Merge tag 'drm-intel-next-2014-12-19' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111 int min, max;
112 } intel_range_t;
113
114 typedef struct {
115 int dot_limit;
116 int p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146 .dot = { .min = 25000, .max = 350000 },
147 .vco = { .min = 908000, .max = 1512000 },
148 .n = { .min = 2, .max = 16 },
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
160 .vco = { .min = 908000, .max = 1512000 },
161 .n = { .min = 2, .max = 16 },
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172 .dot = { .min = 25000, .max = 350000 },
173 .vco = { .min = 908000, .max = 1512000 },
174 .n = { .min = 2, .max = 16 },
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
223 },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
250 },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
264 },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
270 /* Pineview's Ncounter is a ring counter */
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273 /* Pineview only has one combined m divider, which we treat as m2. */
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
348 .p1 = { .min = 2, .max = 8 },
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
361 .p1 = { .min = 2, .max = 6 },
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374 .vco = { .min = 4000000, .max = 6000000 },
375 .n = { .min = 1, .max = 7 },
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
378 .p1 = { .min = 2, .max = 3 },
379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413 struct drm_device *dev = crtc->base.dev;
414 struct intel_encoder *encoder;
415
416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417 if (encoder->type == type)
418 return true;
419
420 return false;
421 }
422
423 /**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442 int refclk)
443 {
444 struct drm_device *dev = crtc->base.dev;
445 const intel_limit_t *limit;
446
447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448 if (intel_is_dual_link_lvds(dev)) {
449 if (refclk == 100000)
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
454 if (refclk == 100000)
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
459 } else
460 limit = &intel_limits_ironlake_dac;
461
462 return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467 struct drm_device *dev = crtc->base.dev;
468 const intel_limit_t *limit;
469
470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471 if (intel_is_dual_link_lvds(dev))
472 limit = &intel_limits_g4x_dual_channel_lvds;
473 else
474 limit = &intel_limits_g4x_single_channel_lvds;
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477 limit = &intel_limits_g4x_hdmi;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479 limit = &intel_limits_g4x_sdvo;
480 } else /* The option is for other outputs */
481 limit = &intel_limits_i9xx_sdvo;
482
483 return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488 struct drm_device *dev = crtc->base.dev;
489 const intel_limit_t *limit;
490
491 if (HAS_PCH_SPLIT(dev))
492 limit = intel_ironlake_limit(crtc, refclk);
493 else if (IS_G4X(dev)) {
494 limit = intel_g4x_limit(crtc);
495 } else if (IS_PINEVIEW(dev)) {
496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497 limit = &intel_limits_pineview_lvds;
498 else
499 limit = &intel_limits_pineview_sdvo;
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
502 } else if (IS_VALLEYVIEW(dev)) {
503 limit = &intel_limits_vlv;
504 } else if (!IS_GEN2(dev)) {
505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
509 } else {
510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511 limit = &intel_limits_i8xx_lvds;
512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513 limit = &intel_limits_i8xx_dvo;
514 else
515 limit = &intel_limits_i8xx_dac;
516 }
517 return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538 clock->m = i9xx_dpll_compute_m(clock);
539 clock->p = clock->p1 * clock->p2;
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
566 {
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
570 INTELPllInvalid("p1 out of range\n");
571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
572 INTELPllInvalid("m2 out of range\n");
573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
574 INTELPllInvalid("m1 out of range\n");
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588 INTELPllInvalid("vco out of range\n");
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593 INTELPllInvalid("dot out of range\n");
594
595 return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
602 {
603 struct drm_device *dev = crtc->base.dev;
604 intel_clock_t clock;
605 int err = target;
606
607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608 /*
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
612 */
613 if (intel_is_dual_link_lvds(dev))
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
624 memset(best_clock, 0, sizeof(*best_clock));
625
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
630 if (clock.m2 >= clock.m1)
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
636 int this_err;
637
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
663 {
664 struct drm_device *dev = crtc->base.dev;
665 intel_clock_t clock;
666 int err = target;
667
668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669 /*
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
673 */
674 if (intel_is_dual_link_lvds(dev))
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
695 int this_err;
696
697 pineview_clock(refclk, &clock);
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
700 continue;
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
722 {
723 struct drm_device *dev = crtc->base.dev;
724 intel_clock_t clock;
725 int max_n;
726 bool found;
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
729 found = false;
730
731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732 if (intel_is_dual_link_lvds(dev))
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
745 /* based on hardware requirement, prefer smaller n to precision */
746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747 /* based on hardware requirement, prefere larger m1,m2 */
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
756 i9xx_clock(refclk, &clock);
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
759 continue;
760
761 this_err = abs(clock.dot - target);
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
772 return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 intel_clock_t clock;
782 unsigned int bestppm = 1000000;
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
785 bool found = false;
786
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
790
791 /* based on hardware requirement, prefer smaller n to precision */
792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796 clock.p = clock.p1 * clock.p2;
797 /* based on hardware requirement, prefer bigger m1,m2 values */
798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799 unsigned int ppm, diff;
800
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
805
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
808 continue;
809
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
814 bestppm = 0;
815 *best_clock = clock;
816 found = true;
817 }
818
819 if (bestppm >= 10 && ppm < bestppm - 10) {
820 bestppm = ppm;
821 *best_clock = clock;
822 found = true;
823 }
824 }
825 }
826 }
827 }
828
829 return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836 {
837 struct drm_device *dev = crtc->base.dev;
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
891 * We can ditch the adjusted_mode.crtc_clock check as soon
892 * as Haswell has gained clock readout/fastboot support.
893 *
894 * We can ditch the crtc->primary->fb check as soon as we can
895 * properly reconstruct framebuffers.
