363
1364 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1365 WARN_ON(!pdp);
1366
1367 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1368 if (ret)
1369 goto err_out;
1370
1371 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1372 }
1373
1374 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1375 GEN8_PML4ES_PER_PML4);
1376
1377 return 0;
1378
1379 err_out:
1380 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1381 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1382
1383 return ret;
1384 }
1385
1386 static int gen8_alloc_va_range(struct i915_address_space *vm,
1387 uint64_t start, uint64_t length)
1388 {
1389 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1390
1391 if (USES_FULL_48BIT_PPGTT(vm->dev))
1392 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1393 else
1394 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1395 }
1396
1397 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1398 uint64_t start, uint64_t length,
1399 gen8_pte_t scratch_pte,
1400 struct seq_file *m)
1401 {
1402 struct i915_page_directory *pd;
1403 uint32_t pdpe;
1404
1405 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1406 struct i915_page_table *pt;
1407 uint64_t pd_len = length;
1408 uint64_t pd_start = start;
1409 uint32_t pde;
1410
1411 if (!test_bit(pdpe, pdp->used_pdpes))
1412 continue;
1413
1414 seq_printf(m, "\tPDPE #%d\n", pdpe);
1415 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1416 uint32_t pte;
1417 gen8_pte_t *pt_vaddr;
1418
1419 if (!test_bit(pde, pd->used_pdes))
1420 continue;
1421
1422 pt_vaddr = kmap_px(pt);
1423 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1424 uint64_t va =
1425 (pdpe << GEN8_PDPE_SHIFT) |
1426 (pde << GEN8_PDE_SHIFT) |
1427 (pte << GEN8_PTE_SHIFT);
1428 int i;
1429 bool found = false;
1430
1431 for (i = 0; i < 4; i++)
1432 if (pt_vaddr[pte + i] != scratch_pte)
1433 found = true;
1434 if (!found)
1435 continue;
1436
1437 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1438 for (i = 0; i < 4; i++) {
1439 if (pt_vaddr[pte + i] != scratch_pte)
1440 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1441 else
1442 seq_puts(m, " SCRATCH ");
1443 }
1444 seq_puts(m, "\n");
1445 }
1446 /* don't use kunmap_px, it could trigger
1447 * an unnecessary flush.
1448 */
1449 kunmap_atomic(pt_vaddr);
1450 }
1451 }
1452 }
1453
1454 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1455 {
1456 struct i915_address_space *vm = &ppgtt->base;
1457 uint64_t start = ppgtt->base.start;
1458 uint64_t length = ppgtt->base.total;
1459 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1460 I915_CACHE_LLC, true);
1461
1462 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1463 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1464 } else {
1465 uint64_t pml4e;
1466 struct i915_pml4 *pml4 = &ppgtt->pml4;
1467 struct i915_page_directory_pointer *pdp;
1468
1469 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1470 if (!test_bit(pml4e, pml4->used_pml4es))
1471 continue;
1472
1473 seq_printf(m, " PML4E #%llu\n", pml4e);
1474 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1475 }
1476 }
1477 }
1478
1479 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1480 {
1481 unsigned long *new_page_dirs, *new_page_tables;
1482 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1483 int ret;
1484
1485 /* We allocate temp bitmap for page tables for no gain
1486 * but as this is for init only, lets keep the things simple
1487 */
1488 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1489 if (ret)
1490 return ret;
1491
1492 /* Allocate for all pdps regardless of how the ppgtt
1493 * was defined.
1494 */
1495 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1496 0, 1ULL << 32,
1497 new_page_dirs);
1498 if (!ret)
1499 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1500
1501 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1502
1503 return ret;
1504 }
1505
1506 /*
1507 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1508 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1509 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1510 * space.
1511 *
1512 */
1513 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1514 {
1515 int ret;
1516
1517 ret = gen8_init_scratch(&ppgtt->base);
1518 if (ret)
1519 return ret;
1520
1521 ppgtt->base.start = 0;
1522 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1523 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1524 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1525 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1526 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1527 ppgtt->base.bind_vma = ppgtt_bind_vma;
1528 ppgtt->debug_dump = gen8_dump_ppgtt;
1529
1530 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1531 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1532 if (ret)
1533 goto free_scratch;
1534
1535 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1536
1537 ppgtt->base.total = 1ULL << 48;
1538 ppgtt->switch_mm = gen8_48b_mm_switch;
1539 } else {
1540 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1541 if (ret)
1542 goto free_scratch;
1543
1544 ppgtt->base.total = 1ULL << 32;
1545 ppgtt->switch_mm = gen8_legacy_mm_switch;
1546 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1547 0, 0,
1548 GEN8_PML4E_SHIFT);
1549
1550 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1551 ret = gen8_preallocate_top_level_pdps(ppgtt);
1552 if (ret)
1553 goto free_scratch;
1554 }
1555 }
1556
1557 if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1558 gen8_ppgtt_notify_vgt(ppgtt, true);
1559
1560 return 0;
1561
1562 free_scratch:
1563 gen8_free_scratch(&ppgtt->base);
1564 return ret;
1565 }
1566
1567 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1568 {
1569 struct i915_address_space *vm = &ppgtt->base;
1570 struct i915_page_table *unused;
1571 gen6_pte_t scratch_pte;
1572 uint32_t pd_entry;
1573 uint32_t pte, pde;
1574 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1575
1576 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1577 I915_CACHE_LLC, true, 0);
1578
1579 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1580 u32 expected;
1581 gen6_pte_t *pt_vaddr;
1582 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1583 pd_entry = readl(ppgtt->pd_addr + pde);
1584 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1585
1586 if (pd_entry != expected)
1587 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1588 pde,
1589 pd_entry,
1590 expected);
1591 seq_printf(m, "\tPDE: %x\n", pd_entry);
1592
1593 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1594
1595 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1596 unsigned long va =
1597 (pde * PAGE_SIZE * GEN6_PTES) +
1598 (pte * PAGE_SIZE);
1599 int i;
1600 bool found = false;
1601 for (i = 0; i < 4; i++)
1602 if (pt_vaddr[pte + i] != scratch_pte)
1603 found = true;
1604 if (!found)
1605 continue;
1606
1607 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1608 for (i = 0; i < 4; i++) {
1609 if (pt_vaddr[pte + i] != scratch_pte)
1610 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1611 else
1612 seq_puts(m, " SCRATCH ");
1613 }
1614 seq_puts(m, "\n");
1615 }
1616 kunmap_px(ppgtt, pt_vaddr);
1617 }
1618 }
1619
1620 /* Write pde (index) from the page directory @pd to the page table @pt */
1621 static void gen6_write_pde(struct i915_page_directory *pd,
1622 const int pde, struct i915_page_table *pt)
1623 {
1624 /* Caller needs to make sure the write completes if necessary */
1625 struct i915_hw_ppgtt *ppgtt =
1626 container_of(pd, struct i915_hw_ppgtt, pd);
1627 u32 pd_entry;
1628
1629 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1630 pd_entry |= GEN6_PDE_VALID;
1631
1632 writel(pd_entry, ppgtt->pd_addr + pde);
1633 }
1634
1635 /* Write all the page tables found in the ppgtt structure to incrementing page
1636 * directories. */
1637 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1638 struct i915_page_directory *pd,
1639 uint32_t start, uint32_t length)
1640 {
1641 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1642 struct i915_page_table *pt;
1643 uint32_t pde;
1644
1645 gen6_for_each_pde(pt, pd, start, length, pde)
1646 gen6_write_pde(pd, pde, pt);
1647
1648 /* Make sure write is complete before other code can use this page
1649 * table. Also require for WC mapped PTEs */
1650 readl(ggtt->gsm);
1651 }
1652
1653 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1654 {
1655 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1656
1657 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1658 }
1659
1660 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1661 struct drm_i915_gem_request *req)
1662 {
1663 struct intel_engine_cs *engine = req->engine;
1664 int ret;
1665
1666 /* NB: TLBs must be flushed and invalidated before a switch */
1667 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1668 if (ret)
1669 return ret;
1670
1671 ret = intel_ring_begin(req, 6);
1672 if (ret)
1673 return ret;
1674
1675 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1676 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1677 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1678 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1679 intel_ring_emit(engine, get_pd_offset(ppgtt));
1680 intel_ring_emit(engine, MI_NOOP);
1681 intel_ring_advance(engine);
1682
1683 return 0;
1684 }
1685
