lightnvm: NVM should depend on HAS_DMA
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_color.c
1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include "intel_drv.h"
26
27 #define CTM_COEFF_SIGN (1ULL << 63)
28
29 #define CTM_COEFF_1_0 (1ULL << 32)
30 #define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1)
31 #define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1)
32 #define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1)
33 #define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1)
34 #define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1)
35 #define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1)
36
37 #define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
38
39 #define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0)
40 #define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1))
41
42 #define LEGACY_LUT_LENGTH (sizeof(struct drm_color_lut) * 256)
43
44 /*
45 * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
46 * format). This macro takes the coefficient we want transformed and the
47 * number of fractional bits.
48 *
49 * We only have a 9 bits precision window which slides depending on the value
50 * of the CTM coefficient and we write the value from bit 3. We also round the
51 * value.
52 */
53 #define I9XX_CSC_COEFF_FP(coeff, fbits) \
54 (clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
55
56 #define I9XX_CSC_COEFF_LIMITED_RANGE \
57 I9XX_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9)
58 #define I9XX_CSC_COEFF_1_0 \
59 ((7 << 12) | I9XX_CSC_COEFF_FP(CTM_COEFF_1_0, 8))
60
61 static bool crtc_state_is_legacy(struct drm_crtc_state *state)
62 {
63 return !state->degamma_lut &&
64 !state->ctm &&
65 state->gamma_lut &&
66 state->gamma_lut->length == LEGACY_LUT_LENGTH;
67 }
68
69 /*
70 * When using limited range, multiply the matrix given by userspace by
71 * the matrix that we would use for the limited range. We do the
72 * multiplication in U2.30 format.
73 */
74 static void ctm_mult_by_limited(uint64_t *result, int64_t *input)
75 {
76 int i;
77
78 for (i = 0; i < 9; i++)
79 result[i] = 0;
80
81 for (i = 0; i < 3; i++) {
82 int64_t user_coeff = input[i * 3 + i];
83 uint64_t limited_coeff = CTM_COEFF_LIMITED_RANGE >> 2;
84 uint64_t abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff),
85 0,
86 CTM_COEFF_4_0 - 1) >> 2;
87
88 result[i * 3 + i] = (limited_coeff * abs_coeff) >> 27;
89 if (CTM_COEFF_NEGATIVE(user_coeff))
90 result[i * 3 + i] |= CTM_COEFF_SIGN;
91 }
92 }
93
94 /* Set up the pipe CSC unit. */
95 static void i9xx_load_csc_matrix(struct drm_crtc_state *crtc_state)
96 {
97 struct drm_crtc *crtc = crtc_state->crtc;
98 struct drm_device *dev = crtc->dev;
99 struct drm_i915_private *dev_priv = to_i915(dev);
100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
101 int i, pipe = intel_crtc->pipe;
102 uint16_t coeffs[9] = { 0, };
103
104 if (crtc_state->ctm) {
105 struct drm_color_ctm *ctm =
106 (struct drm_color_ctm *)crtc_state->ctm->data;
107 uint64_t input[9] = { 0, };
108
109 if (intel_crtc->config->limited_color_range) {
110 ctm_mult_by_limited(input, ctm->matrix);
111 } else {
112 for (i = 0; i < ARRAY_SIZE(input); i++)
113 input[i] = ctm->matrix[i];
114 }
115
116 /*
117 * Convert fixed point S31.32 input to format supported by the
118 * hardware.
119 */
120 for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
121 uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i];
122
123 /*
124 * Clamp input value to min/max supported by
125 * hardware.
