Merge remote-tracking branch 'regmap/topic/debugfs' into regmap-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/kthread.h>
26
27 #include "i915_drv.h"
28
29 static void intel_breadcrumbs_fake_irq(unsigned long data)
30 {
31 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
32
33 /*
34 * The timer persists in case we cannot enable interrupts,
35 * or if we have previously seen seqno/interrupt incoherency
36 * ("missed interrupt" syndrome). Here the worker will wake up
37 * every jiffie in order to kick the oldest waiter to do the
38 * coherent seqno check.
39 */
40 rcu_read_lock();
41 if (intel_engine_wakeup(engine))
42 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
43 rcu_read_unlock();
44 }
45
46 static void irq_enable(struct intel_engine_cs *engine)
47 {
48 /* Enabling the IRQ may miss the generation of the interrupt, but
49 * we still need to force the barrier before reading the seqno,
50 * just in case.
51 */
52 engine->breadcrumbs.irq_posted = true;
53
54 spin_lock_irq(&engine->i915->irq_lock);
55 engine->irq_enable(engine);
56 spin_unlock_irq(&engine->i915->irq_lock);
57 }
58
59 static void irq_disable(struct intel_engine_cs *engine)
60 {
61 spin_lock_irq(&engine->i915->irq_lock);
62 engine->irq_disable(engine);
63 spin_unlock_irq(&engine->i915->irq_lock);
64
65 engine->breadcrumbs.irq_posted = false;
66 }
67
68 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
69 {
70 struct intel_engine_cs *engine =
71 container_of(b, struct intel_engine_cs, breadcrumbs);
72 struct drm_i915_private *i915 = engine->i915;
73
74 assert_spin_locked(&b->lock);
75 if (b->rpm_wakelock)
76 return;
77
78 /* Since we are waiting on a request, the GPU should be busy
79 * and should have its own rpm reference. For completeness,
80 * record an rpm reference for ourselves to cover the
81 * interrupt we unmask.
82 */
83 intel_runtime_pm_get_noresume(i915);
84 b->rpm_wakelock = true;
85
86 /* No interrupts? Kick the waiter every jiffie! */
87 if (intel_irqs_enabled(i915)) {
88 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
89 irq_enable(engine);
90 b->irq_enabled = true;
91 }
92
93 if (!b->irq_enabled ||
94 test_bit(engine->id, &i915->gpu_error.missed_irq_rings))
95 mod_timer(&b->fake_irq, jiffies + 1);
96
97 /* Ensure that even if the GPU hangs, we get woken up.
98 *
99 * However, note that if no one is waiting, we never notice
100 * a gpu hang. Eventually, we will have to wait for a resource
101 * held by the GPU and so trigger a hangcheck. In the most
102 * pathological case, this will be upon memory starvation!
103 */
104 i915_queue_hangcheck(i915);
105 }
106
107 static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
108 {
109 struct intel_engine_cs *engine =
110 container_of(b, struct intel_engine_cs, breadcrumbs);
111
112 assert_spin_locked(&b->lock);
113 if (!b->rpm_wakelock)
114 return;
115
116 if (b->irq_enabled) {
117 irq_disable(engine);
118 b->irq_enabled = false;
119 }
120
121 intel_runtime_pm_put(engine->i915);
122 b->rpm_wakelock = false;
123 }
124
125 static inline struct intel_wait *to_wait(struct rb_node *node)
126 {
127 return container_of(node, struct intel_wait, node);
128 }
129
130 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
131 struct intel_wait *wait)
132 {
133 assert_spin_locked(&b->lock);
134
135 /* This request is completed, so remove it from the tree, mark it as
136 * complete, and *then* wake up the associated task.
137 */
138 rb_erase(&wait->node, &b->waiters);
139 RB_CLEAR_NODE(&wait->node);
140
141 wake_up_process(wait->tsk); /* implicit smp_wmb() */
142 }
143
144 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
145 struct intel_wait *wait)
146 {
147 struct intel_breadcrumbs *b = &engine->breadcrumbs;
148 struct rb_node **p, *parent, *completed;
149 bool first;
150 u32 seqno;
151
152 /* Insert the request into the retirement ordered list
153 * of waiters by walking the rbtree. If we are the oldest
154 * seqno in the tree (the first to be retired), then
155 * set ourselves as the bottom-half.
156 *
157 * As we descend the tree, prune completed branches since we hold the
158 * spinlock we know that the first_waiter must be delayed and can
159 * reduce some of the sequential wake up latency if we take action
160 * ourselves and wake up the completed tasks in parallel. Also, by
161 * removing stale elements in the tree, we may be able to reduce the
162 * ping-pong between the old bottom-half and ourselves as first-waiter.