1686 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1687 struct drm_i915_gem_request *req)
1688 {
1689 struct intel_engine_cs *engine = req->engine;
1690 int ret;
1691
1692 /* NB: TLBs must be flushed and invalidated before a switch */
1693 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1694 if (ret)
1695 return ret;
1696
1697 ret = intel_ring_begin(req, 6);
1698 if (ret)
1699 return ret;
1700
1701 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1702 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1703 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1704 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1705 intel_ring_emit(engine, get_pd_offset(ppgtt));
1706 intel_ring_emit(engine, MI_NOOP);
1707 intel_ring_advance(engine);
1708
1709 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1710 if (engine->id != RCS) {
1711 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1712 if (ret)
1713 return ret;
1714 }
1715
1716 return 0;
1717 }
1718
1719 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1720 struct drm_i915_gem_request *req)
1721 {
1722 struct intel_engine_cs *engine = req->engine;
1723 struct drm_i915_private *dev_priv = req->i915;
1724
1725 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1726 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1727 return 0;
1728 }
1729
1730 static void gen8_ppgtt_enable(struct drm_device *dev)
1731 {
1732 struct drm_i915_private *dev_priv = to_i915(dev);
1733 struct intel_engine_cs *engine;
1734
1735 for_each_engine(engine, dev_priv) {
1736 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1737 I915_WRITE(RING_MODE_GEN7(engine),
1738 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1739 }
1740 }
1741
1742 static void gen7_ppgtt_enable(struct drm_device *dev)
1743 {
1744 struct drm_i915_private *dev_priv = to_i915(dev);
1745 struct intel_engine_cs *engine;
1746 uint32_t ecochk, ecobits;
1747
1748 ecobits = I915_READ(GAC_ECO_BITS);
1749 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1750
1751 ecochk = I915_READ(GAM_ECOCHK);
1752 if (IS_HASWELL(dev)) {
1753 ecochk |= ECOCHK_PPGTT_WB_HSW;
1754 } else {
1755 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1756 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1757 }
1758 I915_WRITE(GAM_ECOCHK, ecochk);
1759
1760 for_each_engine(engine, dev_priv) {
1761 /* GFX_MODE is per-ring on gen7+ */
1762 I915_WRITE(RING_MODE_GEN7(engine),
1763 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1764 }
1765 }
1766
1767 static void gen6_ppgtt_enable(struct drm_device *dev)
1768 {
1769 struct drm_i915_private *dev_priv = to_i915(dev);
1770 uint32_t ecochk, gab_ctl, ecobits;
1771
1772 ecobits = I915_READ(GAC_ECO_BITS);
1773 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1774 ECOBITS_PPGTT_CACHE64B);
1775
1776 gab_ctl = I915_READ(GAB_CTL);
1777 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1778
1779 ecochk = I915_READ(GAM_ECOCHK);
1780 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1781
1782 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1783 }
1784
1785 /* PPGTT support for Sandybdrige/Gen6 and later */
1786 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1787 uint64_t start,
1788 uint64_t length,
1789 bool use_scratch)
1790 {
1791 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1792 gen6_pte_t *pt_vaddr, scratch_pte;
1793 unsigned first_entry = start >> PAGE_SHIFT;
1794 unsigned num_entries = length >> PAGE_SHIFT;
1795 unsigned act_pt = first_entry / GEN6_PTES;
1796 unsigned first_pte = first_entry % GEN6_PTES;
1797 unsigned last_pte, i;
1798
1799 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1800 I915_CACHE_LLC, true, 0);
1801
1802 while (num_entries) {
1803 last_pte = first_pte + num_entries;
1804 if (last_pte > GEN6_PTES)
1805 last_pte = GEN6_PTES;
1806
1807 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1808
1809 for (i = first_pte; i < last_pte; i++)
1810 pt_vaddr[i] = scratch_pte;
1811
1812 kunmap_px(ppgtt, pt_vaddr);
1813
1814 num_entries -= last_pte - first_pte;
1815 first_pte = 0;
1816 act_pt++;
1817 }
1818 }
1819
1820 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1821 struct sg_table *pages,
1822 uint64_t start,
1823 enum i915_cache_level cache_level, u32 flags)
1824 {
1825 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1826 unsigned first_entry = start >> PAGE_SHIFT;
1827 unsigned act_pt = first_entry / GEN6_PTES;
1828 unsigned act_pte = first_entry % GEN6_PTES;
1829 gen6_pte_t *pt_vaddr = NULL;
1830 struct sgt_iter sgt_iter;
1831 dma_addr_t addr;
1832
1833 for_each_sgt_dma(addr, sgt_iter, pages) {
1834 if (pt_vaddr == NULL)
1835 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1836
1837 pt_vaddr[act_pte] =
1838 vm->pte_encode(addr, cache_level, true, flags);
1839
1840 if (++act_pte == GEN6_PTES) {
1841 kunmap_px(ppgtt, pt_vaddr);
1842 pt_vaddr = NULL;
1843 act_pt++;
1844 act_pte = 0;
1845 }
1846 }
1847
1848 if (pt_vaddr)
1849 kunmap_px(ppgtt, pt_vaddr);
1850 }
1851
1852 static int gen6_alloc_va_range(struct i915_address_space *vm,
1853 uint64_t start_in, uint64_t length_in)
1854 {
1855 DECLARE_BITMAP(new_page_tables, I915_PDES);
1856 struct drm_device *dev = vm->dev;
1857 struct drm_i915_private *dev_priv = to_i915(dev);
1858 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1859 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1860 struct i915_page_table *pt;
1861 uint32_t start, length, start_save, length_save;
1862 uint32_t pde;
1863 int ret;
1864
1865 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1866 return -ENODEV;
1867
1868 start = start_save = start_in;
1869 length = length_save = length_in;
1870
1871 bitmap_zero(new_page_tables, I915_PDES);
1872
1873 /* The allocation is done in two stages so that we can bail out with
1874 * minimal amount of pain. The first stage finds new page tables that
1875 * need allocation. The second stage marks use ptes within the page
1876 * tables.
1877 */
1878 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1879 if (pt != vm->scratch_pt) {
1880 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1881 continue;
1882 }
1883
1884 /* We've already allocated a page table */
1885 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1886
1887 pt = alloc_pt(dev);
1888 if (IS_ERR(pt)) {
1889 ret = PTR_ERR(pt);
1890 goto unwind_out;
1891 }
1892
1893 gen6_initialize_pt(vm, pt);
1894
1895 ppgtt->pd.page_table[pde] = pt;
1896 __set_bit(pde, new_page_tables);
1897 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1898 }
1899
1900 start = start_save;
1901 length = length_save;
1902
1903 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1904 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1905
1906 bitmap_zero(tmp_bitmap, GEN6_PTES);
1907 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1908 gen6_pte_count(start, length));
1909
1910 if (__test_and_clear_bit(pde, new_page_tables))
1911 gen6_write_pde(&ppgtt->pd, pde, pt);
1912
1913 trace_i915_page_table_entry_map(vm, pde, pt,
1914 gen6_pte_index(start),
1915 gen6_pte_count(start, length),
1916 GEN6_PTES);
1917 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1918 GEN6_PTES);
1919 }
1920
1921 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1922
1923 /* Make sure write is complete before other code can use this page
1924 * table. Also require for WC mapped PTEs */
1925 readl(ggtt->gsm);
1926
1927 mark_tlbs_dirty(ppgtt);
1928 return 0;
1929
1930 unwind_out:
1931 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1932 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1933
1934 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1935 free_pt(vm->dev, pt);
1936 }
1937
1938 mark_tlbs_dirty(ppgtt);
1939 return ret;
1940 }
1941
1942 static int gen6_init_scratch(struct i915_address_space *vm)
1943 {
1944 struct drm_device *dev = vm->dev;
1945
1946 vm->scratch_page = alloc_scratch_page(dev);
1947 if (IS_ERR(vm->scratch_page))
1948 return PTR_ERR(vm->scratch_page);
1949
1950 vm->scratch_pt = alloc_pt(dev);
1951 if (IS_ERR(vm->scratch_pt)) {
1952 free_scratch_page(dev, vm->scratch_page);
1953 return PTR_ERR(vm->scratch_pt);
1954 }
1955
1956 gen6_initialize_pt(vm, vm->scratch_pt);
1957
1958 return 0;
1959 }
1960
1961 static void gen6_free_scratch(struct i915_address_space *vm)
1962 {
1963 struct drm_device *dev = vm->dev;
1964
1965 free_pt(dev, vm->scratch_pt);
1966 free_scratch_page(dev, vm->scratch_page);
1967 }
1968
1969 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1970 {
1971 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1972 struct i915_page_directory *pd = &ppgtt->pd;
1973 struct drm_device *dev = vm->dev;
1974 struct i915_page_table *pt;
1975 uint32_t pde;
1976
1977 drm_mm_remove_node(&ppgtt->node);
1978
1979 gen6_for_all_pdes(pt, pd, pde)
1980 if (pt != vm->scratch_pt)
1981 free_pt(dev, pt);
1982
1983 gen6_free_scratch(vm);
1984 }
1985
1986 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1987 {
1988 struct i915_address_space *vm = &ppgtt->base;
1989 struct drm_device *dev = ppgtt->base.dev;
1990 struct drm_i915_private *dev_priv = to_i915(dev);
1991 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1992 bool retried = false;
1993 int ret;
1994
1995 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1996 * allocator works in address space sizes, so it's multiplied by page
1997 * size. We allocate at the top of the GTT to avoid fragmentation.
