Merge remote-tracking branches 'regulator/topic/tps65218' and 'regulator/topic/tps800...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_dmabuf.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int bxt_calc_cdclk(int max_pixclk);
127
128 struct intel_limit {
129 struct {
130 int min, max;
131 } dot, vco, n, m, m1, m2, p, p1;
132
133 struct {
134 int dot_limit;
135 int p2_slow, p2_fast;
136 } p2;
137 };
138
139 /* returns HPLL frequency in kHz */
140 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141 {
142 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144 /* Obtain SKU information */
145 mutex_lock(&dev_priv->sb_lock);
146 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147 CCK_FUSE_HPLL_FREQ_MASK;
148 mutex_unlock(&dev_priv->sb_lock);
149
150 return vco_freq[hpll_freq] * 1000;
151 }
152
153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154 const char *name, u32 reg, int ref_freq)
155 {
156 u32 val;
157 int divider;
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 }
171
172 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173 const char *name, u32 reg)
174 {
175 if (dev_priv->hpll_freq == 0)
176 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178 return vlv_get_cck_clock(dev_priv, name, reg,
179 dev_priv->hpll_freq);
180 }
181
182 static int
183 intel_pch_rawclk(struct drm_i915_private *dev_priv)
184 {
185 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186 }
187
188 static int
189 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190 {
191 /* RAWCLK_FREQ_VLV register updated from power well code */
192 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193 CCK_DISPLAY_REF_CLOCK_CONTROL);
194 }
195
196 static int
197 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
198 {
199 uint32_t clkcfg;
200
201 /* hrawclock is 1/4 the FSB frequency */
202 clkcfg = I915_READ(CLKCFG);
203 switch (clkcfg & CLKCFG_FSB_MASK) {
204 case CLKCFG_FSB_400:
205 return 100000;
206 case CLKCFG_FSB_533:
207 return 133333;
208 case CLKCFG_FSB_667:
209 return 166667;
210 case CLKCFG_FSB_800:
211 return 200000;
212 case CLKCFG_FSB_1067:
213 return 266667;
214 case CLKCFG_FSB_1333:
215 return 333333;
216 /* these two are just a guess; one of them might be right */
217 case CLKCFG_FSB_1600:
218 case CLKCFG_FSB_1600_ALT:
219 return 400000;
220 default:
221 return 133333;
222 }
223 }
224
225 void intel_update_rawclk(struct drm_i915_private *dev_priv)
226 {
227 if (HAS_PCH_SPLIT(dev_priv))
228 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233 else
234 return; /* no rawclk on other platforms, or no need to know it */
235
236 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237 }
238
239 static void intel_update_czclk(struct drm_i915_private *dev_priv)
240 {
241 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
242 return;
243
244 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245 CCK_CZ_CLOCK_CONTROL);
246
247 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248 }
249
250 static inline u32 /* units of 100MHz */
251 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252 const struct intel_crtc_state *pipe_config)
253 {
254 if (HAS_DDI(dev_priv))
255 return pipe_config->port_clock; /* SPLL */
256 else if (IS_GEN5(dev_priv))
257 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
258 else
259 return 270000;
260 }
261
262 static const struct intel_limit intel_limits_i8xx_dac = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 2, .max = 33 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 4, .p2_fast = 2 },
273 };
274
275 static const struct intel_limit intel_limits_i8xx_dvo = {
276 .dot = { .min = 25000, .max = 350000 },
277 .vco = { .min = 908000, .max = 1512000 },
278 .n = { .min = 2, .max = 16 },
279 .m = { .min = 96, .max = 140 },
280 .m1 = { .min = 18, .max = 26 },
281 .m2 = { .min = 6, .max = 16 },
282 .p = { .min = 4, .max = 128 },
283 .p1 = { .min = 2, .max = 33 },
284 .p2 = { .dot_limit = 165000,
285 .p2_slow = 4, .p2_fast = 4 },
286 };
287
288 static const struct intel_limit intel_limits_i8xx_lvds = {
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 908000, .max = 1512000 },
291 .n = { .min = 2, .max = 16 },
292 .m = { .min = 96, .max = 140 },
293 .m1 = { .min = 18, .max = 26 },
294 .m2 = { .min = 6, .max = 16 },
295 .p = { .min = 4, .max = 128 },
296 .p1 = { .min = 1, .max = 6 },
297 .p2 = { .dot_limit = 165000,
298 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301 static const struct intel_limit intel_limits_i9xx_sdvo = {
302 .dot = { .min = 20000, .max = 400000 },
303 .vco = { .min = 1400000, .max = 2800000 },
304 .n = { .min = 1, .max = 6 },
305 .m = { .min = 70, .max = 120 },
306 .m1 = { .min = 8, .max = 18 },
307 .m2 = { .min = 3, .max = 7 },
308 .p = { .min = 5, .max = 80 },
309 .p1 = { .min = 1, .max = 8 },
310 .p2 = { .dot_limit = 200000,
311 .p2_slow = 10, .p2_fast = 5 },
312 };
313
314 static const struct intel_limit intel_limits_i9xx_lvds = {
315 .dot = { .min = 20000, .max = 400000 },
316 .vco = { .min = 1400000, .max = 2800000 },
317 .n = { .min = 1, .max = 6 },
318 .m = { .min = 70, .max = 120 },
319 .m1 = { .min = 8, .max = 18 },
320 .m2 = { .min = 3, .max = 7 },
321 .p = { .min = 7, .max = 98 },
322 .p1 = { .min = 1, .max = 8 },
323 .p2 = { .dot_limit = 112000,
324 .p2_slow = 14, .p2_fast = 7 },
325 };
326
327
328 static const struct intel_limit intel_limits_g4x_sdvo = {
329 .dot = { .min = 25000, .max = 270000 },
330 .vco = { .min = 1750000, .max = 3500000},
331 .n = { .min = 1, .max = 4 },
332 .m = { .min = 104, .max = 138 },
333 .m1 = { .min = 17, .max = 23 },
334 .m2 = { .min = 5, .max = 11 },
335 .p = { .min = 10, .max = 30 },
336 .p1 = { .min = 1, .max = 3},
337 .p2 = { .dot_limit = 270000,
338 .p2_slow = 10,
339 .p2_fast = 10
340 },
341 };
342
343 static const struct intel_limit intel_limits_g4x_hdmi = {
344 .dot = { .min = 22000, .max = 400000 },
345 .vco = { .min = 1750000, .max = 3500000},
346 .n = { .min = 1, .max = 4 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 16, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 5, .max = 80 },
351 .p1 = { .min = 1, .max = 8},
352 .p2 = { .dot_limit = 165000,
353 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
357 .dot = { .min = 20000, .max = 115000 },
358 .vco = { .min = 1750000, .max = 3500000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 104, .max = 138 },
361 .m1 = { .min = 17, .max = 23 },
362 .m2 = { .min = 5, .max = 11 },
363 .p = { .min = 28, .max = 112 },
364 .p1 = { .min = 2, .max = 8 },
365 .p2 = { .dot_limit = 0,
366 .p2_slow = 14, .p2_fast = 14
367 },
368 };
369
370 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
371 .dot = { .min = 80000, .max = 224000 },
372 .vco = { .min = 1750000, .max = 3500000 },
373 .n = { .min = 1, .max = 3 },
374 .m = { .min = 104, .max = 138 },
375 .m1 = { .min = 17, .max = 23 },
376 .m2 = { .min = 5, .max = 11 },
377 .p = { .min = 14, .max = 42 },
378 .p1 = { .min = 2, .max = 6 },
379 .p2 = { .dot_limit = 0,
380 .p2_slow = 7, .p2_fast = 7
381 },
382 };
383
384 static const struct intel_limit intel_limits_pineview_sdvo = {
385 .dot = { .min = 20000, .max = 400000},
386 .vco = { .min = 1700000, .max = 3500000 },
387 /* Pineview's Ncounter is a ring counter */
388 .n = { .min = 3, .max = 6 },
389 .m = { .min = 2, .max = 256 },
390 /* Pineview only has one combined m divider, which we treat as m2. */
391 .m1 = { .min = 0, .max = 0 },
392 .m2 = { .min = 0, .max = 254 },
393 .p = { .min = 5, .max = 80 },
394 .p1 = { .min = 1, .max = 8 },
395 .p2 = { .dot_limit = 200000,
396 .p2_slow = 10, .p2_fast = 5 },
397 };
398
399 static const struct intel_limit intel_limits_pineview_lvds = {
400 .dot = { .min = 20000, .max = 400000 },
401 .vco = { .min = 1700000, .max = 3500000 },
402 .n = { .min = 3, .max = 6 },
403 .m = { .min = 2, .max = 256 },
404 .m1 = { .min = 0, .max = 0 },
405 .m2 = { .min = 0, .max = 254 },
406 .p = { .min = 7, .max = 112 },
407 .p1 = { .min = 1, .max = 8 },
408 .p2 = { .dot_limit = 112000,
409 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 /* Ironlake / Sandybridge
413 *
414 * We calculate clock using (register_value + 2) for N/M1/M2, so here
415 * the range value for them is (actual_value - 2).
416 */
417 static const struct intel_limit intel_limits_ironlake_dac = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 5 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 5, .max = 80 },
425 .p1 = { .min = 1, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 10, .p2_fast = 5 },
428 };
429
430 static const struct intel_limit intel_limits_ironlake_single_lvds = {
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 3 },
434 .m = { .min = 79, .max = 118 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 127 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 56 },
451 .p1 = { .min = 2, .max = 8 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 /* LVDS 100mhz refclk limits. */
457 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
458 .dot = { .min = 25000, .max = 350000 },
459 .vco = { .min = 1760000, .max = 3510000 },
460 .n = { .min = 1, .max = 2 },
461 .m = { .min = 79, .max = 126 },
462 .m1 = { .min = 12, .max = 22 },
463 .m2 = { .min = 5, .max = 9 },
464 .p = { .min = 28, .max = 112 },
465 .p1 = { .min = 2, .max = 8 },
466 .p2 = { .dot_limit = 225000,
467 .p2_slow = 14, .p2_fast = 14 },
468 };
469
470 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
471 .dot = { .min = 25000, .max = 350000 },
472 .vco = { .min = 1760000, .max = 3510000 },
473 .n = { .min = 1, .max = 3 },
474 .m = { .min = 79, .max = 126 },
475 .m1 = { .min = 12, .max = 22 },
476 .m2 = { .min = 5, .max = 9 },
477 .p = { .min = 14, .max = 42 },
478 .p1 = { .min = 2, .max = 6 },
479 .p2 = { .dot_limit = 225000,
480 .p2_slow = 7, .p2_fast = 7 },
481 };
482
483 static const struct intel_limit intel_limits_vlv = {
484 /*
485 * These are the data rate limits (measured in fast clocks)
486 * since those are the strictest limits we have. The fast
487 * clock and actual rate limits are more relaxed, so checking
488 * them would make no difference.
489 */
490 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
491 .vco = { .min = 4000000, .max = 6000000 },
492 .n = { .min = 1, .max = 7 },
493 .m1 = { .min = 2, .max = 3 },
494 .m2 = { .min = 11, .max = 156 },
495 .p1 = { .min = 2, .max = 3 },
496 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
497 };
498
499 static const struct intel_limit intel_limits_chv = {
500 /*
501 * These are the data rate limits (measured in fast clocks)
502 * since those are the strictest limits we have. The fast
503 * clock and actual rate limits are more relaxed, so checking
504 * them would make no difference.
505 */
506 .dot = { .min = 25000 * 5, .max = 540000 * 5},
507 .vco = { .min = 4800000, .max = 6480000 },
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 .m2 = { .min = 24 << 22, .max = 175 << 22 },
511 .p1 = { .min = 2, .max = 4 },
512 .p2 = { .p2_slow = 1, .p2_fast = 14 },
513 };
514
515 static const struct intel_limit intel_limits_bxt = {
516 /* FIXME: find real dot limits */
517 .dot = { .min = 0, .max = INT_MAX },
518 .vco = { .min = 4800000, .max = 6700000 },
519 .n = { .min = 1, .max = 1 },
520 .m1 = { .min = 2, .max = 2 },
521 /* FIXME: find real m2 limits */
522 .m2 = { .min = 2 << 22, .max = 255 << 22 },
523 .p1 = { .min = 2, .max = 4 },
524 .p2 = { .p2_slow = 1, .p2_fast = 20 },
525 };
526
527 static bool
528 needs_modeset(struct drm_crtc_state *state)
529 {
530 return drm_atomic_crtc_needs_modeset(state);
531 }
532
533 /*
534 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
535 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
536 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
537 * The helpers' return value is the rate of the clock that is fed to the
538 * display engine's pipe which can be the above fast dot clock rate or a
539 * divided-down version of it.
540 */
541 /* m1 is reserved as 0 in Pineview, n is a ring counter */
542 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
543 {
544 clock->m = clock->m2 + 2;
545 clock->p = clock->p1 * clock->p2;
546 if (WARN_ON(clock->n == 0 || clock->p == 0))
547 return 0;
548 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
549 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
550
551 return clock->dot;
552 }
553
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
559 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
560 {
561 clock->m = i9xx_dpll_compute_m(clock);
562 clock->p = clock->p1 * clock->p2;
563 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 return 0;
565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567
568 return clock->dot;
569 }
570
571 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
572 {
573 clock->m = clock->m1 * clock->m2;
574 clock->p = clock->p1 * clock->p2;
575 if (WARN_ON(clock->n == 0 || clock->p == 0))
576 return 0;
577 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
578 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
579
580 return clock->dot / 5;
581 }
582
583 int chv_calc_dpll_params(int refclk, struct dpll *clock)
584 {
585 clock->m = clock->m1 * clock->m2;
586 clock->p = clock->p1 * clock->p2;
587 if (WARN_ON(clock->n == 0 || clock->p == 0))
588 return 0;
589 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
590 clock->n << 22);
591 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592
593 return clock->dot / 5;
594 }
595
596 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
597 /**
598 * Returns whether the given set of divisors are valid for a given refclk with
599 * the given connectors.
600 */
601
602 static bool intel_PLL_is_valid(struct drm_device *dev,
603 const struct intel_limit *limit,
604 const struct dpll *clock)
605 {
606 if (clock->n < limit->n.min || limit->n.max < clock->n)
607 INTELPllInvalid("n out of range\n");
608 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
609 INTELPllInvalid("p1 out of range\n");
610 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
611 INTELPllInvalid("m2 out of range\n");
612 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
613 INTELPllInvalid("m1 out of range\n");
614
615 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
616 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
617 if (clock->m1 <= clock->m2)
618 INTELPllInvalid("m1 <= m2\n");
619
620 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
621 if (clock->p < limit->p.min || limit->p.max < clock->p)
622 INTELPllInvalid("p out of range\n");
623 if (clock->m < limit->m.min || limit->m.max < clock->m)
624 INTELPllInvalid("m out of range\n");
625 }
626
627 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 INTELPllInvalid("vco out of range\n");
629 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 * connector, etc., rather than just a single range.
631 */
632 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 INTELPllInvalid("dot out of range\n");
634
635 return true;
636 }
637
638 static int
639 i9xx_select_p2_div(const struct intel_limit *limit,
640 const struct intel_crtc_state *crtc_state,
641 int target)
642 {
643 struct drm_device *dev = crtc_state->base.crtc->dev;
644
645 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
646 /*
647 * For LVDS just rely on its current settings for dual-channel.
648 * We haven't figured out how to reliably set up different
649 * single/dual channel state, if we even can.
650 */
651 if (intel_is_dual_link_lvds(dev))
652 return limit->p2.p2_fast;
653 else
654 return limit->p2.p2_slow;
655 } else {
656 if (target < limit->p2.dot_limit)
657 return limit->p2.p2_slow;
658 else
659 return limit->p2.p2_fast;
660 }
661 }
662
663 /*
664 * Returns a set of divisors for the desired target clock with the given
665 * refclk, or FALSE. The returned values represent the clock equation:
666 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667 *
668 * Target and reference clocks are specified in kHz.
669 *
670 * If match_clock is provided, then best_clock P divider must match the P
671 * divider from @match_clock used for LVDS downclocking.
672 */
673 static bool
674 i9xx_find_best_dpll(const struct intel_limit *limit,
675 struct intel_crtc_state *crtc_state,
676 int target, int refclk, struct dpll *match_clock,
677 struct dpll *best_clock)
678 {
679 struct drm_device *dev = crtc_state->base.crtc->dev;
680 struct dpll clock;
681 int err = target;
682
683 memset(best_clock, 0, sizeof(*best_clock));
684
685 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 if (clock.m2 >= clock.m1)
692 break;
693 for (clock.n = limit->n.min;
694 clock.n <= limit->n.max; clock.n++) {
695 for (clock.p1 = limit->p1.min;
696 clock.p1 <= limit->p1.max; clock.p1++) {
697 int this_err;
698
699 i9xx_calc_dpll_params(refclk, &clock);
700 if (!intel_PLL_is_valid(dev, limit,
701 &clock))
702 continue;
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718 }
719
720 /*
721 * Returns a set of divisors for the desired target clock with the given
722 * refclk, or FALSE. The returned values represent the clock equation:
723 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724 *
725 * Target and reference clocks are specified in kHz.
726 *
727 * If match_clock is provided, then best_clock P divider must match the P
728 * divider from @match_clock used for LVDS downclocking.
729 */
730 static bool
731 pnv_find_best_dpll(const struct intel_limit *limit,
732 struct intel_crtc_state *crtc_state,
733 int target, int refclk, struct dpll *match_clock,
734 struct dpll *best_clock)
735 {
736 struct drm_device *dev = crtc_state->base.crtc->dev;
737 struct dpll clock;
738 int err = target;
739
740 memset(best_clock, 0, sizeof(*best_clock));
741
742 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
743
744 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
745 clock.m1++) {
746 for (clock.m2 = limit->m2.min;
747 clock.m2 <= limit->m2.max; clock.m2++) {
748 for (clock.n = limit->n.min;
749 clock.n <= limit->n.max; clock.n++) {
750 for (clock.p1 = limit->p1.min;
751 clock.p1 <= limit->p1.max; clock.p1++) {
752 int this_err;
753
754 pnv_calc_dpll_params(refclk, &clock);
755 if (!intel_PLL_is_valid(dev, limit,
756 &clock))
757 continue;
758 if (match_clock &&
759 clock.p != match_clock->p)
760 continue;
761
762 this_err = abs(clock.dot - target);
763 if (this_err < err) {
764 *best_clock = clock;
765 err = this_err;
766 }
767 }
768 }
769 }
770 }
771
772 return (err != target);
773 }
774
775 /*
776 * Returns a set of divisors for the desired target clock with the given
777 * refclk, or FALSE. The returned values represent the clock equation:
778 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
779 *
780 * Target and reference clocks are specified in kHz.
781 *
782 * If match_clock is provided, then best_clock P divider must match the P
783 * divider from @match_clock used for LVDS downclocking.
784 */
785 static bool
786 g4x_find_best_dpll(const struct intel_limit *limit,
787 struct intel_crtc_state *crtc_state,
788 int target, int refclk, struct dpll *match_clock,
789 struct dpll *best_clock)
790 {
791 struct drm_device *dev = crtc_state->base.crtc->dev;
792 struct dpll clock;
793 int max_n;
794 bool found = false;
795 /* approximately equals target * 0.00585 */
796 int err_most = (target >> 8) + (target >> 9);
797
798 memset(best_clock, 0, sizeof(*best_clock));
799
800 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
801
802 max_n = limit->n.max;
803 /* based on hardware requirement, prefer smaller n to precision */
804 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
805 /* based on hardware requirement, prefere larger m1,m2 */
806 for (clock.m1 = limit->m1.max;
807 clock.m1 >= limit->m1.min; clock.m1--) {
808 for (clock.m2 = limit->m2.max;
809 clock.m2 >= limit->m2.min; clock.m2--) {
810 for (clock.p1 = limit->p1.max;
811 clock.p1 >= limit->p1.min; clock.p1--) {
812 int this_err;
813
814 i9xx_calc_dpll_params(refclk, &clock);
815 if (!intel_PLL_is_valid(dev, limit,
816 &clock))
817 continue;
818
819 this_err = abs(clock.dot - target);
820 if (this_err < err_most) {
821 *best_clock = clock;
822 err_most = this_err;
823 max_n = clock.n;
824 found = true;
825 }
826 }
827 }
828 }
829 }
830 return found;
831 }
832
833 /*
834 * Check if the calculated PLL configuration is more optimal compared to the
835 * best configuration and error found so far. Return the calculated error.
836 */
837 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
838 const struct dpll *calculated_clock,
839 const struct dpll *best_clock,
840 unsigned int best_error_ppm,
841 unsigned int *error_ppm)
842 {
843 /*
844 * For CHV ignore the error and consider only the P value.
845 * Prefer a bigger P value based on HW requirements.
846 */
847 if (IS_CHERRYVIEW(dev)) {
848 *error_ppm = 0;
849
850 return calculated_clock->p > best_clock->p;
851 }
852
853 if (WARN_ON_ONCE(!target_freq))
854 return false;
855
856 *error_ppm = div_u64(1000000ULL *
857 abs(target_freq - calculated_clock->dot),
858 target_freq);
859 /*
860 * Prefer a better P value over a better (smaller) error if the error
861 * is small. Ensure this preference for future configurations too by
862 * setting the error to 0.
863 */
864 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
865 *error_ppm = 0;
866
867 return true;
868 }
869
870 return *error_ppm + 10 < best_error_ppm;
871 }
872
873 /*
874 * Returns a set of divisors for the desired target clock with the given
875 * refclk, or FALSE. The returned values represent the clock equation:
876 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
877 */
878 static bool
879 vlv_find_best_dpll(const struct intel_limit *limit,
880 struct intel_crtc_state *crtc_state,
881 int target, int refclk, struct dpll *match_clock,
882 struct dpll *best_clock)
883 {
884 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
885 struct drm_device *dev = crtc->base.dev;
886 struct dpll clock;
887 unsigned int bestppm = 1000000;
888 /* min update 19.2 MHz */
889 int max_n = min(limit->n.max, refclk / 19200);
890 bool found = false;
891
892 target *= 5; /* fast clock */
893
894 memset(best_clock, 0, sizeof(*best_clock));
895
896 /* based on hardware requirement, prefer smaller n to precision */
897 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
899 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
900 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
901 clock.p = clock.p1 * clock.p2;
902 /* based on hardware requirement, prefer bigger m1,m2 values */
903 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
904 unsigned int ppm;
905
906 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
907 refclk * clock.m1);
908
909 vlv_calc_dpll_params(refclk, &clock);
910
911 if (!intel_PLL_is_valid(dev, limit,
912 &clock))
913 continue;
914
915 if (!vlv_PLL_is_optimal(dev, target,
916 &clock,
917 best_clock,
918 bestppm, &ppm))
919 continue;
920
921 *best_clock = clock;
922 bestppm = ppm;
923 found = true;
924 }
925 }
926 }
927 }
928
929 return found;
930 }
931
932 /*
933 * Returns a set of divisors for the desired target clock with the given
934 * refclk, or FALSE. The returned values represent the clock equation:
935 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
936 */
937 static bool
938 chv_find_best_dpll(const struct intel_limit *limit,
939 struct intel_crtc_state *crtc_state,
940 int target, int refclk, struct dpll *match_clock,
941 struct dpll *best_clock)
942 {
943 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
944 struct drm_device *dev = crtc->base.dev;
945 unsigned int best_error_ppm;
946 struct dpll clock;
947 uint64_t m2;
948 int found = false;
949
950 memset(best_clock, 0, sizeof(*best_clock));
951 best_error_ppm = 1000000;
952
953 /*
954 * Based on hardware doc, the n always set to 1, and m1 always
955 * set to 2. If requires to support 200Mhz refclk, we need to
956 * revisit this because n may not 1 anymore.
957 */
958 clock.n = 1, clock.m1 = 2;
959 target *= 5; /* fast clock */
960
961 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
962 for (clock.p2 = limit->p2.p2_fast;
963 clock.p2 >= limit->p2.p2_slow;
964 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
965 unsigned int error_ppm;
966
967 clock.p = clock.p1 * clock.p2;
968
969 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
970 clock.n) << 22, refclk * clock.m1);
971
972 if (m2 > INT_MAX/clock.m1)
973 continue;
974
975 clock.m2 = m2;
976
977 chv_calc_dpll_params(refclk, &clock);
978
979 if (!intel_PLL_is_valid(dev, limit, &clock))
980 continue;
981
982 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
983 best_error_ppm, &error_ppm))
984 continue;
985
986 *best_clock = clock;
987 best_error_ppm = error_ppm;
988 found = true;
989 }
990 }
991
992 return found;
993 }
994
995 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
996 struct dpll *best_clock)
997 {
998 int refclk = 100000;
999 const struct intel_limit *limit = &intel_limits_bxt;
1000
1001 return chv_find_best_dpll(limit, crtc_state,
1002 target_clock, refclk, NULL, best_clock);
1003 }
1004
1005 bool intel_crtc_active(struct drm_crtc *crtc)
1006 {
1007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008
1009 /* Be paranoid as we can arrive here with only partial
1010 * state retrieved from the hardware during setup.
1011 *
1012 * We can ditch the adjusted_mode.crtc_clock check as soon
1013 * as Haswell has gained clock readout/fastboot support.
1014 *
1015 * We can ditch the crtc->primary->fb check as soon as we can
1016 * properly reconstruct framebuffers.
1017 *
1018 * FIXME: The intel_crtc->active here should be switched to
1019 * crtc->state->active once we have proper CRTC states wired up
1020 * for atomic.
1021 */
1022 return intel_crtc->active && crtc->primary->state->fb &&
1023 intel_crtc->config->base.adjusted_mode.crtc_clock;
1024 }
1025
1026 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1031
1032 return intel_crtc->config->cpu_transcoder;
1033 }
1034
1035 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1036 {
1037 struct drm_i915_private *dev_priv = to_i915(dev);
1038 i915_reg_t reg = PIPEDSL(pipe);
1039 u32 line1, line2;
1040 u32 line_mask;
1041
1042 if (IS_GEN2(dev))
1043 line_mask = DSL_LINEMASK_GEN2;
1044 else
1045 line_mask = DSL_LINEMASK_GEN3;
1046
1047 line1 = I915_READ(reg) & line_mask;
1048 msleep(5);
1049 line2 = I915_READ(reg) & line_mask;
1050
1051 return line1 == line2;
1052 }
1053
1054 /*
1055 * intel_wait_for_pipe_off - wait for pipe to turn off
1056 * @crtc: crtc whose pipe to wait for
1057 *
1058 * After disabling a pipe, we can't wait for vblank in the usual way,
1059 * spinning on the vblank interrupt status bit, since we won't actually
1060 * see an interrupt when the pipe is disabled.
1061 *
1062 * On Gen4 and above:
1063 * wait for the pipe register state bit to turn off
1064 *
1065 * Otherwise:
1066 * wait for the display line value to settle (it usually
1067 * ends up stopping at the start of the next frame).
1068 *
1069 */
1070 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1071 {
1072 struct drm_device *dev = crtc->base.dev;
1073 struct drm_i915_private *dev_priv = to_i915(dev);
1074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1075 enum pipe pipe = crtc->pipe;
1076
1077 if (INTEL_INFO(dev)->gen >= 4) {
1078 i915_reg_t reg = PIPECONF(cpu_transcoder);
1079
1080 /* Wait for the Pipe State to go off */
1081 if (intel_wait_for_register(dev_priv,
1082 reg, I965_PIPECONF_ACTIVE, 0,
1083 100))
1084 WARN(1, "pipe_off wait timed out\n");
1085 } else {
1086 /* Wait for the display line to settle */
1087 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1088 WARN(1, "pipe_off wait timed out\n");
1089 }
1090 }
1091
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094 enum pipe pipe, bool state)
1095 {
1096 u32 val;
1097 bool cur_state;
1098
1099 val = I915_READ(DPLL(pipe));
1100 cur_state = !!(val & DPLL_VCO_ENABLE);
1101 I915_STATE_WARN(cur_state != state,
1102 "PLL state assertion failure (expected %s, current %s)\n",
1103 onoff(state), onoff(cur_state));
1104 }
1105
1106 /* XXX: the dsi pll is shared between MIPI DSI ports */
1107 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1108 {
1109 u32 val;
1110 bool cur_state;
1111
1112 mutex_lock(&dev_priv->sb_lock);
1113 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1114 mutex_unlock(&dev_priv->sb_lock);
1115
1116 cur_state = val & DSI_PLL_VCO_EN;
1117 I915_STATE_WARN(cur_state != state,
1118 "DSI PLL state assertion failure (expected %s, current %s)\n",
1119 onoff(state), onoff(cur_state));
1120 }
1121
1122 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1123 enum pipe pipe, bool state)
1124 {
1125 bool cur_state;
1126 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1127 pipe);
1128
1129 if (HAS_DDI(dev_priv)) {
1130 /* DDI does not have a specific FDI_TX register */
1131 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1132 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133 } else {
1134 u32 val = I915_READ(FDI_TX_CTL(pipe));
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
1137 I915_STATE_WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146 {
1147 u32 val;
1148 bool cur_state;
1149
1150 val = I915_READ(FDI_RX_CTL(pipe));
1151 cur_state = !!(val & FDI_RX_ENABLE);
1152 I915_STATE_WARN(cur_state != state,
1153 "FDI RX state assertion failure (expected %s, current %s)\n",
1154 onoff(state), onoff(cur_state));
1155 }
1156 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1161 {
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
1165 if (IS_GEN5(dev_priv))
1166 return;
1167
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv))
1170 return;
1171
1172 val = I915_READ(FDI_TX_CTL(pipe));
1173 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1174 }
1175
1176 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1177 enum pipe pipe, bool state)
1178 {
1179 u32 val;
1180 bool cur_state;
1181
1182 val = I915_READ(FDI_RX_CTL(pipe));
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 I915_STATE_WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 onoff(state), onoff(cur_state));
1187 }
1188
1189 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191 {
1192 struct drm_device *dev = &dev_priv->drm;
1193 i915_reg_t pp_reg;
1194 u32 val;
1195 enum pipe panel_pipe = PIPE_A;
1196 bool locked = true;
1197
1198 if (WARN_ON(HAS_DDI(dev)))
1199 return;
1200
1201 if (HAS_PCH_SPLIT(dev)) {
1202 u32 port_sel;
1203
1204 pp_reg = PCH_PP_CONTROL;
1205 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1206
1207 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1208 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1209 panel_pipe = PIPE_B;
1210 /* XXX: else fix for eDP */
1211 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1212 /* presumably write lock depends on pipe, not port select */
1213 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1214 panel_pipe = pipe;
1215 } else {
1216 pp_reg = PP_CONTROL;
1217 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1218 panel_pipe = PIPE_B;
1219 }
1220
1221 val = I915_READ(pp_reg);
1222 if (!(val & PANEL_POWER_ON) ||
1223 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1224 locked = false;
1225
1226 I915_STATE_WARN(panel_pipe == pipe && locked,
1227 "panel assertion failure, pipe %c regs locked\n",
1228 pipe_name(pipe));
1229 }
1230
1231 static void assert_cursor(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, bool state)
1233 {
1234 struct drm_device *dev = &dev_priv->drm;
1235 bool cur_state;
1236
1237 if (IS_845G(dev) || IS_I865G(dev))
1238 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1239 else
1240 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1241
1242 I915_STATE_WARN(cur_state != state,
1243 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1244 pipe_name(pipe), onoff(state), onoff(cur_state));
1245 }
1246 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1247 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1248
1249 void assert_pipe(struct drm_i915_private *dev_priv,
1250 enum pipe pipe, bool state)
1251 {
1252 bool cur_state;
1253 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1254 pipe);
1255 enum intel_display_power_domain power_domain;
1256
1257 /* if we need the pipe quirk it must be always on */
1258 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1259 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1260 state = true;
1261
1262 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1263 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1264 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1265 cur_state = !!(val & PIPECONF_ENABLE);
1266
1267 intel_display_power_put(dev_priv, power_domain);
1268 } else {
1269 cur_state = false;
1270 }
1271
1272 I915_STATE_WARN(cur_state != state,
1273 "pipe %c assertion failure (expected %s, current %s)\n",
1274 pipe_name(pipe), onoff(state), onoff(cur_state));
1275 }
1276
1277 static void assert_plane(struct drm_i915_private *dev_priv,
1278 enum plane plane, bool state)
1279 {
1280 u32 val;
1281 bool cur_state;
1282
1283 val = I915_READ(DSPCNTR(plane));
1284 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1285 I915_STATE_WARN(cur_state != state,
1286 "plane %c assertion failure (expected %s, current %s)\n",
1287 plane_name(plane), onoff(state), onoff(cur_state));
1288 }
1289
1290 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1291 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1292
1293 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1294 enum pipe pipe)
1295 {
1296 struct drm_device *dev = &dev_priv->drm;
1297 int i;
1298
1299 /* Primary planes are fixed to pipes on gen4+ */
1300 if (INTEL_INFO(dev)->gen >= 4) {
1301 u32 val = I915_READ(DSPCNTR(pipe));
1302 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1303 "plane %c assertion failure, should be disabled but not\n",
1304 plane_name(pipe));
1305 return;
1306 }
1307
1308 /* Need to check both planes against the pipe */
1309 for_each_pipe(dev_priv, i) {
1310 u32 val = I915_READ(DSPCNTR(i));
1311 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1312 DISPPLANE_SEL_PIPE_SHIFT;
1313 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1314 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1315 plane_name(i), pipe_name(pipe));
1316 }
1317 }
1318
1319 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1320 enum pipe pipe)
1321 {
1322 struct drm_device *dev = &dev_priv->drm;
1323 int sprite;
1324
1325 if (INTEL_INFO(dev)->gen >= 9) {
1326 for_each_sprite(dev_priv, pipe, sprite) {
1327 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1328 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1329 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1330 sprite, pipe_name(pipe));
1331 }
1332 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1333 for_each_sprite(dev_priv, pipe, sprite) {
1334 u32 val = I915_READ(SPCNTR(pipe, sprite));
1335 I915_STATE_WARN(val & SP_ENABLE,
1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1337 sprite_name(pipe, sprite), pipe_name(pipe));
1338 }
1339 } else if (INTEL_INFO(dev)->gen >= 7) {
1340 u32 val = I915_READ(SPRCTL(pipe));
1341 I915_STATE_WARN(val & SPRITE_ENABLE,
1342 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1343 plane_name(pipe), pipe_name(pipe));
1344 } else if (INTEL_INFO(dev)->gen >= 5) {
1345 u32 val = I915_READ(DVSCNTR(pipe));
1346 I915_STATE_WARN(val & DVS_ENABLE,
1347 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1348 plane_name(pipe), pipe_name(pipe));
1349 }
1350 }
1351
1352 static void assert_vblank_disabled(struct drm_crtc *crtc)
1353 {
1354 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1355 drm_crtc_vblank_put(crtc);
1356 }
1357
1358 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
1360 {
1361 u32 val;
1362 bool enabled;
1363
1364 val = I915_READ(PCH_TRANSCONF(pipe));
1365 enabled = !!(val & TRANS_ENABLE);
1366 I915_STATE_WARN(enabled,
1367 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1368 pipe_name(pipe));
1369 }
1370
1371 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, u32 port_sel, u32 val)
1373 {
1374 if ((val & DP_PORT_EN) == 0)
1375 return false;
1376
1377 if (HAS_PCH_CPT(dev_priv)) {
1378 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1379 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1380 return false;
1381 } else if (IS_CHERRYVIEW(dev_priv)) {
1382 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1383 return false;
1384 } else {
1385 if ((val & DP_PIPE_MASK) != (pipe << 30))
1386 return false;
1387 }
1388 return true;
1389 }
1390
1391 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, u32 val)
1393 {
1394 if ((val & SDVO_ENABLE) == 0)
1395 return false;
1396
1397 if (HAS_PCH_CPT(dev_priv)) {
1398 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1399 return false;
1400 } else if (IS_CHERRYVIEW(dev_priv)) {
1401 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1402 return false;
1403 } else {
1404 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1405 return false;
1406 }
1407 return true;
1408 }
1409
1410 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe, u32 val)
1412 {
1413 if ((val & LVDS_PORT_EN) == 0)
1414 return false;
1415
1416 if (HAS_PCH_CPT(dev_priv)) {
1417 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1418 return false;
1419 } else {
1420 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1421 return false;
1422 }
1423 return true;
1424 }
1425
1426 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1427 enum pipe pipe, u32 val)
1428 {
1429 if ((val & ADPA_DAC_ENABLE) == 0)
1430 return false;
1431 if (HAS_PCH_CPT(dev_priv)) {
1432 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1433 return false;
1434 } else {
1435 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1436 return false;
1437 }
1438 return true;
1439 }
1440
1441 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1442 enum pipe pipe, i915_reg_t reg,
1443 u32 port_sel)
1444 {
1445 u32 val = I915_READ(reg);
1446 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1447 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1448 i915_mmio_reg_offset(reg), pipe_name(pipe));
1449
1450 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1451 && (val & DP_PIPEB_SELECT),
1452 "IBX PCH dp port still using transcoder B\n");
1453 }
1454
1455 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1456 enum pipe pipe, i915_reg_t reg)
1457 {
1458 u32 val = I915_READ(reg);
1459 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1460 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1461 i915_mmio_reg_offset(reg), pipe_name(pipe));
1462
1463 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1464 && (val & SDVO_PIPE_B_SELECT),
1465 "IBX PCH hdmi port still using transcoder B\n");
1466 }
1467
1468 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1469 enum pipe pipe)
1470 {
1471 u32 val;
1472
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1476
1477 val = I915_READ(PCH_ADPA);
1478 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 val = I915_READ(PCH_LVDS);
1483 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1484 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1485 pipe_name(pipe));
1486
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1490 }
1491
1492 static void _vlv_enable_pll(struct intel_crtc *crtc,
1493 const struct intel_crtc_state *pipe_config)
1494 {
1495 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1496 enum pipe pipe = crtc->pipe;
1497
1498 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1499 POSTING_READ(DPLL(pipe));
1500 udelay(150);
1501
1502 if (intel_wait_for_register(dev_priv,
1503 DPLL(pipe),
1504 DPLL_LOCK_VLV,
1505 DPLL_LOCK_VLV,
1506 1))
1507 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1508 }
1509
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511 const struct intel_crtc_state *pipe_config)
1512 {
1513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1514 enum pipe pipe = crtc->pipe;
1515
1516 assert_pipe_disabled(dev_priv, pipe);
1517
1518 /* PLL is protected by panel, make sure we can write it */
1519 assert_panel_unlocked(dev_priv, pipe);
1520
1521 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1522 _vlv_enable_pll(crtc, pipe_config);
1523
1524 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1525 POSTING_READ(DPLL_MD(pipe));
1526 }
1527
1528
1529 static void _chv_enable_pll(struct intel_crtc *crtc,
1530 const struct intel_crtc_state *pipe_config)
1531 {
1532 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1533 enum pipe pipe = crtc->pipe;
1534 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1535 u32 tmp;
1536
1537 mutex_lock(&dev_priv->sb_lock);
1538
1539 /* Enable back the 10bit clock to display controller */
1540 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1541 tmp |= DPIO_DCLKP_EN;
1542 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1543
1544 mutex_unlock(&dev_priv->sb_lock);
1545
1546 /*
1547 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1548 */
1549 udelay(1);
1550
1551 /* Enable PLL */
1552 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1553
1554 /* Check PLL is locked */
1555 if (intel_wait_for_register(dev_priv,
1556 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1557 1))
1558 DRM_ERROR("PLL %d failed to lock\n", pipe);
1559 }
1560
1561 static void chv_enable_pll(struct intel_crtc *crtc,
1562 const struct intel_crtc_state *pipe_config)
1563 {
1564 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1565 enum pipe pipe = crtc->pipe;
1566
1567 assert_pipe_disabled(dev_priv, pipe);
1568
1569 /* PLL is protected by panel, make sure we can write it */
1570 assert_panel_unlocked(dev_priv, pipe);
1571
1572 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1573 _chv_enable_pll(crtc, pipe_config);
1574
1575 if (pipe != PIPE_A) {
1576 /*
1577 * WaPixelRepeatModeFixForC0:chv
1578 *
1579 * DPLLCMD is AWOL. Use chicken bits to propagate
1580 * the value from DPLLBMD to either pipe B or C.
1581 */
1582 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1583 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1584 I915_WRITE(CBR4_VLV, 0);
1585 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1586
1587 /*
1588 * DPLLB VGA mode also seems to cause problems.
1589 * We should always have it disabled.
1590 */
1591 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1592 } else {
1593 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1594 POSTING_READ(DPLL_MD(pipe));
1595 }
1596 }
1597
1598 static int intel_num_dvo_pipes(struct drm_device *dev)
1599 {
1600 struct intel_crtc *crtc;
1601 int count = 0;
1602
1603 for_each_intel_crtc(dev, crtc) {
1604 count += crtc->base.state->active &&
1605 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1606 }
1607
1608 return count;
1609 }
1610
1611 static void i9xx_enable_pll(struct intel_crtc *crtc)
1612 {
1613 struct drm_device *dev = crtc->base.dev;
1614 struct drm_i915_private *dev_priv = to_i915(dev);
1615 i915_reg_t reg = DPLL(crtc->pipe);
1616 u32 dpll = crtc->config->dpll_hw_state.dpll;
1617
1618 assert_pipe_disabled(dev_priv, crtc->pipe);
1619
1620 /* PLL is protected by panel, make sure we can write it */
1621 if (IS_MOBILE(dev) && !IS_I830(dev))
1622 assert_panel_unlocked(dev_priv, crtc->pipe);
1623
1624 /* Enable DVO 2x clock on both PLLs if necessary */
1625 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1626 /*
1627 * It appears to be important that we don't enable this
1628 * for the current pipe before otherwise configuring the
1629 * PLL. No idea how this should be handled if multiple
1630 * DVO outputs are enabled simultaneosly.
1631 */
1632 dpll |= DPLL_DVO_2X_MODE;
1633 I915_WRITE(DPLL(!crtc->pipe),
1634 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1635 }
1636
1637 /*
1638 * Apparently we need to have VGA mode enabled prior to changing
1639 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1640 * dividers, even though the register value does change.
1641 */
1642 I915_WRITE(reg, 0);
1643
1644 I915_WRITE(reg, dpll);
1645
1646 /* Wait for the clocks to stabilize. */
1647 POSTING_READ(reg);
1648 udelay(150);
1649
1650 if (INTEL_INFO(dev)->gen >= 4) {
1651 I915_WRITE(DPLL_MD(crtc->pipe),
1652 crtc->config->dpll_hw_state.dpll_md);
1653 } else {
1654 /* The pixel multiplier can only be updated once the
1655 * DPLL is enabled and the clocks are stable.
1656 *
1657 * So write it again.
1658 */
1659 I915_WRITE(reg, dpll);
1660 }
1661
1662 /* We do this three times for luck */
1663 I915_WRITE(reg, dpll);
1664 POSTING_READ(reg);
1665 udelay(150); /* wait for warmup */
1666 I915_WRITE(reg, dpll);
1667 POSTING_READ(reg);
1668 udelay(150); /* wait for warmup */
1669 I915_WRITE(reg, dpll);
1670 POSTING_READ(reg);
1671 udelay(150); /* wait for warmup */
1672 }
1673
1674 /**
1675 * i9xx_disable_pll - disable a PLL
1676 * @dev_priv: i915 private structure
1677 * @pipe: pipe PLL to disable
1678 *
1679 * Disable the PLL for @pipe, making sure the pipe is off first.
1680 *
1681 * Note! This is for pre-ILK only.
1682 */
1683 static void i9xx_disable_pll(struct intel_crtc *crtc)
1684 {
1685 struct drm_device *dev = crtc->base.dev;
1686 struct drm_i915_private *dev_priv = to_i915(dev);
1687 enum pipe pipe = crtc->pipe;
1688
1689 /* Disable DVO 2x clock on both PLLs if necessary */
1690 if (IS_I830(dev) &&
1691 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1692 !intel_num_dvo_pipes(dev)) {
1693 I915_WRITE(DPLL(PIPE_B),
1694 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1695 I915_WRITE(DPLL(PIPE_A),
1696 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1697 }
1698
1699 /* Don't disable pipe or pipe PLLs if needed */
1700 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1701 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1702 return;
1703
1704 /* Make sure the pipe isn't still relying on us */
1705 assert_pipe_disabled(dev_priv, pipe);
1706
1707 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1708 POSTING_READ(DPLL(pipe));
1709 }
1710
1711 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712 {
1713 u32 val;
1714
1715 /* Make sure the pipe isn't still relying on us */
1716 assert_pipe_disabled(dev_priv, pipe);
1717
1718 val = DPLL_INTEGRATED_REF_CLK_VLV |
1719 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1720 if (pipe != PIPE_A)
1721 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1722
1723 I915_WRITE(DPLL(pipe), val);
1724 POSTING_READ(DPLL(pipe));
1725 }
1726
1727 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1728 {
1729 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1730 u32 val;
1731
1732 /* Make sure the pipe isn't still relying on us */
1733 assert_pipe_disabled(dev_priv, pipe);
1734
1735 val = DPLL_SSC_REF_CLK_CHV |
1736 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1737 if (pipe != PIPE_A)
1738 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1739
1740 I915_WRITE(DPLL(pipe), val);
1741 POSTING_READ(DPLL(pipe));
1742
1743 mutex_lock(&dev_priv->sb_lock);
1744
1745 /* Disable 10bit clock to display controller */
1746 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1747 val &= ~DPIO_DCLKP_EN;
1748 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1749
1750 mutex_unlock(&dev_priv->sb_lock);
1751 }
1752
1753 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1754 struct intel_digital_port *dport,
1755 unsigned int expected_mask)
1756 {
1757 u32 port_mask;
1758 i915_reg_t dpll_reg;
1759
1760 switch (dport->port) {
1761 case PORT_B:
1762 port_mask = DPLL_PORTB_READY_MASK;
1763 dpll_reg = DPLL(0);
1764 break;
1765 case PORT_C:
1766 port_mask = DPLL_PORTC_READY_MASK;
1767 dpll_reg = DPLL(0);
1768 expected_mask <<= 4;
1769 break;
1770 case PORT_D:
1771 port_mask = DPLL_PORTD_READY_MASK;
1772 dpll_reg = DPIO_PHY_STATUS;
1773 break;
1774 default:
1775 BUG();
1776 }
1777
1778 if (intel_wait_for_register(dev_priv,
1779 dpll_reg, port_mask, expected_mask,
1780 1000))
1781 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1782 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1783 }
1784
1785 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1786 enum pipe pipe)
1787 {
1788 struct drm_device *dev = &dev_priv->drm;
1789 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1791 i915_reg_t reg;
1792 uint32_t val, pipeconf_val;
1793
1794 /* Make sure PCH DPLL is enabled */
1795 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1796
1797 /* FDI must be feeding us bits for PCH ports */
1798 assert_fdi_tx_enabled(dev_priv, pipe);
1799 assert_fdi_rx_enabled(dev_priv, pipe);
1800
1801 if (HAS_PCH_CPT(dev)) {
1802 /* Workaround: Set the timing override bit before enabling the
1803 * pch transcoder. */
1804 reg = TRANS_CHICKEN2(pipe);
1805 val = I915_READ(reg);
1806 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1807 I915_WRITE(reg, val);
1808 }
1809
1810 reg = PCH_TRANSCONF(pipe);
1811 val = I915_READ(reg);
1812 pipeconf_val = I915_READ(PIPECONF(pipe));
1813
1814 if (HAS_PCH_IBX(dev_priv)) {
1815 /*
1816 * Make the BPC in transcoder be consistent with
1817 * that in pipeconf reg. For HDMI we must use 8bpc
1818 * here for both 8bpc and 12bpc.
1819 */
1820 val &= ~PIPECONF_BPC_MASK;
1821 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1822 val |= PIPECONF_8BPC;
1823 else
1824 val |= pipeconf_val & PIPECONF_BPC_MASK;
1825 }
1826
1827 val &= ~TRANS_INTERLACE_MASK;
1828 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1829 if (HAS_PCH_IBX(dev_priv) &&
1830 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1831 val |= TRANS_LEGACY_INTERLACED_ILK;
1832 else
1833 val |= TRANS_INTERLACED;
1834 else
1835 val |= TRANS_PROGRESSIVE;
1836
1837 I915_WRITE(reg, val | TRANS_ENABLE);
1838 if (intel_wait_for_register(dev_priv,
1839 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1840 100))
1841 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1842 }
1843
1844 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1845 enum transcoder cpu_transcoder)
1846 {
1847 u32 val, pipeconf_val;
1848
1849 /* FDI must be feeding us bits for PCH ports */
1850 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1851 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1852
1853 /* Workaround: set timing override bit. */
1854 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1855 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1857
1858 val = TRANS_ENABLE;
1859 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1860
1861 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1862 PIPECONF_INTERLACED_ILK)
1863 val |= TRANS_INTERLACED;
1864 else
1865 val |= TRANS_PROGRESSIVE;
1866
1867 I915_WRITE(LPT_TRANSCONF, val);
1868 if (intel_wait_for_register(dev_priv,
1869 LPT_TRANSCONF,
1870 TRANS_STATE_ENABLE,
1871 TRANS_STATE_ENABLE,
1872 100))
1873 DRM_ERROR("Failed to enable PCH transcoder\n");
1874 }
1875
1876 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1877 enum pipe pipe)
1878 {
1879 struct drm_device *dev = &dev_priv->drm;
1880 i915_reg_t reg;
1881 uint32_t val;
1882
1883 /* FDI relies on the transcoder */
1884 assert_fdi_tx_disabled(dev_priv, pipe);
1885 assert_fdi_rx_disabled(dev_priv, pipe);
1886
1887 /* Ports must be off as well */
1888 assert_pch_ports_disabled(dev_priv, pipe);
1889
1890 reg = PCH_TRANSCONF(pipe);
1891 val = I915_READ(reg);
1892 val &= ~TRANS_ENABLE;
1893 I915_WRITE(reg, val);
1894 /* wait for PCH transcoder off, transcoder state */
1895 if (intel_wait_for_register(dev_priv,
1896 reg, TRANS_STATE_ENABLE, 0,
1897 50))
1898 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1899
1900 if (HAS_PCH_CPT(dev)) {
1901 /* Workaround: Clear the timing override chicken bit again. */
1902 reg = TRANS_CHICKEN2(pipe);
1903 val = I915_READ(reg);
1904 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1905 I915_WRITE(reg, val);
1906 }
1907 }
1908
1909 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1910 {
1911 u32 val;
1912
1913 val = I915_READ(LPT_TRANSCONF);
1914 val &= ~TRANS_ENABLE;
1915 I915_WRITE(LPT_TRANSCONF, val);
1916 /* wait for PCH transcoder off, transcoder state */
1917 if (intel_wait_for_register(dev_priv,
1918 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1919 50))
1920 DRM_ERROR("Failed to disable PCH transcoder\n");
1921
1922 /* Workaround: clear timing override bit. */
1923 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1924 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1925 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1926 }
1927
1928 /**
1929 * intel_enable_pipe - enable a pipe, asserting requirements
1930 * @crtc: crtc responsible for the pipe
1931 *
1932 * Enable @crtc's pipe, making sure that various hardware specific requirements
1933 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1934 */
1935 static void intel_enable_pipe(struct intel_crtc *crtc)
1936 {
1937 struct drm_device *dev = crtc->base.dev;
1938 struct drm_i915_private *dev_priv = to_i915(dev);
1939 enum pipe pipe = crtc->pipe;
1940 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1941 enum pipe pch_transcoder;
1942 i915_reg_t reg;
1943 u32 val;
1944
1945 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1946
1947 assert_planes_disabled(dev_priv, pipe);
1948 assert_cursor_disabled(dev_priv, pipe);
1949 assert_sprites_disabled(dev_priv, pipe);
1950
1951 if (HAS_PCH_LPT(dev_priv))
1952 pch_transcoder = TRANSCODER_A;
1953 else
1954 pch_transcoder = pipe;
1955
1956 /*
1957 * A pipe without a PLL won't actually be able to drive bits from
1958 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1959 * need the check.
1960 */
1961 if (HAS_GMCH_DISPLAY(dev_priv))
1962 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1963 assert_dsi_pll_enabled(dev_priv);
1964 else
1965 assert_pll_enabled(dev_priv, pipe);
1966 else {
1967 if (crtc->config->has_pch_encoder) {
1968 /* if driving the PCH, we need FDI enabled */
1969 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1970 assert_fdi_tx_pll_enabled(dev_priv,
1971 (enum pipe) cpu_transcoder);
1972 }
1973 /* FIXME: assert CPU port conditions for SNB+ */
1974 }
1975
1976 reg = PIPECONF(cpu_transcoder);
1977 val = I915_READ(reg);
1978 if (val & PIPECONF_ENABLE) {
1979 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1980 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1981 return;
1982 }
1983
1984 I915_WRITE(reg, val | PIPECONF_ENABLE);
1985 POSTING_READ(reg);
1986
1987 /*
1988 * Until the pipe starts DSL will read as 0, which would cause
1989 * an apparent vblank timestamp jump, which messes up also the
1990 * frame count when it's derived from the timestamps. So let's
1991 * wait for the pipe to start properly before we call
1992 * drm_crtc_vblank_on()
1993 */
1994 if (dev->max_vblank_count == 0 &&
1995 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1996 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1997 }
1998
1999 /**
2000 * intel_disable_pipe - disable a pipe, asserting requirements
2001 * @crtc: crtc whose pipes is to be disabled
2002 *
2003 * Disable the pipe of @crtc, making sure that various hardware
2004 * specific requirements are met, if applicable, e.g. plane
2005 * disabled, panel fitter off, etc.
2006 *
2007 * Will wait until the pipe has shut down before returning.
2008 */
2009 static void intel_disable_pipe(struct intel_crtc *crtc)
2010 {
2011 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2012 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2013 enum pipe pipe = crtc->pipe;
2014 i915_reg_t reg;
2015 u32 val;
2016
2017 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2018
2019 /*
2020 * Make sure planes won't keep trying to pump pixels to us,
2021 * or we might hang the display.
2022 */
2023 assert_planes_disabled(dev_priv, pipe);
2024 assert_cursor_disabled(dev_priv, pipe);
2025 assert_sprites_disabled(dev_priv, pipe);
2026
2027 reg = PIPECONF(cpu_transcoder);
2028 val = I915_READ(reg);
2029 if ((val & PIPECONF_ENABLE) == 0)
2030 return;
2031
2032 /*
2033 * Double wide has implications for planes
2034 * so best keep it disabled when not needed.
2035 */
2036 if (crtc->config->double_wide)
2037 val &= ~PIPECONF_DOUBLE_WIDE;
2038
2039 /* Don't disable pipe or pipe PLLs if needed */
2040 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2041 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2042 val &= ~PIPECONF_ENABLE;
2043
2044 I915_WRITE(reg, val);
2045 if ((val & PIPECONF_ENABLE) == 0)
2046 intel_wait_for_pipe_off(crtc);
2047 }
2048
2049 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2050 {
2051 return IS_GEN2(dev_priv) ? 2048 : 4096;
2052 }
2053
2054 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2055 uint64_t fb_modifier, unsigned int cpp)
2056 {
2057 switch (fb_modifier) {
2058 case DRM_FORMAT_MOD_NONE:
2059 return cpp;
2060 case I915_FORMAT_MOD_X_TILED:
2061 if (IS_GEN2(dev_priv))
2062 return 128;
2063 else
2064 return 512;
2065 case I915_FORMAT_MOD_Y_TILED:
2066 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2067 return 128;
2068 else
2069 return 512;
2070 case I915_FORMAT_MOD_Yf_TILED:
2071 switch (cpp) {
2072 case 1:
2073 return 64;
2074 case 2:
2075 case 4:
2076 return 128;
2077 case 8:
2078 case 16:
2079 return 256;
2080 default:
2081 MISSING_CASE(cpp);
2082 return cpp;
2083 }
2084 break;
2085 default:
2086 MISSING_CASE(fb_modifier);
2087 return cpp;
2088 }
2089 }
2090
2091 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2092 uint64_t fb_modifier, unsigned int cpp)
2093 {
2094 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2095 return 1;
2096 else
2097 return intel_tile_size(dev_priv) /
2098 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2099 }
2100
2101 /* Return the tile dimensions in pixel units */
2102 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2103 unsigned int *tile_width,
2104 unsigned int *tile_height,
2105 uint64_t fb_modifier,
2106 unsigned int cpp)
2107 {
2108 unsigned int tile_width_bytes =
2109 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2110
2111 *tile_width = tile_width_bytes / cpp;
2112 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2113 }
2114
2115 unsigned int
2116 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2117 uint32_t pixel_format, uint64_t fb_modifier)
2118 {
2119 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2120 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2121
2122 return ALIGN(height, tile_height);
2123 }
2124
2125 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2126 {
2127 unsigned int size = 0;
2128 int i;
2129
2130 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2131 size += rot_info->plane[i].width * rot_info->plane[i].height;
2132
2133 return size;
2134 }
2135
2136 static void
2137 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2138 const struct drm_framebuffer *fb,
2139 unsigned int rotation)
2140 {
2141 if (intel_rotation_90_or_270(rotation)) {
2142 *view = i915_ggtt_view_rotated;
2143 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2144 } else {
2145 *view = i915_ggtt_view_normal;
2146 }
2147 }
2148
2149 static void
2150 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2151 struct drm_framebuffer *fb)
2152 {
2153 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2154 unsigned int tile_size, tile_width, tile_height, cpp;
2155
2156 tile_size = intel_tile_size(dev_priv);
2157
2158 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2159 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2160 fb->modifier[0], cpp);
2161
2162 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2163 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2164
2165 if (info->pixel_format == DRM_FORMAT_NV12) {
2166 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2167 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2168 fb->modifier[1], cpp);
2169
2170 info->uv_offset = fb->offsets[1];
2171 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2172 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2173 }
2174 }
2175
2176 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2177 {
2178 if (INTEL_INFO(dev_priv)->gen >= 9)
2179 return 256 * 1024;
2180 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2181 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2182 return 128 * 1024;
2183 else if (INTEL_INFO(dev_priv)->gen >= 4)
2184 return 4 * 1024;
2185 else
2186 return 0;
2187 }
2188
2189 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2190 uint64_t fb_modifier)
2191 {
2192 switch (fb_modifier) {
2193 case DRM_FORMAT_MOD_NONE:
2194 return intel_linear_alignment(dev_priv);
2195 case I915_FORMAT_MOD_X_TILED:
2196 if (INTEL_INFO(dev_priv)->gen >= 9)
2197 return 256 * 1024;
2198 return 0;
2199 case I915_FORMAT_MOD_Y_TILED:
2200 case I915_FORMAT_MOD_Yf_TILED:
2201 return 1 * 1024 * 1024;
2202 default:
2203 MISSING_CASE(fb_modifier);
2204 return 0;
2205 }
2206 }
2207
2208 int
2209 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2210 unsigned int rotation)
2211 {
2212 struct drm_device *dev = fb->dev;
2213 struct drm_i915_private *dev_priv = to_i915(dev);
2214 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2215 struct i915_ggtt_view view;
2216 u32 alignment;
2217 int ret;
2218
2219 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2220
2221 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2222
2223 intel_fill_fb_ggtt_view(&view, fb, rotation);
2224
2225 /* Note that the w/a also requires 64 PTE of padding following the
2226 * bo. We currently fill all unused PTE with the shadow page and so
2227 * we should always have valid PTE following the scanout preventing
2228 * the VT-d warning.
2229 */
2230 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2231 alignment = 256 * 1024;
2232
2233 /*
2234 * Global gtt pte registers are special registers which actually forward
2235 * writes to a chunk of system memory. Which means that there is no risk
2236 * that the register values disappear as soon as we call
2237 * intel_runtime_pm_put(), so it is correct to wrap only the
2238 * pin/unpin/fence and not more.
2239 */
2240 intel_runtime_pm_get(dev_priv);
2241
2242 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2243 &view);
2244 if (ret)
2245 goto err_pm;
2246
2247 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2248 * fence, whereas 965+ only requires a fence if using
2249 * framebuffer compression. For simplicity, we always install
2250 * a fence as the cost is not that onerous.
2251 */
2252 if (view.type == I915_GGTT_VIEW_NORMAL) {
2253 ret = i915_gem_object_get_fence(obj);
2254 if (ret == -EDEADLK) {
2255 /*
2256 * -EDEADLK means there are no free fences
2257 * no pending flips.
2258 *
2259 * This is propagated to atomic, but it uses
2260 * -EDEADLK to force a locking recovery, so
2261 * change the returned error to -EBUSY.