163 */
164 first = true;
165 parent = NULL;
166 completed = NULL;
167 seqno = intel_engine_get_seqno(engine);
168
169 /* If the request completed before we managed to grab the spinlock,
170 * return now before adding ourselves to the rbtree. We let the
171 * current bottom-half handle any pending wakeups and instead
172 * try and get out of the way quickly.
173 */
174 if (i915_seqno_passed(seqno, wait->seqno)) {
175 RB_CLEAR_NODE(&wait->node);
176 return first;
177 }
178
179 p = &b->waiters.rb_node;
180 while (*p) {
181 parent = *p;
182 if (wait->seqno == to_wait(parent)->seqno) {
183 /* We have multiple waiters on the same seqno, select
184 * the highest priority task (that with the smallest
185 * task->prio) to serve as the bottom-half for this
186 * group.
187 */
188 if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
189 p = &parent->rb_right;
190 first = false;
191 } else {
192 p = &parent->rb_left;
193 }
194 } else if (i915_seqno_passed(wait->seqno,
195 to_wait(parent)->seqno)) {
196 p = &parent->rb_right;
197 if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
198 completed = parent;
199 else
200 first = false;
201 } else {
202 p = &parent->rb_left;
203 }
204 }
205 rb_link_node(&wait->node, parent, p);
206 rb_insert_color(&wait->node, &b->waiters);
207 GEM_BUG_ON(!first && !b->irq_seqno_bh);
208
209 if (completed) {
210 struct rb_node *next = rb_next(completed);
211
212 GEM_BUG_ON(!next && !first);
213 if (next && next != &wait->node) {
214 GEM_BUG_ON(first);
215 b->first_wait = to_wait(next);
216 smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
217 /* As there is a delay between reading the current
218 * seqno, processing the completed tasks and selecting
219 * the next waiter, we may have missed the interrupt
220 * and so need for the next bottom-half to wakeup.
221 *
222 * Also as we enable the IRQ, we may miss the
223 * interrupt for that seqno, so we have to wake up
224 * the next bottom-half in order to do a coherent check
225 * in case the seqno passed.
226 */
227 __intel_breadcrumbs_enable_irq(b);
228 if (READ_ONCE(b->irq_posted))
229 wake_up_process(to_wait(next)->tsk);
230 }
231
232 do {
233 struct intel_wait *crumb = to_wait(completed);
234 completed = rb_prev(completed);
235 __intel_breadcrumbs_finish(b, crumb);
236 } while (completed);
237 }
238
239 if (first) {
240 GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
241 b->first_wait = wait;
242 smp_store_mb(b->irq_seqno_bh, wait->tsk);
243 /* After assigning ourselves as the new bottom-half, we must
244 * perform a cursory check to prevent a missed interrupt.
245 * Either we miss the interrupt whilst programming the hardware,
246 * or if there was a previous waiter (for a later seqno) they
247 * may be woken instead of us (due to the inherent race
248 * in the unlocked read of b->irq_seqno_bh in the irq handler)
249 * and so we miss the wake up.
250 */
251 __intel_breadcrumbs_enable_irq(b);
252 }
253 GEM_BUG_ON(!b->irq_seqno_bh);
254 GEM_BUG_ON(!b->first_wait);
255 GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);
256
257 return first;
258 }
259
260 bool intel_engine_add_wait(struct intel_engine_cs *engine,
261 struct intel_wait *wait)
262 {
263 struct intel_breadcrumbs *b = &engine->breadcrumbs;
264 bool first;
265
266 spin_lock(&b->lock);
267 first = __intel_engine_add_wait(engine, wait);
268 spin_unlock(&b->lock);
269
270 return first;
271 }
272
273 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine)
274 {
275 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
276 }
277
278 static inline bool chain_wakeup(struct rb_node *rb, int priority)
279 {
280 return rb && to_wait(rb)->tsk->prio <= priority;
281 }
282
283 static inline int wakeup_priority(struct intel_breadcrumbs *b,
284 struct task_struct *tsk)
285 {
286 if (tsk == b->signaler)
287 return INT_MIN;
288 else
289 return tsk->prio;
290 }
291
292 void intel_engine_remove_wait(struct intel_engine_cs *engine,
293 struct intel_wait *wait)
294 {
295 struct intel_breadcrumbs *b = &engine->breadcrumbs;
296
297 /* Quick check to see if this waiter was already decoupled from
298 * the tree by the bottom-half to avoid contention on the spinlock
299 * by the herd.
