80d162acda1b26fbef5eb808d732c0b1748ea30b
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266 ilk_update_gt_irq(dev_priv, mask, mask);
267 POSTING_READ_FW(GTIMR);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 spin_lock_irq(&dev_priv->irq_lock);
344 I915_WRITE(reg, dev_priv->pm_rps_events);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 POSTING_READ(reg);
347 dev_priv->rps.pm_iir = 0;
348 spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353 spin_lock_irq(&dev_priv->irq_lock);
354
355 WARN_ON(dev_priv->rps.pm_iir);
356 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
357 dev_priv->rps.interrupts_enabled = true;
358 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
359 dev_priv->pm_rps_events);
360 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
361
362 spin_unlock_irq(&dev_priv->irq_lock);
363 }
364
365 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
366 {
367 return (mask & ~dev_priv->rps.pm_intr_keep);
368 }
369
370 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 dev_priv->rps.interrupts_enabled = false;
374 spin_unlock_irq(&dev_priv->irq_lock);
375
376 cancel_work_sync(&dev_priv->rps.work);
377
378 spin_lock_irq(&dev_priv->irq_lock);
379
380 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
381
382 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
383 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
384 ~dev_priv->pm_rps_events);
385
386 spin_unlock_irq(&dev_priv->irq_lock);
387
388 synchronize_irq(dev_priv->dev->irq);
389 }
390
391 /**
392 * bdw_update_port_irq - update DE port interrupt
393 * @dev_priv: driver private
394 * @interrupt_mask: mask of interrupt bits to update
395 * @enabled_irq_mask: mask of interrupt bits to enable
396 */
397 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
398 uint32_t interrupt_mask,
399 uint32_t enabled_irq_mask)
400 {
401 uint32_t new_val;
402 uint32_t old_val;
403
404 assert_spin_locked(&dev_priv->irq_lock);
405
406 WARN_ON(enabled_irq_mask & ~interrupt_mask);
407
408 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
409 return;
410
411 old_val = I915_READ(GEN8_DE_PORT_IMR);
412
413 new_val = old_val;
414 new_val &= ~interrupt_mask;
415 new_val |= (~enabled_irq_mask & interrupt_mask);
416
417 if (new_val != old_val) {
418 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
419 POSTING_READ(GEN8_DE_PORT_IMR);
420 }
421 }
422
423 /**
424 * bdw_update_pipe_irq - update DE pipe interrupt
425 * @dev_priv: driver private
426 * @pipe: pipe whose interrupt to update
427 * @interrupt_mask: mask of interrupt bits to update
428 * @enabled_irq_mask: mask of interrupt bits to enable
429 */
430 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
431 enum pipe pipe,
432 uint32_t interrupt_mask,
433 uint32_t enabled_irq_mask)
434 {
435 uint32_t new_val;
436
437 assert_spin_locked(&dev_priv->irq_lock);
438
439 WARN_ON(enabled_irq_mask & ~interrupt_mask);
440
441 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
442 return;
443
444 new_val = dev_priv->de_irq_mask[pipe];
445 new_val &= ~interrupt_mask;
446 new_val |= (~enabled_irq_mask & interrupt_mask);
447
448 if (new_val != dev_priv->de_irq_mask[pipe]) {
449 dev_priv->de_irq_mask[pipe] = new_val;
450 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
451 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
452 }
453 }
454
455 /**
456 * ibx_display_interrupt_update - update SDEIMR
457 * @dev_priv: driver private
458 * @interrupt_mask: mask of interrupt bits to update
459 * @enabled_irq_mask: mask of interrupt bits to enable
460 */
461 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
462 uint32_t interrupt_mask,
463 uint32_t enabled_irq_mask)
464 {
465 uint32_t sdeimr = I915_READ(SDEIMR);
466 sdeimr &= ~interrupt_mask;
467 sdeimr |= (~enabled_irq_mask & interrupt_mask);
468
469 WARN_ON(enabled_irq_mask & ~interrupt_mask);
470
471 assert_spin_locked(&dev_priv->irq_lock);
472
473 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
474 return;
475
476 I915_WRITE(SDEIMR, sdeimr);
477 POSTING_READ(SDEIMR);
478 }
479
480 static void
481 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
482 u32 enable_mask, u32 status_mask)
483 {
484 i915_reg_t reg = PIPESTAT(pipe);
485 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
486
487 assert_spin_locked(&dev_priv->irq_lock);
488 WARN_ON(!intel_irqs_enabled(dev_priv));
489
490 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
491 status_mask & ~PIPESTAT_INT_STATUS_MASK,
492 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
493 pipe_name(pipe), enable_mask, status_mask))
494 return;
495
496 if ((pipestat & enable_mask) == enable_mask)
497 return;
498
499 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
500
501 /* Enable the interrupt, clear any pending status */
502 pipestat |= enable_mask | status_mask;
503 I915_WRITE(reg, pipestat);
504 POSTING_READ(reg);
505 }
506
507 static void
508 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
509 u32 enable_mask, u32 status_mask)
510 {
511 i915_reg_t reg = PIPESTAT(pipe);
512 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
513
514 assert_spin_locked(&dev_priv->irq_lock);
515 WARN_ON(!intel_irqs_enabled(dev_priv));
516
517 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
518 status_mask & ~PIPESTAT_INT_STATUS_MASK,
519 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
520 pipe_name(pipe), enable_mask, status_mask))
521 return;
522
523 if ((pipestat & enable_mask) == 0)
524 return;
525
526 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
527
528 pipestat &= ~enable_mask;
529 I915_WRITE(reg, pipestat);
530 POSTING_READ(reg);
531 }
532
533 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
534 {
535 u32 enable_mask = status_mask << 16;
536
537 /*
538 * On pipe A we don't support the PSR interrupt yet,
539 * on pipe B and C the same bit MBZ.
540 */
541 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
542 return 0;
543 /*
544 * On pipe B and C we don't support the PSR interrupt yet, on pipe
545 * A the same bit is for perf counters which we don't use either.
546 */
547 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
548 return 0;
549
550 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
551 SPRITE0_FLIP_DONE_INT_EN_VLV |
552 SPRITE1_FLIP_DONE_INT_EN_VLV);
553 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
554 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
555 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
556 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
557
558 return enable_mask;
559 }
560
561 void
562 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
563 u32 status_mask)
564 {
565 u32 enable_mask;
566
567 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
568 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
569 status_mask);
570 else
571 enable_mask = status_mask << 16;
572 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
573 }
574
575 void
576 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
577 u32 status_mask)
578 {
579 u32 enable_mask;
580
581 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
582 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
583 status_mask);
584 else
585 enable_mask = status_mask << 16;
586 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
587 }
588
589 /**
590 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
591 * @dev_priv: i915 device private
592 */
593 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
594 {
595 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
596 return;
597
598 spin_lock_irq(&dev_priv->irq_lock);
599
600 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
601 if (INTEL_GEN(dev_priv) >= 4)
602 i915_enable_pipestat(dev_priv, PIPE_A,
603 PIPE_LEGACY_BLC_EVENT_STATUS);
604
605 spin_unlock_irq(&dev_priv->irq_lock);
606 }
607
608 /*
609 * This timing diagram depicts the video signal in and
610 * around the vertical blanking period.
611 *
612 * Assumptions about the fictitious mode used in this example:
613 * vblank_start >= 3
614 * vsync_start = vblank_start + 1
615 * vsync_end = vblank_start + 2
616 * vtotal = vblank_start + 3
617 *
618 * start of vblank:
619 * latch double buffered registers
620 * increment frame counter (ctg+)
621 * generate start of vblank interrupt (gen4+)
622 * |
623 * | frame start:
624 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
625 * | may be shifted forward 1-3 extra lines via PIPECONF
626 * | |
627 * | | start of vsync:
628 * | | generate vsync interrupt
629 * | | |
630 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
631 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
632 * ----va---> <-----------------vb--------------------> <--------va-------------
633 * | | <----vs-----> |
634 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
635 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
636 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
637 * | | |
638 * last visible pixel first visible pixel
639 * | increment frame counter (gen3/4)
640 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
641 *
642 * x = horizontal active
643 * _ = horizontal blanking
644 * hs = horizontal sync
645 * va = vertical active
646 * vb = vertical blanking
647 * vs = vertical sync
648 * vbs = vblank_start (number)
649 *
650 * Summary:
651 * - most events happen at the start of horizontal sync
652 * - frame start happens at the start of horizontal blank, 1-4 lines
653 * (depending on PIPECONF settings) after the start of vblank
654 * - gen3/4 pixel and frame counter are synchronized with the start
655 * of horizontal active on the first line of vertical active
656 */
657
658 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
659 {
660 /* Gen2 doesn't have a hardware frame counter */
661 return 0;
662 }
663
664 /* Called from drm generic code, passed a 'crtc', which
665 * we use as a pipe index
666 */
667 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
668 {
669 struct drm_i915_private *dev_priv = dev->dev_private;
670 i915_reg_t high_frame, low_frame;
671 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
672 struct intel_crtc *intel_crtc =
673 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
674 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
675
676 htotal = mode->crtc_htotal;
677 hsync_start = mode->crtc_hsync_start;
678 vbl_start = mode->crtc_vblank_start;
679 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
680 vbl_start = DIV_ROUND_UP(vbl_start, 2);
681
682 /* Convert to pixel count */
683 vbl_start *= htotal;
684
685 /* Start of vblank event occurs at start of hsync */
686 vbl_start -= htotal - hsync_start;
687
688 high_frame = PIPEFRAME(pipe);
689 low_frame = PIPEFRAMEPIXEL(pipe);
690
691 /*
692 * High & low register fields aren't synchronized, so make sure
693 * we get a low value that's stable across two reads of the high
694 * register.
695 */
696 do {
697 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
698 low = I915_READ(low_frame);
699 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
700 } while (high1 != high2);
701
702 high1 >>= PIPE_FRAME_HIGH_SHIFT;
703 pixel = low & PIPE_PIXEL_MASK;
704 low >>= PIPE_FRAME_LOW_SHIFT;
705
706 /*
707 * The frame counter increments at beginning of active.
708 * Cook up a vblank counter by also checking the pixel
709 * counter against vblank start.
710 */
711 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
712 }
713
714 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
715 {
716 struct drm_i915_private *dev_priv = dev->dev_private;
717
718 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
719 }
720
721 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
722 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
723 {
724 struct drm_device *dev = crtc->base.dev;
725 struct drm_i915_private *dev_priv = dev->dev_private;
726 const struct drm_display_mode *mode = &crtc->base.hwmode;
727 enum pipe pipe = crtc->pipe;
728 int position, vtotal;
729
730 vtotal = mode->crtc_vtotal;
731 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
732 vtotal /= 2;
733
734 if (IS_GEN2(dev_priv))
735 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
736 else
737 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
738
739 /*
740 * On HSW, the DSL reg (0x70000) appears to return 0 if we
741 * read it just before the start of vblank. So try it again
742 * so we don't accidentally end up spanning a vblank frame
743 * increment, causing the pipe_update_end() code to squak at us.
744 *
745 * The nature of this problem means we can't simply check the ISR
746 * bit and return the vblank start value; nor can we use the scanline
747 * debug register in the transcoder as it appears to have the same
748 * problem. We may need to extend this to include other platforms,
749 * but so far testing only shows the problem on HSW.
750 */
751 if (HAS_DDI(dev_priv) && !position) {
752 int i, temp;
753
754 for (i = 0; i < 100; i++) {
755 udelay(1);
756 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
757 DSL_LINEMASK_GEN3;
758 if (temp != position) {
759 position = temp;
760 break;
761 }
762 }
763 }
764
765 /*
766 * See update_scanline_offset() for the details on the
767 * scanline_offset adjustment.
768 */
769 return (position + crtc->scanline_offset) % vtotal;
770 }
771
772 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
773 unsigned int flags, int *vpos, int *hpos,
774 ktime_t *stime, ktime_t *etime,
775 const struct drm_display_mode *mode)
776 {
777 struct drm_i915_private *dev_priv = dev->dev_private;
778 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
780 int position;
781 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
782 bool in_vbl = true;
783 int ret = 0;
784 unsigned long irqflags;
785
786 if (WARN_ON(!mode->crtc_clock)) {
787 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
788 "pipe %c\n", pipe_name(pipe));
789 return 0;
790 }
791
792 htotal = mode->crtc_htotal;
793 hsync_start = mode->crtc_hsync_start;
794 vtotal = mode->crtc_vtotal;
795 vbl_start = mode->crtc_vblank_start;
796 vbl_end = mode->crtc_vblank_end;
797
798 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
799 vbl_start = DIV_ROUND_UP(vbl_start, 2);
800 vbl_end /= 2;
801 vtotal /= 2;
802 }
803
804 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
805
806 /*
807 * Lock uncore.lock, as we will do multiple timing critical raw
808 * register reads, potentially with preemption disabled, so the
809 * following code must not block on uncore.lock.
810 */
811 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
812
813 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
814
815 /* Get optional system timestamp before query. */
816 if (stime)
817 *stime = ktime_get();
818
819 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
820 /* No obvious pixelcount register. Only query vertical
821 * scanout position from Display scan line register.
822 */
823 position = __intel_get_crtc_scanline(intel_crtc);
824 } else {
825 /* Have access to pixelcount since start of frame.
826 * We can split this into vertical and horizontal
827 * scanout position.
828 */
829 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
830
831 /* convert to pixel counts */
832 vbl_start *= htotal;
833 vbl_end *= htotal;
834 vtotal *= htotal;
835
836 /*
837 * In interlaced modes, the pixel counter counts all pixels,
838 * so one field will have htotal more pixels. In order to avoid
839 * the reported position from jumping backwards when the pixel
840 * counter is beyond the length of the shorter field, just
841 * clamp the position the length of the shorter field. This
842 * matches how the scanline counter based position works since
843 * the scanline counter doesn't count the two half lines.
844 */
845 if (position >= vtotal)
846 position = vtotal - 1;
847
848 /*
849 * Start of vblank interrupt is triggered at start of hsync,
850 * just prior to the first active line of vblank. However we
851 * consider lines to start at the leading edge of horizontal
852 * active. So, should we get here before we've crossed into
853 * the horizontal active of the first line in vblank, we would
854 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
855 * always add htotal-hsync_start to the current pixel position.
856 */
857 position = (position + htotal - hsync_start) % vtotal;
858 }
859
860 /* Get optional system timestamp after query. */
861 if (etime)
862 *etime = ktime_get();
863
864 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
865
866 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
867
868 in_vbl = position >= vbl_start && position < vbl_end;
869
870 /*
871 * While in vblank, position will be negative
872 * counting up towards 0 at vbl_end. And outside
873 * vblank, position will be positive counting
874 * up since vbl_end.