126 */
127 abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
128
129 /* sign bit */
130 if (CTM_COEFF_NEGATIVE(input[i]))
131 coeffs[i] |= 1 << 15;
132
133 if (abs_coeff < CTM_COEFF_0_125)
134 coeffs[i] |= (3 << 12) |
135 I9XX_CSC_COEFF_FP(abs_coeff, 12);
136 else if (abs_coeff < CTM_COEFF_0_25)
137 coeffs[i] |= (2 << 12) |
138 I9XX_CSC_COEFF_FP(abs_coeff, 11);
139 else if (abs_coeff < CTM_COEFF_0_5)
140 coeffs[i] |= (1 << 12) |
141 I9XX_CSC_COEFF_FP(abs_coeff, 10);
142 else if (abs_coeff < CTM_COEFF_1_0)
143 coeffs[i] |= I9XX_CSC_COEFF_FP(abs_coeff, 9);
144 else if (abs_coeff < CTM_COEFF_2_0)
145 coeffs[i] |= (7 << 12) |
146 I9XX_CSC_COEFF_FP(abs_coeff, 8);
147 else
148 coeffs[i] |= (6 << 12) |
149 I9XX_CSC_COEFF_FP(abs_coeff, 7);
150 }
151 } else {
152 /*
153 * Load an identity matrix if no coefficients are provided.
154 *
155 * TODO: Check what kind of values actually come out of the
156 * pipe with these coeff/postoff values and adjust to get the
157 * best accuracy. Perhaps we even need to take the bpc value
158 * into consideration.
159 */
160 for (i = 0; i < 3; i++) {
161 if (intel_crtc->config->limited_color_range)
162 coeffs[i * 3 + i] =
163 I9XX_CSC_COEFF_LIMITED_RANGE;
164 else
165 coeffs[i * 3 + i] = I9XX_CSC_COEFF_1_0;
166 }
167 }
168
169 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]);
170 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16);
171
172 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]);
173 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16);
174
175 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]);
176 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16);
177
178 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
179 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
180 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
181
182 if (INTEL_INFO(dev)->gen > 6) {
183 uint16_t postoff = 0;
184
185 if (intel_crtc->config->limited_color_range)
186 postoff = (16 * (1 << 12) / 255) & 0x1fff;
187
188 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
189 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
190 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
191
192 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
193 } else {
194 uint32_t mode = CSC_MODE_YUV_TO_RGB;
195
196 if (intel_crtc->config->limited_color_range)
197 mode |= CSC_BLACK_SCREEN_OFFSET;
198
199 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
200 }
201 }
202
203 /*
204 * Set up the pipe CSC unit on CherryView.
205 */
206 static void cherryview_load_csc_matrix(struct drm_crtc_state *state)
207 {
208 struct drm_crtc *crtc = state->crtc;
209 struct drm_device *dev = crtc->dev;
210 struct drm_i915_private *dev_priv = to_i915(dev);
211 int pipe = to_intel_crtc(crtc)->pipe;
212 uint32_t mode;
213
214 if (state->ctm) {
215 struct drm_color_ctm *ctm =
216 (struct drm_color_ctm *) state->ctm->data;
217 uint16_t coeffs[9] = { 0, };
218 int i;
219
220 for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
221 uint64_t abs_coeff =
222 ((1ULL << 63) - 1) & ctm->matrix[i];
223
224 /* Round coefficient. */
225 abs_coeff += 1 << (32 - 13);
226 /* Clamp to hardware limits. */
227 abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
228
229 /* Write coefficients in S3.12 format. */
230 if (ctm->matrix[i] & (1ULL << 63))
231 coeffs[i] = 1 << 15;
232 coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
233 coeffs[i] |= (abs_coeff >> 20) & 0xfff;
234 }
235
236 I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe),
237 coeffs[1] << 16 | coeffs[0]);
238 I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe),
239 coeffs[3] << 16 | coeffs[2]);
240 I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe),
241 coeffs[5] << 16 | coeffs[4]);
242 I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe),
243 coeffs[7] << 16 | coeffs[6]);