300 */
301 if (RB_EMPTY_NODE(&wait->node))
302 return;
303
304 spin_lock(&b->lock);
305
306 if (RB_EMPTY_NODE(&wait->node))
307 goto out_unlock;
308
309 if (b->first_wait == wait) {
310 const int priority = wakeup_priority(b, wait->tsk);
311 struct rb_node *next;
312
313 GEM_BUG_ON(b->irq_seqno_bh != wait->tsk);
314
315 /* We are the current bottom-half. Find the next candidate,
316 * the first waiter in the queue on the remaining oldest
317 * request. As multiple seqnos may complete in the time it
318 * takes us to wake up and find the next waiter, we have to
319 * wake up that waiter for it to perform its own coherent
320 * completion check.
321 */
322 next = rb_next(&wait->node);
323 if (chain_wakeup(next, priority)) {
324 /* If the next waiter is already complete,
325 * wake it up and continue onto the next waiter. So
326 * if have a small herd, they will wake up in parallel
327 * rather than sequentially, which should reduce
328 * the overall latency in waking all the completed
329 * clients.
330 *
331 * However, waking up a chain adds extra latency to
332 * the first_waiter. This is undesirable if that
333 * waiter is a high priority task.
334 */
335 u32 seqno = intel_engine_get_seqno(engine);
336
337 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
338 struct rb_node *n = rb_next(next);
339
340 __intel_breadcrumbs_finish(b, to_wait(next));
341 next = n;
342 if (!chain_wakeup(next, priority))
343 break;
344 }
345 }
346
347 if (next) {
348 /* In our haste, we may have completed the first waiter
349 * before we enabled the interrupt. Do so now as we
350 * have a second waiter for a future seqno. Afterwards,
351 * we have to wake up that waiter in case we missed
352 * the interrupt, or if we have to handle an
353 * exception rather than a seqno completion.
354 */
355 b->first_wait = to_wait(next);
356 smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
357 if (b->first_wait->seqno != wait->seqno)
358 __intel_breadcrumbs_enable_irq(b);
359 wake_up_process(b->irq_seqno_bh);
360 } else {
361 b->first_wait = NULL;
362 WRITE_ONCE(b->irq_seqno_bh, NULL);
363 __intel_breadcrumbs_disable_irq(b);
364 }
365 } else {
366 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
367 }
368
369 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
370 rb_erase(&wait->node, &b->waiters);
371
372 out_unlock:
373 GEM_BUG_ON(b->first_wait == wait);
374 GEM_BUG_ON(rb_first(&b->waiters) !=
375 (b->first_wait ? &b->first_wait->node : NULL));
376 GEM_BUG_ON(!b->irq_seqno_bh ^ RB_EMPTY_ROOT(&b->waiters));
377 spin_unlock(&b->lock);
378 }
379
380 static bool signal_complete(struct drm_i915_gem_request *request)
381 {
382 if (!request)
383 return false;
384
385 /* If another process served as the bottom-half it may have already
386 * signalled that this wait is already completed.
387 */
388 if (intel_wait_complete(&request->signaling.wait))
389 return true;
390
391 /* Carefully check if the request is complete, giving time for the
392 * seqno to be visible or if the GPU hung.
393 */
394 if (__i915_request_irq_complete(request))
395 return true;
396
397 return false;
398 }
399
400 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
401 {
402 return container_of(rb, struct drm_i915_gem_request, signaling.node);
403 }
404
405 static void signaler_set_rtpriority(void)
406 {
407 struct sched_param param = { .sched_priority = 1 };
408
409 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
410 }
411
412 static int intel_breadcrumbs_signaler(void *arg)
413 {
414 struct intel_engine_cs *engine = arg;
415 struct intel_breadcrumbs *b = &engine->breadcrumbs;
416 struct drm_i915_gem_request *request;
417
418 /* Install ourselves with high priority to reduce signalling latency */
419 signaler_set_rtpriority();
420
421 do {
422 set_current_state(TASK_INTERRUPTIBLE);
423
424 /* We are either woken up by the interrupt bottom-half,
425 * or by a client adding a new signaller. In both cases,
426 * the GPU seqno may have advanced beyond our oldest signal.
427 * If it has, propagate the signal, remove the waiter and
428 * check again with the next oldest signal. Otherwise we
429 * need to wait for a new interrupt from the GPU or for
430 * a new client.
431 */
432 request = READ_ONCE(b->first_signal);
433 if (signal_complete(request)) {
434 /* Wake up all other completed waiters and select the
435 * next bottom-half for the next user interrupt.
436 */
437 intel_engine_remove_wait(engine,
438 &request->signaling.wait);
439
440 /* Find the next oldest signal. Note that as we have
441 * not been holding the lock, another client may
442 * have installed an even older signal than the one
443 * we just completed - so double check we are still
444 * the oldest before picking the next one.