2262 */
2263 ret = -EBUSY;
2264 goto err_unpin;
2265 } else if (ret)
2266 goto err_unpin;
2267
2268 i915_gem_object_pin_fence(obj);
2269 }
2270
2271 intel_runtime_pm_put(dev_priv);
2272 return 0;
2273
2274 err_unpin:
2275 i915_gem_object_unpin_from_display_plane(obj, &view);
2276 err_pm:
2277 intel_runtime_pm_put(dev_priv);
2278 return ret;
2279 }
2280
2281 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2282 {
2283 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2284 struct i915_ggtt_view view;
2285
2286 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2287
2288 intel_fill_fb_ggtt_view(&view, fb, rotation);
2289
2290 if (view.type == I915_GGTT_VIEW_NORMAL)
2291 i915_gem_object_unpin_fence(obj);
2292
2293 i915_gem_object_unpin_from_display_plane(obj, &view);
2294 }
2295
2296 /*
2297 * Adjust the tile offset by moving the difference into
2298 * the x/y offsets.
2299 *
2300 * Input tile dimensions and pitch must already be
2301 * rotated to match x and y, and in pixel units.
2302 */
2303 static u32 intel_adjust_tile_offset(int *x, int *y,
2304 unsigned int tile_width,
2305 unsigned int tile_height,
2306 unsigned int tile_size,
2307 unsigned int pitch_tiles,
2308 u32 old_offset,
2309 u32 new_offset)
2310 {
2311 unsigned int tiles;
2312
2313 WARN_ON(old_offset & (tile_size - 1));
2314 WARN_ON(new_offset & (tile_size - 1));
2315 WARN_ON(new_offset > old_offset);
2316
2317 tiles = (old_offset - new_offset) / tile_size;
2318
2319 *y += tiles / pitch_tiles * tile_height;
2320 *x += tiles % pitch_tiles * tile_width;
2321
2322 return new_offset;
2323 }
2324
2325 /*
2326 * Computes the linear offset to the base tile and adjusts
2327 * x, y. bytes per pixel is assumed to be a power-of-two.
2328 *
2329 * In the 90/270 rotated case, x and y are assumed
2330 * to be already rotated to match the rotated GTT view, and
2331 * pitch is the tile_height aligned framebuffer height.
2332 */
2333 u32 intel_compute_tile_offset(int *x, int *y,
2334 const struct drm_framebuffer *fb, int plane,
2335 unsigned int pitch,
2336 unsigned int rotation)
2337 {
2338 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2339 uint64_t fb_modifier = fb->modifier[plane];
2340 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2341 u32 offset, offset_aligned, alignment;
2342
2343 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2344 if (alignment)
2345 alignment--;
2346
2347 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2348 unsigned int tile_size, tile_width, tile_height;
2349 unsigned int tile_rows, tiles, pitch_tiles;
2350
2351 tile_size = intel_tile_size(dev_priv);
2352 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353 fb_modifier, cpp);
2354
2355 if (intel_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2360 }
2361
2362 tile_rows = *y / tile_height;
2363 *y %= tile_height;
2364
2365 tiles = *x / tile_width;
2366 *x %= tile_width;
2367
2368 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2369 offset_aligned = offset & ~alignment;
2370
2371 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372 tile_size, pitch_tiles,
2373 offset, offset_aligned);
2374 } else {
2375 offset = *y * pitch + *x * cpp;
2376 offset_aligned = offset & ~alignment;
2377
2378 *y = (offset & alignment) / pitch;
2379 *x = ((offset & alignment) - *y * pitch) / cpp;
2380 }
2381
2382 return offset_aligned;
2383 }
2384
2385 static int i9xx_format_to_fourcc(int format)
2386 {
2387 switch (format) {
2388 case DISPPLANE_8BPP:
2389 return DRM_FORMAT_C8;
2390 case DISPPLANE_BGRX555:
2391 return DRM_FORMAT_XRGB1555;
2392 case DISPPLANE_BGRX565:
2393 return DRM_FORMAT_RGB565;
2394 default:
2395 case DISPPLANE_BGRX888:
2396 return DRM_FORMAT_XRGB8888;
2397 case DISPPLANE_RGBX888:
2398 return DRM_FORMAT_XBGR8888;
2399 case DISPPLANE_BGRX101010:
2400 return DRM_FORMAT_XRGB2101010;
2401 case DISPPLANE_RGBX101010:
2402 return DRM_FORMAT_XBGR2101010;
2403 }
2404 }
2405
2406 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2407 {
2408 switch (format) {
2409 case PLANE_CTL_FORMAT_RGB_565:
2410 return DRM_FORMAT_RGB565;
2411 default:
2412 case PLANE_CTL_FORMAT_XRGB_8888:
2413 if (rgb_order) {
2414 if (alpha)
2415 return DRM_FORMAT_ABGR8888;
2416 else
2417 return DRM_FORMAT_XBGR8888;
2418 } else {
2419 if (alpha)
2420 return DRM_FORMAT_ARGB8888;
2421 else
2422 return DRM_FORMAT_XRGB8888;
2423 }
2424 case PLANE_CTL_FORMAT_XRGB_2101010:
2425 if (rgb_order)
2426 return DRM_FORMAT_XBGR2101010;
2427 else
2428 return DRM_FORMAT_XRGB2101010;
2429 }
2430 }
2431
2432 static bool
2433 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2434 struct intel_initial_plane_config *plane_config)
2435 {
2436 struct drm_device *dev = crtc->base.dev;
2437 struct drm_i915_private *dev_priv = to_i915(dev);
2438 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2439 struct drm_i915_gem_object *obj = NULL;
2440 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2441 struct drm_framebuffer *fb = &plane_config->fb->base;
2442 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2443 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2444 PAGE_SIZE);
2445
2446 size_aligned -= base_aligned;
2447
2448 if (plane_config->size == 0)
2449 return false;
2450
2451 /* If the FB is too big, just don't use it since fbdev is not very
2452 * important and we should probably use that space with FBC or other
2453 * features. */
2454 if (size_aligned * 2 > ggtt->stolen_usable_size)
2455 return false;
2456
2457 mutex_lock(&dev->struct_mutex);
2458
2459 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2460 base_aligned,
2461 base_aligned,
2462 size_aligned);
2463 if (!obj) {
2464 mutex_unlock(&dev->struct_mutex);
2465 return false;
2466 }
2467
2468 obj->tiling_mode = plane_config->tiling;
2469 if (obj->tiling_mode == I915_TILING_X)
2470 obj->stride = fb->pitches[0];
2471
2472 mode_cmd.pixel_format = fb->pixel_format;
2473 mode_cmd.width = fb->width;
2474 mode_cmd.height = fb->height;
2475 mode_cmd.pitches[0] = fb->pitches[0];
2476 mode_cmd.modifier[0] = fb->modifier[0];
2477 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2478
2479 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2480 &mode_cmd, obj)) {
2481 DRM_DEBUG_KMS("intel fb init failed\n");
2482 goto out_unref_obj;
2483 }
2484
2485 mutex_unlock(&dev->struct_mutex);
2486
2487 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2488 return true;
2489
2490 out_unref_obj:
2491 drm_gem_object_unreference(&obj->base);
2492 mutex_unlock(&dev->struct_mutex);
2493 return false;
2494 }
2495
2496 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2497 static void
2498 update_state_fb(struct drm_plane *plane)
2499 {
2500 if (plane->fb == plane->state->fb)
2501 return;
2502
2503 if (plane->state->fb)
2504 drm_framebuffer_unreference(plane->state->fb);
2505 plane->state->fb = plane->fb;
2506 if (plane->state->fb)
2507 drm_framebuffer_reference(plane->state->fb);
2508 }
2509
2510 static void
2511 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2512 struct intel_initial_plane_config *plane_config)
2513 {
2514 struct drm_device *dev = intel_crtc->base.dev;
2515 struct drm_i915_private *dev_priv = to_i915(dev);
2516 struct drm_crtc *c;
2517 struct intel_crtc *i;
2518 struct drm_i915_gem_object *obj;
2519 struct drm_plane *primary = intel_crtc->base.primary;
2520 struct drm_plane_state *plane_state = primary->state;
2521 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2522 struct intel_plane *intel_plane = to_intel_plane(primary);
2523 struct intel_plane_state *intel_state =
2524 to_intel_plane_state(plane_state);
2525 struct drm_framebuffer *fb;
2526
2527 if (!plane_config->fb)
2528 return;
2529
2530 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2531 fb = &plane_config->fb->base;
2532 goto valid_fb;
2533 }
2534
2535 kfree(plane_config->fb);
2536
2537 /*
2538 * Failed to alloc the obj, check to see if we should share
2539 * an fb with another CRTC instead
2540 */
2541 for_each_crtc(dev, c) {
2542 i = to_intel_crtc(c);
2543
2544 if (c == &intel_crtc->base)
2545 continue;
2546
2547 if (!i->active)
2548 continue;
2549
2550 fb = c->primary->fb;
2551 if (!fb)
2552 continue;
2553
2554 obj = intel_fb_obj(fb);
2555 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2556 drm_framebuffer_reference(fb);
2557 goto valid_fb;
2558 }
2559 }
2560
2561 /*
2562 * We've failed to reconstruct the BIOS FB. Current display state
2563 * indicates that the primary plane is visible, but has a NULL FB,
2564 * which will lead to problems later if we don't fix it up. The
2565 * simplest solution is to just disable the primary plane now and
2566 * pretend the BIOS never had it enabled.
2567 */
2568 to_intel_plane_state(plane_state)->visible = false;
2569 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2570 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2571 intel_plane->disable_plane(primary, &intel_crtc->base);
2572
2573 return;
2574
2575 valid_fb:
2576 plane_state->src_x = 0;
2577 plane_state->src_y = 0;
2578 plane_state->src_w = fb->width << 16;
2579 plane_state->src_h = fb->height << 16;
2580
2581 plane_state->crtc_x = 0;
2582 plane_state->crtc_y = 0;
2583 plane_state->crtc_w = fb->width;
2584 plane_state->crtc_h = fb->height;
2585
2586 intel_state->src.x1 = plane_state->src_x;
2587 intel_state->src.y1 = plane_state->src_y;
2588 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2589 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2590 intel_state->dst.x1 = plane_state->crtc_x;
2591 intel_state->dst.y1 = plane_state->crtc_y;
2592 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2593 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2594
2595 obj = intel_fb_obj(fb);
2596 if (obj->tiling_mode != I915_TILING_NONE)
2597 dev_priv->preserve_bios_swizzle = true;
2598
2599 drm_framebuffer_reference(fb);
2600 primary->fb = primary->state->fb = fb;
2601 primary->crtc = primary->state->crtc = &intel_crtc->base;
2602 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2603 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2604 }
2605
2606 static void i9xx_update_primary_plane(struct drm_plane *primary,
2607 const struct intel_crtc_state *crtc_state,
2608 const struct intel_plane_state *plane_state)
2609 {
2610 struct drm_device *dev = primary->dev;
2611 struct drm_i915_private *dev_priv = to_i915(dev);
2612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2613 struct drm_framebuffer *fb = plane_state->base.fb;
2614 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2615 int plane = intel_crtc->plane;
2616 u32 linear_offset;
2617 u32 dspcntr;
2618 i915_reg_t reg = DSPCNTR(plane);
2619 unsigned int rotation = plane_state->base.rotation;
2620 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2621 int x = plane_state->src.x1 >> 16;
2622 int y = plane_state->src.y1 >> 16;
2623
2624 dspcntr = DISPPLANE_GAMMA_ENABLE;
2625
2626 dspcntr |= DISPLAY_PLANE_ENABLE;
2627
2628 if (INTEL_INFO(dev)->gen < 4) {
2629 if (intel_crtc->pipe == PIPE_B)
2630 dspcntr |= DISPPLANE_SEL_PIPE_B;
2631
2632 /* pipesrc and dspsize control the size that is scaled from,
2633 * which should always be the user's requested size.
2634 */
2635 I915_WRITE(DSPSIZE(plane),
2636 ((crtc_state->pipe_src_h - 1) << 16) |
2637 (crtc_state->pipe_src_w - 1));
2638 I915_WRITE(DSPPOS(plane), 0);
2639 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2640 I915_WRITE(PRIMSIZE(plane),
2641 ((crtc_state->pipe_src_h - 1) << 16) |
2642 (crtc_state->pipe_src_w - 1));
2643 I915_WRITE(PRIMPOS(plane), 0);
2644 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2645 }
2646
2647 switch (fb->pixel_format) {
2648 case DRM_FORMAT_C8:
2649 dspcntr |= DISPPLANE_8BPP;
2650 break;
2651 case DRM_FORMAT_XRGB1555:
2652 dspcntr |= DISPPLANE_BGRX555;
2653 break;
2654 case DRM_FORMAT_RGB565:
2655 dspcntr |= DISPPLANE_BGRX565;
2656 break;
2657 case DRM_FORMAT_XRGB8888:
2658 dspcntr |= DISPPLANE_BGRX888;
2659 break;
2660 case DRM_FORMAT_XBGR8888:
2661 dspcntr |= DISPPLANE_RGBX888;
2662 break;
2663 case DRM_FORMAT_XRGB2101010:
2664 dspcntr |= DISPPLANE_BGRX101010;
2665 break;
2666 case DRM_FORMAT_XBGR2101010:
2667 dspcntr |= DISPPLANE_RGBX101010;
2668 break;
2669 default:
2670 BUG();
2671 }
2672
2673 if (INTEL_INFO(dev)->gen >= 4 &&
2674 obj->tiling_mode != I915_TILING_NONE)
2675 dspcntr |= DISPPLANE_TILED;
2676
2677 if (IS_G4X(dev))
2678 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2679
2680 linear_offset = y * fb->pitches[0] + x * cpp;
2681
2682 if (INTEL_INFO(dev)->gen >= 4) {
2683 intel_crtc->dspaddr_offset =
2684 intel_compute_tile_offset(&x, &y, fb, 0,
2685 fb->pitches[0], rotation);
2686 linear_offset -= intel_crtc->dspaddr_offset;
2687 } else {
2688 intel_crtc->dspaddr_offset = linear_offset;
2689 }
2690
2691 if (rotation == BIT(DRM_ROTATE_180)) {
2692 dspcntr |= DISPPLANE_ROTATE_180;
2693
2694 x += (crtc_state->pipe_src_w - 1);
2695 y += (crtc_state->pipe_src_h - 1);
2696
2697 /* Finding the last pixel of the last line of the display
2698 data and adding to linear_offset*/
2699 linear_offset +=
2700 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2701 (crtc_state->pipe_src_w - 1) * cpp;
2702 }
2703
2704 intel_crtc->adjusted_x = x;
2705 intel_crtc->adjusted_y = y;
2706
2707 I915_WRITE(reg, dspcntr);
2708
2709 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2710 if (INTEL_INFO(dev)->gen >= 4) {
2711 I915_WRITE(DSPSURF(plane),
2712 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2713 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2714 I915_WRITE(DSPLINOFF(plane), linear_offset);
2715 } else
2716 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2717 POSTING_READ(reg);
2718 }
2719
2720 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2721 struct drm_crtc *crtc)
2722 {
2723 struct drm_device *dev = crtc->dev;
2724 struct drm_i915_private *dev_priv = to_i915(dev);
2725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 int plane = intel_crtc->plane;
2727
2728 I915_WRITE(DSPCNTR(plane), 0);
2729 if (INTEL_INFO(dev_priv)->gen >= 4)
2730 I915_WRITE(DSPSURF(plane), 0);
2731 else
2732 I915_WRITE(DSPADDR(plane), 0);
2733 POSTING_READ(DSPCNTR(plane));
2734 }
2735
2736 static void ironlake_update_primary_plane(struct drm_plane *primary,
2737 const struct intel_crtc_state *crtc_state,
2738 const struct intel_plane_state *plane_state)
2739 {
2740 struct drm_device *dev = primary->dev;
2741 struct drm_i915_private *dev_priv = to_i915(dev);
2742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2743 struct drm_framebuffer *fb = plane_state->base.fb;
2744 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2745 int plane = intel_crtc->plane;
2746 u32 linear_offset;
2747 u32 dspcntr;
2748 i915_reg_t reg = DSPCNTR(plane);
2749 unsigned int rotation = plane_state->base.rotation;
2750 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2751 int x = plane_state->src.x1 >> 16;
2752 int y = plane_state->src.y1 >> 16;
2753
2754 dspcntr = DISPPLANE_GAMMA_ENABLE;
2755 dspcntr |= DISPLAY_PLANE_ENABLE;
2756
2757 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2758 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2759
2760 switch (fb->pixel_format) {
2761 case DRM_FORMAT_C8:
2762 dspcntr |= DISPPLANE_8BPP;
2763 break;
2764 case DRM_FORMAT_RGB565:
2765 dspcntr |= DISPPLANE_BGRX565;
2766 break;
2767 case DRM_FORMAT_XRGB8888:
2768 dspcntr |= DISPPLANE_BGRX888;
2769 break;
2770 case DRM_FORMAT_XBGR8888:
2771 dspcntr |= DISPPLANE_RGBX888;
2772 break;
2773 case DRM_FORMAT_XRGB2101010:
2774 dspcntr |= DISPPLANE_BGRX101010;
2775 break;
2776 case DRM_FORMAT_XBGR2101010:
2777 dspcntr |= DISPPLANE_RGBX101010;
2778 break;
2779 default:
2780 BUG();
2781 }
2782
2783 if (obj->tiling_mode != I915_TILING_NONE)
2784 dspcntr |= DISPPLANE_TILED;
2785
2786 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2787 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2788
2789 linear_offset = y * fb->pitches[0] + x * cpp;
2790 intel_crtc->dspaddr_offset =
2791 intel_compute_tile_offset(&x, &y, fb, 0,
2792 fb->pitches[0], rotation);
2793 linear_offset -= intel_crtc->dspaddr_offset;
2794 if (rotation == BIT(DRM_ROTATE_180)) {
2795 dspcntr |= DISPPLANE_ROTATE_180;
2796
2797 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2798 x += (crtc_state->pipe_src_w - 1);
2799 y += (crtc_state->pipe_src_h - 1);
2800
2801 /* Finding the last pixel of the last line of the display
2802 data and adding to linear_offset*/
2803 linear_offset +=
2804 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2805 (crtc_state->pipe_src_w - 1) * cpp;
2806 }
2807 }
2808
2809 intel_crtc->adjusted_x = x;
2810 intel_crtc->adjusted_y = y;
2811
2812 I915_WRITE(reg, dspcntr);
2813
2814 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2815 I915_WRITE(DSPSURF(plane),
2816 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2817 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2818 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2819 } else {
2820 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2821 I915_WRITE(DSPLINOFF(plane), linear_offset);
2822 }
2823 POSTING_READ(reg);
2824 }
2825
2826 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2827 uint64_t fb_modifier, uint32_t pixel_format)
2828 {
2829 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2830 return 64;
2831 } else {
2832 int cpp = drm_format_plane_cpp(pixel_format, 0);
2833
2834 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2835 }
2836 }
2837
2838 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2839 struct drm_i915_gem_object *obj,
2840 unsigned int plane)
2841 {
2842 struct i915_ggtt_view view;
2843 struct i915_vma *vma;
2844 u64 offset;
2845
2846 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2847 intel_plane->base.state->rotation);
2848
2849 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2850 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2851 view.type))
2852 return -1;
2853
2854 offset = vma->node.start;
2855
2856 if (plane == 1) {
2857 offset += vma->ggtt_view.params.rotated.uv_start_page *
2858 PAGE_SIZE;
2859 }
2860
2861 WARN_ON(upper_32_bits(offset));
2862
2863 return lower_32_bits(offset);
2864 }
2865
2866 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2867 {
2868 struct drm_device *dev = intel_crtc->base.dev;
2869 struct drm_i915_private *dev_priv = to_i915(dev);
2870
2871 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2872 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2873 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2874 }
2875
2876 /*
2877 * This function detaches (aka. unbinds) unused scalers in hardware
2878 */
2879 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2880 {
2881 struct intel_crtc_scaler_state *scaler_state;
2882 int i;
2883
2884 scaler_state = &intel_crtc->config->scaler_state;
2885
2886 /* loop through and disable scalers that aren't in use */
2887 for (i = 0; i < intel_crtc->num_scalers; i++) {
2888 if (!scaler_state->scalers[i].in_use)
2889 skl_detach_scaler(intel_crtc, i);
2890 }
2891 }
2892
2893 u32 skl_plane_ctl_format(uint32_t pixel_format)
2894 {
2895 switch (pixel_format) {
2896 case DRM_FORMAT_C8:
2897 return PLANE_CTL_FORMAT_INDEXED;
2898 case DRM_FORMAT_RGB565:
2899 return PLANE_CTL_FORMAT_RGB_565;
2900 case DRM_FORMAT_XBGR8888:
2901 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2902 case DRM_FORMAT_XRGB8888:
2903 return PLANE_CTL_FORMAT_XRGB_8888;
2904 /*
2905 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2906 * to be already pre-multiplied. We need to add a knob (or a different
2907 * DRM_FORMAT) for user-space to configure that.
2908 */
2909 case DRM_FORMAT_ABGR8888:
2910 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2911 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2912 case DRM_FORMAT_ARGB8888:
2913 return PLANE_CTL_FORMAT_XRGB_8888 |
2914 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2915 case DRM_FORMAT_XRGB2101010:
2916 return PLANE_CTL_FORMAT_XRGB_2101010;
2917 case DRM_FORMAT_XBGR2101010:
2918 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2919 case DRM_FORMAT_YUYV:
2920 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2921 case DRM_FORMAT_YVYU:
2922 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2923 case DRM_FORMAT_UYVY:
2924 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2925 case DRM_FORMAT_VYUY:
2926 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2927 default:
2928 MISSING_CASE(pixel_format);
2929 }
2930
2931 return 0;
2932 }
2933
2934 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2935 {
2936 switch (fb_modifier) {
2937 case DRM_FORMAT_MOD_NONE:
2938 break;
2939 case I915_FORMAT_MOD_X_TILED:
2940 return PLANE_CTL_TILED_X;
2941 case I915_FORMAT_MOD_Y_TILED:
2942 return PLANE_CTL_TILED_Y;
2943 case I915_FORMAT_MOD_Yf_TILED:
2944 return PLANE_CTL_TILED_YF;
2945 default:
2946 MISSING_CASE(fb_modifier);
2947 }
2948
2949 return 0;
2950 }
2951
2952 u32 skl_plane_ctl_rotation(unsigned int rotation)
2953 {
2954 switch (rotation) {
2955 case BIT(DRM_ROTATE_0):
2956 break;
2957 /*
2958 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2959 * while i915 HW rotation is clockwise, thats why this swapping.
2960 */
2961 case BIT(DRM_ROTATE_90):
2962 return PLANE_CTL_ROTATE_270;
2963 case BIT(DRM_ROTATE_180):
2964 return PLANE_CTL_ROTATE_180;
2965 case BIT(DRM_ROTATE_270):
2966 return PLANE_CTL_ROTATE_90;
2967 default:
2968 MISSING_CASE(rotation);
2969 }
2970
2971 return 0;
2972 }
2973
2974 static void skylake_update_primary_plane(struct drm_plane *plane,
2975 const struct intel_crtc_state *crtc_state,
2976 const struct intel_plane_state *plane_state)
2977 {
2978 struct drm_device *dev = plane->dev;
2979 struct drm_i915_private *dev_priv = to_i915(dev);
2980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2981 struct drm_framebuffer *fb = plane_state->base.fb;
2982 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2983 int pipe = intel_crtc->pipe;
2984 u32 plane_ctl, stride_div, stride;
2985 u32 tile_height, plane_offset, plane_size;
2986 unsigned int rotation = plane_state->base.rotation;
2987 int x_offset, y_offset;
2988 u32 surf_addr;
2989 int scaler_id = plane_state->scaler_id;
2990 int src_x = plane_state->src.x1 >> 16;
2991 int src_y = plane_state->src.y1 >> 16;
2992 int src_w = drm_rect_width(&plane_state->src) >> 16;
2993 int src_h = drm_rect_height(&plane_state->src) >> 16;
2994 int dst_x = plane_state->dst.x1;
2995 int dst_y = plane_state->dst.y1;
2996 int dst_w = drm_rect_width(&plane_state->dst);
2997 int dst_h = drm_rect_height(&plane_state->dst);
2998
2999 plane_ctl = PLANE_CTL_ENABLE |
3000 PLANE_CTL_PIPE_GAMMA_ENABLE |
3001 PLANE_CTL_PIPE_CSC_ENABLE;
3002
3003 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3004 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3005 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3006 plane_ctl |= skl_plane_ctl_rotation(rotation);
3007
3008 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3009 fb->pixel_format);
3010 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3011
3012 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3013
3014 if (intel_rotation_90_or_270(rotation)) {
3015 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3016
3017 /* stride = Surface height in tiles */
3018 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3019 stride = DIV_ROUND_UP(fb->height, tile_height);
3020 x_offset = stride * tile_height - src_y - src_h;
3021 y_offset = src_x;
3022 plane_size = (src_w - 1) << 16 | (src_h - 1);
3023 } else {
3024 stride = fb->pitches[0] / stride_div;
3025 x_offset = src_x;
3026 y_offset = src_y;
3027 plane_size = (src_h - 1) << 16 | (src_w - 1);
3028 }
3029 plane_offset = y_offset << 16 | x_offset;
3030
3031 intel_crtc->adjusted_x = x_offset;
3032 intel_crtc->adjusted_y = y_offset;
3033
3034 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3035 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3036 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3037 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3038
3039 if (scaler_id >= 0) {
3040 uint32_t ps_ctrl = 0;
3041
3042 WARN_ON(!dst_w || !dst_h);
3043 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3044 crtc_state->scaler_state.scalers[scaler_id].mode;
3045 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3046 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3047 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3048 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3049 I915_WRITE(PLANE_POS(pipe, 0), 0);
3050 } else {
3051 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3052 }
3053
3054 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3055
3056 POSTING_READ(PLANE_SURF(pipe, 0));
3057 }
3058
3059 static void skylake_disable_primary_plane(struct drm_plane *primary,
3060 struct drm_crtc *crtc)
3061 {
3062 struct drm_device *dev = crtc->dev;
3063 struct drm_i915_private *dev_priv = to_i915(dev);
3064 int pipe = to_intel_crtc(crtc)->pipe;
3065
3066 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3067 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3068 POSTING_READ(PLANE_SURF(pipe, 0));
3069 }
3070
3071 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3072 static int
3073 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3074 int x, int y, enum mode_set_atomic state)
3075 {
3076 /* Support for kgdboc is disabled, this needs a major rework. */
3077 DRM_ERROR("legacy panic handler not supported any more.\n");
3078
3079 return -ENODEV;
3080 }
3081
3082 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3083 {
3084 struct intel_crtc *crtc;
3085
3086 for_each_intel_crtc(&dev_priv->drm, crtc)
3087 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3088 }
3089
3090 static void intel_update_primary_planes(struct drm_device *dev)
3091 {
3092 struct drm_crtc *crtc;
3093
3094 for_each_crtc(dev, crtc) {
3095 struct intel_plane *plane = to_intel_plane(crtc->primary);
3096 struct intel_plane_state *plane_state =
3097 to_intel_plane_state(plane->base.state);
3098
3099 if (plane_state->visible)
3100 plane->update_plane(&plane->base,
3101 to_intel_crtc_state(crtc->state),
3102 plane_state);
3103 }
3104 }
3105
3106 static int
3107 __intel_display_resume(struct drm_device *dev,
3108 struct drm_atomic_state *state)
3109 {
3110 struct drm_crtc_state *crtc_state;
3111 struct drm_crtc *crtc;
3112 int i, ret;
3113
3114 intel_modeset_setup_hw_state(dev);
3115 i915_redisable_vga(dev);
3116
3117 if (!state)
3118 return 0;
3119
3120 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3121 /*
3122 * Force recalculation even if we restore
3123 * current state. With fast modeset this may not result
3124 * in a modeset when the state is compatible.
3125 */
3126 crtc_state->mode_changed = true;
3127 }
3128
3129 /* ignore any reset values/BIOS leftovers in the WM registers */
3130 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3131
3132 ret = drm_atomic_commit(state);
3133
3134 WARN_ON(ret == -EDEADLK);
3135 return ret;
3136 }
3137
3138 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3139 {
3140 struct drm_device *dev = &dev_priv->drm;
3141 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3142 struct drm_atomic_state *state;
3143 int ret;
3144
3145 /* no reset support for gen2 */
3146 if (IS_GEN2(dev_priv))
3147 return;
3148
3149 /*
3150 * Need mode_config.mutex so that we don't
3151 * trample ongoing ->detect() and whatnot.
3152 */
3153 mutex_lock(&dev->mode_config.mutex);
3154 drm_modeset_acquire_init(ctx, 0);
3155 while (1) {
3156 ret = drm_modeset_lock_all_ctx(dev, ctx);
3157 if (ret != -EDEADLK)
3158 break;
3159
3160 drm_modeset_backoff(ctx);
3161 }
3162
3163 /* reset doesn't touch the display, but flips might get nuked anyway, */
3164 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3165 return;
3166
3167 /*
3168 * Disabling the crtcs gracefully seems nicer. Also the
3169 * g33 docs say we should at least disable all the planes.
3170 */
3171 state = drm_atomic_helper_duplicate_state(dev, ctx);
3172 if (IS_ERR(state)) {
3173 ret = PTR_ERR(state);
3174 state = NULL;
3175 DRM_ERROR("Duplicating state failed with %i\n", ret);
3176 goto err;
3177 }
3178
3179 ret = drm_atomic_helper_disable_all(dev, ctx);
3180 if (ret) {
3181 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3182 goto err;
3183 }
3184
3185 dev_priv->modeset_restore_state = state;
3186 state->acquire_ctx = ctx;
3187 return;
3188
3189 err:
3190 drm_atomic_state_free(state);
3191 }
3192
3193 void intel_finish_reset(struct drm_i915_private *dev_priv)
3194 {
3195 struct drm_device *dev = &dev_priv->drm;
3196 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3197 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3198 int ret;
3199
3200 /*
3201 * Flips in the rings will be nuked by the reset,
3202 * so complete all pending flips so that user space
3203 * will get its events and not get stuck.
3204 */
3205 intel_complete_page_flips(dev_priv);
3206
3207 /* no reset support for gen2 */
3208 if (IS_GEN2(dev_priv))
3209 return;
3210
3211 dev_priv->modeset_restore_state = NULL;
3212
3213 /* reset doesn't touch the display */
3214 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3215 /*
3216 * Flips in the rings have been nuked by the reset,
3217 * so update the base address of all primary
3218 * planes to the the last fb to make sure we're
3219 * showing the correct fb after a reset.
3220 *
3221 * FIXME: Atomic will make this obsolete since we won't schedule
3222 * CS-based flips (which might get lost in gpu resets) any more.
3223 */
3224 intel_update_primary_planes(dev);
3225 } else {
3226 /*
3227 * The display has been reset as well,
3228 * so need a full re-initialization.
3229 */
3230 intel_runtime_pm_disable_interrupts(dev_priv);
3231 intel_runtime_pm_enable_interrupts(dev_priv);
3232
3233 intel_modeset_init_hw(dev);
3234
3235 spin_lock_irq(&dev_priv->irq_lock);
3236 if (dev_priv->display.hpd_irq_setup)
3237 dev_priv->display.hpd_irq_setup(dev_priv);
3238 spin_unlock_irq(&dev_priv->irq_lock);
3239
3240 ret = __intel_display_resume(dev, state);
3241 if (ret)
3242 DRM_ERROR("Restoring old state failed with %i\n", ret);
3243
3244 intel_hpd_init(dev_priv);
3245 }
3246
3247 drm_modeset_drop_locks(ctx);
3248 drm_modeset_acquire_fini(ctx);
3249 mutex_unlock(&dev->mode_config.mutex);
3250 }
3251
3252 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3253 {
3254 struct drm_device *dev = crtc->dev;
3255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256 unsigned reset_counter;
3257 bool pending;
3258
3259 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3260 if (intel_crtc->reset_counter != reset_counter)
3261 return false;
3262
3263 spin_lock_irq(&dev->event_lock);
3264 pending = to_intel_crtc(crtc)->flip_work != NULL;
3265 spin_unlock_irq(&dev->event_lock);
3266
3267 return pending;
3268 }
3269
3270 static void intel_update_pipe_config(struct intel_crtc *crtc,
3271 struct intel_crtc_state *old_crtc_state)
3272 {
3273 struct drm_device *dev = crtc->base.dev;
3274 struct drm_i915_private *dev_priv = to_i915(dev);
3275 struct intel_crtc_state *pipe_config =
3276 to_intel_crtc_state(crtc->base.state);
3277
3278 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3279 crtc->base.mode = crtc->base.state->mode;
3280
3281 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3282 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3283 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3284
3285 /*
3286 * Update pipe size and adjust fitter if needed: the reason for this is
3287 * that in compute_mode_changes we check the native mode (not the pfit
3288 * mode) to see if we can flip rather than do a full mode set. In the
3289 * fastboot case, we'll flip, but if we don't update the pipesrc and
3290 * pfit state, we'll end up with a big fb scanned out into the wrong
3291 * sized surface.
3292 */
3293
3294 I915_WRITE(PIPESRC(crtc->pipe),
3295 ((pipe_config->pipe_src_w - 1) << 16) |
3296 (pipe_config->pipe_src_h - 1));
3297
3298 /* on skylake this is done by detaching scalers */
3299 if (INTEL_INFO(dev)->gen >= 9) {
3300 skl_detach_scalers(crtc);
3301
3302 if (pipe_config->pch_pfit.enabled)
3303 skylake_pfit_enable(crtc);
3304 } else if (HAS_PCH_SPLIT(dev)) {
3305 if (pipe_config->pch_pfit.enabled)
3306 ironlake_pfit_enable(crtc);
3307 else if (old_crtc_state->pch_pfit.enabled)
3308 ironlake_pfit_disable(crtc, true);
3309 }
3310 }
3311
3312 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3313 {
3314 struct drm_device *dev = crtc->dev;
3315 struct drm_i915_private *dev_priv = to_i915(dev);
3316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3317 int pipe = intel_crtc->pipe;
3318 i915_reg_t reg;
3319 u32 temp;
3320
3321 /* enable normal train */
3322 reg = FDI_TX_CTL(pipe);
3323 temp = I915_READ(reg);
3324 if (IS_IVYBRIDGE(dev)) {
3325 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3326 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3327 } else {
3328 temp &= ~FDI_LINK_TRAIN_NONE;
3329 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3330 }
3331 I915_WRITE(reg, temp);
3332
3333 reg = FDI_RX_CTL(pipe);
3334 temp = I915_READ(reg);
3335 if (HAS_PCH_CPT(dev)) {
3336 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3337 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3338 } else {
3339 temp &= ~FDI_LINK_TRAIN_NONE;
3340 temp |= FDI_LINK_TRAIN_NONE;
3341 }
3342 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3343
3344 /* wait one idle pattern time */
3345 POSTING_READ(reg);
3346 udelay(1000);
3347
3348 /* IVB wants error correction enabled */
3349 if (IS_IVYBRIDGE(dev))
3350 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3351 FDI_FE_ERRC_ENABLE);
3352 }
3353
3354 /* The FDI link training functions for ILK/Ibexpeak. */
3355 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3356 {
3357 struct drm_device *dev = crtc->dev;
3358 struct drm_i915_private *dev_priv = to_i915(dev);
3359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3360 int pipe = intel_crtc->pipe;
3361 i915_reg_t reg;
3362 u32 temp, tries;
3363
3364 /* FDI needs bits from pipe first */
3365 assert_pipe_enabled(dev_priv, pipe);
3366
3367 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3368 for train result */
3369 reg = FDI_RX_IMR(pipe);
3370 temp = I915_READ(reg);
3371 temp &= ~FDI_RX_SYMBOL_LOCK;
3372 temp &= ~FDI_RX_BIT_LOCK;
3373 I915_WRITE(reg, temp);
3374 I915_READ(reg);
3375 udelay(150);
3376
3377 /* enable CPU FDI TX and PCH FDI RX */
3378 reg = FDI_TX_CTL(pipe);
3379 temp = I915_READ(reg);
3380 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3381 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3382 temp &= ~FDI_LINK_TRAIN_NONE;
3383 temp |= FDI_LINK_TRAIN_PATTERN_1;
3384 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3385
3386 reg = FDI_RX_CTL(pipe);
3387 temp = I915_READ(reg);
3388 temp &= ~FDI_LINK_TRAIN_NONE;
3389 temp |= FDI_LINK_TRAIN_PATTERN_1;
3390 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3391
3392 POSTING_READ(reg);
3393 udelay(150);
3394
3395 /* Ironlake workaround, enable clock pointer after FDI enable*/
3396 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3397 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3398 FDI_RX_PHASE_SYNC_POINTER_EN);
3399
3400 reg = FDI_RX_IIR(pipe);
3401 for (tries = 0; tries < 5; tries++) {
3402 temp = I915_READ(reg);
3403 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3404
3405 if ((temp & FDI_RX_BIT_LOCK)) {
3406 DRM_DEBUG_KMS("FDI train 1 done.\n");
3407 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3408 break;
3409 }
3410 }
3411 if (tries == 5)
3412 DRM_ERROR("FDI train 1 fail!\n");
3413
3414 /* Train 2 */
3415 reg = FDI_TX_CTL(pipe);
3416 temp = I915_READ(reg);
3417 temp &= ~FDI_LINK_TRAIN_NONE;
3418 temp |= FDI_LINK_TRAIN_PATTERN_2;
3419 I915_WRITE(reg, temp);
3420
3421 reg = FDI_RX_CTL(pipe);
3422 temp = I915_READ(reg);
3423 temp &= ~FDI_LINK_TRAIN_NONE;
3424 temp |= FDI_LINK_TRAIN_PATTERN_2;
3425 I915_WRITE(reg, temp);
3426
3427 POSTING_READ(reg);
3428 udelay(150);
3429
3430 reg = FDI_RX_IIR(pipe);
3431 for (tries = 0; tries < 5; tries++) {
3432 temp = I915_READ(reg);
3433 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3434
3435 if (temp & FDI_RX_SYMBOL_LOCK) {
3436 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3437 DRM_DEBUG_KMS("FDI train 2 done.\n");
3438 break;
3439 }
3440 }
3441 if (tries == 5)
3442 DRM_ERROR("FDI train 2 fail!\n");
3443
3444 DRM_DEBUG_KMS("FDI train done\n");
3445
3446 }
3447
3448 static const int snb_b_fdi_train_param[] = {
3449 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3450 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3451 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3452 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3453 };
3454
3455 /* The FDI link training functions for SNB/Cougarpoint. */
3456 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3457 {
3458 struct drm_device *dev = crtc->dev;
3459 struct drm_i915_private *dev_priv = to_i915(dev);
3460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3461 int pipe = intel_crtc->pipe;
3462 i915_reg_t reg;
3463 u32 temp, i, retry;
3464
3465 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3466 for train result */
3467 reg = FDI_RX_IMR(pipe);
3468 temp = I915_READ(reg);
3469 temp &= ~FDI_RX_SYMBOL_LOCK;
3470 temp &= ~FDI_RX_BIT_LOCK;
3471 I915_WRITE(reg, temp);
3472
3473 POSTING_READ(reg);
3474 udelay(150);
3475
3476 /* enable CPU FDI TX and PCH FDI RX */
3477 reg = FDI_TX_CTL(pipe);
3478 temp = I915_READ(reg);
3479 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3480 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3481 temp &= ~FDI_LINK_TRAIN_NONE;
3482 temp |= FDI_LINK_TRAIN_PATTERN_1;
3483 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3484 /* SNB-B */
3485 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3486 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3487
3488 I915_WRITE(FDI_RX_MISC(pipe),
3489 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3490
3491 reg = FDI_RX_CTL(pipe);
3492 temp = I915_READ(reg);
3493 if (HAS_PCH_CPT(dev)) {
3494 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3495 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3496 } else {
3497 temp &= ~FDI_LINK_TRAIN_NONE;
3498 temp |= FDI_LINK_TRAIN_PATTERN_1;
3499 }
3500 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3501
3502 POSTING_READ(reg);
3503 udelay(150);
3504
3505 for (i = 0; i < 4; i++) {
3506 reg = FDI_TX_CTL(pipe);
3507 temp = I915_READ(reg);
3508 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3509 temp |= snb_b_fdi_train_param[i];
3510 I915_WRITE(reg, temp);
3511
3512 POSTING_READ(reg);
3513 udelay(500);
3514
3515 for (retry = 0; retry < 5; retry++) {
3516 reg = FDI_RX_IIR(pipe);
3517 temp = I915_READ(reg);
3518 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3519 if (temp & FDI_RX_BIT_LOCK) {
3520 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3521 DRM_DEBUG_KMS("FDI train 1 done.\n");
3522 break;
3523 }
3524 udelay(50);
3525 }
3526 if (retry < 5)
3527 break;
3528 }
3529 if (i == 4)
3530 DRM_ERROR("FDI train 1 fail!\n");
3531
3532 /* Train 2 */
3533 reg = FDI_TX_CTL(pipe);
3534 temp = I915_READ(reg);
3535 temp &= ~FDI_LINK_TRAIN_NONE;
3536 temp |= FDI_LINK_TRAIN_PATTERN_2;
3537 if (IS_GEN6(dev)) {
3538 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3539 /* SNB-B */
3540 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3541 }
3542 I915_WRITE(reg, temp);
3543
3544 reg = FDI_RX_CTL(pipe);
3545 temp = I915_READ(reg);
3546 if (HAS_PCH_CPT(dev)) {
3547 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3548 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3549 } else {
3550 temp &= ~FDI_LINK_TRAIN_NONE;
3551 temp |= FDI_LINK_TRAIN_PATTERN_2;
3552 }
3553 I915_WRITE(reg, temp);
3554
3555 POSTING_READ(reg);
3556 udelay(150);
3557
3558 for (i = 0; i < 4; i++) {
3559 reg = FDI_TX_CTL(pipe);
3560 temp = I915_READ(reg);
3561 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3562 temp |= snb_b_fdi_train_param[i];
3563 I915_WRITE(reg, temp);
3564
3565 POSTING_READ(reg);
3566 udelay(500);
3567
3568 for (retry = 0; retry < 5; retry++) {
3569 reg = FDI_RX_IIR(pipe);
3570 temp = I915_READ(reg);
3571 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3572 if (temp & FDI_RX_SYMBOL_LOCK) {
3573 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3574 DRM_DEBUG_KMS("FDI train 2 done.\n");
3575 break;
3576 }
3577 udelay(50);
3578 }
3579 if (retry < 5)
3580 break;
3581 }
3582 if (i == 4)
3583 DRM_ERROR("FDI train 2 fail!\n");
3584
3585 DRM_DEBUG_KMS("FDI train done.\n");
3586 }
3587
3588 /* Manual link training for Ivy Bridge A0 parts */
3589 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3590 {
3591 struct drm_device *dev = crtc->dev;
3592 struct drm_i915_private *dev_priv = to_i915(dev);
3593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3594 int pipe = intel_crtc->pipe;
3595 i915_reg_t reg;
3596 u32 temp, i, j;
3597
3598 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3599 for train result */
3600 reg = FDI_RX_IMR(pipe);
3601 temp = I915_READ(reg);
3602 temp &= ~FDI_RX_SYMBOL_LOCK;
3603 temp &= ~FDI_RX_BIT_LOCK;
3604 I915_WRITE(reg, temp);
3605
3606 POSTING_READ(reg);
3607 udelay(150);
3608
3609 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3610 I915_READ(FDI_RX_IIR(pipe)));
3611
3612 /* Try each vswing and preemphasis setting twice before moving on */
3613 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3614 /* disable first in case we need to retry */
3615 reg = FDI_TX_CTL(pipe);
3616 temp = I915_READ(reg);
3617 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3618 temp &= ~FDI_TX_ENABLE;
3619 I915_WRITE(reg, temp);
3620
3621 reg = FDI_RX_CTL(pipe);
3622 temp = I915_READ(reg);
3623 temp &= ~FDI_LINK_TRAIN_AUTO;
3624 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3625 temp &= ~FDI_RX_ENABLE;
3626 I915_WRITE(reg, temp);
3627
3628 /* enable CPU FDI TX and PCH FDI RX */
3629 reg = FDI_TX_CTL(pipe);
3630 temp = I915_READ(reg);
3631 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3632 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3633 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3634 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3635 temp |= snb_b_fdi_train_param[j/2];
3636 temp |= FDI_COMPOSITE_SYNC;
3637 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3638
3639 I915_WRITE(FDI_RX_MISC(pipe),
3640 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3641
3642 reg = FDI_RX_CTL(pipe);
3643 temp = I915_READ(reg);
3644 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3645 temp |= FDI_COMPOSITE_SYNC;
3646 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3647
3648 POSTING_READ(reg);
3649 udelay(1); /* should be 0.5us */
3650
3651 for (i = 0; i < 4; i++) {
3652 reg = FDI_RX_IIR(pipe);
3653 temp = I915_READ(reg);
3654 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3655
3656 if (temp & FDI_RX_BIT_LOCK ||
3657 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3658 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3659 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3660 i);
3661 break;
3662 }
3663 udelay(1); /* should be 0.5us */
3664 }
3665 if (i == 4) {
3666 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3667 continue;
3668 }
3669
3670 /* Train 2 */
3671 reg = FDI_TX_CTL(pipe);
3672 temp = I915_READ(reg);
3673 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3674 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3675 I915_WRITE(reg, temp);
3676
3677 reg = FDI_RX_CTL(pipe);
3678 temp = I915_READ(reg);
3679 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3680 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3681 I915_WRITE(reg, temp);
3682
3683 POSTING_READ(reg);
3684 udelay(2); /* should be 1.5us */
3685
3686 for (i = 0; i < 4; i++) {
3687 reg = FDI_RX_IIR(pipe);
3688 temp = I915_READ(reg);
3689 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691 if (temp & FDI_RX_SYMBOL_LOCK ||
3692 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3693 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3694 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3695 i);
3696 goto train_done;
3697 }
3698 udelay(2); /* should be 1.5us */
3699 }
3700 if (i == 4)
3701 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3702 }
3703
3704 train_done:
3705 DRM_DEBUG_KMS("FDI train done.\n");
3706 }
3707
3708 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3709 {
3710 struct drm_device *dev = intel_crtc->base.dev;
3711 struct drm_i915_private *dev_priv = to_i915(dev);
3712 int pipe = intel_crtc->pipe;
3713 i915_reg_t reg;
3714 u32 temp;
3715
3716 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3717 reg = FDI_RX_CTL(pipe);
3718 temp = I915_READ(reg);
3719 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3720 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3721 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3722 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3723
3724 POSTING_READ(reg);
3725 udelay(200);
3726
3727 /* Switch from Rawclk to PCDclk */
3728 temp = I915_READ(reg);
3729 I915_WRITE(reg, temp | FDI_PCDCLK);
3730
3731 POSTING_READ(reg);
3732 udelay(200);
3733
3734 /* Enable CPU FDI TX PLL, always on for Ironlake */
3735 reg = FDI_TX_CTL(pipe);
3736 temp = I915_READ(reg);
3737 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3738 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3739
3740 POSTING_READ(reg);
3741 udelay(100);
3742 }
3743 }
3744
3745 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3746 {
3747 struct drm_device *dev = intel_crtc->base.dev;
3748 struct drm_i915_private *dev_priv = to_i915(dev);
3749 int pipe = intel_crtc->pipe;
3750 i915_reg_t reg;
3751 u32 temp;
3752
3753 /* Switch from PCDclk to Rawclk */
3754 reg = FDI_RX_CTL(pipe);
3755 temp = I915_READ(reg);
3756 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3757
3758 /* Disable CPU FDI TX PLL */
3759 reg = FDI_TX_CTL(pipe);
3760 temp = I915_READ(reg);
3761 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3762
3763 POSTING_READ(reg);
3764 udelay(100);
3765
3766 reg = FDI_RX_CTL(pipe);
3767 temp = I915_READ(reg);
3768 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3769
3770 /* Wait for the clocks to turn off. */
3771 POSTING_READ(reg);
3772 udelay(100);
3773 }
3774
3775 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3776 {
3777 struct drm_device *dev = crtc->dev;
3778 struct drm_i915_private *dev_priv = to_i915(dev);
3779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3780 int pipe = intel_crtc->pipe;
3781 i915_reg_t reg;
3782 u32 temp;
3783
3784 /* disable CPU FDI tx and PCH FDI rx */
3785 reg = FDI_TX_CTL(pipe);
3786 temp = I915_READ(reg);
3787 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3788 POSTING_READ(reg);
3789
3790 reg = FDI_RX_CTL(pipe);
3791 temp = I915_READ(reg);
3792 temp &= ~(0x7 << 16);
3793 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3794 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3795
3796 POSTING_READ(reg);
3797 udelay(100);
3798
3799 /* Ironlake workaround, disable clock pointer after downing FDI */
3800 if (HAS_PCH_IBX(dev))
3801 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3802
3803 /* still set train pattern 1 */
3804 reg = FDI_TX_CTL(pipe);
3805 temp = I915_READ(reg);
3806 temp &= ~FDI_LINK_TRAIN_NONE;
3807 temp |= FDI_LINK_TRAIN_PATTERN_1;
3808 I915_WRITE(reg, temp);
3809
3810 reg = FDI_RX_CTL(pipe);
3811 temp = I915_READ(reg);
3812 if (HAS_PCH_CPT(dev)) {
3813 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3814 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3815 } else {
3816 temp &= ~FDI_LINK_TRAIN_NONE;
3817 temp |= FDI_LINK_TRAIN_PATTERN_1;
3818 }
3819 /* BPC in FDI rx is consistent with that in PIPECONF */
3820 temp &= ~(0x07 << 16);
3821 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3822 I915_WRITE(reg, temp);
3823
3824 POSTING_READ(reg);
3825 udelay(100);
3826 }
3827
3828 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3829 {
3830 struct intel_crtc *crtc;
3831
3832 /* Note that we don't need to be called with mode_config.lock here
3833 * as our list of CRTC objects is static for the lifetime of the
3834 * device and so cannot disappear as we iterate. Similarly, we can
3835 * happily treat the predicates as racy, atomic checks as userspace
3836 * cannot claim and pin a new fb without at least acquring the
3837 * struct_mutex and so serialising with us.
3838 */
3839 for_each_intel_crtc(dev, crtc) {
3840 if (atomic_read(&crtc->unpin_work_count) == 0)
3841 continue;
3842
3843 if (crtc->flip_work)
3844 intel_wait_for_vblank(dev, crtc->pipe);
3845
3846 return true;
3847 }
3848
3849 return false;
3850 }
3851
3852 static void page_flip_completed(struct intel_crtc *intel_crtc)
3853 {
3854 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3855 struct intel_flip_work *work = intel_crtc->flip_work;
3856
3857 intel_crtc->flip_work = NULL;
3858
3859 if (work->event)
3860 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3861
3862 drm_crtc_vblank_put(&intel_crtc->base);
3863
3864 wake_up_all(&dev_priv->pending_flip_queue);
3865 queue_work(dev_priv->wq, &work->unpin_work);
3866
3867 trace_i915_flip_complete(intel_crtc->plane,
3868 work->pending_flip_obj);
3869 }
3870
3871 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3872 {
3873 struct drm_device *dev = crtc->dev;
3874 struct drm_i915_private *dev_priv = to_i915(dev);
3875 long ret;
3876
3877 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3878
3879 ret = wait_event_interruptible_timeout(
3880 dev_priv->pending_flip_queue,
3881 !intel_crtc_has_pending_flip(crtc),
3882 60*HZ);
3883
3884 if (ret < 0)
3885 return ret;
3886
3887 if (ret == 0) {
3888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3889 struct intel_flip_work *work;
3890
3891 spin_lock_irq(&dev->event_lock);
3892 work = intel_crtc->flip_work;
3893 if (work && !is_mmio_work(work)) {
3894 WARN_ONCE(1, "Removing stuck page flip\n");
3895 page_flip_completed(intel_crtc);
3896 }
3897 spin_unlock_irq(&dev->event_lock);
3898 }
3899
3900 return 0;
3901 }
3902
3903 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3904 {
3905 u32 temp;
3906
3907 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3908
3909 mutex_lock(&dev_priv->sb_lock);
3910
3911 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3912 temp |= SBI_SSCCTL_DISABLE;
3913 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3914
3915 mutex_unlock(&dev_priv->sb_lock);
3916 }
3917
3918 /* Program iCLKIP clock to the desired frequency */
3919 static void lpt_program_iclkip(struct drm_crtc *crtc)
3920 {
3921 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3922 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3923 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3924 u32 temp;
3925
3926 lpt_disable_iclkip(dev_priv);
3927
3928 /* The iCLK virtual clock root frequency is in MHz,
3929 * but the adjusted_mode->crtc_clock in in KHz. To get the
3930 * divisors, it is necessary to divide one by another, so we
3931 * convert the virtual clock precision to KHz here for higher
3932 * precision.
3933 */
3934 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3935 u32 iclk_virtual_root_freq = 172800 * 1000;
3936 u32 iclk_pi_range = 64;
3937 u32 desired_divisor;
3938
3939 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3940 clock << auxdiv);
3941 divsel = (desired_divisor / iclk_pi_range) - 2;
3942 phaseinc = desired_divisor % iclk_pi_range;
3943
3944 /*
3945 * Near 20MHz is a corner case which is
3946 * out of range for the 7-bit divisor
3947 */
3948 if (divsel <= 0x7f)
3949 break;
3950 }
3951
3952 /* This should not happen with any sane values */
3953 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3954 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3955 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3956 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3957
3958 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3959 clock,
3960 auxdiv,
3961 divsel,
3962 phasedir,
3963 phaseinc);
3964
3965 mutex_lock(&dev_priv->sb_lock);
3966
3967 /* Program SSCDIVINTPHASE6 */
3968 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3969 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3970 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3971 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3972 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3973 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3974 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3975 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3976
3977 /* Program SSCAUXDIV */
3978 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3979 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3980 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3981 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3982
3983 /* Enable modulator and associated divider */
3984 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3985 temp &= ~SBI_SSCCTL_DISABLE;
3986 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3987
3988 mutex_unlock(&dev_priv->sb_lock);
3989
3990 /* Wait for initialization time */
3991 udelay(24);
3992
3993 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3994 }
3995
3996 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3997 {
3998 u32 divsel, phaseinc, auxdiv;
3999 u32 iclk_virtual_root_freq = 172800 * 1000;
4000 u32 iclk_pi_range = 64;
4001 u32 desired_divisor;
4002 u32 temp;
4003
4004 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4005 return 0;
4006
4007 mutex_lock(&dev_priv->sb_lock);
4008
4009 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4010 if (temp & SBI_SSCCTL_DISABLE) {
4011 mutex_unlock(&dev_priv->sb_lock);
4012 return 0;
4013 }
4014
4015 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4016 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4017 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4018 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4019 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4020
4021 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4022 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4023 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4024
4025 mutex_unlock(&dev_priv->sb_lock);
4026
4027 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4028
4029 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4030 desired_divisor << auxdiv);
4031 }
4032
4033 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4034 enum pipe pch_transcoder)
4035 {
4036 struct drm_device *dev = crtc->base.dev;
4037 struct drm_i915_private *dev_priv = to_i915(dev);
4038 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4039
4040 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4041 I915_READ(HTOTAL(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4043 I915_READ(HBLANK(cpu_transcoder)));
4044 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4045 I915_READ(HSYNC(cpu_transcoder)));
4046
4047 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4048 I915_READ(VTOTAL(cpu_transcoder)));
4049 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4050 I915_READ(VBLANK(cpu_transcoder)));
4051 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4052 I915_READ(VSYNC(cpu_transcoder)));
4053 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4054 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4055 }
4056
4057 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4058 {
4059 struct drm_i915_private *dev_priv = to_i915(dev);
4060 uint32_t temp;
4061
4062 temp = I915_READ(SOUTH_CHICKEN1);
4063 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4064 return;
4065
4066 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4067 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4068
4069 temp &= ~FDI_BC_BIFURCATION_SELECT;
4070 if (enable)
4071 temp |= FDI_BC_BIFURCATION_SELECT;
4072
4073 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4074 I915_WRITE(SOUTH_CHICKEN1, temp);
4075 POSTING_READ(SOUTH_CHICKEN1);
4076 }
4077
4078 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4079 {
4080 struct drm_device *dev = intel_crtc->base.dev;
4081
4082 switch (intel_crtc->pipe) {
4083 case PIPE_A:
4084 break;
4085 case PIPE_B:
4086 if (intel_crtc->config->fdi_lanes > 2)
4087 cpt_set_fdi_bc_bifurcation(dev, false);
4088 else
4089 cpt_set_fdi_bc_bifurcation(dev, true);
4090
4091 break;
4092 case PIPE_C:
4093 cpt_set_fdi_bc_bifurcation(dev, true);
4094
4095 break;
4096 default:
4097 BUG();
4098 }
4099 }
4100
4101 /* Return which DP Port should be selected for Transcoder DP control */
4102 static enum port
4103 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4104 {
4105 struct drm_device *dev = crtc->dev;
4106 struct intel_encoder *encoder;
4107
4108 for_each_encoder_on_crtc(dev, crtc, encoder) {
4109 if (encoder->type == INTEL_OUTPUT_DP ||
4110 encoder->type == INTEL_OUTPUT_EDP)
4111 return enc_to_dig_port(&encoder->base)->port;
4112 }
4113
4114 return -1;
4115 }
4116
4117 /*
4118 * Enable PCH resources required for PCH ports:
4119 * - PCH PLLs
4120 * - FDI training & RX/TX
4121 * - update transcoder timings
4122 * - DP transcoding bits
4123 * - transcoder
4124 */
4125 static void ironlake_pch_enable(struct drm_crtc *crtc)
4126 {
4127 struct drm_device *dev = crtc->dev;
4128 struct drm_i915_private *dev_priv = to_i915(dev);
4129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4130 int pipe = intel_crtc->pipe;
4131 u32 temp;
4132
4133 assert_pch_transcoder_disabled(dev_priv, pipe);
4134
4135 if (IS_IVYBRIDGE(dev))
4136 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4137
4138 /* Write the TU size bits before fdi link training, so that error
4139 * detection works. */
4140 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4141 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4142
4143 /* For PCH output, training FDI link */
4144 dev_priv->display.fdi_link_train(crtc);
4145
4146 /* We need to program the right clock selection before writing the pixel
4147 * mutliplier into the DPLL. */
4148 if (HAS_PCH_CPT(dev)) {
4149 u32 sel;
4150
4151 temp = I915_READ(PCH_DPLL_SEL);
4152 temp |= TRANS_DPLL_ENABLE(pipe);
4153 sel = TRANS_DPLLB_SEL(pipe);
4154 if (intel_crtc->config->shared_dpll ==
4155 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4156 temp |= sel;
4157 else
4158 temp &= ~sel;
4159 I915_WRITE(PCH_DPLL_SEL, temp);
4160 }
4161
4162 /* XXX: pch pll's can be enabled any time before we enable the PCH
4163 * transcoder, and we actually should do this to not upset any PCH
4164 * transcoder that already use the clock when we share it.
4165 *
4166 * Note that enable_shared_dpll tries to do the right thing, but
4167 * get_shared_dpll unconditionally resets the pll - we need that to have
4168 * the right LVDS enable sequence. */
4169 intel_enable_shared_dpll(intel_crtc);
4170
4171 /* set transcoder timing, panel must allow it */
4172 assert_panel_unlocked(dev_priv, pipe);
4173 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4174
4175 intel_fdi_normal_train(crtc);
4176
4177 /* For PCH DP, enable TRANS_DP_CTL */
4178 if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4179 const struct drm_display_mode *adjusted_mode =
4180 &intel_crtc->config->base.adjusted_mode;
4181 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4182 i915_reg_t reg = TRANS_DP_CTL(pipe);
4183 temp = I915_READ(reg);
4184 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4185 TRANS_DP_SYNC_MASK |
4186 TRANS_DP_BPC_MASK);
4187 temp |= TRANS_DP_OUTPUT_ENABLE;
4188 temp |= bpc << 9; /* same format but at 11:9 */
4189
4190 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4191 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4192 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4193 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4194
4195 switch (intel_trans_dp_port_sel(crtc)) {
4196 case PORT_B:
4197 temp |= TRANS_DP_PORT_SEL_B;
4198 break;
4199 case PORT_C:
4200 temp |= TRANS_DP_PORT_SEL_C;
4201 break;
4202 case PORT_D:
4203 temp |= TRANS_DP_PORT_SEL_D;
4204 break;
4205 default:
4206 BUG();
4207 }
4208
4209 I915_WRITE(reg, temp);
4210 }
4211
4212 ironlake_enable_pch_transcoder(dev_priv, pipe);
4213 }
4214
4215 static void lpt_pch_enable(struct drm_crtc *crtc)
4216 {
4217 struct drm_device *dev = crtc->dev;
4218 struct drm_i915_private *dev_priv = to_i915(dev);
4219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4220 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4221
4222 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4223
4224 lpt_program_iclkip(crtc);
4225
4226 /* Set transcoder timing. */
4227 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4228
4229 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4230 }
4231
4232 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4233 {
4234 struct drm_i915_private *dev_priv = to_i915(dev);
4235 i915_reg_t dslreg = PIPEDSL(pipe);
4236 u32 temp;
4237
4238 temp = I915_READ(dslreg);
4239 udelay(500);
4240 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4241 if (wait_for(I915_READ(dslreg) != temp, 5))
4242 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4243 }
4244 }
4245
4246 static int
4247 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4248 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4249 int src_w, int src_h, int dst_w, int dst_h)
4250 {
4251 struct intel_crtc_scaler_state *scaler_state =
4252 &crtc_state->scaler_state;
4253 struct intel_crtc *intel_crtc =
4254 to_intel_crtc(crtc_state->base.crtc);
4255 int need_scaling;
4256
4257 need_scaling = intel_rotation_90_or_270(rotation) ?