244 I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]);
245 }
246
247 mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0);
248 if (!crtc_state_is_legacy(state)) {
249 mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
250 (state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0);
251 }
252 I915_WRITE(CGM_PIPE_MODE(pipe), mode);
253 }
254
255 void intel_color_set_csc(struct drm_crtc_state *crtc_state)
256 {
257 struct drm_device *dev = crtc_state->crtc->dev;
258 struct drm_i915_private *dev_priv = to_i915(dev);
259
260 if (dev_priv->display.load_csc_matrix)
261 dev_priv->display.load_csc_matrix(crtc_state);
262 }
263
264 /* Loads the legacy palette/gamma unit for the CRTC. */
265 static void i9xx_load_luts_internal(struct drm_crtc *crtc,
266 struct drm_property_blob *blob)
267 {
268 struct drm_device *dev = crtc->dev;
269 struct drm_i915_private *dev_priv = to_i915(dev);
270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
271 enum pipe pipe = intel_crtc->pipe;
272 int i;
273
274 if (HAS_GMCH_DISPLAY(dev)) {
275 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI))
276 assert_dsi_pll_enabled(dev_priv);
277 else
278 assert_pll_enabled(dev_priv, pipe);
279 }
280
281 if (blob) {
282 struct drm_color_lut *lut = (struct drm_color_lut *) blob->data;
283 for (i = 0; i < 256; i++) {
284 uint32_t word =
285 (drm_color_lut_extract(lut[i].red, 8) << 16) |
286 (drm_color_lut_extract(lut[i].green, 8) << 8) |
287 drm_color_lut_extract(lut[i].blue, 8);
288
289 if (HAS_GMCH_DISPLAY(dev))
290 I915_WRITE(PALETTE(pipe, i), word);
291 else
292 I915_WRITE(LGC_PALETTE(pipe, i), word);
293 }
294 } else {
295 for (i = 0; i < 256; i++) {
296 uint32_t word = (i << 16) | (i << 8) | i;
297
298 if (HAS_GMCH_DISPLAY(dev))
299 I915_WRITE(PALETTE(pipe, i), word);
300 else
301 I915_WRITE(LGC_PALETTE(pipe, i), word);
302 }
303 }
304 }
305
306 static void i9xx_load_luts(struct drm_crtc_state *crtc_state)
307 {
308 i9xx_load_luts_internal(crtc_state->crtc, crtc_state->gamma_lut);
309 }
310
311 /* Loads the legacy palette/gamma unit for the CRTC on Haswell. */
312 static void haswell_load_luts(struct drm_crtc_state *crtc_state)
313 {
314 struct drm_crtc *crtc = crtc_state->crtc;
315 struct drm_device *dev = crtc->dev;
316 struct drm_i915_private *dev_priv = to_i915(dev);
317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
318 struct intel_crtc_state *intel_crtc_state =
319 to_intel_crtc_state(crtc_state);
320 bool reenable_ips = false;
321
322 /*
323 * Workaround : Do not read or write the pipe palette/gamma data while
324 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
325 */
326 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
327 (intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) {
328 hsw_disable_ips(intel_crtc);
329 reenable_ips = true;
330 }
331
332 intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
333 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
334
335 i9xx_load_luts(crtc_state);
336
337 if (reenable_ips)
338 hsw_enable_ips(intel_crtc);
339 }
340
341 /* Loads the palette/gamma unit for the CRTC on Broadwell+. */
342 static void broadwell_load_luts(struct drm_crtc_state *state)
343 {
344 struct drm_crtc *crtc = state->crtc;
345 struct drm_device *dev = crtc->dev;
346 struct drm_i915_private *dev_priv = to_i915(dev);
347 struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
348 enum pipe pipe = to_intel_crtc(crtc)->pipe;
349 uint32_t i, lut_size = INTEL_INFO(dev)->color.degamma_lut_size;
350
351 if (crtc_state_is_legacy(state)) {
352 haswell_load_luts(state);
353 return;
354 }
355
356 I915_WRITE(PREC_PAL_INDEX(pipe),
357 PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT);
358
359 if (state->degamma_lut) {
360 struct drm_color_lut *lut =
361 (struct drm_color_lut *) state->degamma_lut->data;
362
363 for (i = 0; i < lut_size; i++) {