445 */
446 spin_lock(&b->lock);
447 if (request == b->first_signal) {
448 struct rb_node *rb =
449 rb_next(&request->signaling.node);
450 b->first_signal = rb ? to_signaler(rb) : NULL;
451 }
452 rb_erase(&request->signaling.node, &b->signals);
453 spin_unlock(&b->lock);
454
455 i915_gem_request_unreference(request);
456 } else {
457 if (kthread_should_stop())
458 break;
459
460 schedule();
461 }
462 } while (1);
463 __set_current_state(TASK_RUNNING);
464
465 return 0;
466 }
467
468 void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
469 {
470 struct intel_engine_cs *engine = request->engine;
471 struct intel_breadcrumbs *b = &engine->breadcrumbs;
472 struct rb_node *parent, **p;
473 bool first, wakeup;
474
475 if (unlikely(READ_ONCE(request->signaling.wait.tsk)))
476 return;
477
478 spin_lock(&b->lock);
479 if (unlikely(request->signaling.wait.tsk)) {
480 wakeup = false;
481 goto unlock;
482 }
483
484 request->signaling.wait.tsk = b->signaler;
485 request->signaling.wait.seqno = request->seqno;
486 i915_gem_request_reference(request);
487
488 /* First add ourselves into the list of waiters, but register our
489 * bottom-half as the signaller thread. As per usual, only the oldest
490 * waiter (not just signaller) is tasked as the bottom-half waking
491 * up all completed waiters after the user interrupt.
492 *
493 * If we are the oldest waiter, enable the irq (after which we
494 * must double check that the seqno did not complete).
495 */
496 wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
497
498 /* Now insert ourselves into the retirement ordered list of signals
499 * on this engine. We track the oldest seqno as that will be the
500 * first signal to complete.
501 */
502 parent = NULL;
503 first = true;
504 p = &b->signals.rb_node;
505 while (*p) {
506 parent = *p;
507 if (i915_seqno_passed(request->seqno,
508 to_signaler(parent)->seqno)) {
509 p = &parent->rb_right;
510 first = false;
511 } else {
512 p = &parent->rb_left;
513 }
514 }
515 rb_link_node(&request->signaling.node, parent, p);
516 rb_insert_color(&request->signaling.node, &b->signals);
517 if (first)
518 smp_store_mb(b->first_signal, request);
519
520 unlock:
521 spin_unlock(&b->lock);
522
523 if (wakeup)
524 wake_up_process(b->signaler);
525 }
526
527 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
528 {
529 struct intel_breadcrumbs *b = &engine->breadcrumbs;
530 struct task_struct *tsk;
531
532 spin_lock_init(&b->lock);
533 setup_timer(&b->fake_irq,
534 intel_breadcrumbs_fake_irq,
535 (unsigned long)engine);
536
537 /* Spawn a thread to provide a common bottom-half for all signals.
538 * As this is an asynchronous interface we cannot steal the current
539 * task for handling the bottom-half to the user interrupt, therefore
540 * we create a thread to do the coherent seqno dance after the
541 * interrupt and then signal the waitqueue (via the dma-buf/fence).
542 */
543 tsk = kthread_run(intel_breadcrumbs_signaler, engine,
544 "i915/signal:%d", engine->id);
545 if (IS_ERR(tsk))
546 return PTR_ERR(tsk);
547
548 b->signaler = tsk;
549
550 return 0;
551 }
552
553 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
554 {
555 struct intel_breadcrumbs *b = &engine->breadcrumbs;
556
557 if (!IS_ERR_OR_NULL(b->signaler))
558 kthread_stop(b->signaler);
559
560 del_timer_sync(&b->fake_irq);
561 }
562
563 unsigned int intel_kick_waiters(struct drm_i915_private *i915)
564 {
565 struct intel_engine_cs *engine;
566 unsigned int mask = 0;
567
568 /* To avoid the task_struct disappearing beneath us as we wake up
569 * the process, we must first inspect the task_struct->state under the
570 * RCU lock, i.e. as we call wake_up_process() we must be holding the
571 * rcu_read_lock().
572 */
573 rcu_read_lock();
574 for_each_engine(engine, i915)
575 if (unlikely(intel_engine_wakeup(engine)))
576 mask |= intel_engine_flag(engine);
577 rcu_read_unlock();
578
579 return mask;
580 }
581
582 unsigned int intel_kick_signalers(struct drm_i915_private *i915)
583 {
584 struct intel_engine_cs *engine;
585 unsigned int mask = 0;
586
587 for_each_engine(engine, i915) {
588 if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) {
589 wake_up_process(engine->breadcrumbs.signaler);
590 mask |= intel_engine_flag(engine);
591 }
592 }
593
594 return mask;
595 }
This page took 0.043571 seconds and 5 git commands to generate.