4258 (src_h != dst_w || src_w != dst_h):
4259 (src_w != dst_w || src_h != dst_h);
4260
4261 /*
4262 * if plane is being disabled or scaler is no more required or force detach
4263 * - free scaler binded to this plane/crtc
4264 * - in order to do this, update crtc->scaler_usage
4265 *
4266 * Here scaler state in crtc_state is set free so that
4267 * scaler can be assigned to other user. Actual register
4268 * update to free the scaler is done in plane/panel-fit programming.
4269 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4270 */
4271 if (force_detach || !need_scaling) {
4272 if (*scaler_id >= 0) {
4273 scaler_state->scaler_users &= ~(1 << scaler_user);
4274 scaler_state->scalers[*scaler_id].in_use = 0;
4275
4276 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4277 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4278 intel_crtc->pipe, scaler_user, *scaler_id,
4279 scaler_state->scaler_users);
4280 *scaler_id = -1;
4281 }
4282 return 0;
4283 }
4284
4285 /* range checks */
4286 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4287 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4288
4289 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4290 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4291 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4292 "size is out of scaler range\n",
4293 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4294 return -EINVAL;
4295 }
4296
4297 /* mark this plane as a scaler user in crtc_state */
4298 scaler_state->scaler_users |= (1 << scaler_user);
4299 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4300 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4301 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4302 scaler_state->scaler_users);
4303
4304 return 0;
4305 }
4306
4307 /**
4308 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4309 *
4310 * @state: crtc's scaler state
4311 *
4312 * Return
4313 * 0 - scaler_usage updated successfully
4314 * error - requested scaling cannot be supported or other error condition
4315 */
4316 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4317 {
4318 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4319 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4320
4321 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4322 intel_crtc->base.base.id, intel_crtc->base.name,
4323 intel_crtc->pipe, SKL_CRTC_INDEX);
4324
4325 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4326 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4327 state->pipe_src_w, state->pipe_src_h,
4328 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4329 }
4330
4331 /**
4332 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4333 *
4334 * @state: crtc's scaler state
4335 * @plane_state: atomic plane state to update
4336 *
4337 * Return
4338 * 0 - scaler_usage updated successfully
4339 * error - requested scaling cannot be supported or other error condition
4340 */
4341 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4342 struct intel_plane_state *plane_state)
4343 {
4344
4345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4346 struct intel_plane *intel_plane =
4347 to_intel_plane(plane_state->base.plane);
4348 struct drm_framebuffer *fb = plane_state->base.fb;
4349 int ret;
4350
4351 bool force_detach = !fb || !plane_state->visible;
4352
4353 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4354 intel_plane->base.base.id, intel_plane->base.name,
4355 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4356
4357 ret = skl_update_scaler(crtc_state, force_detach,
4358 drm_plane_index(&intel_plane->base),
4359 &plane_state->scaler_id,
4360 plane_state->base.rotation,
4361 drm_rect_width(&plane_state->src) >> 16,
4362 drm_rect_height(&plane_state->src) >> 16,
4363 drm_rect_width(&plane_state->dst),
4364 drm_rect_height(&plane_state->dst));
4365
4366 if (ret || plane_state->scaler_id < 0)
4367 return ret;
4368
4369 /* check colorkey */
4370 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4371 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4372 intel_plane->base.base.id,
4373 intel_plane->base.name);
4374 return -EINVAL;
4375 }
4376
4377 /* Check src format */
4378 switch (fb->pixel_format) {
4379 case DRM_FORMAT_RGB565:
4380 case DRM_FORMAT_XBGR8888:
4381 case DRM_FORMAT_XRGB8888:
4382 case DRM_FORMAT_ABGR8888:
4383 case DRM_FORMAT_ARGB8888:
4384 case DRM_FORMAT_XRGB2101010:
4385 case DRM_FORMAT_XBGR2101010:
4386 case DRM_FORMAT_YUYV:
4387 case DRM_FORMAT_YVYU:
4388 case DRM_FORMAT_UYVY:
4389 case DRM_FORMAT_VYUY:
4390 break;
4391 default:
4392 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4393 intel_plane->base.base.id, intel_plane->base.name,
4394 fb->base.id, fb->pixel_format);
4395 return -EINVAL;
4396 }
4397
4398 return 0;
4399 }
4400
4401 static void skylake_scaler_disable(struct intel_crtc *crtc)
4402 {
4403 int i;
4404
4405 for (i = 0; i < crtc->num_scalers; i++)
4406 skl_detach_scaler(crtc, i);
4407 }
4408
4409 static void skylake_pfit_enable(struct intel_crtc *crtc)
4410 {
4411 struct drm_device *dev = crtc->base.dev;
4412 struct drm_i915_private *dev_priv = to_i915(dev);
4413 int pipe = crtc->pipe;
4414 struct intel_crtc_scaler_state *scaler_state =
4415 &crtc->config->scaler_state;
4416
4417 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4418
4419 if (crtc->config->pch_pfit.enabled) {
4420 int id;
4421
4422 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4423 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4424 return;
4425 }
4426
4427 id = scaler_state->scaler_id;
4428 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4429 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4430 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4431 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4432
4433 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4434 }
4435 }
4436
4437 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4438 {
4439 struct drm_device *dev = crtc->base.dev;
4440 struct drm_i915_private *dev_priv = to_i915(dev);
4441 int pipe = crtc->pipe;
4442
4443 if (crtc->config->pch_pfit.enabled) {
4444 /* Force use of hard-coded filter coefficients
4445 * as some pre-programmed values are broken,
4446 * e.g. x201.
4447 */
4448 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4449 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4450 PF_PIPE_SEL_IVB(pipe));
4451 else
4452 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4453 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4454 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4455 }
4456 }
4457
4458 void hsw_enable_ips(struct intel_crtc *crtc)
4459 {
4460 struct drm_device *dev = crtc->base.dev;
4461 struct drm_i915_private *dev_priv = to_i915(dev);
4462
4463 if (!crtc->config->ips_enabled)
4464 return;
4465
4466 /*
4467 * We can only enable IPS after we enable a plane and wait for a vblank
4468 * This function is called from post_plane_update, which is run after
4469 * a vblank wait.
4470 */
4471
4472 assert_plane_enabled(dev_priv, crtc->plane);
4473 if (IS_BROADWELL(dev)) {
4474 mutex_lock(&dev_priv->rps.hw_lock);
4475 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4476 mutex_unlock(&dev_priv->rps.hw_lock);
4477 /* Quoting Art Runyan: "its not safe to expect any particular
4478 * value in IPS_CTL bit 31 after enabling IPS through the
4479 * mailbox." Moreover, the mailbox may return a bogus state,
4480 * so we need to just enable it and continue on.
4481 */
4482 } else {
4483 I915_WRITE(IPS_CTL, IPS_ENABLE);
4484 /* The bit only becomes 1 in the next vblank, so this wait here
4485 * is essentially intel_wait_for_vblank. If we don't have this
4486 * and don't wait for vblanks until the end of crtc_enable, then
4487 * the HW state readout code will complain that the expected
4488 * IPS_CTL value is not the one we read. */
4489 if (intel_wait_for_register(dev_priv,
4490 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4491 50))
4492 DRM_ERROR("Timed out waiting for IPS enable\n");
4493 }
4494 }
4495
4496 void hsw_disable_ips(struct intel_crtc *crtc)
4497 {
4498 struct drm_device *dev = crtc->base.dev;
4499 struct drm_i915_private *dev_priv = to_i915(dev);
4500
4501 if (!crtc->config->ips_enabled)
4502 return;
4503
4504 assert_plane_enabled(dev_priv, crtc->plane);
4505 if (IS_BROADWELL(dev)) {
4506 mutex_lock(&dev_priv->rps.hw_lock);
4507 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4508 mutex_unlock(&dev_priv->rps.hw_lock);
4509 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4510 if (intel_wait_for_register(dev_priv,
4511 IPS_CTL, IPS_ENABLE, 0,
4512 42))
4513 DRM_ERROR("Timed out waiting for IPS disable\n");
4514 } else {
4515 I915_WRITE(IPS_CTL, 0);
4516 POSTING_READ(IPS_CTL);
4517 }
4518
4519 /* We need to wait for a vblank before we can disable the plane. */
4520 intel_wait_for_vblank(dev, crtc->pipe);
4521 }
4522
4523 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4524 {
4525 if (intel_crtc->overlay) {
4526 struct drm_device *dev = intel_crtc->base.dev;
4527 struct drm_i915_private *dev_priv = to_i915(dev);
4528
4529 mutex_lock(&dev->struct_mutex);
4530 dev_priv->mm.interruptible = false;
4531 (void) intel_overlay_switch_off(intel_crtc->overlay);
4532 dev_priv->mm.interruptible = true;
4533 mutex_unlock(&dev->struct_mutex);
4534 }
4535
4536 /* Let userspace switch the overlay on again. In most cases userspace
4537 * has to recompute where to put it anyway.
4538 */
4539 }
4540
4541 /**
4542 * intel_post_enable_primary - Perform operations after enabling primary plane
4543 * @crtc: the CRTC whose primary plane was just enabled
4544 *
4545 * Performs potentially sleeping operations that must be done after the primary
4546 * plane is enabled, such as updating FBC and IPS. Note that this may be
4547 * called due to an explicit primary plane update, or due to an implicit
4548 * re-enable that is caused when a sprite plane is updated to no longer
4549 * completely hide the primary plane.
4550 */
4551 static void
4552 intel_post_enable_primary(struct drm_crtc *crtc)
4553 {
4554 struct drm_device *dev = crtc->dev;
4555 struct drm_i915_private *dev_priv = to_i915(dev);
4556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4557 int pipe = intel_crtc->pipe;
4558
4559 /*
4560 * FIXME IPS should be fine as long as one plane is
4561 * enabled, but in practice it seems to have problems
4562 * when going from primary only to sprite only and vice
4563 * versa.
4564 */
4565 hsw_enable_ips(intel_crtc);
4566
4567 /*
4568 * Gen2 reports pipe underruns whenever all planes are disabled.
4569 * So don't enable underrun reporting before at least some planes
4570 * are enabled.
4571 * FIXME: Need to fix the logic to work when we turn off all planes
4572 * but leave the pipe running.
4573 */
4574 if (IS_GEN2(dev))
4575 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4576
4577 /* Underruns don't always raise interrupts, so check manually. */
4578 intel_check_cpu_fifo_underruns(dev_priv);
4579 intel_check_pch_fifo_underruns(dev_priv);
4580 }
4581
4582 /* FIXME move all this to pre_plane_update() with proper state tracking */
4583 static void
4584 intel_pre_disable_primary(struct drm_crtc *crtc)
4585 {
4586 struct drm_device *dev = crtc->dev;
4587 struct drm_i915_private *dev_priv = to_i915(dev);
4588 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4589 int pipe = intel_crtc->pipe;
4590
4591 /*
4592 * Gen2 reports pipe underruns whenever all planes are disabled.
4593 * So diasble underrun reporting before all the planes get disabled.
4594 * FIXME: Need to fix the logic to work when we turn off all planes
4595 * but leave the pipe running.
4596 */
4597 if (IS_GEN2(dev))
4598 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4599
4600 /*
4601 * FIXME IPS should be fine as long as one plane is
4602 * enabled, but in practice it seems to have problems
4603 * when going from primary only to sprite only and vice
4604 * versa.
4605 */
4606 hsw_disable_ips(intel_crtc);
4607 }
4608
4609 /* FIXME get rid of this and use pre_plane_update */
4610 static void
4611 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4612 {
4613 struct drm_device *dev = crtc->dev;
4614 struct drm_i915_private *dev_priv = to_i915(dev);
4615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4616 int pipe = intel_crtc->pipe;
4617
4618 intel_pre_disable_primary(crtc);
4619
4620 /*
4621 * Vblank time updates from the shadow to live plane control register
4622 * are blocked if the memory self-refresh mode is active at that
4623 * moment. So to make sure the plane gets truly disabled, disable
4624 * first the self-refresh mode. The self-refresh enable bit in turn
4625 * will be checked/applied by the HW only at the next frame start
4626 * event which is after the vblank start event, so we need to have a
4627 * wait-for-vblank between disabling the plane and the pipe.
4628 */
4629 if (HAS_GMCH_DISPLAY(dev)) {
4630 intel_set_memory_cxsr(dev_priv, false);
4631 dev_priv->wm.vlv.cxsr = false;
4632 intel_wait_for_vblank(dev, pipe);
4633 }
4634 }
4635
4636 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4637 {
4638 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4639 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4640 struct intel_crtc_state *pipe_config =
4641 to_intel_crtc_state(crtc->base.state);
4642 struct drm_device *dev = crtc->base.dev;
4643 struct drm_plane *primary = crtc->base.primary;
4644 struct drm_plane_state *old_pri_state =
4645 drm_atomic_get_existing_plane_state(old_state, primary);
4646
4647 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4648
4649 crtc->wm.cxsr_allowed = true;
4650
4651 if (pipe_config->update_wm_post && pipe_config->base.active)
4652 intel_update_watermarks(&crtc->base);
4653
4654 if (old_pri_state) {
4655 struct intel_plane_state *primary_state =
4656 to_intel_plane_state(primary->state);
4657 struct intel_plane_state *old_primary_state =
4658 to_intel_plane_state(old_pri_state);
4659
4660 intel_fbc_post_update(crtc);
4661
4662 if (primary_state->visible &&
4663 (needs_modeset(&pipe_config->base) ||
4664 !old_primary_state->visible))
4665 intel_post_enable_primary(&crtc->base);
4666 }
4667 }
4668
4669 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4670 {
4671 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4672 struct drm_device *dev = crtc->base.dev;
4673 struct drm_i915_private *dev_priv = to_i915(dev);
4674 struct intel_crtc_state *pipe_config =
4675 to_intel_crtc_state(crtc->base.state);
4676 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4677 struct drm_plane *primary = crtc->base.primary;
4678 struct drm_plane_state *old_pri_state =
4679 drm_atomic_get_existing_plane_state(old_state, primary);
4680 bool modeset = needs_modeset(&pipe_config->base);
4681
4682 if (old_pri_state) {
4683 struct intel_plane_state *primary_state =
4684 to_intel_plane_state(primary->state);
4685 struct intel_plane_state *old_primary_state =
4686 to_intel_plane_state(old_pri_state);
4687
4688 intel_fbc_pre_update(crtc, pipe_config, primary_state);
4689
4690 if (old_primary_state->visible &&
4691 (modeset || !primary_state->visible))
4692 intel_pre_disable_primary(&crtc->base);
4693 }
4694
4695 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4696 crtc->wm.cxsr_allowed = false;
4697
4698 /*
4699 * Vblank time updates from the shadow to live plane control register
4700 * are blocked if the memory self-refresh mode is active at that
4701 * moment. So to make sure the plane gets truly disabled, disable
4702 * first the self-refresh mode. The self-refresh enable bit in turn
4703 * will be checked/applied by the HW only at the next frame start
4704 * event which is after the vblank start event, so we need to have a
4705 * wait-for-vblank between disabling the plane and the pipe.
4706 */
4707 if (old_crtc_state->base.active) {
4708 intel_set_memory_cxsr(dev_priv, false);
4709 dev_priv->wm.vlv.cxsr = false;
4710 intel_wait_for_vblank(dev, crtc->pipe);
4711 }
4712 }
4713
4714 /*
4715 * IVB workaround: must disable low power watermarks for at least
4716 * one frame before enabling scaling. LP watermarks can be re-enabled
4717 * when scaling is disabled.
4718 *
4719 * WaCxSRDisabledForSpriteScaling:ivb
4720 */
4721 if (pipe_config->disable_lp_wm) {
4722 ilk_disable_lp_wm(dev);
4723 intel_wait_for_vblank(dev, crtc->pipe);
4724 }
4725
4726 /*
4727 * If we're doing a modeset, we're done. No need to do any pre-vblank
4728 * watermark programming here.
4729 */
4730 if (needs_modeset(&pipe_config->base))
4731 return;
4732
4733 /*
4734 * For platforms that support atomic watermarks, program the
4735 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4736 * will be the intermediate values that are safe for both pre- and
4737 * post- vblank; when vblank happens, the 'active' values will be set
4738 * to the final 'target' values and we'll do this again to get the
4739 * optimal watermarks. For gen9+ platforms, the values we program here
4740 * will be the final target values which will get automatically latched
4741 * at vblank time; no further programming will be necessary.
4742 *
4743 * If a platform hasn't been transitioned to atomic watermarks yet,
4744 * we'll continue to update watermarks the old way, if flags tell
4745 * us to.
4746 */
4747 if (dev_priv->display.initial_watermarks != NULL)
4748 dev_priv->display.initial_watermarks(pipe_config);
4749 else if (pipe_config->update_wm_pre)
4750 intel_update_watermarks(&crtc->base);
4751 }
4752
4753 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4754 {
4755 struct drm_device *dev = crtc->dev;
4756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4757 struct drm_plane *p;
4758 int pipe = intel_crtc->pipe;
4759
4760 intel_crtc_dpms_overlay_disable(intel_crtc);
4761
4762 drm_for_each_plane_mask(p, dev, plane_mask)
4763 to_intel_plane(p)->disable_plane(p, crtc);
4764
4765 /*
4766 * FIXME: Once we grow proper nuclear flip support out of this we need
4767 * to compute the mask of flip planes precisely. For the time being
4768 * consider this a flip to a NULL plane.
4769 */
4770 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4771 }
4772
4773 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4774 {
4775 struct drm_device *dev = crtc->dev;
4776 struct drm_i915_private *dev_priv = to_i915(dev);
4777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4778 struct intel_encoder *encoder;
4779 int pipe = intel_crtc->pipe;
4780 struct intel_crtc_state *pipe_config =
4781 to_intel_crtc_state(crtc->state);
4782
4783 if (WARN_ON(intel_crtc->active))
4784 return;
4785
4786 /*
4787 * Sometimes spurious CPU pipe underruns happen during FDI
4788 * training, at least with VGA+HDMI cloning. Suppress them.
4789 *
4790 * On ILK we get an occasional spurious CPU pipe underruns
4791 * between eDP port A enable and vdd enable. Also PCH port
4792 * enable seems to result in the occasional CPU pipe underrun.
4793 *
4794 * Spurious PCH underruns also occur during PCH enabling.
4795 */
4796 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4797 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4798 if (intel_crtc->config->has_pch_encoder)
4799 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4800
4801 if (intel_crtc->config->has_pch_encoder)
4802 intel_prepare_shared_dpll(intel_crtc);
4803
4804 if (intel_crtc_has_dp_encoder(intel_crtc->config))
4805 intel_dp_set_m_n(intel_crtc, M1_N1);
4806
4807 intel_set_pipe_timings(intel_crtc);
4808 intel_set_pipe_src_size(intel_crtc);
4809
4810 if (intel_crtc->config->has_pch_encoder) {
4811 intel_cpu_transcoder_set_m_n(intel_crtc,
4812 &intel_crtc->config->fdi_m_n, NULL);
4813 }
4814
4815 ironlake_set_pipeconf(crtc);
4816
4817 intel_crtc->active = true;
4818
4819 for_each_encoder_on_crtc(dev, crtc, encoder)
4820 if (encoder->pre_enable)
4821 encoder->pre_enable(encoder);
4822
4823 if (intel_crtc->config->has_pch_encoder) {
4824 /* Note: FDI PLL enabling _must_ be done before we enable the
4825 * cpu pipes, hence this is separate from all the other fdi/pch
4826 * enabling. */
4827 ironlake_fdi_pll_enable(intel_crtc);
4828 } else {
4829 assert_fdi_tx_disabled(dev_priv, pipe);
4830 assert_fdi_rx_disabled(dev_priv, pipe);
4831 }
4832
4833 ironlake_pfit_enable(intel_crtc);
4834
4835 /*
4836 * On ILK+ LUT must be loaded before the pipe is running but with
4837 * clocks enabled
4838 */
4839 intel_color_load_luts(&pipe_config->base);
4840
4841 if (dev_priv->display.initial_watermarks != NULL)
4842 dev_priv->display.initial_watermarks(intel_crtc->config);
4843 intel_enable_pipe(intel_crtc);
4844
4845 if (intel_crtc->config->has_pch_encoder)
4846 ironlake_pch_enable(crtc);
4847
4848 assert_vblank_disabled(crtc);
4849 drm_crtc_vblank_on(crtc);
4850
4851 for_each_encoder_on_crtc(dev, crtc, encoder)
4852 encoder->enable(encoder);
4853
4854 if (HAS_PCH_CPT(dev))
4855 cpt_verify_modeset(dev, intel_crtc->pipe);
4856
4857 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4858 if (intel_crtc->config->has_pch_encoder)
4859 intel_wait_for_vblank(dev, pipe);
4860 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4861 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4862 }
4863
4864 /* IPS only exists on ULT machines and is tied to pipe A. */
4865 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4866 {
4867 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4868 }
4869
4870 static void haswell_crtc_enable(struct drm_crtc *crtc)
4871 {
4872 struct drm_device *dev = crtc->dev;
4873 struct drm_i915_private *dev_priv = to_i915(dev);
4874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875 struct intel_encoder *encoder;
4876 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4877 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4878 struct intel_crtc_state *pipe_config =
4879 to_intel_crtc_state(crtc->state);
4880
4881 if (WARN_ON(intel_crtc->active))
4882 return;
4883
4884 if (intel_crtc->config->has_pch_encoder)
4885 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4886 false);
4887
4888 for_each_encoder_on_crtc(dev, crtc, encoder)
4889 if (encoder->pre_pll_enable)
4890 encoder->pre_pll_enable(encoder);
4891
4892 if (intel_crtc->config->shared_dpll)
4893 intel_enable_shared_dpll(intel_crtc);
4894
4895 if (intel_crtc_has_dp_encoder(intel_crtc->config))
4896 intel_dp_set_m_n(intel_crtc, M1_N1);
4897
4898 if (!transcoder_is_dsi(cpu_transcoder))
4899 intel_set_pipe_timings(intel_crtc);
4900
4901 intel_set_pipe_src_size(intel_crtc);
4902
4903 if (cpu_transcoder != TRANSCODER_EDP &&
4904 !transcoder_is_dsi(cpu_transcoder)) {
4905 I915_WRITE(PIPE_MULT(cpu_transcoder),
4906 intel_crtc->config->pixel_multiplier - 1);
4907 }
4908
4909 if (intel_crtc->config->has_pch_encoder) {
4910 intel_cpu_transcoder_set_m_n(intel_crtc,
4911 &intel_crtc->config->fdi_m_n, NULL);
4912 }
4913
4914 if (!transcoder_is_dsi(cpu_transcoder))
4915 haswell_set_pipeconf(crtc);
4916
4917 haswell_set_pipemisc(crtc);
4918
4919 intel_color_set_csc(&pipe_config->base);
4920
4921 intel_crtc->active = true;
4922
4923 if (intel_crtc->config->has_pch_encoder)
4924 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4925 else
4926 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4927
4928 for_each_encoder_on_crtc(dev, crtc, encoder) {
4929 if (encoder->pre_enable)
4930 encoder->pre_enable(encoder);
4931 }
4932
4933 if (intel_crtc->config->has_pch_encoder)
4934 dev_priv->display.fdi_link_train(crtc);
4935
4936 if (!transcoder_is_dsi(cpu_transcoder))
4937 intel_ddi_enable_pipe_clock(intel_crtc);
4938
4939 if (INTEL_INFO(dev)->gen >= 9)
4940 skylake_pfit_enable(intel_crtc);
4941 else
4942 ironlake_pfit_enable(intel_crtc);
4943
4944 /*
4945 * On ILK+ LUT must be loaded before the pipe is running but with
4946 * clocks enabled
4947 */
4948 intel_color_load_luts(&pipe_config->base);
4949
4950 intel_ddi_set_pipe_settings(crtc);
4951 if (!transcoder_is_dsi(cpu_transcoder))
4952 intel_ddi_enable_transcoder_func(crtc);
4953
4954 if (dev_priv->display.initial_watermarks != NULL)
4955 dev_priv->display.initial_watermarks(pipe_config);
4956 else
4957 intel_update_watermarks(crtc);
4958
4959 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4960 if (!transcoder_is_dsi(cpu_transcoder))
4961 intel_enable_pipe(intel_crtc);
4962
4963 if (intel_crtc->config->has_pch_encoder)
4964 lpt_pch_enable(crtc);
4965
4966 if (intel_crtc->config->dp_encoder_is_mst)
4967 intel_ddi_set_vc_payload_alloc(crtc, true);
4968
4969 assert_vblank_disabled(crtc);
4970 drm_crtc_vblank_on(crtc);
4971
4972 for_each_encoder_on_crtc(dev, crtc, encoder) {
4973 encoder->enable(encoder);
4974 intel_opregion_notify_encoder(encoder, true);
4975 }
4976
4977 if (intel_crtc->config->has_pch_encoder) {
4978 intel_wait_for_vblank(dev, pipe);
4979 intel_wait_for_vblank(dev, pipe);
4980 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4981 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4982 true);
4983 }
4984
4985 /* If we change the relative order between pipe/planes enabling, we need
4986 * to change the workaround. */
4987 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4988 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4989 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4990 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4991 }
4992 }
4993
4994 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4995 {
4996 struct drm_device *dev = crtc->base.dev;
4997 struct drm_i915_private *dev_priv = to_i915(dev);
4998 int pipe = crtc->pipe;
4999
5000 /* To avoid upsetting the power well on haswell only disable the pfit if
5001 * it's in use. The hw state code will make sure we get this right. */
5002 if (force || crtc->config->pch_pfit.enabled) {
5003 I915_WRITE(PF_CTL(pipe), 0);
5004 I915_WRITE(PF_WIN_POS(pipe), 0);
5005 I915_WRITE(PF_WIN_SZ(pipe), 0);
5006 }
5007 }
5008
5009 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5010 {
5011 struct drm_device *dev = crtc->dev;
5012 struct drm_i915_private *dev_priv = to_i915(dev);
5013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5014 struct intel_encoder *encoder;
5015 int pipe = intel_crtc->pipe;
5016
5017 /*
5018 * Sometimes spurious CPU pipe underruns happen when the
5019 * pipe is already disabled, but FDI RX/TX is still enabled.
5020 * Happens at least with VGA+HDMI cloning. Suppress them.
5021 */
5022 if (intel_crtc->config->has_pch_encoder) {
5023 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5024 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5025 }
5026
5027 for_each_encoder_on_crtc(dev, crtc, encoder)
5028 encoder->disable(encoder);
5029
5030 drm_crtc_vblank_off(crtc);
5031 assert_vblank_disabled(crtc);
5032
5033 intel_disable_pipe(intel_crtc);
5034
5035 ironlake_pfit_disable(intel_crtc, false);
5036
5037 if (intel_crtc->config->has_pch_encoder)
5038 ironlake_fdi_disable(crtc);
5039
5040 for_each_encoder_on_crtc(dev, crtc, encoder)
5041 if (encoder->post_disable)
5042 encoder->post_disable(encoder);
5043
5044 if (intel_crtc->config->has_pch_encoder) {
5045 ironlake_disable_pch_transcoder(dev_priv, pipe);
5046
5047 if (HAS_PCH_CPT(dev)) {
5048 i915_reg_t reg;
5049 u32 temp;
5050
5051 /* disable TRANS_DP_CTL */
5052 reg = TRANS_DP_CTL(pipe);
5053 temp = I915_READ(reg);
5054 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5055 TRANS_DP_PORT_SEL_MASK);
5056 temp |= TRANS_DP_PORT_SEL_NONE;
5057 I915_WRITE(reg, temp);
5058
5059 /* disable DPLL_SEL */
5060 temp = I915_READ(PCH_DPLL_SEL);
5061 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5062 I915_WRITE(PCH_DPLL_SEL, temp);
5063 }
5064
5065 ironlake_fdi_pll_disable(intel_crtc);
5066 }
5067
5068 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5069 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5070 }
5071
5072 static void haswell_crtc_disable(struct drm_crtc *crtc)
5073 {
5074 struct drm_device *dev = crtc->dev;
5075 struct drm_i915_private *dev_priv = to_i915(dev);
5076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5077 struct intel_encoder *encoder;
5078 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5079
5080 if (intel_crtc->config->has_pch_encoder)
5081 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5082 false);
5083
5084 for_each_encoder_on_crtc(dev, crtc, encoder) {
5085 intel_opregion_notify_encoder(encoder, false);
5086 encoder->disable(encoder);
5087 }
5088
5089 drm_crtc_vblank_off(crtc);
5090 assert_vblank_disabled(crtc);
5091
5092 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5093 if (!transcoder_is_dsi(cpu_transcoder))
5094 intel_disable_pipe(intel_crtc);
5095
5096 if (intel_crtc->config->dp_encoder_is_mst)
5097 intel_ddi_set_vc_payload_alloc(crtc, false);
5098
5099 if (!transcoder_is_dsi(cpu_transcoder))
5100 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5101
5102 if (INTEL_INFO(dev)->gen >= 9)
5103 skylake_scaler_disable(intel_crtc);
5104 else
5105 ironlake_pfit_disable(intel_crtc, false);
5106
5107 if (!transcoder_is_dsi(cpu_transcoder))
5108 intel_ddi_disable_pipe_clock(intel_crtc);
5109
5110 for_each_encoder_on_crtc(dev, crtc, encoder)
5111 if (encoder->post_disable)
5112 encoder->post_disable(encoder);
5113
5114 if (intel_crtc->config->has_pch_encoder) {
5115 lpt_disable_pch_transcoder(dev_priv);
5116 lpt_disable_iclkip(dev_priv);
5117 intel_ddi_fdi_disable(crtc);
5118
5119 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5120 true);
5121 }
5122 }
5123
5124 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5125 {
5126 struct drm_device *dev = crtc->base.dev;
5127 struct drm_i915_private *dev_priv = to_i915(dev);
5128 struct intel_crtc_state *pipe_config = crtc->config;
5129
5130 if (!pipe_config->gmch_pfit.control)
5131 return;
5132
5133 /*
5134 * The panel fitter should only be adjusted whilst the pipe is disabled,
5135 * according to register description and PRM.
5136 */
5137 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5138 assert_pipe_disabled(dev_priv, crtc->pipe);
5139
5140 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5141 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5142
5143 /* Border color in case we don't scale up to the full screen. Black by
5144 * default, change to something else for debugging. */
5145 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5146 }
5147
5148 static enum intel_display_power_domain port_to_power_domain(enum port port)
5149 {
5150 switch (port) {
5151 case PORT_A:
5152 return POWER_DOMAIN_PORT_DDI_A_LANES;
5153 case PORT_B:
5154 return POWER_DOMAIN_PORT_DDI_B_LANES;
5155 case PORT_C:
5156 return POWER_DOMAIN_PORT_DDI_C_LANES;
5157 case PORT_D:
5158 return POWER_DOMAIN_PORT_DDI_D_LANES;
5159 case PORT_E:
5160 return POWER_DOMAIN_PORT_DDI_E_LANES;
5161 default:
5162 MISSING_CASE(port);
5163 return POWER_DOMAIN_PORT_OTHER;
5164 }
5165 }
5166
5167 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5168 {
5169 switch (port) {
5170 case PORT_A:
5171 return POWER_DOMAIN_AUX_A;
5172 case PORT_B:
5173 return POWER_DOMAIN_AUX_B;
5174 case PORT_C:
5175 return POWER_DOMAIN_AUX_C;
5176 case PORT_D:
5177 return POWER_DOMAIN_AUX_D;
5178 case PORT_E:
5179 /* FIXME: Check VBT for actual wiring of PORT E */
5180 return POWER_DOMAIN_AUX_D;
5181 default:
5182 MISSING_CASE(port);
5183 return POWER_DOMAIN_AUX_A;
5184 }
5185 }
5186
5187 enum intel_display_power_domain
5188 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5189 {
5190 struct drm_device *dev = intel_encoder->base.dev;
5191 struct intel_digital_port *intel_dig_port;
5192
5193 switch (intel_encoder->type) {
5194 case INTEL_OUTPUT_UNKNOWN:
5195 /* Only DDI platforms should ever use this output type */
5196 WARN_ON_ONCE(!HAS_DDI(dev));
5197 case INTEL_OUTPUT_DP:
5198 case INTEL_OUTPUT_HDMI:
5199 case INTEL_OUTPUT_EDP:
5200 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5201 return port_to_power_domain(intel_dig_port->port);
5202 case INTEL_OUTPUT_DP_MST:
5203 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5204 return port_to_power_domain(intel_dig_port->port);
5205 case INTEL_OUTPUT_ANALOG:
5206 return POWER_DOMAIN_PORT_CRT;
5207 case INTEL_OUTPUT_DSI:
5208 return POWER_DOMAIN_PORT_DSI;
5209 default:
5210 return POWER_DOMAIN_PORT_OTHER;
5211 }
5212 }
5213
5214 enum intel_display_power_domain
5215 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5216 {
5217 struct drm_device *dev = intel_encoder->base.dev;
5218 struct intel_digital_port *intel_dig_port;
5219
5220 switch (intel_encoder->type) {
5221 case INTEL_OUTPUT_UNKNOWN:
5222 case INTEL_OUTPUT_HDMI:
5223 /*
5224 * Only DDI platforms should ever use these output types.
5225 * We can get here after the HDMI detect code has already set
5226 * the type of the shared encoder. Since we can't be sure
5227 * what's the status of the given connectors, play safe and
5228 * run the DP detection too.
5229 */
5230 WARN_ON_ONCE(!HAS_DDI(dev));
5231 case INTEL_OUTPUT_DP:
5232 case INTEL_OUTPUT_EDP:
5233 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5234 return port_to_aux_power_domain(intel_dig_port->port);
5235 case INTEL_OUTPUT_DP_MST:
5236 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5237 return port_to_aux_power_domain(intel_dig_port->port);
5238 default:
5239 MISSING_CASE(intel_encoder->type);
5240 return POWER_DOMAIN_AUX_A;
5241 }
5242 }
5243
5244 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5245 struct intel_crtc_state *crtc_state)
5246 {
5247 struct drm_device *dev = crtc->dev;
5248 struct drm_encoder *encoder;
5249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5250 enum pipe pipe = intel_crtc->pipe;
5251 unsigned long mask;
5252 enum transcoder transcoder = crtc_state->cpu_transcoder;
5253
5254 if (!crtc_state->base.active)
5255 return 0;
5256
5257 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5258 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5259 if (crtc_state->pch_pfit.enabled ||
5260 crtc_state->pch_pfit.force_thru)
5261 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5262
5263 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5264 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5265
5266 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5267 }
5268
5269 if (crtc_state->shared_dpll)
5270 mask |= BIT(POWER_DOMAIN_PLLS);
5271
5272 return mask;
5273 }
5274
5275 static unsigned long
5276 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5277 struct intel_crtc_state *crtc_state)
5278 {
5279 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5281 enum intel_display_power_domain domain;
5282 unsigned long domains, new_domains, old_domains;
5283
5284 old_domains = intel_crtc->enabled_power_domains;
5285 intel_crtc->enabled_power_domains = new_domains =
5286 get_crtc_power_domains(crtc, crtc_state);
5287
5288 domains = new_domains & ~old_domains;
5289
5290 for_each_power_domain(domain, domains)
5291 intel_display_power_get(dev_priv, domain);
5292
5293 return old_domains & ~new_domains;
5294 }
5295
5296 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5297 unsigned long domains)
5298 {
5299 enum intel_display_power_domain domain;
5300
5301 for_each_power_domain(domain, domains)
5302 intel_display_power_put(dev_priv, domain);
5303 }
5304
5305 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5306 {
5307 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5308
5309 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5310 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5311 return max_cdclk_freq;
5312 else if (IS_CHERRYVIEW(dev_priv))
5313 return max_cdclk_freq*95/100;
5314 else if (INTEL_INFO(dev_priv)->gen < 4)
5315 return 2*max_cdclk_freq*90/100;
5316 else
5317 return max_cdclk_freq*90/100;
5318 }
5319
5320 static int skl_calc_cdclk(int max_pixclk, int vco);
5321
5322 static void intel_update_max_cdclk(struct drm_device *dev)
5323 {
5324 struct drm_i915_private *dev_priv = to_i915(dev);
5325
5326 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5327 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5328 int max_cdclk, vco;
5329
5330 vco = dev_priv->skl_preferred_vco_freq;
5331 WARN_ON(vco != 8100000 && vco != 8640000);
5332
5333 /*
5334 * Use the lower (vco 8640) cdclk values as a
5335 * first guess. skl_calc_cdclk() will correct it
5336 * if the preferred vco is 8100 instead.
5337 */
5338 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5339 max_cdclk = 617143;
5340 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5341 max_cdclk = 540000;
5342 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5343 max_cdclk = 432000;
5344 else
5345 max_cdclk = 308571;
5346
5347 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5348 } else if (IS_BROXTON(dev)) {
5349 dev_priv->max_cdclk_freq = 624000;
5350 } else if (IS_BROADWELL(dev)) {
5351 /*
5352 * FIXME with extra cooling we can allow
5353 * 540 MHz for ULX and 675 Mhz for ULT.
5354 * How can we know if extra cooling is
5355 * available? PCI ID, VTB, something else?
5356 */
5357 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5358 dev_priv->max_cdclk_freq = 450000;
5359 else if (IS_BDW_ULX(dev))
5360 dev_priv->max_cdclk_freq = 450000;
5361 else if (IS_BDW_ULT(dev))
5362 dev_priv->max_cdclk_freq = 540000;
5363 else
5364 dev_priv->max_cdclk_freq = 675000;
5365 } else if (IS_CHERRYVIEW(dev)) {
5366 dev_priv->max_cdclk_freq = 320000;
5367 } else if (IS_VALLEYVIEW(dev)) {
5368 dev_priv->max_cdclk_freq = 400000;
5369 } else {
5370 /* otherwise assume cdclk is fixed */
5371 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5372 }
5373
5374 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5375
5376 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5377 dev_priv->max_cdclk_freq);
5378
5379 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5380 dev_priv->max_dotclk_freq);
5381 }
5382
5383 static void intel_update_cdclk(struct drm_device *dev)
5384 {
5385 struct drm_i915_private *dev_priv = to_i915(dev);
5386
5387 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5388
5389 if (INTEL_GEN(dev_priv) >= 9)
5390 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5391 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5392 dev_priv->cdclk_pll.ref);
5393 else
5394 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5395 dev_priv->cdclk_freq);
5396
5397 /*
5398 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5399 * Programmng [sic] note: bit[9:2] should be programmed to the number
5400 * of cdclk that generates 4MHz reference clock freq which is used to
5401 * generate GMBus clock. This will vary with the cdclk freq.
5402 */
5403 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5404 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5405 }
5406
5407 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5408 static int skl_cdclk_decimal(int cdclk)
5409 {
5410 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5411 }
5412
5413 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5414 {
5415 int ratio;
5416
5417 if (cdclk == dev_priv->cdclk_pll.ref)
5418 return 0;
5419
5420 switch (cdclk) {
5421 default:
5422 MISSING_CASE(cdclk);
5423 case 144000:
5424 case 288000:
5425 case 384000:
5426 case 576000:
5427 ratio = 60;
5428 break;
5429 case 624000:
5430 ratio = 65;
5431 break;
5432 }
5433
5434 return dev_priv->cdclk_pll.ref * ratio;
5435 }
5436
5437 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5438 {
5439 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5440
5441 /* Timeout 200us */
5442 if (intel_wait_for_register(dev_priv,
5443 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5444 1))
5445 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5446
5447 dev_priv->cdclk_pll.vco = 0;
5448 }
5449
5450 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5451 {
5452 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5453 u32 val;
5454
5455 val = I915_READ(BXT_DE_PLL_CTL);
5456 val &= ~BXT_DE_PLL_RATIO_MASK;
5457 val |= BXT_DE_PLL_RATIO(ratio);
5458 I915_WRITE(BXT_DE_PLL_CTL, val);
5459
5460 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5461
5462 /* Timeout 200us */
5463 if (intel_wait_for_register(dev_priv,
5464 BXT_DE_PLL_ENABLE,
5465 BXT_DE_PLL_LOCK,
5466 BXT_DE_PLL_LOCK,
5467 1))
5468 DRM_ERROR("timeout waiting for DE PLL lock\n");
5469
5470 dev_priv->cdclk_pll.vco = vco;
5471 }
5472
5473 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5474 {
5475 u32 val, divider;
5476 int vco, ret;
5477
5478 vco = bxt_de_pll_vco(dev_priv, cdclk);
5479
5480 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5481
5482 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5483 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5484 case 8:
5485 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5486 break;
5487 case 4:
5488 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5489 break;
5490 case 3:
5491 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5492 break;
5493 case 2:
5494 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5495 break;
5496 default:
5497 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5498 WARN_ON(vco != 0);
5499
5500 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5501 break;
5502 }
5503
5504 /* Inform power controller of upcoming frequency change */
5505 mutex_lock(&dev_priv->rps.hw_lock);
5506 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5507 0x80000000);
5508 mutex_unlock(&dev_priv->rps.hw_lock);
5509
5510 if (ret) {
5511 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5512 ret, cdclk);
5513 return;
5514 }
5515
5516 if (dev_priv->cdclk_pll.vco != 0 &&
5517 dev_priv->cdclk_pll.vco != vco)
5518 bxt_de_pll_disable(dev_priv);
5519
5520 if (dev_priv->cdclk_pll.vco != vco)
5521 bxt_de_pll_enable(dev_priv, vco);
5522
5523 val = divider | skl_cdclk_decimal(cdclk);
5524 /*
5525 * FIXME if only the cd2x divider needs changing, it could be done
5526 * without shutting off the pipe (if only one pipe is active).
5527 */
5528 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5529 /*
5530 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5531 * enable otherwise.
5532 */
5533 if (cdclk >= 500000)
5534 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5535 I915_WRITE(CDCLK_CTL, val);
5536
5537 mutex_lock(&dev_priv->rps.hw_lock);
5538 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5539 DIV_ROUND_UP(cdclk, 25000));
5540 mutex_unlock(&dev_priv->rps.hw_lock);
5541
5542 if (ret) {
5543 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5544 ret, cdclk);
5545 return;
5546 }
5547
5548 intel_update_cdclk(&dev_priv->drm);
5549 }
5550
5551 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5552 {
5553 u32 cdctl, expected;
5554
5555 intel_update_cdclk(&dev_priv->drm);
5556
5557 if (dev_priv->cdclk_pll.vco == 0 ||
5558 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5559 goto sanitize;
5560
5561 /* DPLL okay; verify the cdclock
5562 *
5563 * Some BIOS versions leave an incorrect decimal frequency value and
5564 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5565 * so sanitize this register.
5566 */
5567 cdctl = I915_READ(CDCLK_CTL);
5568 /*
5569 * Let's ignore the pipe field, since BIOS could have configured the
5570 * dividers both synching to an active pipe, or asynchronously
5571 * (PIPE_NONE).
5572 */
5573 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5574
5575 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5576 skl_cdclk_decimal(dev_priv->cdclk_freq);
5577 /*
5578 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5579 * enable otherwise.
5580 */
5581 if (dev_priv->cdclk_freq >= 500000)
5582 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5583
5584 if (cdctl == expected)
5585 /* All well; nothing to sanitize */
5586 return;
5587
5588 sanitize:
5589 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5590
5591 /* force cdclk programming */
5592 dev_priv->cdclk_freq = 0;
5593
5594 /* force full PLL disable + enable */
5595 dev_priv->cdclk_pll.vco = -1;
5596 }
5597
5598 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5599 {
5600 bxt_sanitize_cdclk(dev_priv);
5601
5602 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5603 return;
5604
5605 /*
5606 * FIXME:
5607 * - The initial CDCLK needs to be read from VBT.
5608 * Need to make this change after VBT has changes for BXT.
5609 */
5610 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5611 }
5612
5613 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5614 {
5615 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5616 }
5617
5618 static int skl_calc_cdclk(int max_pixclk, int vco)
5619 {
5620 if (vco == 8640000) {
5621 if (max_pixclk > 540000)
5622 return 617143;
5623 else if (max_pixclk > 432000)
5624 return 540000;
5625 else if (max_pixclk > 308571)
5626 return 432000;
5627 else
5628 return 308571;
5629 } else {
5630 if (max_pixclk > 540000)
5631 return 675000;
5632 else if (max_pixclk > 450000)
5633 return 540000;
5634 else if (max_pixclk > 337500)
5635 return 450000;
5636 else
5637 return 337500;
5638 }
5639 }
5640
5641 static void
5642 skl_dpll0_update(struct drm_i915_private *dev_priv)
5643 {
5644 u32 val;
5645
5646 dev_priv->cdclk_pll.ref = 24000;
5647 dev_priv->cdclk_pll.vco = 0;
5648
5649 val = I915_READ(LCPLL1_CTL);
5650 if ((val & LCPLL_PLL_ENABLE) == 0)
5651 return;
5652
5653 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5654 return;
5655
5656 val = I915_READ(DPLL_CTRL1);
5657
5658 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5659 DPLL_CTRL1_SSC(SKL_DPLL0) |
5660 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5661 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5662 return;
5663
5664 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5665 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5666 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5667 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5668 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5669 dev_priv->cdclk_pll.vco = 8100000;
5670 break;
5671 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5672 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5673 dev_priv->cdclk_pll.vco = 8640000;
5674 break;
5675 default:
5676 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5677 break;
5678 }
5679 }
5680
5681 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5682 {
5683 bool changed = dev_priv->skl_preferred_vco_freq != vco;
5684
5685 dev_priv->skl_preferred_vco_freq = vco;
5686
5687 if (changed)
5688 intel_update_max_cdclk(&dev_priv->drm);
5689 }
5690
5691 static void
5692 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5693 {
5694 int min_cdclk = skl_calc_cdclk(0, vco);
5695 u32 val;
5696
5697 WARN_ON(vco != 8100000 && vco != 8640000);
5698
5699 /* select the minimum CDCLK before enabling DPLL 0 */
5700 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5701 I915_WRITE(CDCLK_CTL, val);
5702 POSTING_READ(CDCLK_CTL);
5703
5704 /*
5705 * We always enable DPLL0 with the lowest link rate possible, but still
5706 * taking into account the VCO required to operate the eDP panel at the
5707 * desired frequency. The usual DP link rates operate with a VCO of
5708 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5709 * The modeset code is responsible for the selection of the exact link
5710 * rate later on, with the constraint of choosing a frequency that
5711 * works with vco.
5712 */
5713 val = I915_READ(DPLL_CTRL1);
5714
5715 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5716 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5717 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5718 if (vco == 8640000)
5719 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5720 SKL_DPLL0);
5721 else
5722 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5723 SKL_DPLL0);
5724
5725 I915_WRITE(DPLL_CTRL1, val);
5726 POSTING_READ(DPLL_CTRL1);
5727
5728 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5729
5730 if (intel_wait_for_register(dev_priv,
5731 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5732 5))
5733 DRM_ERROR("DPLL0 not locked\n");
5734
5735 dev_priv->cdclk_pll.vco = vco;
5736
5737 /* We'll want to keep using the current vco from now on. */
5738 skl_set_preferred_cdclk_vco(dev_priv, vco);
5739 }
5740
5741 static void
5742 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5743 {
5744 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5745 if (intel_wait_for_register(dev_priv,
5746 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5747 1))
5748 DRM_ERROR("Couldn't disable DPLL0\n");
5749
5750 dev_priv->cdclk_pll.vco = 0;
5751 }
5752
5753 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5754 {
5755 int ret;
5756 u32 val;
5757
5758 /* inform PCU we want to change CDCLK */
5759 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5760 mutex_lock(&dev_priv->rps.hw_lock);
5761 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5762 mutex_unlock(&dev_priv->rps.hw_lock);
5763
5764 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5765 }
5766
5767 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5768 {
5769 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
5770 }
5771
5772 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5773 {
5774 struct drm_device *dev = &dev_priv->drm;
5775 u32 freq_select, pcu_ack;
5776
5777 WARN_ON((cdclk == 24000) != (vco == 0));
5778
5779 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5780
5781 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5782 DRM_ERROR("failed to inform PCU about cdclk change\n");
5783 return;
5784 }
5785
5786 /* set CDCLK_CTL */
5787 switch (cdclk) {
5788 case 450000:
5789 case 432000:
5790 freq_select = CDCLK_FREQ_450_432;
5791 pcu_ack = 1;
5792 break;
5793 case 540000:
5794 freq_select = CDCLK_FREQ_540;
5795 pcu_ack = 2;
5796 break;
5797 case 308571:
5798 case 337500:
5799 default:
5800 freq_select = CDCLK_FREQ_337_308;
5801 pcu_ack = 0;
5802 break;
5803 case 617143:
5804 case 675000:
5805 freq_select = CDCLK_FREQ_675_617;
5806 pcu_ack = 3;
5807 break;
5808 }
5809
5810 if (dev_priv->cdclk_pll.vco != 0 &&
5811 dev_priv->cdclk_pll.vco != vco)
5812 skl_dpll0_disable(dev_priv);
5813
5814 if (dev_priv->cdclk_pll.vco != vco)
5815 skl_dpll0_enable(dev_priv, vco);
5816
5817 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5818 POSTING_READ(CDCLK_CTL);
5819
5820 /* inform PCU of the change */
5821 mutex_lock(&dev_priv->rps.hw_lock);
5822 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5823 mutex_unlock(&dev_priv->rps.hw_lock);
5824
5825 intel_update_cdclk(dev);
5826 }
5827
5828 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5829
5830 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5831 {
5832 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5833 }
5834
5835 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5836 {
5837 int cdclk, vco;
5838
5839 skl_sanitize_cdclk(dev_priv);
5840
5841 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5842 /*
5843 * Use the current vco as our initial
5844 * guess as to what the preferred vco is.
5845 */
5846 if (dev_priv->skl_preferred_vco_freq == 0)
5847 skl_set_preferred_cdclk_vco(dev_priv,
5848 dev_priv->cdclk_pll.vco);
5849 return;
5850 }
5851
5852 vco = dev_priv->skl_preferred_vco_freq;
5853 if (vco == 0)
5854 vco = 8100000;
5855 cdclk = skl_calc_cdclk(0, vco);
5856
5857 skl_set_cdclk(dev_priv, cdclk, vco);
5858 }
5859
5860 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5861 {
5862 uint32_t cdctl, expected;
5863
5864 /*
5865 * check if the pre-os intialized the display
5866 * There is SWF18 scratchpad register defined which is set by the
5867 * pre-os which can be used by the OS drivers to check the status
5868 */
5869 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5870 goto sanitize;
5871
5872 intel_update_cdclk(&dev_priv->drm);
5873 /* Is PLL enabled and locked ? */
5874 if (dev_priv->cdclk_pll.vco == 0 ||
5875 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5876 goto sanitize;
5877
5878 /* DPLL okay; verify the cdclock
5879 *
5880 * Noticed in some instances that the freq selection is correct but
5881 * decimal part is programmed wrong from BIOS where pre-os does not
5882 * enable display. Verify the same as well.
5883 */
5884 cdctl = I915_READ(CDCLK_CTL);
5885 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5886 skl_cdclk_decimal(dev_priv->cdclk_freq);
5887 if (cdctl == expected)
5888 /* All well; nothing to sanitize */
5889 return;
5890
5891 sanitize:
5892 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5893
5894 /* force cdclk programming */
5895 dev_priv->cdclk_freq = 0;
5896 /* force full PLL disable + enable */
5897 dev_priv->cdclk_pll.vco = -1;
5898 }
5899
5900 /* Adjust CDclk dividers to allow high res or save power if possible */
5901 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5902 {
5903 struct drm_i915_private *dev_priv = to_i915(dev);
5904 u32 val, cmd;
5905
5906 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5907 != dev_priv->cdclk_freq);
5908
5909 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5910 cmd = 2;
5911 else if (cdclk == 266667)
5912 cmd = 1;
5913 else
5914 cmd = 0;
5915
5916 mutex_lock(&dev_priv->rps.hw_lock);
5917 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5918 val &= ~DSPFREQGUAR_MASK;
5919 val |= (cmd << DSPFREQGUAR_SHIFT);
5920 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5921 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5922 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5923 50)) {
5924 DRM_ERROR("timed out waiting for CDclk change\n");
5925 }
5926 mutex_unlock(&dev_priv->rps.hw_lock);
5927
5928 mutex_lock(&dev_priv->sb_lock);
5929
5930 if (cdclk == 400000) {
5931 u32 divider;
5932
5933 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5934
5935 /* adjust cdclk divider */
5936 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5937 val &= ~CCK_FREQUENCY_VALUES;
5938 val |= divider;
5939 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5940
5941 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5942 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5943 50))
5944 DRM_ERROR("timed out waiting for CDclk change\n");
5945 }
5946
5947 /* adjust self-refresh exit latency value */
5948 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5949 val &= ~0x7f;
5950
5951 /*
5952 * For high bandwidth configs, we set a higher latency in the bunit
5953 * so that the core display fetch happens in time to avoid underruns.
5954 */
5955 if (cdclk == 400000)
5956 val |= 4500 / 250; /* 4.5 usec */
5957 else
5958 val |= 3000 / 250; /* 3.0 usec */
5959 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5960
5961 mutex_unlock(&dev_priv->sb_lock);
5962
5963 intel_update_cdclk(dev);
5964 }
5965
5966 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5967 {
5968 struct drm_i915_private *dev_priv = to_i915(dev);
5969 u32 val, cmd;
5970
5971 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5972 != dev_priv->cdclk_freq);
5973
5974 switch (cdclk) {
5975 case 333333:
5976 case 320000:
5977 case 266667:
5978 case 200000:
5979 break;
5980 default:
5981 MISSING_CASE(cdclk);
5982 return;
5983 }
5984
5985 /*
5986 * Specs are full of misinformation, but testing on actual
5987 * hardware has shown that we just need to write the desired
5988 * CCK divider into the Punit register.
5989 */
5990 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5991
5992 mutex_lock(&dev_priv->rps.hw_lock);
5993 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5994 val &= ~DSPFREQGUAR_MASK_CHV;
5995 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5996 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5997 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5998 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5999 50)) {
6000 DRM_ERROR("timed out waiting for CDclk change\n");
6001 }
6002 mutex_unlock(&dev_priv->rps.hw_lock);
6003
6004 intel_update_cdclk(dev);
6005 }
6006
6007 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6008 int max_pixclk)
6009 {
6010 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6011 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6012
6013 /*
6014 * Really only a few cases to deal with, as only 4 CDclks are supported:
6015 * 200MHz
6016 * 267MHz
6017 * 320/333MHz (depends on HPLL freq)
6018 * 400MHz (VLV only)
6019 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6020 * of the lower bin and adjust if needed.
6021 *
6022 * We seem to get an unstable or solid color picture at 200MHz.
6023 * Not sure what's wrong. For now use 200MHz only when all pipes
6024 * are off.
6025 */
6026 if (!IS_CHERRYVIEW(dev_priv) &&
6027 max_pixclk > freq_320*limit/100)
6028 return 400000;
6029 else if (max_pixclk > 266667*limit/100)
6030 return freq_320;
6031 else if (max_pixclk > 0)
6032 return 266667;
6033 else
6034 return 200000;
6035 }
6036
6037 static int bxt_calc_cdclk(int max_pixclk)
6038 {
6039 if (max_pixclk > 576000)
6040 return 624000;
6041 else if (max_pixclk > 384000)
6042 return 576000;
6043 else if (max_pixclk > 288000)
6044 return 384000;
6045 else if (max_pixclk > 144000)
6046 return 288000;
6047 else
6048 return 144000;
6049 }
6050
6051 /* Compute the max pixel clock for new configuration. */
6052 static int intel_mode_max_pixclk(struct drm_device *dev,
6053 struct drm_atomic_state *state)
6054 {
6055 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6056 struct drm_i915_private *dev_priv = to_i915(dev);
6057 struct drm_crtc *crtc;
6058 struct drm_crtc_state *crtc_state;
6059 unsigned max_pixclk = 0, i;
6060 enum pipe pipe;
6061
6062 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6063 sizeof(intel_state->min_pixclk));
6064
6065 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6066 int pixclk = 0;
6067
6068 if (crtc_state->enable)
6069 pixclk = crtc_state->adjusted_mode.crtc_clock;
6070
6071 intel_state->min_pixclk[i] = pixclk;
6072 }
6073
6074 for_each_pipe(dev_priv, pipe)
6075 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6076
6077 return max_pixclk;
6078 }
6079
6080 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6081 {
6082 struct drm_device *dev = state->dev;
6083 struct drm_i915_private *dev_priv = to_i915(dev);
6084 int max_pixclk = intel_mode_max_pixclk(dev, state);
6085 struct intel_atomic_state *intel_state =
6086 to_intel_atomic_state(state);
6087
6088 intel_state->cdclk = intel_state->dev_cdclk =
6089 valleyview_calc_cdclk(dev_priv, max_pixclk);
6090
6091 if (!intel_state->active_crtcs)
6092 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6093
6094 return 0;
6095 }
6096
6097 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6098 {
6099 int max_pixclk = ilk_max_pixel_rate(state);
6100 struct intel_atomic_state *intel_state =
6101 to_intel_atomic_state(state);
6102
6103 intel_state->cdclk = intel_state->dev_cdclk =
6104 bxt_calc_cdclk(max_pixclk);
6105
6106 if (!intel_state->active_crtcs)
6107 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6108
6109 return 0;
6110 }
6111
6112 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6113 {
6114 unsigned int credits, default_credits;
6115
6116 if (IS_CHERRYVIEW(dev_priv))
6117 default_credits = PFI_CREDIT(12);
6118 else
6119 default_credits = PFI_CREDIT(8);
6120
6121 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6122 /* CHV suggested value is 31 or 63 */
6123 if (IS_CHERRYVIEW(dev_priv))
6124 credits = PFI_CREDIT_63;
6125 else
6126 credits = PFI_CREDIT(15);
6127 } else {
6128 credits = default_credits;
6129 }
6130
6131 /*
6132 * WA - write default credits before re-programming
6133 * FIXME: should we also set the resend bit here?
6134 */
6135 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6136 default_credits);
6137
6138 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6139 credits | PFI_CREDIT_RESEND);
6140
6141 /*
6142 * FIXME is this guaranteed to clear
6143 * immediately or should we poll for it?
6144 */
6145 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6146 }
6147
6148 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6149 {
6150 struct drm_device *dev = old_state->dev;
6151 struct drm_i915_private *dev_priv = to_i915(dev);
6152 struct intel_atomic_state *old_intel_state =
6153 to_intel_atomic_state(old_state);
6154 unsigned req_cdclk = old_intel_state->dev_cdclk;
6155
6156 /*
6157 * FIXME: We can end up here with all power domains off, yet
6158 * with a CDCLK frequency other than the minimum. To account
6159 * for this take the PIPE-A power domain, which covers the HW
6160 * blocks needed for the following programming. This can be
6161 * removed once it's guaranteed that we get here either with
6162 * the minimum CDCLK set, or the required power domains
6163 * enabled.