896 */
897 return intel_crtc->active && crtc->primary->fb &&
898 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903 {
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907 return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927 }
928
929 /*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
931 * @crtc: crtc whose pipe to wait for
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
943 *
944 */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947 struct drm_device *dev = crtc->base.dev;
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
951
952 if (INTEL_INFO(dev)->gen >= 4) {
953 int reg = PIPECONF(cpu_transcoder);
954
955 /* Wait for the Pipe State to go off */
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
958 WARN(1, "pipe_off wait timed out\n");
959 } else {
960 /* Wait for the display line to settle */
961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962 WARN(1, "pipe_off wait timed out\n");
963 }
964 }
965
966 /*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975 {
976 u32 bit;
977
978 if (HAS_PCH_IBX(dev_priv->dev)) {
979 switch (port->port) {
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
993 switch (port->port) {
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013 return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
1019 {
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 I915_STATE_WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 I915_STATE_WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055 if (crtc->config.shared_dpll < 0)
1056 return NULL;
1057
1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
1065 {
1066 bool cur_state;
1067 struct intel_dpll_hw_state hw_state;
1068
1069 if (WARN (!pll,
1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
1071 return;
1072
1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074 I915_STATE_WARN(cur_state != state,
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081 {
1082 int reg;
1083 u32 val;
1084 bool cur_state;
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
1087
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091 val = I915_READ(reg);
1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
1098 I915_STATE_WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107 {
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
1115 I915_STATE_WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124 {
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130 return;
1131
1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133 if (HAS_DDI(dev_priv->dev))
1134 return;
1135
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 I915_STATE_WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
1158 {
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
1163 bool locked = true;
1164
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
1171 pp_reg = PCH_PP_CONTROL;
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
1182 } else {
1183 pp_reg = PP_CONTROL;
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191 locked = false;
1192
1193 I915_STATE_WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
1195 pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200 {
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
1204 if (IS_845G(dev) || IS_I865G(dev))
1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206 else
1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209 I915_STATE_WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
1218 {
1219 int reg;
1220 u32 val;
1221 bool cur_state;
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
1224
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228 state = true;
1229
1230 if (!intel_display_power_is_enabled(dev_priv,
1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
1239 I915_STATE_WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
1241 pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
1246 {
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 I915_STATE_WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264 {
1265 struct drm_device *dev = dev_priv->dev;
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
1274 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
1277 return;
1278 }
1279
1280 /* Need to check both planes against the pipe */
1281 for_each_pipe(dev_priv, i) {
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
1289 }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294 {
1295 struct drm_device *dev = dev_priv->dev;
1296 int reg, sprite;
1297 u32 val;
1298
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
1309 val = I915_READ(reg);
1310 I915_STATE_WARN(val & SP_ENABLE,
1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312 sprite_name(pipe, sprite), pipe_name(pipe));
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
1316 val = I915_READ(reg);
1317 I915_STATE_WARN(val & SPRITE_ENABLE,
1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
1322 val = I915_READ(reg);
1323 I915_STATE_WARN(val & DVS_ENABLE,
1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325 plane_name(pipe), pipe_name(pipe));
1326 }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337 u32 val;
1338 bool enabled;
1339
1340 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
1350 {
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
1355 reg = PCH_TRANSCONF(pipe);
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
1358 I915_STATE_WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386 {
1387 if ((val & SDVO_ENABLE) == 0)
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392 return false;
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1396 } else {
1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398 return false;
1399 }
1400 return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405 {
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421 {
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435 enum pipe pipe, int reg, u32 port_sel)
1436 {
1437 u32 val = I915_READ(reg);
1438 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440 reg, pipe_name(pipe));
1441
1442 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
1444 "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449 {
1450 u32 val = I915_READ(reg);
1451 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453 reg, pipe_name(pipe));
1454
1455 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456 && (val & SDVO_PIPE_B_SELECT),
1457 "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462 {
1463 int reg;
1464 u32 val;
1465
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
1472 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
1474 pipe_name(pipe));
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
1478 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
1509 {
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515 assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
1521 if (IS_MOBILE(dev_priv->dev))
1522 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532 POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534 /* We do this three times for luck */
1535 I915_WRITE(reg, dpll);
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
1538 I915_WRITE(reg, dpll);
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
1541 I915_WRITE(reg, dpll);
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
1548 {
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574 /* Check PLL is locked */
1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578 /* not sure when this should be written */
1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580 POSTING_READ(DPLL_MD(pipe));
1581
1582 mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594 return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604 assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606 /* No really, not for ILK+ */
1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609 /* PLL is protected by panel, make sure we can write it */
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
1641
1642 /* We do this three times for luck */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655 * i9xx_disable_pll - disable a PLL
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
1702 if (pipe == PIPE_B)
1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712 u32 val;
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
1717 /* Set PLL en = 0 */
1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
1742 mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
1747 {
1748 u32 port_mask;
1749 int dpll_reg;
1750
1751 switch (dport->port) {
1752 case PORT_B:
1753 port_mask = DPLL_PORTB_READY_MASK;
1754 dpll_reg = DPLL(0);
1755 break;
1756 case PORT_C:
1757 port_mask = DPLL_PORTC_READY_MASK;
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
1763 break;
1764 default:
1765 BUG();
1766 }
1767
1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770 port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
1782 WARN_ON(!pll->config.crtc_mask);
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790 }
1791
1792 /**
1793 * intel_enable_shared_dpll - enable PCH PLL
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806 if (WARN_ON(pll == NULL))
1807 return;
1808
1809 if (WARN_ON(pll->config.crtc_mask == 0))
1810 return;
1811
1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813 pll->name, pll->active, pll->on,
1814 crtc->base.base.id);
1815
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
1818 assert_shared_dpll_enabled(dev_priv, pll);
1819 return;
1820 }
1821 WARN_ON(pll->on);
1822
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826 pll->enable(dev_priv, pll);
1827 pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836 /* PCH only available on ILK+ */
1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
1838 if (WARN_ON(pll == NULL))
1839 return;
1840
1841 if (WARN_ON(pll->config.crtc_mask == 0))
1842 return;
1843
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
1846 crtc->base.base.id);
1847
1848 if (WARN_ON(pll->active == 0)) {
1849 assert_shared_dpll_disabled(dev_priv, pll);
1850 return;
1851 }
1852
1853 assert_shared_dpll_enabled(dev_priv, pll);
1854 WARN_ON(!pll->on);
1855 if (--pll->active)
1856 return;
1857
1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859 pll->disable(dev_priv, pll);
1860 pll->on = false;
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
1867 {
1868 struct drm_device *dev = dev_priv->dev;
1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871 uint32_t reg, val, pipeconf_val;
1872
1873 /* PCH only available on ILK+ */
1874 BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876 /* Make sure PCH DPLL is enabled */
1877 assert_shared_dpll_enabled(dev_priv,
1878 intel_crtc_to_shared_dpll(intel_crtc));
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
1891 }
1892
1893 reg = PCH_TRANSCONF(pipe);
1894 val = I915_READ(reg);
1895 pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904 }
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908 if (HAS_PCH_IBX(dev_priv->dev) &&
1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum transcoder cpu_transcoder)
1923 {
1924 u32 val, pipeconf_val;
1925
1926 /* PCH only available on ILK+ */
1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929 /* FDI must be feeding us bits for PCH ports */
1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938 val = TRANS_ENABLE;
1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
1943 val |= TRANS_INTERLACED;
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
1954 {
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
1965 reg = PCH_TRANSCONF(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984 u32 val;
1985
1986 val = I915_READ(LPT_TRANSCONF);
1987 val &= ~TRANS_ENABLE;
1988 I915_WRITE(LPT_TRANSCONF, val);
1989 /* wait for PCH transcoder off, transcoder state */
1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996 I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000 * intel_enable_pipe - enable a pipe, asserting requirements
2001 * @crtc: crtc responsible for the pipe
2002 *
2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005 */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
2013 enum pipe pch_transcoder;
2014 int reg;
2015 u32 val;
2016
2017 assert_planes_disabled(dev_priv, pipe);
2018 assert_cursor_disabled(dev_priv, pipe);
2019 assert_sprites_disabled(dev_priv, pipe);
2020
2021 if (HAS_PCH_LPT(dev_priv->dev))
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
2036 else {
2037 if (crtc->config.has_pch_encoder) {
2038 /* if driving the PCH, we need FDI enabled */
2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
2045
2046 reg = PIPECONF(cpu_transcoder);
2047 val = I915_READ(reg);
2048 if (val & PIPECONF_ENABLE) {
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051 return;
2052 }
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
2055 POSTING_READ(reg);
2056 }
2057
2058 /**
2059 * intel_disable_pipe - disable a pipe, asserting requirements
2060 * @crtc: crtc whose pipes is to be disabled
2061 *
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
2081 assert_cursor_disabled(dev_priv, pipe);
2082 assert_sprites_disabled(dev_priv, pipe);
2083
2084 reg = PIPECONF(cpu_transcoder);
2085 val = I915_READ(reg);
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
2112 {
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
2118 }
2119
2120 /**
2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
2124 *
2125 * Enable @plane on @crtc, making sure that the pipe is running first.
2126 */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
2129 {
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137 if (intel_crtc->primary_enabled)
2138 return;
2139
2140 intel_crtc->primary_enabled = true;
2141
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
2158 *
2159 * Disable @plane on @crtc, making sure that the pipe is running first.