875 */
876 if (position >= vbl_start)
877 position -= vbl_end;
878 else
879 position += vtotal - vbl_end;
880
881 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
882 *vpos = position;
883 *hpos = 0;
884 } else {
885 *vpos = position / htotal;
886 *hpos = position - (*vpos * htotal);
887 }
888
889 /* In vblank? */
890 if (in_vbl)
891 ret |= DRM_SCANOUTPOS_IN_VBLANK;
892
893 return ret;
894 }
895
896 int intel_get_crtc_scanline(struct intel_crtc *crtc)
897 {
898 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
899 unsigned long irqflags;
900 int position;
901
902 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
903 position = __intel_get_crtc_scanline(crtc);
904 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
905
906 return position;
907 }
908
909 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
910 int *max_error,
911 struct timeval *vblank_time,
912 unsigned flags)
913 {
914 struct drm_crtc *crtc;
915
916 if (pipe >= INTEL_INFO(dev)->num_pipes) {
917 DRM_ERROR("Invalid crtc %u\n", pipe);
918 return -EINVAL;
919 }
920
921 /* Get drm_crtc to timestamp: */
922 crtc = intel_get_crtc_for_pipe(dev, pipe);
923 if (crtc == NULL) {
924 DRM_ERROR("Invalid crtc %u\n", pipe);
925 return -EINVAL;
926 }
927
928 if (!crtc->hwmode.crtc_clock) {
929 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
930 return -EBUSY;
931 }
932
933 /* Helper routine in DRM core does all the work: */
934 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
935 vblank_time, flags,
936 &crtc->hwmode);
937 }
938
939 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
940 {
941 u32 busy_up, busy_down, max_avg, min_avg;
942 u8 new_delay;
943
944 spin_lock(&mchdev_lock);
945
946 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
947
948 new_delay = dev_priv->ips.cur_delay;
949
950 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
951 busy_up = I915_READ(RCPREVBSYTUPAVG);
952 busy_down = I915_READ(RCPREVBSYTDNAVG);
953 max_avg = I915_READ(RCBMAXAVG);
954 min_avg = I915_READ(RCBMINAVG);
955
956 /* Handle RCS change request from hw */
957 if (busy_up > max_avg) {
958 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
959 new_delay = dev_priv->ips.cur_delay - 1;
960 if (new_delay < dev_priv->ips.max_delay)
961 new_delay = dev_priv->ips.max_delay;
962 } else if (busy_down < min_avg) {
963 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
964 new_delay = dev_priv->ips.cur_delay + 1;
965 if (new_delay > dev_priv->ips.min_delay)
966 new_delay = dev_priv->ips.min_delay;
967 }
968
969 if (ironlake_set_drps(dev_priv, new_delay))
970 dev_priv->ips.cur_delay = new_delay;
971
972 spin_unlock(&mchdev_lock);
973
974 return;
975 }
976
977 static void notify_ring(struct intel_engine_cs *engine)
978 {
979 smp_store_mb(engine->irq_posted, true);
980 if (intel_engine_wakeup(engine)) {
981 trace_i915_gem_request_notify(engine);
982 engine->user_interrupts++;
983 }
984 }
985
986 static void vlv_c0_read(struct drm_i915_private *dev_priv,
987 struct intel_rps_ei *ei)
988 {
989 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
990 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
991 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
992 }
993
994 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
995 const struct intel_rps_ei *old,
996 const struct intel_rps_ei *now,
997 int threshold)
998 {
999 u64 time, c0;
1000 unsigned int mul = 100;
1001
1002 if (old->cz_clock == 0)
1003 return false;
1004
1005 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1006 mul <<= 8;
1007
1008 time = now->cz_clock - old->cz_clock;
1009 time *= threshold * dev_priv->czclk_freq;
1010
1011 /* Workload can be split between render + media, e.g. SwapBuffers
1012 * being blitted in X after being rendered in mesa. To account for
1013 * this we need to combine both engines into our activity counter.
1014 */
1015 c0 = now->render_c0 - old->render_c0;
1016 c0 += now->media_c0 - old->media_c0;
1017 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1018
1019 return c0 >= time;
1020 }
1021
1022 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1023 {
1024 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1025 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1026 }
1027
1028 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1029 {
1030 struct intel_rps_ei now;
1031 u32 events = 0;
1032
1033 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1034 return 0;
1035
1036 vlv_c0_read(dev_priv, &now);
1037 if (now.cz_clock == 0)
1038 return 0;
1039
1040 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1041 if (!vlv_c0_above(dev_priv,
1042 &dev_priv->rps.down_ei, &now,
1043 dev_priv->rps.down_threshold))
1044 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1045 dev_priv->rps.down_ei = now;
1046 }
1047
1048 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1049 if (vlv_c0_above(dev_priv,
1050 &dev_priv->rps.up_ei, &now,
1051 dev_priv->rps.up_threshold))
1052 events |= GEN6_PM_RP_UP_THRESHOLD;
1053 dev_priv->rps.up_ei = now;
1054 }
1055
1056 return events;
1057 }
1058
1059 static bool any_waiters(struct drm_i915_private *dev_priv)
1060 {
1061 struct intel_engine_cs *engine;
1062
1063 for_each_engine(engine, dev_priv)
1064 if (intel_engine_has_waiter(engine))
1065 return true;
1066
1067 return false;
1068 }
1069
1070 static void gen6_pm_rps_work(struct work_struct *work)
1071 {
1072 struct drm_i915_private *dev_priv =
1073 container_of(work, struct drm_i915_private, rps.work);
1074 bool client_boost;
1075 int new_delay, adj, min, max;
1076 u32 pm_iir;
1077
1078 spin_lock_irq(&dev_priv->irq_lock);
1079 /* Speed up work cancelation during disabling rps interrupts. */
1080 if (!dev_priv->rps.interrupts_enabled) {
1081 spin_unlock_irq(&dev_priv->irq_lock);
1082 return;
1083 }
1084
1085 /*
1086 * The RPS work is synced during runtime suspend, we don't require a
1087 * wakeref. TODO: instead of disabling the asserts make sure that we
1088 * always hold an RPM reference while the work is running.
1089 */
1090 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1091
1092 pm_iir = dev_priv->rps.pm_iir;
1093 dev_priv->rps.pm_iir = 0;
1094 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1095 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1096 client_boost = dev_priv->rps.client_boost;
1097 dev_priv->rps.client_boost = false;
1098 spin_unlock_irq(&dev_priv->irq_lock);
1099
1100 /* Make sure we didn't queue anything we're not going to process. */
1101 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1102
1103 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1104 goto out;
1105
1106 mutex_lock(&dev_priv->rps.hw_lock);
1107
1108 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1109
1110 adj = dev_priv->rps.last_adj;
1111 new_delay = dev_priv->rps.cur_freq;
1112 min = dev_priv->rps.min_freq_softlimit;
1113 max = dev_priv->rps.max_freq_softlimit;
1114
1115 if (client_boost) {
1116 new_delay = dev_priv->rps.max_freq_softlimit;
1117 adj = 0;
1118 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1119 if (adj > 0)
1120 adj *= 2;
1121 else /* CHV needs even encode values */
1122 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1123 /*
1124 * For better performance, jump directly
1125 * to RPe if we're below it.
1126 */
1127 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1128 new_delay = dev_priv->rps.efficient_freq;
1129 adj = 0;
1130 }
1131 } else if (any_waiters(dev_priv)) {
1132 adj = 0;
1133 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1134 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1135 new_delay = dev_priv->rps.efficient_freq;
1136 else
1137 new_delay = dev_priv->rps.min_freq_softlimit;
1138 adj = 0;
1139 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1140 if (adj < 0)
1141 adj *= 2;
1142 else /* CHV needs even encode values */
1143 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1144 } else { /* unknown event */
1145 adj = 0;
1146 }
1147
1148 dev_priv->rps.last_adj = adj;
1149
1150 /* sysfs frequency interfaces may have snuck in while servicing the
1151 * interrupt
1152 */
1153 new_delay += adj;
1154 new_delay = clamp_t(int, new_delay, min, max);
1155
1156 intel_set_rps(dev_priv, new_delay);
1157
1158 mutex_unlock(&dev_priv->rps.hw_lock);
1159 out:
1160 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1161 }
1162
1163
1164 /**
1165 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1166 * occurred.
1167 * @work: workqueue struct
1168 *
1169 * Doesn't actually do anything except notify userspace. As a consequence of
1170 * this event, userspace should try to remap the bad rows since statistically
1171 * it is likely the same row is more likely to go bad again.
1172 */
1173 static void ivybridge_parity_work(struct work_struct *work)
1174 {
1175 struct drm_i915_private *dev_priv =
1176 container_of(work, struct drm_i915_private, l3_parity.error_work);
1177 u32 error_status, row, bank, subbank;
1178 char *parity_event[6];
1179 uint32_t misccpctl;
1180 uint8_t slice = 0;
1181
1182 /* We must turn off DOP level clock gating to access the L3 registers.
1183 * In order to prevent a get/put style interface, acquire struct mutex
1184 * any time we access those registers.
1185 */
1186 mutex_lock(&dev_priv->dev->struct_mutex);
1187
1188 /* If we've screwed up tracking, just let the interrupt fire again */
1189 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1190 goto out;
1191
1192 misccpctl = I915_READ(GEN7_MISCCPCTL);
1193 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1194 POSTING_READ(GEN7_MISCCPCTL);
1195
1196 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1197 i915_reg_t reg;
1198
1199 slice--;
1200 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1201 break;
1202
1203 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1204
1205 reg = GEN7_L3CDERRST1(slice);
1206
1207 error_status = I915_READ(reg);
1208 row = GEN7_PARITY_ERROR_ROW(error_status);
1209 bank = GEN7_PARITY_ERROR_BANK(error_status);
1210 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1211
1212 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1213 POSTING_READ(reg);
1214
1215 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1216 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1217 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1218 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1219 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1220 parity_event[5] = NULL;
1221
1222 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1223 KOBJ_CHANGE, parity_event);
1224
1225 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1226 slice, row, bank, subbank);
1227
1228 kfree(parity_event[4]);
1229 kfree(parity_event[3]);
1230 kfree(parity_event[2]);
1231 kfree(parity_event[1]);
1232 }
1233
1234 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1235
1236 out:
1237 WARN_ON(dev_priv->l3_parity.which_slice);
1238 spin_lock_irq(&dev_priv->irq_lock);
1239 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1240 spin_unlock_irq(&dev_priv->irq_lock);
1241
1242 mutex_unlock(&dev_priv->dev->struct_mutex);
1243 }
1244
1245 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1246 u32 iir)
1247 {
1248 if (!HAS_L3_DPF(dev_priv))
1249 return;
1250
1251 spin_lock(&dev_priv->irq_lock);
1252 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1253 spin_unlock(&dev_priv->irq_lock);
1254
1255 iir &= GT_PARITY_ERROR(dev_priv);
1256 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1257 dev_priv->l3_parity.which_slice |= 1 << 1;
1258
1259 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1260 dev_priv->l3_parity.which_slice |= 1 << 0;
1261
1262 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1263 }
1264
1265 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1266 u32 gt_iir)
1267 {
1268 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1269 notify_ring(&dev_priv->engine[RCS]);
1270 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1271 notify_ring(&dev_priv->engine[VCS]);
1272 }
1273
1274 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1275 u32 gt_iir)
1276 {
1277 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1278 notify_ring(&dev_priv->engine[RCS]);
1279 if (gt_iir & GT_BSD_USER_INTERRUPT)
1280 notify_ring(&dev_priv->engine[VCS]);
1281 if (gt_iir & GT_BLT_USER_INTERRUPT)
1282 notify_ring(&dev_priv->engine[BCS]);
1283
1284 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285 GT_BSD_CS_ERROR_INTERRUPT |
1286 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1287 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1288
1289 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1290 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1291 }
1292
1293 static __always_inline void
1294 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1295 {
1296 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1297 notify_ring(engine);
1298 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1299 tasklet_schedule(&engine->irq_tasklet);
1300 }
1301
1302 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1303 u32 master_ctl,
1304 u32 gt_iir[4])
1305 {
1306 irqreturn_t ret = IRQ_NONE;
1307
1308 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1309 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1310 if (gt_iir[0]) {
1311 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1312 ret = IRQ_HANDLED;
1313 } else
1314 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1315 }
1316
1317 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1318 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1319 if (gt_iir[1]) {
1320 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1321 ret = IRQ_HANDLED;
1322 } else
1323 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1324 }
1325
1326 if (master_ctl & GEN8_GT_VECS_IRQ) {
1327 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1328 if (gt_iir[3]) {
1329 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1330 ret = IRQ_HANDLED;
1331 } else
1332 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1333 }
1334
1335 if (master_ctl & GEN8_GT_PM_IRQ) {
1336 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1337 if (gt_iir[2] & dev_priv->pm_rps_events) {
1338 I915_WRITE_FW(GEN8_GT_IIR(2),
1339 gt_iir[2] & dev_priv->pm_rps_events);
1340 ret = IRQ_HANDLED;
1341 } else
1342 DRM_ERROR("The master control interrupt lied (PM)!\n");
1343 }
1344
1345 return ret;
1346 }
1347
1348 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1349 u32 gt_iir[4])
1350 {
1351 if (gt_iir[0]) {
1352 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1353 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1354 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1355 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1356 }
1357
1358 if (gt_iir[1]) {
1359 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1360 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1361 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1362 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1363 }
1364
1365 if (gt_iir[3])
1366 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1367 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1368
1369 if (gt_iir[2] & dev_priv->pm_rps_events)
1370 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1371 }
1372
1373 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1374 {
1375 switch (port) {
1376 case PORT_A:
1377 return val & PORTA_HOTPLUG_LONG_DETECT;
1378 case PORT_B:
1379 return val & PORTB_HOTPLUG_LONG_DETECT;
1380 case PORT_C:
1381 return val & PORTC_HOTPLUG_LONG_DETECT;
1382 default:
1383 return false;
1384 }
1385 }
1386
1387 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1388 {
1389 switch (port) {
1390 case PORT_E:
1391 return val & PORTE_HOTPLUG_LONG_DETECT;
1392 default:
1393 return false;
1394 }
1395 }
1396
1397 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1398 {
1399 switch (port) {
1400 case PORT_A:
1401 return val & PORTA_HOTPLUG_LONG_DETECT;
1402 case PORT_B:
1403 return val & PORTB_HOTPLUG_LONG_DETECT;
1404 case PORT_C:
1405 return val & PORTC_HOTPLUG_LONG_DETECT;
1406 case PORT_D:
1407 return val & PORTD_HOTPLUG_LONG_DETECT;
1408 default:
1409 return false;
1410 }
1411 }
1412
1413 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1414 {
1415 switch (port) {
1416 case PORT_A:
1417 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1418 default:
1419 return false;
1420 }
1421 }
1422
1423 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1424 {
1425 switch (port) {
1426 case PORT_B:
1427 return val & PORTB_HOTPLUG_LONG_DETECT;
1428 case PORT_C:
1429 return val & PORTC_HOTPLUG_LONG_DETECT;
1430 case PORT_D:
1431 return val & PORTD_HOTPLUG_LONG_DETECT;
1432 default:
1433 return false;
1434 }
1435 }
1436
1437 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1438 {
1439 switch (port) {
1440 case PORT_B:
1441 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1442 case PORT_C:
1443 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1444 case PORT_D:
1445 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1446 default:
1447 return false;
1448 }
1449 }
1450
1451 /*
1452 * Get a bit mask of pins that have triggered, and which ones may be long.
1453 * This can be called multiple times with the same masks to accumulate
1454 * hotplug detection results from several registers.
1455 *
1456 * Note that the caller is expected to zero out the masks initially.