6164 */
6165 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6166
6167 if (IS_CHERRYVIEW(dev))
6168 cherryview_set_cdclk(dev, req_cdclk);
6169 else
6170 valleyview_set_cdclk(dev, req_cdclk);
6171
6172 vlv_program_pfi_credits(dev_priv);
6173
6174 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6175 }
6176
6177 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6178 {
6179 struct drm_device *dev = crtc->dev;
6180 struct drm_i915_private *dev_priv = to_i915(dev);
6181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6182 struct intel_encoder *encoder;
6183 struct intel_crtc_state *pipe_config =
6184 to_intel_crtc_state(crtc->state);
6185 int pipe = intel_crtc->pipe;
6186
6187 if (WARN_ON(intel_crtc->active))
6188 return;
6189
6190 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6191 intel_dp_set_m_n(intel_crtc, M1_N1);
6192
6193 intel_set_pipe_timings(intel_crtc);
6194 intel_set_pipe_src_size(intel_crtc);
6195
6196 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6197 struct drm_i915_private *dev_priv = to_i915(dev);
6198
6199 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6200 I915_WRITE(CHV_CANVAS(pipe), 0);
6201 }
6202
6203 i9xx_set_pipeconf(intel_crtc);
6204
6205 intel_crtc->active = true;
6206
6207 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6208
6209 for_each_encoder_on_crtc(dev, crtc, encoder)
6210 if (encoder->pre_pll_enable)
6211 encoder->pre_pll_enable(encoder);
6212
6213 if (IS_CHERRYVIEW(dev)) {
6214 chv_prepare_pll(intel_crtc, intel_crtc->config);
6215 chv_enable_pll(intel_crtc, intel_crtc->config);
6216 } else {
6217 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6218 vlv_enable_pll(intel_crtc, intel_crtc->config);
6219 }
6220
6221 for_each_encoder_on_crtc(dev, crtc, encoder)
6222 if (encoder->pre_enable)
6223 encoder->pre_enable(encoder);
6224
6225 i9xx_pfit_enable(intel_crtc);
6226
6227 intel_color_load_luts(&pipe_config->base);
6228
6229 intel_update_watermarks(crtc);
6230 intel_enable_pipe(intel_crtc);
6231
6232 assert_vblank_disabled(crtc);
6233 drm_crtc_vblank_on(crtc);
6234
6235 for_each_encoder_on_crtc(dev, crtc, encoder)
6236 encoder->enable(encoder);
6237 }
6238
6239 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6240 {
6241 struct drm_device *dev = crtc->base.dev;
6242 struct drm_i915_private *dev_priv = to_i915(dev);
6243
6244 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6245 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6246 }
6247
6248 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6249 {
6250 struct drm_device *dev = crtc->dev;
6251 struct drm_i915_private *dev_priv = to_i915(dev);
6252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6253 struct intel_encoder *encoder;
6254 struct intel_crtc_state *pipe_config =
6255 to_intel_crtc_state(crtc->state);
6256 enum pipe pipe = intel_crtc->pipe;
6257
6258 if (WARN_ON(intel_crtc->active))
6259 return;
6260
6261 i9xx_set_pll_dividers(intel_crtc);
6262
6263 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6264 intel_dp_set_m_n(intel_crtc, M1_N1);
6265
6266 intel_set_pipe_timings(intel_crtc);
6267 intel_set_pipe_src_size(intel_crtc);
6268
6269 i9xx_set_pipeconf(intel_crtc);
6270
6271 intel_crtc->active = true;
6272
6273 if (!IS_GEN2(dev))
6274 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6275
6276 for_each_encoder_on_crtc(dev, crtc, encoder)
6277 if (encoder->pre_enable)
6278 encoder->pre_enable(encoder);
6279
6280 i9xx_enable_pll(intel_crtc);
6281
6282 i9xx_pfit_enable(intel_crtc);
6283
6284 intel_color_load_luts(&pipe_config->base);
6285
6286 intel_update_watermarks(crtc);
6287 intel_enable_pipe(intel_crtc);
6288
6289 assert_vblank_disabled(crtc);
6290 drm_crtc_vblank_on(crtc);
6291
6292 for_each_encoder_on_crtc(dev, crtc, encoder)
6293 encoder->enable(encoder);
6294 }
6295
6296 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6297 {
6298 struct drm_device *dev = crtc->base.dev;
6299 struct drm_i915_private *dev_priv = to_i915(dev);
6300
6301 if (!crtc->config->gmch_pfit.control)
6302 return;
6303
6304 assert_pipe_disabled(dev_priv, crtc->pipe);
6305
6306 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6307 I915_READ(PFIT_CONTROL));
6308 I915_WRITE(PFIT_CONTROL, 0);
6309 }
6310
6311 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6312 {
6313 struct drm_device *dev = crtc->dev;
6314 struct drm_i915_private *dev_priv = to_i915(dev);
6315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6316 struct intel_encoder *encoder;
6317 int pipe = intel_crtc->pipe;
6318
6319 /*
6320 * On gen2 planes are double buffered but the pipe isn't, so we must
6321 * wait for planes to fully turn off before disabling the pipe.
6322 */
6323 if (IS_GEN2(dev))
6324 intel_wait_for_vblank(dev, pipe);
6325
6326 for_each_encoder_on_crtc(dev, crtc, encoder)
6327 encoder->disable(encoder);
6328
6329 drm_crtc_vblank_off(crtc);
6330 assert_vblank_disabled(crtc);
6331
6332 intel_disable_pipe(intel_crtc);
6333
6334 i9xx_pfit_disable(intel_crtc);
6335
6336 for_each_encoder_on_crtc(dev, crtc, encoder)
6337 if (encoder->post_disable)
6338 encoder->post_disable(encoder);
6339
6340 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6341 if (IS_CHERRYVIEW(dev))
6342 chv_disable_pll(dev_priv, pipe);
6343 else if (IS_VALLEYVIEW(dev))
6344 vlv_disable_pll(dev_priv, pipe);
6345 else
6346 i9xx_disable_pll(intel_crtc);
6347 }
6348
6349 for_each_encoder_on_crtc(dev, crtc, encoder)
6350 if (encoder->post_pll_disable)
6351 encoder->post_pll_disable(encoder);
6352
6353 if (!IS_GEN2(dev))
6354 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6355 }
6356
6357 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6358 {
6359 struct intel_encoder *encoder;
6360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6361 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6362 enum intel_display_power_domain domain;
6363 unsigned long domains;
6364
6365 if (!intel_crtc->active)
6366 return;
6367
6368 if (to_intel_plane_state(crtc->primary->state)->visible) {
6369 WARN_ON(intel_crtc->flip_work);
6370
6371 intel_pre_disable_primary_noatomic(crtc);
6372
6373 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6374 to_intel_plane_state(crtc->primary->state)->visible = false;
6375 }
6376
6377 dev_priv->display.crtc_disable(crtc);
6378
6379 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6380 crtc->base.id, crtc->name);
6381
6382 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6383 crtc->state->active = false;
6384 intel_crtc->active = false;
6385 crtc->enabled = false;
6386 crtc->state->connector_mask = 0;
6387 crtc->state->encoder_mask = 0;
6388
6389 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6390 encoder->base.crtc = NULL;
6391
6392 intel_fbc_disable(intel_crtc);
6393 intel_update_watermarks(crtc);
6394 intel_disable_shared_dpll(intel_crtc);
6395
6396 domains = intel_crtc->enabled_power_domains;
6397 for_each_power_domain(domain, domains)
6398 intel_display_power_put(dev_priv, domain);
6399 intel_crtc->enabled_power_domains = 0;
6400
6401 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6402 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6403 }
6404
6405 /*
6406 * turn all crtc's off, but do not adjust state
6407 * This has to be paired with a call to intel_modeset_setup_hw_state.
6408 */
6409 int intel_display_suspend(struct drm_device *dev)
6410 {
6411 struct drm_i915_private *dev_priv = to_i915(dev);
6412 struct drm_atomic_state *state;
6413 int ret;
6414
6415 state = drm_atomic_helper_suspend(dev);
6416 ret = PTR_ERR_OR_ZERO(state);
6417 if (ret)
6418 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6419 else
6420 dev_priv->modeset_restore_state = state;
6421 return ret;
6422 }
6423
6424 void intel_encoder_destroy(struct drm_encoder *encoder)
6425 {
6426 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6427
6428 drm_encoder_cleanup(encoder);
6429 kfree(intel_encoder);
6430 }
6431
6432 /* Cross check the actual hw state with our own modeset state tracking (and it's
6433 * internal consistency). */
6434 static void intel_connector_verify_state(struct intel_connector *connector)
6435 {
6436 struct drm_crtc *crtc = connector->base.state->crtc;
6437
6438 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6439 connector->base.base.id,
6440 connector->base.name);
6441
6442 if (connector->get_hw_state(connector)) {
6443 struct intel_encoder *encoder = connector->encoder;
6444 struct drm_connector_state *conn_state = connector->base.state;
6445
6446 I915_STATE_WARN(!crtc,
6447 "connector enabled without attached crtc\n");
6448
6449 if (!crtc)
6450 return;
6451
6452 I915_STATE_WARN(!crtc->state->active,
6453 "connector is active, but attached crtc isn't\n");
6454
6455 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6456 return;
6457
6458 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6459 "atomic encoder doesn't match attached encoder\n");
6460
6461 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6462 "attached encoder crtc differs from connector crtc\n");
6463 } else {
6464 I915_STATE_WARN(crtc && crtc->state->active,
6465 "attached crtc is active, but connector isn't\n");
6466 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6467 "best encoder set without crtc!\n");
6468 }
6469 }
6470
6471 int intel_connector_init(struct intel_connector *connector)
6472 {
6473 drm_atomic_helper_connector_reset(&connector->base);
6474
6475 if (!connector->base.state)
6476 return -ENOMEM;
6477
6478 return 0;
6479 }
6480
6481 struct intel_connector *intel_connector_alloc(void)
6482 {
6483 struct intel_connector *connector;
6484
6485 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6486 if (!connector)
6487 return NULL;
6488
6489 if (intel_connector_init(connector) < 0) {
6490 kfree(connector);
6491 return NULL;
6492 }
6493
6494 return connector;
6495 }
6496
6497 /* Simple connector->get_hw_state implementation for encoders that support only
6498 * one connector and no cloning and hence the encoder state determines the state
6499 * of the connector. */
6500 bool intel_connector_get_hw_state(struct intel_connector *connector)
6501 {
6502 enum pipe pipe = 0;
6503 struct intel_encoder *encoder = connector->encoder;
6504
6505 return encoder->get_hw_state(encoder, &pipe);
6506 }
6507
6508 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6509 {
6510 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6511 return crtc_state->fdi_lanes;
6512
6513 return 0;
6514 }
6515
6516 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6517 struct intel_crtc_state *pipe_config)
6518 {
6519 struct drm_atomic_state *state = pipe_config->base.state;
6520 struct intel_crtc *other_crtc;
6521 struct intel_crtc_state *other_crtc_state;
6522
6523 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6524 pipe_name(pipe), pipe_config->fdi_lanes);
6525 if (pipe_config->fdi_lanes > 4) {
6526 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6527 pipe_name(pipe), pipe_config->fdi_lanes);
6528 return -EINVAL;
6529 }
6530
6531 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6532 if (pipe_config->fdi_lanes > 2) {
6533 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6534 pipe_config->fdi_lanes);
6535 return -EINVAL;
6536 } else {
6537 return 0;
6538 }
6539 }
6540
6541 if (INTEL_INFO(dev)->num_pipes == 2)
6542 return 0;
6543
6544 /* Ivybridge 3 pipe is really complicated */
6545 switch (pipe) {
6546 case PIPE_A:
6547 return 0;
6548 case PIPE_B:
6549 if (pipe_config->fdi_lanes <= 2)
6550 return 0;
6551
6552 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6553 other_crtc_state =
6554 intel_atomic_get_crtc_state(state, other_crtc);
6555 if (IS_ERR(other_crtc_state))
6556 return PTR_ERR(other_crtc_state);
6557
6558 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6559 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6560 pipe_name(pipe), pipe_config->fdi_lanes);
6561 return -EINVAL;
6562 }
6563 return 0;
6564 case PIPE_C:
6565 if (pipe_config->fdi_lanes > 2) {
6566 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6567 pipe_name(pipe), pipe_config->fdi_lanes);
6568 return -EINVAL;
6569 }
6570
6571 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6572 other_crtc_state =
6573 intel_atomic_get_crtc_state(state, other_crtc);
6574 if (IS_ERR(other_crtc_state))
6575 return PTR_ERR(other_crtc_state);
6576
6577 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6578 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6579 return -EINVAL;
6580 }
6581 return 0;
6582 default:
6583 BUG();
6584 }
6585 }
6586
6587 #define RETRY 1
6588 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6589 struct intel_crtc_state *pipe_config)
6590 {
6591 struct drm_device *dev = intel_crtc->base.dev;
6592 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6593 int lane, link_bw, fdi_dotclock, ret;
6594 bool needs_recompute = false;
6595
6596 retry:
6597 /* FDI is a binary signal running at ~2.7GHz, encoding
6598 * each output octet as 10 bits. The actual frequency
6599 * is stored as a divider into a 100MHz clock, and the
6600 * mode pixel clock is stored in units of 1KHz.
6601 * Hence the bw of each lane in terms of the mode signal
6602 * is:
6603 */
6604 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6605
6606 fdi_dotclock = adjusted_mode->crtc_clock;
6607
6608 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6609 pipe_config->pipe_bpp);
6610
6611 pipe_config->fdi_lanes = lane;
6612
6613 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6614 link_bw, &pipe_config->fdi_m_n);
6615
6616 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6617 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6618 pipe_config->pipe_bpp -= 2*3;
6619 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6620 pipe_config->pipe_bpp);
6621 needs_recompute = true;
6622 pipe_config->bw_constrained = true;
6623
6624 goto retry;
6625 }
6626
6627 if (needs_recompute)
6628 return RETRY;
6629
6630 return ret;
6631 }
6632
6633 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6634 struct intel_crtc_state *pipe_config)
6635 {
6636 if (pipe_config->pipe_bpp > 24)
6637 return false;
6638
6639 /* HSW can handle pixel rate up to cdclk? */
6640 if (IS_HASWELL(dev_priv))
6641 return true;
6642
6643 /*
6644 * We compare against max which means we must take
6645 * the increased cdclk requirement into account when
6646 * calculating the new cdclk.
6647 *
6648 * Should measure whether using a lower cdclk w/o IPS
6649 */
6650 return ilk_pipe_pixel_rate(pipe_config) <=
6651 dev_priv->max_cdclk_freq * 95 / 100;
6652 }
6653
6654 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6655 struct intel_crtc_state *pipe_config)
6656 {
6657 struct drm_device *dev = crtc->base.dev;
6658 struct drm_i915_private *dev_priv = to_i915(dev);
6659
6660 pipe_config->ips_enabled = i915.enable_ips &&
6661 hsw_crtc_supports_ips(crtc) &&
6662 pipe_config_supports_ips(dev_priv, pipe_config);
6663 }
6664
6665 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6666 {
6667 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6668
6669 /* GDG double wide on either pipe, otherwise pipe A only */
6670 return INTEL_INFO(dev_priv)->gen < 4 &&
6671 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6672 }
6673
6674 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6675 struct intel_crtc_state *pipe_config)
6676 {
6677 struct drm_device *dev = crtc->base.dev;
6678 struct drm_i915_private *dev_priv = to_i915(dev);
6679 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6680 int clock_limit = dev_priv->max_dotclk_freq;
6681
6682 if (INTEL_INFO(dev)->gen < 4) {
6683 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6684
6685 /*
6686 * Enable double wide mode when the dot clock
6687 * is > 90% of the (display) core speed.
6688 */
6689 if (intel_crtc_supports_double_wide(crtc) &&
6690 adjusted_mode->crtc_clock > clock_limit) {
6691 clock_limit = dev_priv->max_dotclk_freq;
6692 pipe_config->double_wide = true;
6693 }
6694 }
6695
6696 if (adjusted_mode->crtc_clock > clock_limit) {
6697 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6698 adjusted_mode->crtc_clock, clock_limit,
6699 yesno(pipe_config->double_wide));
6700 return -EINVAL;
6701 }
6702
6703 /*
6704 * Pipe horizontal size must be even in:
6705 * - DVO ganged mode
6706 * - LVDS dual channel mode
6707 * - Double wide pipe
6708 */
6709 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6710 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6711 pipe_config->pipe_src_w &= ~1;
6712
6713 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6714 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6715 */
6716 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6717 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6718 return -EINVAL;
6719
6720 if (HAS_IPS(dev))
6721 hsw_compute_ips_config(crtc, pipe_config);
6722
6723 if (pipe_config->has_pch_encoder)
6724 return ironlake_fdi_compute_config(crtc, pipe_config);
6725
6726 return 0;
6727 }
6728
6729 static int skylake_get_display_clock_speed(struct drm_device *dev)
6730 {
6731 struct drm_i915_private *dev_priv = to_i915(dev);
6732 uint32_t cdctl;
6733
6734 skl_dpll0_update(dev_priv);
6735
6736 if (dev_priv->cdclk_pll.vco == 0)
6737 return dev_priv->cdclk_pll.ref;
6738
6739 cdctl = I915_READ(CDCLK_CTL);
6740
6741 if (dev_priv->cdclk_pll.vco == 8640000) {
6742 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6743 case CDCLK_FREQ_450_432:
6744 return 432000;
6745 case CDCLK_FREQ_337_308:
6746 return 308571;
6747 case CDCLK_FREQ_540:
6748 return 540000;
6749 case CDCLK_FREQ_675_617:
6750 return 617143;
6751 default:
6752 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6753 }
6754 } else {
6755 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6756 case CDCLK_FREQ_450_432:
6757 return 450000;
6758 case CDCLK_FREQ_337_308:
6759 return 337500;
6760 case CDCLK_FREQ_540:
6761 return 540000;
6762 case CDCLK_FREQ_675_617:
6763 return 675000;
6764 default:
6765 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6766 }
6767 }
6768
6769 return dev_priv->cdclk_pll.ref;
6770 }
6771
6772 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6773 {
6774 u32 val;
6775
6776 dev_priv->cdclk_pll.ref = 19200;
6777 dev_priv->cdclk_pll.vco = 0;
6778
6779 val = I915_READ(BXT_DE_PLL_ENABLE);
6780 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6781 return;
6782
6783 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6784 return;
6785
6786 val = I915_READ(BXT_DE_PLL_CTL);
6787 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6788 dev_priv->cdclk_pll.ref;
6789 }
6790
6791 static int broxton_get_display_clock_speed(struct drm_device *dev)
6792 {
6793 struct drm_i915_private *dev_priv = to_i915(dev);
6794 u32 divider;
6795 int div, vco;
6796
6797 bxt_de_pll_update(dev_priv);
6798
6799 vco = dev_priv->cdclk_pll.vco;
6800 if (vco == 0)
6801 return dev_priv->cdclk_pll.ref;
6802
6803 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6804
6805 switch (divider) {
6806 case BXT_CDCLK_CD2X_DIV_SEL_1:
6807 div = 2;
6808 break;
6809 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6810 div = 3;
6811 break;
6812 case BXT_CDCLK_CD2X_DIV_SEL_2:
6813 div = 4;
6814 break;
6815 case BXT_CDCLK_CD2X_DIV_SEL_4:
6816 div = 8;
6817 break;
6818 default:
6819 MISSING_CASE(divider);
6820 return dev_priv->cdclk_pll.ref;
6821 }
6822
6823 return DIV_ROUND_CLOSEST(vco, div);
6824 }
6825
6826 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6827 {
6828 struct drm_i915_private *dev_priv = to_i915(dev);
6829 uint32_t lcpll = I915_READ(LCPLL_CTL);
6830 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6831
6832 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6833 return 800000;
6834 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6835 return 450000;
6836 else if (freq == LCPLL_CLK_FREQ_450)
6837 return 450000;
6838 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6839 return 540000;
6840 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6841 return 337500;
6842 else
6843 return 675000;
6844 }
6845
6846 static int haswell_get_display_clock_speed(struct drm_device *dev)
6847 {
6848 struct drm_i915_private *dev_priv = to_i915(dev);
6849 uint32_t lcpll = I915_READ(LCPLL_CTL);
6850 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6851
6852 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6853 return 800000;
6854 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6855 return 450000;
6856 else if (freq == LCPLL_CLK_FREQ_450)
6857 return 450000;
6858 else if (IS_HSW_ULT(dev))
6859 return 337500;
6860 else
6861 return 540000;
6862 }
6863
6864 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6865 {
6866 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6867 CCK_DISPLAY_CLOCK_CONTROL);
6868 }
6869
6870 static int ilk_get_display_clock_speed(struct drm_device *dev)
6871 {
6872 return 450000;
6873 }
6874
6875 static int i945_get_display_clock_speed(struct drm_device *dev)
6876 {
6877 return 400000;
6878 }
6879
6880 static int i915_get_display_clock_speed(struct drm_device *dev)
6881 {
6882 return 333333;
6883 }
6884
6885 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6886 {
6887 return 200000;
6888 }
6889
6890 static int pnv_get_display_clock_speed(struct drm_device *dev)
6891 {
6892 u16 gcfgc = 0;
6893
6894 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6895
6896 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6897 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6898 return 266667;
6899 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6900 return 333333;
6901 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6902 return 444444;
6903 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6904 return 200000;
6905 default:
6906 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6907 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6908 return 133333;
6909 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6910 return 166667;
6911 }
6912 }
6913
6914 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6915 {
6916 u16 gcfgc = 0;
6917
6918 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6919
6920 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6921 return 133333;
6922 else {
6923 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6924 case GC_DISPLAY_CLOCK_333_MHZ:
6925 return 333333;
6926 default:
6927 case GC_DISPLAY_CLOCK_190_200_MHZ:
6928 return 190000;
6929 }
6930 }
6931 }
6932
6933 static int i865_get_display_clock_speed(struct drm_device *dev)
6934 {
6935 return 266667;
6936 }
6937
6938 static int i85x_get_display_clock_speed(struct drm_device *dev)
6939 {
6940 u16 hpllcc = 0;
6941
6942 /*
6943 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6944 * encoding is different :(
6945 * FIXME is this the right way to detect 852GM/852GMV?
6946 */
6947 if (dev->pdev->revision == 0x1)
6948 return 133333;
6949
6950 pci_bus_read_config_word(dev->pdev->bus,
6951 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6952
6953 /* Assume that the hardware is in the high speed state. This
6954 * should be the default.
6955 */
6956 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6957 case GC_CLOCK_133_200:
6958 case GC_CLOCK_133_200_2:
6959 case GC_CLOCK_100_200:
6960 return 200000;
6961 case GC_CLOCK_166_250:
6962 return 250000;
6963 case GC_CLOCK_100_133:
6964 return 133333;
6965 case GC_CLOCK_133_266:
6966 case GC_CLOCK_133_266_2:
6967 case GC_CLOCK_166_266:
6968 return 266667;
6969 }
6970
6971 /* Shouldn't happen */
6972 return 0;
6973 }
6974
6975 static int i830_get_display_clock_speed(struct drm_device *dev)
6976 {
6977 return 133333;
6978 }
6979
6980 static unsigned int intel_hpll_vco(struct drm_device *dev)
6981 {
6982 struct drm_i915_private *dev_priv = to_i915(dev);
6983 static const unsigned int blb_vco[8] = {
6984 [0] = 3200000,
6985 [1] = 4000000,
6986 [2] = 5333333,
6987 [3] = 4800000,
6988 [4] = 6400000,
6989 };
6990 static const unsigned int pnv_vco[8] = {
6991 [0] = 3200000,
6992 [1] = 4000000,
6993 [2] = 5333333,
6994 [3] = 4800000,
6995 [4] = 2666667,
6996 };
6997 static const unsigned int cl_vco[8] = {
6998 [0] = 3200000,
6999 [1] = 4000000,
7000 [2] = 5333333,
7001 [3] = 6400000,
7002 [4] = 3333333,
7003 [5] = 3566667,
7004 [6] = 4266667,
7005 };
7006 static const unsigned int elk_vco[8] = {
7007 [0] = 3200000,
7008 [1] = 4000000,
7009 [2] = 5333333,
7010 [3] = 4800000,
7011 };
7012 static const unsigned int ctg_vco[8] = {
7013 [0] = 3200000,
7014 [1] = 4000000,
7015 [2] = 5333333,
7016 [3] = 6400000,
7017 [4] = 2666667,
7018 [5] = 4266667,
7019 };
7020 const unsigned int *vco_table;
7021 unsigned int vco;
7022 uint8_t tmp = 0;
7023
7024 /* FIXME other chipsets? */
7025 if (IS_GM45(dev))
7026 vco_table = ctg_vco;
7027 else if (IS_G4X(dev))
7028 vco_table = elk_vco;
7029 else if (IS_CRESTLINE(dev))
7030 vco_table = cl_vco;
7031 else if (IS_PINEVIEW(dev))
7032 vco_table = pnv_vco;
7033 else if (IS_G33(dev))
7034 vco_table = blb_vco;
7035 else
7036 return 0;
7037
7038 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7039
7040 vco = vco_table[tmp & 0x7];
7041 if (vco == 0)
7042 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7043 else
7044 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7045
7046 return vco;
7047 }
7048
7049 static int gm45_get_display_clock_speed(struct drm_device *dev)
7050 {
7051 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7052 uint16_t tmp = 0;
7053
7054 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7055
7056 cdclk_sel = (tmp >> 12) & 0x1;
7057
7058 switch (vco) {
7059 case 2666667:
7060 case 4000000:
7061 case 5333333:
7062 return cdclk_sel ? 333333 : 222222;
7063 case 3200000:
7064 return cdclk_sel ? 320000 : 228571;
7065 default:
7066 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7067 return 222222;
7068 }
7069 }
7070
7071 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7072 {
7073 static const uint8_t div_3200[] = { 16, 10, 8 };
7074 static const uint8_t div_4000[] = { 20, 12, 10 };
7075 static const uint8_t div_5333[] = { 24, 16, 14 };
7076 const uint8_t *div_table;
7077 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7078 uint16_t tmp = 0;
7079
7080 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7081
7082 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7083
7084 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7085 goto fail;
7086
7087 switch (vco) {
7088 case 3200000:
7089 div_table = div_3200;
7090 break;
7091 case 4000000:
7092 div_table = div_4000;
7093 break;
7094 case 5333333:
7095 div_table = div_5333;
7096 break;
7097 default:
7098 goto fail;
7099 }
7100
7101 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7102
7103 fail:
7104 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7105 return 200000;
7106 }
7107
7108 static int g33_get_display_clock_speed(struct drm_device *dev)
7109 {
7110 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7111 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7112 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7113 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7114 const uint8_t *div_table;
7115 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7116 uint16_t tmp = 0;
7117
7118 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7119
7120 cdclk_sel = (tmp >> 4) & 0x7;
7121
7122 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7123 goto fail;
7124
7125 switch (vco) {
7126 case 3200000:
7127 div_table = div_3200;
7128 break;
7129 case 4000000:
7130 div_table = div_4000;
7131 break;
7132 case 4800000:
7133 div_table = div_4800;
7134 break;
7135 case 5333333:
7136 div_table = div_5333;
7137 break;
7138 default:
7139 goto fail;
7140 }
7141
7142 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7143
7144 fail:
7145 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7146 return 190476;
7147 }
7148
7149 static void
7150 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7151 {
7152 while (*num > DATA_LINK_M_N_MASK ||
7153 *den > DATA_LINK_M_N_MASK) {
7154 *num >>= 1;
7155 *den >>= 1;
7156 }
7157 }
7158
7159 static void compute_m_n(unsigned int m, unsigned int n,
7160 uint32_t *ret_m, uint32_t *ret_n)
7161 {
7162 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7163 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7164 intel_reduce_m_n_ratio(ret_m, ret_n);
7165 }
7166
7167 void
7168 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7169 int pixel_clock, int link_clock,
7170 struct intel_link_m_n *m_n)
7171 {
7172 m_n->tu = 64;
7173
7174 compute_m_n(bits_per_pixel * pixel_clock,
7175 link_clock * nlanes * 8,
7176 &m_n->gmch_m, &m_n->gmch_n);
7177
7178 compute_m_n(pixel_clock, link_clock,
7179 &m_n->link_m, &m_n->link_n);
7180 }
7181
7182 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7183 {
7184 if (i915.panel_use_ssc >= 0)
7185 return i915.panel_use_ssc != 0;
7186 return dev_priv->vbt.lvds_use_ssc
7187 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7188 }
7189
7190 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7191 {
7192 return (1 << dpll->n) << 16 | dpll->m2;
7193 }
7194
7195 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7196 {
7197 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7198 }
7199
7200 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7201 struct intel_crtc_state *crtc_state,
7202 struct dpll *reduced_clock)
7203 {
7204 struct drm_device *dev = crtc->base.dev;
7205 u32 fp, fp2 = 0;
7206
7207 if (IS_PINEVIEW(dev)) {
7208 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7209 if (reduced_clock)
7210 fp2 = pnv_dpll_compute_fp(reduced_clock);
7211 } else {
7212 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7213 if (reduced_clock)
7214 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7215 }
7216
7217 crtc_state->dpll_hw_state.fp0 = fp;
7218
7219 crtc->lowfreq_avail = false;
7220 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7221 reduced_clock) {
7222 crtc_state->dpll_hw_state.fp1 = fp2;
7223 crtc->lowfreq_avail = true;
7224 } else {
7225 crtc_state->dpll_hw_state.fp1 = fp;
7226 }
7227 }
7228
7229 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7230 pipe)
7231 {
7232 u32 reg_val;
7233
7234 /*
7235 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7236 * and set it to a reasonable value instead.
7237 */
7238 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7239 reg_val &= 0xffffff00;
7240 reg_val |= 0x00000030;
7241 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7242
7243 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7244 reg_val &= 0x8cffffff;
7245 reg_val = 0x8c000000;
7246 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7247
7248 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7249 reg_val &= 0xffffff00;
7250 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7251
7252 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7253 reg_val &= 0x00ffffff;
7254 reg_val |= 0xb0000000;
7255 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7256 }
7257
7258 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7259 struct intel_link_m_n *m_n)
7260 {
7261 struct drm_device *dev = crtc->base.dev;
7262 struct drm_i915_private *dev_priv = to_i915(dev);
7263 int pipe = crtc->pipe;
7264
7265 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7266 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7267 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7268 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7269 }
7270
7271 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7272 struct intel_link_m_n *m_n,
7273 struct intel_link_m_n *m2_n2)
7274 {
7275 struct drm_device *dev = crtc->base.dev;
7276 struct drm_i915_private *dev_priv = to_i915(dev);
7277 int pipe = crtc->pipe;
7278 enum transcoder transcoder = crtc->config->cpu_transcoder;
7279
7280 if (INTEL_INFO(dev)->gen >= 5) {
7281 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7282 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7283 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7284 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7285 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7286 * for gen < 8) and if DRRS is supported (to make sure the
7287 * registers are not unnecessarily accessed).
7288 */
7289 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7290 crtc->config->has_drrs) {
7291 I915_WRITE(PIPE_DATA_M2(transcoder),
7292 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7293 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7294 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7295 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7296 }
7297 } else {
7298 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7299 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7300 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7301 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7302 }
7303 }
7304
7305 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7306 {
7307 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7308
7309 if (m_n == M1_N1) {
7310 dp_m_n = &crtc->config->dp_m_n;
7311 dp_m2_n2 = &crtc->config->dp_m2_n2;
7312 } else if (m_n == M2_N2) {
7313
7314 /*
7315 * M2_N2 registers are not supported. Hence m2_n2 divider value
7316 * needs to be programmed into M1_N1.
7317 */
7318 dp_m_n = &crtc->config->dp_m2_n2;
7319 } else {
7320 DRM_ERROR("Unsupported divider value\n");
7321 return;
7322 }
7323
7324 if (crtc->config->has_pch_encoder)
7325 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7326 else
7327 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7328 }
7329
7330 static void vlv_compute_dpll(struct intel_crtc *crtc,
7331 struct intel_crtc_state *pipe_config)
7332 {
7333 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7334 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7335 if (crtc->pipe != PIPE_A)
7336 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7337
7338 /* DPLL not used with DSI, but still need the rest set up */
7339 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7340 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7341 DPLL_EXT_BUFFER_ENABLE_VLV;
7342
7343 pipe_config->dpll_hw_state.dpll_md =
7344 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7345 }
7346
7347 static void chv_compute_dpll(struct intel_crtc *crtc,
7348 struct intel_crtc_state *pipe_config)
7349 {
7350 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7351 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7352 if (crtc->pipe != PIPE_A)
7353 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7354
7355 /* DPLL not used with DSI, but still need the rest set up */
7356 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7357 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7358
7359 pipe_config->dpll_hw_state.dpll_md =
7360 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7361 }
7362
7363 static void vlv_prepare_pll(struct intel_crtc *crtc,
7364 const struct intel_crtc_state *pipe_config)
7365 {
7366 struct drm_device *dev = crtc->base.dev;
7367 struct drm_i915_private *dev_priv = to_i915(dev);
7368 enum pipe pipe = crtc->pipe;
7369 u32 mdiv;
7370 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7371 u32 coreclk, reg_val;
7372
7373 /* Enable Refclk */
7374 I915_WRITE(DPLL(pipe),
7375 pipe_config->dpll_hw_state.dpll &
7376 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7377
7378 /* No need to actually set up the DPLL with DSI */
7379 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7380 return;
7381
7382 mutex_lock(&dev_priv->sb_lock);
7383
7384 bestn = pipe_config->dpll.n;
7385 bestm1 = pipe_config->dpll.m1;
7386 bestm2 = pipe_config->dpll.m2;
7387 bestp1 = pipe_config->dpll.p1;
7388 bestp2 = pipe_config->dpll.p2;
7389
7390 /* See eDP HDMI DPIO driver vbios notes doc */
7391
7392 /* PLL B needs special handling */
7393 if (pipe == PIPE_B)
7394 vlv_pllb_recal_opamp(dev_priv, pipe);
7395
7396 /* Set up Tx target for periodic Rcomp update */
7397 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7398
7399 /* Disable target IRef on PLL */
7400 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7401 reg_val &= 0x00ffffff;
7402 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7403
7404 /* Disable fast lock */
7405 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7406
7407 /* Set idtafcrecal before PLL is enabled */
7408 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7409 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7410 mdiv |= ((bestn << DPIO_N_SHIFT));
7411 mdiv |= (1 << DPIO_K_SHIFT);
7412
7413 /*
7414 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7415 * but we don't support that).
7416 * Note: don't use the DAC post divider as it seems unstable.
7417 */
7418 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7419 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7420
7421 mdiv |= DPIO_ENABLE_CALIBRATION;
7422 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7423
7424 /* Set HBR and RBR LPF coefficients */
7425 if (pipe_config->port_clock == 162000 ||
7426 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7427 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7428 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7429 0x009f0003);
7430 else
7431 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7432 0x00d0000f);
7433
7434 if (intel_crtc_has_dp_encoder(pipe_config)) {
7435 /* Use SSC source */
7436 if (pipe == PIPE_A)
7437 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7438 0x0df40000);
7439 else
7440 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7441 0x0df70000);
7442 } else { /* HDMI or VGA */
7443 /* Use bend source */
7444 if (pipe == PIPE_A)
7445 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7446 0x0df70000);
7447 else
7448 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7449 0x0df40000);
7450 }
7451
7452 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7453 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7454 if (intel_crtc_has_dp_encoder(crtc->config))
7455 coreclk |= 0x01000000;
7456 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7457
7458 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7459 mutex_unlock(&dev_priv->sb_lock);
7460 }
7461
7462 static void chv_prepare_pll(struct intel_crtc *crtc,
7463 const struct intel_crtc_state *pipe_config)
7464 {
7465 struct drm_device *dev = crtc->base.dev;
7466 struct drm_i915_private *dev_priv = to_i915(dev);
7467 enum pipe pipe = crtc->pipe;
7468 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7469 u32 loopfilter, tribuf_calcntr;
7470 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7471 u32 dpio_val;
7472 int vco;
7473
7474 /* Enable Refclk and SSC */
7475 I915_WRITE(DPLL(pipe),
7476 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7477
7478 /* No need to actually set up the DPLL with DSI */
7479 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7480 return;
7481
7482 bestn = pipe_config->dpll.n;
7483 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7484 bestm1 = pipe_config->dpll.m1;
7485 bestm2 = pipe_config->dpll.m2 >> 22;
7486 bestp1 = pipe_config->dpll.p1;
7487 bestp2 = pipe_config->dpll.p2;
7488 vco = pipe_config->dpll.vco;
7489 dpio_val = 0;
7490 loopfilter = 0;
7491
7492 mutex_lock(&dev_priv->sb_lock);
7493
7494 /* p1 and p2 divider */
7495 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7496 5 << DPIO_CHV_S1_DIV_SHIFT |
7497 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7498 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7499 1 << DPIO_CHV_K_DIV_SHIFT);
7500
7501 /* Feedback post-divider - m2 */
7502 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7503
7504 /* Feedback refclk divider - n and m1 */
7505 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7506 DPIO_CHV_M1_DIV_BY_2 |
7507 1 << DPIO_CHV_N_DIV_SHIFT);
7508
7509 /* M2 fraction division */
7510 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7511
7512 /* M2 fraction division enable */
7513 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7514 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7515 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7516 if (bestm2_frac)
7517 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7518 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7519
7520 /* Program digital lock detect threshold */
7521 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7522 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7523 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7524 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7525 if (!bestm2_frac)
7526 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7527 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7528
7529 /* Loop filter */
7530 if (vco == 5400000) {
7531 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7532 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7533 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7534 tribuf_calcntr = 0x9;
7535 } else if (vco <= 6200000) {
7536 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7537 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7538 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7539 tribuf_calcntr = 0x9;
7540 } else if (vco <= 6480000) {
7541 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7542 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7543 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7544 tribuf_calcntr = 0x8;
7545 } else {
7546 /* Not supported. Apply the same limits as in the max case */
7547 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7548 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7549 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7550 tribuf_calcntr = 0;
7551 }
7552 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7553
7554 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7555 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7556 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7557 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7558
7559 /* AFC Recal */
7560 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7561 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7562 DPIO_AFC_RECAL);
7563
7564 mutex_unlock(&dev_priv->sb_lock);
7565 }
7566
7567 /**
7568 * vlv_force_pll_on - forcibly enable just the PLL
7569 * @dev_priv: i915 private structure
7570 * @pipe: pipe PLL to enable
7571 * @dpll: PLL configuration
7572 *
7573 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7574 * in cases where we need the PLL enabled even when @pipe is not going to
7575 * be enabled.
7576 */
7577 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7578 const struct dpll *dpll)
7579 {
7580 struct intel_crtc *crtc =
7581 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7582 struct intel_crtc_state *pipe_config;
7583
7584 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7585 if (!pipe_config)
7586 return -ENOMEM;
7587
7588 pipe_config->base.crtc = &crtc->base;
7589 pipe_config->pixel_multiplier = 1;
7590 pipe_config->dpll = *dpll;
7591
7592 if (IS_CHERRYVIEW(dev)) {
7593 chv_compute_dpll(crtc, pipe_config);
7594 chv_prepare_pll(crtc, pipe_config);
7595 chv_enable_pll(crtc, pipe_config);
7596 } else {
7597 vlv_compute_dpll(crtc, pipe_config);
7598 vlv_prepare_pll(crtc, pipe_config);
7599 vlv_enable_pll(crtc, pipe_config);
7600 }
7601
7602 kfree(pipe_config);
7603
7604 return 0;
7605 }
7606
7607 /**
7608 * vlv_force_pll_off - forcibly disable just the PLL
7609 * @dev_priv: i915 private structure
7610 * @pipe: pipe PLL to disable
7611 *
7612 * Disable the PLL for @pipe. To be used in cases where we need
7613 * the PLL enabled even when @pipe is not going to be enabled.
7614 */
7615 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7616 {
7617 if (IS_CHERRYVIEW(dev))
7618 chv_disable_pll(to_i915(dev), pipe);
7619 else
7620 vlv_disable_pll(to_i915(dev), pipe);
7621 }
7622
7623 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7624 struct intel_crtc_state *crtc_state,
7625 struct dpll *reduced_clock)
7626 {
7627 struct drm_device *dev = crtc->base.dev;
7628 struct drm_i915_private *dev_priv = to_i915(dev);
7629 u32 dpll;
7630 struct dpll *clock = &crtc_state->dpll;
7631
7632 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7633
7634 dpll = DPLL_VGA_MODE_DIS;
7635
7636 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
7637 dpll |= DPLLB_MODE_LVDS;
7638 else
7639 dpll |= DPLLB_MODE_DAC_SERIAL;
7640
7641 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7642 dpll |= (crtc_state->pixel_multiplier - 1)
7643 << SDVO_MULTIPLIER_SHIFT_HIRES;
7644 }
7645
7646 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7647 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
7648 dpll |= DPLL_SDVO_HIGH_SPEED;
7649
7650 if (intel_crtc_has_dp_encoder(crtc_state))
7651 dpll |= DPLL_SDVO_HIGH_SPEED;
7652
7653 /* compute bitmask from p1 value */
7654 if (IS_PINEVIEW(dev))
7655 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7656 else {
7657 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7658 if (IS_G4X(dev) && reduced_clock)
7659 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7660 }
7661 switch (clock->p2) {
7662 case 5:
7663 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7664 break;
7665 case 7:
7666 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7667 break;
7668 case 10:
7669 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7670 break;
7671 case 14:
7672 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7673 break;
7674 }
7675 if (INTEL_INFO(dev)->gen >= 4)
7676 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7677
7678 if (crtc_state->sdvo_tv_clock)
7679 dpll |= PLL_REF_INPUT_TVCLKINBC;
7680 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7681 intel_panel_use_ssc(dev_priv))
7682 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7683 else
7684 dpll |= PLL_REF_INPUT_DREFCLK;
7685
7686 dpll |= DPLL_VCO_ENABLE;
7687 crtc_state->dpll_hw_state.dpll = dpll;
7688
7689 if (INTEL_INFO(dev)->gen >= 4) {
7690 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7691 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7692 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7693 }
7694 }
7695
7696 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7697 struct intel_crtc_state *crtc_state,
7698 struct dpll *reduced_clock)
7699 {
7700 struct drm_device *dev = crtc->base.dev;
7701 struct drm_i915_private *dev_priv = to_i915(dev);
7702 u32 dpll;
7703 struct dpll *clock = &crtc_state->dpll;
7704
7705 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7706
7707 dpll = DPLL_VGA_MODE_DIS;
7708
7709 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7710 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7711 } else {
7712 if (clock->p1 == 2)
7713 dpll |= PLL_P1_DIVIDE_BY_TWO;
7714 else
7715 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7716 if (clock->p2 == 4)
7717 dpll |= PLL_P2_DIVIDE_BY_4;
7718 }
7719
7720 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7721 dpll |= DPLL_DVO_2X_MODE;
7722
7723 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7724 intel_panel_use_ssc(dev_priv))
7725 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7726 else
7727 dpll |= PLL_REF_INPUT_DREFCLK;
7728
7729 dpll |= DPLL_VCO_ENABLE;
7730 crtc_state->dpll_hw_state.dpll = dpll;
7731 }
7732
7733 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7734 {
7735 struct drm_device *dev = intel_crtc->base.dev;
7736 struct drm_i915_private *dev_priv = to_i915(dev);
7737 enum pipe pipe = intel_crtc->pipe;
7738 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7739 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7740 uint32_t crtc_vtotal, crtc_vblank_end;
7741 int vsyncshift = 0;
7742
7743 /* We need to be careful not to changed the adjusted mode, for otherwise
7744 * the hw state checker will get angry at the mismatch. */
7745 crtc_vtotal = adjusted_mode->crtc_vtotal;
7746 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7747
7748 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7749 /* the chip adds 2 halflines automatically */
7750 crtc_vtotal -= 1;
7751 crtc_vblank_end -= 1;
7752
7753 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7754 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7755 else
7756 vsyncshift = adjusted_mode->crtc_hsync_start -
7757 adjusted_mode->crtc_htotal / 2;
7758 if (vsyncshift < 0)
7759 vsyncshift += adjusted_mode->crtc_htotal;
7760 }
7761
7762 if (INTEL_INFO(dev)->gen > 3)
7763 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7764
7765 I915_WRITE(HTOTAL(cpu_transcoder),
7766 (adjusted_mode->crtc_hdisplay - 1) |
7767 ((adjusted_mode->crtc_htotal - 1) << 16));
7768 I915_WRITE(HBLANK(cpu_transcoder),
7769 (adjusted_mode->crtc_hblank_start - 1) |
7770 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7771 I915_WRITE(HSYNC(cpu_transcoder),
7772 (adjusted_mode->crtc_hsync_start - 1) |
7773 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7774
7775 I915_WRITE(VTOTAL(cpu_transcoder),
7776 (adjusted_mode->crtc_vdisplay - 1) |
7777 ((crtc_vtotal - 1) << 16));
7778 I915_WRITE(VBLANK(cpu_transcoder),
7779 (adjusted_mode->crtc_vblank_start - 1) |
7780 ((crtc_vblank_end - 1) << 16));
7781 I915_WRITE(VSYNC(cpu_transcoder),
7782 (adjusted_mode->crtc_vsync_start - 1) |
7783 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7784
7785 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7786 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7787 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7788 * bits. */
7789 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7790 (pipe == PIPE_B || pipe == PIPE_C))
7791 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7792
7793 }
7794
7795 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7796 {
7797 struct drm_device *dev = intel_crtc->base.dev;
7798 struct drm_i915_private *dev_priv = to_i915(dev);
7799 enum pipe pipe = intel_crtc->pipe;
7800
7801 /* pipesrc controls the size that is scaled from, which should
7802 * always be the user's requested size.
7803 */
7804 I915_WRITE(PIPESRC(pipe),
7805 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7806 (intel_crtc->config->pipe_src_h - 1));
7807 }
7808
7809 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7810 struct intel_crtc_state *pipe_config)
7811 {
7812 struct drm_device *dev = crtc->base.dev;
7813 struct drm_i915_private *dev_priv = to_i915(dev);
7814 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7815 uint32_t tmp;
7816
7817 tmp = I915_READ(HTOTAL(cpu_transcoder));
7818 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7819 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7820 tmp = I915_READ(HBLANK(cpu_transcoder));
7821 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7822 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7823 tmp = I915_READ(HSYNC(cpu_transcoder));
7824 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7825 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7826
7827 tmp = I915_READ(VTOTAL(cpu_transcoder));
7828 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7829 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7830 tmp = I915_READ(VBLANK(cpu_transcoder));
7831 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7832 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7833 tmp = I915_READ(VSYNC(cpu_transcoder));
7834 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7835 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7836
7837 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7838 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7839 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7840 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7841 }
7842 }
7843
7844 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7845 struct intel_crtc_state *pipe_config)
7846 {
7847 struct drm_device *dev = crtc->base.dev;
7848 struct drm_i915_private *dev_priv = to_i915(dev);
7849 u32 tmp;
7850
7851 tmp = I915_READ(PIPESRC(crtc->pipe));
7852 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7853 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7854
7855 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7856 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7857 }
7858
7859 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7860 struct intel_crtc_state *pipe_config)
7861 {
7862 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7863 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7864 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7865 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7866
7867 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7868 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7869 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7870 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7871
7872 mode->flags = pipe_config->base.adjusted_mode.flags;
7873 mode->type = DRM_MODE_TYPE_DRIVER;
7874
7875 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7876 mode->flags |= pipe_config->base.adjusted_mode.flags;
7877
7878 mode->hsync = drm_mode_hsync(mode);
7879 mode->vrefresh = drm_mode_vrefresh(mode);
7880 drm_mode_set_name(mode);
7881 }
7882
7883 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7884 {
7885 struct drm_device *dev = intel_crtc->base.dev;
7886 struct drm_i915_private *dev_priv = to_i915(dev);
7887 uint32_t pipeconf;
7888
7889 pipeconf = 0;
7890
7891 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7892 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7893 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7894
7895 if (intel_crtc->config->double_wide)
7896 pipeconf |= PIPECONF_DOUBLE_WIDE;
7897
7898 /* only g4x and later have fancy bpc/dither controls */
7899 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7900 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7901 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7902 pipeconf |= PIPECONF_DITHER_EN |
7903 PIPECONF_DITHER_TYPE_SP;
7904
7905 switch (intel_crtc->config->pipe_bpp) {
7906 case 18:
7907 pipeconf |= PIPECONF_6BPC;
7908 break;
7909 case 24:
7910 pipeconf |= PIPECONF_8BPC;
7911 break;
7912 case 30:
7913 pipeconf |= PIPECONF_10BPC;
7914 break;
7915 default:
7916 /* Case prevented by intel_choose_pipe_bpp_dither. */
7917 BUG();
7918 }
7919 }
7920
7921 if (HAS_PIPE_CXSR(dev)) {
7922 if (intel_crtc->lowfreq_avail) {
7923 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7924 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7925 } else {
7926 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7927 }
7928 }
7929
7930 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7931 if (INTEL_INFO(dev)->gen < 4 ||
7932 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7933 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7934 else
7935 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7936 } else
7937 pipeconf |= PIPECONF_PROGRESSIVE;
7938
7939 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7940 intel_crtc->config->limited_color_range)
7941 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7942
7943 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7944 POSTING_READ(PIPECONF(intel_crtc->pipe));
7945 }
7946
7947 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7948 struct intel_crtc_state *crtc_state)
7949 {
7950 struct drm_device *dev = crtc->base.dev;
7951 struct drm_i915_private *dev_priv = to_i915(dev);
7952 const struct intel_limit *limit;
7953 int refclk = 48000;
7954
7955 memset(&crtc_state->dpll_hw_state, 0,
7956 sizeof(crtc_state->dpll_hw_state));
7957
7958 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7959 if (intel_panel_use_ssc(dev_priv)) {
7960 refclk = dev_priv->vbt.lvds_ssc_freq;
7961 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7962 }
7963
7964 limit = &intel_limits_i8xx_lvds;
7965 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7966 limit = &intel_limits_i8xx_dvo;
7967 } else {
7968 limit = &intel_limits_i8xx_dac;
7969 }
7970
7971 if (!crtc_state->clock_set &&
7972 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7973 refclk, NULL, &crtc_state->dpll)) {
7974 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7975 return -EINVAL;
7976 }
7977
7978 i8xx_compute_dpll(crtc, crtc_state, NULL);
7979
7980 return 0;
7981 }
7982
7983 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7984 struct intel_crtc_state *crtc_state)
7985 {
7986 struct drm_device *dev = crtc->base.dev;
7987 struct drm_i915_private *dev_priv = to_i915(dev);
7988 const struct intel_limit *limit;
7989 int refclk = 96000;
7990
7991 memset(&crtc_state->dpll_hw_state, 0,
7992 sizeof(crtc_state->dpll_hw_state));
7993
7994 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7995 if (intel_panel_use_ssc(dev_priv)) {
7996 refclk = dev_priv->vbt.lvds_ssc_freq;
7997 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7998 }
7999
8000 if (intel_is_dual_link_lvds(dev))
8001 limit = &intel_limits_g4x_dual_channel_lvds;
8002 else
8003 limit = &intel_limits_g4x_single_channel_lvds;
8004 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8005 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8006 limit = &intel_limits_g4x_hdmi;
8007 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8008 limit = &intel_limits_g4x_sdvo;
8009 } else {
8010 /* The option is for other outputs */
8011 limit = &intel_limits_i9xx_sdvo;
8012 }
8013
8014 if (!crtc_state->clock_set &&
8015 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8016 refclk, NULL, &crtc_state->dpll)) {
8017 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8018 return -EINVAL;
8019 }
8020
8021 i9xx_compute_dpll(crtc, crtc_state, NULL);
8022
8023 return 0;
8024 }
8025
8026 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8027 struct intel_crtc_state *crtc_state)
8028 {
8029 struct drm_device *dev = crtc->base.dev;
8030 struct drm_i915_private *dev_priv = to_i915(dev);
8031 const struct intel_limit *limit;
8032 int refclk = 96000;
8033
8034 memset(&crtc_state->dpll_hw_state, 0,
8035 sizeof(crtc_state->dpll_hw_state));
8036
8037 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8038 if (intel_panel_use_ssc(dev_priv)) {
8039 refclk = dev_priv->vbt.lvds_ssc_freq;
8040 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8041 }
8042
8043 limit = &intel_limits_pineview_lvds;
8044 } else {
8045 limit = &intel_limits_pineview_sdvo;
8046 }
8047
8048 if (!crtc_state->clock_set &&
8049 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8050 refclk, NULL, &crtc_state->dpll)) {
8051 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8052 return -EINVAL;
8053 }
8054
8055 i9xx_compute_dpll(crtc, crtc_state, NULL);
8056
8057 return 0;
8058 }
8059
8060 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8061 struct intel_crtc_state *crtc_state)
8062 {
8063 struct drm_device *dev = crtc->base.dev;
8064 struct drm_i915_private *dev_priv = to_i915(dev);
8065 const struct intel_limit *limit;
8066 int refclk = 96000;
8067
8068 memset(&crtc_state->dpll_hw_state, 0,
8069 sizeof(crtc_state->dpll_hw_state));
8070
8071 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8072 if (intel_panel_use_ssc(dev_priv)) {
8073 refclk = dev_priv->vbt.lvds_ssc_freq;
8074 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8075 }
8076
8077 limit = &intel_limits_i9xx_lvds;
8078 } else {
8079 limit = &intel_limits_i9xx_sdvo;
8080 }
8081
8082 if (!crtc_state->clock_set &&
8083 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8084 refclk, NULL, &crtc_state->dpll)) {
8085 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8086 return -EINVAL;
8087 }
8088
8089 i9xx_compute_dpll(crtc, crtc_state, NULL);
8090
8091 return 0;
8092 }
8093
8094 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8095 struct intel_crtc_state *crtc_state)
8096 {
8097 int refclk = 100000;
8098 const struct intel_limit *limit = &intel_limits_chv;
8099
8100 memset(&crtc_state->dpll_hw_state, 0,
8101 sizeof(crtc_state->dpll_hw_state));
8102
8103 if (!crtc_state->clock_set &&
8104 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8105 refclk, NULL, &crtc_state->dpll)) {
8106 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8107 return -EINVAL;
8108 }
8109
8110 chv_compute_dpll(crtc, crtc_state);
8111
8112 return 0;
8113 }
8114
8115 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8116 struct intel_crtc_state *crtc_state)
8117 {
8118 int refclk = 100000;
8119 const struct intel_limit *limit = &intel_limits_vlv;
8120
8121 memset(&crtc_state->dpll_hw_state, 0,
8122 sizeof(crtc_state->dpll_hw_state));
8123
8124 if (!crtc_state->clock_set &&
8125 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8126 refclk, NULL, &crtc_state->dpll)) {
8127 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8128 return -EINVAL;
8129 }
8130
8131 vlv_compute_dpll(crtc, crtc_state);
8132
8133 return 0;
8134 }
8135
8136 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8137 struct intel_crtc_state *pipe_config)
8138 {
8139 struct drm_device *dev = crtc->base.dev;
8140 struct drm_i915_private *dev_priv = to_i915(dev);
8141 uint32_t tmp;
8142
8143 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8144 return;
8145
8146 tmp = I915_READ(PFIT_CONTROL);
8147 if (!(tmp & PFIT_ENABLE))
8148 return;
8149
8150 /* Check whether the pfit is attached to our pipe. */
8151 if (INTEL_INFO(dev)->gen < 4) {
8152 if (crtc->pipe != PIPE_B)
8153 return;
8154 } else {
8155 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8156 return;
8157 }
8158
8159 pipe_config->gmch_pfit.control = tmp;
8160 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8161 }
8162
8163 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8164 struct intel_crtc_state *pipe_config)
8165 {
8166 struct drm_device *dev = crtc->base.dev;
8167 struct drm_i915_private *dev_priv = to_i915(dev);
8168 int pipe = pipe_config->cpu_transcoder;
8169 struct dpll clock;
8170 u32 mdiv;
8171 int refclk = 100000;
8172
8173 /* In case of DSI, DPLL will not be used */
8174 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8175 return;
8176
8177 mutex_lock(&dev_priv->sb_lock);
8178 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8179 mutex_unlock(&dev_priv->sb_lock);
8180
8181 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8182 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8183 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8184 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8185 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8186
8187 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8188 }
8189
8190 static void
8191 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8192 struct intel_initial_plane_config *plane_config)
8193 {
8194 struct drm_device *dev = crtc->base.dev;
8195 struct drm_i915_private *dev_priv = to_i915(dev);
8196 u32 val, base, offset;
8197 int pipe = crtc->pipe, plane = crtc->plane;
8198 int fourcc, pixel_format;
8199 unsigned int aligned_height;
8200 struct drm_framebuffer *fb;
8201 struct intel_framebuffer *intel_fb;
8202
8203 val = I915_READ(DSPCNTR(plane));
8204 if (!(val & DISPLAY_PLANE_ENABLE))
8205 return;
8206
8207 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8208 if (!intel_fb) {
8209 DRM_DEBUG_KMS("failed to alloc fb\n");
8210 return;
8211 }
8212
8213 fb = &intel_fb->base;
8214
8215 if (INTEL_INFO(dev)->gen >= 4) {
8216 if (val & DISPPLANE_TILED) {
8217 plane_config->tiling = I915_TILING_X;
8218 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8219 }
8220 }
8221
8222 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8223 fourcc = i9xx_format_to_fourcc(pixel_format);
8224 fb->pixel_format = fourcc;
8225 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8226
8227 if (INTEL_INFO(dev)->gen >= 4) {
8228 if (plane_config->tiling)
8229 offset = I915_READ(DSPTILEOFF(plane));
8230 else
8231 offset = I915_READ(DSPLINOFF(plane));
8232 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8233 } else {
8234 base = I915_READ(DSPADDR(plane));
8235 }
8236 plane_config->base = base;
8237
8238 val = I915_READ(PIPESRC(pipe));
8239 fb->width = ((val >> 16) & 0xfff) + 1;
8240 fb->height = ((val >> 0) & 0xfff) + 1;
8241
8242 val = I915_READ(DSPSTRIDE(pipe));
8243 fb->pitches[0] = val & 0xffffffc0;
8244
8245 aligned_height = intel_fb_align_height(dev, fb->height,
8246 fb->pixel_format,
8247 fb->modifier[0]);
8248
8249 plane_config->size = fb->pitches[0] * aligned_height;
8250
8251 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8252 pipe_name(pipe), plane, fb->width, fb->height,
8253 fb->bits_per_pixel, base, fb->pitches[0],
8254 plane_config->size);
8255
8256 plane_config->fb = intel_fb;
8257 }
8258
8259 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8260 struct intel_crtc_state *pipe_config)
8261 {
8262 struct drm_device *dev = crtc->base.dev;
8263 struct drm_i915_private *dev_priv = to_i915(dev);
8264 int pipe = pipe_config->cpu_transcoder;
8265 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8266 struct dpll clock;
8267 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8268 int refclk = 100000;
8269
8270 /* In case of DSI, DPLL will not be used */
8271 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8272 return;
8273
8274 mutex_lock(&dev_priv->sb_lock);
8275 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8276 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8277 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8278 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8279 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8280 mutex_unlock(&dev_priv->sb_lock);
8281
8282 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8283 clock.m2 = (pll_dw0 & 0xff) << 22;
8284 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8285 clock.m2 |= pll_dw2 & 0x3fffff;
8286 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8287 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8288 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8289
8290 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8291 }
8292
8293 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8294 struct intel_crtc_state *pipe_config)
8295 {
8296 struct drm_device *dev = crtc->base.dev;
8297 struct drm_i915_private *dev_priv = to_i915(dev);
8298 enum intel_display_power_domain power_domain;
8299 uint32_t tmp;
8300 bool ret;
8301
8302 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8303 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8304 return false;
8305
8306 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8307 pipe_config->shared_dpll = NULL;
8308
8309 ret = false;
8310
8311 tmp = I915_READ(PIPECONF(crtc->pipe));
8312 if (!(tmp & PIPECONF_ENABLE))
8313 goto out;
8314
8315 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8316 switch (tmp & PIPECONF_BPC_MASK) {
8317 case PIPECONF_6BPC:
8318 pipe_config->pipe_bpp = 18;
8319 break;
8320 case PIPECONF_8BPC:
8321 pipe_config->pipe_bpp = 24;
8322 break;
8323 case PIPECONF_10BPC:
8324 pipe_config->pipe_bpp = 30;
8325 break;
8326 default:
8327 break;
8328 }
8329 }
8330
8331 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8332 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8333 pipe_config->limited_color_range = true;
8334
8335 if (INTEL_INFO(dev)->gen < 4)
8336 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8337
8338 intel_get_pipe_timings(crtc, pipe_config);
8339 intel_get_pipe_src_size(crtc, pipe_config);
8340
8341 i9xx_get_pfit_config(crtc, pipe_config);
8342
8343 if (INTEL_INFO(dev)->gen >= 4) {
8344 /* No way to read it out on pipes B and C */
8345 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8346 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8347 else
8348 tmp = I915_READ(DPLL_MD(crtc->pipe));
8349 pipe_config->pixel_multiplier =
8350 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8351 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8352 pipe_config->dpll_hw_state.dpll_md = tmp;
8353 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8354 tmp = I915_READ(DPLL(crtc->pipe));
8355 pipe_config->pixel_multiplier =
8356 ((tmp & SDVO_MULTIPLIER_MASK)
8357 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8358 } else {
8359 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8360 * port and will be fixed up in the encoder->get_config
8361 * function. */
8362 pipe_config->pixel_multiplier = 1;
8363 }
8364 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8365 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8366 /*
8367 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8368 * on 830. Filter it out here so that we don't
8369 * report errors due to that.
8370 */
8371 if (IS_I830(dev))
8372 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8373
8374 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8375 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8376 } else {
8377 /* Mask out read-only status bits. */
8378 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8379 DPLL_PORTC_READY_MASK |
8380 DPLL_PORTB_READY_MASK);
8381 }
8382
8383 if (IS_CHERRYVIEW(dev))
8384 chv_crtc_clock_get(crtc, pipe_config);
8385 else if (IS_VALLEYVIEW(dev))
8386 vlv_crtc_clock_get(crtc, pipe_config);
8387 else
8388 i9xx_crtc_clock_get(crtc, pipe_config);
8389
8390 /*
8391 * Normally the dotclock is filled in by the encoder .get_config()
8392 * but in case the pipe is enabled w/o any ports we need a sane
8393 * default.