2160 */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
2163 {
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170 if (!intel_crtc->primary_enabled)
2171 return;
2172
2173 intel_crtc->primary_enabled = false;
2174
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184 #endif
2185 return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198 struct drm_framebuffer *fb,
2199 struct intel_engine_cs *pipelined)
2200 {
2201 struct drm_device *dev = fb->dev;
2202 struct drm_i915_private *dev_priv = dev->dev_private;
2203 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204 u32 alignment;
2205 int ret;
2206
2207 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209 switch (obj->tiling_mode) {
2210 case I915_TILING_NONE:
2211 if (INTEL_INFO(dev)->gen >= 9)
2212 alignment = 256 * 1024;
2213 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214 alignment = 128 * 1024;
2215 else if (INTEL_INFO(dev)->gen >= 4)
2216 alignment = 4 * 1024;
2217 else
2218 alignment = 64 * 1024;
2219 break;
2220 case I915_TILING_X:
2221 if (INTEL_INFO(dev)->gen >= 9)
2222 alignment = 256 * 1024;
2223 else {
2224 /* pin() will align the object as required by fence */
2225 alignment = 0;
2226 }
2227 break;
2228 case I915_TILING_Y:
2229 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230 return -EINVAL;
2231 default:
2232 BUG();
2233 }
2234
2235 /* Note that the w/a also requires 64 PTE of padding following the
2236 * bo. We currently fill all unused PTE with the shadow page and so
2237 * we should always have valid PTE following the scanout preventing
2238 * the VT-d warning.
2239 */
2240 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241 alignment = 256 * 1024;
2242
2243 /*
2244 * Global gtt pte registers are special registers which actually forward
2245 * writes to a chunk of system memory. Which means that there is no risk
2246 * that the register values disappear as soon as we call
2247 * intel_runtime_pm_put(), so it is correct to wrap only the
2248 * pin/unpin/fence and not more.
2249 */
2250 intel_runtime_pm_get(dev_priv);
2251
2252 dev_priv->mm.interruptible = false;
2253 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254 if (ret)
2255 goto err_interruptible;
2256
2257 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258 * fence, whereas 965+ only requires a fence if using
2259 * framebuffer compression. For simplicity, we always install
2260 * a fence as the cost is not that onerous.
2261 */
2262 ret = i915_gem_object_get_fence(obj);
2263 if (ret)
2264 goto err_unpin;
2265
2266 i915_gem_object_pin_fence(obj);
2267
2268 dev_priv->mm.interruptible = true;
2269 intel_runtime_pm_put(dev_priv);
2270 return 0;
2271
2272 err_unpin:
2273 i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275 dev_priv->mm.interruptible = true;
2276 intel_runtime_pm_put(dev_priv);
2277 return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284 i915_gem_object_unpin_fence(obj);
2285 i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289 * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291 unsigned int tiling_mode,
2292 unsigned int cpp,
2293 unsigned int pitch)
2294 {
2295 if (tiling_mode != I915_TILING_NONE) {
2296 unsigned int tile_rows, tiles;
2297
2298 tile_rows = *y / 8;
2299 *y %= 8;
2300
2301 tiles = *x / (512/cpp);
2302 *x %= 512/cpp;
2303
2304 return tile_rows * pitch * 8 + tiles * 4096;
2305 } else {
2306 unsigned int offset;
2307
2308 offset = *y * pitch + *x * cpp;
2309 *y = 0;
2310 *x = (offset & 4095) / cpp;
2311 return offset & -4096;
2312 }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317 switch (format) {
2318 case DISPPLANE_8BPP:
2319 return DRM_FORMAT_C8;
2320 case DISPPLANE_BGRX555:
2321 return DRM_FORMAT_XRGB1555;
2322 case DISPPLANE_BGRX565:
2323 return DRM_FORMAT_RGB565;
2324 default:
2325 case DISPPLANE_BGRX888:
2326 return DRM_FORMAT_XRGB8888;
2327 case DISPPLANE_RGBX888:
2328 return DRM_FORMAT_XBGR8888;
2329 case DISPPLANE_BGRX101010:
2330 return DRM_FORMAT_XRGB2101010;
2331 case DISPPLANE_RGBX101010:
2332 return DRM_FORMAT_XBGR2101010;
2333 }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337 struct intel_plane_config *plane_config)
2338 {
2339 struct drm_device *dev = crtc->base.dev;
2340 struct drm_i915_gem_object *obj = NULL;
2341 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342 u32 base = plane_config->base;
2343
2344 if (plane_config->size == 0)
2345 return false;
2346
2347 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348 plane_config->size);
2349 if (!obj)
2350 return false;
2351
2352 if (plane_config->tiled) {
2353 obj->tiling_mode = I915_TILING_X;
2354 obj->stride = crtc->base.primary->fb->pitches[0];
2355 }
2356
2357 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358 mode_cmd.width = crtc->base.primary->fb->width;
2359 mode_cmd.height = crtc->base.primary->fb->height;
2360 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362 mutex_lock(&dev->struct_mutex);
2363
2364 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365 &mode_cmd, obj)) {
2366 DRM_DEBUG_KMS("intel fb init failed\n");
2367 goto out_unref_obj;
2368 }
2369
2370 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371 mutex_unlock(&dev->struct_mutex);
2372
2373 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374 return true;
2375
2376 out_unref_obj:
2377 drm_gem_object_unreference(&obj->base);
2378 mutex_unlock(&dev->struct_mutex);
2379 return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383 struct intel_plane_config *plane_config)
2384 {
2385 struct drm_device *dev = intel_crtc->base.dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct drm_crtc *c;
2388 struct intel_crtc *i;
2389 struct drm_i915_gem_object *obj;
2390
2391 if (!intel_crtc->base.primary->fb)
2392 return;
2393
2394 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395 return;
2396
2397 kfree(intel_crtc->base.primary->fb);
2398 intel_crtc->base.primary->fb = NULL;
2399
2400 /*
2401 * Failed to alloc the obj, check to see if we should share
2402 * an fb with another CRTC instead
2403 */
2404 for_each_crtc(dev, c) {
2405 i = to_intel_crtc(c);
2406
2407 if (c == &intel_crtc->base)
2408 continue;
2409
2410 if (!i->active)
2411 continue;
2412
2413 obj = intel_fb_obj(c->primary->fb);
2414 if (obj == NULL)
2415 continue;
2416
2417 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418 if (obj->tiling_mode != I915_TILING_NONE)
2419 dev_priv->preserve_bios_swizzle = true;
2420
2421 drm_framebuffer_reference(c->primary->fb);
2422 intel_crtc->base.primary->fb = c->primary->fb;
2423 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424 break;
2425 }
2426 }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430 struct drm_framebuffer *fb,
2431 int x, int y)
2432 {
2433 struct drm_device *dev = crtc->dev;
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436 struct drm_i915_gem_object *obj;
2437 int plane = intel_crtc->plane;
2438 unsigned long linear_offset;
2439 u32 dspcntr;
2440 u32 reg = DSPCNTR(plane);
2441 int pixel_size;
2442
2443 if (!intel_crtc->primary_enabled) {
2444 I915_WRITE(reg, 0);
2445 if (INTEL_INFO(dev)->gen >= 4)
2446 I915_WRITE(DSPSURF(plane), 0);
2447 else
2448 I915_WRITE(DSPADDR(plane), 0);
2449 POSTING_READ(reg);
2450 return;
2451 }
2452
2453 obj = intel_fb_obj(fb);
2454 if (WARN_ON(obj == NULL))
2455 return;
2456
2457 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459 dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461 dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463 if (INTEL_INFO(dev)->gen < 4) {
2464 if (intel_crtc->pipe == PIPE_B)
2465 dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467 /* pipesrc and dspsize control the size that is scaled from,
2468 * which should always be the user's requested size.