1457 */
1458 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1459 u32 hotplug_trigger, u32 dig_hotplug_reg,
1460 const u32 hpd[HPD_NUM_PINS],
1461 bool long_pulse_detect(enum port port, u32 val))
1462 {
1463 enum port port;
1464 int i;
1465
1466 for_each_hpd_pin(i) {
1467 if ((hpd[i] & hotplug_trigger) == 0)
1468 continue;
1469
1470 *pin_mask |= BIT(i);
1471
1472 if (!intel_hpd_pin_to_port(i, &port))
1473 continue;
1474
1475 if (long_pulse_detect(port, dig_hotplug_reg))
1476 *long_mask |= BIT(i);
1477 }
1478
1479 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1480 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1481
1482 }
1483
1484 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1485 {
1486 wake_up_all(&dev_priv->gmbus_wait_queue);
1487 }
1488
1489 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1490 {
1491 wake_up_all(&dev_priv->gmbus_wait_queue);
1492 }
1493
1494 #if defined(CONFIG_DEBUG_FS)
1495 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1496 enum pipe pipe,
1497 uint32_t crc0, uint32_t crc1,
1498 uint32_t crc2, uint32_t crc3,
1499 uint32_t crc4)
1500 {
1501 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1502 struct intel_pipe_crc_entry *entry;
1503 int head, tail;
1504
1505 spin_lock(&pipe_crc->lock);
1506
1507 if (!pipe_crc->entries) {
1508 spin_unlock(&pipe_crc->lock);
1509 DRM_DEBUG_KMS("spurious interrupt\n");
1510 return;
1511 }
1512
1513 head = pipe_crc->head;
1514 tail = pipe_crc->tail;
1515
1516 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1517 spin_unlock(&pipe_crc->lock);
1518 DRM_ERROR("CRC buffer overflowing\n");
1519 return;
1520 }
1521
1522 entry = &pipe_crc->entries[head];
1523
1524 entry->frame = dev_priv->dev->driver->get_vblank_counter(dev_priv->dev,
1525 pipe);
1526 entry->crc[0] = crc0;
1527 entry->crc[1] = crc1;
1528 entry->crc[2] = crc2;
1529 entry->crc[3] = crc3;
1530 entry->crc[4] = crc4;
1531
1532 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1533 pipe_crc->head = head;
1534
1535 spin_unlock(&pipe_crc->lock);
1536
1537 wake_up_interruptible(&pipe_crc->wq);
1538 }
1539 #else
1540 static inline void
1541 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1542 enum pipe pipe,
1543 uint32_t crc0, uint32_t crc1,
1544 uint32_t crc2, uint32_t crc3,
1545 uint32_t crc4) {}
1546 #endif
1547
1548
1549 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1550 enum pipe pipe)
1551 {
1552 display_pipe_crc_irq_handler(dev_priv, pipe,
1553 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1554 0, 0, 0, 0);
1555 }
1556
1557 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1558 enum pipe pipe)
1559 {
1560 display_pipe_crc_irq_handler(dev_priv, pipe,
1561 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1562 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1563 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1564 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1565 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1566 }
1567
1568 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1569 enum pipe pipe)
1570 {
1571 uint32_t res1, res2;
1572
1573 if (INTEL_GEN(dev_priv) >= 3)
1574 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1575 else
1576 res1 = 0;
1577
1578 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1579 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1580 else
1581 res2 = 0;
1582
1583 display_pipe_crc_irq_handler(dev_priv, pipe,
1584 I915_READ(PIPE_CRC_RES_RED(pipe)),
1585 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1586 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1587 res1, res2);
1588 }
1589
1590 /* The RPS events need forcewake, so we add them to a work queue and mask their
1591 * IMR bits until the work is done. Other interrupts can be processed without
1592 * the work queue. */
1593 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1594 {
1595 if (pm_iir & dev_priv->pm_rps_events) {
1596 spin_lock(&dev_priv->irq_lock);
1597 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1598 if (dev_priv->rps.interrupts_enabled) {
1599 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1600 queue_work(dev_priv->wq, &dev_priv->rps.work);
1601 }
1602 spin_unlock(&dev_priv->irq_lock);
1603 }
1604
1605 if (INTEL_INFO(dev_priv)->gen >= 8)
1606 return;
1607
1608 if (HAS_VEBOX(dev_priv)) {
1609 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1610 notify_ring(&dev_priv->engine[VECS]);
1611
1612 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1613 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1614 }
1615 }
1616
1617 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1618 enum pipe pipe)
1619 {
1620 bool ret;
1621
1622 ret = drm_handle_vblank(dev_priv->dev, pipe);
1623 if (ret)
1624 intel_finish_page_flip_mmio(dev_priv, pipe);
1625
1626 return ret;
1627 }
1628
1629 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1630 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1631 {
1632 int pipe;
1633
1634 spin_lock(&dev_priv->irq_lock);
1635
1636 if (!dev_priv->display_irqs_enabled) {
1637 spin_unlock(&dev_priv->irq_lock);
1638 return;
1639 }
1640
1641 for_each_pipe(dev_priv, pipe) {
1642 i915_reg_t reg;
1643 u32 mask, iir_bit = 0;
1644
1645 /*
1646 * PIPESTAT bits get signalled even when the interrupt is
1647 * disabled with the mask bits, and some of the status bits do
1648 * not generate interrupts at all (like the underrun bit). Hence
1649 * we need to be careful that we only handle what we want to
1650 * handle.
1651 */
1652
1653 /* fifo underruns are filterered in the underrun handler. */
1654 mask = PIPE_FIFO_UNDERRUN_STATUS;
1655
1656 switch (pipe) {
1657 case PIPE_A:
1658 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1659 break;
1660 case PIPE_B:
1661 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1662 break;
1663 case PIPE_C:
1664 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1665 break;
1666 }
1667 if (iir & iir_bit)
1668 mask |= dev_priv->pipestat_irq_mask[pipe];
1669
1670 if (!mask)
1671 continue;
1672
1673 reg = PIPESTAT(pipe);
1674 mask |= PIPESTAT_INT_ENABLE_MASK;
1675 pipe_stats[pipe] = I915_READ(reg) & mask;
1676
1677 /*
1678 * Clear the PIPE*STAT regs before the IIR
1679 */
1680 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1681 PIPESTAT_INT_STATUS_MASK))
1682 I915_WRITE(reg, pipe_stats[pipe]);
1683 }
1684 spin_unlock(&dev_priv->irq_lock);
1685 }
1686
1687 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1688 u32 pipe_stats[I915_MAX_PIPES])
1689 {
1690 enum pipe pipe;
1691
1692 for_each_pipe(dev_priv, pipe) {
1693 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1694 intel_pipe_handle_vblank(dev_priv, pipe))
1695 intel_check_page_flip(dev_priv, pipe);
1696
1697 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1698 intel_finish_page_flip_cs(dev_priv, pipe);
1699
1700 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1701 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1702
1703 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1704 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1705 }
1706
1707 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1708 gmbus_irq_handler(dev_priv);
1709 }
1710
1711 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1712 {
1713 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1714
1715 if (hotplug_status)
1716 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1717
1718 return hotplug_status;
1719 }
1720
1721 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1722 u32 hotplug_status)
1723 {
1724 u32 pin_mask = 0, long_mask = 0;
1725
1726 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1727 IS_CHERRYVIEW(dev_priv)) {
1728 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1729
1730 if (hotplug_trigger) {
1731 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1732 hotplug_trigger, hpd_status_g4x,
1733 i9xx_port_hotplug_long_detect);
1734
1735 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1736 }
1737
1738 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1739 dp_aux_irq_handler(dev_priv);
1740 } else {
1741 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1742
1743 if (hotplug_trigger) {
1744 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1745 hotplug_trigger, hpd_status_i915,
1746 i9xx_port_hotplug_long_detect);
1747 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1748 }
1749 }
1750 }
1751
1752 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1753 {
1754 struct drm_device *dev = arg;
1755 struct drm_i915_private *dev_priv = dev->dev_private;
1756 irqreturn_t ret = IRQ_NONE;
1757
1758 if (!intel_irqs_enabled(dev_priv))
1759 return IRQ_NONE;
1760
1761 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1762 disable_rpm_wakeref_asserts(dev_priv);
1763
1764 do {
1765 u32 iir, gt_iir, pm_iir;
1766 u32 pipe_stats[I915_MAX_PIPES] = {};
1767 u32 hotplug_status = 0;
1768 u32 ier = 0;
1769
1770 gt_iir = I915_READ(GTIIR);
1771 pm_iir = I915_READ(GEN6_PMIIR);
1772 iir = I915_READ(VLV_IIR);
1773
1774 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1775 break;
1776
1777 ret = IRQ_HANDLED;
1778
1779 /*
1780 * Theory on interrupt generation, based on empirical evidence:
1781 *
1782 * x = ((VLV_IIR & VLV_IER) ||
1783 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1784 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1785 *
1786 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1787 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1788 * guarantee the CPU interrupt will be raised again even if we
1789 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1790 * bits this time around.
1791 */
1792 I915_WRITE(VLV_MASTER_IER, 0);
1793 ier = I915_READ(VLV_IER);
1794 I915_WRITE(VLV_IER, 0);
1795
1796 if (gt_iir)
1797 I915_WRITE(GTIIR, gt_iir);
1798 if (pm_iir)
1799 I915_WRITE(GEN6_PMIIR, pm_iir);
1800
1801 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1802 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1803
1804 /* Call regardless, as some status bits might not be
1805 * signalled in iir */
1806 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1807
1808 /*
1809 * VLV_IIR is single buffered, and reflects the level
1810 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1811 */
1812 if (iir)
1813 I915_WRITE(VLV_IIR, iir);
1814
1815 I915_WRITE(VLV_IER, ier);
1816 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1817 POSTING_READ(VLV_MASTER_IER);
1818
1819 if (gt_iir)
1820 snb_gt_irq_handler(dev_priv, gt_iir);
1821 if (pm_iir)
1822 gen6_rps_irq_handler(dev_priv, pm_iir);
1823
1824 if (hotplug_status)
1825 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1826
1827 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1828 } while (0);
1829
1830 enable_rpm_wakeref_asserts(dev_priv);
1831
1832 return ret;
1833 }
1834
1835 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1836 {
1837 struct drm_device *dev = arg;
1838 struct drm_i915_private *dev_priv = dev->dev_private;
1839 irqreturn_t ret = IRQ_NONE;
1840
1841 if (!intel_irqs_enabled(dev_priv))
1842 return IRQ_NONE;
1843
1844 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1845 disable_rpm_wakeref_asserts(dev_priv);
1846
1847 do {
1848 u32 master_ctl, iir;
1849 u32 gt_iir[4] = {};
1850 u32 pipe_stats[I915_MAX_PIPES] = {};
1851 u32 hotplug_status = 0;
1852 u32 ier = 0;
1853
1854 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1855 iir = I915_READ(VLV_IIR);
1856
1857 if (master_ctl == 0 && iir == 0)
1858 break;
1859
1860 ret = IRQ_HANDLED;
1861
1862 /*
1863 * Theory on interrupt generation, based on empirical evidence:
1864 *
1865 * x = ((VLV_IIR & VLV_IER) ||
1866 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1867 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1868 *
1869 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1870 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1871 * guarantee the CPU interrupt will be raised again even if we
1872 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1873 * bits this time around.
1874 */
1875 I915_WRITE(GEN8_MASTER_IRQ, 0);
1876 ier = I915_READ(VLV_IER);
1877 I915_WRITE(VLV_IER, 0);
1878
1879 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1880
1881 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1882 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1883
1884 /* Call regardless, as some status bits might not be
1885 * signalled in iir */
1886 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1887
1888 /*
1889 * VLV_IIR is single buffered, and reflects the level
1890 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1891 */
1892 if (iir)
1893 I915_WRITE(VLV_IIR, iir);
1894
1895 I915_WRITE(VLV_IER, ier);
1896 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1897 POSTING_READ(GEN8_MASTER_IRQ);
1898
1899 gen8_gt_irq_handler(dev_priv, gt_iir);
1900
1901 if (hotplug_status)
1902 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1903
1904 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1905 } while (0);
1906
1907 enable_rpm_wakeref_asserts(dev_priv);
1908
1909 return ret;
1910 }
1911
1912 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1913 u32 hotplug_trigger,
1914 const u32 hpd[HPD_NUM_PINS])
1915 {
1916 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1917
1918 /*
1919 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1920 * unless we touch the hotplug register, even if hotplug_trigger is
1921 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1922 * errors.
1923 */
1924 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1925 if (!hotplug_trigger) {
1926 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1927 PORTD_HOTPLUG_STATUS_MASK |
1928 PORTC_HOTPLUG_STATUS_MASK |
1929 PORTB_HOTPLUG_STATUS_MASK;
1930 dig_hotplug_reg &= ~mask;
1931 }
1932
1933 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1934 if (!hotplug_trigger)
1935 return;
1936
1937 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1938 dig_hotplug_reg, hpd,
1939 pch_port_hotplug_long_detect);
1940
1941 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1942 }
1943
1944 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1945 {
1946 int pipe;
1947 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1948
1949 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1950
1951 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1952 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1953 SDE_AUDIO_POWER_SHIFT);
1954 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1955 port_name(port));
1956 }
1957
1958 if (pch_iir & SDE_AUX_MASK)
1959 dp_aux_irq_handler(dev_priv);
1960
1961 if (pch_iir & SDE_GMBUS)
1962 gmbus_irq_handler(dev_priv);
1963
1964 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1965 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1966
1967 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1968 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1969
1970 if (pch_iir & SDE_POISON)
1971 DRM_ERROR("PCH poison interrupt\n");
1972
1973 if (pch_iir & SDE_FDI_MASK)
1974 for_each_pipe(dev_priv, pipe)
1975 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1976 pipe_name(pipe),
1977 I915_READ(FDI_RX_IIR(pipe)));
1978
1979 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1980 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1981
1982 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1983 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1984
1985 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1986 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1987
1988 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1989 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1990 }
1991
1992 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1993 {
1994 u32 err_int = I915_READ(GEN7_ERR_INT);
1995 enum pipe pipe;
1996
1997 if (err_int & ERR_INT_POISON)
1998 DRM_ERROR("Poison interrupt\n");
1999
2000 for_each_pipe(dev_priv, pipe) {
2001 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2002 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2003
2004 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2005 if (IS_IVYBRIDGE(dev_priv))
2006 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2007 else
2008 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2009 }
2010 }
2011
2012 I915_WRITE(GEN7_ERR_INT, err_int);
2013 }
2014
2015 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2016 {
2017 u32 serr_int = I915_READ(SERR_INT);
2018
2019 if (serr_int & SERR_INT_POISON)
2020 DRM_ERROR("PCH poison interrupt\n");
2021
2022 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2023 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2024
2025 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2026 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2027
2028 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2029 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2030
2031 I915_WRITE(SERR_INT, serr_int);
2032 }
2033
2034 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2035 {
2036 int pipe;
2037 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2038
2039 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2040
2041 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2042 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2043 SDE_AUDIO_POWER_SHIFT_CPT);
2044 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2045 port_name(port));
2046 }
2047
2048 if (pch_iir & SDE_AUX_MASK_CPT)
2049 dp_aux_irq_handler(dev_priv);
2050
2051 if (pch_iir & SDE_GMBUS_CPT)
2052 gmbus_irq_handler(dev_priv);
2053
2054 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2055 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2056
2057 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2058 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2059
2060 if (pch_iir & SDE_FDI_MASK_CPT)
2061 for_each_pipe(dev_priv, pipe)
2062 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2063 pipe_name(pipe),
2064 I915_READ(FDI_RX_IIR(pipe)));
2065
2066 if (pch_iir & SDE_ERROR_CPT)
2067 cpt_serr_int_handler(dev_priv);
2068 }
2069
2070 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2071 {
2072 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2073 ~SDE_PORTE_HOTPLUG_SPT;
2074 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2075 u32 pin_mask = 0, long_mask = 0;
2076
2077 if (hotplug_trigger) {
2078 u32 dig_hotplug_reg;
2079
2080 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2081 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2082
2083 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2084 dig_hotplug_reg, hpd_spt,
2085 spt_port_hotplug_long_detect);
2086 }
2087
2088 if (hotplug2_trigger) {
2089 u32 dig_hotplug_reg;
2090
2091 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2092 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2093
2094 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2095 dig_hotplug_reg, hpd_spt,
2096 spt_port_hotplug2_long_detect);
2097 }
2098
2099 if (pin_mask)
2100 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2101
2102 if (pch_iir & SDE_GMBUS_CPT)
2103 gmbus_irq_handler(dev_priv);
2104 }
2105
2106 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2107 u32 hotplug_trigger,
2108 const u32 hpd[HPD_NUM_PINS])
2109 {
2110 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2111
2112 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2113 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2114
2115 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2116 dig_hotplug_reg, hpd,
2117 ilk_port_hotplug_long_detect);
2118
2119 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2120 }
2121
2122 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2123 u32 de_iir)
2124 {
2125 enum pipe pipe;
2126 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2127
2128 if (hotplug_trigger)
2129 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2130
2131 if (de_iir & DE_AUX_CHANNEL_A)
2132 dp_aux_irq_handler(dev_priv);
2133
2134 if (de_iir & DE_GSE)
2135 intel_opregion_asle_intr(dev_priv);
2136
2137 if (de_iir & DE_POISON)
2138 DRM_ERROR("Poison interrupt\n");
2139
2140 for_each_pipe(dev_priv, pipe) {
2141 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2142 intel_pipe_handle_vblank(dev_priv, pipe))
2143 intel_check_page_flip(dev_priv, pipe);
2144
2145 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2146 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2147
2148 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2149 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2150
2151 /* plane/pipes map 1:1 on ilk+ */
2152 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2153 intel_finish_page_flip_cs(dev_priv, pipe);
2154 }
2155
2156 /* check event from PCH */
2157 if (de_iir & DE_PCH_EVENT) {
2158 u32 pch_iir = I915_READ(SDEIIR);
2159
2160 if (HAS_PCH_CPT(dev_priv))
2161 cpt_irq_handler(dev_priv, pch_iir);
2162 else
2163 ibx_irq_handler(dev_priv, pch_iir);
2164
2165 /* should clear PCH hotplug event before clear CPU irq */
2166 I915_WRITE(SDEIIR, pch_iir);
2167 }
2168
2169 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2170 ironlake_rps_change_irq_handler(dev_priv);
2171 }
2172
2173 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2174 u32 de_iir)
2175 {
2176 enum pipe pipe;
2177 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2178
2179 if (hotplug_trigger)
2180 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2181
2182 if (de_iir & DE_ERR_INT_IVB)
2183 ivb_err_int_handler(dev_priv);
2184
2185 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2186 dp_aux_irq_handler(dev_priv);
2187
2188 if (de_iir & DE_GSE_IVB)
2189 intel_opregion_asle_intr(dev_priv);
2190
2191 for_each_pipe(dev_priv, pipe) {
2192 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2193 intel_pipe_handle_vblank(dev_priv, pipe))
2194 intel_check_page_flip(dev_priv, pipe);
2195
2196 /* plane/pipes map 1:1 on ilk+ */
2197 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2198 intel_finish_page_flip_cs(dev_priv, pipe);
2199 }
2200
2201 /* check event from PCH */
2202 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2203 u32 pch_iir = I915_READ(SDEIIR);
2204
2205 cpt_irq_handler(dev_priv, pch_iir);
2206
2207 /* clear PCH hotplug event before clear CPU irq */
2208 I915_WRITE(SDEIIR, pch_iir);
2209 }
2210 }
2211
2212 /*
2213 * To handle irqs with the minimum potential races with fresh interrupts, we:
2214 * 1 - Disable Master Interrupt Control.