8394 */
8395 pipe_config->base.adjusted_mode.crtc_clock =
8396 pipe_config->port_clock / pipe_config->pixel_multiplier;
8397
8398 ret = true;
8399
8400 out:
8401 intel_display_power_put(dev_priv, power_domain);
8402
8403 return ret;
8404 }
8405
8406 static void ironlake_init_pch_refclk(struct drm_device *dev)
8407 {
8408 struct drm_i915_private *dev_priv = to_i915(dev);
8409 struct intel_encoder *encoder;
8410 int i;
8411 u32 val, final;
8412 bool has_lvds = false;
8413 bool has_cpu_edp = false;
8414 bool has_panel = false;
8415 bool has_ck505 = false;
8416 bool can_ssc = false;
8417 bool using_ssc_source = false;
8418
8419 /* We need to take the global config into account */
8420 for_each_intel_encoder(dev, encoder) {
8421 switch (encoder->type) {
8422 case INTEL_OUTPUT_LVDS:
8423 has_panel = true;
8424 has_lvds = true;
8425 break;
8426 case INTEL_OUTPUT_EDP:
8427 has_panel = true;
8428 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8429 has_cpu_edp = true;
8430 break;
8431 default:
8432 break;
8433 }
8434 }
8435
8436 if (HAS_PCH_IBX(dev)) {
8437 has_ck505 = dev_priv->vbt.display_clock_mode;
8438 can_ssc = has_ck505;
8439 } else {
8440 has_ck505 = false;
8441 can_ssc = true;
8442 }
8443
8444 /* Check if any DPLLs are using the SSC source */
8445 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8446 u32 temp = I915_READ(PCH_DPLL(i));
8447
8448 if (!(temp & DPLL_VCO_ENABLE))
8449 continue;
8450
8451 if ((temp & PLL_REF_INPUT_MASK) ==
8452 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8453 using_ssc_source = true;
8454 break;
8455 }
8456 }
8457
8458 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8459 has_panel, has_lvds, has_ck505, using_ssc_source);
8460
8461 /* Ironlake: try to setup display ref clock before DPLL
8462 * enabling. This is only under driver's control after
8463 * PCH B stepping, previous chipset stepping should be
8464 * ignoring this setting.
8465 */
8466 val = I915_READ(PCH_DREF_CONTROL);
8467
8468 /* As we must carefully and slowly disable/enable each source in turn,
8469 * compute the final state we want first and check if we need to
8470 * make any changes at all.
8471 */
8472 final = val;
8473 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8474 if (has_ck505)
8475 final |= DREF_NONSPREAD_CK505_ENABLE;
8476 else
8477 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8478
8479 final &= ~DREF_SSC_SOURCE_MASK;
8480 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8481 final &= ~DREF_SSC1_ENABLE;
8482
8483 if (has_panel) {
8484 final |= DREF_SSC_SOURCE_ENABLE;
8485
8486 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8487 final |= DREF_SSC1_ENABLE;
8488
8489 if (has_cpu_edp) {
8490 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8491 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8492 else
8493 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8494 } else
8495 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8496 } else if (using_ssc_source) {
8497 final |= DREF_SSC_SOURCE_ENABLE;
8498 final |= DREF_SSC1_ENABLE;
8499 }
8500
8501 if (final == val)
8502 return;
8503
8504 /* Always enable nonspread source */
8505 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8506
8507 if (has_ck505)
8508 val |= DREF_NONSPREAD_CK505_ENABLE;
8509 else
8510 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8511
8512 if (has_panel) {
8513 val &= ~DREF_SSC_SOURCE_MASK;
8514 val |= DREF_SSC_SOURCE_ENABLE;
8515
8516 /* SSC must be turned on before enabling the CPU output */
8517 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8518 DRM_DEBUG_KMS("Using SSC on panel\n");
8519 val |= DREF_SSC1_ENABLE;
8520 } else
8521 val &= ~DREF_SSC1_ENABLE;
8522
8523 /* Get SSC going before enabling the outputs */
8524 I915_WRITE(PCH_DREF_CONTROL, val);
8525 POSTING_READ(PCH_DREF_CONTROL);
8526 udelay(200);
8527
8528 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8529
8530 /* Enable CPU source on CPU attached eDP */
8531 if (has_cpu_edp) {
8532 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8533 DRM_DEBUG_KMS("Using SSC on eDP\n");
8534 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8535 } else
8536 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8537 } else
8538 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8539
8540 I915_WRITE(PCH_DREF_CONTROL, val);
8541 POSTING_READ(PCH_DREF_CONTROL);
8542 udelay(200);
8543 } else {
8544 DRM_DEBUG_KMS("Disabling CPU source output\n");
8545
8546 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8547
8548 /* Turn off CPU output */
8549 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8550
8551 I915_WRITE(PCH_DREF_CONTROL, val);
8552 POSTING_READ(PCH_DREF_CONTROL);
8553 udelay(200);
8554
8555 if (!using_ssc_source) {
8556 DRM_DEBUG_KMS("Disabling SSC source\n");
8557
8558 /* Turn off the SSC source */
8559 val &= ~DREF_SSC_SOURCE_MASK;
8560 val |= DREF_SSC_SOURCE_DISABLE;
8561
8562 /* Turn off SSC1 */
8563 val &= ~DREF_SSC1_ENABLE;
8564
8565 I915_WRITE(PCH_DREF_CONTROL, val);
8566 POSTING_READ(PCH_DREF_CONTROL);
8567 udelay(200);
8568 }
8569 }
8570
8571 BUG_ON(val != final);
8572 }
8573
8574 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8575 {
8576 uint32_t tmp;
8577
8578 tmp = I915_READ(SOUTH_CHICKEN2);
8579 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8580 I915_WRITE(SOUTH_CHICKEN2, tmp);
8581
8582 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8583 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8584 DRM_ERROR("FDI mPHY reset assert timeout\n");
8585
8586 tmp = I915_READ(SOUTH_CHICKEN2);
8587 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8588 I915_WRITE(SOUTH_CHICKEN2, tmp);
8589
8590 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8591 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8592 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8593 }
8594
8595 /* WaMPhyProgramming:hsw */
8596 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8597 {
8598 uint32_t tmp;
8599
8600 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8601 tmp &= ~(0xFF << 24);
8602 tmp |= (0x12 << 24);
8603 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8604
8605 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8606 tmp |= (1 << 11);
8607 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8608
8609 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8610 tmp |= (1 << 11);
8611 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8612
8613 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8614 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8615 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8616
8617 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8618 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8619 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8620
8621 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8622 tmp &= ~(7 << 13);
8623 tmp |= (5 << 13);
8624 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8625
8626 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8627 tmp &= ~(7 << 13);
8628 tmp |= (5 << 13);
8629 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8630
8631 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8632 tmp &= ~0xFF;
8633 tmp |= 0x1C;
8634 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8635
8636 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8637 tmp &= ~0xFF;
8638 tmp |= 0x1C;
8639 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8640
8641 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8642 tmp &= ~(0xFF << 16);
8643 tmp |= (0x1C << 16);
8644 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8645
8646 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8647 tmp &= ~(0xFF << 16);
8648 tmp |= (0x1C << 16);
8649 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8650
8651 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8652 tmp |= (1 << 27);
8653 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8654
8655 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8656 tmp |= (1 << 27);
8657 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8658
8659 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8660 tmp &= ~(0xF << 28);
8661 tmp |= (4 << 28);
8662 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8663
8664 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8665 tmp &= ~(0xF << 28);
8666 tmp |= (4 << 28);
8667 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8668 }
8669
8670 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8671 * Programming" based on the parameters passed:
8672 * - Sequence to enable CLKOUT_DP
8673 * - Sequence to enable CLKOUT_DP without spread
8674 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8675 */
8676 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8677 bool with_fdi)
8678 {
8679 struct drm_i915_private *dev_priv = to_i915(dev);
8680 uint32_t reg, tmp;
8681
8682 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8683 with_spread = true;
8684 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8685 with_fdi = false;
8686
8687 mutex_lock(&dev_priv->sb_lock);
8688
8689 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8690 tmp &= ~SBI_SSCCTL_DISABLE;
8691 tmp |= SBI_SSCCTL_PATHALT;
8692 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8693
8694 udelay(24);
8695
8696 if (with_spread) {
8697 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8698 tmp &= ~SBI_SSCCTL_PATHALT;
8699 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8700
8701 if (with_fdi) {
8702 lpt_reset_fdi_mphy(dev_priv);
8703 lpt_program_fdi_mphy(dev_priv);
8704 }
8705 }
8706
8707 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8708 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8709 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8710 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8711
8712 mutex_unlock(&dev_priv->sb_lock);
8713 }
8714
8715 /* Sequence to disable CLKOUT_DP */
8716 static void lpt_disable_clkout_dp(struct drm_device *dev)
8717 {
8718 struct drm_i915_private *dev_priv = to_i915(dev);
8719 uint32_t reg, tmp;
8720
8721 mutex_lock(&dev_priv->sb_lock);
8722
8723 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8724 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8725 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8726 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8727
8728 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8729 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8730 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8731 tmp |= SBI_SSCCTL_PATHALT;
8732 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8733 udelay(32);
8734 }
8735 tmp |= SBI_SSCCTL_DISABLE;
8736 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8737 }
8738
8739 mutex_unlock(&dev_priv->sb_lock);
8740 }
8741
8742 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8743
8744 static const uint16_t sscdivintphase[] = {
8745 [BEND_IDX( 50)] = 0x3B23,
8746 [BEND_IDX( 45)] = 0x3B23,
8747 [BEND_IDX( 40)] = 0x3C23,
8748 [BEND_IDX( 35)] = 0x3C23,
8749 [BEND_IDX( 30)] = 0x3D23,
8750 [BEND_IDX( 25)] = 0x3D23,
8751 [BEND_IDX( 20)] = 0x3E23,
8752 [BEND_IDX( 15)] = 0x3E23,
8753 [BEND_IDX( 10)] = 0x3F23,
8754 [BEND_IDX( 5)] = 0x3F23,
8755 [BEND_IDX( 0)] = 0x0025,
8756 [BEND_IDX( -5)] = 0x0025,
8757 [BEND_IDX(-10)] = 0x0125,
8758 [BEND_IDX(-15)] = 0x0125,
8759 [BEND_IDX(-20)] = 0x0225,
8760 [BEND_IDX(-25)] = 0x0225,
8761 [BEND_IDX(-30)] = 0x0325,
8762 [BEND_IDX(-35)] = 0x0325,
8763 [BEND_IDX(-40)] = 0x0425,
8764 [BEND_IDX(-45)] = 0x0425,
8765 [BEND_IDX(-50)] = 0x0525,
8766 };
8767
8768 /*
8769 * Bend CLKOUT_DP
8770 * steps -50 to 50 inclusive, in steps of 5
8771 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8772 * change in clock period = -(steps / 10) * 5.787 ps
8773 */
8774 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8775 {
8776 uint32_t tmp;
8777 int idx = BEND_IDX(steps);
8778
8779 if (WARN_ON(steps % 5 != 0))
8780 return;
8781
8782 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8783 return;
8784
8785 mutex_lock(&dev_priv->sb_lock);
8786
8787 if (steps % 10 != 0)
8788 tmp = 0xAAAAAAAB;
8789 else
8790 tmp = 0x00000000;
8791 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8792
8793 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8794 tmp &= 0xffff0000;
8795 tmp |= sscdivintphase[idx];
8796 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8797
8798 mutex_unlock(&dev_priv->sb_lock);
8799 }
8800
8801 #undef BEND_IDX
8802
8803 static void lpt_init_pch_refclk(struct drm_device *dev)
8804 {
8805 struct intel_encoder *encoder;
8806 bool has_vga = false;
8807
8808 for_each_intel_encoder(dev, encoder) {
8809 switch (encoder->type) {
8810 case INTEL_OUTPUT_ANALOG:
8811 has_vga = true;
8812 break;
8813 default:
8814 break;
8815 }
8816 }
8817
8818 if (has_vga) {
8819 lpt_bend_clkout_dp(to_i915(dev), 0);
8820 lpt_enable_clkout_dp(dev, true, true);
8821 } else {
8822 lpt_disable_clkout_dp(dev);
8823 }
8824 }
8825
8826 /*
8827 * Initialize reference clocks when the driver loads
8828 */
8829 void intel_init_pch_refclk(struct drm_device *dev)
8830 {
8831 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8832 ironlake_init_pch_refclk(dev);
8833 else if (HAS_PCH_LPT(dev))
8834 lpt_init_pch_refclk(dev);
8835 }
8836
8837 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8838 {
8839 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8841 int pipe = intel_crtc->pipe;
8842 uint32_t val;
8843
8844 val = 0;
8845
8846 switch (intel_crtc->config->pipe_bpp) {
8847 case 18:
8848 val |= PIPECONF_6BPC;
8849 break;
8850 case 24:
8851 val |= PIPECONF_8BPC;
8852 break;
8853 case 30:
8854 val |= PIPECONF_10BPC;
8855 break;
8856 case 36:
8857 val |= PIPECONF_12BPC;
8858 break;
8859 default:
8860 /* Case prevented by intel_choose_pipe_bpp_dither. */
8861 BUG();
8862 }
8863
8864 if (intel_crtc->config->dither)
8865 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8866
8867 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8868 val |= PIPECONF_INTERLACED_ILK;
8869 else
8870 val |= PIPECONF_PROGRESSIVE;
8871
8872 if (intel_crtc->config->limited_color_range)
8873 val |= PIPECONF_COLOR_RANGE_SELECT;
8874
8875 I915_WRITE(PIPECONF(pipe), val);
8876 POSTING_READ(PIPECONF(pipe));
8877 }
8878
8879 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8880 {
8881 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8883 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8884 u32 val = 0;
8885
8886 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8887 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8888
8889 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8890 val |= PIPECONF_INTERLACED_ILK;
8891 else
8892 val |= PIPECONF_PROGRESSIVE;
8893
8894 I915_WRITE(PIPECONF(cpu_transcoder), val);
8895 POSTING_READ(PIPECONF(cpu_transcoder));
8896 }
8897
8898 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8899 {
8900 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8902
8903 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8904 u32 val = 0;
8905
8906 switch (intel_crtc->config->pipe_bpp) {
8907 case 18:
8908 val |= PIPEMISC_DITHER_6_BPC;
8909 break;
8910 case 24:
8911 val |= PIPEMISC_DITHER_8_BPC;
8912 break;
8913 case 30:
8914 val |= PIPEMISC_DITHER_10_BPC;
8915 break;
8916 case 36:
8917 val |= PIPEMISC_DITHER_12_BPC;
8918 break;
8919 default:
8920 /* Case prevented by pipe_config_set_bpp. */
8921 BUG();
8922 }
8923
8924 if (intel_crtc->config->dither)
8925 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8926
8927 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8928 }
8929 }
8930
8931 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8932 {
8933 /*
8934 * Account for spread spectrum to avoid
8935 * oversubscribing the link. Max center spread
8936 * is 2.5%; use 5% for safety's sake.
8937 */
8938 u32 bps = target_clock * bpp * 21 / 20;
8939 return DIV_ROUND_UP(bps, link_bw * 8);
8940 }
8941
8942 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8943 {
8944 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8945 }
8946
8947 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8948 struct intel_crtc_state *crtc_state,
8949 struct dpll *reduced_clock)
8950 {
8951 struct drm_crtc *crtc = &intel_crtc->base;
8952 struct drm_device *dev = crtc->dev;
8953 struct drm_i915_private *dev_priv = to_i915(dev);
8954 u32 dpll, fp, fp2;
8955 int factor;
8956
8957 /* Enable autotuning of the PLL clock (if permissible) */
8958 factor = 21;
8959 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8960 if ((intel_panel_use_ssc(dev_priv) &&
8961 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8962 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8963 factor = 25;
8964 } else if (crtc_state->sdvo_tv_clock)
8965 factor = 20;
8966
8967 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8968
8969 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8970 fp |= FP_CB_TUNE;
8971
8972 if (reduced_clock) {
8973 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8974
8975 if (reduced_clock->m < factor * reduced_clock->n)
8976 fp2 |= FP_CB_TUNE;
8977 } else {
8978 fp2 = fp;
8979 }
8980
8981 dpll = 0;
8982
8983 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8984 dpll |= DPLLB_MODE_LVDS;
8985 else
8986 dpll |= DPLLB_MODE_DAC_SERIAL;
8987
8988 dpll |= (crtc_state->pixel_multiplier - 1)
8989 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8990
8991 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8992 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8993 dpll |= DPLL_SDVO_HIGH_SPEED;
8994
8995 if (intel_crtc_has_dp_encoder(crtc_state))
8996 dpll |= DPLL_SDVO_HIGH_SPEED;
8997
8998 /* compute bitmask from p1 value */
8999 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9000 /* also FPA1 */
9001 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9002
9003 switch (crtc_state->dpll.p2) {
9004 case 5:
9005 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9006 break;
9007 case 7:
9008 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9009 break;
9010 case 10:
9011 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9012 break;
9013 case 14:
9014 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9015 break;
9016 }
9017
9018 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9019 intel_panel_use_ssc(dev_priv))
9020 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9021 else
9022 dpll |= PLL_REF_INPUT_DREFCLK;
9023
9024 dpll |= DPLL_VCO_ENABLE;
9025
9026 crtc_state->dpll_hw_state.dpll = dpll;
9027 crtc_state->dpll_hw_state.fp0 = fp;
9028 crtc_state->dpll_hw_state.fp1 = fp2;
9029 }
9030
9031 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9032 struct intel_crtc_state *crtc_state)
9033 {
9034 struct drm_device *dev = crtc->base.dev;
9035 struct drm_i915_private *dev_priv = to_i915(dev);
9036 struct dpll reduced_clock;
9037 bool has_reduced_clock = false;
9038 struct intel_shared_dpll *pll;
9039 const struct intel_limit *limit;
9040 int refclk = 120000;
9041
9042 memset(&crtc_state->dpll_hw_state, 0,
9043 sizeof(crtc_state->dpll_hw_state));
9044
9045 crtc->lowfreq_avail = false;
9046
9047 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9048 if (!crtc_state->has_pch_encoder)
9049 return 0;
9050
9051 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9052 if (intel_panel_use_ssc(dev_priv)) {
9053 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9054 dev_priv->vbt.lvds_ssc_freq);
9055 refclk = dev_priv->vbt.lvds_ssc_freq;
9056 }
9057
9058 if (intel_is_dual_link_lvds(dev)) {
9059 if (refclk == 100000)
9060 limit = &intel_limits_ironlake_dual_lvds_100m;
9061 else
9062 limit = &intel_limits_ironlake_dual_lvds;
9063 } else {
9064 if (refclk == 100000)
9065 limit = &intel_limits_ironlake_single_lvds_100m;
9066 else
9067 limit = &intel_limits_ironlake_single_lvds;
9068 }
9069 } else {
9070 limit = &intel_limits_ironlake_dac;
9071 }
9072
9073 if (!crtc_state->clock_set &&
9074 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9075 refclk, NULL, &crtc_state->dpll)) {
9076 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9077 return -EINVAL;
9078 }
9079
9080 ironlake_compute_dpll(crtc, crtc_state,
9081 has_reduced_clock ? &reduced_clock : NULL);
9082
9083 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9084 if (pll == NULL) {
9085 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9086 pipe_name(crtc->pipe));
9087 return -EINVAL;
9088 }
9089
9090 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9091 has_reduced_clock)
9092 crtc->lowfreq_avail = true;
9093
9094 return 0;
9095 }
9096
9097 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9098 struct intel_link_m_n *m_n)
9099 {
9100 struct drm_device *dev = crtc->base.dev;
9101 struct drm_i915_private *dev_priv = to_i915(dev);
9102 enum pipe pipe = crtc->pipe;
9103
9104 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9105 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9106 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9107 & ~TU_SIZE_MASK;
9108 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9109 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9110 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9111 }
9112
9113 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9114 enum transcoder transcoder,
9115 struct intel_link_m_n *m_n,
9116 struct intel_link_m_n *m2_n2)
9117 {
9118 struct drm_device *dev = crtc->base.dev;
9119 struct drm_i915_private *dev_priv = to_i915(dev);
9120 enum pipe pipe = crtc->pipe;
9121
9122 if (INTEL_INFO(dev)->gen >= 5) {
9123 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9124 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9125 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9126 & ~TU_SIZE_MASK;
9127 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9128 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9129 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9130 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9131 * gen < 8) and if DRRS is supported (to make sure the
9132 * registers are not unnecessarily read).
9133 */
9134 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9135 crtc->config->has_drrs) {
9136 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9137 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9138 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9139 & ~TU_SIZE_MASK;
9140 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9141 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9142 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9143 }
9144 } else {
9145 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9146 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9147 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9148 & ~TU_SIZE_MASK;
9149 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9150 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9151 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9152 }
9153 }
9154
9155 void intel_dp_get_m_n(struct intel_crtc *crtc,
9156 struct intel_crtc_state *pipe_config)
9157 {
9158 if (pipe_config->has_pch_encoder)
9159 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9160 else
9161 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9162 &pipe_config->dp_m_n,
9163 &pipe_config->dp_m2_n2);
9164 }
9165
9166 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9167 struct intel_crtc_state *pipe_config)
9168 {
9169 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9170 &pipe_config->fdi_m_n, NULL);
9171 }
9172
9173 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9174 struct intel_crtc_state *pipe_config)
9175 {
9176 struct drm_device *dev = crtc->base.dev;
9177 struct drm_i915_private *dev_priv = to_i915(dev);
9178 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9179 uint32_t ps_ctrl = 0;
9180 int id = -1;
9181 int i;
9182
9183 /* find scaler attached to this pipe */
9184 for (i = 0; i < crtc->num_scalers; i++) {
9185 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9186 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9187 id = i;
9188 pipe_config->pch_pfit.enabled = true;
9189 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9190 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9191 break;
9192 }
9193 }
9194
9195 scaler_state->scaler_id = id;
9196 if (id >= 0) {
9197 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9198 } else {
9199 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9200 }
9201 }
9202
9203 static void
9204 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9205 struct intel_initial_plane_config *plane_config)
9206 {
9207 struct drm_device *dev = crtc->base.dev;
9208 struct drm_i915_private *dev_priv = to_i915(dev);
9209 u32 val, base, offset, stride_mult, tiling;
9210 int pipe = crtc->pipe;
9211 int fourcc, pixel_format;
9212 unsigned int aligned_height;
9213 struct drm_framebuffer *fb;
9214 struct intel_framebuffer *intel_fb;
9215
9216 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9217 if (!intel_fb) {
9218 DRM_DEBUG_KMS("failed to alloc fb\n");
9219 return;
9220 }
9221
9222 fb = &intel_fb->base;
9223
9224 val = I915_READ(PLANE_CTL(pipe, 0));
9225 if (!(val & PLANE_CTL_ENABLE))
9226 goto error;
9227
9228 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9229 fourcc = skl_format_to_fourcc(pixel_format,
9230 val & PLANE_CTL_ORDER_RGBX,
9231 val & PLANE_CTL_ALPHA_MASK);
9232 fb->pixel_format = fourcc;
9233 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9234
9235 tiling = val & PLANE_CTL_TILED_MASK;
9236 switch (tiling) {
9237 case PLANE_CTL_TILED_LINEAR:
9238 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9239 break;
9240 case PLANE_CTL_TILED_X:
9241 plane_config->tiling = I915_TILING_X;
9242 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9243 break;
9244 case PLANE_CTL_TILED_Y:
9245 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9246 break;
9247 case PLANE_CTL_TILED_YF:
9248 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9249 break;
9250 default:
9251 MISSING_CASE(tiling);
9252 goto error;
9253 }
9254
9255 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9256 plane_config->base = base;
9257
9258 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9259
9260 val = I915_READ(PLANE_SIZE(pipe, 0));
9261 fb->height = ((val >> 16) & 0xfff) + 1;
9262 fb->width = ((val >> 0) & 0x1fff) + 1;
9263
9264 val = I915_READ(PLANE_STRIDE(pipe, 0));
9265 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9266 fb->pixel_format);
9267 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9268
9269 aligned_height = intel_fb_align_height(dev, fb->height,
9270 fb->pixel_format,
9271 fb->modifier[0]);
9272
9273 plane_config->size = fb->pitches[0] * aligned_height;
9274
9275 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9276 pipe_name(pipe), fb->width, fb->height,
9277 fb->bits_per_pixel, base, fb->pitches[0],
9278 plane_config->size);
9279
9280 plane_config->fb = intel_fb;
9281 return;
9282
9283 error:
9284 kfree(fb);
9285 }
9286
9287 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9288 struct intel_crtc_state *pipe_config)
9289 {
9290 struct drm_device *dev = crtc->base.dev;
9291 struct drm_i915_private *dev_priv = to_i915(dev);
9292 uint32_t tmp;
9293
9294 tmp = I915_READ(PF_CTL(crtc->pipe));
9295
9296 if (tmp & PF_ENABLE) {
9297 pipe_config->pch_pfit.enabled = true;
9298 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9299 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9300
9301 /* We currently do not free assignements of panel fitters on
9302 * ivb/hsw (since we don't use the higher upscaling modes which
9303 * differentiates them) so just WARN about this case for now. */
9304 if (IS_GEN7(dev)) {
9305 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9306 PF_PIPE_SEL_IVB(crtc->pipe));
9307 }
9308 }
9309 }
9310
9311 static void
9312 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9313 struct intel_initial_plane_config *plane_config)
9314 {
9315 struct drm_device *dev = crtc->base.dev;
9316 struct drm_i915_private *dev_priv = to_i915(dev);
9317 u32 val, base, offset;
9318 int pipe = crtc->pipe;
9319 int fourcc, pixel_format;
9320 unsigned int aligned_height;
9321 struct drm_framebuffer *fb;
9322 struct intel_framebuffer *intel_fb;
9323
9324 val = I915_READ(DSPCNTR(pipe));
9325 if (!(val & DISPLAY_PLANE_ENABLE))
9326 return;
9327
9328 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9329 if (!intel_fb) {
9330 DRM_DEBUG_KMS("failed to alloc fb\n");
9331 return;
9332 }
9333
9334 fb = &intel_fb->base;
9335
9336 if (INTEL_INFO(dev)->gen >= 4) {
9337 if (val & DISPPLANE_TILED) {
9338 plane_config->tiling = I915_TILING_X;
9339 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9340 }
9341 }
9342
9343 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9344 fourcc = i9xx_format_to_fourcc(pixel_format);
9345 fb->pixel_format = fourcc;
9346 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9347
9348 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9349 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9350 offset = I915_READ(DSPOFFSET(pipe));
9351 } else {
9352 if (plane_config->tiling)
9353 offset = I915_READ(DSPTILEOFF(pipe));
9354 else
9355 offset = I915_READ(DSPLINOFF(pipe));
9356 }
9357 plane_config->base = base;
9358
9359 val = I915_READ(PIPESRC(pipe));
9360 fb->width = ((val >> 16) & 0xfff) + 1;
9361 fb->height = ((val >> 0) & 0xfff) + 1;
9362
9363 val = I915_READ(DSPSTRIDE(pipe));
9364 fb->pitches[0] = val & 0xffffffc0;
9365
9366 aligned_height = intel_fb_align_height(dev, fb->height,
9367 fb->pixel_format,
9368 fb->modifier[0]);
9369
9370 plane_config->size = fb->pitches[0] * aligned_height;
9371
9372 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9373 pipe_name(pipe), fb->width, fb->height,
9374 fb->bits_per_pixel, base, fb->pitches[0],
9375 plane_config->size);
9376
9377 plane_config->fb = intel_fb;
9378 }
9379
9380 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9381 struct intel_crtc_state *pipe_config)
9382 {
9383 struct drm_device *dev = crtc->base.dev;
9384 struct drm_i915_private *dev_priv = to_i915(dev);
9385 enum intel_display_power_domain power_domain;
9386 uint32_t tmp;
9387 bool ret;
9388
9389 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9390 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9391 return false;
9392
9393 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9394 pipe_config->shared_dpll = NULL;
9395
9396 ret = false;
9397 tmp = I915_READ(PIPECONF(crtc->pipe));
9398 if (!(tmp & PIPECONF_ENABLE))
9399 goto out;
9400
9401 switch (tmp & PIPECONF_BPC_MASK) {
9402 case PIPECONF_6BPC:
9403 pipe_config->pipe_bpp = 18;
9404 break;
9405 case PIPECONF_8BPC:
9406 pipe_config->pipe_bpp = 24;
9407 break;
9408 case PIPECONF_10BPC:
9409 pipe_config->pipe_bpp = 30;
9410 break;
9411 case PIPECONF_12BPC:
9412 pipe_config->pipe_bpp = 36;
9413 break;
9414 default:
9415 break;
9416 }
9417
9418 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9419 pipe_config->limited_color_range = true;
9420
9421 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9422 struct intel_shared_dpll *pll;
9423 enum intel_dpll_id pll_id;
9424
9425 pipe_config->has_pch_encoder = true;
9426
9427 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9428 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9429 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9430
9431 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9432
9433 if (HAS_PCH_IBX(dev_priv)) {
9434 /*
9435 * The pipe->pch transcoder and pch transcoder->pll
9436 * mapping is fixed.
9437 */
9438 pll_id = (enum intel_dpll_id) crtc->pipe;
9439 } else {
9440 tmp = I915_READ(PCH_DPLL_SEL);
9441 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9442 pll_id = DPLL_ID_PCH_PLL_B;
9443 else
9444 pll_id= DPLL_ID_PCH_PLL_A;
9445 }
9446
9447 pipe_config->shared_dpll =
9448 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9449 pll = pipe_config->shared_dpll;
9450
9451 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9452 &pipe_config->dpll_hw_state));
9453
9454 tmp = pipe_config->dpll_hw_state.dpll;
9455 pipe_config->pixel_multiplier =
9456 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9457 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9458
9459 ironlake_pch_clock_get(crtc, pipe_config);
9460 } else {
9461 pipe_config->pixel_multiplier = 1;
9462 }
9463
9464 intel_get_pipe_timings(crtc, pipe_config);
9465 intel_get_pipe_src_size(crtc, pipe_config);
9466
9467 ironlake_get_pfit_config(crtc, pipe_config);
9468
9469 ret = true;
9470
9471 out:
9472 intel_display_power_put(dev_priv, power_domain);
9473
9474 return ret;
9475 }
9476
9477 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9478 {
9479 struct drm_device *dev = &dev_priv->drm;
9480 struct intel_crtc *crtc;
9481
9482 for_each_intel_crtc(dev, crtc)
9483 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9484 pipe_name(crtc->pipe));
9485
9486 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9487 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9488 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9489 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9490 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9491 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9492 "CPU PWM1 enabled\n");
9493 if (IS_HASWELL(dev))
9494 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9495 "CPU PWM2 enabled\n");
9496 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9497 "PCH PWM1 enabled\n");
9498 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9499 "Utility pin enabled\n");
9500 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9501
9502 /*
9503 * In theory we can still leave IRQs enabled, as long as only the HPD
9504 * interrupts remain enabled. We used to check for that, but since it's
9505 * gen-specific and since we only disable LCPLL after we fully disable
9506 * the interrupts, the check below should be enough.
9507 */
9508 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9509 }
9510
9511 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9512 {
9513 struct drm_device *dev = &dev_priv->drm;
9514
9515 if (IS_HASWELL(dev))
9516 return I915_READ(D_COMP_HSW);
9517 else
9518 return I915_READ(D_COMP_BDW);
9519 }
9520
9521 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9522 {
9523 struct drm_device *dev = &dev_priv->drm;
9524
9525 if (IS_HASWELL(dev)) {
9526 mutex_lock(&dev_priv->rps.hw_lock);
9527 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9528 val))
9529 DRM_ERROR("Failed to write to D_COMP\n");
9530 mutex_unlock(&dev_priv->rps.hw_lock);
9531 } else {
9532 I915_WRITE(D_COMP_BDW, val);
9533 POSTING_READ(D_COMP_BDW);
9534 }
9535 }
9536
9537 /*
9538 * This function implements pieces of two sequences from BSpec:
9539 * - Sequence for display software to disable LCPLL
9540 * - Sequence for display software to allow package C8+
9541 * The steps implemented here are just the steps that actually touch the LCPLL
9542 * register. Callers should take care of disabling all the display engine
9543 * functions, doing the mode unset, fixing interrupts, etc.
9544 */
9545 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9546 bool switch_to_fclk, bool allow_power_down)
9547 {
9548 uint32_t val;
9549
9550 assert_can_disable_lcpll(dev_priv);
9551
9552 val = I915_READ(LCPLL_CTL);
9553
9554 if (switch_to_fclk) {
9555 val |= LCPLL_CD_SOURCE_FCLK;
9556 I915_WRITE(LCPLL_CTL, val);
9557
9558 if (wait_for_us(I915_READ(LCPLL_CTL) &
9559 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9560 DRM_ERROR("Switching to FCLK failed\n");
9561
9562 val = I915_READ(LCPLL_CTL);
9563 }
9564
9565 val |= LCPLL_PLL_DISABLE;
9566 I915_WRITE(LCPLL_CTL, val);
9567 POSTING_READ(LCPLL_CTL);
9568
9569 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9570 DRM_ERROR("LCPLL still locked\n");
9571
9572 val = hsw_read_dcomp(dev_priv);
9573 val |= D_COMP_COMP_DISABLE;
9574 hsw_write_dcomp(dev_priv, val);
9575 ndelay(100);
9576
9577 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9578 1))
9579 DRM_ERROR("D_COMP RCOMP still in progress\n");
9580
9581 if (allow_power_down) {
9582 val = I915_READ(LCPLL_CTL);
9583 val |= LCPLL_POWER_DOWN_ALLOW;
9584 I915_WRITE(LCPLL_CTL, val);
9585 POSTING_READ(LCPLL_CTL);
9586 }
9587 }
9588
9589 /*
9590 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9591 * source.
9592 */
9593 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9594 {
9595 uint32_t val;
9596
9597 val = I915_READ(LCPLL_CTL);
9598
9599 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9600 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9601 return;
9602
9603 /*
9604 * Make sure we're not on PC8 state before disabling PC8, otherwise
9605 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9606 */
9607 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9608
9609 if (val & LCPLL_POWER_DOWN_ALLOW) {
9610 val &= ~LCPLL_POWER_DOWN_ALLOW;
9611 I915_WRITE(LCPLL_CTL, val);
9612 POSTING_READ(LCPLL_CTL);
9613 }
9614
9615 val = hsw_read_dcomp(dev_priv);
9616 val |= D_COMP_COMP_FORCE;
9617 val &= ~D_COMP_COMP_DISABLE;
9618 hsw_write_dcomp(dev_priv, val);
9619
9620 val = I915_READ(LCPLL_CTL);
9621 val &= ~LCPLL_PLL_DISABLE;
9622 I915_WRITE(LCPLL_CTL, val);
9623
9624 if (intel_wait_for_register(dev_priv,
9625 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
9626 5))
9627 DRM_ERROR("LCPLL not locked yet\n");
9628
9629 if (val & LCPLL_CD_SOURCE_FCLK) {
9630 val = I915_READ(LCPLL_CTL);
9631 val &= ~LCPLL_CD_SOURCE_FCLK;
9632 I915_WRITE(LCPLL_CTL, val);
9633
9634 if (wait_for_us((I915_READ(LCPLL_CTL) &
9635 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9636 DRM_ERROR("Switching back to LCPLL failed\n");
9637 }
9638
9639 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9640 intel_update_cdclk(&dev_priv->drm);
9641 }
9642
9643 /*
9644 * Package states C8 and deeper are really deep PC states that can only be
9645 * reached when all the devices on the system allow it, so even if the graphics
9646 * device allows PC8+, it doesn't mean the system will actually get to these
9647 * states. Our driver only allows PC8+ when going into runtime PM.
9648 *
9649 * The requirements for PC8+ are that all the outputs are disabled, the power
9650 * well is disabled and most interrupts are disabled, and these are also
9651 * requirements for runtime PM. When these conditions are met, we manually do
9652 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9653 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9654 * hang the machine.
9655 *
9656 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9657 * the state of some registers, so when we come back from PC8+ we need to
9658 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9659 * need to take care of the registers kept by RC6. Notice that this happens even
9660 * if we don't put the device in PCI D3 state (which is what currently happens
9661 * because of the runtime PM support).
9662 *
9663 * For more, read "Display Sequences for Package C8" on the hardware
9664 * documentation.
9665 */
9666 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9667 {
9668 struct drm_device *dev = &dev_priv->drm;
9669 uint32_t val;
9670
9671 DRM_DEBUG_KMS("Enabling package C8+\n");
9672
9673 if (HAS_PCH_LPT_LP(dev)) {
9674 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9675 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9676 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9677 }
9678
9679 lpt_disable_clkout_dp(dev);
9680 hsw_disable_lcpll(dev_priv, true, true);
9681 }
9682
9683 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9684 {
9685 struct drm_device *dev = &dev_priv->drm;
9686 uint32_t val;
9687
9688 DRM_DEBUG_KMS("Disabling package C8+\n");
9689
9690 hsw_restore_lcpll(dev_priv);
9691 lpt_init_pch_refclk(dev);
9692
9693 if (HAS_PCH_LPT_LP(dev)) {
9694 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9695 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9696 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9697 }
9698 }
9699
9700 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9701 {
9702 struct drm_device *dev = old_state->dev;
9703 struct intel_atomic_state *old_intel_state =
9704 to_intel_atomic_state(old_state);
9705 unsigned int req_cdclk = old_intel_state->dev_cdclk;
9706
9707 bxt_set_cdclk(to_i915(dev), req_cdclk);
9708 }
9709
9710 /* compute the max rate for new configuration */
9711 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9712 {
9713 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9714 struct drm_i915_private *dev_priv = to_i915(state->dev);
9715 struct drm_crtc *crtc;
9716 struct drm_crtc_state *cstate;
9717 struct intel_crtc_state *crtc_state;
9718 unsigned max_pixel_rate = 0, i;
9719 enum pipe pipe;
9720
9721 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9722 sizeof(intel_state->min_pixclk));
9723
9724 for_each_crtc_in_state(state, crtc, cstate, i) {
9725 int pixel_rate;
9726
9727 crtc_state = to_intel_crtc_state(cstate);
9728 if (!crtc_state->base.enable) {
9729 intel_state->min_pixclk[i] = 0;
9730 continue;
9731 }
9732
9733 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9734
9735 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9736 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9737 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9738
9739 intel_state->min_pixclk[i] = pixel_rate;
9740 }
9741
9742 for_each_pipe(dev_priv, pipe)
9743 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9744
9745 return max_pixel_rate;
9746 }
9747
9748 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9749 {
9750 struct drm_i915_private *dev_priv = to_i915(dev);
9751 uint32_t val, data;
9752 int ret;
9753
9754 if (WARN((I915_READ(LCPLL_CTL) &
9755 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9756 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9757 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9758 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9759 "trying to change cdclk frequency with cdclk not enabled\n"))
9760 return;
9761
9762 mutex_lock(&dev_priv->rps.hw_lock);
9763 ret = sandybridge_pcode_write(dev_priv,
9764 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9765 mutex_unlock(&dev_priv->rps.hw_lock);
9766 if (ret) {
9767 DRM_ERROR("failed to inform pcode about cdclk change\n");
9768 return;
9769 }
9770
9771 val = I915_READ(LCPLL_CTL);
9772 val |= LCPLL_CD_SOURCE_FCLK;
9773 I915_WRITE(LCPLL_CTL, val);
9774
9775 if (wait_for_us(I915_READ(LCPLL_CTL) &
9776 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9777 DRM_ERROR("Switching to FCLK failed\n");
9778
9779 val = I915_READ(LCPLL_CTL);
9780 val &= ~LCPLL_CLK_FREQ_MASK;
9781
9782 switch (cdclk) {
9783 case 450000:
9784 val |= LCPLL_CLK_FREQ_450;
9785 data = 0;
9786 break;
9787 case 540000:
9788 val |= LCPLL_CLK_FREQ_54O_BDW;
9789 data = 1;
9790 break;
9791 case 337500:
9792 val |= LCPLL_CLK_FREQ_337_5_BDW;
9793 data = 2;
9794 break;
9795 case 675000:
9796 val |= LCPLL_CLK_FREQ_675_BDW;
9797 data = 3;
9798 break;
9799 default:
9800 WARN(1, "invalid cdclk frequency\n");
9801 return;
9802 }
9803
9804 I915_WRITE(LCPLL_CTL, val);
9805
9806 val = I915_READ(LCPLL_CTL);
9807 val &= ~LCPLL_CD_SOURCE_FCLK;
9808 I915_WRITE(LCPLL_CTL, val);
9809
9810 if (wait_for_us((I915_READ(LCPLL_CTL) &
9811 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9812 DRM_ERROR("Switching back to LCPLL failed\n");
9813
9814 mutex_lock(&dev_priv->rps.hw_lock);
9815 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9816 mutex_unlock(&dev_priv->rps.hw_lock);
9817
9818 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9819
9820 intel_update_cdclk(dev);
9821
9822 WARN(cdclk != dev_priv->cdclk_freq,
9823 "cdclk requested %d kHz but got %d kHz\n",
9824 cdclk, dev_priv->cdclk_freq);
9825 }
9826
9827 static int broadwell_calc_cdclk(int max_pixclk)
9828 {
9829 if (max_pixclk > 540000)
9830 return 675000;
9831 else if (max_pixclk > 450000)
9832 return 540000;
9833 else if (max_pixclk > 337500)
9834 return 450000;
9835 else
9836 return 337500;
9837 }
9838
9839 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9840 {
9841 struct drm_i915_private *dev_priv = to_i915(state->dev);
9842 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9843 int max_pixclk = ilk_max_pixel_rate(state);
9844 int cdclk;
9845
9846 /*
9847 * FIXME should also account for plane ratio
9848 * once 64bpp pixel formats are supported.
9849 */
9850 cdclk = broadwell_calc_cdclk(max_pixclk);
9851
9852 if (cdclk > dev_priv->max_cdclk_freq) {
9853 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9854 cdclk, dev_priv->max_cdclk_freq);
9855 return -EINVAL;
9856 }
9857
9858 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9859 if (!intel_state->active_crtcs)
9860 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9861
9862 return 0;
9863 }
9864
9865 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9866 {
9867 struct drm_device *dev = old_state->dev;
9868 struct intel_atomic_state *old_intel_state =
9869 to_intel_atomic_state(old_state);
9870 unsigned req_cdclk = old_intel_state->dev_cdclk;
9871
9872 broadwell_set_cdclk(dev, req_cdclk);
9873 }
9874
9875 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9876 {
9877 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9878 struct drm_i915_private *dev_priv = to_i915(state->dev);
9879 const int max_pixclk = ilk_max_pixel_rate(state);
9880 int vco = intel_state->cdclk_pll_vco;
9881 int cdclk;
9882
9883 /*
9884 * FIXME should also account for plane ratio
9885 * once 64bpp pixel formats are supported.
9886 */
9887 cdclk = skl_calc_cdclk(max_pixclk, vco);
9888
9889 /*
9890 * FIXME move the cdclk caclulation to
9891 * compute_config() so we can fail gracegully.
9892 */
9893 if (cdclk > dev_priv->max_cdclk_freq) {
9894 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9895 cdclk, dev_priv->max_cdclk_freq);
9896 cdclk = dev_priv->max_cdclk_freq;
9897 }
9898
9899 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9900 if (!intel_state->active_crtcs)
9901 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9902
9903 return 0;
9904 }
9905
9906 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9907 {
9908 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9909 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9910 unsigned int req_cdclk = intel_state->dev_cdclk;
9911 unsigned int req_vco = intel_state->cdclk_pll_vco;
9912
9913 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9914 }
9915
9916 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9917 struct intel_crtc_state *crtc_state)
9918 {
9919 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9920 if (!intel_ddi_pll_select(crtc, crtc_state))
9921 return -EINVAL;
9922 }
9923
9924 crtc->lowfreq_avail = false;
9925
9926 return 0;
9927 }
9928
9929 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9930 enum port port,
9931 struct intel_crtc_state *pipe_config)
9932 {
9933 enum intel_dpll_id id;
9934
9935 switch (port) {
9936 case PORT_A:
9937 pipe_config->ddi_pll_sel = SKL_DPLL0;
9938 id = DPLL_ID_SKL_DPLL0;
9939 break;
9940 case PORT_B:
9941 pipe_config->ddi_pll_sel = SKL_DPLL1;
9942 id = DPLL_ID_SKL_DPLL1;
9943 break;
9944 case PORT_C:
9945 pipe_config->ddi_pll_sel = SKL_DPLL2;
9946 id = DPLL_ID_SKL_DPLL2;
9947 break;
9948 default:
9949 DRM_ERROR("Incorrect port type\n");
9950 return;
9951 }
9952
9953 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9954 }
9955
9956 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9957 enum port port,
9958 struct intel_crtc_state *pipe_config)
9959 {
9960 enum intel_dpll_id id;
9961 u32 temp;
9962
9963 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9964 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9965
9966 switch (pipe_config->ddi_pll_sel) {
9967 case SKL_DPLL0:
9968 id = DPLL_ID_SKL_DPLL0;
9969 break;
9970 case SKL_DPLL1:
9971 id = DPLL_ID_SKL_DPLL1;
9972 break;
9973 case SKL_DPLL2:
9974 id = DPLL_ID_SKL_DPLL2;
9975 break;
9976 case SKL_DPLL3:
9977 id = DPLL_ID_SKL_DPLL3;
9978 break;
9979 default:
9980 MISSING_CASE(pipe_config->ddi_pll_sel);
9981 return;
9982 }
9983
9984 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9985 }
9986
9987 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9988 enum port port,
9989 struct intel_crtc_state *pipe_config)
9990 {
9991 enum intel_dpll_id id;
9992
9993 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9994
9995 switch (pipe_config->ddi_pll_sel) {
9996 case PORT_CLK_SEL_WRPLL1:
9997 id = DPLL_ID_WRPLL1;
9998 break;
9999 case PORT_CLK_SEL_WRPLL2:
10000 id = DPLL_ID_WRPLL2;
10001 break;
10002 case PORT_CLK_SEL_SPLL:
10003 id = DPLL_ID_SPLL;
10004 break;
10005 case PORT_CLK_SEL_LCPLL_810:
10006 id = DPLL_ID_LCPLL_810;
10007 break;
10008 case PORT_CLK_SEL_LCPLL_1350:
10009 id = DPLL_ID_LCPLL_1350;
10010 break;
10011 case PORT_CLK_SEL_LCPLL_2700:
10012 id = DPLL_ID_LCPLL_2700;
10013 break;
10014 default:
10015 MISSING_CASE(pipe_config->ddi_pll_sel);
10016 /* fall through */
10017 case PORT_CLK_SEL_NONE:
10018 return;
10019 }
10020
10021 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10022 }
10023
10024 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10025 struct intel_crtc_state *pipe_config,
10026 unsigned long *power_domain_mask)
10027 {
10028 struct drm_device *dev = crtc->base.dev;
10029 struct drm_i915_private *dev_priv = to_i915(dev);
10030 enum intel_display_power_domain power_domain;
10031 u32 tmp;
10032
10033 /*
10034 * The pipe->transcoder mapping is fixed with the exception of the eDP
10035 * transcoder handled below.
10036 */
10037 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10038
10039 /*
10040 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10041 * consistency and less surprising code; it's in always on power).
10042 */
10043 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10044 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10045 enum pipe trans_edp_pipe;
10046 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10047 default:
10048 WARN(1, "unknown pipe linked to edp transcoder\n");
10049 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10050 case TRANS_DDI_EDP_INPUT_A_ON:
10051 trans_edp_pipe = PIPE_A;
10052 break;
10053 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10054 trans_edp_pipe = PIPE_B;
10055 break;
10056 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10057 trans_edp_pipe = PIPE_C;
10058 break;
10059 }
10060
10061 if (trans_edp_pipe == crtc->pipe)
10062 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10063 }
10064
10065 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10066 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10067 return false;
10068 *power_domain_mask |= BIT(power_domain);
10069
10070 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10071
10072 return tmp & PIPECONF_ENABLE;
10073 }
10074
10075 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10076 struct intel_crtc_state *pipe_config,
10077 unsigned long *power_domain_mask)
10078 {
10079 struct drm_device *dev = crtc->base.dev;
10080 struct drm_i915_private *dev_priv = to_i915(dev);
10081 enum intel_display_power_domain power_domain;
10082 enum port port;
10083 enum transcoder cpu_transcoder;
10084 u32 tmp;
10085
10086 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10087 if (port == PORT_A)
10088 cpu_transcoder = TRANSCODER_DSI_A;
10089 else
10090 cpu_transcoder = TRANSCODER_DSI_C;
10091
10092 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10093 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10094 continue;
10095 *power_domain_mask |= BIT(power_domain);
10096
10097 /*
10098 * The PLL needs to be enabled with a valid divider
10099 * configuration, otherwise accessing DSI registers will hang
10100 * the machine. See BSpec North Display Engine
10101 * registers/MIPI[BXT]. We can break out here early, since we
10102 * need the same DSI PLL to be enabled for both DSI ports.
10103 */
10104 if (!intel_dsi_pll_is_enabled(dev_priv))
10105 break;
10106
10107 /* XXX: this works for video mode only */
10108 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10109 if (!(tmp & DPI_ENABLE))
10110 continue;
10111
10112 tmp = I915_READ(MIPI_CTRL(port));
10113 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10114 continue;
10115
10116 pipe_config->cpu_transcoder = cpu_transcoder;
10117 break;
10118 }
10119
10120 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10121 }
10122
10123 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10124 struct intel_crtc_state *pipe_config)
10125 {
10126 struct drm_device *dev = crtc->base.dev;
10127 struct drm_i915_private *dev_priv = to_i915(dev);
10128 struct intel_shared_dpll *pll;
10129 enum port port;
10130 uint32_t tmp;
10131
10132 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10133
10134 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10135
10136 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10137 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10138 else if (IS_BROXTON(dev))
10139 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10140 else
10141 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10142
10143 pll = pipe_config->shared_dpll;
10144 if (pll) {
10145 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10146 &pipe_config->dpll_hw_state));
10147 }
10148
10149 /*
10150 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10151 * DDI E. So just check whether this pipe is wired to DDI E and whether
10152 * the PCH transcoder is on.
10153 */
10154 if (INTEL_INFO(dev)->gen < 9 &&
10155 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10156 pipe_config->has_pch_encoder = true;
10157
10158 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10159 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10160 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10161
10162 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10163 }
10164 }
10165
10166 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10167 struct intel_crtc_state *pipe_config)
10168 {
10169 struct drm_device *dev = crtc->base.dev;
10170 struct drm_i915_private *dev_priv = to_i915(dev);
10171 enum intel_display_power_domain power_domain;
10172 unsigned long power_domain_mask;
10173 bool active;
10174
10175 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10176 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10177 return false;
10178 power_domain_mask = BIT(power_domain);
10179
10180 pipe_config->shared_dpll = NULL;
10181
10182 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10183
10184 if (IS_BROXTON(dev_priv) &&
10185 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10186 WARN_ON(active);
10187 active = true;
10188 }
10189
10190 if (!active)
10191 goto out;
10192
10193 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10194 haswell_get_ddi_port_state(crtc, pipe_config);
10195 intel_get_pipe_timings(crtc, pipe_config);
10196 }
10197
10198 intel_get_pipe_src_size(crtc, pipe_config);
10199
10200 pipe_config->gamma_mode =
10201 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10202
10203 if (INTEL_INFO(dev)->gen >= 9) {
10204 skl_init_scalers(dev, crtc, pipe_config);
10205 }
10206
10207 if (INTEL_INFO(dev)->gen >= 9) {
10208 pipe_config->scaler_state.scaler_id = -1;
10209 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10210 }
10211
10212 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10213 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10214 power_domain_mask |= BIT(power_domain);
10215 if (INTEL_INFO(dev)->gen >= 9)
10216 skylake_get_pfit_config(crtc, pipe_config);
10217 else
10218 ironlake_get_pfit_config(crtc, pipe_config);
10219 }
10220
10221 if (IS_HASWELL(dev))
10222 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10223 (I915_READ(IPS_CTL) & IPS_ENABLE);
10224
10225 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10226 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10227 pipe_config->pixel_multiplier =
10228 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10229 } else {
10230 pipe_config->pixel_multiplier = 1;
10231 }
10232
10233 out:
10234 for_each_power_domain(power_domain, power_domain_mask)
10235 intel_display_power_put(dev_priv, power_domain);
10236
10237 return active;
10238 }
10239
10240 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10241 const struct intel_plane_state *plane_state)
10242 {
10243 struct drm_device *dev = crtc->dev;
10244 struct drm_i915_private *dev_priv = to_i915(dev);
10245 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10246 uint32_t cntl = 0, size = 0;
10247
10248 if (plane_state && plane_state->visible) {
10249 unsigned int width = plane_state->base.crtc_w;
10250 unsigned int height = plane_state->base.crtc_h;
10251 unsigned int stride = roundup_pow_of_two(width) * 4;
10252
10253 switch (stride) {
10254 default:
10255 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10256 width, stride);
10257 stride = 256;
10258 /* fallthrough */
10259 case 256:
10260 case 512:
10261 case 1024:
10262 case 2048:
10263 break;
10264 }
10265
10266 cntl |= CURSOR_ENABLE |
10267 CURSOR_GAMMA_ENABLE |
10268 CURSOR_FORMAT_ARGB |
10269 CURSOR_STRIDE(stride);
10270
10271 size = (height << 12) | width;
10272 }
10273
10274 if (intel_crtc->cursor_cntl != 0 &&
10275 (intel_crtc->cursor_base != base ||
10276 intel_crtc->cursor_size != size ||
10277 intel_crtc->cursor_cntl != cntl)) {
10278 /* On these chipsets we can only modify the base/size/stride
10279 * whilst the cursor is disabled.
10280 */
10281 I915_WRITE(CURCNTR(PIPE_A), 0);
10282 POSTING_READ(CURCNTR(PIPE_A));
10283 intel_crtc->cursor_cntl = 0;
10284 }
10285
10286 if (intel_crtc->cursor_base != base) {
10287 I915_WRITE(CURBASE(PIPE_A), base);
10288 intel_crtc->cursor_base = base;
10289 }
10290
10291 if (intel_crtc->cursor_size != size) {
10292 I915_WRITE(CURSIZE, size);
10293 intel_crtc->cursor_size = size;
10294 }
10295
10296 if (intel_crtc->cursor_cntl != cntl) {
10297 I915_WRITE(CURCNTR(PIPE_A), cntl);
10298 POSTING_READ(CURCNTR(PIPE_A));
10299 intel_crtc->cursor_cntl = cntl;
10300 }
10301 }
10302
10303 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10304 const struct intel_plane_state *plane_state)
10305 {
10306 struct drm_device *dev = crtc->dev;
10307 struct drm_i915_private *dev_priv = to_i915(dev);
10308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10309 int pipe = intel_crtc->pipe;
10310 uint32_t cntl = 0;
10311
10312 if (plane_state && plane_state->visible) {
10313 cntl = MCURSOR_GAMMA_ENABLE;
10314 switch (plane_state->base.crtc_w) {
10315 case 64:
10316 cntl |= CURSOR_MODE_64_ARGB_AX;
10317 break;
10318 case 128:
10319 cntl |= CURSOR_MODE_128_ARGB_AX;
10320 break;
10321 case 256:
10322 cntl |= CURSOR_MODE_256_ARGB_AX;
10323 break;
10324 default:
10325 MISSING_CASE(plane_state->base.crtc_w);
10326 return;
10327 }
10328 cntl |= pipe << 28; /* Connect to correct pipe */
10329
10330 if (HAS_DDI(dev))
10331 cntl |= CURSOR_PIPE_CSC_ENABLE;
10332
10333 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10334 cntl |= CURSOR_ROTATE_180;
10335 }
10336
10337 if (intel_crtc->cursor_cntl != cntl) {
10338 I915_WRITE(CURCNTR(pipe), cntl);
10339 POSTING_READ(CURCNTR(pipe));
10340 intel_crtc->cursor_cntl = cntl;
10341 }
10342
10343 /* and commit changes on next vblank */
10344 I915_WRITE(CURBASE(pipe), base);
10345 POSTING_READ(CURBASE(pipe));
10346
10347 intel_crtc->cursor_base = base;
10348 }
10349
10350 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10351 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10352 const struct intel_plane_state *plane_state)
10353 {
10354 struct drm_device *dev = crtc->dev;
10355 struct drm_i915_private *dev_priv = to_i915(dev);
10356 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10357 int pipe = intel_crtc->pipe;
10358 u32 base = intel_crtc->cursor_addr;
10359 u32 pos = 0;
10360
10361 if (plane_state) {
10362 int x = plane_state->base.crtc_x;
10363 int y = plane_state->base.crtc_y;
10364
10365 if (x < 0) {
10366 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10367 x = -x;
10368 }
10369 pos |= x << CURSOR_X_SHIFT;
10370
10371 if (y < 0) {
10372 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10373 y = -y;
10374 }
10375 pos |= y << CURSOR_Y_SHIFT;
10376
10377 /* ILK+ do this automagically */
10378 if (HAS_GMCH_DISPLAY(dev) &&
10379 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10380 base += (plane_state->base.crtc_h *
10381 plane_state->base.crtc_w - 1) * 4;
10382 }
10383 }
10384
10385 I915_WRITE(CURPOS(pipe), pos);
10386
10387 if (IS_845G(dev) || IS_I865G(dev))
10388 i845_update_cursor(crtc, base, plane_state);
10389 else
10390 i9xx_update_cursor(crtc, base, plane_state);
10391 }
10392
10393 static bool cursor_size_ok(struct drm_device *dev,
10394 uint32_t width, uint32_t height)
10395 {
10396 if (width == 0 || height == 0)
10397 return false;
10398
10399 /*
10400 * 845g/865g are special in that they are only limited by
10401 * the width of their cursors, the height is arbitrary up to
10402 * the precision of the register. Everything else requires
10403 * square cursors, limited to a few power-of-two sizes.