1998 */
1999 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2000
2001 ret = gen6_init_scratch(vm);
2002 if (ret)
2003 return ret;
2004
2005 alloc:
2006 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2007 &ppgtt->node, GEN6_PD_SIZE,
2008 GEN6_PD_ALIGN, 0,
2009 0, ggtt->base.total,
2010 DRM_MM_TOPDOWN);
2011 if (ret == -ENOSPC && !retried) {
2012 ret = i915_gem_evict_something(dev, &ggtt->base,
2013 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2014 I915_CACHE_NONE,
2015 0, ggtt->base.total,
2016 0);
2017 if (ret)
2018 goto err_out;
2019
2020 retried = true;
2021 goto alloc;
2022 }
2023
2024 if (ret)
2025 goto err_out;
2026
2027
2028 if (ppgtt->node.start < ggtt->mappable_end)
2029 DRM_DEBUG("Forced to use aperture for PDEs\n");
2030
2031 return 0;
2032
2033 err_out:
2034 gen6_free_scratch(vm);
2035 return ret;
2036 }
2037
2038 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2039 {
2040 return gen6_ppgtt_allocate_page_directories(ppgtt);
2041 }
2042
2043 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2044 uint64_t start, uint64_t length)
2045 {
2046 struct i915_page_table *unused;
2047 uint32_t pde;
2048
2049 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2050 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2051 }
2052
2053 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2054 {
2055 struct drm_device *dev = ppgtt->base.dev;
2056 struct drm_i915_private *dev_priv = to_i915(dev);
2057 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2058 int ret;
2059
2060 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2061 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2062 ppgtt->switch_mm = gen6_mm_switch;
2063 else if (IS_HASWELL(dev))
2064 ppgtt->switch_mm = hsw_mm_switch;
2065 else if (IS_GEN7(dev))
2066 ppgtt->switch_mm = gen7_mm_switch;
2067 else
2068 BUG();
2069
2070 ret = gen6_ppgtt_alloc(ppgtt);
2071 if (ret)
2072 return ret;
2073
2074 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2075 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2076 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2077 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2078 ppgtt->base.bind_vma = ppgtt_bind_vma;
2079 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2080 ppgtt->base.start = 0;
2081 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2082 ppgtt->debug_dump = gen6_dump_ppgtt;
2083
2084 ppgtt->pd.base.ggtt_offset =
2085 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2086
2087 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2088 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2089
2090 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2091
2092 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2093
2094 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2095 ppgtt->node.size >> 20,
2096 ppgtt->node.start / PAGE_SIZE);
2097
2098 DRM_DEBUG("Adding PPGTT at offset %x\n",
2099 ppgtt->pd.base.ggtt_offset << 10);
2100
2101 return 0;
2102 }
2103
2104 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2105 {
2106 ppgtt->base.dev = dev;
2107
2108 if (INTEL_INFO(dev)->gen < 8)
2109 return gen6_ppgtt_init(ppgtt);
2110 else
2111 return gen8_ppgtt_init(ppgtt);
2112 }
2113
2114 static void i915_address_space_init(struct i915_address_space *vm,
2115 struct drm_i915_private *dev_priv)
2116 {
2117 drm_mm_init(&vm->mm, vm->start, vm->total);
2118 vm->dev = &dev_priv->drm;
2119 INIT_LIST_HEAD(&vm->active_list);
2120 INIT_LIST_HEAD(&vm->inactive_list);
2121 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2122 }
2123
2124 static void gtt_write_workarounds(struct drm_device *dev)
2125 {
2126 struct drm_i915_private *dev_priv = to_i915(dev);
2127
2128 /* This function is for gtt related workarounds. This function is
2129 * called on driver load and after a GPU reset, so you can place
2130 * workarounds here even if they get overwritten by GPU reset.
2131 */
2132 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2133 if (IS_BROADWELL(dev))
2134 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2135 else if (IS_CHERRYVIEW(dev))
2136 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2137 else if (IS_SKYLAKE(dev))
2138 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2139 else if (IS_BROXTON(dev))
2140 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2141 }
2142
2143 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2144 {
2145 struct drm_i915_private *dev_priv = to_i915(dev);
2146 int ret = 0;
2147
2148 ret = __hw_ppgtt_init(dev, ppgtt);
2149 if (ret == 0) {
2150 kref_init(&ppgtt->ref);
2151 i915_address_space_init(&ppgtt->base, dev_priv);
2152 }
2153
2154 return ret;
2155 }
2156
2157 int i915_ppgtt_init_hw(struct drm_device *dev)
2158 {
2159 gtt_write_workarounds(dev);
2160
2161 /* In the case of execlists, PPGTT is enabled by the context descriptor
2162 * and the PDPs are contained within the context itself. We don't
2163 * need to do anything here. */
2164 if (i915.enable_execlists)
2165 return 0;
2166
2167 if (!USES_PPGTT(dev))
2168 return 0;
2169
2170 if (IS_GEN6(dev))
2171 gen6_ppgtt_enable(dev);
2172 else if (IS_GEN7(dev))
2173 gen7_ppgtt_enable(dev);
2174 else if (INTEL_INFO(dev)->gen >= 8)
2175 gen8_ppgtt_enable(dev);
2176 else
2177 MISSING_CASE(INTEL_INFO(dev)->gen);
2178
2179 return 0;
2180 }
2181
2182 struct i915_hw_ppgtt *
2183 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2184 {
2185 struct i915_hw_ppgtt *ppgtt;
2186 int ret;
2187
2188 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2189 if (!ppgtt)
2190 return ERR_PTR(-ENOMEM);
2191
2192 ret = i915_ppgtt_init(dev, ppgtt);
2193 if (ret) {
2194 kfree(ppgtt);
2195 return ERR_PTR(ret);
2196 }
2197
2198 ppgtt->file_priv = fpriv;
2199
2200 trace_i915_ppgtt_create(&ppgtt->base);
2201
2202 return ppgtt;
2203 }
2204
2205 void i915_ppgtt_release(struct kref *kref)
2206 {
2207 struct i915_hw_ppgtt *ppgtt =
2208 container_of(kref, struct i915_hw_ppgtt, ref);
2209
2210 trace_i915_ppgtt_release(&ppgtt->base);
2211
2212 /* vmas should already be unbound */
2213 WARN_ON(!list_empty(&ppgtt->base.active_list));
2214 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2215
2216 list_del(&ppgtt->base.global_link);
2217 drm_mm_takedown(&ppgtt->base.mm);
2218
2219 ppgtt->base.cleanup(&ppgtt->base);
2220 kfree(ppgtt);
2221 }
2222
2223 extern int intel_iommu_gfx_mapped;
2224 /* Certain Gen5 chipsets require require idling the GPU before
2225 * unmapping anything from the GTT when VT-d is enabled.