2469 */
2470 I915_WRITE(DSPSIZE(plane),
2471 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472 (intel_crtc->config.pipe_src_w - 1));
2473 I915_WRITE(DSPPOS(plane), 0);
2474 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475 I915_WRITE(PRIMSIZE(plane),
2476 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477 (intel_crtc->config.pipe_src_w - 1));
2478 I915_WRITE(PRIMPOS(plane), 0);
2479 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480 }
2481
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
2486 case DRM_FORMAT_XRGB1555:
2487 case DRM_FORMAT_ARGB1555:
2488 dspcntr |= DISPPLANE_BGRX555;
2489 break;
2490 case DRM_FORMAT_RGB565:
2491 dspcntr |= DISPPLANE_BGRX565;
2492 break;
2493 case DRM_FORMAT_XRGB8888:
2494 case DRM_FORMAT_ARGB8888:
2495 dspcntr |= DISPPLANE_BGRX888;
2496 break;
2497 case DRM_FORMAT_XBGR8888:
2498 case DRM_FORMAT_ABGR8888:
2499 dspcntr |= DISPPLANE_RGBX888;
2500 break;
2501 case DRM_FORMAT_XRGB2101010:
2502 case DRM_FORMAT_ARGB2101010:
2503 dspcntr |= DISPPLANE_BGRX101010;
2504 break;
2505 case DRM_FORMAT_XBGR2101010:
2506 case DRM_FORMAT_ABGR2101010:
2507 dspcntr |= DISPPLANE_RGBX101010;
2508 break;
2509 default:
2510 BUG();
2511 }
2512
2513 if (INTEL_INFO(dev)->gen >= 4 &&
2514 obj->tiling_mode != I915_TILING_NONE)
2515 dspcntr |= DISPPLANE_TILED;
2516
2517 if (IS_G4X(dev))
2518 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520 linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522 if (INTEL_INFO(dev)->gen >= 4) {
2523 intel_crtc->dspaddr_offset =
2524 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525 pixel_size,
2526 fb->pitches[0]);
2527 linear_offset -= intel_crtc->dspaddr_offset;
2528 } else {
2529 intel_crtc->dspaddr_offset = linear_offset;
2530 }
2531
2532 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535 x += (intel_crtc->config.pipe_src_w - 1);
2536 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538 /* Finding the last pixel of the last line of the display
2539 data and adding to linear_offset*/
2540 linear_offset +=
2541 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543 }
2544
2545 I915_WRITE(reg, dspcntr);
2546
2547 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549 fb->pitches[0]);
2550 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551 if (INTEL_INFO(dev)->gen >= 4) {
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556 } else
2557 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558 POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562 struct drm_framebuffer *fb,
2563 int x, int y)
2564 {
2565 struct drm_device *dev = crtc->dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568 struct drm_i915_gem_object *obj;
2569 int plane = intel_crtc->plane;
2570 unsigned long linear_offset;
2571 u32 dspcntr;
2572 u32 reg = DSPCNTR(plane);
2573 int pixel_size;
2574
2575 if (!intel_crtc->primary_enabled) {
2576 I915_WRITE(reg, 0);
2577 I915_WRITE(DSPSURF(plane), 0);
2578 POSTING_READ(reg);
2579 return;
2580 }
2581
2582 obj = intel_fb_obj(fb);
2583 if (WARN_ON(obj == NULL))
2584 return;
2585
2586 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588 dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590 dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595 switch (fb->pixel_format) {
2596 case DRM_FORMAT_C8:
2597 dspcntr |= DISPPLANE_8BPP;
2598 break;
2599 case DRM_FORMAT_RGB565:
2600 dspcntr |= DISPPLANE_BGRX565;
2601 break;
2602 case DRM_FORMAT_XRGB8888:
2603 case DRM_FORMAT_ARGB8888:
2604 dspcntr |= DISPPLANE_BGRX888;
2605 break;
2606 case DRM_FORMAT_XBGR8888:
2607 case DRM_FORMAT_ABGR8888:
2608 dspcntr |= DISPPLANE_RGBX888;
2609 break;
2610 case DRM_FORMAT_XRGB2101010:
2611 case DRM_FORMAT_ARGB2101010:
2612 dspcntr |= DISPPLANE_BGRX101010;
2613 break;
2614 case DRM_FORMAT_XBGR2101010:
2615 case DRM_FORMAT_ABGR2101010:
2616 dspcntr |= DISPPLANE_RGBX101010;
2617 break;
2618 default:
2619 BUG();
2620 }
2621
2622 if (obj->tiling_mode != I915_TILING_NONE)
2623 dspcntr |= DISPPLANE_TILED;
2624
2625 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628 linear_offset = y * fb->pitches[0] + x * pixel_size;
2629 intel_crtc->dspaddr_offset =
2630 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631 pixel_size,
2632 fb->pitches[0]);
2633 linear_offset -= intel_crtc->dspaddr_offset;
2634 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638 x += (intel_crtc->config.pipe_src_w - 1);
2639 y += (intel_crtc->config.pipe_src_h - 1);
2640
2641 /* Finding the last pixel of the last line of the display
2642 data and adding to linear_offset*/
2643 linear_offset +=
2644 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646 }
2647 }
2648
2649 I915_WRITE(reg, dspcntr);
2650
2651 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653 fb->pitches[0]);
2654 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655 I915_WRITE(DSPSURF(plane),
2656 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659 } else {
2660 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662 }
2663 POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667 struct drm_framebuffer *fb,
2668 int x, int y)
2669 {
2670 struct drm_device *dev = crtc->dev;
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673 struct intel_framebuffer *intel_fb;
2674 struct drm_i915_gem_object *obj;
2675 int pipe = intel_crtc->pipe;
2676 u32 plane_ctl, stride;
2677
2678 if (!intel_crtc->primary_enabled) {
2679 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681 POSTING_READ(PLANE_CTL(pipe, 0));
2682 return;
2683 }
2684
2685 plane_ctl = PLANE_CTL_ENABLE |
2686 PLANE_CTL_PIPE_GAMMA_ENABLE |
2687 PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689 switch (fb->pixel_format) {
2690 case DRM_FORMAT_RGB565:
2691 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692 break;
2693 case DRM_FORMAT_XRGB8888:
2694 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695 break;
2696 case DRM_FORMAT_XBGR8888:
2697 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699 break;
2700 case DRM_FORMAT_XRGB2101010:
2701 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702 break;
2703 case DRM_FORMAT_XBGR2101010:
2704 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706 break;
2707 default:
2708 BUG();
2709 }
2710
2711 intel_fb = to_intel_framebuffer(fb);
2712 obj = intel_fb->obj;
2713
2714 /*
2715 * The stride is either expressed as a multiple of 64 bytes chunks for
2716 * linear buffers or in number of tiles for tiled buffers.