10404 */
10405 if (IS_845G(dev) || IS_I865G(dev)) {
10406 if ((width & 63) != 0)
10407 return false;
10408
10409 if (width > (IS_845G(dev) ? 64 : 512))
10410 return false;
10411
10412 if (height > 1023)
10413 return false;
10414 } else {
10415 switch (width | height) {
10416 case 256:
10417 case 128:
10418 if (IS_GEN2(dev))
10419 return false;
10420 case 64:
10421 break;
10422 default:
10423 return false;
10424 }
10425 }
10426
10427 return true;
10428 }
10429
10430 /* VESA 640x480x72Hz mode to set on the pipe */
10431 static struct drm_display_mode load_detect_mode = {
10432 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10433 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10434 };
10435
10436 struct drm_framebuffer *
10437 __intel_framebuffer_create(struct drm_device *dev,
10438 struct drm_mode_fb_cmd2 *mode_cmd,
10439 struct drm_i915_gem_object *obj)
10440 {
10441 struct intel_framebuffer *intel_fb;
10442 int ret;
10443
10444 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10445 if (!intel_fb)
10446 return ERR_PTR(-ENOMEM);
10447
10448 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10449 if (ret)
10450 goto err;
10451
10452 return &intel_fb->base;
10453
10454 err:
10455 kfree(intel_fb);
10456 return ERR_PTR(ret);
10457 }
10458
10459 static struct drm_framebuffer *
10460 intel_framebuffer_create(struct drm_device *dev,
10461 struct drm_mode_fb_cmd2 *mode_cmd,
10462 struct drm_i915_gem_object *obj)
10463 {
10464 struct drm_framebuffer *fb;
10465 int ret;
10466
10467 ret = i915_mutex_lock_interruptible(dev);
10468 if (ret)
10469 return ERR_PTR(ret);
10470 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10471 mutex_unlock(&dev->struct_mutex);
10472
10473 return fb;
10474 }
10475
10476 static u32
10477 intel_framebuffer_pitch_for_width(int width, int bpp)
10478 {
10479 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10480 return ALIGN(pitch, 64);
10481 }
10482
10483 static u32
10484 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10485 {
10486 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10487 return PAGE_ALIGN(pitch * mode->vdisplay);
10488 }
10489
10490 static struct drm_framebuffer *
10491 intel_framebuffer_create_for_mode(struct drm_device *dev,
10492 struct drm_display_mode *mode,
10493 int depth, int bpp)
10494 {
10495 struct drm_framebuffer *fb;
10496 struct drm_i915_gem_object *obj;
10497 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10498
10499 obj = i915_gem_object_create(dev,
10500 intel_framebuffer_size_for_mode(mode, bpp));
10501 if (IS_ERR(obj))
10502 return ERR_CAST(obj);
10503
10504 mode_cmd.width = mode->hdisplay;
10505 mode_cmd.height = mode->vdisplay;
10506 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10507 bpp);
10508 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10509
10510 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10511 if (IS_ERR(fb))
10512 drm_gem_object_unreference_unlocked(&obj->base);
10513
10514 return fb;
10515 }
10516
10517 static struct drm_framebuffer *
10518 mode_fits_in_fbdev(struct drm_device *dev,
10519 struct drm_display_mode *mode)
10520 {
10521 #ifdef CONFIG_DRM_FBDEV_EMULATION
10522 struct drm_i915_private *dev_priv = to_i915(dev);
10523 struct drm_i915_gem_object *obj;
10524 struct drm_framebuffer *fb;
10525
10526 if (!dev_priv->fbdev)
10527 return NULL;
10528
10529 if (!dev_priv->fbdev->fb)
10530 return NULL;
10531
10532 obj = dev_priv->fbdev->fb->obj;
10533 BUG_ON(!obj);
10534
10535 fb = &dev_priv->fbdev->fb->base;
10536 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10537 fb->bits_per_pixel))
10538 return NULL;
10539
10540 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10541 return NULL;
10542
10543 drm_framebuffer_reference(fb);
10544 return fb;
10545 #else
10546 return NULL;
10547 #endif
10548 }
10549
10550 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10551 struct drm_crtc *crtc,
10552 struct drm_display_mode *mode,
10553 struct drm_framebuffer *fb,
10554 int x, int y)
10555 {
10556 struct drm_plane_state *plane_state;
10557 int hdisplay, vdisplay;
10558 int ret;
10559
10560 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10561 if (IS_ERR(plane_state))
10562 return PTR_ERR(plane_state);
10563
10564 if (mode)
10565 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10566 else
10567 hdisplay = vdisplay = 0;
10568
10569 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10570 if (ret)
10571 return ret;
10572 drm_atomic_set_fb_for_plane(plane_state, fb);
10573 plane_state->crtc_x = 0;
10574 plane_state->crtc_y = 0;
10575 plane_state->crtc_w = hdisplay;
10576 plane_state->crtc_h = vdisplay;
10577 plane_state->src_x = x << 16;
10578 plane_state->src_y = y << 16;
10579 plane_state->src_w = hdisplay << 16;
10580 plane_state->src_h = vdisplay << 16;
10581
10582 return 0;
10583 }
10584
10585 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10586 struct drm_display_mode *mode,
10587 struct intel_load_detect_pipe *old,
10588 struct drm_modeset_acquire_ctx *ctx)
10589 {
10590 struct intel_crtc *intel_crtc;
10591 struct intel_encoder *intel_encoder =
10592 intel_attached_encoder(connector);
10593 struct drm_crtc *possible_crtc;
10594 struct drm_encoder *encoder = &intel_encoder->base;
10595 struct drm_crtc *crtc = NULL;
10596 struct drm_device *dev = encoder->dev;
10597 struct drm_framebuffer *fb;
10598 struct drm_mode_config *config = &dev->mode_config;
10599 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10600 struct drm_connector_state *connector_state;
10601 struct intel_crtc_state *crtc_state;
10602 int ret, i = -1;
10603
10604 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10605 connector->base.id, connector->name,
10606 encoder->base.id, encoder->name);
10607
10608 old->restore_state = NULL;
10609
10610 retry:
10611 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10612 if (ret)
10613 goto fail;
10614
10615 /*
10616 * Algorithm gets a little messy:
10617 *
10618 * - if the connector already has an assigned crtc, use it (but make
10619 * sure it's on first)
10620 *
10621 * - try to find the first unused crtc that can drive this connector,
10622 * and use that if we find one
10623 */
10624
10625 /* See if we already have a CRTC for this connector */
10626 if (connector->state->crtc) {
10627 crtc = connector->state->crtc;
10628
10629 ret = drm_modeset_lock(&crtc->mutex, ctx);
10630 if (ret)
10631 goto fail;
10632
10633 /* Make sure the crtc and connector are running */
10634 goto found;
10635 }
10636
10637 /* Find an unused one (if possible) */
10638 for_each_crtc(dev, possible_crtc) {
10639 i++;
10640 if (!(encoder->possible_crtcs & (1 << i)))
10641 continue;
10642
10643 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10644 if (ret)
10645 goto fail;
10646
10647 if (possible_crtc->state->enable) {
10648 drm_modeset_unlock(&possible_crtc->mutex);
10649 continue;
10650 }
10651
10652 crtc = possible_crtc;
10653 break;
10654 }
10655
10656 /*
10657 * If we didn't find an unused CRTC, don't use any.
10658 */
10659 if (!crtc) {
10660 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10661 goto fail;
10662 }
10663
10664 found:
10665 intel_crtc = to_intel_crtc(crtc);
10666
10667 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10668 if (ret)
10669 goto fail;
10670
10671 state = drm_atomic_state_alloc(dev);
10672 restore_state = drm_atomic_state_alloc(dev);
10673 if (!state || !restore_state) {
10674 ret = -ENOMEM;
10675 goto fail;
10676 }
10677
10678 state->acquire_ctx = ctx;
10679 restore_state->acquire_ctx = ctx;
10680
10681 connector_state = drm_atomic_get_connector_state(state, connector);
10682 if (IS_ERR(connector_state)) {
10683 ret = PTR_ERR(connector_state);
10684 goto fail;
10685 }
10686
10687 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10688 if (ret)
10689 goto fail;
10690
10691 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10692 if (IS_ERR(crtc_state)) {
10693 ret = PTR_ERR(crtc_state);
10694 goto fail;
10695 }
10696
10697 crtc_state->base.active = crtc_state->base.enable = true;
10698
10699 if (!mode)
10700 mode = &load_detect_mode;
10701
10702 /* We need a framebuffer large enough to accommodate all accesses
10703 * that the plane may generate whilst we perform load detection.
10704 * We can not rely on the fbcon either being present (we get called
10705 * during its initialisation to detect all boot displays, or it may
10706 * not even exist) or that it is large enough to satisfy the
10707 * requested mode.
10708 */
10709 fb = mode_fits_in_fbdev(dev, mode);
10710 if (fb == NULL) {
10711 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10712 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10713 } else
10714 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10715 if (IS_ERR(fb)) {
10716 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10717 goto fail;
10718 }
10719
10720 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10721 if (ret)
10722 goto fail;
10723
10724 drm_framebuffer_unreference(fb);
10725
10726 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10727 if (ret)
10728 goto fail;
10729
10730 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10731 if (!ret)
10732 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10733 if (!ret)
10734 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10735 if (ret) {
10736 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10737 goto fail;
10738 }
10739
10740 ret = drm_atomic_commit(state);
10741 if (ret) {
10742 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10743 goto fail;
10744 }
10745
10746 old->restore_state = restore_state;
10747
10748 /* let the connector get through one full cycle before testing */
10749 intel_wait_for_vblank(dev, intel_crtc->pipe);
10750 return true;
10751
10752 fail:
10753 drm_atomic_state_free(state);
10754 drm_atomic_state_free(restore_state);
10755 restore_state = state = NULL;
10756
10757 if (ret == -EDEADLK) {
10758 drm_modeset_backoff(ctx);
10759 goto retry;
10760 }
10761
10762 return false;
10763 }
10764
10765 void intel_release_load_detect_pipe(struct drm_connector *connector,
10766 struct intel_load_detect_pipe *old,
10767 struct drm_modeset_acquire_ctx *ctx)
10768 {
10769 struct intel_encoder *intel_encoder =
10770 intel_attached_encoder(connector);
10771 struct drm_encoder *encoder = &intel_encoder->base;
10772 struct drm_atomic_state *state = old->restore_state;
10773 int ret;
10774
10775 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10776 connector->base.id, connector->name,
10777 encoder->base.id, encoder->name);
10778
10779 if (!state)
10780 return;
10781
10782 ret = drm_atomic_commit(state);
10783 if (ret) {
10784 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10785 drm_atomic_state_free(state);
10786 }
10787 }
10788
10789 static int i9xx_pll_refclk(struct drm_device *dev,
10790 const struct intel_crtc_state *pipe_config)
10791 {
10792 struct drm_i915_private *dev_priv = to_i915(dev);
10793 u32 dpll = pipe_config->dpll_hw_state.dpll;
10794
10795 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10796 return dev_priv->vbt.lvds_ssc_freq;
10797 else if (HAS_PCH_SPLIT(dev))
10798 return 120000;
10799 else if (!IS_GEN2(dev))
10800 return 96000;
10801 else
10802 return 48000;
10803 }
10804
10805 /* Returns the clock of the currently programmed mode of the given pipe. */
10806 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10807 struct intel_crtc_state *pipe_config)
10808 {
10809 struct drm_device *dev = crtc->base.dev;
10810 struct drm_i915_private *dev_priv = to_i915(dev);
10811 int pipe = pipe_config->cpu_transcoder;
10812 u32 dpll = pipe_config->dpll_hw_state.dpll;
10813 u32 fp;
10814 struct dpll clock;
10815 int port_clock;
10816 int refclk = i9xx_pll_refclk(dev, pipe_config);
10817
10818 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10819 fp = pipe_config->dpll_hw_state.fp0;
10820 else
10821 fp = pipe_config->dpll_hw_state.fp1;
10822
10823 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10824 if (IS_PINEVIEW(dev)) {
10825 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10826 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10827 } else {
10828 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10829 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10830 }
10831
10832 if (!IS_GEN2(dev)) {
10833 if (IS_PINEVIEW(dev))
10834 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10835 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10836 else
10837 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10838 DPLL_FPA01_P1_POST_DIV_SHIFT);
10839
10840 switch (dpll & DPLL_MODE_MASK) {
10841 case DPLLB_MODE_DAC_SERIAL:
10842 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10843 5 : 10;
10844 break;
10845 case DPLLB_MODE_LVDS:
10846 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10847 7 : 14;
10848 break;
10849 default:
10850 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10851 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10852 return;
10853 }
10854
10855 if (IS_PINEVIEW(dev))
10856 port_clock = pnv_calc_dpll_params(refclk, &clock);
10857 else
10858 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10859 } else {
10860 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10861 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10862
10863 if (is_lvds) {
10864 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10865 DPLL_FPA01_P1_POST_DIV_SHIFT);
10866
10867 if (lvds & LVDS_CLKB_POWER_UP)
10868 clock.p2 = 7;
10869 else
10870 clock.p2 = 14;
10871 } else {
10872 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10873 clock.p1 = 2;
10874 else {
10875 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10876 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10877 }
10878 if (dpll & PLL_P2_DIVIDE_BY_4)
10879 clock.p2 = 4;
10880 else
10881 clock.p2 = 2;
10882 }
10883
10884 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10885 }
10886
10887 /*
10888 * This value includes pixel_multiplier. We will use
10889 * port_clock to compute adjusted_mode.crtc_clock in the
10890 * encoder's get_config() function.
10891 */
10892 pipe_config->port_clock = port_clock;
10893 }
10894
10895 int intel_dotclock_calculate(int link_freq,
10896 const struct intel_link_m_n *m_n)
10897 {
10898 /*
10899 * The calculation for the data clock is:
10900 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10901 * But we want to avoid losing precison if possible, so:
10902 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10903 *
10904 * and the link clock is simpler:
10905 * link_clock = (m * link_clock) / n
10906 */
10907
10908 if (!m_n->link_n)
10909 return 0;
10910
10911 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10912 }
10913
10914 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10915 struct intel_crtc_state *pipe_config)
10916 {
10917 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10918
10919 /* read out port_clock from the DPLL */
10920 i9xx_crtc_clock_get(crtc, pipe_config);
10921
10922 /*
10923 * In case there is an active pipe without active ports,
10924 * we may need some idea for the dotclock anyway.
10925 * Calculate one based on the FDI configuration.
10926 */
10927 pipe_config->base.adjusted_mode.crtc_clock =
10928 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10929 &pipe_config->fdi_m_n);
10930 }
10931
10932 /** Returns the currently programmed mode of the given pipe. */
10933 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10934 struct drm_crtc *crtc)
10935 {
10936 struct drm_i915_private *dev_priv = to_i915(dev);
10937 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10938 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10939 struct drm_display_mode *mode;
10940 struct intel_crtc_state *pipe_config;
10941 int htot = I915_READ(HTOTAL(cpu_transcoder));
10942 int hsync = I915_READ(HSYNC(cpu_transcoder));
10943 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10944 int vsync = I915_READ(VSYNC(cpu_transcoder));
10945 enum pipe pipe = intel_crtc->pipe;
10946
10947 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10948 if (!mode)
10949 return NULL;
10950
10951 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10952 if (!pipe_config) {
10953 kfree(mode);
10954 return NULL;
10955 }
10956
10957 /*
10958 * Construct a pipe_config sufficient for getting the clock info
10959 * back out of crtc_clock_get.
10960 *
10961 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10962 * to use a real value here instead.
10963 */
10964 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10965 pipe_config->pixel_multiplier = 1;
10966 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10967 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10968 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10969 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10970
10971 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10972 mode->hdisplay = (htot & 0xffff) + 1;
10973 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10974 mode->hsync_start = (hsync & 0xffff) + 1;
10975 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10976 mode->vdisplay = (vtot & 0xffff) + 1;
10977 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10978 mode->vsync_start = (vsync & 0xffff) + 1;
10979 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10980
10981 drm_mode_set_name(mode);
10982
10983 kfree(pipe_config);
10984
10985 return mode;
10986 }
10987
10988 static void intel_crtc_destroy(struct drm_crtc *crtc)
10989 {
10990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10991 struct drm_device *dev = crtc->dev;
10992 struct intel_flip_work *work;
10993
10994 spin_lock_irq(&dev->event_lock);
10995 work = intel_crtc->flip_work;
10996 intel_crtc->flip_work = NULL;
10997 spin_unlock_irq(&dev->event_lock);
10998
10999 if (work) {
11000 cancel_work_sync(&work->mmio_work);
11001 cancel_work_sync(&work->unpin_work);
11002 kfree(work);
11003 }
11004
11005 drm_crtc_cleanup(crtc);
11006
11007 kfree(intel_crtc);
11008 }
11009
11010 static void intel_unpin_work_fn(struct work_struct *__work)
11011 {
11012 struct intel_flip_work *work =
11013 container_of(__work, struct intel_flip_work, unpin_work);
11014 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11015 struct drm_device *dev = crtc->base.dev;
11016 struct drm_plane *primary = crtc->base.primary;
11017
11018 if (is_mmio_work(work))
11019 flush_work(&work->mmio_work);
11020
11021 mutex_lock(&dev->struct_mutex);
11022 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11023 drm_gem_object_unreference(&work->pending_flip_obj->base);
11024
11025 if (work->flip_queued_req)
11026 i915_gem_request_assign(&work->flip_queued_req, NULL);
11027 mutex_unlock(&dev->struct_mutex);
11028
11029 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
11030 intel_fbc_post_update(crtc);
11031 drm_framebuffer_unreference(work->old_fb);
11032
11033 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11034 atomic_dec(&crtc->unpin_work_count);
11035
11036 kfree(work);
11037 }
11038
11039 /* Is 'a' after or equal to 'b'? */
11040 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11041 {
11042 return !((a - b) & 0x80000000);
11043 }
11044
11045 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11046 struct intel_flip_work *work)
11047 {
11048 struct drm_device *dev = crtc->base.dev;
11049 struct drm_i915_private *dev_priv = to_i915(dev);
11050 unsigned reset_counter;
11051
11052 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11053 if (crtc->reset_counter != reset_counter)
11054 return true;
11055
11056 /*
11057 * The relevant registers doen't exist on pre-ctg.
11058 * As the flip done interrupt doesn't trigger for mmio
11059 * flips on gmch platforms, a flip count check isn't
11060 * really needed there. But since ctg has the registers,
11061 * include it in the check anyway.
11062 */
11063 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11064 return true;
11065
11066 /*
11067 * BDW signals flip done immediately if the plane
11068 * is disabled, even if the plane enable is already
11069 * armed to occur at the next vblank :(
11070 */
11071
11072 /*
11073 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11074 * used the same base address. In that case the mmio flip might
11075 * have completed, but the CS hasn't even executed the flip yet.
11076 *
11077 * A flip count check isn't enough as the CS might have updated
11078 * the base address just after start of vblank, but before we
11079 * managed to process the interrupt. This means we'd complete the
11080 * CS flip too soon.
11081 *
11082 * Combining both checks should get us a good enough result. It may
11083 * still happen that the CS flip has been executed, but has not
11084 * yet actually completed. But in case the base address is the same
11085 * anyway, we don't really care.
11086 */
11087 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11088 crtc->flip_work->gtt_offset &&
11089 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11090 crtc->flip_work->flip_count);
11091 }
11092
11093 static bool
11094 __pageflip_finished_mmio(struct intel_crtc *crtc,
11095 struct intel_flip_work *work)
11096 {
11097 /*
11098 * MMIO work completes when vblank is different from
11099 * flip_queued_vblank.
11100 *
11101 * Reset counter value doesn't matter, this is handled by
11102 * i915_wait_request finishing early, so no need to handle
11103 * reset here.
11104 */
11105 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11106 }
11107
11108
11109 static bool pageflip_finished(struct intel_crtc *crtc,
11110 struct intel_flip_work *work)
11111 {
11112 if (!atomic_read(&work->pending))
11113 return false;
11114
11115 smp_rmb();
11116
11117 if (is_mmio_work(work))
11118 return __pageflip_finished_mmio(crtc, work);
11119 else
11120 return __pageflip_finished_cs(crtc, work);
11121 }
11122
11123 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11124 {
11125 struct drm_device *dev = &dev_priv->drm;
11126 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11128 struct intel_flip_work *work;
11129 unsigned long flags;
11130
11131 /* Ignore early vblank irqs */
11132 if (!crtc)
11133 return;
11134
11135 /*
11136 * This is called both by irq handlers and the reset code (to complete
11137 * lost pageflips) so needs the full irqsave spinlocks.
11138 */
11139 spin_lock_irqsave(&dev->event_lock, flags);
11140 work = intel_crtc->flip_work;
11141
11142 if (work != NULL &&
11143 !is_mmio_work(work) &&
11144 pageflip_finished(intel_crtc, work))
11145 page_flip_completed(intel_crtc);
11146
11147 spin_unlock_irqrestore(&dev->event_lock, flags);
11148 }
11149
11150 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11151 {
11152 struct drm_device *dev = &dev_priv->drm;
11153 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11155 struct intel_flip_work *work;
11156 unsigned long flags;
11157
11158 /* Ignore early vblank irqs */
11159 if (!crtc)
11160 return;
11161
11162 /*
11163 * This is called both by irq handlers and the reset code (to complete
11164 * lost pageflips) so needs the full irqsave spinlocks.
11165 */
11166 spin_lock_irqsave(&dev->event_lock, flags);
11167 work = intel_crtc->flip_work;
11168
11169 if (work != NULL &&
11170 is_mmio_work(work) &&
11171 pageflip_finished(intel_crtc, work))
11172 page_flip_completed(intel_crtc);
11173
11174 spin_unlock_irqrestore(&dev->event_lock, flags);
11175 }
11176
11177 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11178 struct intel_flip_work *work)
11179 {
11180 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11181
11182 /* Ensure that the work item is consistent when activating it ... */
11183 smp_mb__before_atomic();
11184 atomic_set(&work->pending, 1);
11185 }
11186
11187 static int intel_gen2_queue_flip(struct drm_device *dev,
11188 struct drm_crtc *crtc,
11189 struct drm_framebuffer *fb,
11190 struct drm_i915_gem_object *obj,
11191 struct drm_i915_gem_request *req,
11192 uint32_t flags)
11193 {
11194 struct intel_engine_cs *engine = req->engine;
11195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11196 u32 flip_mask;
11197 int ret;
11198
11199 ret = intel_ring_begin(req, 6);
11200 if (ret)
11201 return ret;
11202
11203 /* Can't queue multiple flips, so wait for the previous
11204 * one to finish before executing the next.
11205 */
11206 if (intel_crtc->plane)
11207 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11208 else
11209 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11210 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11211 intel_ring_emit(engine, MI_NOOP);
11212 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11213 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11214 intel_ring_emit(engine, fb->pitches[0]);
11215 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11216 intel_ring_emit(engine, 0); /* aux display base address, unused */
11217
11218 return 0;
11219 }
11220
11221 static int intel_gen3_queue_flip(struct drm_device *dev,
11222 struct drm_crtc *crtc,
11223 struct drm_framebuffer *fb,
11224 struct drm_i915_gem_object *obj,
11225 struct drm_i915_gem_request *req,
11226 uint32_t flags)
11227 {
11228 struct intel_engine_cs *engine = req->engine;
11229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11230 u32 flip_mask;
11231 int ret;
11232
11233 ret = intel_ring_begin(req, 6);
11234 if (ret)
11235 return ret;
11236
11237 if (intel_crtc->plane)
11238 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11239 else
11240 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11241 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11242 intel_ring_emit(engine, MI_NOOP);
11243 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11244 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11245 intel_ring_emit(engine, fb->pitches[0]);
11246 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11247 intel_ring_emit(engine, MI_NOOP);
11248
11249 return 0;
11250 }
11251
11252 static int intel_gen4_queue_flip(struct drm_device *dev,
11253 struct drm_crtc *crtc,
11254 struct drm_framebuffer *fb,
11255 struct drm_i915_gem_object *obj,
11256 struct drm_i915_gem_request *req,
11257 uint32_t flags)
11258 {
11259 struct intel_engine_cs *engine = req->engine;
11260 struct drm_i915_private *dev_priv = to_i915(dev);
11261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11262 uint32_t pf, pipesrc;
11263 int ret;
11264
11265 ret = intel_ring_begin(req, 4);
11266 if (ret)
11267 return ret;
11268
11269 /* i965+ uses the linear or tiled offsets from the
11270 * Display Registers (which do not change across a page-flip)
11271 * so we need only reprogram the base address.
11272 */
11273 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11274 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11275 intel_ring_emit(engine, fb->pitches[0]);
11276 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11277 obj->tiling_mode);
11278
11279 /* XXX Enabling the panel-fitter across page-flip is so far
11280 * untested on non-native modes, so ignore it for now.
11281 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11282 */
11283 pf = 0;
11284 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11285 intel_ring_emit(engine, pf | pipesrc);
11286
11287 return 0;
11288 }
11289
11290 static int intel_gen6_queue_flip(struct drm_device *dev,
11291 struct drm_crtc *crtc,
11292 struct drm_framebuffer *fb,
11293 struct drm_i915_gem_object *obj,
11294 struct drm_i915_gem_request *req,
11295 uint32_t flags)
11296 {
11297 struct intel_engine_cs *engine = req->engine;
11298 struct drm_i915_private *dev_priv = to_i915(dev);
11299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11300 uint32_t pf, pipesrc;
11301 int ret;
11302
11303 ret = intel_ring_begin(req, 4);
11304 if (ret)
11305 return ret;
11306
11307 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11308 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11309 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11310 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11311
11312 /* Contrary to the suggestions in the documentation,
11313 * "Enable Panel Fitter" does not seem to be required when page
11314 * flipping with a non-native mode, and worse causes a normal
11315 * modeset to fail.
11316 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11317 */
11318 pf = 0;
11319 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11320 intel_ring_emit(engine, pf | pipesrc);
11321
11322 return 0;
11323 }
11324
11325 static int intel_gen7_queue_flip(struct drm_device *dev,
11326 struct drm_crtc *crtc,
11327 struct drm_framebuffer *fb,
11328 struct drm_i915_gem_object *obj,
11329 struct drm_i915_gem_request *req,
11330 uint32_t flags)
11331 {
11332 struct intel_engine_cs *engine = req->engine;
11333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11334 uint32_t plane_bit = 0;
11335 int len, ret;
11336
11337 switch (intel_crtc->plane) {
11338 case PLANE_A:
11339 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11340 break;
11341 case PLANE_B:
11342 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11343 break;
11344 case PLANE_C:
11345 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11346 break;
11347 default:
11348 WARN_ONCE(1, "unknown plane in flip command\n");
11349 return -ENODEV;
11350 }
11351
11352 len = 4;
11353 if (engine->id == RCS) {
11354 len += 6;
11355 /*
11356 * On Gen 8, SRM is now taking an extra dword to accommodate
11357 * 48bits addresses, and we need a NOOP for the batch size to
11358 * stay even.
11359 */
11360 if (IS_GEN8(dev))
11361 len += 2;
11362 }
11363
11364 /*
11365 * BSpec MI_DISPLAY_FLIP for IVB:
11366 * "The full packet must be contained within the same cache line."
11367 *
11368 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11369 * cacheline, if we ever start emitting more commands before
11370 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11371 * then do the cacheline alignment, and finally emit the
11372 * MI_DISPLAY_FLIP.
11373 */
11374 ret = intel_ring_cacheline_align(req);
11375 if (ret)
11376 return ret;
11377
11378 ret = intel_ring_begin(req, len);
11379 if (ret)
11380 return ret;
11381
11382 /* Unmask the flip-done completion message. Note that the bspec says that
11383 * we should do this for both the BCS and RCS, and that we must not unmask
11384 * more than one flip event at any time (or ensure that one flip message
11385 * can be sent by waiting for flip-done prior to queueing new flips).
11386 * Experimentation says that BCS works despite DERRMR masking all
11387 * flip-done completion events and that unmasking all planes at once
11388 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11389 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11390 */
11391 if (engine->id == RCS) {
11392 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11393 intel_ring_emit_reg(engine, DERRMR);
11394 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11395 DERRMR_PIPEB_PRI_FLIP_DONE |
11396 DERRMR_PIPEC_PRI_FLIP_DONE));
11397 if (IS_GEN8(dev))
11398 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11399 MI_SRM_LRM_GLOBAL_GTT);
11400 else
11401 intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11402 MI_SRM_LRM_GLOBAL_GTT);
11403 intel_ring_emit_reg(engine, DERRMR);
11404 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11405 if (IS_GEN8(dev)) {
11406 intel_ring_emit(engine, 0);
11407 intel_ring_emit(engine, MI_NOOP);
11408 }
11409 }
11410
11411 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11412 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11413 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11414 intel_ring_emit(engine, (MI_NOOP));
11415
11416 return 0;
11417 }
11418
11419 static bool use_mmio_flip(struct intel_engine_cs *engine,
11420 struct drm_i915_gem_object *obj)
11421 {
11422 struct reservation_object *resv;
11423
11424 /*
11425 * This is not being used for older platforms, because
11426 * non-availability of flip done interrupt forces us to use
11427 * CS flips. Older platforms derive flip done using some clever
11428 * tricks involving the flip_pending status bits and vblank irqs.
11429 * So using MMIO flips there would disrupt this mechanism.
11430 */
11431
11432 if (engine == NULL)
11433 return true;
11434
11435 if (INTEL_GEN(engine->i915) < 5)
11436 return false;
11437
11438 if (i915.use_mmio_flip < 0)
11439 return false;
11440 else if (i915.use_mmio_flip > 0)
11441 return true;
11442 else if (i915.enable_execlists)
11443 return true;
11444
11445 resv = i915_gem_object_get_dmabuf_resv(obj);
11446 if (resv && !reservation_object_test_signaled_rcu(resv, false))
11447 return true;
11448
11449 return engine != i915_gem_request_get_engine(obj->last_write_req);
11450 }
11451
11452 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11453 unsigned int rotation,
11454 struct intel_flip_work *work)
11455 {
11456 struct drm_device *dev = intel_crtc->base.dev;
11457 struct drm_i915_private *dev_priv = to_i915(dev);
11458 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11459 const enum pipe pipe = intel_crtc->pipe;
11460 u32 ctl, stride, tile_height;
11461
11462 ctl = I915_READ(PLANE_CTL(pipe, 0));
11463 ctl &= ~PLANE_CTL_TILED_MASK;
11464 switch (fb->modifier[0]) {
11465 case DRM_FORMAT_MOD_NONE:
11466 break;
11467 case I915_FORMAT_MOD_X_TILED:
11468 ctl |= PLANE_CTL_TILED_X;
11469 break;
11470 case I915_FORMAT_MOD_Y_TILED:
11471 ctl |= PLANE_CTL_TILED_Y;
11472 break;
11473 case I915_FORMAT_MOD_Yf_TILED:
11474 ctl |= PLANE_CTL_TILED_YF;
11475 break;
11476 default:
11477 MISSING_CASE(fb->modifier[0]);
11478 }
11479
11480 /*
11481 * The stride is either expressed as a multiple of 64 bytes chunks for
11482 * linear buffers or in number of tiles for tiled buffers.
11483 */
11484 if (intel_rotation_90_or_270(rotation)) {
11485 /* stride = Surface height in tiles */
11486 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11487 stride = DIV_ROUND_UP(fb->height, tile_height);
11488 } else {
11489 stride = fb->pitches[0] /
11490 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11491 fb->pixel_format);
11492 }
11493
11494 /*
11495 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11496 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11497 */
11498 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11499 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11500
11501 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11502 POSTING_READ(PLANE_SURF(pipe, 0));
11503 }
11504
11505 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11506 struct intel_flip_work *work)
11507 {
11508 struct drm_device *dev = intel_crtc->base.dev;
11509 struct drm_i915_private *dev_priv = to_i915(dev);
11510 struct intel_framebuffer *intel_fb =
11511 to_intel_framebuffer(intel_crtc->base.primary->fb);
11512 struct drm_i915_gem_object *obj = intel_fb->obj;
11513 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11514 u32 dspcntr;
11515
11516 dspcntr = I915_READ(reg);
11517
11518 if (obj->tiling_mode != I915_TILING_NONE)
11519 dspcntr |= DISPPLANE_TILED;
11520 else
11521 dspcntr &= ~DISPPLANE_TILED;
11522
11523 I915_WRITE(reg, dspcntr);
11524
11525 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11526 POSTING_READ(DSPSURF(intel_crtc->plane));
11527 }
11528
11529 static void intel_mmio_flip_work_func(struct work_struct *w)
11530 {
11531 struct intel_flip_work *work =
11532 container_of(w, struct intel_flip_work, mmio_work);
11533 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11534 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11535 struct intel_framebuffer *intel_fb =
11536 to_intel_framebuffer(crtc->base.primary->fb);
11537 struct drm_i915_gem_object *obj = intel_fb->obj;
11538 struct reservation_object *resv;
11539
11540 if (work->flip_queued_req)
11541 WARN_ON(__i915_wait_request(work->flip_queued_req,
11542 false, NULL,
11543 &dev_priv->rps.mmioflips));
11544
11545 /* For framebuffer backed by dmabuf, wait for fence */
11546 resv = i915_gem_object_get_dmabuf_resv(obj);
11547 if (resv)
11548 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11549 MAX_SCHEDULE_TIMEOUT) < 0);
11550
11551 intel_pipe_update_start(crtc);
11552
11553 if (INTEL_GEN(dev_priv) >= 9)
11554 skl_do_mmio_flip(crtc, work->rotation, work);
11555 else
11556 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11557 ilk_do_mmio_flip(crtc, work);
11558
11559 intel_pipe_update_end(crtc, work);
11560 }
11561
11562 static int intel_default_queue_flip(struct drm_device *dev,
11563 struct drm_crtc *crtc,
11564 struct drm_framebuffer *fb,
11565 struct drm_i915_gem_object *obj,
11566 struct drm_i915_gem_request *req,
11567 uint32_t flags)
11568 {
11569 return -ENODEV;
11570 }
11571
11572 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11573 struct intel_crtc *intel_crtc,
11574 struct intel_flip_work *work)
11575 {
11576 u32 addr, vblank;
11577
11578 if (!atomic_read(&work->pending))
11579 return false;
11580
11581 smp_rmb();
11582
11583 vblank = intel_crtc_get_vblank_counter(intel_crtc);
11584 if (work->flip_ready_vblank == 0) {
11585 if (work->flip_queued_req &&
11586 !i915_gem_request_completed(work->flip_queued_req))
11587 return false;
11588
11589 work->flip_ready_vblank = vblank;
11590 }
11591
11592 if (vblank - work->flip_ready_vblank < 3)
11593 return false;
11594
11595 /* Potential stall - if we see that the flip has happened,
11596 * assume a missed interrupt. */
11597 if (INTEL_GEN(dev_priv) >= 4)
11598 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11599 else
11600 addr = I915_READ(DSPADDR(intel_crtc->plane));
11601
11602 /* There is a potential issue here with a false positive after a flip
11603 * to the same address. We could address this by checking for a
11604 * non-incrementing frame counter.
11605 */
11606 return addr == work->gtt_offset;
11607 }
11608
11609 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11610 {
11611 struct drm_device *dev = &dev_priv->drm;
11612 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11614 struct intel_flip_work *work;
11615
11616 WARN_ON(!in_interrupt());
11617
11618 if (crtc == NULL)
11619 return;
11620
11621 spin_lock(&dev->event_lock);
11622 work = intel_crtc->flip_work;
11623
11624 if (work != NULL && !is_mmio_work(work) &&
11625 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11626 WARN_ONCE(1,
11627 "Kicking stuck page flip: queued at %d, now %d\n",
11628 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11629 page_flip_completed(intel_crtc);
11630 work = NULL;
11631 }
11632
11633 if (work != NULL && !is_mmio_work(work) &&
11634 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11635 intel_queue_rps_boost_for_request(work->flip_queued_req);
11636 spin_unlock(&dev->event_lock);
11637 }
11638
11639 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11640 struct drm_framebuffer *fb,
11641 struct drm_pending_vblank_event *event,
11642 uint32_t page_flip_flags)
11643 {
11644 struct drm_device *dev = crtc->dev;
11645 struct drm_i915_private *dev_priv = to_i915(dev);
11646 struct drm_framebuffer *old_fb = crtc->primary->fb;
11647 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11649 struct drm_plane *primary = crtc->primary;
11650 enum pipe pipe = intel_crtc->pipe;
11651 struct intel_flip_work *work;
11652 struct intel_engine_cs *engine;
11653 bool mmio_flip;
11654 struct drm_i915_gem_request *request = NULL;
11655 int ret;
11656
11657 /*
11658 * drm_mode_page_flip_ioctl() should already catch this, but double
11659 * check to be safe. In the future we may enable pageflipping from
11660 * a disabled primary plane.
11661 */
11662 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11663 return -EBUSY;
11664
11665 /* Can't change pixel format via MI display flips. */
11666 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11667 return -EINVAL;
11668
11669 /*
11670 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11671 * Note that pitch changes could also affect these register.
11672 */
11673 if (INTEL_INFO(dev)->gen > 3 &&
11674 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11675 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11676 return -EINVAL;
11677
11678 if (i915_terminally_wedged(&dev_priv->gpu_error))
11679 goto out_hang;
11680
11681 work = kzalloc(sizeof(*work), GFP_KERNEL);
11682 if (work == NULL)
11683 return -ENOMEM;
11684
11685 work->event = event;
11686 work->crtc = crtc;
11687 work->old_fb = old_fb;
11688 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11689
11690 ret = drm_crtc_vblank_get(crtc);
11691 if (ret)
11692 goto free_work;
11693
11694 /* We borrow the event spin lock for protecting flip_work */
11695 spin_lock_irq(&dev->event_lock);
11696 if (intel_crtc->flip_work) {
11697 /* Before declaring the flip queue wedged, check if
11698 * the hardware completed the operation behind our backs.
11699 */
11700 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11701 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11702 page_flip_completed(intel_crtc);
11703 } else {
11704 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11705 spin_unlock_irq(&dev->event_lock);
11706
11707 drm_crtc_vblank_put(crtc);
11708 kfree(work);
11709 return -EBUSY;
11710 }
11711 }
11712 intel_crtc->flip_work = work;
11713 spin_unlock_irq(&dev->event_lock);
11714
11715 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11716 flush_workqueue(dev_priv->wq);
11717
11718 /* Reference the objects for the scheduled work. */
11719 drm_framebuffer_reference(work->old_fb);
11720 drm_gem_object_reference(&obj->base);
11721
11722 crtc->primary->fb = fb;
11723 update_state_fb(crtc->primary);
11724
11725 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11726 to_intel_plane_state(primary->state));
11727
11728 work->pending_flip_obj = obj;
11729
11730 ret = i915_mutex_lock_interruptible(dev);
11731 if (ret)
11732 goto cleanup;
11733
11734 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11735 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11736 ret = -EIO;
11737 goto cleanup;
11738 }
11739
11740 atomic_inc(&intel_crtc->unpin_work_count);
11741
11742 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11743 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11744
11745 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11746 engine = &dev_priv->engine[BCS];
11747 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11748 /* vlv: DISPLAY_FLIP fails to change tiling */
11749 engine = NULL;
11750 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11751 engine = &dev_priv->engine[BCS];
11752 } else if (INTEL_INFO(dev)->gen >= 7) {
11753 engine = i915_gem_request_get_engine(obj->last_write_req);
11754 if (engine == NULL || engine->id != RCS)
11755 engine = &dev_priv->engine[BCS];
11756 } else {
11757 engine = &dev_priv->engine[RCS];
11758 }
11759
11760 mmio_flip = use_mmio_flip(engine, obj);
11761
11762 /* When using CS flips, we want to emit semaphores between rings.
11763 * However, when using mmio flips we will create a task to do the
11764 * synchronisation, so all we want here is to pin the framebuffer
11765 * into the display plane and skip any waits.
11766 */
11767 if (!mmio_flip) {
11768 ret = i915_gem_object_sync(obj, engine, &request);
11769 if (!ret && !request) {
11770 request = i915_gem_request_alloc(engine, NULL);
11771 ret = PTR_ERR_OR_ZERO(request);
11772 }
11773
11774 if (ret)
11775 goto cleanup_pending;
11776 }
11777
11778 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11779 if (ret)
11780 goto cleanup_pending;
11781
11782 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11783 obj, 0);
11784 work->gtt_offset += intel_crtc->dspaddr_offset;
11785 work->rotation = crtc->primary->state->rotation;
11786
11787 if (mmio_flip) {
11788 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11789
11790 i915_gem_request_assign(&work->flip_queued_req,
11791 obj->last_write_req);
11792
11793 schedule_work(&work->mmio_work);
11794 } else {
11795 i915_gem_request_assign(&work->flip_queued_req, request);
11796 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11797 page_flip_flags);
11798 if (ret)
11799 goto cleanup_unpin;
11800
11801 intel_mark_page_flip_active(intel_crtc, work);
11802
11803 i915_add_request_no_flush(request);
11804 }
11805
11806 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11807 to_intel_plane(primary)->frontbuffer_bit);
11808 mutex_unlock(&dev->struct_mutex);
11809
11810 intel_frontbuffer_flip_prepare(dev,
11811 to_intel_plane(primary)->frontbuffer_bit);
11812
11813 trace_i915_flip_request(intel_crtc->plane, obj);
11814
11815 return 0;
11816
11817 cleanup_unpin:
11818 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11819 cleanup_pending:
11820 if (!IS_ERR_OR_NULL(request))
11821 i915_add_request_no_flush(request);
11822 atomic_dec(&intel_crtc->unpin_work_count);
11823 mutex_unlock(&dev->struct_mutex);
11824 cleanup:
11825 crtc->primary->fb = old_fb;
11826 update_state_fb(crtc->primary);
11827
11828 drm_gem_object_unreference_unlocked(&obj->base);
11829 drm_framebuffer_unreference(work->old_fb);
11830
11831 spin_lock_irq(&dev->event_lock);
11832 intel_crtc->flip_work = NULL;
11833 spin_unlock_irq(&dev->event_lock);
11834
11835 drm_crtc_vblank_put(crtc);
11836 free_work:
11837 kfree(work);
11838
11839 if (ret == -EIO) {
11840 struct drm_atomic_state *state;
11841 struct drm_plane_state *plane_state;
11842
11843 out_hang:
11844 state = drm_atomic_state_alloc(dev);
11845 if (!state)
11846 return -ENOMEM;
11847 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11848
11849 retry:
11850 plane_state = drm_atomic_get_plane_state(state, primary);
11851 ret = PTR_ERR_OR_ZERO(plane_state);
11852 if (!ret) {
11853 drm_atomic_set_fb_for_plane(plane_state, fb);
11854
11855 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11856 if (!ret)
11857 ret = drm_atomic_commit(state);
11858 }
11859
11860 if (ret == -EDEADLK) {
11861 drm_modeset_backoff(state->acquire_ctx);
11862 drm_atomic_state_clear(state);
11863 goto retry;
11864 }
11865
11866 if (ret)
11867 drm_atomic_state_free(state);
11868
11869 if (ret == 0 && event) {
11870 spin_lock_irq(&dev->event_lock);
11871 drm_crtc_send_vblank_event(crtc, event);
11872 spin_unlock_irq(&dev->event_lock);
11873 }
11874 }
11875 return ret;
11876 }
11877
11878
11879 /**
11880 * intel_wm_need_update - Check whether watermarks need updating
11881 * @plane: drm plane
11882 * @state: new plane state
11883 *
11884 * Check current plane state versus the new one to determine whether
11885 * watermarks need to be recalculated.
11886 *
11887 * Returns true or false.
11888 */
11889 static bool intel_wm_need_update(struct drm_plane *plane,
11890 struct drm_plane_state *state)
11891 {
11892 struct intel_plane_state *new = to_intel_plane_state(state);
11893 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11894
11895 /* Update watermarks on tiling or size changes. */
11896 if (new->visible != cur->visible)
11897 return true;
11898
11899 if (!cur->base.fb || !new->base.fb)
11900 return false;
11901
11902 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11903 cur->base.rotation != new->base.rotation ||
11904 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11905 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11906 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11907 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11908 return true;
11909
11910 return false;
11911 }
11912
11913 static bool needs_scaling(struct intel_plane_state *state)
11914 {
11915 int src_w = drm_rect_width(&state->src) >> 16;
11916 int src_h = drm_rect_height(&state->src) >> 16;
11917 int dst_w = drm_rect_width(&state->dst);
11918 int dst_h = drm_rect_height(&state->dst);
11919
11920 return (src_w != dst_w || src_h != dst_h);
11921 }
11922
11923 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11924 struct drm_plane_state *plane_state)
11925 {
11926 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11927 struct drm_crtc *crtc = crtc_state->crtc;
11928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11929 struct drm_plane *plane = plane_state->plane;
11930 struct drm_device *dev = crtc->dev;
11931 struct drm_i915_private *dev_priv = to_i915(dev);
11932 struct intel_plane_state *old_plane_state =
11933 to_intel_plane_state(plane->state);
11934 bool mode_changed = needs_modeset(crtc_state);
11935 bool was_crtc_enabled = crtc->state->active;
11936 bool is_crtc_enabled = crtc_state->active;
11937 bool turn_off, turn_on, visible, was_visible;
11938 struct drm_framebuffer *fb = plane_state->fb;
11939 int ret;
11940
11941 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
11942 ret = skl_update_scaler_plane(
11943 to_intel_crtc_state(crtc_state),
11944 to_intel_plane_state(plane_state));
11945 if (ret)
11946 return ret;
11947 }
11948
11949 was_visible = old_plane_state->visible;
11950 visible = to_intel_plane_state(plane_state)->visible;
11951
11952 if (!was_crtc_enabled && WARN_ON(was_visible))
11953 was_visible = false;
11954
11955 /*
11956 * Visibility is calculated as if the crtc was on, but
11957 * after scaler setup everything depends on it being off
11958 * when the crtc isn't active.
11959 *
11960 * FIXME this is wrong for watermarks. Watermarks should also
11961 * be computed as if the pipe would be active. Perhaps move
11962 * per-plane wm computation to the .check_plane() hook, and
11963 * only combine the results from all planes in the current place?
11964 */
11965 if (!is_crtc_enabled)
11966 to_intel_plane_state(plane_state)->visible = visible = false;
11967
11968 if (!was_visible && !visible)
11969 return 0;
11970
11971 if (fb != old_plane_state->base.fb)
11972 pipe_config->fb_changed = true;
11973
11974 turn_off = was_visible && (!visible || mode_changed);
11975 turn_on = visible && (!was_visible || mode_changed);
11976
11977 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11978 intel_crtc->base.base.id,
11979 intel_crtc->base.name,
11980 plane->base.id, plane->name,
11981 fb ? fb->base.id : -1);
11982
11983 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11984 plane->base.id, plane->name,
11985 was_visible, visible,
11986 turn_off, turn_on, mode_changed);
11987
11988 if (turn_on) {
11989 pipe_config->update_wm_pre = true;
11990
11991 /* must disable cxsr around plane enable/disable */
11992 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11993 pipe_config->disable_cxsr = true;
11994 } else if (turn_off) {
11995 pipe_config->update_wm_post = true;
11996
11997 /* must disable cxsr around plane enable/disable */
11998 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11999 pipe_config->disable_cxsr = true;
12000 } else if (intel_wm_need_update(plane, plane_state)) {
12001 /* FIXME bollocks */
12002 pipe_config->update_wm_pre = true;
12003 pipe_config->update_wm_post = true;
12004 }
12005
12006 /* Pre-gen9 platforms need two-step watermark updates */
12007 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12008 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12009 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12010
12011 if (visible || was_visible)
12012 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12013
12014 /*
12015 * WaCxSRDisabledForSpriteScaling:ivb
12016 *
12017 * cstate->update_wm was already set above, so this flag will
12018 * take effect when we commit and program watermarks.
12019 */
12020 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12021 needs_scaling(to_intel_plane_state(plane_state)) &&
12022 !needs_scaling(old_plane_state))
12023 pipe_config->disable_lp_wm = true;
12024
12025 return 0;
12026 }
12027
12028 static bool encoders_cloneable(const struct intel_encoder *a,
12029 const struct intel_encoder *b)
12030 {
12031 /* masks could be asymmetric, so check both ways */
12032 return a == b || (a->cloneable & (1 << b->type) &&
12033 b->cloneable & (1 << a->type));
12034 }
12035
12036 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12037 struct intel_crtc *crtc,
12038 struct intel_encoder *encoder)
12039 {
12040 struct intel_encoder *source_encoder;
12041 struct drm_connector *connector;
12042 struct drm_connector_state *connector_state;
12043 int i;
12044
12045 for_each_connector_in_state(state, connector, connector_state, i) {
12046 if (connector_state->crtc != &crtc->base)
12047 continue;
12048
12049 source_encoder =
12050 to_intel_encoder(connector_state->best_encoder);
12051 if (!encoders_cloneable(encoder, source_encoder))
12052 return false;
12053 }
12054
12055 return true;
12056 }
12057
12058 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12059 struct drm_crtc_state *crtc_state)
12060 {
12061 struct drm_device *dev = crtc->dev;
12062 struct drm_i915_private *dev_priv = to_i915(dev);
12063 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12064 struct intel_crtc_state *pipe_config =
12065 to_intel_crtc_state(crtc_state);
12066 struct drm_atomic_state *state = crtc_state->state;
12067 int ret;
12068 bool mode_changed = needs_modeset(crtc_state);
12069
12070 if (mode_changed && !crtc_state->active)
12071 pipe_config->update_wm_post = true;
12072
12073 if (mode_changed && crtc_state->enable &&
12074 dev_priv->display.crtc_compute_clock &&
12075 !WARN_ON(pipe_config->shared_dpll)) {
12076 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12077 pipe_config);
12078 if (ret)
12079 return ret;
12080 }
12081
12082 if (crtc_state->color_mgmt_changed) {
12083 ret = intel_color_check(crtc, crtc_state);
12084 if (ret)
12085 return ret;
12086
12087 /*
12088 * Changing color management on Intel hardware is
12089 * handled as part of planes update.
12090 */
12091 crtc_state->planes_changed = true;
12092 }
12093
12094 ret = 0;
12095 if (dev_priv->display.compute_pipe_wm) {
12096 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12097 if (ret) {
12098 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12099 return ret;
12100 }
12101 }
12102
12103 if (dev_priv->display.compute_intermediate_wm &&
12104 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12105 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12106 return 0;
12107
12108 /*
12109 * Calculate 'intermediate' watermarks that satisfy both the
12110 * old state and the new state. We can program these
12111 * immediately.
12112 */
12113 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12114 intel_crtc,
12115 pipe_config);
12116 if (ret) {
12117 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12118 return ret;
12119 }
12120 } else if (dev_priv->display.compute_intermediate_wm) {
12121 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12122 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12123 }
12124
12125 if (INTEL_INFO(dev)->gen >= 9) {
12126 if (mode_changed)
12127 ret = skl_update_scaler_crtc(pipe_config);
12128
12129 if (!ret)
12130 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12131 pipe_config);
12132 }
12133
12134 return ret;
12135 }
12136
12137 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12138 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12139 .atomic_begin = intel_begin_crtc_commit,
12140 .atomic_flush = intel_finish_crtc_commit,
12141 .atomic_check = intel_crtc_atomic_check,
12142 };
12143
12144 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12145 {
12146 struct intel_connector *connector;
12147
12148 for_each_intel_connector(dev, connector) {
12149 if (connector->base.state->crtc)
12150 drm_connector_unreference(&connector->base);
12151
12152 if (connector->base.encoder) {
12153 connector->base.state->best_encoder =
12154 connector->base.encoder;
12155 connector->base.state->crtc =
12156 connector->base.encoder->crtc;
12157
12158 drm_connector_reference(&connector->base);
12159 } else {
12160 connector->base.state->best_encoder = NULL;
12161 connector->base.state->crtc = NULL;
12162 }
12163 }
12164 }
12165
12166 static void
12167 connected_sink_compute_bpp(struct intel_connector *connector,
12168 struct intel_crtc_state *pipe_config)
12169 {
12170 int bpp = pipe_config->pipe_bpp;
12171
12172 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12173 connector->base.base.id,
12174 connector->base.name);
12175
12176 /* Don't use an invalid EDID bpc value */
12177 if (connector->base.display_info.bpc &&
12178 connector->base.display_info.bpc * 3 < bpp) {
12179 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12180 bpp, connector->base.display_info.bpc*3);
12181 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12182 }
12183
12184 /* Clamp bpp to 8 on screens without EDID 1.4 */
12185 if (connector->base.display_info.bpc == 0 && bpp > 24) {
12186 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12187 bpp);
12188 pipe_config->pipe_bpp = 24;
12189 }
12190 }
12191
12192 static int
12193 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12194 struct intel_crtc_state *pipe_config)
12195 {
12196 struct drm_device *dev = crtc->base.dev;
12197 struct drm_atomic_state *state;
12198 struct drm_connector *connector;
12199 struct drm_connector_state *connector_state;
12200 int bpp, i;
12201
12202 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12203 bpp = 10*3;
12204 else if (INTEL_INFO(dev)->gen >= 5)
12205 bpp = 12*3;
12206 else
12207 bpp = 8*3;
12208
12209
12210 pipe_config->pipe_bpp = bpp;
12211
12212 state = pipe_config->base.state;
12213
12214 /* Clamp display bpp to EDID value */
12215 for_each_connector_in_state(state, connector, connector_state, i) {
12216 if (connector_state->crtc != &crtc->base)
12217 continue;
12218
12219 connected_sink_compute_bpp(to_intel_connector(connector),
12220 pipe_config);
12221 }
12222
12223 return bpp;
12224 }
12225
12226 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12227 {
12228 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12229 "type: 0x%x flags: 0x%x\n",
12230 mode->crtc_clock,
12231 mode->crtc_hdisplay, mode->crtc_hsync_start,
12232 mode->crtc_hsync_end, mode->crtc_htotal,
12233 mode->crtc_vdisplay, mode->crtc_vsync_start,
12234 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12235 }
12236
12237 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12238 struct intel_crtc_state *pipe_config,
12239 const char *context)
12240 {
12241 struct drm_device *dev = crtc->base.dev;
12242 struct drm_plane *plane;
12243 struct intel_plane *intel_plane;
12244 struct intel_plane_state *state;
12245 struct drm_framebuffer *fb;
12246
12247 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12248 crtc->base.base.id, crtc->base.name,
12249 context, pipe_config, pipe_name(crtc->pipe));
12250
12251 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12252 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12253 pipe_config->pipe_bpp, pipe_config->dither);
12254 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12255 pipe_config->has_pch_encoder,
12256 pipe_config->fdi_lanes,
12257 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12258 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12259 pipe_config->fdi_m_n.tu);
12260 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12261 intel_crtc_has_dp_encoder(pipe_config),
12262 pipe_config->lane_count,
12263 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12264 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12265 pipe_config->dp_m_n.tu);
12266
12267 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12268 intel_crtc_has_dp_encoder(pipe_config),
12269 pipe_config->lane_count,
12270 pipe_config->dp_m2_n2.gmch_m,
12271 pipe_config->dp_m2_n2.gmch_n,
12272 pipe_config->dp_m2_n2.link_m,
12273 pipe_config->dp_m2_n2.link_n,
12274 pipe_config->dp_m2_n2.tu);
12275
12276 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12277 pipe_config->has_audio,
12278 pipe_config->has_infoframe);
12279
12280 DRM_DEBUG_KMS("requested mode:\n");
12281 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12282 DRM_DEBUG_KMS("adjusted mode:\n");
12283 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12284 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12285 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12286 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12287 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12288 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12289 crtc->num_scalers,
12290 pipe_config->scaler_state.scaler_users,
12291 pipe_config->scaler_state.scaler_id);
12292 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12293 pipe_config->gmch_pfit.control,
12294 pipe_config->gmch_pfit.pgm_ratios,
12295 pipe_config->gmch_pfit.lvds_border_bits);
12296 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12297 pipe_config->pch_pfit.pos,
12298 pipe_config->pch_pfit.size,
12299 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12300 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12301 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12302
12303 if (IS_BROXTON(dev)) {
12304 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12305 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12306 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12307 pipe_config->ddi_pll_sel,
12308 pipe_config->dpll_hw_state.ebb0,
12309 pipe_config->dpll_hw_state.ebb4,
12310 pipe_config->dpll_hw_state.pll0,
12311 pipe_config->dpll_hw_state.pll1,
12312 pipe_config->dpll_hw_state.pll2,
12313 pipe_config->dpll_hw_state.pll3,
12314 pipe_config->dpll_hw_state.pll6,
12315 pipe_config->dpll_hw_state.pll8,
12316 pipe_config->dpll_hw_state.pll9,
12317 pipe_config->dpll_hw_state.pll10,
12318 pipe_config->dpll_hw_state.pcsdw12);
12319 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12320 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12321 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12322 pipe_config->ddi_pll_sel,
12323 pipe_config->dpll_hw_state.ctrl1,
12324 pipe_config->dpll_hw_state.cfgcr1,
12325 pipe_config->dpll_hw_state.cfgcr2);
12326 } else if (HAS_DDI(dev)) {
12327 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12328 pipe_config->ddi_pll_sel,
12329 pipe_config->dpll_hw_state.wrpll,
12330 pipe_config->dpll_hw_state.spll);
12331 } else {
12332 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12333 "fp0: 0x%x, fp1: 0x%x\n",
12334 pipe_config->dpll_hw_state.dpll,
12335 pipe_config->dpll_hw_state.dpll_md,
12336 pipe_config->dpll_hw_state.fp0,
12337 pipe_config->dpll_hw_state.fp1);
12338 }
12339
12340 DRM_DEBUG_KMS("planes on this crtc\n");
12341 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12342 intel_plane = to_intel_plane(plane);
12343 if (intel_plane->pipe != crtc->pipe)
12344 continue;
12345
12346 state = to_intel_plane_state(plane->state);
12347 fb = state->base.fb;
12348 if (!fb) {
12349 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12350 plane->base.id, plane->name, state->scaler_id);
12351 continue;
12352 }
12353
12354 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12355 plane->base.id, plane->name);
12356 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12357 fb->base.id, fb->width, fb->height,
12358 drm_get_format_name(fb->pixel_format));
12359 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12360 state->scaler_id,
12361 state->src.x1 >> 16, state->src.y1 >> 16,
12362 drm_rect_width(&state->src) >> 16,
12363 drm_rect_height(&state->src) >> 16,
12364 state->dst.x1, state->dst.y1,
12365 drm_rect_width(&state->dst),
12366 drm_rect_height(&state->dst));
12367 }
12368 }
12369
12370 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12371 {
12372 struct drm_device *dev = state->dev;
12373 struct drm_connector *connector;
12374 unsigned int used_ports = 0;
12375
12376 /*
12377 * Walk the connector list instead of the encoder
12378 * list to detect the problem on ddi platforms
12379 * where there's just one encoder per digital port.
12380 */
12381 drm_for_each_connector(connector, dev) {
12382 struct drm_connector_state *connector_state;
12383 struct intel_encoder *encoder;
12384
12385 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12386 if (!connector_state)
12387 connector_state = connector->state;
12388
12389 if (!connector_state->best_encoder)
12390 continue;
12391
12392 encoder = to_intel_encoder(connector_state->best_encoder);
12393
12394 WARN_ON(!connector_state->crtc);
12395
12396 switch (encoder->type) {
12397 unsigned int port_mask;
12398 case INTEL_OUTPUT_UNKNOWN:
12399 if (WARN_ON(!HAS_DDI(dev)))
12400 break;
12401 case INTEL_OUTPUT_DP:
12402 case INTEL_OUTPUT_HDMI:
12403 case INTEL_OUTPUT_EDP:
12404 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12405
12406 /* the same port mustn't appear more than once */
12407 if (used_ports & port_mask)
12408 return false;
12409
12410 used_ports |= port_mask;
12411 default:
12412 break;
12413 }
12414 }
12415
12416 return true;
12417 }
12418
12419 static void
12420 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12421 {
12422 struct drm_crtc_state tmp_state;
12423 struct intel_crtc_scaler_state scaler_state;
12424 struct intel_dpll_hw_state dpll_hw_state;
12425 struct intel_shared_dpll *shared_dpll;
12426 uint32_t ddi_pll_sel;
12427 bool force_thru;
12428
12429 /* FIXME: before the switch to atomic started, a new pipe_config was
12430 * kzalloc'd. Code that depends on any field being zero should be
12431 * fixed, so that the crtc_state can be safely duplicated. For now,
12432 * only fields that are know to not cause problems are preserved. */
12433
12434 tmp_state = crtc_state->base;
12435 scaler_state = crtc_state->scaler_state;
12436 shared_dpll = crtc_state->shared_dpll;
12437 dpll_hw_state = crtc_state->dpll_hw_state;
12438 ddi_pll_sel = crtc_state->ddi_pll_sel;
12439 force_thru = crtc_state->pch_pfit.force_thru;
12440
12441 memset(crtc_state, 0, sizeof *crtc_state);
12442
12443 crtc_state->base = tmp_state;
12444 crtc_state->scaler_state = scaler_state;
12445 crtc_state->shared_dpll = shared_dpll;
12446 crtc_state->dpll_hw_state = dpll_hw_state;
12447 crtc_state->ddi_pll_sel = ddi_pll_sel;
12448 crtc_state->pch_pfit.force_thru = force_thru;
12449 }
12450
12451 static int
12452 intel_modeset_pipe_config(struct drm_crtc *crtc,
12453 struct intel_crtc_state *pipe_config)
12454 {
12455 struct drm_atomic_state *state = pipe_config->base.state;
12456 struct intel_encoder *encoder;
12457 struct drm_connector *connector;
12458 struct drm_connector_state *connector_state;
12459 int base_bpp, ret = -EINVAL;
12460 int i;
12461 bool retry = true;
12462
12463 clear_intel_crtc_state(pipe_config);
12464
12465 pipe_config->cpu_transcoder =
12466 (enum transcoder) to_intel_crtc(crtc)->pipe;
12467
12468 /*
12469 * Sanitize sync polarity flags based on requested ones. If neither
12470 * positive or negative polarity is requested, treat this as meaning
12471 * negative polarity.
12472 */
12473 if (!(pipe_config->base.adjusted_mode.flags &
12474 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12475 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12476
12477 if (!(pipe_config->base.adjusted_mode.flags &
12478 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12479 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12480
12481 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12482 pipe_config);
12483 if (base_bpp < 0)
12484 goto fail;
12485
12486 /*
12487 * Determine the real pipe dimensions. Note that stereo modes can
12488 * increase the actual pipe size due to the frame doubling and
12489 * insertion of additional space for blanks between the frame. This
12490 * is stored in the crtc timings. We use the requested mode to do this
12491 * computation to clearly distinguish it from the adjusted mode, which
12492 * can be changed by the connectors in the below retry loop.
12493 */
12494 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12495 &pipe_config->pipe_src_w,
12496 &pipe_config->pipe_src_h);
12497
12498 for_each_connector_in_state(state, connector, connector_state, i) {
12499 if (connector_state->crtc != crtc)
12500 continue;
12501
12502 encoder = to_intel_encoder(connector_state->best_encoder);
12503
12504 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12505 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12506 goto fail;
12507 }
12508
12509 /*
12510 * Determine output_types before calling the .compute_config()
12511 * hooks so that the hooks can use this information safely.
12512 */
12513 pipe_config->output_types |= 1 << encoder->type;
12514 }
12515
12516 encoder_retry:
12517 /* Ensure the port clock defaults are reset when retrying. */
12518 pipe_config->port_clock = 0;
12519 pipe_config->pixel_multiplier = 1;
12520
12521 /* Fill in default crtc timings, allow encoders to overwrite them. */
12522 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12523 CRTC_STEREO_DOUBLE);
12524
12525 /* Pass our mode to the connectors and the CRTC to give them a chance to
12526 * adjust it according to limitations or connector properties, and also
12527 * a chance to reject the mode entirely.