2226 */
2227 static bool needs_idle_maps(struct drm_device *dev)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230 /* Query intel_iommu to see if we need the workaround. Presumably that
2231 * was loaded first.
2232 */
2233 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2234 return true;
2235 #endif
2236 return false;
2237 }
2238
2239 static bool do_idling(struct drm_i915_private *dev_priv)
2240 {
2241 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2242 bool ret = dev_priv->mm.interruptible;
2243
2244 if (unlikely(ggtt->do_idle_maps)) {
2245 dev_priv->mm.interruptible = false;
2246 if (i915_gem_wait_for_idle(dev_priv)) {
2247 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2248 /* Wait a bit, in hopes it avoids the hang */
2249 udelay(10);
2250 }
2251 }
2252
2253 return ret;
2254 }
2255
2256 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2257 {
2258 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2259
2260 if (unlikely(ggtt->do_idle_maps))
2261 dev_priv->mm.interruptible = interruptible;
2262 }
2263
2264 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2265 {
2266 struct intel_engine_cs *engine;
2267
2268 if (INTEL_INFO(dev_priv)->gen < 6)
2269 return;
2270
2271 for_each_engine(engine, dev_priv) {
2272 u32 fault_reg;
2273 fault_reg = I915_READ(RING_FAULT_REG(engine));
2274 if (fault_reg & RING_FAULT_VALID) {
2275 DRM_DEBUG_DRIVER("Unexpected fault\n"
2276 "\tAddr: 0x%08lx\n"
2277 "\tAddress space: %s\n"
2278 "\tSource ID: %d\n"
2279 "\tType: %d\n",
2280 fault_reg & PAGE_MASK,
2281 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2282 RING_FAULT_SRCID(fault_reg),
2283 RING_FAULT_FAULT_TYPE(fault_reg));
2284 I915_WRITE(RING_FAULT_REG(engine),
2285 fault_reg & ~RING_FAULT_VALID);
2286 }
2287 }
2288 POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2289 }
2290
2291 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2292 {
2293 if (INTEL_INFO(dev_priv)->gen < 6) {
2294 intel_gtt_chipset_flush();
2295 } else {
2296 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2297 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2298 }
2299 }
2300
2301 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2302 {
2303 struct drm_i915_private *dev_priv = to_i915(dev);
2304 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2305
2306 /* Don't bother messing with faults pre GEN6 as we have little
2307 * documentation supporting that it's a good idea.
2308 */
2309 if (INTEL_INFO(dev)->gen < 6)
2310 return;
2311
2312 i915_check_and_clear_faults(dev_priv);
2313
2314 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2315 true);
2316
2317 i915_ggtt_flush(dev_priv);
2318 }
2319
2320 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2321 {
2322 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2323 obj->pages->sgl, obj->pages->nents,
2324 PCI_DMA_BIDIRECTIONAL))
2325 return -ENOSPC;
2326
2327 return 0;
2328 }
2329
2330 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2331 {
2332 #ifdef writeq
2333 writeq(pte, addr);
2334 #else
2335 iowrite32((u32)pte, addr);
2336 iowrite32(pte >> 32, addr + 4);
2337 #endif
2338 }
2339
2340 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2341 dma_addr_t addr,
2342 uint64_t offset,
2343 enum i915_cache_level level,
2344 u32 unused)
2345 {
2346 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2347 gen8_pte_t __iomem *pte =
2348 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2349 (offset >> PAGE_SHIFT);
2350 int rpm_atomic_seq;
2351
2352 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2353
2354 gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2355
2356 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2357 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2358
2359 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2360 }
2361
2362 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2363 struct sg_table *st,
2364 uint64_t start,
2365 enum i915_cache_level level, u32 unused)
2366 {
2367 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2368 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2369 struct sgt_iter sgt_iter;
2370 gen8_pte_t __iomem *gtt_entries;
2371 gen8_pte_t gtt_entry;
2372 dma_addr_t addr;
2373 int rpm_atomic_seq;
2374 int i = 0;
2375
2376 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2377
2378 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2379
2380 for_each_sgt_dma(addr, sgt_iter, st) {
2381 gtt_entry = gen8_pte_encode(addr, level, true);
2382 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2383 }
2384
2385 /*
2386 * XXX: This serves as a posting read to make sure that the PTE has
2387 * actually been updated. There is some concern that even though
2388 * registers and PTEs are within the same BAR that they are potentially
2389 * of NUMA access patterns. Therefore, even with the way we assume
2390 * hardware should work, we must keep this posting read for paranoia.
2391 */
2392 if (i != 0)
2393 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2394
2395 /* This next bit makes the above posting read even more important. We
2396 * want to flush the TLBs only after we're certain all the PTE updates
2397 * have finished.
2398 */
2399 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2400 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2401
2402 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2403 }
2404
2405 struct insert_entries {
2406 struct i915_address_space *vm;
2407 struct sg_table *st;
2408 uint64_t start;
2409 enum i915_cache_level level;
2410 u32 flags;
2411 };
2412
2413 static int gen8_ggtt_insert_entries__cb(void *_arg)
2414 {
2415 struct insert_entries *arg = _arg;
2416 gen8_ggtt_insert_entries(arg->vm, arg->st,
2417 arg->start, arg->level, arg->flags);
2418 return 0;
2419 }
2420
2421 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2422 struct sg_table *st,
2423 uint64_t start,
2424 enum i915_cache_level level,
2425 u32 flags)
2426 {
2427 struct insert_entries arg = { vm, st, start, level, flags };
2428 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2429 }
2430
2431 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2432 dma_addr_t addr,
2433 uint64_t offset,
2434 enum i915_cache_level level,
2435 u32 flags)
2436 {
2437 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2438 gen6_pte_t __iomem *pte =
2439 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2440 (offset >> PAGE_SHIFT);
2441 int rpm_atomic_seq;
2442
2443 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2444
2445 iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2446
2447 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2448 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2449
2450 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2451 }
2452
2453 /*
2454 * Binds an object into the global gtt with the specified cache level. The object
2455 * will be accessible to the GPU via commands whose operands reference offsets
2456 * within the global GTT as well as accessible by the GPU through the GMADR
2457 * mapped BAR (dev_priv->mm.gtt->gtt).
2458 */
2459 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2460 struct sg_table *st,
2461 uint64_t start,
2462 enum i915_cache_level level, u32 flags)
2463 {
2464 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2465 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2466 struct sgt_iter sgt_iter;
2467 gen6_pte_t __iomem *gtt_entries;
2468 gen6_pte_t gtt_entry;
2469 dma_addr_t addr;
2470 int rpm_atomic_seq;
2471 int i = 0;
2472
2473 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2474
2475 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2476
2477 for_each_sgt_dma(addr, sgt_iter, st) {
2478 gtt_entry = vm->pte_encode(addr, level, true, flags);
2479 iowrite32(gtt_entry, &gtt_entries[i++]);
2480 }
2481
2482 /* XXX: This serves as a posting read to make sure that the PTE has
2483 * actually been updated. There is some concern that even though
2484 * registers and PTEs are within the same BAR that they are potentially
2485 * of NUMA access patterns. Therefore, even with the way we assume
2486 * hardware should work, we must keep this posting read for paranoia.
2487 */
2488 if (i != 0)
2489 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2490
2491 /* This next bit makes the above posting read even more important. We
2492 * want to flush the TLBs only after we're certain all the PTE updates
2493 * have finished.