2215 * 2 - Find the source(s) of the interrupt.
2216 * 3 - Clear the Interrupt Identity bits (IIR).
2217 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2218 * 5 - Re-enable Master Interrupt Control.
2219 */
2220 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2221 {
2222 struct drm_device *dev = arg;
2223 struct drm_i915_private *dev_priv = dev->dev_private;
2224 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2225 irqreturn_t ret = IRQ_NONE;
2226
2227 if (!intel_irqs_enabled(dev_priv))
2228 return IRQ_NONE;
2229
2230 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2231 disable_rpm_wakeref_asserts(dev_priv);
2232
2233 /* disable master interrupt before clearing iir */
2234 de_ier = I915_READ(DEIER);
2235 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2236 POSTING_READ(DEIER);
2237
2238 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2239 * interrupts will will be stored on its back queue, and then we'll be
2240 * able to process them after we restore SDEIER (as soon as we restore
2241 * it, we'll get an interrupt if SDEIIR still has something to process
2242 * due to its back queue). */
2243 if (!HAS_PCH_NOP(dev_priv)) {
2244 sde_ier = I915_READ(SDEIER);
2245 I915_WRITE(SDEIER, 0);
2246 POSTING_READ(SDEIER);
2247 }
2248
2249 /* Find, clear, then process each source of interrupt */
2250
2251 gt_iir = I915_READ(GTIIR);
2252 if (gt_iir) {
2253 I915_WRITE(GTIIR, gt_iir);
2254 ret = IRQ_HANDLED;
2255 if (INTEL_GEN(dev_priv) >= 6)
2256 snb_gt_irq_handler(dev_priv, gt_iir);
2257 else
2258 ilk_gt_irq_handler(dev_priv, gt_iir);
2259 }
2260
2261 de_iir = I915_READ(DEIIR);
2262 if (de_iir) {
2263 I915_WRITE(DEIIR, de_iir);
2264 ret = IRQ_HANDLED;
2265 if (INTEL_GEN(dev_priv) >= 7)
2266 ivb_display_irq_handler(dev_priv, de_iir);
2267 else
2268 ilk_display_irq_handler(dev_priv, de_iir);
2269 }
2270
2271 if (INTEL_GEN(dev_priv) >= 6) {
2272 u32 pm_iir = I915_READ(GEN6_PMIIR);
2273 if (pm_iir) {
2274 I915_WRITE(GEN6_PMIIR, pm_iir);
2275 ret = IRQ_HANDLED;
2276 gen6_rps_irq_handler(dev_priv, pm_iir);
2277 }
2278 }
2279
2280 I915_WRITE(DEIER, de_ier);
2281 POSTING_READ(DEIER);
2282 if (!HAS_PCH_NOP(dev_priv)) {
2283 I915_WRITE(SDEIER, sde_ier);
2284 POSTING_READ(SDEIER);
2285 }
2286
2287 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2288 enable_rpm_wakeref_asserts(dev_priv);
2289
2290 return ret;
2291 }
2292
2293 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2294 u32 hotplug_trigger,
2295 const u32 hpd[HPD_NUM_PINS])
2296 {
2297 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2298
2299 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2300 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2301
2302 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2303 dig_hotplug_reg, hpd,
2304 bxt_port_hotplug_long_detect);
2305
2306 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2307 }
2308
2309 static irqreturn_t
2310 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2311 {
2312 irqreturn_t ret = IRQ_NONE;
2313 u32 iir;
2314 enum pipe pipe;
2315
2316 if (master_ctl & GEN8_DE_MISC_IRQ) {
2317 iir = I915_READ(GEN8_DE_MISC_IIR);
2318 if (iir) {
2319 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2320 ret = IRQ_HANDLED;
2321 if (iir & GEN8_DE_MISC_GSE)
2322 intel_opregion_asle_intr(dev_priv);
2323 else
2324 DRM_ERROR("Unexpected DE Misc interrupt\n");
2325 }
2326 else
2327 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2328 }
2329
2330 if (master_ctl & GEN8_DE_PORT_IRQ) {
2331 iir = I915_READ(GEN8_DE_PORT_IIR);
2332 if (iir) {
2333 u32 tmp_mask;
2334 bool found = false;
2335
2336 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2337 ret = IRQ_HANDLED;
2338
2339 tmp_mask = GEN8_AUX_CHANNEL_A;
2340 if (INTEL_INFO(dev_priv)->gen >= 9)
2341 tmp_mask |= GEN9_AUX_CHANNEL_B |
2342 GEN9_AUX_CHANNEL_C |
2343 GEN9_AUX_CHANNEL_D;
2344
2345 if (iir & tmp_mask) {
2346 dp_aux_irq_handler(dev_priv);
2347 found = true;
2348 }
2349
2350 if (IS_BROXTON(dev_priv)) {
2351 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2352 if (tmp_mask) {
2353 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2354 hpd_bxt);
2355 found = true;
2356 }
2357 } else if (IS_BROADWELL(dev_priv)) {
2358 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2359 if (tmp_mask) {
2360 ilk_hpd_irq_handler(dev_priv,
2361 tmp_mask, hpd_bdw);
2362 found = true;
2363 }
2364 }
2365
2366 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2367 gmbus_irq_handler(dev_priv);
2368 found = true;
2369 }
2370
2371 if (!found)
2372 DRM_ERROR("Unexpected DE Port interrupt\n");
2373 }
2374 else
2375 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2376 }
2377
2378 for_each_pipe(dev_priv, pipe) {
2379 u32 flip_done, fault_errors;
2380
2381 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2382 continue;
2383
2384 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2385 if (!iir) {
2386 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2387 continue;
2388 }
2389
2390 ret = IRQ_HANDLED;
2391 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2392
2393 if (iir & GEN8_PIPE_VBLANK &&
2394 intel_pipe_handle_vblank(dev_priv, pipe))
2395 intel_check_page_flip(dev_priv, pipe);
2396
2397 flip_done = iir;
2398 if (INTEL_INFO(dev_priv)->gen >= 9)
2399 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2400 else
2401 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2402
2403 if (flip_done)
2404 intel_finish_page_flip_cs(dev_priv, pipe);
2405
2406 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2407 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2408
2409 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2410 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2411
2412 fault_errors = iir;
2413 if (INTEL_INFO(dev_priv)->gen >= 9)
2414 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2415 else
2416 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2417
2418 if (fault_errors)
2419 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2420 pipe_name(pipe),
2421 fault_errors);
2422 }
2423
2424 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2425 master_ctl & GEN8_DE_PCH_IRQ) {
2426 /*
2427 * FIXME(BDW): Assume for now that the new interrupt handling
2428 * scheme also closed the SDE interrupt handling race we've seen
2429 * on older pch-split platforms. But this needs testing.
2430 */
2431 iir = I915_READ(SDEIIR);
2432 if (iir) {
2433 I915_WRITE(SDEIIR, iir);
2434 ret = IRQ_HANDLED;
2435
2436 if (HAS_PCH_SPT(dev_priv))
2437 spt_irq_handler(dev_priv, iir);
2438 else
2439 cpt_irq_handler(dev_priv, iir);
2440 } else {
2441 /*
2442 * Like on previous PCH there seems to be something
2443 * fishy going on with forwarding PCH interrupts.
2444 */
2445 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2446 }
2447 }
2448
2449 return ret;
2450 }
2451
2452 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2453 {
2454 struct drm_device *dev = arg;
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456 u32 master_ctl;
2457 u32 gt_iir[4] = {};
2458 irqreturn_t ret;
2459
2460 if (!intel_irqs_enabled(dev_priv))
2461 return IRQ_NONE;
2462
2463 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2464 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2465 if (!master_ctl)
2466 return IRQ_NONE;
2467
2468 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2469
2470 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2471 disable_rpm_wakeref_asserts(dev_priv);
2472
2473 /* Find, clear, then process each source of interrupt */
2474 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2475 gen8_gt_irq_handler(dev_priv, gt_iir);
2476 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2477
2478 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2479 POSTING_READ_FW(GEN8_MASTER_IRQ);
2480
2481 enable_rpm_wakeref_asserts(dev_priv);
2482
2483 return ret;
2484 }
2485
2486 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2487 {
2488 /*
2489 * Notify all waiters for GPU completion events that reset state has
2490 * been changed, and that they need to restart their wait after
2491 * checking for potential errors (and bail out to drop locks if there is
2492 * a gpu reset pending so that i915_error_work_func can acquire them).
2493 */
2494
2495 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2496 wake_up_all(&dev_priv->gpu_error.wait_queue);
2497
2498 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2499 wake_up_all(&dev_priv->pending_flip_queue);
2500 }
2501
2502 /**
2503 * i915_reset_and_wakeup - do process context error handling work
2504 * @dev_priv: i915 device private
2505 *
2506 * Fire an error uevent so userspace can see that a hang or error
2507 * was detected.
2508 */
2509 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2510 {
2511 struct kobject *kobj = &dev_priv->dev->primary->kdev->kobj;
2512 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2513 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2514 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2515 int ret;
2516
2517 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2518
2519 /*
2520 * Note that there's only one work item which does gpu resets, so we
2521 * need not worry about concurrent gpu resets potentially incrementing
2522 * error->reset_counter twice. We only need to take care of another
2523 * racing irq/hangcheck declaring the gpu dead for a second time. A
2524 * quick check for that is good enough: schedule_work ensures the
2525 * correct ordering between hang detection and this work item, and since
2526 * the reset in-progress bit is only ever set by code outside of this
2527 * work we don't need to worry about any other races.
2528 */
2529 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2530 DRM_DEBUG_DRIVER("resetting chip\n");
2531 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2532
2533 /*
2534 * In most cases it's guaranteed that we get here with an RPM
2535 * reference held, for example because there is a pending GPU
2536 * request that won't finish until the reset is done. This
2537 * isn't the case at least when we get here by doing a
2538 * simulated reset via debugs, so get an RPM reference.
2539 */
2540 intel_runtime_pm_get(dev_priv);
2541
2542 intel_prepare_reset(dev_priv);
2543
2544 /*
2545 * All state reset _must_ be completed before we update the
2546 * reset counter, for otherwise waiters might miss the reset
2547 * pending state and not properly drop locks, resulting in
2548 * deadlocks with the reset work.
2549 */
2550 ret = i915_reset(dev_priv);
2551
2552 intel_finish_reset(dev_priv);
2553
2554 intel_runtime_pm_put(dev_priv);
2555
2556 if (ret == 0)
2557 kobject_uevent_env(kobj,
2558 KOBJ_CHANGE, reset_done_event);
2559
2560 /*
2561 * Note: The wake_up also serves as a memory barrier so that
2562 * waiters see the update value of the reset counter atomic_t.
2563 */
2564 wake_up_all(&dev_priv->gpu_error.reset_queue);
2565 }
2566 }
2567
2568 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2569 {
2570 uint32_t instdone[I915_NUM_INSTDONE_REG];
2571 u32 eir = I915_READ(EIR);
2572 int pipe, i;
2573
2574 if (!eir)
2575 return;
2576
2577 pr_err("render error detected, EIR: 0x%08x\n", eir);
2578
2579 i915_get_extra_instdone(dev_priv, instdone);
2580
2581 if (IS_G4X(dev_priv)) {
2582 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2583 u32 ipeir = I915_READ(IPEIR_I965);
2584
2585 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2586 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2587 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2588 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2589 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2590 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2591 I915_WRITE(IPEIR_I965, ipeir);
2592 POSTING_READ(IPEIR_I965);
2593 }
2594 if (eir & GM45_ERROR_PAGE_TABLE) {
2595 u32 pgtbl_err = I915_READ(PGTBL_ER);
2596 pr_err("page table error\n");
2597 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2598 I915_WRITE(PGTBL_ER, pgtbl_err);
2599 POSTING_READ(PGTBL_ER);
2600 }
2601 }
2602
2603 if (!IS_GEN2(dev_priv)) {
2604 if (eir & I915_ERROR_PAGE_TABLE) {
2605 u32 pgtbl_err = I915_READ(PGTBL_ER);
2606 pr_err("page table error\n");
2607 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2608 I915_WRITE(PGTBL_ER, pgtbl_err);
2609 POSTING_READ(PGTBL_ER);
2610 }
2611 }
2612
2613 if (eir & I915_ERROR_MEMORY_REFRESH) {
2614 pr_err("memory refresh error:\n");
2615 for_each_pipe(dev_priv, pipe)
2616 pr_err("pipe %c stat: 0x%08x\n",
2617 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2618 /* pipestat has already been acked */
2619 }
2620 if (eir & I915_ERROR_INSTRUCTION) {
2621 pr_err("instruction error\n");
2622 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2623 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2624 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2625 if (INTEL_GEN(dev_priv) < 4) {
2626 u32 ipeir = I915_READ(IPEIR);
2627
2628 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2629 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2630 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2631 I915_WRITE(IPEIR, ipeir);
2632 POSTING_READ(IPEIR);
2633 } else {
2634 u32 ipeir = I915_READ(IPEIR_I965);
2635
2636 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2637 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2638 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2639 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2640 I915_WRITE(IPEIR_I965, ipeir);
2641 POSTING_READ(IPEIR_I965);
2642 }
2643 }
2644
2645 I915_WRITE(EIR, eir);
2646 POSTING_READ(EIR);
2647 eir = I915_READ(EIR);
2648 if (eir) {
2649 /*
2650 * some errors might have become stuck,
2651 * mask them.