2717 */
2718 switch (obj->tiling_mode) {
2719 case I915_TILING_NONE:
2720 stride = fb->pitches[0] >> 6;
2721 break;
2722 case I915_TILING_X:
2723 plane_ctl |= PLANE_CTL_TILED_X;
2724 stride = fb->pitches[0] >> 9;
2725 break;
2726 default:
2727 BUG();
2728 }
2729
2730 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737 i915_gem_obj_ggtt_offset(obj),
2738 x, y, fb->width, fb->height,
2739 fb->pitches[0]);
2740
2741 I915_WRITE(PLANE_POS(pipe, 0), 0);
2742 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743 I915_WRITE(PLANE_SIZE(pipe, 0),
2744 (intel_crtc->config.pipe_src_h - 1) << 16 |
2745 (intel_crtc->config.pipe_src_w - 1));
2746 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749 POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755 int x, int y, enum mode_set_atomic state)
2756 {
2757 struct drm_device *dev = crtc->dev;
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760 if (dev_priv->display.disable_fbc)
2761 dev_priv->display.disable_fbc(dev);
2762
2763 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765 return 0;
2766 }
2767
2768 static void intel_complete_page_flips(struct drm_device *dev)
2769 {
2770 struct drm_crtc *crtc;
2771
2772 for_each_crtc(dev, crtc) {
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 enum plane plane = intel_crtc->plane;
2775
2776 intel_prepare_page_flip(dev, plane);
2777 intel_finish_page_flip_plane(dev, plane);
2778 }
2779 }
2780
2781 static void intel_update_primary_planes(struct drm_device *dev)
2782 {
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct drm_crtc *crtc;
2785
2786 for_each_crtc(dev, crtc) {
2787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
2789 drm_modeset_lock(&crtc->mutex, NULL);
2790 /*
2791 * FIXME: Once we have proper support for primary planes (and
2792 * disabling them without disabling the entire crtc) allow again
2793 * a NULL crtc->primary->fb.
2794 */
2795 if (intel_crtc->active && crtc->primary->fb)
2796 dev_priv->display.update_primary_plane(crtc,
2797 crtc->primary->fb,
2798 crtc->x,
2799 crtc->y);
2800 drm_modeset_unlock(&crtc->mutex);
2801 }
2802 }
2803
2804 void intel_prepare_reset(struct drm_device *dev)
2805 {
2806 struct drm_i915_private *dev_priv = to_i915(dev);
2807 struct intel_crtc *crtc;
2808
2809 /* no reset support for gen2 */
2810 if (IS_GEN2(dev))
2811 return;
2812
2813 /* reset doesn't touch the display */
2814 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815 return;
2816
2817 drm_modeset_lock_all(dev);
2818
2819 /*
2820 * Disabling the crtcs gracefully seems nicer. Also the
2821 * g33 docs say we should at least disable all the planes.
2822 */
2823 for_each_intel_crtc(dev, crtc) {
2824 if (crtc->active)
2825 dev_priv->display.crtc_disable(&crtc->base);
2826 }
2827 }
2828
2829 void intel_finish_reset(struct drm_device *dev)
2830 {
2831 struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833 /*
2834 * Flips in the rings will be nuked by the reset,
2835 * so complete all pending flips so that user space
2836 * will get its events and not get stuck.
2837 */
2838 intel_complete_page_flips(dev);
2839
2840 /* no reset support for gen2 */
2841 if (IS_GEN2(dev))
2842 return;
2843
2844 /* reset doesn't touch the display */
2845 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846 /*
2847 * Flips in the rings have been nuked by the reset,
2848 * so update the base address of all primary
2849 * planes to the the last fb to make sure we're
2850 * showing the correct fb after a reset.
2851 */
2852 intel_update_primary_planes(dev);
2853 return;
2854 }
2855
2856 /*
2857 * The display has been reset as well,
2858 * so need a full re-initialization.
2859 */
2860 intel_runtime_pm_disable_interrupts(dev_priv);
2861 intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863 intel_modeset_init_hw(dev);
2864
2865 spin_lock_irq(&dev_priv->irq_lock);
2866 if (dev_priv->display.hpd_irq_setup)
2867 dev_priv->display.hpd_irq_setup(dev);
2868 spin_unlock_irq(&dev_priv->irq_lock);
2869
2870 intel_modeset_setup_hw_state(dev, true);
2871
2872 intel_hpd_init(dev_priv);
2873
2874 drm_modeset_unlock_all(dev);
2875 }
2876
2877 static int
2878 intel_finish_fb(struct drm_framebuffer *old_fb)
2879 {
2880 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882 bool was_interruptible = dev_priv->mm.interruptible;
2883 int ret;
2884
2885 /* Big Hammer, we also need to ensure that any pending
2886 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887 * current scanout is retired before unpinning the old
2888 * framebuffer.
2889 *
2890 * This should only fail upon a hung GPU, in which case we
2891 * can safely continue.
2892 */
2893 dev_priv->mm.interruptible = false;
2894 ret = i915_gem_object_finish_gpu(obj);
2895 dev_priv->mm.interruptible = was_interruptible;
2896
2897 return ret;
2898 }
2899
2900 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901 {
2902 struct drm_device *dev = crtc->dev;
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905 bool pending;
2906
2907 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909 return false;
2910
2911 spin_lock_irq(&dev->event_lock);
2912 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2913 spin_unlock_irq(&dev->event_lock);
2914
2915 return pending;
2916 }
2917
2918 static void intel_update_pipe_size(struct intel_crtc *crtc)
2919 {
2920 struct drm_device *dev = crtc->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 const struct drm_display_mode *adjusted_mode;
2923
2924 if (!i915.fastboot)
2925 return;
2926
2927 /*
2928 * Update pipe size and adjust fitter if needed: the reason for this is
2929 * that in compute_mode_changes we check the native mode (not the pfit
2930 * mode) to see if we can flip rather than do a full mode set. In the
2931 * fastboot case, we'll flip, but if we don't update the pipesrc and
2932 * pfit state, we'll end up with a big fb scanned out into the wrong
2933 * sized surface.
2934 *
2935 * To fix this properly, we need to hoist the checks up into
2936 * compute_mode_changes (or above), check the actual pfit state and
2937 * whether the platform allows pfit disable with pipe active, and only
2938 * then update the pipesrc and pfit state, even on the flip path.
2939 */
2940
2941 adjusted_mode = &crtc->config.adjusted_mode;
2942
2943 I915_WRITE(PIPESRC(crtc->pipe),
2944 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945 (adjusted_mode->crtc_vdisplay - 1));
2946 if (!crtc->config.pch_pfit.enabled &&
2947 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2949 I915_WRITE(PF_CTL(crtc->pipe), 0);
2950 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952 }
2953 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955 }
2956
2957 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2958 {
2959 struct drm_device *dev = crtc->dev;
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962 int pipe = intel_crtc->pipe;
2963 u32 reg, temp;
2964
2965 /* enable normal train */
2966 reg = FDI_TX_CTL(pipe);
2967 temp = I915_READ(reg);
2968 if (IS_IVYBRIDGE(dev)) {
2969 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2970 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2971 } else {
2972 temp &= ~FDI_LINK_TRAIN_NONE;
2973 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2974 }
2975 I915_WRITE(reg, temp);
2976
2977 reg = FDI_RX_CTL(pipe);
2978 temp = I915_READ(reg);
2979 if (HAS_PCH_CPT(dev)) {
2980 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2981 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2982 } else {
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_NONE;
2985 }
2986 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2987
2988 /* wait one idle pattern time */
2989 POSTING_READ(reg);
2990 udelay(1000);
2991
2992 /* IVB wants error correction enabled */
2993 if (IS_IVYBRIDGE(dev))
2994 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2995 FDI_FE_ERRC_ENABLE);
2996 }
2997
2998 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2999 {
3000 return crtc->base.enabled && crtc->active &&
3001 crtc->config.has_pch_encoder;
3002 }
3003
3004 static void ivb_modeset_global_resources(struct drm_device *dev)
3005 {
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 struct intel_crtc *pipe_B_crtc =
3008 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3009 struct intel_crtc *pipe_C_crtc =
3010 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3011 uint32_t temp;
3012
3013 /*
3014 * When everything is off disable fdi C so that we could enable fdi B
3015 * with all lanes. Note that we don't care about enabled pipes without
3016 * an enabled pch encoder.