2494 */
2495 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2496 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2497
2498 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2499 }
2500
2501 static void nop_clear_range(struct i915_address_space *vm,
2502 uint64_t start,
2503 uint64_t length,
2504 bool use_scratch)
2505 {
2506 }
2507
2508 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2509 uint64_t start,
2510 uint64_t length,
2511 bool use_scratch)
2512 {
2513 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2514 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2515 unsigned first_entry = start >> PAGE_SHIFT;
2516 unsigned num_entries = length >> PAGE_SHIFT;
2517 gen8_pte_t scratch_pte, __iomem *gtt_base =
2518 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2519 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2520 int i;
2521 int rpm_atomic_seq;
2522
2523 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2524
2525 if (WARN(num_entries > max_entries,
2526 "First entry = %d; Num entries = %d (max=%d)\n",
2527 first_entry, num_entries, max_entries))
2528 num_entries = max_entries;
2529
2530 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2531 I915_CACHE_LLC,
2532 use_scratch);
2533 for (i = 0; i < num_entries; i++)
2534 gen8_set_pte(&gtt_base[i], scratch_pte);
2535 readl(gtt_base);
2536
2537 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2538 }
2539
2540 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2541 uint64_t start,
2542 uint64_t length,
2543 bool use_scratch)
2544 {
2545 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2546 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2547 unsigned first_entry = start >> PAGE_SHIFT;
2548 unsigned num_entries = length >> PAGE_SHIFT;
2549 gen6_pte_t scratch_pte, __iomem *gtt_base =
2550 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2551 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2552 int i;
2553 int rpm_atomic_seq;
2554
2555 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2556
2557 if (WARN(num_entries > max_entries,
2558 "First entry = %d; Num entries = %d (max=%d)\n",
2559 first_entry, num_entries, max_entries))
2560 num_entries = max_entries;
2561
2562 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2563 I915_CACHE_LLC, use_scratch, 0);
2564
2565 for (i = 0; i < num_entries; i++)
2566 iowrite32(scratch_pte, &gtt_base[i]);
2567 readl(gtt_base);
2568
2569 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2570 }
2571
2572 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2573 dma_addr_t addr,
2574 uint64_t offset,
2575 enum i915_cache_level cache_level,
2576 u32 unused)
2577 {
2578 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2579 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2580 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2581 int rpm_atomic_seq;
2582
2583 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2584
2585 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2586
2587 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2588 }
2589
2590 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2591 struct sg_table *pages,
2592 uint64_t start,
2593 enum i915_cache_level cache_level, u32 unused)
2594 {
2595 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2596 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2597 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2598 int rpm_atomic_seq;
2599
2600 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2601
2602 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2603
2604 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2605
2606 }
2607
2608 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2609 uint64_t start,
2610 uint64_t length,
2611 bool unused)
2612 {
2613 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2614 unsigned first_entry = start >> PAGE_SHIFT;
2615 unsigned num_entries = length >> PAGE_SHIFT;
2616 int rpm_atomic_seq;
2617
2618 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2619
2620 intel_gtt_clear_range(first_entry, num_entries);
2621
2622 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2623 }
2624
2625 static int ggtt_bind_vma(struct i915_vma *vma,
2626 enum i915_cache_level cache_level,
2627 u32 flags)
2628 {
2629 struct drm_i915_gem_object *obj = vma->obj;
2630 u32 pte_flags = 0;
2631 int ret;
2632
2633 ret = i915_get_ggtt_vma_pages(vma);
2634 if (ret)
2635 return ret;
2636
2637 /* Currently applicable only to VLV */
2638 if (obj->gt_ro)
2639 pte_flags |= PTE_READ_ONLY;
2640
2641 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2642 vma->node.start,
2643 cache_level, pte_flags);
2644
2645 /*
2646 * Without aliasing PPGTT there's no difference between
2647 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2648 * upgrade to both bound if we bind either to avoid double-binding.
2649 */
2650 vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2651
2652 return 0;
2653 }
2654
2655 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2656 enum i915_cache_level cache_level,
2657 u32 flags)
2658 {
2659 u32 pte_flags;
2660 int ret;
2661
2662 ret = i915_get_ggtt_vma_pages(vma);
2663 if (ret)
2664 return ret;
2665
2666 /* Currently applicable only to VLV */
2667 pte_flags = 0;
2668 if (vma->obj->gt_ro)
2669 pte_flags |= PTE_READ_ONLY;
2670
2671
2672 if (flags & GLOBAL_BIND) {
2673 vma->vm->insert_entries(vma->vm,
2674 vma->ggtt_view.pages,
2675 vma->node.start,
2676 cache_level, pte_flags);
2677 }
2678
2679 if (flags & LOCAL_BIND) {
2680 struct i915_hw_ppgtt *appgtt =
2681 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2682 appgtt->base.insert_entries(&appgtt->base,
2683 vma->ggtt_view.pages,
2684 vma->node.start,
2685 cache_level, pte_flags);
2686 }
2687
2688 return 0;
2689 }
2690
2691 static void ggtt_unbind_vma(struct i915_vma *vma)
2692 {
2693 struct drm_device *dev = vma->vm->dev;
2694 struct drm_i915_private *dev_priv = to_i915(dev);
2695 struct drm_i915_gem_object *obj = vma->obj;
2696 const uint64_t size = min_t(uint64_t,
2697 obj->base.size,
2698 vma->node.size);
2699
2700 if (vma->bound & GLOBAL_BIND) {
2701 vma->vm->clear_range(vma->vm,
2702 vma->node.start,
2703 size,
2704 true);
2705 }
2706
2707 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2708 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2709
2710 appgtt->base.clear_range(&appgtt->base,
2711 vma->node.start,
2712 size,
2713 true);
2714 }
2715 }
2716
2717 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2718 {
2719 struct drm_device *dev = obj->base.dev;
2720 struct drm_i915_private *dev_priv = to_i915(dev);
2721 bool interruptible;
2722
2723 interruptible = do_idling(dev_priv);
2724
2725 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2726 PCI_DMA_BIDIRECTIONAL);
2727
2728 undo_idling(dev_priv, interruptible);
2729 }
2730
2731 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2732 unsigned long color,
2733 u64 *start,
2734 u64 *end)
2735 {
2736 if (node->color != color)
2737 *start += 4096;
2738
2739 if (!list_empty(&node->node_list)) {
2740 node = list_entry(node->node_list.next,
2741 struct drm_mm_node,
2742 node_list);
2743 if (node->allocated && node->color != color)
2744 *end -= 4096;
2745 }
2746 }
2747
2748 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2749 u64 start,
2750 u64 mappable_end,
2751 u64 end)
2752 {
2753 /* Let GEM Manage all of the aperture.
2754 *
2755 * However, leave one page at the end still bound to the scratch page.
2756 * There are a number of places where the hardware apparently prefetches
2757 * past the end of the object, and we've seen multiple hangs with the
2758 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2759 * aperture. One page should be enough to keep any prefetching inside
2760 * of the aperture.