12528 */
12529 for_each_connector_in_state(state, connector, connector_state, i) {
12530 if (connector_state->crtc != crtc)
12531 continue;
12532
12533 encoder = to_intel_encoder(connector_state->best_encoder);
12534
12535 if (!(encoder->compute_config(encoder, pipe_config))) {
12536 DRM_DEBUG_KMS("Encoder config failure\n");
12537 goto fail;
12538 }
12539 }
12540
12541 /* Set default port clock if not overwritten by the encoder. Needs to be
12542 * done afterwards in case the encoder adjusts the mode. */
12543 if (!pipe_config->port_clock)
12544 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12545 * pipe_config->pixel_multiplier;
12546
12547 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12548 if (ret < 0) {
12549 DRM_DEBUG_KMS("CRTC fixup failed\n");
12550 goto fail;
12551 }
12552
12553 if (ret == RETRY) {
12554 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12555 ret = -EINVAL;
12556 goto fail;
12557 }
12558
12559 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12560 retry = false;
12561 goto encoder_retry;
12562 }
12563
12564 /* Dithering seems to not pass-through bits correctly when it should, so
12565 * only enable it on 6bpc panels. */
12566 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12567 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12568 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12569
12570 fail:
12571 return ret;
12572 }
12573
12574 static void
12575 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12576 {
12577 struct drm_crtc *crtc;
12578 struct drm_crtc_state *crtc_state;
12579 int i;
12580
12581 /* Double check state. */
12582 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12583 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12584
12585 /* Update hwmode for vblank functions */
12586 if (crtc->state->active)
12587 crtc->hwmode = crtc->state->adjusted_mode;
12588 else
12589 crtc->hwmode.crtc_clock = 0;
12590
12591 /*
12592 * Update legacy state to satisfy fbc code. This can
12593 * be removed when fbc uses the atomic state.
12594 */
12595 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12596 struct drm_plane_state *plane_state = crtc->primary->state;
12597
12598 crtc->primary->fb = plane_state->fb;
12599 crtc->x = plane_state->src_x >> 16;
12600 crtc->y = plane_state->src_y >> 16;
12601 }
12602 }
12603 }
12604
12605 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12606 {
12607 int diff;
12608
12609 if (clock1 == clock2)
12610 return true;
12611
12612 if (!clock1 || !clock2)
12613 return false;
12614
12615 diff = abs(clock1 - clock2);
12616
12617 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12618 return true;
12619
12620 return false;
12621 }
12622
12623 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12624 list_for_each_entry((intel_crtc), \
12625 &(dev)->mode_config.crtc_list, \
12626 base.head) \
12627 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12628
12629 static bool
12630 intel_compare_m_n(unsigned int m, unsigned int n,
12631 unsigned int m2, unsigned int n2,
12632 bool exact)
12633 {
12634 if (m == m2 && n == n2)
12635 return true;
12636
12637 if (exact || !m || !n || !m2 || !n2)
12638 return false;
12639
12640 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12641
12642 if (n > n2) {
12643 while (n > n2) {
12644 m2 <<= 1;
12645 n2 <<= 1;
12646 }
12647 } else if (n < n2) {
12648 while (n < n2) {
12649 m <<= 1;
12650 n <<= 1;
12651 }
12652 }
12653
12654 if (n != n2)
12655 return false;
12656
12657 return intel_fuzzy_clock_check(m, m2);
12658 }
12659
12660 static bool
12661 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12662 struct intel_link_m_n *m2_n2,
12663 bool adjust)
12664 {
12665 if (m_n->tu == m2_n2->tu &&
12666 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12667 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12668 intel_compare_m_n(m_n->link_m, m_n->link_n,
12669 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12670 if (adjust)
12671 *m2_n2 = *m_n;
12672
12673 return true;
12674 }
12675
12676 return false;
12677 }
12678
12679 static bool
12680 intel_pipe_config_compare(struct drm_device *dev,
12681 struct intel_crtc_state *current_config,
12682 struct intel_crtc_state *pipe_config,
12683 bool adjust)
12684 {
12685 bool ret = true;
12686
12687 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12688 do { \
12689 if (!adjust) \
12690 DRM_ERROR(fmt, ##__VA_ARGS__); \
12691 else \
12692 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12693 } while (0)
12694
12695 #define PIPE_CONF_CHECK_X(name) \
12696 if (current_config->name != pipe_config->name) { \
12697 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12698 "(expected 0x%08x, found 0x%08x)\n", \
12699 current_config->name, \
12700 pipe_config->name); \
12701 ret = false; \
12702 }
12703
12704 #define PIPE_CONF_CHECK_I(name) \
12705 if (current_config->name != pipe_config->name) { \
12706 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12707 "(expected %i, found %i)\n", \
12708 current_config->name, \
12709 pipe_config->name); \
12710 ret = false; \
12711 }
12712
12713 #define PIPE_CONF_CHECK_P(name) \
12714 if (current_config->name != pipe_config->name) { \
12715 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12716 "(expected %p, found %p)\n", \
12717 current_config->name, \
12718 pipe_config->name); \
12719 ret = false; \
12720 }
12721
12722 #define PIPE_CONF_CHECK_M_N(name) \
12723 if (!intel_compare_link_m_n(&current_config->name, \
12724 &pipe_config->name,\
12725 adjust)) { \
12726 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12727 "(expected tu %i gmch %i/%i link %i/%i, " \
12728 "found tu %i, gmch %i/%i link %i/%i)\n", \
12729 current_config->name.tu, \
12730 current_config->name.gmch_m, \
12731 current_config->name.gmch_n, \
12732 current_config->name.link_m, \
12733 current_config->name.link_n, \
12734 pipe_config->name.tu, \
12735 pipe_config->name.gmch_m, \
12736 pipe_config->name.gmch_n, \
12737 pipe_config->name.link_m, \
12738 pipe_config->name.link_n); \
12739 ret = false; \
12740 }
12741
12742 /* This is required for BDW+ where there is only one set of registers for
12743 * switching between high and low RR.
12744 * This macro can be used whenever a comparison has to be made between one
12745 * hw state and multiple sw state variables.
12746 */
12747 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12748 if (!intel_compare_link_m_n(&current_config->name, \
12749 &pipe_config->name, adjust) && \
12750 !intel_compare_link_m_n(&current_config->alt_name, \
12751 &pipe_config->name, adjust)) { \
12752 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12753 "(expected tu %i gmch %i/%i link %i/%i, " \
12754 "or tu %i gmch %i/%i link %i/%i, " \
12755 "found tu %i, gmch %i/%i link %i/%i)\n", \
12756 current_config->name.tu, \
12757 current_config->name.gmch_m, \
12758 current_config->name.gmch_n, \
12759 current_config->name.link_m, \
12760 current_config->name.link_n, \
12761 current_config->alt_name.tu, \
12762 current_config->alt_name.gmch_m, \
12763 current_config->alt_name.gmch_n, \
12764 current_config->alt_name.link_m, \
12765 current_config->alt_name.link_n, \
12766 pipe_config->name.tu, \
12767 pipe_config->name.gmch_m, \
12768 pipe_config->name.gmch_n, \
12769 pipe_config->name.link_m, \
12770 pipe_config->name.link_n); \
12771 ret = false; \
12772 }
12773
12774 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12775 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12776 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12777 "(expected %i, found %i)\n", \
12778 current_config->name & (mask), \
12779 pipe_config->name & (mask)); \
12780 ret = false; \
12781 }
12782
12783 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12784 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12785 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12786 "(expected %i, found %i)\n", \
12787 current_config->name, \
12788 pipe_config->name); \
12789 ret = false; \
12790 }
12791
12792 #define PIPE_CONF_QUIRK(quirk) \
12793 ((current_config->quirks | pipe_config->quirks) & (quirk))
12794
12795 PIPE_CONF_CHECK_I(cpu_transcoder);
12796
12797 PIPE_CONF_CHECK_I(has_pch_encoder);
12798 PIPE_CONF_CHECK_I(fdi_lanes);
12799 PIPE_CONF_CHECK_M_N(fdi_m_n);
12800
12801 PIPE_CONF_CHECK_I(lane_count);
12802 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12803
12804 if (INTEL_INFO(dev)->gen < 8) {
12805 PIPE_CONF_CHECK_M_N(dp_m_n);
12806
12807 if (current_config->has_drrs)
12808 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12809 } else
12810 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12811
12812 PIPE_CONF_CHECK_X(output_types);
12813
12814 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12815 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12816 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12817 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12818 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12819 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12820
12821 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12822 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12823 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12824 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12825 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12826 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12827
12828 PIPE_CONF_CHECK_I(pixel_multiplier);
12829 PIPE_CONF_CHECK_I(has_hdmi_sink);
12830 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12831 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12832 PIPE_CONF_CHECK_I(limited_color_range);
12833 PIPE_CONF_CHECK_I(has_infoframe);
12834
12835 PIPE_CONF_CHECK_I(has_audio);
12836
12837 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12838 DRM_MODE_FLAG_INTERLACE);
12839
12840 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12841 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12842 DRM_MODE_FLAG_PHSYNC);
12843 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12844 DRM_MODE_FLAG_NHSYNC);
12845 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12846 DRM_MODE_FLAG_PVSYNC);
12847 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12848 DRM_MODE_FLAG_NVSYNC);
12849 }
12850
12851 PIPE_CONF_CHECK_X(gmch_pfit.control);
12852 /* pfit ratios are autocomputed by the hw on gen4+ */
12853 if (INTEL_INFO(dev)->gen < 4)
12854 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12855 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12856
12857 if (!adjust) {
12858 PIPE_CONF_CHECK_I(pipe_src_w);
12859 PIPE_CONF_CHECK_I(pipe_src_h);
12860
12861 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12862 if (current_config->pch_pfit.enabled) {
12863 PIPE_CONF_CHECK_X(pch_pfit.pos);
12864 PIPE_CONF_CHECK_X(pch_pfit.size);
12865 }
12866
12867 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12868 }
12869
12870 /* BDW+ don't expose a synchronous way to read the state */
12871 if (IS_HASWELL(dev))
12872 PIPE_CONF_CHECK_I(ips_enabled);
12873
12874 PIPE_CONF_CHECK_I(double_wide);
12875
12876 PIPE_CONF_CHECK_X(ddi_pll_sel);
12877
12878 PIPE_CONF_CHECK_P(shared_dpll);
12879 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12880 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12881 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12882 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12883 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12884 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12885 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12886 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12887 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12888
12889 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12890 PIPE_CONF_CHECK_X(dsi_pll.div);
12891
12892 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12893 PIPE_CONF_CHECK_I(pipe_bpp);
12894
12895 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12896 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12897
12898 #undef PIPE_CONF_CHECK_X
12899 #undef PIPE_CONF_CHECK_I
12900 #undef PIPE_CONF_CHECK_P
12901 #undef PIPE_CONF_CHECK_FLAGS
12902 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12903 #undef PIPE_CONF_QUIRK
12904 #undef INTEL_ERR_OR_DBG_KMS
12905
12906 return ret;
12907 }
12908
12909 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12910 const struct intel_crtc_state *pipe_config)
12911 {
12912 if (pipe_config->has_pch_encoder) {
12913 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12914 &pipe_config->fdi_m_n);
12915 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12916
12917 /*
12918 * FDI already provided one idea for the dotclock.
12919 * Yell if the encoder disagrees.
12920 */
12921 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12922 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12923 fdi_dotclock, dotclock);
12924 }
12925 }
12926
12927 static void verify_wm_state(struct drm_crtc *crtc,
12928 struct drm_crtc_state *new_state)
12929 {
12930 struct drm_device *dev = crtc->dev;
12931 struct drm_i915_private *dev_priv = to_i915(dev);
12932 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12933 struct skl_ddb_entry *hw_entry, *sw_entry;
12934 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12935 const enum pipe pipe = intel_crtc->pipe;
12936 int plane;
12937
12938 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12939 return;
12940
12941 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12942 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12943
12944 /* planes */
12945 for_each_plane(dev_priv, pipe, plane) {
12946 hw_entry = &hw_ddb.plane[pipe][plane];
12947 sw_entry = &sw_ddb->plane[pipe][plane];
12948
12949 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12950 continue;
12951
12952 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12953 "(expected (%u,%u), found (%u,%u))\n",
12954 pipe_name(pipe), plane + 1,
12955 sw_entry->start, sw_entry->end,
12956 hw_entry->start, hw_entry->end);
12957 }
12958
12959 /* cursor */
12960 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12961 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12962
12963 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12964 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12965 "(expected (%u,%u), found (%u,%u))\n",
12966 pipe_name(pipe),
12967 sw_entry->start, sw_entry->end,
12968 hw_entry->start, hw_entry->end);
12969 }
12970 }
12971
12972 static void
12973 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12974 {
12975 struct drm_connector *connector;
12976
12977 drm_for_each_connector(connector, dev) {
12978 struct drm_encoder *encoder = connector->encoder;
12979 struct drm_connector_state *state = connector->state;
12980
12981 if (state->crtc != crtc)
12982 continue;
12983
12984 intel_connector_verify_state(to_intel_connector(connector));
12985
12986 I915_STATE_WARN(state->best_encoder != encoder,
12987 "connector's atomic encoder doesn't match legacy encoder\n");
12988 }
12989 }
12990
12991 static void
12992 verify_encoder_state(struct drm_device *dev)
12993 {
12994 struct intel_encoder *encoder;
12995 struct intel_connector *connector;
12996
12997 for_each_intel_encoder(dev, encoder) {
12998 bool enabled = false;
12999 enum pipe pipe;
13000
13001 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13002 encoder->base.base.id,
13003 encoder->base.name);
13004
13005 for_each_intel_connector(dev, connector) {
13006 if (connector->base.state->best_encoder != &encoder->base)
13007 continue;
13008 enabled = true;
13009
13010 I915_STATE_WARN(connector->base.state->crtc !=
13011 encoder->base.crtc,
13012 "connector's crtc doesn't match encoder crtc\n");
13013 }
13014
13015 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13016 "encoder's enabled state mismatch "
13017 "(expected %i, found %i)\n",
13018 !!encoder->base.crtc, enabled);
13019
13020 if (!encoder->base.crtc) {
13021 bool active;
13022
13023 active = encoder->get_hw_state(encoder, &pipe);
13024 I915_STATE_WARN(active,
13025 "encoder detached but still enabled on pipe %c.\n",
13026 pipe_name(pipe));
13027 }
13028 }
13029 }
13030
13031 static void
13032 verify_crtc_state(struct drm_crtc *crtc,
13033 struct drm_crtc_state *old_crtc_state,
13034 struct drm_crtc_state *new_crtc_state)
13035 {
13036 struct drm_device *dev = crtc->dev;
13037 struct drm_i915_private *dev_priv = to_i915(dev);
13038 struct intel_encoder *encoder;
13039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13040 struct intel_crtc_state *pipe_config, *sw_config;
13041 struct drm_atomic_state *old_state;
13042 bool active;
13043
13044 old_state = old_crtc_state->state;
13045 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13046 pipe_config = to_intel_crtc_state(old_crtc_state);
13047 memset(pipe_config, 0, sizeof(*pipe_config));
13048 pipe_config->base.crtc = crtc;
13049 pipe_config->base.state = old_state;
13050
13051 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13052
13053 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13054
13055 /* hw state is inconsistent with the pipe quirk */
13056 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13057 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13058 active = new_crtc_state->active;
13059
13060 I915_STATE_WARN(new_crtc_state->active != active,
13061 "crtc active state doesn't match with hw state "
13062 "(expected %i, found %i)\n", new_crtc_state->active, active);
13063
13064 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13065 "transitional active state does not match atomic hw state "
13066 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13067
13068 for_each_encoder_on_crtc(dev, crtc, encoder) {
13069 enum pipe pipe;
13070
13071 active = encoder->get_hw_state(encoder, &pipe);
13072 I915_STATE_WARN(active != new_crtc_state->active,
13073 "[ENCODER:%i] active %i with crtc active %i\n",
13074 encoder->base.base.id, active, new_crtc_state->active);
13075
13076 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13077 "Encoder connected to wrong pipe %c\n",
13078 pipe_name(pipe));
13079
13080 if (active) {
13081 pipe_config->output_types |= 1 << encoder->type;
13082 encoder->get_config(encoder, pipe_config);
13083 }
13084 }
13085
13086 if (!new_crtc_state->active)
13087 return;
13088
13089 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13090
13091 sw_config = to_intel_crtc_state(crtc->state);
13092 if (!intel_pipe_config_compare(dev, sw_config,
13093 pipe_config, false)) {
13094 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13095 intel_dump_pipe_config(intel_crtc, pipe_config,
13096 "[hw state]");
13097 intel_dump_pipe_config(intel_crtc, sw_config,
13098 "[sw state]");
13099 }
13100 }
13101
13102 static void
13103 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13104 struct intel_shared_dpll *pll,
13105 struct drm_crtc *crtc,
13106 struct drm_crtc_state *new_state)
13107 {
13108 struct intel_dpll_hw_state dpll_hw_state;
13109 unsigned crtc_mask;
13110 bool active;
13111
13112 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13113
13114 DRM_DEBUG_KMS("%s\n", pll->name);
13115
13116 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13117
13118 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13119 I915_STATE_WARN(!pll->on && pll->active_mask,
13120 "pll in active use but not on in sw tracking\n");
13121 I915_STATE_WARN(pll->on && !pll->active_mask,
13122 "pll is on but not used by any active crtc\n");
13123 I915_STATE_WARN(pll->on != active,
13124 "pll on state mismatch (expected %i, found %i)\n",
13125 pll->on, active);
13126 }
13127
13128 if (!crtc) {
13129 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13130 "more active pll users than references: %x vs %x\n",
13131 pll->active_mask, pll->config.crtc_mask);
13132
13133 return;
13134 }
13135
13136 crtc_mask = 1 << drm_crtc_index(crtc);
13137
13138 if (new_state->active)
13139 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13140 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13141 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13142 else
13143 I915_STATE_WARN(pll->active_mask & crtc_mask,
13144 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13145 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13146
13147 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13148 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13149 crtc_mask, pll->config.crtc_mask);
13150
13151 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13152 &dpll_hw_state,
13153 sizeof(dpll_hw_state)),
13154 "pll hw state mismatch\n");
13155 }
13156
13157 static void
13158 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13159 struct drm_crtc_state *old_crtc_state,
13160 struct drm_crtc_state *new_crtc_state)
13161 {
13162 struct drm_i915_private *dev_priv = to_i915(dev);
13163 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13164 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13165
13166 if (new_state->shared_dpll)
13167 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13168
13169 if (old_state->shared_dpll &&
13170 old_state->shared_dpll != new_state->shared_dpll) {
13171 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13172 struct intel_shared_dpll *pll = old_state->shared_dpll;
13173
13174 I915_STATE_WARN(pll->active_mask & crtc_mask,
13175 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13176 pipe_name(drm_crtc_index(crtc)));
13177 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13178 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13179 pipe_name(drm_crtc_index(crtc)));
13180 }
13181 }
13182
13183 static void
13184 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13185 struct drm_crtc_state *old_state,
13186 struct drm_crtc_state *new_state)
13187 {
13188 if (!needs_modeset(new_state) &&
13189 !to_intel_crtc_state(new_state)->update_pipe)
13190 return;
13191
13192 verify_wm_state(crtc, new_state);
13193 verify_connector_state(crtc->dev, crtc);
13194 verify_crtc_state(crtc, old_state, new_state);
13195 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13196 }
13197
13198 static void
13199 verify_disabled_dpll_state(struct drm_device *dev)
13200 {
13201 struct drm_i915_private *dev_priv = to_i915(dev);
13202 int i;
13203
13204 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13205 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13206 }
13207
13208 static void
13209 intel_modeset_verify_disabled(struct drm_device *dev)
13210 {
13211 verify_encoder_state(dev);
13212 verify_connector_state(dev, NULL);
13213 verify_disabled_dpll_state(dev);
13214 }
13215
13216 static void update_scanline_offset(struct intel_crtc *crtc)
13217 {
13218 struct drm_device *dev = crtc->base.dev;
13219
13220 /*
13221 * The scanline counter increments at the leading edge of hsync.
13222 *
13223 * On most platforms it starts counting from vtotal-1 on the
13224 * first active line. That means the scanline counter value is
13225 * always one less than what we would expect. Ie. just after
13226 * start of vblank, which also occurs at start of hsync (on the
13227 * last active line), the scanline counter will read vblank_start-1.
13228 *
13229 * On gen2 the scanline counter starts counting from 1 instead
13230 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13231 * to keep the value positive), instead of adding one.
13232 *
13233 * On HSW+ the behaviour of the scanline counter depends on the output
13234 * type. For DP ports it behaves like most other platforms, but on HDMI
13235 * there's an extra 1 line difference. So we need to add two instead of
13236 * one to the value.
13237 */
13238 if (IS_GEN2(dev)) {
13239 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13240 int vtotal;
13241
13242 vtotal = adjusted_mode->crtc_vtotal;
13243 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13244 vtotal /= 2;
13245
13246 crtc->scanline_offset = vtotal - 1;
13247 } else if (HAS_DDI(dev) &&
13248 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13249 crtc->scanline_offset = 2;
13250 } else
13251 crtc->scanline_offset = 1;
13252 }
13253
13254 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13255 {
13256 struct drm_device *dev = state->dev;
13257 struct drm_i915_private *dev_priv = to_i915(dev);
13258 struct intel_shared_dpll_config *shared_dpll = NULL;
13259 struct drm_crtc *crtc;
13260 struct drm_crtc_state *crtc_state;
13261 int i;
13262
13263 if (!dev_priv->display.crtc_compute_clock)
13264 return;
13265
13266 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13268 struct intel_shared_dpll *old_dpll =
13269 to_intel_crtc_state(crtc->state)->shared_dpll;
13270
13271 if (!needs_modeset(crtc_state))
13272 continue;
13273
13274 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13275
13276 if (!old_dpll)
13277 continue;
13278
13279 if (!shared_dpll)
13280 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13281
13282 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13283 }
13284 }
13285
13286 /*
13287 * This implements the workaround described in the "notes" section of the mode
13288 * set sequence documentation. When going from no pipes or single pipe to
13289 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13290 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13291 */
13292 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13293 {
13294 struct drm_crtc_state *crtc_state;
13295 struct intel_crtc *intel_crtc;
13296 struct drm_crtc *crtc;
13297 struct intel_crtc_state *first_crtc_state = NULL;
13298 struct intel_crtc_state *other_crtc_state = NULL;
13299 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13300 int i;
13301
13302 /* look at all crtc's that are going to be enabled in during modeset */
13303 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13304 intel_crtc = to_intel_crtc(crtc);
13305
13306 if (!crtc_state->active || !needs_modeset(crtc_state))
13307 continue;
13308
13309 if (first_crtc_state) {
13310 other_crtc_state = to_intel_crtc_state(crtc_state);
13311 break;
13312 } else {
13313 first_crtc_state = to_intel_crtc_state(crtc_state);
13314 first_pipe = intel_crtc->pipe;
13315 }
13316 }
13317
13318 /* No workaround needed? */
13319 if (!first_crtc_state)
13320 return 0;
13321
13322 /* w/a possibly needed, check how many crtc's are already enabled. */
13323 for_each_intel_crtc(state->dev, intel_crtc) {
13324 struct intel_crtc_state *pipe_config;
13325
13326 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13327 if (IS_ERR(pipe_config))
13328 return PTR_ERR(pipe_config);
13329
13330 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13331
13332 if (!pipe_config->base.active ||
13333 needs_modeset(&pipe_config->base))
13334 continue;
13335
13336 /* 2 or more enabled crtcs means no need for w/a */
13337 if (enabled_pipe != INVALID_PIPE)
13338 return 0;
13339
13340 enabled_pipe = intel_crtc->pipe;
13341 }
13342
13343 if (enabled_pipe != INVALID_PIPE)
13344 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13345 else if (other_crtc_state)
13346 other_crtc_state->hsw_workaround_pipe = first_pipe;
13347
13348 return 0;
13349 }
13350
13351 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13352 {
13353 struct drm_crtc *crtc;
13354 struct drm_crtc_state *crtc_state;
13355 int ret = 0;
13356
13357 /* add all active pipes to the state */
13358 for_each_crtc(state->dev, crtc) {
13359 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13360 if (IS_ERR(crtc_state))
13361 return PTR_ERR(crtc_state);
13362
13363 if (!crtc_state->active || needs_modeset(crtc_state))
13364 continue;
13365
13366 crtc_state->mode_changed = true;
13367
13368 ret = drm_atomic_add_affected_connectors(state, crtc);
13369 if (ret)
13370 break;
13371
13372 ret = drm_atomic_add_affected_planes(state, crtc);
13373 if (ret)
13374 break;
13375 }
13376
13377 return ret;
13378 }
13379
13380 static int intel_modeset_checks(struct drm_atomic_state *state)
13381 {
13382 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13383 struct drm_i915_private *dev_priv = to_i915(state->dev);
13384 struct drm_crtc *crtc;
13385 struct drm_crtc_state *crtc_state;
13386 int ret = 0, i;
13387
13388 if (!check_digital_port_conflicts(state)) {
13389 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13390 return -EINVAL;
13391 }
13392
13393 intel_state->modeset = true;
13394 intel_state->active_crtcs = dev_priv->active_crtcs;
13395
13396 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13397 if (crtc_state->active)
13398 intel_state->active_crtcs |= 1 << i;
13399 else
13400 intel_state->active_crtcs &= ~(1 << i);
13401
13402 if (crtc_state->active != crtc->state->active)
13403 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13404 }
13405
13406 /*
13407 * See if the config requires any additional preparation, e.g.
13408 * to adjust global state with pipes off. We need to do this
13409 * here so we can get the modeset_pipe updated config for the new
13410 * mode set on this crtc. For other crtcs we need to use the
13411 * adjusted_mode bits in the crtc directly.
13412 */
13413 if (dev_priv->display.modeset_calc_cdclk) {
13414 if (!intel_state->cdclk_pll_vco)
13415 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13416 if (!intel_state->cdclk_pll_vco)
13417 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13418
13419 ret = dev_priv->display.modeset_calc_cdclk(state);
13420 if (ret < 0)
13421 return ret;
13422
13423 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13424 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13425 ret = intel_modeset_all_pipes(state);
13426
13427 if (ret < 0)
13428 return ret;
13429
13430 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13431 intel_state->cdclk, intel_state->dev_cdclk);
13432 } else
13433 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13434
13435 intel_modeset_clear_plls(state);
13436
13437 if (IS_HASWELL(dev_priv))
13438 return haswell_mode_set_planes_workaround(state);
13439
13440 return 0;
13441 }
13442
13443 /*
13444 * Handle calculation of various watermark data at the end of the atomic check
13445 * phase. The code here should be run after the per-crtc and per-plane 'check'
13446 * handlers to ensure that all derived state has been updated.
13447 */
13448 static int calc_watermark_data(struct drm_atomic_state *state)
13449 {
13450 struct drm_device *dev = state->dev;
13451 struct drm_i915_private *dev_priv = to_i915(dev);
13452
13453 /* Is there platform-specific watermark information to calculate? */
13454 if (dev_priv->display.compute_global_watermarks)
13455 return dev_priv->display.compute_global_watermarks(state);
13456
13457 return 0;
13458 }
13459
13460 /**
13461 * intel_atomic_check - validate state object
13462 * @dev: drm device
13463 * @state: state to validate
13464 */
13465 static int intel_atomic_check(struct drm_device *dev,
13466 struct drm_atomic_state *state)
13467 {
13468 struct drm_i915_private *dev_priv = to_i915(dev);
13469 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13470 struct drm_crtc *crtc;
13471 struct drm_crtc_state *crtc_state;
13472 int ret, i;
13473 bool any_ms = false;
13474
13475 ret = drm_atomic_helper_check_modeset(dev, state);
13476 if (ret)
13477 return ret;
13478
13479 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13480 struct intel_crtc_state *pipe_config =
13481 to_intel_crtc_state(crtc_state);
13482
13483 /* Catch I915_MODE_FLAG_INHERITED */
13484 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13485 crtc_state->mode_changed = true;
13486
13487 if (!needs_modeset(crtc_state))
13488 continue;
13489
13490 if (!crtc_state->enable) {
13491 any_ms = true;
13492 continue;
13493 }
13494
13495 /* FIXME: For only active_changed we shouldn't need to do any
13496 * state recomputation at all. */
13497
13498 ret = drm_atomic_add_affected_connectors(state, crtc);
13499 if (ret)
13500 return ret;
13501
13502 ret = intel_modeset_pipe_config(crtc, pipe_config);
13503 if (ret) {
13504 intel_dump_pipe_config(to_intel_crtc(crtc),
13505 pipe_config, "[failed]");
13506 return ret;
13507 }
13508
13509 if (i915.fastboot &&
13510 intel_pipe_config_compare(dev,
13511 to_intel_crtc_state(crtc->state),
13512 pipe_config, true)) {
13513 crtc_state->mode_changed = false;
13514 to_intel_crtc_state(crtc_state)->update_pipe = true;
13515 }
13516
13517 if (needs_modeset(crtc_state))
13518 any_ms = true;
13519
13520 ret = drm_atomic_add_affected_planes(state, crtc);
13521 if (ret)
13522 return ret;
13523
13524 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13525 needs_modeset(crtc_state) ?
13526 "[modeset]" : "[fastset]");
13527 }
13528
13529 if (any_ms) {
13530 ret = intel_modeset_checks(state);
13531
13532 if (ret)
13533 return ret;
13534 } else
13535 intel_state->cdclk = dev_priv->cdclk_freq;
13536
13537 ret = drm_atomic_helper_check_planes(dev, state);
13538 if (ret)
13539 return ret;
13540
13541 intel_fbc_choose_crtc(dev_priv, state);
13542 return calc_watermark_data(state);
13543 }
13544
13545 static int intel_atomic_prepare_commit(struct drm_device *dev,
13546 struct drm_atomic_state *state,
13547 bool nonblock)
13548 {
13549 struct drm_i915_private *dev_priv = to_i915(dev);
13550 struct drm_plane_state *plane_state;
13551 struct drm_crtc_state *crtc_state;
13552 struct drm_plane *plane;
13553 struct drm_crtc *crtc;
13554 int i, ret;
13555
13556 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13557 if (state->legacy_cursor_update)
13558 continue;
13559
13560 ret = intel_crtc_wait_for_pending_flips(crtc);
13561 if (ret)
13562 return ret;
13563
13564 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13565 flush_workqueue(dev_priv->wq);
13566 }
13567
13568 ret = mutex_lock_interruptible(&dev->struct_mutex);
13569 if (ret)
13570 return ret;
13571
13572 ret = drm_atomic_helper_prepare_planes(dev, state);
13573 mutex_unlock(&dev->struct_mutex);
13574
13575 if (!ret && !nonblock) {
13576 for_each_plane_in_state(state, plane, plane_state, i) {
13577 struct intel_plane_state *intel_plane_state =
13578 to_intel_plane_state(plane_state);
13579
13580 if (!intel_plane_state->wait_req)
13581 continue;
13582
13583 ret = __i915_wait_request(intel_plane_state->wait_req,
13584 true, NULL, NULL);
13585 if (ret) {
13586 /* Any hang should be swallowed by the wait */
13587 WARN_ON(ret == -EIO);
13588 mutex_lock(&dev->struct_mutex);
13589 drm_atomic_helper_cleanup_planes(dev, state);
13590 mutex_unlock(&dev->struct_mutex);
13591 break;
13592 }
13593 }
13594 }
13595
13596 return ret;
13597 }
13598
13599 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13600 {
13601 struct drm_device *dev = crtc->base.dev;
13602
13603 if (!dev->max_vblank_count)
13604 return drm_accurate_vblank_count(&crtc->base);
13605
13606 return dev->driver->get_vblank_counter(dev, crtc->pipe);
13607 }
13608
13609 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13610 struct drm_i915_private *dev_priv,
13611 unsigned crtc_mask)
13612 {
13613 unsigned last_vblank_count[I915_MAX_PIPES];
13614 enum pipe pipe;
13615 int ret;
13616
13617 if (!crtc_mask)
13618 return;
13619
13620 for_each_pipe(dev_priv, pipe) {
13621 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13622
13623 if (!((1 << pipe) & crtc_mask))
13624 continue;
13625
13626 ret = drm_crtc_vblank_get(crtc);
13627 if (WARN_ON(ret != 0)) {
13628 crtc_mask &= ~(1 << pipe);
13629 continue;
13630 }
13631
13632 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13633 }
13634
13635 for_each_pipe(dev_priv, pipe) {
13636 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13637 long lret;
13638
13639 if (!((1 << pipe) & crtc_mask))
13640 continue;
13641
13642 lret = wait_event_timeout(dev->vblank[pipe].queue,
13643 last_vblank_count[pipe] !=
13644 drm_crtc_vblank_count(crtc),
13645 msecs_to_jiffies(50));
13646
13647 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13648
13649 drm_crtc_vblank_put(crtc);
13650 }
13651 }
13652
13653 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13654 {
13655 /* fb updated, need to unpin old fb */
13656 if (crtc_state->fb_changed)
13657 return true;
13658
13659 /* wm changes, need vblank before final wm's */
13660 if (crtc_state->update_wm_post)
13661 return true;
13662
13663 /*
13664 * cxsr is re-enabled after vblank.
13665 * This is already handled by crtc_state->update_wm_post,
13666 * but added for clarity.
13667 */
13668 if (crtc_state->disable_cxsr)
13669 return true;
13670
13671 return false;
13672 }
13673
13674 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13675 {
13676 struct drm_device *dev = state->dev;
13677 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13678 struct drm_i915_private *dev_priv = to_i915(dev);
13679 struct drm_crtc_state *old_crtc_state;
13680 struct drm_crtc *crtc;
13681 struct intel_crtc_state *intel_cstate;
13682 struct drm_plane *plane;
13683 struct drm_plane_state *plane_state;
13684 bool hw_check = intel_state->modeset;
13685 unsigned long put_domains[I915_MAX_PIPES] = {};
13686 unsigned crtc_vblank_mask = 0;
13687 int i, ret;
13688
13689 for_each_plane_in_state(state, plane, plane_state, i) {
13690 struct intel_plane_state *intel_plane_state =
13691 to_intel_plane_state(plane_state);
13692
13693 if (!intel_plane_state->wait_req)
13694 continue;
13695
13696 ret = __i915_wait_request(intel_plane_state->wait_req,
13697 true, NULL, NULL);
13698 /* EIO should be eaten, and we can't get interrupted in the
13699 * worker, and blocking commits have waited already. */
13700 WARN_ON(ret);
13701 }
13702
13703 drm_atomic_helper_wait_for_dependencies(state);
13704
13705 if (intel_state->modeset) {
13706 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13707 sizeof(intel_state->min_pixclk));
13708 dev_priv->active_crtcs = intel_state->active_crtcs;
13709 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13710
13711 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13712 }
13713
13714 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13716
13717 if (needs_modeset(crtc->state) ||
13718 to_intel_crtc_state(crtc->state)->update_pipe) {
13719 hw_check = true;
13720
13721 put_domains[to_intel_crtc(crtc)->pipe] =
13722 modeset_get_crtc_power_domains(crtc,
13723 to_intel_crtc_state(crtc->state));
13724 }
13725
13726 if (!needs_modeset(crtc->state))
13727 continue;
13728
13729 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13730
13731 if (old_crtc_state->active) {
13732 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13733 dev_priv->display.crtc_disable(crtc);
13734 intel_crtc->active = false;
13735 intel_fbc_disable(intel_crtc);
13736 intel_disable_shared_dpll(intel_crtc);
13737
13738 /*
13739 * Underruns don't always raise
13740 * interrupts, so check manually.
13741 */
13742 intel_check_cpu_fifo_underruns(dev_priv);
13743 intel_check_pch_fifo_underruns(dev_priv);
13744
13745 if (!crtc->state->active)
13746 intel_update_watermarks(crtc);
13747 }
13748 }
13749
13750 /* Only after disabling all output pipelines that will be changed can we
13751 * update the the output configuration. */
13752 intel_modeset_update_crtc_state(state);
13753
13754 if (intel_state->modeset) {
13755 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13756
13757 if (dev_priv->display.modeset_commit_cdclk &&
13758 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13759 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13760 dev_priv->display.modeset_commit_cdclk(state);
13761
13762 /*
13763 * SKL workaround: bspec recommends we disable the SAGV when we
13764 * have more then one pipe enabled
13765 */
13766 if (IS_SKYLAKE(dev_priv) && !skl_can_enable_sagv(state))
13767 skl_disable_sagv(dev_priv);
13768
13769 intel_modeset_verify_disabled(dev);
13770 }
13771
13772 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13773 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13775 bool modeset = needs_modeset(crtc->state);
13776 struct intel_crtc_state *pipe_config =
13777 to_intel_crtc_state(crtc->state);
13778
13779 if (modeset && crtc->state->active) {
13780 update_scanline_offset(to_intel_crtc(crtc));
13781 dev_priv->display.crtc_enable(crtc);
13782 }
13783
13784 /* Complete events for now disable pipes here. */
13785 if (modeset && !crtc->state->active && crtc->state->event) {
13786 spin_lock_irq(&dev->event_lock);
13787 drm_crtc_send_vblank_event(crtc, crtc->state->event);
13788 spin_unlock_irq(&dev->event_lock);
13789
13790 crtc->state->event = NULL;
13791 }
13792
13793 if (!modeset)
13794 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13795
13796 if (crtc->state->active &&
13797 drm_atomic_get_existing_plane_state(state, crtc->primary))
13798 intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13799
13800 if (crtc->state->active)
13801 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13802
13803 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13804 crtc_vblank_mask |= 1 << i;
13805 }
13806
13807 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13808 * already, but still need the state for the delayed optimization. To
13809 * fix this:
13810 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13811 * - schedule that vblank worker _before_ calling hw_done
13812 * - at the start of commit_tail, cancel it _synchrously
13813 * - switch over to the vblank wait helper in the core after that since
13814 * we don't need out special handling any more.
13815 */
13816 if (!state->legacy_cursor_update)
13817 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13818
13819 /*
13820 * Now that the vblank has passed, we can go ahead and program the
13821 * optimal watermarks on platforms that need two-step watermark
13822 * programming.
13823 *
13824 * TODO: Move this (and other cleanup) to an async worker eventually.
13825 */
13826 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13827 intel_cstate = to_intel_crtc_state(crtc->state);
13828
13829 if (dev_priv->display.optimize_watermarks)
13830 dev_priv->display.optimize_watermarks(intel_cstate);
13831 }
13832
13833 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13834 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13835
13836 if (put_domains[i])
13837 modeset_put_power_domains(dev_priv, put_domains[i]);
13838
13839 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13840 }
13841
13842 if (IS_SKYLAKE(dev_priv) && intel_state->modeset &&
13843 skl_can_enable_sagv(state))
13844 skl_enable_sagv(dev_priv);
13845
13846 drm_atomic_helper_commit_hw_done(state);
13847
13848 if (intel_state->modeset)
13849 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13850
13851 mutex_lock(&dev->struct_mutex);
13852 drm_atomic_helper_cleanup_planes(dev, state);
13853 mutex_unlock(&dev->struct_mutex);
13854
13855 drm_atomic_helper_commit_cleanup_done(state);
13856
13857 drm_atomic_state_free(state);
13858
13859 /* As one of the primary mmio accessors, KMS has a high likelihood
13860 * of triggering bugs in unclaimed access. After we finish
13861 * modesetting, see if an error has been flagged, and if so
13862 * enable debugging for the next modeset - and hope we catch
13863 * the culprit.
13864 *
13865 * XXX note that we assume display power is on at this point.
13866 * This might hold true now but we need to add pm helper to check
13867 * unclaimed only when the hardware is on, as atomic commits
13868 * can happen also when the device is completely off.
13869 */
13870 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13871 }
13872
13873 static void intel_atomic_commit_work(struct work_struct *work)
13874 {
13875 struct drm_atomic_state *state = container_of(work,
13876 struct drm_atomic_state,
13877 commit_work);
13878 intel_atomic_commit_tail(state);
13879 }
13880
13881 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13882 {
13883 struct drm_plane_state *old_plane_state;
13884 struct drm_plane *plane;
13885 struct drm_i915_gem_object *obj, *old_obj;
13886 struct intel_plane *intel_plane;
13887 int i;
13888
13889 mutex_lock(&state->dev->struct_mutex);
13890 for_each_plane_in_state(state, plane, old_plane_state, i) {
13891 obj = intel_fb_obj(plane->state->fb);
13892 old_obj = intel_fb_obj(old_plane_state->fb);
13893 intel_plane = to_intel_plane(plane);
13894
13895 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13896 }
13897 mutex_unlock(&state->dev->struct_mutex);
13898 }
13899
13900 /**
13901 * intel_atomic_commit - commit validated state object
13902 * @dev: DRM device
13903 * @state: the top-level driver state object
13904 * @nonblock: nonblocking commit
13905 *
13906 * This function commits a top-level state object that has been validated
13907 * with drm_atomic_helper_check().
13908 *
13909 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13910 * nonblocking commits are only safe for pure plane updates. Everything else
13911 * should work though.
13912 *
13913 * RETURNS
13914 * Zero for success or -errno.
13915 */
13916 static int intel_atomic_commit(struct drm_device *dev,
13917 struct drm_atomic_state *state,
13918 bool nonblock)
13919 {
13920 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13921 struct drm_i915_private *dev_priv = to_i915(dev);
13922 int ret = 0;
13923
13924 if (intel_state->modeset && nonblock) {
13925 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13926 return -EINVAL;
13927 }
13928
13929 ret = drm_atomic_helper_setup_commit(state, nonblock);
13930 if (ret)
13931 return ret;
13932
13933 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13934
13935 ret = intel_atomic_prepare_commit(dev, state, nonblock);
13936 if (ret) {
13937 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13938 return ret;
13939 }
13940
13941 drm_atomic_helper_swap_state(state, true);
13942 dev_priv->wm.distrust_bios_wm = false;
13943 dev_priv->wm.skl_results = intel_state->wm_results;
13944 intel_shared_dpll_commit(state);
13945 intel_atomic_track_fbs(state);
13946
13947 if (nonblock)
13948 queue_work(system_unbound_wq, &state->commit_work);
13949 else
13950 intel_atomic_commit_tail(state);
13951
13952 return 0;
13953 }
13954
13955 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13956 {
13957 struct drm_device *dev = crtc->dev;
13958 struct drm_atomic_state *state;
13959 struct drm_crtc_state *crtc_state;
13960 int ret;
13961
13962 state = drm_atomic_state_alloc(dev);
13963 if (!state) {
13964 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13965 crtc->base.id, crtc->name);
13966 return;
13967 }
13968
13969 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13970
13971 retry:
13972 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13973 ret = PTR_ERR_OR_ZERO(crtc_state);
13974 if (!ret) {
13975 if (!crtc_state->active)
13976 goto out;
13977
13978 crtc_state->mode_changed = true;
13979 ret = drm_atomic_commit(state);
13980 }
13981
13982 if (ret == -EDEADLK) {
13983 drm_atomic_state_clear(state);
13984 drm_modeset_backoff(state->acquire_ctx);
13985 goto retry;
13986 }
13987
13988 if (ret)
13989 out:
13990 drm_atomic_state_free(state);
13991 }
13992
13993 #undef for_each_intel_crtc_masked
13994
13995 /*
13996 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
13997 * drm_atomic_helper_legacy_gamma_set() directly.
13998 */
13999 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14000 u16 *red, u16 *green, u16 *blue,
14001 uint32_t size)
14002 {
14003 struct drm_device *dev = crtc->dev;
14004 struct drm_mode_config *config = &dev->mode_config;
14005 struct drm_crtc_state *state;
14006 int ret;
14007
14008 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14009 if (ret)
14010 return ret;
14011
14012 /*
14013 * Make sure we update the legacy properties so this works when
14014 * atomic is not enabled.
14015 */
14016
14017 state = crtc->state;
14018
14019 drm_object_property_set_value(&crtc->base,
14020 config->degamma_lut_property,
14021 (state->degamma_lut) ?
14022 state->degamma_lut->base.id : 0);
14023
14024 drm_object_property_set_value(&crtc->base,
14025 config->ctm_property,
14026 (state->ctm) ?
14027 state->ctm->base.id : 0);
14028
14029 drm_object_property_set_value(&crtc->base,
14030 config->gamma_lut_property,
14031 (state->gamma_lut) ?
14032 state->gamma_lut->base.id : 0);
14033
14034 return 0;
14035 }
14036
14037 static const struct drm_crtc_funcs intel_crtc_funcs = {
14038 .gamma_set = intel_atomic_legacy_gamma_set,
14039 .set_config = drm_atomic_helper_set_config,
14040 .set_property = drm_atomic_helper_crtc_set_property,
14041 .destroy = intel_crtc_destroy,
14042 .page_flip = intel_crtc_page_flip,
14043 .atomic_duplicate_state = intel_crtc_duplicate_state,
14044 .atomic_destroy_state = intel_crtc_destroy_state,
14045 };
14046
14047 /**
14048 * intel_prepare_plane_fb - Prepare fb for usage on plane
14049 * @plane: drm plane to prepare for
14050 * @fb: framebuffer to prepare for presentation
14051 *
14052 * Prepares a framebuffer for usage on a display plane. Generally this
14053 * involves pinning the underlying object and updating the frontbuffer tracking
14054 * bits. Some older platforms need special physical address handling for
14055 * cursor planes.
14056 *
14057 * Must be called with struct_mutex held.
14058 *
14059 * Returns 0 on success, negative error code on failure.
14060 */
14061 int
14062 intel_prepare_plane_fb(struct drm_plane *plane,
14063 const struct drm_plane_state *new_state)
14064 {
14065 struct drm_device *dev = plane->dev;
14066 struct drm_framebuffer *fb = new_state->fb;
14067 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14068 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14069 struct reservation_object *resv;
14070 int ret = 0;
14071
14072 if (!obj && !old_obj)
14073 return 0;
14074
14075 if (old_obj) {
14076 struct drm_crtc_state *crtc_state =
14077 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14078
14079 /* Big Hammer, we also need to ensure that any pending
14080 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14081 * current scanout is retired before unpinning the old
14082 * framebuffer. Note that we rely on userspace rendering
14083 * into the buffer attached to the pipe they are waiting
14084 * on. If not, userspace generates a GPU hang with IPEHR
14085 * point to the MI_WAIT_FOR_EVENT.
14086 *
14087 * This should only fail upon a hung GPU, in which case we
14088 * can safely continue.
14089 */
14090 if (needs_modeset(crtc_state))
14091 ret = i915_gem_object_wait_rendering(old_obj, true);
14092 if (ret) {
14093 /* GPU hangs should have been swallowed by the wait */
14094 WARN_ON(ret == -EIO);
14095 return ret;
14096 }
14097 }
14098
14099 if (!obj)
14100 return 0;
14101
14102 /* For framebuffer backed by dmabuf, wait for fence */
14103 resv = i915_gem_object_get_dmabuf_resv(obj);
14104 if (resv) {
14105 long lret;
14106
14107 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14108 MAX_SCHEDULE_TIMEOUT);
14109 if (lret == -ERESTARTSYS)
14110 return lret;
14111
14112 WARN(lret < 0, "waiting returns %li\n", lret);
14113 }
14114
14115 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14116 INTEL_INFO(dev)->cursor_needs_physical) {
14117 int align = IS_I830(dev) ? 16 * 1024 : 256;
14118 ret = i915_gem_object_attach_phys(obj, align);
14119 if (ret)
14120 DRM_DEBUG_KMS("failed to attach phys object\n");
14121 } else {
14122 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14123 }
14124
14125 if (ret == 0) {
14126 struct intel_plane_state *plane_state =
14127 to_intel_plane_state(new_state);
14128
14129 i915_gem_request_assign(&plane_state->wait_req,
14130 obj->last_write_req);
14131 }
14132
14133 return ret;
14134 }
14135
14136 /**
14137 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14138 * @plane: drm plane to clean up for
14139 * @fb: old framebuffer that was on plane
14140 *
14141 * Cleans up a framebuffer that has just been removed from a plane.
14142 *
14143 * Must be called with struct_mutex held.
14144 */
14145 void
14146 intel_cleanup_plane_fb(struct drm_plane *plane,
14147 const struct drm_plane_state *old_state)
14148 {
14149 struct drm_device *dev = plane->dev;
14150 struct intel_plane_state *old_intel_state;
14151 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14152 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14153
14154 old_intel_state = to_intel_plane_state(old_state);
14155
14156 if (!obj && !old_obj)
14157 return;
14158
14159 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14160 !INTEL_INFO(dev)->cursor_needs_physical))
14161 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14162
14163 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14164 }
14165
14166 int
14167 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14168 {
14169 int max_scale;
14170 int crtc_clock, cdclk;
14171
14172 if (!intel_crtc || !crtc_state->base.enable)
14173 return DRM_PLANE_HELPER_NO_SCALING;
14174
14175 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14176 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14177
14178 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14179 return DRM_PLANE_HELPER_NO_SCALING;
14180
14181 /*
14182 * skl max scale is lower of:
14183 * close to 3 but not 3, -1 is for that purpose
14184 * or
14185 * cdclk/crtc_clock
14186 */
14187 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14188
14189 return max_scale;
14190 }
14191
14192 static int
14193 intel_check_primary_plane(struct drm_plane *plane,
14194 struct intel_crtc_state *crtc_state,
14195 struct intel_plane_state *state)
14196 {
14197 struct drm_crtc *crtc = state->base.crtc;
14198 struct drm_framebuffer *fb = state->base.fb;
14199 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14200 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14201 bool can_position = false;
14202
14203 if (INTEL_INFO(plane->dev)->gen >= 9) {
14204 /* use scaler when colorkey is not required */
14205 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14206 min_scale = 1;
14207 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14208 }
14209 can_position = true;
14210 }
14211
14212 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14213 &state->dst, &state->clip,
14214 state->base.rotation,
14215 min_scale, max_scale,
14216 can_position, true,
14217 &state->visible);
14218 }
14219
14220 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14221 struct drm_crtc_state *old_crtc_state)
14222 {
14223 struct drm_device *dev = crtc->dev;
14224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14225 struct intel_crtc_state *old_intel_state =
14226 to_intel_crtc_state(old_crtc_state);
14227 bool modeset = needs_modeset(crtc->state);
14228
14229 /* Perform vblank evasion around commit operation */
14230 intel_pipe_update_start(intel_crtc);
14231
14232 if (modeset)
14233 return;
14234
14235 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14236 intel_color_set_csc(crtc->state);
14237 intel_color_load_luts(crtc->state);
14238 }
14239
14240 if (to_intel_crtc_state(crtc->state)->update_pipe)
14241 intel_update_pipe_config(intel_crtc, old_intel_state);
14242 else if (INTEL_INFO(dev)->gen >= 9)
14243 skl_detach_scalers(intel_crtc);
14244 }
14245
14246 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14247 struct drm_crtc_state *old_crtc_state)
14248 {
14249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14250
14251 intel_pipe_update_end(intel_crtc, NULL);
14252 }
14253
14254 /**
14255 * intel_plane_destroy - destroy a plane
14256 * @plane: plane to destroy
14257 *
14258 * Common destruction function for all types of planes (primary, cursor,
14259 * sprite).
14260 */
14261 void intel_plane_destroy(struct drm_plane *plane)
14262 {
14263 if (!plane)
14264 return;
14265
14266 drm_plane_cleanup(plane);
14267 kfree(to_intel_plane(plane));
14268 }
14269
14270 const struct drm_plane_funcs intel_plane_funcs = {
14271 .update_plane = drm_atomic_helper_update_plane,
14272 .disable_plane = drm_atomic_helper_disable_plane,
14273 .destroy = intel_plane_destroy,
14274 .set_property = drm_atomic_helper_plane_set_property,
14275 .atomic_get_property = intel_plane_atomic_get_property,
14276 .atomic_set_property = intel_plane_atomic_set_property,
14277 .atomic_duplicate_state = intel_plane_duplicate_state,
14278 .atomic_destroy_state = intel_plane_destroy_state,
14279
14280 };
14281
14282 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14283 int pipe)
14284 {
14285 struct intel_plane *primary = NULL;
14286 struct intel_plane_state *state = NULL;
14287 const uint32_t *intel_primary_formats;
14288 unsigned int num_formats;
14289 int ret;
14290
14291 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14292 if (!primary)
14293 goto fail;
14294
14295 state = intel_create_plane_state(&primary->base);
14296 if (!state)
14297 goto fail;
14298 primary->base.state = &state->base;
14299
14300 primary->can_scale = false;
14301 primary->max_downscale = 1;
14302 if (INTEL_INFO(dev)->gen >= 9) {
14303 primary->can_scale = true;
14304 state->scaler_id = -1;
14305 }
14306 primary->pipe = pipe;
14307 primary->plane = pipe;
14308 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14309 primary->check_plane = intel_check_primary_plane;
14310 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14311 primary->plane = !pipe;
14312
14313 if (INTEL_INFO(dev)->gen >= 9) {
14314 intel_primary_formats = skl_primary_formats;
14315 num_formats = ARRAY_SIZE(skl_primary_formats);
14316
14317 primary->update_plane = skylake_update_primary_plane;
14318 primary->disable_plane = skylake_disable_primary_plane;
14319 } else if (HAS_PCH_SPLIT(dev)) {
14320 intel_primary_formats = i965_primary_formats;
14321 num_formats = ARRAY_SIZE(i965_primary_formats);
14322
14323 primary->update_plane = ironlake_update_primary_plane;
14324 primary->disable_plane = i9xx_disable_primary_plane;
14325 } else if (INTEL_INFO(dev)->gen >= 4) {
14326 intel_primary_formats = i965_primary_formats;
14327 num_formats = ARRAY_SIZE(i965_primary_formats);
14328
14329 primary->update_plane = i9xx_update_primary_plane;
14330 primary->disable_plane = i9xx_disable_primary_plane;
14331 } else {
14332 intel_primary_formats = i8xx_primary_formats;
14333 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14334
14335 primary->update_plane = i9xx_update_primary_plane;
14336 primary->disable_plane = i9xx_disable_primary_plane;
14337 }
14338
14339 if (INTEL_INFO(dev)->gen >= 9)
14340 ret = drm_universal_plane_init(dev, &primary->base, 0,
14341 &intel_plane_funcs,
14342 intel_primary_formats, num_formats,
14343 DRM_PLANE_TYPE_PRIMARY,
14344 "plane 1%c", pipe_name(pipe));
14345 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14346 ret = drm_universal_plane_init(dev, &primary->base, 0,
14347 &intel_plane_funcs,
14348 intel_primary_formats, num_formats,
14349 DRM_PLANE_TYPE_PRIMARY,
14350 "primary %c", pipe_name(pipe));
14351 else
14352 ret = drm_universal_plane_init(dev, &primary->base, 0,
14353 &intel_plane_funcs,
14354 intel_primary_formats, num_formats,
14355 DRM_PLANE_TYPE_PRIMARY,
14356 "plane %c", plane_name(primary->plane));
14357 if (ret)
14358 goto fail;
14359
14360 if (INTEL_INFO(dev)->gen >= 4)
14361 intel_create_rotation_property(dev, primary);
14362
14363 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14364
14365 return &primary->base;
14366
14367 fail:
14368 kfree(state);
14369 kfree(primary);
14370
14371 return NULL;
14372 }
14373
14374 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14375 {
14376 if (!dev->mode_config.rotation_property) {
14377 unsigned long flags = BIT(DRM_ROTATE_0) |
14378 BIT(DRM_ROTATE_180);
14379
14380 if (INTEL_INFO(dev)->gen >= 9)
14381 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14382
14383 dev->mode_config.rotation_property =
14384 drm_mode_create_rotation_property(dev, flags);
14385 }
14386 if (dev->mode_config.rotation_property)
14387 drm_object_attach_property(&plane->base.base,
14388 dev->mode_config.rotation_property,
14389 plane->base.state->rotation);
14390 }
14391
14392 static int
14393 intel_check_cursor_plane(struct drm_plane *plane,
14394 struct intel_crtc_state *crtc_state,
14395 struct intel_plane_state *state)
14396 {
14397 struct drm_crtc *crtc = crtc_state->base.crtc;
14398 struct drm_framebuffer *fb = state->base.fb;
14399 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14400 enum pipe pipe = to_intel_plane(plane)->pipe;
14401 unsigned stride;
14402 int ret;
14403
14404 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14405 &state->dst, &state->clip,
14406 state->base.rotation,
14407 DRM_PLANE_HELPER_NO_SCALING,
14408 DRM_PLANE_HELPER_NO_SCALING,
14409 true, true, &state->visible);
14410 if (ret)
14411 return ret;
14412
14413 /* if we want to turn off the cursor ignore width and height */
14414 if (!obj)
14415 return 0;
14416
14417 /* Check for which cursor types we support */
14418 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14419 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14420 state->base.crtc_w, state->base.crtc_h);
14421 return -EINVAL;
14422 }
14423
14424 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14425 if (obj->base.size < stride * state->base.crtc_h) {
14426 DRM_DEBUG_KMS("buffer is too small\n");
14427 return -ENOMEM;
14428 }
14429
14430 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14431 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14432 return -EINVAL;
14433 }
14434
14435 /*
14436 * There's something wrong with the cursor on CHV pipe C.
14437 * If it straddles the left edge of the screen then
14438 * moving it away from the edge or disabling it often
14439 * results in a pipe underrun, and often that can lead to
14440 * dead pipe (constant underrun reported, and it scans
14441 * out just a solid color). To recover from that, the
14442 * display power well must be turned off and on again.
14443 * Refuse the put the cursor into that compromised position.