3017 */
3018 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3019 !pipe_has_enabled_pch(pipe_C_crtc)) {
3020 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3021 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3022
3023 temp = I915_READ(SOUTH_CHICKEN1);
3024 temp &= ~FDI_BC_BIFURCATION_SELECT;
3025 DRM_DEBUG_KMS("disabling fdi C rx\n");
3026 I915_WRITE(SOUTH_CHICKEN1, temp);
3027 }
3028 }
3029
3030 /* The FDI link training functions for ILK/Ibexpeak. */
3031 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3032 {
3033 struct drm_device *dev = crtc->dev;
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3036 int pipe = intel_crtc->pipe;
3037 u32 reg, temp, tries;
3038
3039 /* FDI needs bits from pipe first */
3040 assert_pipe_enabled(dev_priv, pipe);
3041
3042 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3043 for train result */
3044 reg = FDI_RX_IMR(pipe);
3045 temp = I915_READ(reg);
3046 temp &= ~FDI_RX_SYMBOL_LOCK;
3047 temp &= ~FDI_RX_BIT_LOCK;
3048 I915_WRITE(reg, temp);
3049 I915_READ(reg);
3050 udelay(150);
3051
3052 /* enable CPU FDI TX and PCH FDI RX */
3053 reg = FDI_TX_CTL(pipe);
3054 temp = I915_READ(reg);
3055 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3056 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3057 temp &= ~FDI_LINK_TRAIN_NONE;
3058 temp |= FDI_LINK_TRAIN_PATTERN_1;
3059 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3060
3061 reg = FDI_RX_CTL(pipe);
3062 temp = I915_READ(reg);
3063 temp &= ~FDI_LINK_TRAIN_NONE;
3064 temp |= FDI_LINK_TRAIN_PATTERN_1;
3065 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3066
3067 POSTING_READ(reg);
3068 udelay(150);
3069
3070 /* Ironlake workaround, enable clock pointer after FDI enable*/
3071 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3072 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3073 FDI_RX_PHASE_SYNC_POINTER_EN);
3074
3075 reg = FDI_RX_IIR(pipe);
3076 for (tries = 0; tries < 5; tries++) {
3077 temp = I915_READ(reg);
3078 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3079
3080 if ((temp & FDI_RX_BIT_LOCK)) {
3081 DRM_DEBUG_KMS("FDI train 1 done.\n");
3082 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3083 break;
3084 }
3085 }
3086 if (tries == 5)
3087 DRM_ERROR("FDI train 1 fail!\n");
3088
3089 /* Train 2 */
3090 reg = FDI_TX_CTL(pipe);
3091 temp = I915_READ(reg);
3092 temp &= ~FDI_LINK_TRAIN_NONE;
3093 temp |= FDI_LINK_TRAIN_PATTERN_2;
3094 I915_WRITE(reg, temp);
3095
3096 reg = FDI_RX_CTL(pipe);
3097 temp = I915_READ(reg);
3098 temp &= ~FDI_LINK_TRAIN_NONE;
3099 temp |= FDI_LINK_TRAIN_PATTERN_2;
3100 I915_WRITE(reg, temp);
3101
3102 POSTING_READ(reg);
3103 udelay(150);
3104
3105 reg = FDI_RX_IIR(pipe);
3106 for (tries = 0; tries < 5; tries++) {
3107 temp = I915_READ(reg);
3108 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3109
3110 if (temp & FDI_RX_SYMBOL_LOCK) {
3111 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3112 DRM_DEBUG_KMS("FDI train 2 done.\n");
3113 break;
3114 }
3115 }
3116 if (tries == 5)
3117 DRM_ERROR("FDI train 2 fail!\n");
3118
3119 DRM_DEBUG_KMS("FDI train done\n");
3120
3121 }
3122
3123 static const int snb_b_fdi_train_param[] = {
3124 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3125 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3126 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3127 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3128 };
3129
3130 /* The FDI link training functions for SNB/Cougarpoint. */
3131 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3132 {
3133 struct drm_device *dev = crtc->dev;
3134 struct drm_i915_private *dev_priv = dev->dev_private;
3135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3136 int pipe = intel_crtc->pipe;
3137 u32 reg, temp, i, retry;
3138
3139 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3140 for train result */
3141 reg = FDI_RX_IMR(pipe);
3142 temp = I915_READ(reg);
3143 temp &= ~FDI_RX_SYMBOL_LOCK;
3144 temp &= ~FDI_RX_BIT_LOCK;
3145 I915_WRITE(reg, temp);
3146
3147 POSTING_READ(reg);
3148 udelay(150);
3149
3150 /* enable CPU FDI TX and PCH FDI RX */
3151 reg = FDI_TX_CTL(pipe);
3152 temp = I915_READ(reg);
3153 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3154 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3155 temp &= ~FDI_LINK_TRAIN_NONE;
3156 temp |= FDI_LINK_TRAIN_PATTERN_1;
3157 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3158 /* SNB-B */
3159 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3160 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3161
3162 I915_WRITE(FDI_RX_MISC(pipe),
3163 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3164
3165 reg = FDI_RX_CTL(pipe);
3166 temp = I915_READ(reg);
3167 if (HAS_PCH_CPT(dev)) {
3168 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3169 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3170 } else {
3171 temp &= ~FDI_LINK_TRAIN_NONE;
3172 temp |= FDI_LINK_TRAIN_PATTERN_1;
3173 }
3174 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3175
3176 POSTING_READ(reg);
3177 udelay(150);
3178
3179 for (i = 0; i < 4; i++) {
3180 reg = FDI_TX_CTL(pipe);
3181 temp = I915_READ(reg);
3182 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3183 temp |= snb_b_fdi_train_param[i];
3184 I915_WRITE(reg, temp);
3185
3186 POSTING_READ(reg);
3187 udelay(500);
3188
3189 for (retry = 0; retry < 5; retry++) {
3190 reg = FDI_RX_IIR(pipe);
3191 temp = I915_READ(reg);
3192 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3193 if (temp & FDI_RX_BIT_LOCK) {
3194 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3195 DRM_DEBUG_KMS("FDI train 1 done.\n");
3196 break;
3197 }
3198 udelay(50);
3199 }
3200 if (retry < 5)
3201 break;
3202 }
3203 if (i == 4)
3204 DRM_ERROR("FDI train 1 fail!\n");
3205
3206 /* Train 2 */
3207 reg = FDI_TX_CTL(pipe);
3208 temp = I915_READ(reg);
3209 temp &= ~FDI_LINK_TRAIN_NONE;
3210 temp |= FDI_LINK_TRAIN_PATTERN_2;
3211 if (IS_GEN6(dev)) {
3212 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3213 /* SNB-B */
3214 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3215 }
3216 I915_WRITE(reg, temp);
3217
3218 reg = FDI_RX_CTL(pipe);
3219 temp = I915_READ(reg);
3220 if (HAS_PCH_CPT(dev)) {
3221 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3222 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3223 } else {
3224 temp &= ~FDI_LINK_TRAIN_NONE;
3225 temp |= FDI_LINK_TRAIN_PATTERN_2;
3226 }
3227 I915_WRITE(reg, temp);
3228
3229 POSTING_READ(reg);
3230 udelay(150);
3231
3232 for (i = 0; i < 4; i++) {
3233 reg = FDI_TX_CTL(pipe);
3234 temp = I915_READ(reg);
3235 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3236 temp |= snb_b_fdi_train_param[i];
3237 I915_WRITE(reg, temp);
3238
3239 POSTING_READ(reg);
3240 udelay(500);
3241
3242 for (retry = 0; retry < 5; retry++) {
3243 reg = FDI_RX_IIR(pipe);
3244 temp = I915_READ(reg);
3245 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3246 if (temp & FDI_RX_SYMBOL_LOCK) {
3247 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3248 DRM_DEBUG_KMS("FDI train 2 done.\n");
3249 break;
3250 }
3251 udelay(50);
3252 }
3253 if (retry < 5)
3254 break;
3255 }
3256 if (i == 4)
3257 DRM_ERROR("FDI train 2 fail!\n");
3258
3259 DRM_DEBUG_KMS("FDI train done.\n");
3260 }
3261
3262 /* Manual link training for Ivy Bridge A0 parts */
3263 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3264 {
3265 struct drm_device *dev = crtc->dev;
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3268 int pipe = intel_crtc->pipe;