2761 */
2762 struct drm_i915_private *dev_priv = to_i915(dev);
2763 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2764 struct drm_mm_node *entry;
2765 struct drm_i915_gem_object *obj;
2766 unsigned long hole_start, hole_end;
2767 int ret;
2768
2769 BUG_ON(mappable_end > end);
2770
2771 ggtt->base.start = start;
2772
2773 /* Subtract the guard page before address space initialization to
2774 * shrink the range used by drm_mm */
2775 ggtt->base.total = end - start - PAGE_SIZE;
2776 i915_address_space_init(&ggtt->base, dev_priv);
2777 ggtt->base.total += PAGE_SIZE;
2778
2779 ret = intel_vgt_balloon(dev_priv);
2780 if (ret)
2781 return ret;
2782
2783 if (!HAS_LLC(dev))
2784 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2785
2786 /* Mark any preallocated objects as occupied */
2787 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2788 struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2789
2790 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2791 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2792
2793 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2794 ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2795 if (ret) {
2796 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2797 return ret;
2798 }
2799 vma->bound |= GLOBAL_BIND;
2800 __i915_vma_set_map_and_fenceable(vma);
2801 list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2802 }
2803
2804 /* Clear any non-preallocated blocks */
2805 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2806 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2807 hole_start, hole_end);
2808 ggtt->base.clear_range(&ggtt->base, hole_start,
2809 hole_end - hole_start, true);
2810 }
2811
2812 /* And finally clear the reserved guard page */
2813 ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2814
2815 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2816 struct i915_hw_ppgtt *ppgtt;
2817
2818 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2819 if (!ppgtt)
2820 return -ENOMEM;
2821
2822 ret = __hw_ppgtt_init(dev, ppgtt);
2823 if (ret) {
2824 ppgtt->base.cleanup(&ppgtt->base);
2825 kfree(ppgtt);
2826 return ret;
2827 }
2828
2829 if (ppgtt->base.allocate_va_range)
2830 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2831 ppgtt->base.total);
2832 if (ret) {
2833 ppgtt->base.cleanup(&ppgtt->base);
2834 kfree(ppgtt);
2835 return ret;
2836 }
2837
2838 ppgtt->base.clear_range(&ppgtt->base,
2839 ppgtt->base.start,
2840 ppgtt->base.total,
2841 true);
2842
2843 dev_priv->mm.aliasing_ppgtt = ppgtt;
2844 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2845 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2846 }
2847
2848 return 0;
2849 }
2850
2851 /**
2852 * i915_gem_init_ggtt - Initialize GEM for Global GTT
2853 * @dev: DRM device
2854 */
2855 void i915_gem_init_ggtt(struct drm_device *dev)
2856 {
2857 struct drm_i915_private *dev_priv = to_i915(dev);
2858 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2859
2860 i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2861 }
2862
2863 /**
2864 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2865 * @dev: DRM device
2866 */
2867 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2868 {
2869 struct drm_i915_private *dev_priv = to_i915(dev);
2870 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2871
2872 if (dev_priv->mm.aliasing_ppgtt) {
2873 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2874
2875 ppgtt->base.cleanup(&ppgtt->base);
2876 kfree(ppgtt);
2877 }
2878
2879 i915_gem_cleanup_stolen(dev);
2880
2881 if (drm_mm_initialized(&ggtt->base.mm)) {
2882 intel_vgt_deballoon(dev_priv);
2883
2884 drm_mm_takedown(&ggtt->base.mm);
2885 list_del(&ggtt->base.global_link);
2886 }
2887
2888 ggtt->base.cleanup(&ggtt->base);
2889 }
2890
2891 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2892 {
2893 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2894 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2895 return snb_gmch_ctl << 20;
2896 }
2897
2898 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2899 {
2900 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2901 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2902 if (bdw_gmch_ctl)
2903 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2904
2905 #ifdef CONFIG_X86_32
2906 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2907 if (bdw_gmch_ctl > 4)
2908 bdw_gmch_ctl = 4;
2909 #endif
2910
2911 return bdw_gmch_ctl << 20;
2912 }
2913
2914 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2915 {
2916 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2917 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2918
2919 if (gmch_ctrl)
2920 return 1 << (20 + gmch_ctrl);
2921
2922 return 0;
2923 }
2924
2925 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2926 {
2927 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2928 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2929 return snb_gmch_ctl << 25; /* 32 MB units */
2930 }
2931
2932 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2933 {
2934 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2935 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2936 return bdw_gmch_ctl << 25; /* 32 MB units */
2937 }
2938
2939 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2940 {
2941 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2942 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2943
2944 /*
2945 * 0x0 to 0x10: 32MB increments starting at 0MB
2946 * 0x11 to 0x16: 4MB increments starting at 8MB
2947 * 0x17 to 0x1d: 4MB increments start at 36MB
2948 */
2949 if (gmch_ctrl < 0x11)
2950 return gmch_ctrl << 25;
2951 else if (gmch_ctrl < 0x17)
2952 return (gmch_ctrl - 0x11 + 2) << 22;
2953 else
2954 return (gmch_ctrl - 0x17 + 9) << 22;
2955 }
2956
2957 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2958 {
2959 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2960 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2961
2962 if (gen9_gmch_ctl < 0xf0)
2963 return gen9_gmch_ctl << 25; /* 32 MB units */
2964 else
2965 /* 4MB increments starting at 0xf0 for 4MB */
2966 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2967 }
2968
2969 static int ggtt_probe_common(struct drm_device *dev,
2970 size_t gtt_size)
2971 {
2972 struct drm_i915_private *dev_priv = to_i915(dev);
2973 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2974 struct i915_page_scratch *scratch_page;
2975 phys_addr_t ggtt_phys_addr;
2976
2977 /* For Modern GENs the PTEs and register space are split in the BAR */
2978 ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2979 (pci_resource_len(dev->pdev, 0) / 2);
2980
2981 /*
2982 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2983 * dropped. For WC mappings in general we have 64 byte burst writes
2984 * when the WC buffer is flushed, so we can't use it, but have to
2985 * resort to an uncached mapping. The WC issue is easily caught by the
2986 * readback check when writing GTT PTE entries.
2987 */
2988 if (IS_BROXTON(dev))
2989 ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2990 else
2991 ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2992 if (!ggtt->gsm) {
2993 DRM_ERROR("Failed to map the gtt page table\n");
2994 return -ENOMEM;
2995 }
2996
2997 scratch_page = alloc_scratch_page(dev);
2998 if (IS_ERR(scratch_page)) {
2999 DRM_ERROR("Scratch setup failed\n");
3000 /* iounmap will also get called at remove, but meh */
3001 iounmap(ggtt->gsm);
3002 return PTR_ERR(scratch_page);
3003 }
3004
3005 ggtt->base.scratch_page = scratch_page;
3006
3007 return 0;
3008 }
3009
3010 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3011 * bits. When using advanced contexts each context stores its own PAT, but
3012 * writing this data shouldn't be harmful even in those cases. */
3013 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3014 {
3015 uint64_t pat;
3016
3017 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
3018 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3019 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3020 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
3021 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3022 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3023 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3024 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3025
3026 if (!USES_PPGTT(dev_priv))
3027 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3028 * so RTL will always use the value corresponding to
3029 * pat_sel = 000".
3030 * So let's disable cache for GGTT to avoid screen corruptions.
3031 * MOCS still can be used though.
3032 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3033 * before this patch, i.e. the same uncached + snooping access
3034 * like on gen6/7 seems to be in effect.
3035 * - So this just fixes blitter/render access. Again it looks
3036 * like it's not just uncached access, but uncached + snooping.
3037 * So we can still hold onto all our assumptions wrt cpu
3038 * clflushing on LLC machines.
3039 */
3040 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3041
3042 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3043 * write would work. */
3044 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3045 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3046 }
3047
3048 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3049 {
3050 uint64_t pat;
3051
3052 /*
3053 * Map WB on BDW to snooped on CHV.
3054 *
3055 * Only the snoop bit has meaning for CHV, the rest is
3056 * ignored.
3057 *
3058 * The hardware will never snoop for certain types of accesses:
3059 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3060 * - PPGTT page tables
3061 * - some other special cycles
3062 *
3063 * As with BDW, we also need to consider the following for GT accesses:
3064 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3065 * so RTL will always use the value corresponding to
3066 * pat_sel = 000".
3067 * Which means we must set the snoop bit in PAT entry 0
3068 * in order to keep the global status page working.
3069 */
3070 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3071 GEN8_PPAT(1, 0) |
3072 GEN8_PPAT(2, 0) |
3073 GEN8_PPAT(3, 0) |
3074 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3075 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3076 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3077 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3078
3079 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3080 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3081 }
3082
3083 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3084 {
3085 struct drm_device *dev = ggtt->base.dev;
3086 struct drm_i915_private *dev_priv = to_i915(dev);
3087 u16 snb_gmch_ctl;
3088 int ret;
3089
3090 /* TODO: We're not aware of mappable constraints on gen8 yet */
3091 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3092 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3093
3094 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3095 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3096
3097 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3098
3099 if (INTEL_INFO(dev)->gen >= 9) {
3100 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3101 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3102 } else if (IS_CHERRYVIEW(dev)) {
3103 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3104 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3105 } else {
3106 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3107 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3108 }
3109
3110 ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3111
3112 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3113 chv_setup_private_ppat(dev_priv);
3114 else
3115 bdw_setup_private_ppat(dev_priv);
3116
3117 ret = ggtt_probe_common(dev, ggtt->size);
3118
3119 ggtt->base.bind_vma = ggtt_bind_vma;
3120 ggtt->base.unbind_vma = ggtt_unbind_vma;
3121 ggtt->base.insert_page = gen8_ggtt_insert_page;
3122 ggtt->base.clear_range = nop_clear_range;
3123 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3124 ggtt->base.clear_range = gen8_ggtt_clear_range;
3125
3126 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3127 if (IS_CHERRYVIEW(dev_priv))
3128 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3129
3130 return ret;
3131 }
3132
3133 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3134 {
3135 struct drm_device *dev = ggtt->base.dev;
3136 u16 snb_gmch_ctl;
3137 int ret;
3138
3139 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3140 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3141
3142 /* 64/512MB is the current min/max we actually know of, but this is just
3143 * a coarse sanity check.