364 uint32_t word =
365 drm_color_lut_extract(lut[i].red, 10) << 20 |
366 drm_color_lut_extract(lut[i].green, 10) << 10 |
367 drm_color_lut_extract(lut[i].blue, 10);
368
369 I915_WRITE(PREC_PAL_DATA(pipe), word);
370 }
371 } else {
372 for (i = 0; i < lut_size; i++) {
373 uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
374
375 I915_WRITE(PREC_PAL_DATA(pipe),
376 (v << 20) | (v << 10) | v);
377 }
378 }
379
380 if (state->gamma_lut) {
381 struct drm_color_lut *lut =
382 (struct drm_color_lut *) state->gamma_lut->data;
383
384 for (i = 0; i < lut_size; i++) {
385 uint32_t word =
386 (drm_color_lut_extract(lut[i].red, 10) << 20) |
387 (drm_color_lut_extract(lut[i].green, 10) << 10) |
388 drm_color_lut_extract(lut[i].blue, 10);
389
390 I915_WRITE(PREC_PAL_DATA(pipe), word);
391 }
392
393 /* Program the max register to clamp values > 1.0. */
394 I915_WRITE(PREC_PAL_GC_MAX(pipe, 0),
395 drm_color_lut_extract(lut[i].red, 16));
396 I915_WRITE(PREC_PAL_GC_MAX(pipe, 1),
397 drm_color_lut_extract(lut[i].green, 16));
398 I915_WRITE(PREC_PAL_GC_MAX(pipe, 2),
399 drm_color_lut_extract(lut[i].blue, 16));
400 } else {
401 for (i = 0; i < lut_size; i++) {
402 uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
403
404 I915_WRITE(PREC_PAL_DATA(pipe),
405 (v << 20) | (v << 10) | v);
406 }
407
408 I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1);
409 I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1);
410 I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1);
411 }
412
413 intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT;
414 I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT);
415 POSTING_READ(GAMMA_MODE(pipe));
416
417 /*
418 * Reset the index, otherwise it prevents the legacy palette to be
419 * written properly.
420 */
421 I915_WRITE(PREC_PAL_INDEX(pipe), 0);
422 }
423
424 /* Loads the palette/gamma unit for the CRTC on CherryView. */
425 static void cherryview_load_luts(struct drm_crtc_state *state)
426 {
427 struct drm_crtc *crtc = state->crtc;
428 struct drm_device *dev = crtc->dev;
429 struct drm_i915_private *dev_priv = to_i915(dev);
430 enum pipe pipe = to_intel_crtc(crtc)->pipe;
431 struct drm_color_lut *lut;
432 uint32_t i, lut_size;
433 uint32_t word0, word1;
434
435 if (crtc_state_is_legacy(state)) {
436 /* Turn off degamma/gamma on CGM block. */
437 I915_WRITE(CGM_PIPE_MODE(pipe),
438 (state->ctm ? CGM_PIPE_MODE_CSC : 0));
439 i9xx_load_luts_internal(crtc, state->gamma_lut);
440 return;
441 }
442
443 if (state->degamma_lut) {
444 lut = (struct drm_color_lut *) state->degamma_lut->data;
445 lut_size = INTEL_INFO(dev)->color.degamma_lut_size;
446 for (i = 0; i < lut_size; i++) {
447 /* Write LUT in U0.14 format. */
448 word0 =
449 (drm_color_lut_extract(lut[i].green, 14) << 16) |
450 drm_color_lut_extract(lut[i].blue, 14);
451 word1 = drm_color_lut_extract(lut[i].red, 14);
452
453 I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0);
454 I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1);
455 }
456 }
457
458 if (state->gamma_lut) {
459 lut = (struct drm_color_lut *) state->gamma_lut->data;
460 lut_size = INTEL_INFO(dev)->color.gamma_lut_size;
461 for (i = 0; i < lut_size; i++) {
462 /* Write LUT in U0.10 format. */
463 word0 =
464 (drm_color_lut_extract(lut[i].green, 10) << 16) |
465 drm_color_lut_extract(lut[i].blue, 10);
466 word1 = drm_color_lut_extract(lut[i].red, 10);
467
468 I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0);
469 I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1);
470 }
471 }
472
473 I915_WRITE(CGM_PIPE_MODE(pipe),
474 (state->ctm ? CGM_PIPE_MODE_CSC : 0) |
475 (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
476 (state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0));
477
478 /*
479 * Also program a linear LUT in the legacy block (behind the
480 * CGM block).