2652 */
2653 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2654 I915_WRITE(EMR, I915_READ(EMR) | eir);
2655 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2656 }
2657 }
2658
2659 /**
2660 * i915_handle_error - handle a gpu error
2661 * @dev_priv: i915 device private
2662 * @engine_mask: mask representing engines that are hung
2663 * Do some basic checking of register state at error time and
2664 * dump it to the syslog. Also call i915_capture_error_state() to make
2665 * sure we get a record and make it available in debugfs. Fire a uevent
2666 * so userspace knows something bad happened (should trigger collection
2667 * of a ring dump etc.).
2668 * @fmt: Error message format string
2669 */
2670 void i915_handle_error(struct drm_i915_private *dev_priv,
2671 u32 engine_mask,
2672 const char *fmt, ...)
2673 {
2674 va_list args;
2675 char error_msg[80];
2676
2677 va_start(args, fmt);
2678 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2679 va_end(args);
2680
2681 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2682 i915_report_and_clear_eir(dev_priv);
2683
2684 if (engine_mask) {
2685 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2686 &dev_priv->gpu_error.reset_counter);
2687
2688 /*
2689 * Wakeup waiting processes so that the reset function
2690 * i915_reset_and_wakeup doesn't deadlock trying to grab
2691 * various locks. By bumping the reset counter first, the woken
2692 * processes will see a reset in progress and back off,
2693 * releasing their locks and then wait for the reset completion.
2694 * We must do this for _all_ gpu waiters that might hold locks
2695 * that the reset work needs to acquire.
2696 *
2697 * Note: The wake_up serves as the required memory barrier to
2698 * ensure that the waiters see the updated value of the reset
2699 * counter atomic_t.
2700 */
2701 i915_error_wake_up(dev_priv);
2702 }
2703
2704 i915_reset_and_wakeup(dev_priv);
2705 }
2706
2707 /* Called from drm generic code, passed 'crtc' which
2708 * we use as a pipe index
2709 */
2710 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2711 {
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 unsigned long irqflags;
2714
2715 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2716 if (INTEL_INFO(dev)->gen >= 4)
2717 i915_enable_pipestat(dev_priv, pipe,
2718 PIPE_START_VBLANK_INTERRUPT_STATUS);
2719 else
2720 i915_enable_pipestat(dev_priv, pipe,
2721 PIPE_VBLANK_INTERRUPT_STATUS);
2722 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2723
2724 return 0;
2725 }
2726
2727 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2728 {
2729 struct drm_i915_private *dev_priv = dev->dev_private;
2730 unsigned long irqflags;
2731 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2732 DE_PIPE_VBLANK(pipe);
2733
2734 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2735 ilk_enable_display_irq(dev_priv, bit);
2736 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2737
2738 return 0;
2739 }
2740
2741 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2742 {
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 unsigned long irqflags;
2745
2746 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2747 i915_enable_pipestat(dev_priv, pipe,
2748 PIPE_START_VBLANK_INTERRUPT_STATUS);
2749 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2750
2751 return 0;
2752 }
2753
2754 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2755 {
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 unsigned long irqflags;
2758
2759 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2760 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2761 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2762
2763 return 0;
2764 }
2765
2766 /* Called from drm generic code, passed 'crtc' which
2767 * we use as a pipe index
2768 */
2769 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2770 {
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 unsigned long irqflags;
2773
2774 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2775 i915_disable_pipestat(dev_priv, pipe,
2776 PIPE_VBLANK_INTERRUPT_STATUS |
2777 PIPE_START_VBLANK_INTERRUPT_STATUS);
2778 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2779 }
2780
2781 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2782 {
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 unsigned long irqflags;
2785 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2786 DE_PIPE_VBLANK(pipe);
2787
2788 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2789 ilk_disable_display_irq(dev_priv, bit);
2790 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2791 }
2792
2793 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2794 {
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 unsigned long irqflags;
2797
2798 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2799 i915_disable_pipestat(dev_priv, pipe,
2800 PIPE_START_VBLANK_INTERRUPT_STATUS);
2801 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2802 }
2803
2804 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2805 {
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 unsigned long irqflags;
2808
2809 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2810 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2811 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2812 }
2813
2814 static bool
2815 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2816 {
2817 return i915_seqno_passed(seqno,
2818 READ_ONCE(engine->last_submitted_seqno));
2819 }
2820
2821 static bool
2822 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2823 {
2824 if (INTEL_GEN(engine->i915) >= 8) {
2825 return (ipehr >> 23) == 0x1c;
2826 } else {
2827 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2828 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2829 MI_SEMAPHORE_REGISTER);
2830 }
2831 }
2832
2833 static struct intel_engine_cs *
2834 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2835 u64 offset)
2836 {
2837 struct drm_i915_private *dev_priv = engine->i915;
2838 struct intel_engine_cs *signaller;
2839
2840 if (INTEL_GEN(dev_priv) >= 8) {
2841 for_each_engine(signaller, dev_priv) {
2842 if (engine == signaller)
2843 continue;
2844
2845 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2846 return signaller;
2847 }
2848 } else {
2849 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2850
2851 for_each_engine(signaller, dev_priv) {
2852 if(engine == signaller)
2853 continue;
2854
2855 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2856 return signaller;
2857 }
2858 }
2859
2860 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2861 engine->id, ipehr, offset);
2862
2863 return NULL;
2864 }
2865
2866 static struct intel_engine_cs *
2867 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2868 {
2869 struct drm_i915_private *dev_priv = engine->i915;
2870 u32 cmd, ipehr, head;
2871 u64 offset = 0;
2872 int i, backwards;
2873
2874 /*
2875 * This function does not support execlist mode - any attempt to
2876 * proceed further into this function will result in a kernel panic
2877 * when dereferencing ring->buffer, which is not set up in execlist
2878 * mode.
2879 *
2880 * The correct way of doing it would be to derive the currently
2881 * executing ring buffer from the current context, which is derived
2882 * from the currently running request. Unfortunately, to get the
2883 * current request we would have to grab the struct_mutex before doing
2884 * anything else, which would be ill-advised since some other thread
2885 * might have grabbed it already and managed to hang itself, causing
2886 * the hang checker to deadlock.
2887 *
2888 * Therefore, this function does not support execlist mode in its
2889 * current form. Just return NULL and move on.
2890 */
2891 if (engine->buffer == NULL)
2892 return NULL;
2893
2894 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2895 if (!ipehr_is_semaphore_wait(engine, ipehr))
2896 return NULL;
2897
2898 /*
2899 * HEAD is likely pointing to the dword after the actual command,
2900 * so scan backwards until we find the MBOX. But limit it to just 3
2901 * or 4 dwords depending on the semaphore wait command size.
2902 * Note that we don't care about ACTHD here since that might
2903 * point at at batch, and semaphores are always emitted into the
2904 * ringbuffer itself.
2905 */
2906 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2907 backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2908
2909 for (i = backwards; i; --i) {
2910 /*
2911 * Be paranoid and presume the hw has gone off into the wild -
2912 * our ring is smaller than what the hardware (and hence
2913 * HEAD_ADDR) allows. Also handles wrap-around.
2914 */
2915 head &= engine->buffer->size - 1;
2916
2917 /* This here seems to blow up */
2918 cmd = ioread32(engine->buffer->virtual_start + head);
2919 if (cmd == ipehr)
2920 break;
2921
2922 head -= 4;
2923 }
2924
2925 if (!i)
2926 return NULL;
2927
2928 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2929 if (INTEL_GEN(dev_priv) >= 8) {
2930 offset = ioread32(engine->buffer->virtual_start + head + 12);
2931 offset <<= 32;
2932 offset = ioread32(engine->buffer->virtual_start + head + 8);
2933 }
2934 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2935 }
2936
2937 static int semaphore_passed(struct intel_engine_cs *engine)
2938 {
2939 struct drm_i915_private *dev_priv = engine->i915;
2940 struct intel_engine_cs *signaller;
2941 u32 seqno;
2942
2943 engine->hangcheck.deadlock++;
2944
2945 signaller = semaphore_waits_for(engine, &seqno);
2946 if (signaller == NULL)
2947 return -1;
2948
2949 /* Prevent pathological recursion due to driver bugs */
2950 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2951 return -1;
2952
2953 if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2954 return 1;
2955
2956 /* cursory check for an unkickable deadlock */
2957 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2958 semaphore_passed(signaller) < 0)
2959 return -1;
2960
2961 return 0;
2962 }
2963
2964 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2965 {
2966 struct intel_engine_cs *engine;
2967
2968 for_each_engine(engine, dev_priv)
2969 engine->hangcheck.deadlock = 0;
2970 }
2971
2972 static bool subunits_stuck(struct intel_engine_cs *engine)
2973 {
2974 u32 instdone[I915_NUM_INSTDONE_REG];
2975 bool stuck;
2976 int i;
2977
2978 if (engine->id != RCS)
2979 return true;
2980
2981 i915_get_extra_instdone(engine->i915, instdone);
2982
2983 /* There might be unstable subunit states even when
2984 * actual head is not moving. Filter out the unstable ones by
2985 * accumulating the undone -> done transitions and only
2986 * consider those as progress.
2987 */
2988 stuck = true;
2989 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2990 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2991
2992 if (tmp != engine->hangcheck.instdone[i])
2993 stuck = false;
2994
2995 engine->hangcheck.instdone[i] |= tmp;
2996 }
2997
2998 return stuck;
2999 }
3000
3001 static enum intel_ring_hangcheck_action
3002 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3003 {
3004 if (acthd != engine->hangcheck.acthd) {
3005
3006 /* Clear subunit states on head movement */
3007 memset(engine->hangcheck.instdone, 0,
3008 sizeof(engine->hangcheck.instdone));
3009
3010 return HANGCHECK_ACTIVE;
3011 }
3012
3013 if (!subunits_stuck(engine))
3014 return HANGCHECK_ACTIVE;
3015
3016 return HANGCHECK_HUNG;
3017 }
3018
3019 static enum intel_ring_hangcheck_action
3020 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3021 {
3022 struct drm_i915_private *dev_priv = engine->i915;
3023 enum intel_ring_hangcheck_action ha;
3024 u32 tmp;
3025
3026 ha = head_stuck(engine, acthd);
3027 if (ha != HANGCHECK_HUNG)
3028 return ha;
3029
3030 if (IS_GEN2(dev_priv))
3031 return HANGCHECK_HUNG;
3032
3033 /* Is the chip hanging on a WAIT_FOR_EVENT?
3034 * If so we can simply poke the RB_WAIT bit
3035 * and break the hang. This should work on
3036 * all but the second generation chipsets.
3037 */
3038 tmp = I915_READ_CTL(engine);
3039 if (tmp & RING_WAIT) {
3040 i915_handle_error(dev_priv, 0,
3041 "Kicking stuck wait on %s",
3042 engine->name);
3043 I915_WRITE_CTL(engine, tmp);
3044 return HANGCHECK_KICK;
3045 }
3046
3047 if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048 switch (semaphore_passed(engine)) {
3049 default:
3050 return HANGCHECK_HUNG;
3051 case 1:
3052 i915_handle_error(dev_priv, 0,
3053 "Kicking stuck semaphore on %s",
3054 engine->name);
3055 I915_WRITE_CTL(engine, tmp);
3056 return HANGCHECK_KICK;
3057 case 0:
3058 return HANGCHECK_WAIT;
3059 }
3060 }
3061
3062 return HANGCHECK_HUNG;
3063 }
3064
3065 static unsigned kick_waiters(struct intel_engine_cs *engine)
3066 {
3067 struct drm_i915_private *i915 = engine->i915;
3068 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3069
3070 if (engine->hangcheck.user_interrupts == user_interrupts &&
3071 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3072 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
3073 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3074 engine->name);
3075
3076 intel_engine_enable_fake_irq(engine);
3077 }
3078
3079 return user_interrupts;
3080 }
3081 /*
3082 * This is called when the chip hasn't reported back with completed
3083 * batchbuffers in a long time. We keep track per ring seqno progress and
3084 * if there are no progress, hangcheck score for that ring is increased.
3085 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3086 * we kick the ring. If we see no progress on three subsequent calls
3087 * we assume chip is wedged and try to fix it by resetting the chip.
3088 */
3089 static void i915_hangcheck_elapsed(struct work_struct *work)
3090 {
3091 struct drm_i915_private *dev_priv =
3092 container_of(work, typeof(*dev_priv),
3093 gpu_error.hangcheck_work.work);
3094 struct intel_engine_cs *engine;
3095 enum intel_engine_id id;
3096 int busy_count = 0, rings_hung = 0;
3097 bool stuck[I915_NUM_ENGINES] = { 0 };
3098 #define BUSY 1
3099 #define KICK 5
3100 #define HUNG 20
3101 #define ACTIVE_DECAY 15
3102
3103 if (!i915.enable_hangcheck)
3104 return;
3105
3106 if (!lockless_dereference(dev_priv->gt.awake))
3107 return;
3108
3109 /* As enabling the GPU requires fairly extensive mmio access,
3110 * periodically arm the mmio checker to see if we are triggering
3111 * any invalid access.
3112 */
3113 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3114
3115 for_each_engine_id(engine, dev_priv, id) {
3116 bool busy = intel_engine_has_waiter(engine);
3117 u64 acthd;
3118 u32 seqno;
3119 unsigned user_interrupts;
3120
3121 semaphore_clear_deadlocks(dev_priv);
3122
3123 /* We don't strictly need an irq-barrier here, as we are not
3124 * serving an interrupt request, be paranoid in case the
3125 * barrier has side-effects (such as preventing a broken
3126 * cacheline snoop) and so be sure that we can see the seqno
3127 * advance. If the seqno should stick, due to a stale
3128 * cacheline, we would erroneously declare the GPU hung.