3144 */
3145 if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3146 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3147 return -ENXIO;
3148 }
3149
3150 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3151 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3152 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3153
3154 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3155 ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3156 ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3157
3158 ret = ggtt_probe_common(dev, ggtt->size);
3159
3160 ggtt->base.clear_range = gen6_ggtt_clear_range;
3161 ggtt->base.insert_page = gen6_ggtt_insert_page;
3162 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3163 ggtt->base.bind_vma = ggtt_bind_vma;
3164 ggtt->base.unbind_vma = ggtt_unbind_vma;
3165
3166 return ret;
3167 }
3168
3169 static void gen6_gmch_remove(struct i915_address_space *vm)
3170 {
3171 struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3172
3173 iounmap(ggtt->gsm);
3174 free_scratch_page(vm->dev, vm->scratch_page);
3175 }
3176
3177 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3178 {
3179 struct drm_device *dev = ggtt->base.dev;
3180 struct drm_i915_private *dev_priv = to_i915(dev);
3181 int ret;
3182
3183 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3184 if (!ret) {
3185 DRM_ERROR("failed to set up gmch\n");
3186 return -EIO;
3187 }
3188
3189 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3190 &ggtt->mappable_base, &ggtt->mappable_end);
3191
3192 ggtt->do_idle_maps = needs_idle_maps(&dev_priv->drm);
3193 ggtt->base.insert_page = i915_ggtt_insert_page;
3194 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3195 ggtt->base.clear_range = i915_ggtt_clear_range;
3196 ggtt->base.bind_vma = ggtt_bind_vma;
3197 ggtt->base.unbind_vma = ggtt_unbind_vma;
3198
3199 if (unlikely(ggtt->do_idle_maps))
3200 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3201
3202 return 0;
3203 }
3204
3205 static void i915_gmch_remove(struct i915_address_space *vm)
3206 {
3207 intel_gmch_remove();
3208 }
3209
3210 /**
3211 * i915_ggtt_init_hw - Initialize GGTT hardware
3212 * @dev: DRM device
3213 */
3214 int i915_ggtt_init_hw(struct drm_device *dev)
3215 {
3216 struct drm_i915_private *dev_priv = to_i915(dev);
3217 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3218 int ret;
3219
3220 if (INTEL_INFO(dev)->gen <= 5) {
3221 ggtt->probe = i915_gmch_probe;
3222 ggtt->base.cleanup = i915_gmch_remove;
3223 } else if (INTEL_INFO(dev)->gen < 8) {
3224 ggtt->probe = gen6_gmch_probe;
3225 ggtt->base.cleanup = gen6_gmch_remove;
3226
3227 if (HAS_EDRAM(dev))
3228 ggtt->base.pte_encode = iris_pte_encode;
3229 else if (IS_HASWELL(dev))
3230 ggtt->base.pte_encode = hsw_pte_encode;
3231 else if (IS_VALLEYVIEW(dev))
3232 ggtt->base.pte_encode = byt_pte_encode;
3233 else if (INTEL_INFO(dev)->gen >= 7)
3234 ggtt->base.pte_encode = ivb_pte_encode;
3235 else
3236 ggtt->base.pte_encode = snb_pte_encode;
3237 } else {
3238 ggtt->probe = gen8_gmch_probe;
3239 ggtt->base.cleanup = gen6_gmch_remove;
3240 }
3241
3242 ggtt->base.dev = dev;
3243 ggtt->base.is_ggtt = true;
3244
3245 ret = ggtt->probe(ggtt);
3246 if (ret)
3247 return ret;
3248
3249 if ((ggtt->base.total - 1) >> 32) {
3250 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3251 "of address space! Found %lldM!\n",
3252 ggtt->base.total >> 20);
3253 ggtt->base.total = 1ULL << 32;
3254 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3255 }
3256
3257 /*
3258 * Initialise stolen early so that we may reserve preallocated
3259 * objects for the BIOS to KMS transition.
3260 */
3261 ret = i915_gem_init_stolen(dev);
3262 if (ret)
3263 goto out_gtt_cleanup;
3264
3265 /* GMADR is the PCI mmio aperture into the global GTT. */
3266 DRM_INFO("Memory usable by graphics device = %lluM\n",
3267 ggtt->base.total >> 20);
3268 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3269 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3270 #ifdef CONFIG_INTEL_IOMMU
3271 if (intel_iommu_gfx_mapped)
3272 DRM_INFO("VT-d active for gfx access\n");
3273 #endif
3274
3275 return 0;
3276
3277 out_gtt_cleanup:
3278 ggtt->base.cleanup(&ggtt->base);
3279
3280 return ret;
3281 }
3282
3283 int i915_ggtt_enable_hw(struct drm_device *dev)
3284 {
3285 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3286 return -EIO;
3287
3288 return 0;
3289 }
3290
3291 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3292 {
3293 struct drm_i915_private *dev_priv = to_i915(dev);
3294 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3295 struct drm_i915_gem_object *obj;
3296 struct i915_vma *vma;
3297
3298 i915_check_and_clear_faults(dev_priv);
3299
3300 /* First fill our portion of the GTT with scratch pages */
3301 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3302 true);
3303
3304 /* Cache flush objects bound into GGTT and rebind them. */
3305 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3306 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3307 if (vma->vm != &ggtt->base)
3308 continue;
3309
3310 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3311 PIN_UPDATE));
3312 }
3313
3314 if (obj->pin_display)
3315 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3316 }
3317
3318 if (INTEL_INFO(dev)->gen >= 8) {
3319 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3320 chv_setup_private_ppat(dev_priv);
3321 else
3322 bdw_setup_private_ppat(dev_priv);
3323
3324 return;
3325 }
3326
3327 if (USES_PPGTT(dev)) {
3328 struct i915_address_space *vm;
3329
3330 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3331 /* TODO: Perhaps it shouldn't be gen6 specific */
3332
3333 struct i915_hw_ppgtt *ppgtt;
3334
3335 if (vm->is_ggtt)
3336 ppgtt = dev_priv->mm.aliasing_ppgtt;
3337 else
3338 ppgtt = i915_vm_to_ppgtt(vm);
3339
3340 gen6_write_page_range(dev_priv, &ppgtt->pd,
3341 0, ppgtt->base.total);
3342 }
3343 }
3344
3345 i915_ggtt_flush(dev_priv);
3346 }
3347
3348 static struct i915_vma *
3349 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3350 struct i915_address_space *vm,
3351 const struct i915_ggtt_view *ggtt_view)
3352 {
3353 struct i915_vma *vma;
3354
3355 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3356 return ERR_PTR(-EINVAL);
3357
3358 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3359 if (vma == NULL)
3360 return ERR_PTR(-ENOMEM);
3361
3362 INIT_LIST_HEAD(&vma->vm_link);
3363 INIT_LIST_HEAD(&vma->obj_link);
3364 INIT_LIST_HEAD(&vma->exec_list);
3365 vma->vm = vm;
3366 vma->obj = obj;
3367 vma->is_ggtt = i915_is_ggtt(vm);
3368
3369 if (i915_is_ggtt(vm))
3370 vma->ggtt_view = *ggtt_view;
3371 else
3372 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3373
3374 list_add_tail(&vma->obj_link, &obj->vma_list);
3375
3376 return vma;
3377 }
3378
3379 struct i915_vma *
3380 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3381 struct i915_address_space *vm)
3382 {
3383 struct i915_vma *vma;
3384
3385 vma = i915_gem_obj_to_vma(obj, vm);
3386 if (!vma)
3387 vma = __i915_gem_vma_create(obj, vm,
3388 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3389
3390 return vma;
3391 }
3392
3393 struct i915_vma *
3394 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3395 const struct i915_ggtt_view *view)
3396 {
3397 struct drm_device *dev = obj->base.dev;
3398 struct drm_i915_private *dev_priv = to_i915(dev);
3399 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3400 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3401
3402 if (!vma)
3403 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3404
3405 return vma;
3406
3407 }
3408
3409 static struct scatterlist *
3410 rotate_pages(const dma_addr_t *in, unsigned int offset,
3411 unsigned int width, unsigned int height,
3412 unsigned int stride,
3413 struct sg_table *st, struct scatterlist *sg)
3414 {
3415 unsigned int column, row;
3416 unsigned int src_idx;
3417
3418 for (column = 0; column < width; column++) {
3419 src_idx = stride * (height - 1) + column;
3420 for (row = 0; row < height; row++) {
3421 st->nents++;
3422 /* We don't need the pages, but need to initialize
3423 * the entries so the sg list can be happily traversed.