481 */
482 i9xx_load_luts_internal(crtc, NULL);
483 }
484
485 void intel_color_load_luts(struct drm_crtc_state *crtc_state)
486 {
487 struct drm_device *dev = crtc_state->crtc->dev;
488 struct drm_i915_private *dev_priv = to_i915(dev);
489
490 dev_priv->display.load_luts(crtc_state);
491 }
492
493 int intel_color_check(struct drm_crtc *crtc,
494 struct drm_crtc_state *crtc_state)
495 {
496 struct drm_device *dev = crtc->dev;
497 size_t gamma_length, degamma_length;
498
499 degamma_length = INTEL_INFO(dev)->color.degamma_lut_size *
500 sizeof(struct drm_color_lut);
501 gamma_length = INTEL_INFO(dev)->color.gamma_lut_size *
502 sizeof(struct drm_color_lut);
503
504 /*
505 * We allow both degamma & gamma luts at the right size or
506 * NULL.
507 */
508 if ((!crtc_state->degamma_lut ||
509 crtc_state->degamma_lut->length == degamma_length) &&
510 (!crtc_state->gamma_lut ||
511 crtc_state->gamma_lut->length == gamma_length))
512 return 0;
513
514 /*
515 * We also allow no degamma lut and a gamma lut at the legacy
516 * size (256 entries).
517 */
518 if (!crtc_state->degamma_lut &&
519 crtc_state->gamma_lut &&
520 crtc_state->gamma_lut->length == LEGACY_LUT_LENGTH)
521 return 0;
522
523 return -EINVAL;
524 }
525
526 void intel_color_init(struct drm_crtc *crtc)
527 {
528 struct drm_device *dev = crtc->dev;
529 struct drm_i915_private *dev_priv = to_i915(dev);
530
531 drm_mode_crtc_set_gamma_size(crtc, 256);
532
533 if (IS_CHERRYVIEW(dev)) {
534 dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix;
535 dev_priv->display.load_luts = cherryview_load_luts;
536 } else if (IS_HASWELL(dev)) {
537 dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
538 dev_priv->display.load_luts = haswell_load_luts;
539 } else if (IS_BROADWELL(dev) || IS_SKYLAKE(dev) ||
540 IS_BROXTON(dev) || IS_KABYLAKE(dev)) {
541 dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
542 dev_priv->display.load_luts = broadwell_load_luts;
543 } else {
544 dev_priv->display.load_luts = i9xx_load_luts;
545 }
546
547 /* Enable color management support when we have degamma & gamma LUTs. */
548 if (INTEL_INFO(dev)->color.degamma_lut_size != 0 &&
549 INTEL_INFO(dev)->color.gamma_lut_size != 0)
550 drm_crtc_enable_color_mgmt(crtc,
551 INTEL_INFO(dev)->color.degamma_lut_size,
552 true,
553 INTEL_INFO(dev)->color.gamma_lut_size);
554 }
This page took 0.042293 seconds and 5 git commands to generate.