3129 */
3130 if (engine->irq_seqno_barrier)
3131 engine->irq_seqno_barrier(engine);
3132
3133 acthd = intel_ring_get_active_head(engine);
3134 seqno = intel_engine_get_seqno(engine);
3135
3136 /* Reset stuck interrupts between batch advances */
3137 user_interrupts = 0;
3138
3139 if (engine->hangcheck.seqno == seqno) {
3140 if (ring_idle(engine, seqno)) {
3141 engine->hangcheck.action = HANGCHECK_IDLE;
3142 if (busy) {
3143 /* Safeguard against driver failure */
3144 user_interrupts = kick_waiters(engine);
3145 engine->hangcheck.score += BUSY;
3146 }
3147 } else {
3148 /* We always increment the hangcheck score
3149 * if the ring is busy and still processing
3150 * the same request, so that no single request
3151 * can run indefinitely (such as a chain of
3152 * batches). The only time we do not increment
3153 * the hangcheck score on this ring, if this
3154 * ring is in a legitimate wait for another
3155 * ring. In that case the waiting ring is a
3156 * victim and we want to be sure we catch the
3157 * right culprit. Then every time we do kick
3158 * the ring, add a small increment to the
3159 * score so that we can catch a batch that is
3160 * being repeatedly kicked and so responsible
3161 * for stalling the machine.
3162 */
3163 engine->hangcheck.action = ring_stuck(engine,
3164 acthd);
3165
3166 switch (engine->hangcheck.action) {
3167 case HANGCHECK_IDLE:
3168 case HANGCHECK_WAIT:
3169 break;
3170 case HANGCHECK_ACTIVE:
3171 engine->hangcheck.score += BUSY;
3172 break;
3173 case HANGCHECK_KICK:
3174 engine->hangcheck.score += KICK;
3175 break;
3176 case HANGCHECK_HUNG:
3177 engine->hangcheck.score += HUNG;
3178 stuck[id] = true;
3179 break;
3180 }
3181 }
3182 } else {
3183 engine->hangcheck.action = HANGCHECK_ACTIVE;
3184
3185 /* Gradually reduce the count so that we catch DoS
3186 * attempts across multiple batches.
3187 */
3188 if (engine->hangcheck.score > 0)
3189 engine->hangcheck.score -= ACTIVE_DECAY;
3190 if (engine->hangcheck.score < 0)
3191 engine->hangcheck.score = 0;
3192
3193 /* Clear head and subunit states on seqno movement */
3194 acthd = 0;
3195
3196 memset(engine->hangcheck.instdone, 0,
3197 sizeof(engine->hangcheck.instdone));
3198 }
3199
3200 engine->hangcheck.seqno = seqno;
3201 engine->hangcheck.acthd = acthd;
3202 engine->hangcheck.user_interrupts = user_interrupts;
3203 busy_count += busy;
3204 }
3205
3206 for_each_engine_id(engine, dev_priv, id) {
3207 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3208 DRM_INFO("%s on %s\n",
3209 stuck[id] ? "stuck" : "no progress",
3210 engine->name);
3211 rings_hung |= intel_engine_flag(engine);
3212 }
3213 }
3214
3215 if (rings_hung)
3216 i915_handle_error(dev_priv, rings_hung, "Engine(s) hung");
3217
3218 /* Reset timer in case GPU hangs without another request being added */
3219 if (busy_count)
3220 i915_queue_hangcheck(dev_priv);
3221 }
3222
3223 static void ibx_irq_reset(struct drm_device *dev)
3224 {
3225 struct drm_i915_private *dev_priv = dev->dev_private;
3226
3227 if (HAS_PCH_NOP(dev))
3228 return;
3229
3230 GEN5_IRQ_RESET(SDE);
3231
3232 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3233 I915_WRITE(SERR_INT, 0xffffffff);
3234 }
3235
3236 /*
3237 * SDEIER is also touched by the interrupt handler to work around missed PCH
3238 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3239 * instead we unconditionally enable all PCH interrupt sources here, but then
3240 * only unmask them as needed with SDEIMR.
3241 *
3242 * This function needs to be called before interrupts are enabled.
3243 */
3244 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3245 {
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247
3248 if (HAS_PCH_NOP(dev))
3249 return;
3250
3251 WARN_ON(I915_READ(SDEIER) != 0);
3252 I915_WRITE(SDEIER, 0xffffffff);
3253 POSTING_READ(SDEIER);
3254 }
3255
3256 static void gen5_gt_irq_reset(struct drm_device *dev)
3257 {
3258 struct drm_i915_private *dev_priv = dev->dev_private;
3259
3260 GEN5_IRQ_RESET(GT);
3261 if (INTEL_INFO(dev)->gen >= 6)
3262 GEN5_IRQ_RESET(GEN6_PM);
3263 }
3264
3265 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3266 {
3267 enum pipe pipe;
3268
3269 if (IS_CHERRYVIEW(dev_priv))
3270 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3271 else
3272 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3273
3274 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3275 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3276
3277 for_each_pipe(dev_priv, pipe) {
3278 I915_WRITE(PIPESTAT(pipe),
3279 PIPE_FIFO_UNDERRUN_STATUS |
3280 PIPESTAT_INT_STATUS_MASK);
3281 dev_priv->pipestat_irq_mask[pipe] = 0;
3282 }
3283
3284 GEN5_IRQ_RESET(VLV_);
3285 dev_priv->irq_mask = ~0;
3286 }
3287
3288 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3289 {
3290 u32 pipestat_mask;
3291 u32 enable_mask;
3292 enum pipe pipe;
3293
3294 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3295 PIPE_CRC_DONE_INTERRUPT_STATUS;
3296
3297 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3298 for_each_pipe(dev_priv, pipe)
3299 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3300
3301 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3302 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3303 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3304 if (IS_CHERRYVIEW(dev_priv))
3305 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3306
3307 WARN_ON(dev_priv->irq_mask != ~0);
3308
3309 dev_priv->irq_mask = ~enable_mask;
3310
3311 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3312 }
3313
3314 /* drm_dma.h hooks
3315 */
3316 static void ironlake_irq_reset(struct drm_device *dev)
3317 {
3318 struct drm_i915_private *dev_priv = dev->dev_private;
3319
3320 I915_WRITE(HWSTAM, 0xffffffff);
3321
3322 GEN5_IRQ_RESET(DE);
3323 if (IS_GEN7(dev))
3324 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3325
3326 gen5_gt_irq_reset(dev);
3327
3328 ibx_irq_reset(dev);
3329 }
3330
3331 static void valleyview_irq_preinstall(struct drm_device *dev)
3332 {
3333 struct drm_i915_private *dev_priv = dev->dev_private;
3334
3335 I915_WRITE(VLV_MASTER_IER, 0);
3336 POSTING_READ(VLV_MASTER_IER);
3337
3338 gen5_gt_irq_reset(dev);
3339
3340 spin_lock_irq(&dev_priv->irq_lock);
3341 if (dev_priv->display_irqs_enabled)
3342 vlv_display_irq_reset(dev_priv);
3343 spin_unlock_irq(&dev_priv->irq_lock);
3344 }
3345
3346 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3347 {
3348 GEN8_IRQ_RESET_NDX(GT, 0);
3349 GEN8_IRQ_RESET_NDX(GT, 1);
3350 GEN8_IRQ_RESET_NDX(GT, 2);
3351 GEN8_IRQ_RESET_NDX(GT, 3);
3352 }
3353
3354 static void gen8_irq_reset(struct drm_device *dev)
3355 {
3356 struct drm_i915_private *dev_priv = dev->dev_private;
3357 int pipe;
3358
3359 I915_WRITE(GEN8_MASTER_IRQ, 0);
3360 POSTING_READ(GEN8_MASTER_IRQ);
3361
3362 gen8_gt_irq_reset(dev_priv);
3363
3364 for_each_pipe(dev_priv, pipe)
3365 if (intel_display_power_is_enabled(dev_priv,
3366 POWER_DOMAIN_PIPE(pipe)))
3367 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3368
3369 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3370 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3371 GEN5_IRQ_RESET(GEN8_PCU_);
3372
3373 if (HAS_PCH_SPLIT(dev))
3374 ibx_irq_reset(dev);
3375 }
3376
3377 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3378 unsigned int pipe_mask)
3379 {
3380 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3381 enum pipe pipe;
3382
3383 spin_lock_irq(&dev_priv->irq_lock);
3384 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3385 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3386 dev_priv->de_irq_mask[pipe],
3387 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3388 spin_unlock_irq(&dev_priv->irq_lock);
3389 }
3390
3391 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3392 unsigned int pipe_mask)
3393 {
3394 enum pipe pipe;
3395
3396 spin_lock_irq(&dev_priv->irq_lock);
3397 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3398 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3399 spin_unlock_irq(&dev_priv->irq_lock);
3400
3401 /* make sure we're done processing display irqs */
3402 synchronize_irq(dev_priv->dev->irq);
3403 }
3404
3405 static void cherryview_irq_preinstall(struct drm_device *dev)
3406 {
3407 struct drm_i915_private *dev_priv = dev->dev_private;
3408
3409 I915_WRITE(GEN8_MASTER_IRQ, 0);
3410 POSTING_READ(GEN8_MASTER_IRQ);
3411
3412 gen8_gt_irq_reset(dev_priv);
3413
3414 GEN5_IRQ_RESET(GEN8_PCU_);
3415
3416 spin_lock_irq(&dev_priv->irq_lock);
3417 if (dev_priv->display_irqs_enabled)
3418 vlv_display_irq_reset(dev_priv);
3419 spin_unlock_irq(&dev_priv->irq_lock);
3420 }
3421
3422 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3423 const u32 hpd[HPD_NUM_PINS])
3424 {
3425 struct intel_encoder *encoder;
3426 u32 enabled_irqs = 0;
3427
3428 for_each_intel_encoder(dev_priv->dev, encoder)
3429 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3430 enabled_irqs |= hpd[encoder->hpd_pin];
3431
3432 return enabled_irqs;
3433 }
3434
3435 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3436 {
3437 u32 hotplug_irqs, hotplug, enabled_irqs;
3438
3439 if (HAS_PCH_IBX(dev_priv)) {
3440 hotplug_irqs = SDE_HOTPLUG_MASK;
3441 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3442 } else {
3443 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3444 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3445 }
3446
3447 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3448
3449 /*
3450 * Enable digital hotplug on the PCH, and configure the DP short pulse
3451 * duration to 2ms (which is the minimum in the Display Port spec).
3452 * The pulse duration bits are reserved on LPT+.
3453 */
3454 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3455 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3456 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3457 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3458 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3459 /*
3460 * When CPU and PCH are on the same package, port A
3461 * HPD must be enabled in both north and south.
3462 */
3463 if (HAS_PCH_LPT_LP(dev_priv))
3464 hotplug |= PORTA_HOTPLUG_ENABLE;
3465 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3466 }
3467
3468 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3469 {
3470 u32 hotplug_irqs, hotplug, enabled_irqs;
3471
3472 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3473 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3474
3475 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3476
3477 /* Enable digital hotplug on the PCH */
3478 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3479 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3480 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3481 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3482
3483 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3484 hotplug |= PORTE_HOTPLUG_ENABLE;
3485 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3486 }
3487
3488 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3489 {
3490 u32 hotplug_irqs, hotplug, enabled_irqs;
3491
3492 if (INTEL_GEN(dev_priv) >= 8) {
3493 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3494 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3495
3496 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3497 } else if (INTEL_GEN(dev_priv) >= 7) {
3498 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3499 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3500
3501 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3502 } else {
3503 hotplug_irqs = DE_DP_A_HOTPLUG;
3504 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3505
3506 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3507 }
3508
3509 /*
3510 * Enable digital hotplug on the CPU, and configure the DP short pulse
3511 * duration to 2ms (which is the minimum in the Display Port spec)
3512 * The pulse duration bits are reserved on HSW+.
3513 */
3514 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3515 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3516 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3517 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3518
3519 ibx_hpd_irq_setup(dev_priv);
3520 }
3521
3522 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3523 {
3524 u32 hotplug_irqs, hotplug, enabled_irqs;
3525
3526 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3527 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3528
3529 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3530
3531 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3532 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3533 PORTA_HOTPLUG_ENABLE;
3534
3535 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3536 hotplug, enabled_irqs);
3537 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3538
3539 /*
3540 * For BXT invert bit has to be set based on AOB design
3541 * for HPD detection logic, update it based on VBT fields.
3542 */
3543
3544 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3545 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3546 hotplug |= BXT_DDIA_HPD_INVERT;
3547 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3548 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3549 hotplug |= BXT_DDIB_HPD_INVERT;
3550 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3551 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3552 hotplug |= BXT_DDIC_HPD_INVERT;
3553
3554 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3555 }
3556
3557 static void ibx_irq_postinstall(struct drm_device *dev)
3558 {
3559 struct drm_i915_private *dev_priv = dev->dev_private;
3560 u32 mask;
3561
3562 if (HAS_PCH_NOP(dev))
3563 return;
3564
3565 if (HAS_PCH_IBX(dev))
3566 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3567 else
3568 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3569
3570 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3571 I915_WRITE(SDEIMR, ~mask);
3572 }
3573
3574 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3575 {
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 u32 pm_irqs, gt_irqs;
3578
3579 pm_irqs = gt_irqs = 0;
3580
3581 dev_priv->gt_irq_mask = ~0;
3582 if (HAS_L3_DPF(dev)) {
3583 /* L3 parity interrupt is always unmasked. */
3584 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3585 gt_irqs |= GT_PARITY_ERROR(dev);
3586 }
3587
3588 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3589 if (IS_GEN5(dev)) {
3590 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3591 } else {
3592 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3593 }
3594
3595 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3596
3597 if (INTEL_INFO(dev)->gen >= 6) {
3598 /*
3599 * RPS interrupts will get enabled/disabled on demand when RPS
3600 * itself is enabled/disabled.
3601 */
3602 if (HAS_VEBOX(dev))
3603 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3604
3605 dev_priv->pm_irq_mask = 0xffffffff;
3606 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3607 }
3608 }
3609
3610 static int ironlake_irq_postinstall(struct drm_device *dev)
3611 {
3612 struct drm_i915_private *dev_priv = dev->dev_private;
3613 u32 display_mask, extra_mask;
3614
3615 if (INTEL_INFO(dev)->gen >= 7) {
3616 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3617 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3618 DE_PLANEB_FLIP_DONE_IVB |
3619 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3620 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3621 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3622 DE_DP_A_HOTPLUG_IVB);
3623 } else {
3624 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3625 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3626 DE_AUX_CHANNEL_A |
3627 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3628 DE_POISON);
3629 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3630 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3631 DE_DP_A_HOTPLUG);
3632 }
3633
3634 dev_priv->irq_mask = ~display_mask;
3635
3636 I915_WRITE(HWSTAM, 0xeffe);
3637
3638 ibx_irq_pre_postinstall(dev);
3639
3640 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3641
3642 gen5_gt_irq_postinstall(dev);
3643
3644 ibx_irq_postinstall(dev);
3645
3646 if (IS_IRONLAKE_M(dev)) {
3647 /* Enable PCU event interrupts
3648 *
3649 * spinlocking not required here for correctness since interrupt
3650 * setup is guaranteed to run in single-threaded context. But we
3651 * need it to make the assert_spin_locked happy. */
3652 spin_lock_irq(&dev_priv->irq_lock);
3653 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3654 spin_unlock_irq(&dev_priv->irq_lock);
3655 }
3656
3657 return 0;
3658 }
3659
3660 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3661 {
3662 assert_spin_locked(&dev_priv->irq_lock);
3663
3664 if (dev_priv->display_irqs_enabled)
3665 return;
3666
3667 dev_priv->display_irqs_enabled = true;
3668
3669 if (intel_irqs_enabled(dev_priv)) {
3670 vlv_display_irq_reset(dev_priv);
3671 vlv_display_irq_postinstall(dev_priv);
3672 }
3673 }
3674
3675 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3676 {
3677 assert_spin_locked(&dev_priv->irq_lock);
3678
3679 if (!dev_priv->display_irqs_enabled)
3680 return;
3681
3682 dev_priv->display_irqs_enabled = false;
3683
3684 if (intel_irqs_enabled(dev_priv))
3685 vlv_display_irq_reset(dev_priv);
3686 }
3687
3688
3689 static int valleyview_irq_postinstall(struct drm_device *dev)
3690 {
3691 struct drm_i915_private *dev_priv = dev->dev_private;
3692
3693 gen5_gt_irq_postinstall(dev);
3694
3695 spin_lock_irq(&dev_priv->irq_lock);
3696 if (dev_priv->display_irqs_enabled)
3697 vlv_display_irq_postinstall(dev_priv);
3698 spin_unlock_irq(&dev_priv->irq_lock);
3699
3700 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3701 POSTING_READ(VLV_MASTER_IER);
3702
3703 return 0;
3704 }
3705
3706 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3707 {
3708 /* These are interrupts we'll toggle with the ring mask register */
3709 uint32_t gt_interrupts[] = {
3710 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3711 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3712 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3713 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3714 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3715 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3716 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3717 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3718 0,
3719 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3720 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3721 };
3722
3723 if (HAS_L3_DPF(dev_priv))
3724 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3725
3726 dev_priv->pm_irq_mask = 0xffffffff;
3727 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3728 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3729 /*
3730 * RPS interrupts will get enabled/disabled on demand when RPS itself
3731 * is enabled/disabled.