3424 * The only thing we need are DMA addresses.
3425 */
3426 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3427 sg_dma_address(sg) = in[offset + src_idx];
3428 sg_dma_len(sg) = PAGE_SIZE;
3429 sg = sg_next(sg);
3430 src_idx -= stride;
3431 }
3432 }
3433
3434 return sg;
3435 }
3436
3437 static struct sg_table *
3438 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3439 struct drm_i915_gem_object *obj)
3440 {
3441 const size_t n_pages = obj->base.size / PAGE_SIZE;
3442 unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3443 unsigned int size_pages_uv;
3444 struct sgt_iter sgt_iter;
3445 dma_addr_t dma_addr;
3446 unsigned long i;
3447 dma_addr_t *page_addr_list;
3448 struct sg_table *st;
3449 unsigned int uv_start_page;
3450 struct scatterlist *sg;
3451 int ret = -ENOMEM;
3452
3453 /* Allocate a temporary list of source pages for random access. */
3454 page_addr_list = drm_malloc_gfp(n_pages,
3455 sizeof(dma_addr_t),
3456 GFP_TEMPORARY);
3457 if (!page_addr_list)
3458 return ERR_PTR(ret);
3459
3460 /* Account for UV plane with NV12. */
3461 if (rot_info->pixel_format == DRM_FORMAT_NV12)
3462 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3463 else
3464 size_pages_uv = 0;
3465
3466 /* Allocate target SG list. */
3467 st = kmalloc(sizeof(*st), GFP_KERNEL);
3468 if (!st)
3469 goto err_st_alloc;
3470
3471 ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3472 if (ret)
3473 goto err_sg_alloc;
3474
3475 /* Populate source page list from the object. */
3476 i = 0;
3477 for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3478 page_addr_list[i++] = dma_addr;
3479
3480 GEM_BUG_ON(i != n_pages);
3481 st->nents = 0;
3482 sg = st->sgl;
3483
3484 /* Rotate the pages. */
3485 sg = rotate_pages(page_addr_list, 0,
3486 rot_info->plane[0].width, rot_info->plane[0].height,
3487 rot_info->plane[0].width,
3488 st, sg);
3489
3490 /* Append the UV plane if NV12. */
3491 if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3492 uv_start_page = size_pages;
3493
3494 /* Check for tile-row un-alignment. */
3495 if (offset_in_page(rot_info->uv_offset))
3496 uv_start_page--;
3497
3498 rot_info->uv_start_page = uv_start_page;
3499
3500 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3501 rot_info->plane[1].width, rot_info->plane[1].height,
3502 rot_info->plane[1].width,
3503 st, sg);
3504 }
3505
3506 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3507 obj->base.size, rot_info->plane[0].width,
3508 rot_info->plane[0].height, size_pages + size_pages_uv,
3509 size_pages);
3510
3511 drm_free_large(page_addr_list);
3512
3513 return st;
3514
3515 err_sg_alloc:
3516 kfree(st);
3517 err_st_alloc:
3518 drm_free_large(page_addr_list);
3519
3520 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3521 obj->base.size, ret, rot_info->plane[0].width,
3522 rot_info->plane[0].height, size_pages + size_pages_uv,
3523 size_pages);
3524 return ERR_PTR(ret);
3525 }
3526
3527 static struct sg_table *
3528 intel_partial_pages(const struct i915_ggtt_view *view,
3529 struct drm_i915_gem_object *obj)
3530 {
3531 struct sg_table *st;
3532 struct scatterlist *sg;
3533 struct sg_page_iter obj_sg_iter;
3534 int ret = -ENOMEM;
3535
3536 st = kmalloc(sizeof(*st), GFP_KERNEL);
3537 if (!st)
3538 goto err_st_alloc;
3539
3540 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3541 if (ret)
3542 goto err_sg_alloc;
3543
3544 sg = st->sgl;
3545 st->nents = 0;
3546 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3547 view->params.partial.offset)
3548 {
3549 if (st->nents >= view->params.partial.size)
3550 break;
3551
3552 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3553 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3554 sg_dma_len(sg) = PAGE_SIZE;
3555
3556 sg = sg_next(sg);
3557 st->nents++;
3558 }
3559
3560 return st;
3561
3562 err_sg_alloc:
3563 kfree(st);
3564 err_st_alloc:
3565 return ERR_PTR(ret);
3566 }
3567
3568 static int
3569 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3570 {
3571 int ret = 0;
3572
3573 if (vma->ggtt_view.pages)
3574 return 0;
3575
3576 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3577 vma->ggtt_view.pages = vma->obj->pages;
3578 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3579 vma->ggtt_view.pages =
3580 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3581 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3582 vma->ggtt_view.pages =
3583 intel_partial_pages(&vma->ggtt_view, vma->obj);
3584 else
3585 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3586 vma->ggtt_view.type);
3587
3588 if (!vma->ggtt_view.pages) {
3589 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3590 vma->ggtt_view.type);
3591 ret = -EINVAL;
3592 } else if (IS_ERR(vma->ggtt_view.pages)) {
3593 ret = PTR_ERR(vma->ggtt_view.pages);
3594 vma->ggtt_view.pages = NULL;
3595 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3596 vma->ggtt_view.type, ret);
3597 }
3598
3599 return ret;
3600 }
3601
3602 /**
3603 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3604 * @vma: VMA to map
3605 * @cache_level: mapping cache level
3606 * @flags: flags like global or local mapping
3607 *
3608 * DMA addresses are taken from the scatter-gather table of this object (or of
3609 * this VMA in case of non-default GGTT views) and PTE entries set up.
3610 * Note that DMA addresses are also the only part of the SG table we care about.
3611 */
3612 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3613 u32 flags)
3614 {
3615 int ret;
3616 u32 bind_flags;
3617
3618 if (WARN_ON(flags == 0))
3619 return -EINVAL;
3620
3621 bind_flags = 0;
3622 if (flags & PIN_GLOBAL)
3623 bind_flags |= GLOBAL_BIND;
3624 if (flags & PIN_USER)
3625 bind_flags |= LOCAL_BIND;
3626
3627 if (flags & PIN_UPDATE)
3628 bind_flags |= vma->bound;
3629 else
3630 bind_flags &= ~vma->bound;
3631
3632 if (bind_flags == 0)
3633 return 0;
3634
3635 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3636 /* XXX: i915_vma_pin() will fix this +- hack */
3637 vma->pin_count++;
3638 trace_i915_va_alloc(vma);
3639 ret = vma->vm->allocate_va_range(vma->vm,
3640 vma->node.start,
3641 vma->node.size);
3642 vma->pin_count--;
3643 if (ret)
3644 return ret;
3645 }
3646
3647 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3648 if (ret)
3649 return ret;
3650
3651 vma->bound |= bind_flags;
3652
3653 return 0;
3654 }
3655
3656 /**
3657 * i915_ggtt_view_size - Get the size of a GGTT view.
3658 * @obj: Object the view is of.
3659 * @view: The view in question.
3660 *
3661 * @return The size of the GGTT view in bytes.
3662 */
3663 size_t
3664 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3665 const struct i915_ggtt_view *view)
3666 {
3667 if (view->type == I915_GGTT_VIEW_NORMAL) {
3668 return obj->base.size;
3669 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3670 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3671 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3672 return view->params.partial.size << PAGE_SHIFT;
3673 } else {
3674 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3675 return obj->base.size;
3676 }
3677 }
3678
3679 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3680 {
3681 void __iomem *ptr;
3682
3683 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3684 if (WARN_ON(!vma->obj->map_and_fenceable))
3685 return ERR_PTR(-ENODEV);
3686
3687 GEM_BUG_ON(!vma->is_ggtt);
3688 GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3689
3690 ptr = vma->iomap;
3691 if (ptr == NULL) {
3692 ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3693 vma->node.start,
3694 vma->node.size);
3695 if (ptr == NULL)
3696 return ERR_PTR(-ENOMEM);
3697
3698 vma->iomap = ptr;
3699 }
3700
3701 vma->pin_count++;
3702 return ptr;
3703 }
This page took 0.155639 seconds and 5 git commands to generate.