14444 */
14445 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14446 state->visible && state->base.crtc_x < 0) {
14447 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14448 return -EINVAL;
14449 }
14450
14451 return 0;
14452 }
14453
14454 static void
14455 intel_disable_cursor_plane(struct drm_plane *plane,
14456 struct drm_crtc *crtc)
14457 {
14458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14459
14460 intel_crtc->cursor_addr = 0;
14461 intel_crtc_update_cursor(crtc, NULL);
14462 }
14463
14464 static void
14465 intel_update_cursor_plane(struct drm_plane *plane,
14466 const struct intel_crtc_state *crtc_state,
14467 const struct intel_plane_state *state)
14468 {
14469 struct drm_crtc *crtc = crtc_state->base.crtc;
14470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14471 struct drm_device *dev = plane->dev;
14472 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14473 uint32_t addr;
14474
14475 if (!obj)
14476 addr = 0;
14477 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14478 addr = i915_gem_obj_ggtt_offset(obj);
14479 else
14480 addr = obj->phys_handle->busaddr;
14481
14482 intel_crtc->cursor_addr = addr;
14483 intel_crtc_update_cursor(crtc, state);
14484 }
14485
14486 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14487 int pipe)
14488 {
14489 struct intel_plane *cursor = NULL;
14490 struct intel_plane_state *state = NULL;
14491 int ret;
14492
14493 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14494 if (!cursor)
14495 goto fail;
14496
14497 state = intel_create_plane_state(&cursor->base);
14498 if (!state)
14499 goto fail;
14500 cursor->base.state = &state->base;
14501
14502 cursor->can_scale = false;
14503 cursor->max_downscale = 1;
14504 cursor->pipe = pipe;
14505 cursor->plane = pipe;
14506 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14507 cursor->check_plane = intel_check_cursor_plane;
14508 cursor->update_plane = intel_update_cursor_plane;
14509 cursor->disable_plane = intel_disable_cursor_plane;
14510
14511 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14512 &intel_plane_funcs,
14513 intel_cursor_formats,
14514 ARRAY_SIZE(intel_cursor_formats),
14515 DRM_PLANE_TYPE_CURSOR,
14516 "cursor %c", pipe_name(pipe));
14517 if (ret)
14518 goto fail;
14519
14520 if (INTEL_INFO(dev)->gen >= 4) {
14521 if (!dev->mode_config.rotation_property)
14522 dev->mode_config.rotation_property =
14523 drm_mode_create_rotation_property(dev,
14524 BIT(DRM_ROTATE_0) |
14525 BIT(DRM_ROTATE_180));
14526 if (dev->mode_config.rotation_property)
14527 drm_object_attach_property(&cursor->base.base,
14528 dev->mode_config.rotation_property,
14529 state->base.rotation);
14530 }
14531
14532 if (INTEL_INFO(dev)->gen >=9)
14533 state->scaler_id = -1;
14534
14535 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14536
14537 return &cursor->base;
14538
14539 fail:
14540 kfree(state);
14541 kfree(cursor);
14542
14543 return NULL;
14544 }
14545
14546 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14547 struct intel_crtc_state *crtc_state)
14548 {
14549 int i;
14550 struct intel_scaler *intel_scaler;
14551 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14552
14553 for (i = 0; i < intel_crtc->num_scalers; i++) {
14554 intel_scaler = &scaler_state->scalers[i];
14555 intel_scaler->in_use = 0;
14556 intel_scaler->mode = PS_SCALER_MODE_DYN;
14557 }
14558
14559 scaler_state->scaler_id = -1;
14560 }
14561
14562 static void intel_crtc_init(struct drm_device *dev, int pipe)
14563 {
14564 struct drm_i915_private *dev_priv = to_i915(dev);
14565 struct intel_crtc *intel_crtc;
14566 struct intel_crtc_state *crtc_state = NULL;
14567 struct drm_plane *primary = NULL;
14568 struct drm_plane *cursor = NULL;
14569 int ret;
14570
14571 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14572 if (intel_crtc == NULL)
14573 return;
14574
14575 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14576 if (!crtc_state)
14577 goto fail;
14578 intel_crtc->config = crtc_state;
14579 intel_crtc->base.state = &crtc_state->base;
14580 crtc_state->base.crtc = &intel_crtc->base;
14581
14582 /* initialize shared scalers */
14583 if (INTEL_INFO(dev)->gen >= 9) {
14584 if (pipe == PIPE_C)
14585 intel_crtc->num_scalers = 1;
14586 else
14587 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14588
14589 skl_init_scalers(dev, intel_crtc, crtc_state);
14590 }
14591
14592 primary = intel_primary_plane_create(dev, pipe);
14593 if (!primary)
14594 goto fail;
14595
14596 cursor = intel_cursor_plane_create(dev, pipe);
14597 if (!cursor)
14598 goto fail;
14599
14600 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14601 cursor, &intel_crtc_funcs,
14602 "pipe %c", pipe_name(pipe));
14603 if (ret)
14604 goto fail;
14605
14606 /*
14607 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14608 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14609 */
14610 intel_crtc->pipe = pipe;
14611 intel_crtc->plane = pipe;
14612 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14613 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14614 intel_crtc->plane = !pipe;
14615 }
14616
14617 intel_crtc->cursor_base = ~0;
14618 intel_crtc->cursor_cntl = ~0;
14619 intel_crtc->cursor_size = ~0;
14620
14621 intel_crtc->wm.cxsr_allowed = true;
14622
14623 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14624 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14625 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14626 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14627
14628 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14629
14630 intel_color_init(&intel_crtc->base);
14631
14632 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14633 return;
14634
14635 fail:
14636 intel_plane_destroy(primary);
14637 intel_plane_destroy(cursor);
14638 kfree(crtc_state);
14639 kfree(intel_crtc);
14640 }
14641
14642 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14643 {
14644 struct drm_encoder *encoder = connector->base.encoder;
14645 struct drm_device *dev = connector->base.dev;
14646
14647 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14648
14649 if (!encoder || WARN_ON(!encoder->crtc))
14650 return INVALID_PIPE;
14651
14652 return to_intel_crtc(encoder->crtc)->pipe;
14653 }
14654
14655 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14656 struct drm_file *file)
14657 {
14658 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14659 struct drm_crtc *drmmode_crtc;
14660 struct intel_crtc *crtc;
14661
14662 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14663 if (!drmmode_crtc)
14664 return -ENOENT;
14665
14666 crtc = to_intel_crtc(drmmode_crtc);
14667 pipe_from_crtc_id->pipe = crtc->pipe;
14668
14669 return 0;
14670 }
14671
14672 static int intel_encoder_clones(struct intel_encoder *encoder)
14673 {
14674 struct drm_device *dev = encoder->base.dev;
14675 struct intel_encoder *source_encoder;
14676 int index_mask = 0;
14677 int entry = 0;
14678
14679 for_each_intel_encoder(dev, source_encoder) {
14680 if (encoders_cloneable(encoder, source_encoder))
14681 index_mask |= (1 << entry);
14682
14683 entry++;
14684 }
14685
14686 return index_mask;
14687 }
14688
14689 static bool has_edp_a(struct drm_device *dev)
14690 {
14691 struct drm_i915_private *dev_priv = to_i915(dev);
14692
14693 if (!IS_MOBILE(dev))
14694 return false;
14695
14696 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14697 return false;
14698
14699 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14700 return false;
14701
14702 return true;
14703 }
14704
14705 static bool intel_crt_present(struct drm_device *dev)
14706 {
14707 struct drm_i915_private *dev_priv = to_i915(dev);
14708
14709 if (INTEL_INFO(dev)->gen >= 9)
14710 return false;
14711
14712 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14713 return false;
14714
14715 if (IS_CHERRYVIEW(dev))
14716 return false;
14717
14718 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14719 return false;
14720
14721 /* DDI E can't be used if DDI A requires 4 lanes */
14722 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14723 return false;
14724
14725 if (!dev_priv->vbt.int_crt_support)
14726 return false;
14727
14728 return true;
14729 }
14730
14731 static void intel_setup_outputs(struct drm_device *dev)
14732 {
14733 struct drm_i915_private *dev_priv = to_i915(dev);
14734 struct intel_encoder *encoder;
14735 bool dpd_is_edp = false;
14736
14737 /*
14738 * intel_edp_init_connector() depends on this completing first, to
14739 * prevent the registeration of both eDP and LVDS and the incorrect
14740 * sharing of the PPS.
14741 */
14742 intel_lvds_init(dev);
14743
14744 if (intel_crt_present(dev))
14745 intel_crt_init(dev);
14746
14747 if (IS_BROXTON(dev)) {
14748 /*
14749 * FIXME: Broxton doesn't support port detection via the
14750 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14751 * detect the ports.
14752 */
14753 intel_ddi_init(dev, PORT_A);
14754 intel_ddi_init(dev, PORT_B);
14755 intel_ddi_init(dev, PORT_C);
14756
14757 intel_dsi_init(dev);
14758 } else if (HAS_DDI(dev)) {
14759 int found;
14760
14761 /*
14762 * Haswell uses DDI functions to detect digital outputs.
14763 * On SKL pre-D0 the strap isn't connected, so we assume
14764 * it's there.
14765 */
14766 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14767 /* WaIgnoreDDIAStrap: skl */
14768 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14769 intel_ddi_init(dev, PORT_A);
14770
14771 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14772 * register */
14773 found = I915_READ(SFUSE_STRAP);
14774
14775 if (found & SFUSE_STRAP_DDIB_DETECTED)
14776 intel_ddi_init(dev, PORT_B);
14777 if (found & SFUSE_STRAP_DDIC_DETECTED)
14778 intel_ddi_init(dev, PORT_C);
14779 if (found & SFUSE_STRAP_DDID_DETECTED)
14780 intel_ddi_init(dev, PORT_D);
14781 /*
14782 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14783 */
14784 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14785 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14786 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14787 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14788 intel_ddi_init(dev, PORT_E);
14789
14790 } else if (HAS_PCH_SPLIT(dev)) {
14791 int found;
14792 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14793
14794 if (has_edp_a(dev))
14795 intel_dp_init(dev, DP_A, PORT_A);
14796
14797 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14798 /* PCH SDVOB multiplex with HDMIB */
14799 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14800 if (!found)
14801 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14802 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14803 intel_dp_init(dev, PCH_DP_B, PORT_B);
14804 }
14805
14806 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14807 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14808
14809 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14810 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14811
14812 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14813 intel_dp_init(dev, PCH_DP_C, PORT_C);
14814
14815 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14816 intel_dp_init(dev, PCH_DP_D, PORT_D);
14817 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14818 bool has_edp, has_port;
14819
14820 /*
14821 * The DP_DETECTED bit is the latched state of the DDC
14822 * SDA pin at boot. However since eDP doesn't require DDC
14823 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14824 * eDP ports may have been muxed to an alternate function.
14825 * Thus we can't rely on the DP_DETECTED bit alone to detect
14826 * eDP ports. Consult the VBT as well as DP_DETECTED to
14827 * detect eDP ports.
14828 *
14829 * Sadly the straps seem to be missing sometimes even for HDMI
14830 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14831 * and VBT for the presence of the port. Additionally we can't
14832 * trust the port type the VBT declares as we've seen at least
14833 * HDMI ports that the VBT claim are DP or eDP.
14834 */
14835 has_edp = intel_dp_is_edp(dev, PORT_B);
14836 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14837 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14838 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14839 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14840 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14841
14842 has_edp = intel_dp_is_edp(dev, PORT_C);
14843 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14844 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14845 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14846 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14847 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14848
14849 if (IS_CHERRYVIEW(dev)) {
14850 /*
14851 * eDP not supported on port D,
14852 * so no need to worry about it
14853 */
14854 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14855 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14856 intel_dp_init(dev, CHV_DP_D, PORT_D);
14857 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14858 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14859 }
14860
14861 intel_dsi_init(dev);
14862 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14863 bool found = false;
14864
14865 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14866 DRM_DEBUG_KMS("probing SDVOB\n");
14867 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14868 if (!found && IS_G4X(dev)) {
14869 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14870 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14871 }
14872
14873 if (!found && IS_G4X(dev))
14874 intel_dp_init(dev, DP_B, PORT_B);
14875 }
14876
14877 /* Before G4X SDVOC doesn't have its own detect register */
14878
14879 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14880 DRM_DEBUG_KMS("probing SDVOC\n");
14881 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14882 }
14883
14884 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14885
14886 if (IS_G4X(dev)) {
14887 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14888 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14889 }
14890 if (IS_G4X(dev))
14891 intel_dp_init(dev, DP_C, PORT_C);
14892 }
14893
14894 if (IS_G4X(dev) &&
14895 (I915_READ(DP_D) & DP_DETECTED))
14896 intel_dp_init(dev, DP_D, PORT_D);
14897 } else if (IS_GEN2(dev))
14898 intel_dvo_init(dev);
14899
14900 if (SUPPORTS_TV(dev))
14901 intel_tv_init(dev);
14902
14903 intel_psr_init(dev);
14904
14905 for_each_intel_encoder(dev, encoder) {
14906 encoder->base.possible_crtcs = encoder->crtc_mask;
14907 encoder->base.possible_clones =
14908 intel_encoder_clones(encoder);
14909 }
14910
14911 intel_init_pch_refclk(dev);
14912
14913 drm_helper_move_panel_connectors_to_head(dev);
14914 }
14915
14916 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14917 {
14918 struct drm_device *dev = fb->dev;
14919 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14920
14921 drm_framebuffer_cleanup(fb);
14922 mutex_lock(&dev->struct_mutex);
14923 WARN_ON(!intel_fb->obj->framebuffer_references--);
14924 drm_gem_object_unreference(&intel_fb->obj->base);
14925 mutex_unlock(&dev->struct_mutex);
14926 kfree(intel_fb);
14927 }
14928
14929 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14930 struct drm_file *file,
14931 unsigned int *handle)
14932 {
14933 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14934 struct drm_i915_gem_object *obj = intel_fb->obj;
14935
14936 if (obj->userptr.mm) {
14937 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14938 return -EINVAL;
14939 }
14940
14941 return drm_gem_handle_create(file, &obj->base, handle);
14942 }
14943
14944 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14945 struct drm_file *file,
14946 unsigned flags, unsigned color,
14947 struct drm_clip_rect *clips,
14948 unsigned num_clips)
14949 {
14950 struct drm_device *dev = fb->dev;
14951 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14952 struct drm_i915_gem_object *obj = intel_fb->obj;
14953
14954 mutex_lock(&dev->struct_mutex);
14955 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14956 mutex_unlock(&dev->struct_mutex);
14957
14958 return 0;
14959 }
14960
14961 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14962 .destroy = intel_user_framebuffer_destroy,
14963 .create_handle = intel_user_framebuffer_create_handle,
14964 .dirty = intel_user_framebuffer_dirty,
14965 };
14966
14967 static
14968 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14969 uint32_t pixel_format)
14970 {
14971 u32 gen = INTEL_INFO(dev)->gen;
14972
14973 if (gen >= 9) {
14974 int cpp = drm_format_plane_cpp(pixel_format, 0);
14975
14976 /* "The stride in bytes must not exceed the of the size of 8K
14977 * pixels and 32K bytes."
14978 */
14979 return min(8192 * cpp, 32768);
14980 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14981 return 32*1024;
14982 } else if (gen >= 4) {
14983 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14984 return 16*1024;
14985 else
14986 return 32*1024;
14987 } else if (gen >= 3) {
14988 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14989 return 8*1024;
14990 else
14991 return 16*1024;
14992 } else {
14993 /* XXX DSPC is limited to 4k tiled */
14994 return 8*1024;
14995 }
14996 }
14997
14998 static int intel_framebuffer_init(struct drm_device *dev,
14999 struct intel_framebuffer *intel_fb,
15000 struct drm_mode_fb_cmd2 *mode_cmd,
15001 struct drm_i915_gem_object *obj)
15002 {
15003 struct drm_i915_private *dev_priv = to_i915(dev);
15004 unsigned int aligned_height;
15005 int ret;
15006 u32 pitch_limit, stride_alignment;
15007
15008 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15009
15010 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15011 /* Enforce that fb modifier and tiling mode match, but only for
15012 * X-tiled. This is needed for FBC. */
15013 if (!!(obj->tiling_mode == I915_TILING_X) !=
15014 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
15015 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15016 return -EINVAL;
15017 }
15018 } else {
15019 if (obj->tiling_mode == I915_TILING_X)
15020 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15021 else if (obj->tiling_mode == I915_TILING_Y) {
15022 DRM_DEBUG("No Y tiling for legacy addfb\n");
15023 return -EINVAL;
15024 }
15025 }
15026
15027 /* Passed in modifier sanity checking. */
15028 switch (mode_cmd->modifier[0]) {
15029 case I915_FORMAT_MOD_Y_TILED:
15030 case I915_FORMAT_MOD_Yf_TILED:
15031 if (INTEL_INFO(dev)->gen < 9) {
15032 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15033 mode_cmd->modifier[0]);
15034 return -EINVAL;
15035 }
15036 case DRM_FORMAT_MOD_NONE:
15037 case I915_FORMAT_MOD_X_TILED:
15038 break;
15039 default:
15040 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15041 mode_cmd->modifier[0]);
15042 return -EINVAL;
15043 }
15044
15045 stride_alignment = intel_fb_stride_alignment(dev_priv,
15046 mode_cmd->modifier[0],
15047 mode_cmd->pixel_format);
15048 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15049 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15050 mode_cmd->pitches[0], stride_alignment);
15051 return -EINVAL;
15052 }
15053
15054 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15055 mode_cmd->pixel_format);
15056 if (mode_cmd->pitches[0] > pitch_limit) {
15057 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15058 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15059 "tiled" : "linear",
15060 mode_cmd->pitches[0], pitch_limit);
15061 return -EINVAL;
15062 }
15063
15064 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
15065 mode_cmd->pitches[0] != obj->stride) {
15066 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15067 mode_cmd->pitches[0], obj->stride);
15068 return -EINVAL;
15069 }
15070
15071 /* Reject formats not supported by any plane early. */
15072 switch (mode_cmd->pixel_format) {
15073 case DRM_FORMAT_C8:
15074 case DRM_FORMAT_RGB565:
15075 case DRM_FORMAT_XRGB8888:
15076 case DRM_FORMAT_ARGB8888:
15077 break;
15078 case DRM_FORMAT_XRGB1555:
15079 if (INTEL_INFO(dev)->gen > 3) {
15080 DRM_DEBUG("unsupported pixel format: %s\n",
15081 drm_get_format_name(mode_cmd->pixel_format));
15082 return -EINVAL;
15083 }
15084 break;
15085 case DRM_FORMAT_ABGR8888:
15086 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15087 INTEL_INFO(dev)->gen < 9) {
15088 DRM_DEBUG("unsupported pixel format: %s\n",
15089 drm_get_format_name(mode_cmd->pixel_format));
15090 return -EINVAL;
15091 }
15092 break;
15093 case DRM_FORMAT_XBGR8888:
15094 case DRM_FORMAT_XRGB2101010:
15095 case DRM_FORMAT_XBGR2101010:
15096 if (INTEL_INFO(dev)->gen < 4) {
15097 DRM_DEBUG("unsupported pixel format: %s\n",
15098 drm_get_format_name(mode_cmd->pixel_format));
15099 return -EINVAL;
15100 }
15101 break;
15102 case DRM_FORMAT_ABGR2101010:
15103 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15104 DRM_DEBUG("unsupported pixel format: %s\n",
15105 drm_get_format_name(mode_cmd->pixel_format));
15106 return -EINVAL;
15107 }
15108 break;
15109 case DRM_FORMAT_YUYV:
15110 case DRM_FORMAT_UYVY:
15111 case DRM_FORMAT_YVYU:
15112 case DRM_FORMAT_VYUY:
15113 if (INTEL_INFO(dev)->gen < 5) {
15114 DRM_DEBUG("unsupported pixel format: %s\n",
15115 drm_get_format_name(mode_cmd->pixel_format));
15116 return -EINVAL;
15117 }
15118 break;
15119 default:
15120 DRM_DEBUG("unsupported pixel format: %s\n",
15121 drm_get_format_name(mode_cmd->pixel_format));
15122 return -EINVAL;
15123 }
15124
15125 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15126 if (mode_cmd->offsets[0] != 0)
15127 return -EINVAL;
15128
15129 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15130 mode_cmd->pixel_format,
15131 mode_cmd->modifier[0]);
15132 /* FIXME drm helper for size checks (especially planar formats)? */
15133 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15134 return -EINVAL;
15135
15136 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15137 intel_fb->obj = obj;
15138
15139 intel_fill_fb_info(dev_priv, &intel_fb->base);
15140
15141 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15142 if (ret) {
15143 DRM_ERROR("framebuffer init failed %d\n", ret);
15144 return ret;
15145 }
15146
15147 intel_fb->obj->framebuffer_references++;
15148
15149 return 0;
15150 }
15151
15152 static struct drm_framebuffer *
15153 intel_user_framebuffer_create(struct drm_device *dev,
15154 struct drm_file *filp,
15155 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15156 {
15157 struct drm_framebuffer *fb;
15158 struct drm_i915_gem_object *obj;
15159 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15160
15161 obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
15162 if (&obj->base == NULL)
15163 return ERR_PTR(-ENOENT);
15164
15165 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15166 if (IS_ERR(fb))
15167 drm_gem_object_unreference_unlocked(&obj->base);
15168
15169 return fb;
15170 }
15171
15172 #ifndef CONFIG_DRM_FBDEV_EMULATION
15173 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15174 {
15175 }
15176 #endif
15177
15178 static const struct drm_mode_config_funcs intel_mode_funcs = {
15179 .fb_create = intel_user_framebuffer_create,
15180 .output_poll_changed = intel_fbdev_output_poll_changed,
15181 .atomic_check = intel_atomic_check,
15182 .atomic_commit = intel_atomic_commit,
15183 .atomic_state_alloc = intel_atomic_state_alloc,
15184 .atomic_state_clear = intel_atomic_state_clear,
15185 };
15186
15187 /**
15188 * intel_init_display_hooks - initialize the display modesetting hooks
15189 * @dev_priv: device private
15190 */
15191 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15192 {
15193 if (INTEL_INFO(dev_priv)->gen >= 9) {
15194 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15195 dev_priv->display.get_initial_plane_config =
15196 skylake_get_initial_plane_config;
15197 dev_priv->display.crtc_compute_clock =
15198 haswell_crtc_compute_clock;
15199 dev_priv->display.crtc_enable = haswell_crtc_enable;
15200 dev_priv->display.crtc_disable = haswell_crtc_disable;
15201 } else if (HAS_DDI(dev_priv)) {
15202 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15203 dev_priv->display.get_initial_plane_config =
15204 ironlake_get_initial_plane_config;
15205 dev_priv->display.crtc_compute_clock =
15206 haswell_crtc_compute_clock;
15207 dev_priv->display.crtc_enable = haswell_crtc_enable;
15208 dev_priv->display.crtc_disable = haswell_crtc_disable;
15209 } else if (HAS_PCH_SPLIT(dev_priv)) {
15210 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15211 dev_priv->display.get_initial_plane_config =
15212 ironlake_get_initial_plane_config;
15213 dev_priv->display.crtc_compute_clock =
15214 ironlake_crtc_compute_clock;
15215 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15216 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15217 } else if (IS_CHERRYVIEW(dev_priv)) {
15218 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15219 dev_priv->display.get_initial_plane_config =
15220 i9xx_get_initial_plane_config;
15221 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15222 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15223 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15224 } else if (IS_VALLEYVIEW(dev_priv)) {
15225 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15226 dev_priv->display.get_initial_plane_config =
15227 i9xx_get_initial_plane_config;
15228 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15229 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15230 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15231 } else if (IS_G4X(dev_priv)) {
15232 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15233 dev_priv->display.get_initial_plane_config =
15234 i9xx_get_initial_plane_config;
15235 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15236 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15237 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15238 } else if (IS_PINEVIEW(dev_priv)) {
15239 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15240 dev_priv->display.get_initial_plane_config =
15241 i9xx_get_initial_plane_config;
15242 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15243 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15244 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15245 } else if (!IS_GEN2(dev_priv)) {
15246 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15247 dev_priv->display.get_initial_plane_config =
15248 i9xx_get_initial_plane_config;
15249 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15250 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15251 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15252 } else {
15253 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15254 dev_priv->display.get_initial_plane_config =
15255 i9xx_get_initial_plane_config;
15256 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15257 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15258 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15259 }
15260
15261 /* Returns the core display clock speed */
15262 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15263 dev_priv->display.get_display_clock_speed =
15264 skylake_get_display_clock_speed;
15265 else if (IS_BROXTON(dev_priv))
15266 dev_priv->display.get_display_clock_speed =
15267 broxton_get_display_clock_speed;
15268 else if (IS_BROADWELL(dev_priv))
15269 dev_priv->display.get_display_clock_speed =
15270 broadwell_get_display_clock_speed;
15271 else if (IS_HASWELL(dev_priv))
15272 dev_priv->display.get_display_clock_speed =
15273 haswell_get_display_clock_speed;
15274 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15275 dev_priv->display.get_display_clock_speed =
15276 valleyview_get_display_clock_speed;
15277 else if (IS_GEN5(dev_priv))
15278 dev_priv->display.get_display_clock_speed =
15279 ilk_get_display_clock_speed;
15280 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15281 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15282 dev_priv->display.get_display_clock_speed =
15283 i945_get_display_clock_speed;
15284 else if (IS_GM45(dev_priv))
15285 dev_priv->display.get_display_clock_speed =
15286 gm45_get_display_clock_speed;
15287 else if (IS_CRESTLINE(dev_priv))
15288 dev_priv->display.get_display_clock_speed =
15289 i965gm_get_display_clock_speed;
15290 else if (IS_PINEVIEW(dev_priv))
15291 dev_priv->display.get_display_clock_speed =
15292 pnv_get_display_clock_speed;
15293 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15294 dev_priv->display.get_display_clock_speed =
15295 g33_get_display_clock_speed;
15296 else if (IS_I915G(dev_priv))
15297 dev_priv->display.get_display_clock_speed =
15298 i915_get_display_clock_speed;
15299 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15300 dev_priv->display.get_display_clock_speed =
15301 i9xx_misc_get_display_clock_speed;
15302 else if (IS_I915GM(dev_priv))
15303 dev_priv->display.get_display_clock_speed =
15304 i915gm_get_display_clock_speed;
15305 else if (IS_I865G(dev_priv))
15306 dev_priv->display.get_display_clock_speed =
15307 i865_get_display_clock_speed;
15308 else if (IS_I85X(dev_priv))
15309 dev_priv->display.get_display_clock_speed =
15310 i85x_get_display_clock_speed;
15311 else { /* 830 */
15312 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15313 dev_priv->display.get_display_clock_speed =
15314 i830_get_display_clock_speed;
15315 }
15316
15317 if (IS_GEN5(dev_priv)) {
15318 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15319 } else if (IS_GEN6(dev_priv)) {
15320 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15321 } else if (IS_IVYBRIDGE(dev_priv)) {
15322 /* FIXME: detect B0+ stepping and use auto training */
15323 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15324 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15325 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15326 }
15327
15328 if (IS_BROADWELL(dev_priv)) {
15329 dev_priv->display.modeset_commit_cdclk =
15330 broadwell_modeset_commit_cdclk;
15331 dev_priv->display.modeset_calc_cdclk =
15332 broadwell_modeset_calc_cdclk;
15333 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15334 dev_priv->display.modeset_commit_cdclk =
15335 valleyview_modeset_commit_cdclk;
15336 dev_priv->display.modeset_calc_cdclk =
15337 valleyview_modeset_calc_cdclk;
15338 } else if (IS_BROXTON(dev_priv)) {
15339 dev_priv->display.modeset_commit_cdclk =
15340 bxt_modeset_commit_cdclk;
15341 dev_priv->display.modeset_calc_cdclk =
15342 bxt_modeset_calc_cdclk;
15343 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15344 dev_priv->display.modeset_commit_cdclk =
15345 skl_modeset_commit_cdclk;
15346 dev_priv->display.modeset_calc_cdclk =
15347 skl_modeset_calc_cdclk;
15348 }
15349
15350 switch (INTEL_INFO(dev_priv)->gen) {
15351 case 2:
15352 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15353 break;
15354
15355 case 3:
15356 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15357 break;
15358
15359 case 4:
15360 case 5:
15361 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15362 break;
15363
15364 case 6:
15365 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15366 break;
15367 case 7:
15368 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15369 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15370 break;
15371 case 9:
15372 /* Drop through - unsupported since execlist only. */
15373 default:
15374 /* Default just returns -ENODEV to indicate unsupported */
15375 dev_priv->display.queue_flip = intel_default_queue_flip;
15376 }
15377 }
15378
15379 /*
15380 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15381 * resume, or other times. This quirk makes sure that's the case for
15382 * affected systems.
15383 */
15384 static void quirk_pipea_force(struct drm_device *dev)
15385 {
15386 struct drm_i915_private *dev_priv = to_i915(dev);
15387
15388 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15389 DRM_INFO("applying pipe a force quirk\n");
15390 }
15391
15392 static void quirk_pipeb_force(struct drm_device *dev)
15393 {
15394 struct drm_i915_private *dev_priv = to_i915(dev);
15395
15396 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15397 DRM_INFO("applying pipe b force quirk\n");
15398 }
15399
15400 /*
15401 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15402 */
15403 static void quirk_ssc_force_disable(struct drm_device *dev)
15404 {
15405 struct drm_i915_private *dev_priv = to_i915(dev);
15406 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15407 DRM_INFO("applying lvds SSC disable quirk\n");
15408 }
15409
15410 /*
15411 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15412 * brightness value
15413 */
15414 static void quirk_invert_brightness(struct drm_device *dev)
15415 {
15416 struct drm_i915_private *dev_priv = to_i915(dev);
15417 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15418 DRM_INFO("applying inverted panel brightness quirk\n");
15419 }
15420
15421 /* Some VBT's incorrectly indicate no backlight is present */
15422 static void quirk_backlight_present(struct drm_device *dev)
15423 {
15424 struct drm_i915_private *dev_priv = to_i915(dev);
15425 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15426 DRM_INFO("applying backlight present quirk\n");
15427 }
15428
15429 struct intel_quirk {
15430 int device;
15431 int subsystem_vendor;
15432 int subsystem_device;
15433 void (*hook)(struct drm_device *dev);
15434 };
15435
15436 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15437 struct intel_dmi_quirk {
15438 void (*hook)(struct drm_device *dev);
15439 const struct dmi_system_id (*dmi_id_list)[];
15440 };
15441
15442 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15443 {
15444 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15445 return 1;
15446 }
15447
15448 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15449 {
15450 .dmi_id_list = &(const struct dmi_system_id[]) {
15451 {
15452 .callback = intel_dmi_reverse_brightness,
15453 .ident = "NCR Corporation",
15454 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15455 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15456 },
15457 },
15458 { } /* terminating entry */
15459 },
15460 .hook = quirk_invert_brightness,
15461 },
15462 };
15463
15464 static struct intel_quirk intel_quirks[] = {
15465 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15466 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15467
15468 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15469 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15470
15471 /* 830 needs to leave pipe A & dpll A up */
15472 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15473
15474 /* 830 needs to leave pipe B & dpll B up */
15475 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15476
15477 /* Lenovo U160 cannot use SSC on LVDS */
15478 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15479
15480 /* Sony Vaio Y cannot use SSC on LVDS */
15481 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15482
15483 /* Acer Aspire 5734Z must invert backlight brightness */
15484 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15485
15486 /* Acer/eMachines G725 */
15487 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15488
15489 /* Acer/eMachines e725 */
15490 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15491
15492 /* Acer/Packard Bell NCL20 */
15493 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15494
15495 /* Acer Aspire 4736Z */
15496 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15497
15498 /* Acer Aspire 5336 */
15499 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15500
15501 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15502 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15503
15504 /* Acer C720 Chromebook (Core i3 4005U) */
15505 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15506
15507 /* Apple Macbook 2,1 (Core 2 T7400) */
15508 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15509
15510 /* Apple Macbook 4,1 */
15511 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15512
15513 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15514 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15515
15516 /* HP Chromebook 14 (Celeron 2955U) */
15517 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15518
15519 /* Dell Chromebook 11 */
15520 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15521
15522 /* Dell Chromebook 11 (2015 version) */
15523 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15524 };
15525
15526 static void intel_init_quirks(struct drm_device *dev)
15527 {
15528 struct pci_dev *d = dev->pdev;
15529 int i;
15530
15531 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15532 struct intel_quirk *q = &intel_quirks[i];
15533
15534 if (d->device == q->device &&
15535 (d->subsystem_vendor == q->subsystem_vendor ||
15536 q->subsystem_vendor == PCI_ANY_ID) &&
15537 (d->subsystem_device == q->subsystem_device ||
15538 q->subsystem_device == PCI_ANY_ID))
15539 q->hook(dev);
15540 }
15541 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15542 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15543 intel_dmi_quirks[i].hook(dev);
15544 }
15545 }
15546
15547 /* Disable the VGA plane that we never use */
15548 static void i915_disable_vga(struct drm_device *dev)
15549 {
15550 struct drm_i915_private *dev_priv = to_i915(dev);
15551 u8 sr1;
15552 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15553
15554 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15555 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15556 outb(SR01, VGA_SR_INDEX);
15557 sr1 = inb(VGA_SR_DATA);
15558 outb(sr1 | 1<<5, VGA_SR_DATA);
15559 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15560 udelay(300);
15561
15562 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15563 POSTING_READ(vga_reg);
15564 }
15565
15566 void intel_modeset_init_hw(struct drm_device *dev)
15567 {
15568 struct drm_i915_private *dev_priv = to_i915(dev);
15569
15570 intel_update_cdclk(dev);
15571
15572 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15573
15574 intel_init_clock_gating(dev);
15575 intel_enable_gt_powersave(dev_priv);
15576 }
15577
15578 /*
15579 * Calculate what we think the watermarks should be for the state we've read
15580 * out of the hardware and then immediately program those watermarks so that
15581 * we ensure the hardware settings match our internal state.
15582 *
15583 * We can calculate what we think WM's should be by creating a duplicate of the
15584 * current state (which was constructed during hardware readout) and running it
15585 * through the atomic check code to calculate new watermark values in the
15586 * state object.
15587 */
15588 static void sanitize_watermarks(struct drm_device *dev)
15589 {
15590 struct drm_i915_private *dev_priv = to_i915(dev);
15591 struct drm_atomic_state *state;
15592 struct drm_crtc *crtc;
15593 struct drm_crtc_state *cstate;
15594 struct drm_modeset_acquire_ctx ctx;
15595 int ret;
15596 int i;
15597
15598 /* Only supported on platforms that use atomic watermark design */
15599 if (!dev_priv->display.optimize_watermarks)
15600 return;
15601
15602 /*
15603 * We need to hold connection_mutex before calling duplicate_state so
15604 * that the connector loop is protected.
15605 */
15606 drm_modeset_acquire_init(&ctx, 0);
15607 retry:
15608 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15609 if (ret == -EDEADLK) {
15610 drm_modeset_backoff(&ctx);
15611 goto retry;
15612 } else if (WARN_ON(ret)) {
15613 goto fail;
15614 }
15615
15616 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15617 if (WARN_ON(IS_ERR(state)))
15618 goto fail;
15619
15620 /*
15621 * Hardware readout is the only time we don't want to calculate
15622 * intermediate watermarks (since we don't trust the current
15623 * watermarks).
15624 */
15625 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15626
15627 ret = intel_atomic_check(dev, state);
15628 if (ret) {
15629 /*
15630 * If we fail here, it means that the hardware appears to be
15631 * programmed in a way that shouldn't be possible, given our
15632 * understanding of watermark requirements. This might mean a
15633 * mistake in the hardware readout code or a mistake in the
15634 * watermark calculations for a given platform. Raise a WARN
15635 * so that this is noticeable.
15636 *
15637 * If this actually happens, we'll have to just leave the
15638 * BIOS-programmed watermarks untouched and hope for the best.
15639 */
15640 WARN(true, "Could not determine valid watermarks for inherited state\n");
15641 goto fail;
15642 }
15643
15644 /* Write calculated watermark values back */
15645 for_each_crtc_in_state(state, crtc, cstate, i) {
15646 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15647
15648 cs->wm.need_postvbl_update = true;
15649 dev_priv->display.optimize_watermarks(cs);
15650 }
15651
15652 drm_atomic_state_free(state);
15653 fail:
15654 drm_modeset_drop_locks(&ctx);
15655 drm_modeset_acquire_fini(&ctx);
15656 }
15657
15658 void intel_modeset_init(struct drm_device *dev)
15659 {
15660 struct drm_i915_private *dev_priv = to_i915(dev);
15661 struct i915_ggtt *ggtt = &dev_priv->ggtt;
15662 int sprite, ret;
15663 enum pipe pipe;
15664 struct intel_crtc *crtc;
15665
15666 drm_mode_config_init(dev);
15667
15668 dev->mode_config.min_width = 0;
15669 dev->mode_config.min_height = 0;
15670
15671 dev->mode_config.preferred_depth = 24;
15672 dev->mode_config.prefer_shadow = 1;
15673
15674 dev->mode_config.allow_fb_modifiers = true;
15675
15676 dev->mode_config.funcs = &intel_mode_funcs;
15677
15678 intel_init_quirks(dev);
15679
15680 intel_init_pm(dev);
15681
15682 if (INTEL_INFO(dev)->num_pipes == 0)
15683 return;
15684
15685 /*
15686 * There may be no VBT; and if the BIOS enabled SSC we can
15687 * just keep using it to avoid unnecessary flicker. Whereas if the
15688 * BIOS isn't using it, don't assume it will work even if the VBT
15689 * indicates as much.
15690 */
15691 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15692 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15693 DREF_SSC1_ENABLE);
15694
15695 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15696 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15697 bios_lvds_use_ssc ? "en" : "dis",
15698 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15699 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15700 }
15701 }
15702
15703 if (IS_GEN2(dev)) {
15704 dev->mode_config.max_width = 2048;
15705 dev->mode_config.max_height = 2048;
15706 } else if (IS_GEN3(dev)) {
15707 dev->mode_config.max_width = 4096;
15708 dev->mode_config.max_height = 4096;
15709 } else {
15710 dev->mode_config.max_width = 8192;
15711 dev->mode_config.max_height = 8192;
15712 }
15713
15714 if (IS_845G(dev) || IS_I865G(dev)) {
15715 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15716 dev->mode_config.cursor_height = 1023;
15717 } else if (IS_GEN2(dev)) {
15718 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15719 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15720 } else {
15721 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15722 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15723 }
15724
15725 dev->mode_config.fb_base = ggtt->mappable_base;
15726
15727 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15728 INTEL_INFO(dev)->num_pipes,
15729 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15730
15731 for_each_pipe(dev_priv, pipe) {
15732 intel_crtc_init(dev, pipe);
15733 for_each_sprite(dev_priv, pipe, sprite) {
15734 ret = intel_plane_init(dev, pipe, sprite);
15735 if (ret)
15736 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15737 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15738 }
15739 }
15740
15741 intel_update_czclk(dev_priv);
15742 intel_update_cdclk(dev);
15743
15744 intel_shared_dpll_init(dev);
15745
15746 if (dev_priv->max_cdclk_freq == 0)
15747 intel_update_max_cdclk(dev);
15748
15749 /* Just disable it once at startup */
15750 i915_disable_vga(dev);
15751 intel_setup_outputs(dev);
15752
15753 drm_modeset_lock_all(dev);
15754 intel_modeset_setup_hw_state(dev);
15755 drm_modeset_unlock_all(dev);
15756
15757 for_each_intel_crtc(dev, crtc) {
15758 struct intel_initial_plane_config plane_config = {};
15759
15760 if (!crtc->active)
15761 continue;
15762
15763 /*
15764 * Note that reserving the BIOS fb up front prevents us
15765 * from stuffing other stolen allocations like the ring
15766 * on top. This prevents some ugliness at boot time, and
15767 * can even allow for smooth boot transitions if the BIOS
15768 * fb is large enough for the active pipe configuration.
15769 */
15770 dev_priv->display.get_initial_plane_config(crtc,
15771 &plane_config);
15772
15773 /*
15774 * If the fb is shared between multiple heads, we'll
15775 * just get the first one.
15776 */
15777 intel_find_initial_plane_obj(crtc, &plane_config);
15778 }
15779
15780 /*
15781 * Make sure hardware watermarks really match the state we read out.
15782 * Note that we need to do this after reconstructing the BIOS fb's
15783 * since the watermark calculation done here will use pstate->fb.
15784 */
15785 sanitize_watermarks(dev);
15786 }
15787
15788 static void intel_enable_pipe_a(struct drm_device *dev)
15789 {
15790 struct intel_connector *connector;
15791 struct drm_connector *crt = NULL;
15792 struct intel_load_detect_pipe load_detect_temp;
15793 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15794
15795 /* We can't just switch on the pipe A, we need to set things up with a
15796 * proper mode and output configuration. As a gross hack, enable pipe A
15797 * by enabling the load detect pipe once. */
15798 for_each_intel_connector(dev, connector) {
15799 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15800 crt = &connector->base;
15801 break;
15802 }
15803 }
15804
15805 if (!crt)
15806 return;
15807
15808 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15809 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15810 }
15811
15812 static bool
15813 intel_check_plane_mapping(struct intel_crtc *crtc)
15814 {
15815 struct drm_device *dev = crtc->base.dev;
15816 struct drm_i915_private *dev_priv = to_i915(dev);
15817 u32 val;
15818
15819 if (INTEL_INFO(dev)->num_pipes == 1)
15820 return true;
15821
15822 val = I915_READ(DSPCNTR(!crtc->plane));
15823
15824 if ((val & DISPLAY_PLANE_ENABLE) &&
15825 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15826 return false;
15827
15828 return true;
15829 }
15830
15831 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15832 {
15833 struct drm_device *dev = crtc->base.dev;
15834 struct intel_encoder *encoder;
15835
15836 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15837 return true;
15838
15839 return false;
15840 }
15841
15842 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15843 {
15844 struct drm_device *dev = encoder->base.dev;
15845 struct intel_connector *connector;
15846
15847 for_each_connector_on_encoder(dev, &encoder->base, connector)
15848 return true;
15849
15850 return false;
15851 }
15852
15853 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15854 {
15855 struct drm_device *dev = crtc->base.dev;
15856 struct drm_i915_private *dev_priv = to_i915(dev);
15857 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15858
15859 /* Clear any frame start delays used for debugging left by the BIOS */
15860 if (!transcoder_is_dsi(cpu_transcoder)) {
15861 i915_reg_t reg = PIPECONF(cpu_transcoder);
15862
15863 I915_WRITE(reg,
15864 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15865 }
15866
15867 /* restore vblank interrupts to correct state */
15868 drm_crtc_vblank_reset(&crtc->base);
15869 if (crtc->active) {
15870 struct intel_plane *plane;
15871
15872 drm_crtc_vblank_on(&crtc->base);
15873
15874 /* Disable everything but the primary plane */
15875 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15876 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15877 continue;
15878
15879 plane->disable_plane(&plane->base, &crtc->base);
15880 }
15881 }
15882
15883 /* We need to sanitize the plane -> pipe mapping first because this will
15884 * disable the crtc (and hence change the state) if it is wrong. Note
15885 * that gen4+ has a fixed plane -> pipe mapping. */
15886 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15887 bool plane;
15888
15889 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15890 crtc->base.base.id, crtc->base.name);
15891
15892 /* Pipe has the wrong plane attached and the plane is active.
15893 * Temporarily change the plane mapping and disable everything
15894 * ... */
15895 plane = crtc->plane;
15896 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15897 crtc->plane = !plane;
15898 intel_crtc_disable_noatomic(&crtc->base);
15899 crtc->plane = plane;
15900 }
15901
15902 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15903 crtc->pipe == PIPE_A && !crtc->active) {
15904 /* BIOS forgot to enable pipe A, this mostly happens after
15905 * resume. Force-enable the pipe to fix this, the update_dpms
15906 * call below we restore the pipe to the right state, but leave
15907 * the required bits on. */
15908 intel_enable_pipe_a(dev);
15909 }
15910
15911 /* Adjust the state of the output pipe according to whether we
15912 * have active connectors/encoders. */
15913 if (crtc->active && !intel_crtc_has_encoders(crtc))
15914 intel_crtc_disable_noatomic(&crtc->base);
15915
15916 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15917 /*
15918 * We start out with underrun reporting disabled to avoid races.
15919 * For correct bookkeeping mark this on active crtcs.
15920 *
15921 * Also on gmch platforms we dont have any hardware bits to
15922 * disable the underrun reporting. Which means we need to start
15923 * out with underrun reporting disabled also on inactive pipes,
15924 * since otherwise we'll complain about the garbage we read when
15925 * e.g. coming up after runtime pm.
15926 *
15927 * No protection against concurrent access is required - at
15928 * worst a fifo underrun happens which also sets this to false.
15929 */
15930 crtc->cpu_fifo_underrun_disabled = true;
15931 crtc->pch_fifo_underrun_disabled = true;
15932 }
15933 }
15934
15935 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15936 {
15937 struct intel_connector *connector;
15938 struct drm_device *dev = encoder->base.dev;
15939
15940 /* We need to check both for a crtc link (meaning that the
15941 * encoder is active and trying to read from a pipe) and the
15942 * pipe itself being active. */
15943 bool has_active_crtc = encoder->base.crtc &&
15944 to_intel_crtc(encoder->base.crtc)->active;
15945
15946 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15947 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15948 encoder->base.base.id,
15949 encoder->base.name);
15950
15951 /* Connector is active, but has no active pipe. This is
15952 * fallout from our resume register restoring. Disable
15953 * the encoder manually again. */
15954 if (encoder->base.crtc) {
15955 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15956 encoder->base.base.id,
15957 encoder->base.name);
15958 encoder->disable(encoder);
15959 if (encoder->post_disable)
15960 encoder->post_disable(encoder);
15961 }
15962 encoder->base.crtc = NULL;
15963
15964 /* Inconsistent output/port/pipe state happens presumably due to
15965 * a bug in one of the get_hw_state functions. Or someplace else
15966 * in our code, like the register restore mess on resume. Clamp
15967 * things to off as a safer default. */
15968 for_each_intel_connector(dev, connector) {
15969 if (connector->encoder != encoder)
15970 continue;
15971 connector->base.dpms = DRM_MODE_DPMS_OFF;
15972 connector->base.encoder = NULL;
15973 }
15974 }
15975 /* Enabled encoders without active connectors will be fixed in
15976 * the crtc fixup. */
15977 }
15978
15979 void i915_redisable_vga_power_on(struct drm_device *dev)
15980 {
15981 struct drm_i915_private *dev_priv = to_i915(dev);
15982 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15983
15984 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15985 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15986 i915_disable_vga(dev);
15987 }
15988 }
15989
15990 void i915_redisable_vga(struct drm_device *dev)
15991 {
15992 struct drm_i915_private *dev_priv = to_i915(dev);
15993
15994 /* This function can be called both from intel_modeset_setup_hw_state or
15995 * at a very early point in our resume sequence, where the power well
15996 * structures are not yet restored. Since this function is at a very
15997 * paranoid "someone might have enabled VGA while we were not looking"
15998 * level, just check if the power well is enabled instead of trying to
15999 * follow the "don't touch the power well if we don't need it" policy
16000 * the rest of the driver uses. */
16001 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16002 return;
16003
16004 i915_redisable_vga_power_on(dev);
16005
16006 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16007 }
16008
16009 static bool primary_get_hw_state(struct intel_plane *plane)
16010 {
16011 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16012
16013 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16014 }
16015
16016 /* FIXME read out full plane state for all planes */
16017 static void readout_plane_state(struct intel_crtc *crtc)
16018 {
16019 struct drm_plane *primary = crtc->base.primary;
16020 struct intel_plane_state *plane_state =
16021 to_intel_plane_state(primary->state);
16022
16023 plane_state->visible = crtc->active &&
16024 primary_get_hw_state(to_intel_plane(primary));
16025
16026 if (plane_state->visible)
16027 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16028 }
16029
16030 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16031 {
16032 struct drm_i915_private *dev_priv = to_i915(dev);
16033 enum pipe pipe;
16034 struct intel_crtc *crtc;
16035 struct intel_encoder *encoder;
16036 struct intel_connector *connector;
16037 int i;
16038
16039 dev_priv->active_crtcs = 0;
16040
16041 for_each_intel_crtc(dev, crtc) {
16042 struct intel_crtc_state *crtc_state = crtc->config;
16043 int pixclk = 0;
16044
16045 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16046 memset(crtc_state, 0, sizeof(*crtc_state));
16047 crtc_state->base.crtc = &crtc->base;
16048
16049 crtc_state->base.active = crtc_state->base.enable =
16050 dev_priv->display.get_pipe_config(crtc, crtc_state);
16051
16052 crtc->base.enabled = crtc_state->base.enable;
16053 crtc->active = crtc_state->base.active;
16054
16055 if (crtc_state->base.active) {
16056 dev_priv->active_crtcs |= 1 << crtc->pipe;
16057
16058 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16059 pixclk = ilk_pipe_pixel_rate(crtc_state);
16060 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16061 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16062 else
16063 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16064
16065 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16066 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16067 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16068 }
16069
16070 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16071
16072 readout_plane_state(crtc);
16073
16074 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16075 crtc->base.base.id, crtc->base.name,
16076 crtc->active ? "enabled" : "disabled");
16077 }
16078
16079 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16080 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16081
16082 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16083 &pll->config.hw_state);
16084 pll->config.crtc_mask = 0;
16085 for_each_intel_crtc(dev, crtc) {
16086 if (crtc->active && crtc->config->shared_dpll == pll)
16087 pll->config.crtc_mask |= 1 << crtc->pipe;
16088 }
16089 pll->active_mask = pll->config.crtc_mask;
16090
16091 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16092 pll->name, pll->config.crtc_mask, pll->on);
16093 }
16094
16095 for_each_intel_encoder(dev, encoder) {
16096 pipe = 0;
16097
16098 if (encoder->get_hw_state(encoder, &pipe)) {
16099 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16100 encoder->base.crtc = &crtc->base;
16101 crtc->config->output_types |= 1 << encoder->type;
16102 encoder->get_config(encoder, crtc->config);
16103 } else {
16104 encoder->base.crtc = NULL;
16105 }
16106
16107 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16108 encoder->base.base.id,
16109 encoder->base.name,
16110 encoder->base.crtc ? "enabled" : "disabled",
16111 pipe_name(pipe));
16112 }
16113
16114 for_each_intel_connector(dev, connector) {
16115 if (connector->get_hw_state(connector)) {
16116 connector->base.dpms = DRM_MODE_DPMS_ON;
16117
16118 encoder = connector->encoder;
16119 connector->base.encoder = &encoder->base;
16120
16121 if (encoder->base.crtc &&
16122 encoder->base.crtc->state->active) {
16123 /*
16124 * This has to be done during hardware readout
16125 * because anything calling .crtc_disable may
16126 * rely on the connector_mask being accurate.
16127 */
16128 encoder->base.crtc->state->connector_mask |=
16129 1 << drm_connector_index(&connector->base);
16130 encoder->base.crtc->state->encoder_mask |=
16131 1 << drm_encoder_index(&encoder->base);
16132 }
16133
16134 } else {
16135 connector->base.dpms = DRM_MODE_DPMS_OFF;
16136 connector->base.encoder = NULL;
16137 }
16138 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16139 connector->base.base.id,
16140 connector->base.name,
16141 connector->base.encoder ? "enabled" : "disabled");
16142 }
16143
16144 for_each_intel_crtc(dev, crtc) {
16145 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16146
16147 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16148 if (crtc->base.state->active) {
16149 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16150 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16151 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16152
16153 /*
16154 * The initial mode needs to be set in order to keep
16155 * the atomic core happy. It wants a valid mode if the
16156 * crtc's enabled, so we do the above call.
16157 *
16158 * At this point some state updated by the connectors
16159 * in their ->detect() callback has not run yet, so
16160 * no recalculation can be done yet.
16161 *
16162 * Even if we could do a recalculation and modeset
16163 * right now it would cause a double modeset if
16164 * fbdev or userspace chooses a different initial mode.
16165 *
16166 * If that happens, someone indicated they wanted a
16167 * mode change, which means it's safe to do a full
16168 * recalculation.
16169 */
16170 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16171
16172 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16173 update_scanline_offset(crtc);
16174 }
16175
16176 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16177 }
16178 }
16179
16180 /* Scan out the current hw modeset state,
16181 * and sanitizes it to the current state
16182 */
16183 static void
16184 intel_modeset_setup_hw_state(struct drm_device *dev)
16185 {
16186 struct drm_i915_private *dev_priv = to_i915(dev);
16187 enum pipe pipe;
16188 struct intel_crtc *crtc;
16189 struct intel_encoder *encoder;
16190 int i;
16191
16192 intel_modeset_readout_hw_state(dev);
16193
16194 /* HW state is read out, now we need to sanitize this mess. */
16195 for_each_intel_encoder(dev, encoder) {
16196 intel_sanitize_encoder(encoder);
16197 }
16198
16199 for_each_pipe(dev_priv, pipe) {
16200 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16201 intel_sanitize_crtc(crtc);
16202 intel_dump_pipe_config(crtc, crtc->config,
16203 "[setup_hw_state]");
16204 }
16205
16206 intel_modeset_update_connector_atomic_state(dev);
16207
16208 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16209 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16210
16211 if (!pll->on || pll->active_mask)
16212 continue;
16213
16214 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16215
16216 pll->funcs.disable(dev_priv, pll);
16217 pll->on = false;
16218 }
16219
16220 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16221 vlv_wm_get_hw_state(dev);
16222 else if (IS_GEN9(dev))
16223 skl_wm_get_hw_state(dev);
16224 else if (HAS_PCH_SPLIT(dev))
16225 ilk_wm_get_hw_state(dev);
16226
16227 for_each_intel_crtc(dev, crtc) {
16228 unsigned long put_domains;
16229
16230 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16231 if (WARN_ON(put_domains))
16232 modeset_put_power_domains(dev_priv, put_domains);
16233 }
16234 intel_display_set_init_power(dev_priv, false);
16235
16236 intel_fbc_init_pipe_state(dev_priv);
16237 }
16238
16239 void intel_display_resume(struct drm_device *dev)
16240 {
16241 struct drm_i915_private *dev_priv = to_i915(dev);
16242 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16243 struct drm_modeset_acquire_ctx ctx;
16244 int ret;
16245
16246 dev_priv->modeset_restore_state = NULL;
16247 if (state)
16248 state->acquire_ctx = &ctx;
16249
16250 /*
16251 * This is a cludge because with real atomic modeset mode_config.mutex
16252 * won't be taken. Unfortunately some probed state like
16253 * audio_codec_enable is still protected by mode_config.mutex, so lock
16254 * it here for now.
16255 */
16256 mutex_lock(&dev->mode_config.mutex);
16257 drm_modeset_acquire_init(&ctx, 0);
16258
16259 while (1) {
16260 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16261 if (ret != -EDEADLK)
16262 break;
16263
16264 drm_modeset_backoff(&ctx);
16265 }
16266
16267 if (!ret)
16268 ret = __intel_display_resume(dev, state);
16269
16270 drm_modeset_drop_locks(&ctx);
16271 drm_modeset_acquire_fini(&ctx);
16272 mutex_unlock(&dev->mode_config.mutex);
16273
16274 if (ret) {
16275 DRM_ERROR("Restoring old state failed with %i\n", ret);
16276 drm_atomic_state_free(state);
16277 }
16278 }
16279
16280 void intel_modeset_gem_init(struct drm_device *dev)
16281 {
16282 struct drm_i915_private *dev_priv = to_i915(dev);
16283 struct drm_crtc *c;
16284 struct drm_i915_gem_object *obj;
16285 int ret;
16286
16287 intel_init_gt_powersave(dev_priv);
16288
16289 intel_modeset_init_hw(dev);
16290
16291 intel_setup_overlay(dev_priv);
16292
16293 /*
16294 * Make sure any fbs we allocated at startup are properly
16295 * pinned & fenced. When we do the allocation it's too early
16296 * for this.
16297 */
16298 for_each_crtc(dev, c) {
16299 obj = intel_fb_obj(c->primary->fb);
16300 if (obj == NULL)
16301 continue;
16302
16303 mutex_lock(&dev->struct_mutex);
16304 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16305 c->primary->state->rotation);
16306 mutex_unlock(&dev->struct_mutex);
16307 if (ret) {
16308 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16309 to_intel_crtc(c)->pipe);
16310 drm_framebuffer_unreference(c->primary->fb);
16311 c->primary->fb = NULL;
16312 c->primary->crtc = c->primary->state->crtc = NULL;
16313 update_state_fb(c->primary);
16314 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16315 }
16316 }
16317 }
16318
16319 int intel_connector_register(struct drm_connector *connector)
16320 {
16321 struct intel_connector *intel_connector = to_intel_connector(connector);
16322 int ret;
16323
16324 ret = intel_backlight_device_register(intel_connector);
16325 if (ret)
16326 goto err;
16327
16328 return 0;
16329
16330 err:
16331 return ret;
16332 }
16333
16334 void intel_connector_unregister(struct drm_connector *connector)
16335 {
16336 struct intel_connector *intel_connector = to_intel_connector(connector);
16337
16338 intel_backlight_device_unregister(intel_connector);
16339 intel_panel_destroy_backlight(connector);
16340 }
16341
16342 void intel_modeset_cleanup(struct drm_device *dev)
16343 {
16344 struct drm_i915_private *dev_priv = to_i915(dev);
16345
16346 intel_disable_gt_powersave(dev_priv);
16347
16348 /*
16349 * Interrupts and polling as the first thing to avoid creating havoc.
16350 * Too much stuff here (turning of connectors, ...) would
16351 * experience fancy races otherwise.
16352 */
16353 intel_irq_uninstall(dev_priv);
16354
16355 /*
16356 * Due to the hpd irq storm handling the hotplug work can re-arm the
16357 * poll handlers. Hence disable polling after hpd handling is shut down.
16358 */
16359 drm_kms_helper_poll_fini(dev);
16360
16361 intel_unregister_dsm_handler();
16362
16363 intel_fbc_global_disable(dev_priv);
16364
16365 /* flush any delayed tasks or pending work */
16366 flush_scheduled_work();
16367
16368 drm_mode_config_cleanup(dev);
16369
16370 intel_cleanup_overlay(dev_priv);
16371
16372 intel_cleanup_gt_powersave(dev_priv);
16373
16374 intel_teardown_gmbus(dev);
16375 }
16376
16377 void intel_connector_attach_encoder(struct intel_connector *connector,
16378 struct intel_encoder *encoder)
16379 {
16380 connector->encoder = encoder;
16381 drm_mode_connector_attach_encoder(&connector->base,
16382 &encoder->base);
16383 }
16384
16385 /*
16386 * set vga decode state - true == enable VGA decode
16387 */
16388 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16389 {
16390 struct drm_i915_private *dev_priv = to_i915(dev);
16391 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16392 u16 gmch_ctrl;
16393
16394 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16395 DRM_ERROR("failed to read control word\n");
16396 return -EIO;
16397 }
16398
16399 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16400 return 0;
16401
16402 if (state)
16403 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16404 else
16405 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16406
16407 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16408 DRM_ERROR("failed to write control word\n");
16409 return -EIO;
16410 }
16411
16412 return 0;
16413 }
16414
16415 struct intel_display_error_state {
16416
16417 u32 power_well_driver;
16418
16419 int num_transcoders;
16420
16421 struct intel_cursor_error_state {
16422 u32 control;
16423 u32 position;
16424 u32 base;
16425 u32 size;
16426 } cursor[I915_MAX_PIPES];
16427
16428 struct intel_pipe_error_state {
16429 bool power_domain_on;
16430 u32 source;
16431 u32 stat;
16432 } pipe[I915_MAX_PIPES];
16433
16434 struct intel_plane_error_state {
16435 u32 control;
16436 u32 stride;
16437 u32 size;
16438 u32 pos;
16439 u32 addr;
16440 u32 surface;
16441 u32 tile_offset;
16442 } plane[I915_MAX_PIPES];
16443
16444 struct intel_transcoder_error_state {
16445 bool power_domain_on;
16446 enum transcoder cpu_transcoder;
16447
16448 u32 conf;
16449
16450 u32 htotal;
16451 u32 hblank;
16452 u32 hsync;
16453 u32 vtotal;
16454 u32 vblank;
16455 u32 vsync;
16456 } transcoder[4];
16457 };
16458
16459 struct intel_display_error_state *
16460 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16461 {
16462 struct intel_display_error_state *error;
16463 int transcoders[] = {
16464 TRANSCODER_A,
16465 TRANSCODER_B,
16466 TRANSCODER_C,
16467 TRANSCODER_EDP,
16468 };
16469 int i;
16470
16471 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16472 return NULL;
16473
16474 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16475 if (error == NULL)
16476 return NULL;
16477
16478 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16479 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16480
16481 for_each_pipe(dev_priv, i) {
16482 error->pipe[i].power_domain_on =
16483 __intel_display_power_is_enabled(dev_priv,
16484 POWER_DOMAIN_PIPE(i));
16485 if (!error->pipe[i].power_domain_on)
16486 continue;
16487
16488 error->cursor[i].control = I915_READ(CURCNTR(i));
16489 error->cursor[i].position = I915_READ(CURPOS(i));
16490 error->cursor[i].base = I915_READ(CURBASE(i));
16491
16492 error->plane[i].control = I915_READ(DSPCNTR(i));
16493 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16494 if (INTEL_GEN(dev_priv) <= 3) {
16495 error->plane[i].size = I915_READ(DSPSIZE(i));
16496 error->plane[i].pos = I915_READ(DSPPOS(i));
16497 }
16498 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16499 error->plane[i].addr = I915_READ(DSPADDR(i));
16500 if (INTEL_GEN(dev_priv) >= 4) {
16501 error->plane[i].surface = I915_READ(DSPSURF(i));
16502 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16503 }
16504
16505 error->pipe[i].source = I915_READ(PIPESRC(i));
16506
16507 if (HAS_GMCH_DISPLAY(dev_priv))
16508 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16509 }
16510
16511 /* Note: this does not include DSI transcoders. */
16512 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16513 if (HAS_DDI(dev_priv))
16514 error->num_transcoders++; /* Account for eDP. */
16515
16516 for (i = 0; i < error->num_transcoders; i++) {
16517 enum transcoder cpu_transcoder = transcoders[i];
16518
16519 error->transcoder[i].power_domain_on =
16520 __intel_display_power_is_enabled(dev_priv,
16521 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16522 if (!error->transcoder[i].power_domain_on)
16523 continue;
16524
16525 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16526
16527 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16528 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16529 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16530 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16531 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16532 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16533 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16534 }
16535
16536 return error;
16537 }
16538
16539 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16540
16541 void
16542 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16543 struct drm_device *dev,
16544 struct intel_display_error_state *error)
16545 {
16546 struct drm_i915_private *dev_priv = to_i915(dev);
16547 int i;
16548
16549 if (!error)
16550 return;
16551
16552 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16553 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16554 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16555 error->power_well_driver);
16556 for_each_pipe(dev_priv, i) {
16557 err_printf(m, "Pipe [%d]:\n", i);
16558 err_printf(m, " Power: %s\n",
16559 onoff(error->pipe[i].power_domain_on));
16560 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
16561 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
16562
16563 err_printf(m, "Plane [%d]:\n", i);
16564 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16565 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16566 if (INTEL_INFO(dev)->gen <= 3) {
16567 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16568 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16569 }
16570 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16571 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16572 if (INTEL_INFO(dev)->gen >= 4) {
16573 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16574 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16575 }
16576
16577 err_printf(m, "Cursor [%d]:\n", i);
16578 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16579 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16580 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16581 }
16582
16583 for (i = 0; i < error->num_transcoders; i++) {
16584 err_printf(m, "CPU transcoder: %s\n",
16585 transcoder_name(error->transcoder[i].cpu_transcoder));
16586 err_printf(m, " Power: %s\n",
16587 onoff(error->transcoder[i].power_domain_on));
16588 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16589 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16590 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16591 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16592 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16593 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16594 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16595 }
16596 }
This page took 0.3821 seconds and 5 git commands to generate.