3732 */
3733 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3734 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3735 }
3736
3737 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3738 {
3739 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3740 uint32_t de_pipe_enables;
3741 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3742 u32 de_port_enables;
3743 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3744 enum pipe pipe;
3745
3746 if (INTEL_INFO(dev_priv)->gen >= 9) {
3747 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3748 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3749 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3750 GEN9_AUX_CHANNEL_D;
3751 if (IS_BROXTON(dev_priv))
3752 de_port_masked |= BXT_DE_PORT_GMBUS;
3753 } else {
3754 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3755 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3756 }
3757
3758 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3759 GEN8_PIPE_FIFO_UNDERRUN;
3760
3761 de_port_enables = de_port_masked;
3762 if (IS_BROXTON(dev_priv))
3763 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3764 else if (IS_BROADWELL(dev_priv))
3765 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3766
3767 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3768 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3769 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3770
3771 for_each_pipe(dev_priv, pipe)
3772 if (intel_display_power_is_enabled(dev_priv,
3773 POWER_DOMAIN_PIPE(pipe)))
3774 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3775 dev_priv->de_irq_mask[pipe],
3776 de_pipe_enables);
3777
3778 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3779 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3780 }
3781
3782 static int gen8_irq_postinstall(struct drm_device *dev)
3783 {
3784 struct drm_i915_private *dev_priv = dev->dev_private;
3785
3786 if (HAS_PCH_SPLIT(dev))
3787 ibx_irq_pre_postinstall(dev);
3788
3789 gen8_gt_irq_postinstall(dev_priv);
3790 gen8_de_irq_postinstall(dev_priv);
3791
3792 if (HAS_PCH_SPLIT(dev))
3793 ibx_irq_postinstall(dev);
3794
3795 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3796 POSTING_READ(GEN8_MASTER_IRQ);
3797
3798 return 0;
3799 }
3800
3801 static int cherryview_irq_postinstall(struct drm_device *dev)
3802 {
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804
3805 gen8_gt_irq_postinstall(dev_priv);
3806
3807 spin_lock_irq(&dev_priv->irq_lock);
3808 if (dev_priv->display_irqs_enabled)
3809 vlv_display_irq_postinstall(dev_priv);
3810 spin_unlock_irq(&dev_priv->irq_lock);
3811
3812 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3813 POSTING_READ(GEN8_MASTER_IRQ);
3814
3815 return 0;
3816 }
3817
3818 static void gen8_irq_uninstall(struct drm_device *dev)
3819 {
3820 struct drm_i915_private *dev_priv = dev->dev_private;
3821
3822 if (!dev_priv)
3823 return;
3824
3825 gen8_irq_reset(dev);
3826 }
3827
3828 static void valleyview_irq_uninstall(struct drm_device *dev)
3829 {
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831
3832 if (!dev_priv)
3833 return;
3834
3835 I915_WRITE(VLV_MASTER_IER, 0);
3836 POSTING_READ(VLV_MASTER_IER);
3837
3838 gen5_gt_irq_reset(dev);
3839
3840 I915_WRITE(HWSTAM, 0xffffffff);
3841
3842 spin_lock_irq(&dev_priv->irq_lock);
3843 if (dev_priv->display_irqs_enabled)
3844 vlv_display_irq_reset(dev_priv);
3845 spin_unlock_irq(&dev_priv->irq_lock);
3846 }
3847
3848 static void cherryview_irq_uninstall(struct drm_device *dev)
3849 {
3850 struct drm_i915_private *dev_priv = dev->dev_private;
3851
3852 if (!dev_priv)
3853 return;
3854
3855 I915_WRITE(GEN8_MASTER_IRQ, 0);
3856 POSTING_READ(GEN8_MASTER_IRQ);
3857
3858 gen8_gt_irq_reset(dev_priv);
3859
3860 GEN5_IRQ_RESET(GEN8_PCU_);
3861
3862 spin_lock_irq(&dev_priv->irq_lock);
3863 if (dev_priv->display_irqs_enabled)
3864 vlv_display_irq_reset(dev_priv);
3865 spin_unlock_irq(&dev_priv->irq_lock);
3866 }
3867
3868 static void ironlake_irq_uninstall(struct drm_device *dev)
3869 {
3870 struct drm_i915_private *dev_priv = dev->dev_private;
3871
3872 if (!dev_priv)
3873 return;
3874
3875 ironlake_irq_reset(dev);
3876 }
3877
3878 static void i8xx_irq_preinstall(struct drm_device * dev)
3879 {
3880 struct drm_i915_private *dev_priv = dev->dev_private;
3881 int pipe;
3882
3883 for_each_pipe(dev_priv, pipe)
3884 I915_WRITE(PIPESTAT(pipe), 0);
3885 I915_WRITE16(IMR, 0xffff);
3886 I915_WRITE16(IER, 0x0);
3887 POSTING_READ16(IER);
3888 }
3889
3890 static int i8xx_irq_postinstall(struct drm_device *dev)
3891 {
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893
3894 I915_WRITE16(EMR,
3895 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3896
3897 /* Unmask the interrupts that we always want on. */
3898 dev_priv->irq_mask =
3899 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3900 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3901 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3902 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3903 I915_WRITE16(IMR, dev_priv->irq_mask);
3904
3905 I915_WRITE16(IER,
3906 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3907 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3908 I915_USER_INTERRUPT);
3909 POSTING_READ16(IER);
3910
3911 /* Interrupt setup is already guaranteed to be single-threaded, this is
3912 * just to make the assert_spin_locked check happy. */
3913 spin_lock_irq(&dev_priv->irq_lock);
3914 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3915 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3916 spin_unlock_irq(&dev_priv->irq_lock);
3917
3918 return 0;
3919 }
3920
3921 /*
3922 * Returns true when a page flip has completed.
3923 */
3924 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3925 int plane, int pipe, u32 iir)
3926 {
3927 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3928
3929 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3930 return false;
3931
3932 if ((iir & flip_pending) == 0)
3933 goto check_page_flip;
3934
3935 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3936 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3937 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3938 * the flip is completed (no longer pending). Since this doesn't raise
3939 * an interrupt per se, we watch for the change at vblank.
3940 */
3941 if (I915_READ16(ISR) & flip_pending)
3942 goto check_page_flip;
3943
3944 intel_finish_page_flip_cs(dev_priv, pipe);
3945 return true;
3946
3947 check_page_flip:
3948 intel_check_page_flip(dev_priv, pipe);
3949 return false;
3950 }
3951
3952 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3953 {
3954 struct drm_device *dev = arg;
3955 struct drm_i915_private *dev_priv = dev->dev_private;
3956 u16 iir, new_iir;
3957 u32 pipe_stats[2];
3958 int pipe;
3959 u16 flip_mask =
3960 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3961 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3962 irqreturn_t ret;
3963
3964 if (!intel_irqs_enabled(dev_priv))
3965 return IRQ_NONE;
3966
3967 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3968 disable_rpm_wakeref_asserts(dev_priv);
3969
3970 ret = IRQ_NONE;
3971 iir = I915_READ16(IIR);
3972 if (iir == 0)
3973 goto out;
3974
3975 while (iir & ~flip_mask) {
3976 /* Can't rely on pipestat interrupt bit in iir as it might
3977 * have been cleared after the pipestat interrupt was received.
3978 * It doesn't set the bit in iir again, but it still produces
3979 * interrupts (for non-MSI).
3980 */
3981 spin_lock(&dev_priv->irq_lock);
3982 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3983 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3984
3985 for_each_pipe(dev_priv, pipe) {
3986 i915_reg_t reg = PIPESTAT(pipe);
3987 pipe_stats[pipe] = I915_READ(reg);
3988
3989 /*
3990 * Clear the PIPE*STAT regs before the IIR
3991 */
3992 if (pipe_stats[pipe] & 0x8000ffff)
3993 I915_WRITE(reg, pipe_stats[pipe]);
3994 }
3995 spin_unlock(&dev_priv->irq_lock);
3996
3997 I915_WRITE16(IIR, iir & ~flip_mask);
3998 new_iir = I915_READ16(IIR); /* Flush posted writes */
3999
4000 if (iir & I915_USER_INTERRUPT)
4001 notify_ring(&dev_priv->engine[RCS]);
4002
4003 for_each_pipe(dev_priv, pipe) {
4004 int plane = pipe;
4005 if (HAS_FBC(dev_priv))
4006 plane = !plane;
4007
4008 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4009 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4010 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4011
4012 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4013 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4014
4015 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4016 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4017 pipe);
4018 }
4019
4020 iir = new_iir;
4021 }
4022 ret = IRQ_HANDLED;
4023
4024 out:
4025 enable_rpm_wakeref_asserts(dev_priv);
4026
4027 return ret;
4028 }
4029
4030 static void i8xx_irq_uninstall(struct drm_device * dev)
4031 {
4032 struct drm_i915_private *dev_priv = dev->dev_private;
4033 int pipe;
4034
4035 for_each_pipe(dev_priv, pipe) {
4036 /* Clear enable bits; then clear status bits */
4037 I915_WRITE(PIPESTAT(pipe), 0);
4038 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4039 }
4040 I915_WRITE16(IMR, 0xffff);
4041 I915_WRITE16(IER, 0x0);
4042 I915_WRITE16(IIR, I915_READ16(IIR));
4043 }
4044
4045 static void i915_irq_preinstall(struct drm_device * dev)
4046 {
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 int pipe;
4049
4050 if (I915_HAS_HOTPLUG(dev)) {
4051 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4052 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4053 }
4054
4055 I915_WRITE16(HWSTAM, 0xeffe);
4056 for_each_pipe(dev_priv, pipe)
4057 I915_WRITE(PIPESTAT(pipe), 0);
4058 I915_WRITE(IMR, 0xffffffff);
4059 I915_WRITE(IER, 0x0);
4060 POSTING_READ(IER);
4061 }
4062
4063 static int i915_irq_postinstall(struct drm_device *dev)
4064 {
4065 struct drm_i915_private *dev_priv = dev->dev_private;
4066 u32 enable_mask;
4067
4068 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4069
4070 /* Unmask the interrupts that we always want on. */
4071 dev_priv->irq_mask =
4072 ~(I915_ASLE_INTERRUPT |
4073 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4074 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4075 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4076 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4077
4078 enable_mask =
4079 I915_ASLE_INTERRUPT |
4080 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4081 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4082 I915_USER_INTERRUPT;
4083
4084 if (I915_HAS_HOTPLUG(dev)) {
4085 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4086 POSTING_READ(PORT_HOTPLUG_EN);
4087
4088 /* Enable in IER... */
4089 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4090 /* and unmask in IMR */
4091 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4092 }
4093
4094 I915_WRITE(IMR, dev_priv->irq_mask);
4095 I915_WRITE(IER, enable_mask);
4096 POSTING_READ(IER);
4097
4098 i915_enable_asle_pipestat(dev_priv);
4099
4100 /* Interrupt setup is already guaranteed to be single-threaded, this is
4101 * just to make the assert_spin_locked check happy. */
4102 spin_lock_irq(&dev_priv->irq_lock);
4103 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4104 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4105 spin_unlock_irq(&dev_priv->irq_lock);
4106
4107 return 0;
4108 }
4109
4110 /*
4111 * Returns true when a page flip has completed.
4112 */
4113 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4114 int plane, int pipe, u32 iir)
4115 {
4116 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4117
4118 if (!intel_pipe_handle_vblank(dev_priv, pipe))
4119 return false;
4120
4121 if ((iir & flip_pending) == 0)
4122 goto check_page_flip;
4123
4124 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4125 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4126 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4127 * the flip is completed (no longer pending). Since this doesn't raise
4128 * an interrupt per se, we watch for the change at vblank.
4129 */
4130 if (I915_READ(ISR) & flip_pending)
4131 goto check_page_flip;
4132
4133 intel_finish_page_flip_cs(dev_priv, pipe);
4134 return true;
4135
4136 check_page_flip:
4137 intel_check_page_flip(dev_priv, pipe);
4138 return false;
4139 }
4140
4141 static irqreturn_t i915_irq_handler(int irq, void *arg)
4142 {
4143 struct drm_device *dev = arg;
4144 struct drm_i915_private *dev_priv = dev->dev_private;
4145 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4146 u32 flip_mask =
4147 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4148 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4149 int pipe, ret = IRQ_NONE;
4150
4151 if (!intel_irqs_enabled(dev_priv))
4152 return IRQ_NONE;
4153
4154 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4155 disable_rpm_wakeref_asserts(dev_priv);
4156
4157 iir = I915_READ(IIR);
4158 do {
4159 bool irq_received = (iir & ~flip_mask) != 0;
4160 bool blc_event = false;
4161
4162 /* Can't rely on pipestat interrupt bit in iir as it might
4163 * have been cleared after the pipestat interrupt was received.
4164 * It doesn't set the bit in iir again, but it still produces
4165 * interrupts (for non-MSI).
4166 */
4167 spin_lock(&dev_priv->irq_lock);
4168 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4169 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4170
4171 for_each_pipe(dev_priv, pipe) {
4172 i915_reg_t reg = PIPESTAT(pipe);
4173 pipe_stats[pipe] = I915_READ(reg);
4174
4175 /* Clear the PIPE*STAT regs before the IIR */
4176 if (pipe_stats[pipe] & 0x8000ffff) {
4177 I915_WRITE(reg, pipe_stats[pipe]);
4178 irq_received = true;
4179 }
4180 }
4181 spin_unlock(&dev_priv->irq_lock);
4182
4183 if (!irq_received)
4184 break;
4185
4186 /* Consume port. Then clear IIR or we'll miss events */
4187 if (I915_HAS_HOTPLUG(dev_priv) &&
4188 iir & I915_DISPLAY_PORT_INTERRUPT) {
4189 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4190 if (hotplug_status)
4191 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4192 }
4193
4194 I915_WRITE(IIR, iir & ~flip_mask);
4195 new_iir = I915_READ(IIR); /* Flush posted writes */
4196
4197 if (iir & I915_USER_INTERRUPT)
4198 notify_ring(&dev_priv->engine[RCS]);
4199
4200 for_each_pipe(dev_priv, pipe) {
4201 int plane = pipe;
4202 if (HAS_FBC(dev_priv))
4203 plane = !plane;
4204
4205 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4206 i915_handle_vblank(dev_priv, plane, pipe, iir))
4207 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4208
4209 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4210 blc_event = true;
4211
4212 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4213 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4214
4215 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4216 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4217 pipe);
4218 }
4219
4220 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4221 intel_opregion_asle_intr(dev_priv);
4222
4223 /* With MSI, interrupts are only generated when iir
4224 * transitions from zero to nonzero. If another bit got
4225 * set while we were handling the existing iir bits, then
4226 * we would never get another interrupt.