3269 u32 reg, temp, i, j;
3270
3271 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3272 for train result */
3273 reg = FDI_RX_IMR(pipe);
3274 temp = I915_READ(reg);
3275 temp &= ~FDI_RX_SYMBOL_LOCK;
3276 temp &= ~FDI_RX_BIT_LOCK;
3277 I915_WRITE(reg, temp);
3278
3279 POSTING_READ(reg);
3280 udelay(150);
3281
3282 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3283 I915_READ(FDI_RX_IIR(pipe)));
3284
3285 /* Try each vswing and preemphasis setting twice before moving on */
3286 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3287 /* disable first in case we need to retry */
3288 reg = FDI_TX_CTL(pipe);
3289 temp = I915_READ(reg);
3290 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3291 temp &= ~FDI_TX_ENABLE;
3292 I915_WRITE(reg, temp);
3293
3294 reg = FDI_RX_CTL(pipe);
3295 temp = I915_READ(reg);
3296 temp &= ~FDI_LINK_TRAIN_AUTO;
3297 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3298 temp &= ~FDI_RX_ENABLE;
3299 I915_WRITE(reg, temp);
3300
3301 /* enable CPU FDI TX and PCH FDI RX */
3302 reg = FDI_TX_CTL(pipe);
3303 temp = I915_READ(reg);
3304 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3305 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3306 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3307 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3308 temp |= snb_b_fdi_train_param[j/2];
3309 temp |= FDI_COMPOSITE_SYNC;
3310 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3311
3312 I915_WRITE(FDI_RX_MISC(pipe),
3313 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3314
3315 reg = FDI_RX_CTL(pipe);
3316 temp = I915_READ(reg);
3317 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3318 temp |= FDI_COMPOSITE_SYNC;
3319 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3320
3321 POSTING_READ(reg);
3322 udelay(1); /* should be 0.5us */
3323
3324 for (i = 0; i < 4; i++) {
3325 reg = FDI_RX_IIR(pipe);
3326 temp = I915_READ(reg);
3327 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3328
3329 if (temp & FDI_RX_BIT_LOCK ||
3330 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3331 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3332 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3333 i);
3334 break;
3335 }
3336 udelay(1); /* should be 0.5us */
3337 }
3338 if (i == 4) {
3339 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3340 continue;
3341 }
3342
3343 /* Train 2 */
3344 reg = FDI_TX_CTL(pipe);
3345 temp = I915_READ(reg);
3346 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3347 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3348 I915_WRITE(reg, temp);
3349
3350 reg = FDI_RX_CTL(pipe);
3351 temp = I915_READ(reg);
3352 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3353 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3354 I915_WRITE(reg, temp);
3355
3356 POSTING_READ(reg);
3357 udelay(2); /* should be 1.5us */
3358
3359 for (i = 0; i < 4; i++) {
3360 reg = FDI_RX_IIR(pipe);
3361 temp = I915_READ(reg);
3362 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3363
3364 if (temp & FDI_RX_SYMBOL_LOCK ||
3365 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3366 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3367 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3368 i);
3369 goto train_done;
3370 }
3371 udelay(2); /* should be 1.5us */
3372 }
3373 if (i == 4)
3374 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3375 }
3376
3377 train_done:
3378 DRM_DEBUG_KMS("FDI train done.\n");
3379 }
3380
3381 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3382 {
3383 struct drm_device *dev = intel_crtc->base.dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 int pipe = intel_crtc->pipe;
3386 u32 reg, temp;
3387
3388
3389 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3390 reg = FDI_RX_CTL(pipe);
3391 temp = I915_READ(reg);
3392 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3393 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3394 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3395 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3396
3397 POSTING_READ(reg);
3398 udelay(200);
3399
3400 /* Switch from Rawclk to PCDclk */
3401 temp = I915_READ(reg);
3402 I915_WRITE(reg, temp | FDI_PCDCLK);
3403
3404 POSTING_READ(reg);
3405 udelay(200);
3406
3407 /* Enable CPU FDI TX PLL, always on for Ironlake */
3408 reg = FDI_TX_CTL(pipe);
3409 temp = I915_READ(reg);
3410 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3411 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3412
3413 POSTING_READ(reg);
3414 udelay(100);
3415 }
3416 }
3417
3418 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3419 {
3420 struct drm_device *dev = intel_crtc->base.dev;
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422 int pipe = intel_crtc->pipe;
3423 u32 reg, temp;
3424
3425 /* Switch from PCDclk to Rawclk */
3426 reg = FDI_RX_CTL(pipe);
3427 temp = I915_READ(reg);
3428 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3429
3430 /* Disable CPU FDI TX PLL */
3431 reg = FDI_TX_CTL(pipe);
3432 temp = I915_READ(reg);
3433 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3434
3435 POSTING_READ(reg);
3436 udelay(100);
3437
3438 reg = FDI_RX_CTL(pipe);
3439 temp = I915_READ(reg);
3440 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3441
3442 /* Wait for the clocks to turn off. */
3443 POSTING_READ(reg);
3444 udelay(100);
3445 }
3446
3447 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3448 {
3449 struct drm_device *dev = crtc->dev;
3450 struct drm_i915_private *dev_priv = dev->dev_private;
3451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3452 int pipe = intel_crtc->pipe;
3453 u32 reg, temp;
3454
3455 /* disable CPU FDI tx and PCH FDI rx */
3456 reg = FDI_TX_CTL(pipe);
3457 temp = I915_READ(reg);
3458 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3459 POSTING_READ(reg);
3460
3461 reg = FDI_RX_CTL(pipe);
3462 temp = I915_READ(reg);
3463 temp &= ~(0x7 << 16);
3464 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3465 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3466
3467 POSTING_READ(reg);
3468 udelay(100);
3469
3470 /* Ironlake workaround, disable clock pointer after downing FDI */
3471 if (HAS_PCH_IBX(dev))
3472 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3473
3474 /* still set train pattern 1 */
3475 reg = FDI_TX_CTL(pipe);
3476 temp = I915_READ(reg);
3477 temp &= ~FDI_LINK_TRAIN_NONE;
3478 temp |= FDI_LINK_TRAIN_PATTERN_1;
3479 I915_WRITE(reg, temp);
3480
3481 reg = FDI_RX_CTL(pipe);
3482 temp = I915_READ(reg);
3483 if (HAS_PCH_CPT(dev)) {
3484 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3485 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3486 } else {
3487 temp &= ~FDI_LINK_TRAIN_NONE;
3488 temp |= FDI_LINK_TRAIN_PATTERN_1;
3489 }
3490 /* BPC in FDI rx is consistent with that in PIPECONF */
3491 temp &= ~(0x07 << 16);
3492 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3493 I915_WRITE(reg, temp);
3494
3495 POSTING_READ(reg);
3496 udelay(100);
3497 }
3498
3499 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3500 {
3501 struct intel_crtc *crtc;
3502
3503 /* Note that we don't need to be called with mode_config.lock here
3504 * as our list of CRTC objects is static for the lifetime of the
3505 * device and so cannot disappear as we iterate. Similarly, we can
3506 * happily treat the predicates as racy, atomic checks as userspace
3507 * cannot claim and pin a new fb without at least acquring the
3508 * struct_mutex and so serialising with us.