4227 *
4228 * This is fine on non-MSI as well, as if we hit this path
4229 * we avoid exiting the interrupt handler only to generate
4230 * another one.
4231 *
4232 * Note that for MSI this could cause a stray interrupt report
4233 * if an interrupt landed in the time between writing IIR and
4234 * the posting read. This should be rare enough to never
4235 * trigger the 99% of 100,000 interrupts test for disabling
4236 * stray interrupts.
4237 */
4238 ret = IRQ_HANDLED;
4239 iir = new_iir;
4240 } while (iir & ~flip_mask);
4241
4242 enable_rpm_wakeref_asserts(dev_priv);
4243
4244 return ret;
4245 }
4246
4247 static void i915_irq_uninstall(struct drm_device * dev)
4248 {
4249 struct drm_i915_private *dev_priv = dev->dev_private;
4250 int pipe;
4251
4252 if (I915_HAS_HOTPLUG(dev)) {
4253 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4254 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4255 }
4256
4257 I915_WRITE16(HWSTAM, 0xffff);
4258 for_each_pipe(dev_priv, pipe) {
4259 /* Clear enable bits; then clear status bits */
4260 I915_WRITE(PIPESTAT(pipe), 0);
4261 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4262 }
4263 I915_WRITE(IMR, 0xffffffff);
4264 I915_WRITE(IER, 0x0);
4265
4266 I915_WRITE(IIR, I915_READ(IIR));
4267 }
4268
4269 static void i965_irq_preinstall(struct drm_device * dev)
4270 {
4271 struct drm_i915_private *dev_priv = dev->dev_private;
4272 int pipe;
4273
4274 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4275 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4276
4277 I915_WRITE(HWSTAM, 0xeffe);
4278 for_each_pipe(dev_priv, pipe)
4279 I915_WRITE(PIPESTAT(pipe), 0);
4280 I915_WRITE(IMR, 0xffffffff);
4281 I915_WRITE(IER, 0x0);
4282 POSTING_READ(IER);
4283 }
4284
4285 static int i965_irq_postinstall(struct drm_device *dev)
4286 {
4287 struct drm_i915_private *dev_priv = dev->dev_private;
4288 u32 enable_mask;
4289 u32 error_mask;
4290
4291 /* Unmask the interrupts that we always want on. */
4292 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4293 I915_DISPLAY_PORT_INTERRUPT |
4294 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4295 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4296 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4297 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4298 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4299
4300 enable_mask = ~dev_priv->irq_mask;
4301 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4302 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4303 enable_mask |= I915_USER_INTERRUPT;
4304
4305 if (IS_G4X(dev_priv))
4306 enable_mask |= I915_BSD_USER_INTERRUPT;
4307
4308 /* Interrupt setup is already guaranteed to be single-threaded, this is
4309 * just to make the assert_spin_locked check happy. */
4310 spin_lock_irq(&dev_priv->irq_lock);
4311 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4312 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4313 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4314 spin_unlock_irq(&dev_priv->irq_lock);
4315
4316 /*
4317 * Enable some error detection, note the instruction error mask
4318 * bit is reserved, so we leave it masked.
4319 */
4320 if (IS_G4X(dev_priv)) {
4321 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4322 GM45_ERROR_MEM_PRIV |
4323 GM45_ERROR_CP_PRIV |
4324 I915_ERROR_MEMORY_REFRESH);
4325 } else {
4326 error_mask = ~(I915_ERROR_PAGE_TABLE |
4327 I915_ERROR_MEMORY_REFRESH);
4328 }
4329 I915_WRITE(EMR, error_mask);
4330
4331 I915_WRITE(IMR, dev_priv->irq_mask);
4332 I915_WRITE(IER, enable_mask);
4333 POSTING_READ(IER);
4334
4335 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4336 POSTING_READ(PORT_HOTPLUG_EN);
4337
4338 i915_enable_asle_pipestat(dev_priv);
4339
4340 return 0;
4341 }
4342
4343 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4344 {
4345 u32 hotplug_en;
4346
4347 assert_spin_locked(&dev_priv->irq_lock);
4348
4349 /* Note HDMI and DP share hotplug bits */
4350 /* enable bits are the same for all generations */
4351 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4352 /* Programming the CRT detection parameters tends
4353 to generate a spurious hotplug event about three
4354 seconds later. So just do it once.
4355 */
4356 if (IS_G4X(dev_priv))
4357 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4358 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4359
4360 /* Ignore TV since it's buggy */
4361 i915_hotplug_interrupt_update_locked(dev_priv,
4362 HOTPLUG_INT_EN_MASK |
4363 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4364 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4365 hotplug_en);
4366 }
4367
4368 static irqreturn_t i965_irq_handler(int irq, void *arg)
4369 {
4370 struct drm_device *dev = arg;
4371 struct drm_i915_private *dev_priv = dev->dev_private;
4372 u32 iir, new_iir;
4373 u32 pipe_stats[I915_MAX_PIPES];
4374 int ret = IRQ_NONE, pipe;
4375 u32 flip_mask =
4376 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4377 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4378
4379 if (!intel_irqs_enabled(dev_priv))
4380 return IRQ_NONE;
4381
4382 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4383 disable_rpm_wakeref_asserts(dev_priv);
4384
4385 iir = I915_READ(IIR);
4386
4387 for (;;) {
4388 bool irq_received = (iir & ~flip_mask) != 0;
4389 bool blc_event = false;
4390
4391 /* Can't rely on pipestat interrupt bit in iir as it might
4392 * have been cleared after the pipestat interrupt was received.
4393 * It doesn't set the bit in iir again, but it still produces
4394 * interrupts (for non-MSI).
4395 */
4396 spin_lock(&dev_priv->irq_lock);
4397 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4398 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4399
4400 for_each_pipe(dev_priv, pipe) {
4401 i915_reg_t reg = PIPESTAT(pipe);
4402 pipe_stats[pipe] = I915_READ(reg);
4403
4404 /*
4405 * Clear the PIPE*STAT regs before the IIR
4406 */
4407 if (pipe_stats[pipe] & 0x8000ffff) {
4408 I915_WRITE(reg, pipe_stats[pipe]);
4409 irq_received = true;
4410 }
4411 }
4412 spin_unlock(&dev_priv->irq_lock);
4413
4414 if (!irq_received)
4415 break;
4416
4417 ret = IRQ_HANDLED;
4418
4419 /* Consume port. Then clear IIR or we'll miss events */
4420 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4421 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4422 if (hotplug_status)
4423 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4424 }
4425
4426 I915_WRITE(IIR, iir & ~flip_mask);
4427 new_iir = I915_READ(IIR); /* Flush posted writes */
4428
4429 if (iir & I915_USER_INTERRUPT)
4430 notify_ring(&dev_priv->engine[RCS]);
4431 if (iir & I915_BSD_USER_INTERRUPT)
4432 notify_ring(&dev_priv->engine[VCS]);
4433
4434 for_each_pipe(dev_priv, pipe) {
4435 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4436 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4437 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4438
4439 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4440 blc_event = true;
4441
4442 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4443 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4444
4445 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4446 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4447 }
4448
4449 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4450 intel_opregion_asle_intr(dev_priv);
4451
4452 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4453 gmbus_irq_handler(dev_priv);
4454
4455 /* With MSI, interrupts are only generated when iir
4456 * transitions from zero to nonzero. If another bit got
4457 * set while we were handling the existing iir bits, then
4458 * we would never get another interrupt.
4459 *
4460 * This is fine on non-MSI as well, as if we hit this path
4461 * we avoid exiting the interrupt handler only to generate
4462 * another one.
4463 *
4464 * Note that for MSI this could cause a stray interrupt report
4465 * if an interrupt landed in the time between writing IIR and
4466 * the posting read. This should be rare enough to never
4467 * trigger the 99% of 100,000 interrupts test for disabling
4468 * stray interrupts.
4469 */
4470 iir = new_iir;
4471 }
4472
4473 enable_rpm_wakeref_asserts(dev_priv);
4474
4475 return ret;
4476 }
4477
4478 static void i965_irq_uninstall(struct drm_device * dev)
4479 {
4480 struct drm_i915_private *dev_priv = dev->dev_private;
4481 int pipe;
4482
4483 if (!dev_priv)
4484 return;
4485
4486 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4487 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4488
4489 I915_WRITE(HWSTAM, 0xffffffff);
4490 for_each_pipe(dev_priv, pipe)
4491 I915_WRITE(PIPESTAT(pipe), 0);
4492 I915_WRITE(IMR, 0xffffffff);
4493 I915_WRITE(IER, 0x0);
4494
4495 for_each_pipe(dev_priv, pipe)
4496 I915_WRITE(PIPESTAT(pipe),
4497 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4498 I915_WRITE(IIR, I915_READ(IIR));
4499 }
4500
4501 /**
4502 * intel_irq_init - initializes irq support
4503 * @dev_priv: i915 device instance
4504 *
4505 * This function initializes all the irq support including work items, timers
4506 * and all the vtables. It does not setup the interrupt itself though.
4507 */
4508 void intel_irq_init(struct drm_i915_private *dev_priv)
4509 {
4510 struct drm_device *dev = dev_priv->dev;
4511
4512 intel_hpd_init_work(dev_priv);
4513
4514 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4515 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4516
4517 /* Let's track the enabled rps events */
4518 if (IS_VALLEYVIEW(dev_priv))
4519 /* WaGsvRC0ResidencyMethod:vlv */
4520 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4521 else
4522 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4523
4524 dev_priv->rps.pm_intr_keep = 0;
4525
4526 /*
4527 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4528 * if GEN6_PM_UP_EI_EXPIRED is masked.
4529 *
4530 * TODO: verify if this can be reproduced on VLV,CHV.
4531 */
4532 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4533 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4534
4535 if (INTEL_INFO(dev_priv)->gen >= 8)
4536 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
4537
4538 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4539 i915_hangcheck_elapsed);
4540
4541 if (IS_GEN2(dev_priv)) {
4542 dev->max_vblank_count = 0;
4543 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4544 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4545 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4546 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4547 } else {
4548 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4549 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4550 }
4551
4552 /*
4553 * Opt out of the vblank disable timer on everything except gen2.
4554 * Gen2 doesn't have a hardware frame counter and so depends on
4555 * vblank interrupts to produce sane vblank seuquence numbers.
4556 */
4557 if (!IS_GEN2(dev_priv))
4558 dev->vblank_disable_immediate = true;
4559
4560 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4561 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4562
4563 if (IS_CHERRYVIEW(dev_priv)) {
4564 dev->driver->irq_handler = cherryview_irq_handler;
4565 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4566 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4567 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4568 dev->driver->enable_vblank = valleyview_enable_vblank;
4569 dev->driver->disable_vblank = valleyview_disable_vblank;
4570 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4571 } else if (IS_VALLEYVIEW(dev_priv)) {
4572 dev->driver->irq_handler = valleyview_irq_handler;
4573 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4574 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4575 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4576 dev->driver->enable_vblank = valleyview_enable_vblank;
4577 dev->driver->disable_vblank = valleyview_disable_vblank;
4578 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4579 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4580 dev->driver->irq_handler = gen8_irq_handler;
4581 dev->driver->irq_preinstall = gen8_irq_reset;
4582 dev->driver->irq_postinstall = gen8_irq_postinstall;
4583 dev->driver->irq_uninstall = gen8_irq_uninstall;
4584 dev->driver->enable_vblank = gen8_enable_vblank;
4585 dev->driver->disable_vblank = gen8_disable_vblank;
4586 if (IS_BROXTON(dev))
4587 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4588 else if (HAS_PCH_SPT(dev))
4589 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4590 else
4591 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4592 } else if (HAS_PCH_SPLIT(dev)) {
4593 dev->driver->irq_handler = ironlake_irq_handler;
4594 dev->driver->irq_preinstall = ironlake_irq_reset;
4595 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4596 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4597 dev->driver->enable_vblank = ironlake_enable_vblank;
4598 dev->driver->disable_vblank = ironlake_disable_vblank;
4599 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4600 } else {
4601 if (IS_GEN2(dev_priv)) {
4602 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4603 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4604 dev->driver->irq_handler = i8xx_irq_handler;
4605 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4606 } else if (IS_GEN3(dev_priv)) {
4607 dev->driver->irq_preinstall = i915_irq_preinstall;
4608 dev->driver->irq_postinstall = i915_irq_postinstall;
4609 dev->driver->irq_uninstall = i915_irq_uninstall;
4610 dev->driver->irq_handler = i915_irq_handler;
4611 } else {
4612 dev->driver->irq_preinstall = i965_irq_preinstall;
4613 dev->driver->irq_postinstall = i965_irq_postinstall;
4614 dev->driver->irq_uninstall = i965_irq_uninstall;
4615 dev->driver->irq_handler = i965_irq_handler;
4616 }
4617 if (I915_HAS_HOTPLUG(dev_priv))
4618 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4619 dev->driver->enable_vblank = i915_enable_vblank;
4620 dev->driver->disable_vblank = i915_disable_vblank;
4621 }
4622 }
4623
4624 /**
4625 * intel_irq_install - enables the hardware interrupt
4626 * @dev_priv: i915 device instance
4627 *
4628 * This function enables the hardware interrupt handling, but leaves the hotplug
4629 * handling still disabled. It is called after intel_irq_init().
4630 *
4631 * In the driver load and resume code we need working interrupts in a few places
4632 * but don't want to deal with the hassle of concurrent probe and hotplug
4633 * workers. Hence the split into this two-stage approach.
4634 */
4635 int intel_irq_install(struct drm_i915_private *dev_priv)
4636 {
4637 /*
4638 * We enable some interrupt sources in our postinstall hooks, so mark
4639 * interrupts as enabled _before_ actually enabling them to avoid
4640 * special cases in our ordering checks.
4641 */
4642 dev_priv->pm.irqs_enabled = true;
4643
4644 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4645 }
4646
4647 /**
4648 * intel_irq_uninstall - finilizes all irq handling
4649 * @dev_priv: i915 device instance
4650 *
4651 * This stops interrupt and hotplug handling and unregisters and frees all
4652 * resources acquired in the init functions.
4653 */
4654 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4655 {
4656 drm_irq_uninstall(dev_priv->dev);
4657 intel_hpd_cancel_work(dev_priv);
4658 dev_priv->pm.irqs_enabled = false;
4659 }
4660
4661 /**
4662 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4663 * @dev_priv: i915 device instance
4664 *
4665 * This function is used to disable interrupts at runtime, both in the runtime
4666 * pm and the system suspend/resume code.
4667 */
4668 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4669 {
4670 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4671 dev_priv->pm.irqs_enabled = false;
4672 synchronize_irq(dev_priv->dev->irq);
4673 }
4674
4675 /**
4676 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4677 * @dev_priv: i915 device instance
4678 *
4679 * This function is used to enable interrupts at runtime, both in the runtime
4680 * pm and the system suspend/resume code.
4681 */
4682 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4683 {
4684 dev_priv->pm.irqs_enabled = true;
4685 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4686 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4687 }
This page took 0.120796 seconds and 4 git commands to generate.