3509 */
3510 for_each_intel_crtc(dev, crtc) {
3511 if (atomic_read(&crtc->unpin_work_count) == 0)
3512 continue;
3513
3514 if (crtc->unpin_work)
3515 intel_wait_for_vblank(dev, crtc->pipe);
3516
3517 return true;
3518 }
3519
3520 return false;
3521 }
3522
3523 static void page_flip_completed(struct intel_crtc *intel_crtc)
3524 {
3525 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3526 struct intel_unpin_work *work = intel_crtc->unpin_work;
3527
3528 /* ensure that the unpin work is consistent wrt ->pending. */
3529 smp_rmb();
3530 intel_crtc->unpin_work = NULL;
3531
3532 if (work->event)
3533 drm_send_vblank_event(intel_crtc->base.dev,
3534 intel_crtc->pipe,
3535 work->event);
3536
3537 drm_crtc_vblank_put(&intel_crtc->base);
3538
3539 wake_up_all(&dev_priv->pending_flip_queue);
3540 queue_work(dev_priv->wq, &work->work);
3541
3542 trace_i915_flip_complete(intel_crtc->plane,
3543 work->pending_flip_obj);
3544 }
3545
3546 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3547 {
3548 struct drm_device *dev = crtc->dev;
3549 struct drm_i915_private *dev_priv = dev->dev_private;
3550
3551 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3552 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3553 !intel_crtc_has_pending_flip(crtc),
3554 60*HZ) == 0)) {
3555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556
3557 spin_lock_irq(&dev->event_lock);
3558 if (intel_crtc->unpin_work) {
3559 WARN_ONCE(1, "Removing stuck page flip\n");
3560 page_flip_completed(intel_crtc);
3561 }
3562 spin_unlock_irq(&dev->event_lock);
3563 }
3564
3565 if (crtc->primary->fb) {
3566 mutex_lock(&dev->struct_mutex);
3567 intel_finish_fb(crtc->primary->fb);
3568 mutex_unlock(&dev->struct_mutex);
3569 }
3570 }
3571
3572 /* Program iCLKIP clock to the desired frequency */
3573 static void lpt_program_iclkip(struct drm_crtc *crtc)
3574 {
3575 struct drm_device *dev = crtc->dev;
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3578 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3579 u32 temp;
3580
3581 mutex_lock(&dev_priv->dpio_lock);
3582
3583 /* It is necessary to ungate the pixclk gate prior to programming
3584 * the divisors, and gate it back when it is done.
3585 */
3586 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3587
3588 /* Disable SSCCTL */
3589 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3590 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3591 SBI_SSCCTL_DISABLE,
3592 SBI_ICLK);
3593
3594 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3595 if (clock == 20000) {
3596 auxdiv = 1;
3597 divsel = 0x41;
3598 phaseinc = 0x20;
3599 } else {
3600 /* The iCLK virtual clock root frequency is in MHz,
3601 * but the adjusted_mode->crtc_clock in in KHz. To get the
3602 * divisors, it is necessary to divide one by another, so we
3603 * convert the virtual clock precision to KHz here for higher
3604 * precision.
3605 */
3606 u32 iclk_virtual_root_freq = 172800 * 1000;
3607 u32 iclk_pi_range = 64;
3608 u32 desired_divisor, msb_divisor_value, pi_value;
3609
3610 desired_divisor = (iclk_virtual_root_freq / clock);
3611 msb_divisor_value = desired_divisor / iclk_pi_range;
3612 pi_value = desired_divisor % iclk_pi_range;
3613
3614 auxdiv = 0;
3615 divsel = msb_divisor_value - 2;
3616 phaseinc = pi_value;
3617 }
3618
3619 /* This should not happen with any sane values */
3620 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3621 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3622 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3623 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3624
3625 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3626 clock,
3627 auxdiv,
3628 divsel,
3629 phasedir,
3630 phaseinc);
3631
3632 /* Program SSCDIVINTPHASE6 */
3633 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3634 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3635 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3636 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3637 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3638 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3639 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3640 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3641
3642 /* Program SSCAUXDIV */
3643 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3644 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3645 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3646 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3647
3648 /* Enable modulator and associated divider */
3649 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3650 temp &= ~SBI_SSCCTL_DISABLE;
3651 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3652
3653 /* Wait for initialization time */
3654 udelay(24);
3655
3656 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3657
3658 mutex_unlock(&dev_priv->dpio_lock);
3659 }
3660
3661 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3662 enum pipe pch_transcoder)
3663 {
3664 struct drm_device *dev = crtc->base.dev;
3665 struct drm_i915_private *dev_priv = dev->dev_private;
3666 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3667
3668 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3669 I915_READ(HTOTAL(cpu_transcoder)));
3670 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3671 I915_READ(HBLANK(cpu_transcoder)));
3672 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3673 I915_READ(HSYNC(cpu_transcoder)));
3674
3675 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3676 I915_READ(VTOTAL(cpu_transcoder)));
3677 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3678 I915_READ(VBLANK(cpu_transcoder)));
3679 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3680 I915_READ(VSYNC(cpu_transcoder)));
3681 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3682 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3683 }
3684
3685 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3686 {
3687 struct drm_i915_private *dev_priv = dev->dev_private;
3688 uint32_t temp;
3689
3690 temp = I915_READ(SOUTH_CHICKEN1);
3691 if (temp & FDI_BC_BIFURCATION_SELECT)
3692 return;
3693
3694 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3695 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3696
3697 temp |= FDI_BC_BIFURCATION_SELECT;
3698 DRM_DEBUG_KMS("enabling fdi C rx\n");
3699 I915_WRITE(SOUTH_CHICKEN1, temp);
3700 POSTING_READ(SOUTH_CHICKEN1);
3701 }
3702
3703 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3704 {
3705 struct drm_device *dev = intel_crtc->base.dev;
3706 struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708 switch (intel_crtc->pipe) {
3709 case PIPE_A:
3710 break;
3711 case PIPE_B:
3712 if (intel_crtc->config.fdi_lanes > 2)
3713 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3714 else
3715 cpt_enable_fdi_bc_bifurcation(dev);
3716
3717 break;
3718 case PIPE_C:
3719 cpt_enable_fdi_bc_bifurcation(dev);
3720
3721 break;
3722 default:
3723 BUG();
3724 }
3725 }
3726
3727 /*
3728 * Enable PCH resources required for PCH ports:
3729 * - PCH PLLs
3730 * - FDI training & RX/TX
3731 * - update transcoder timings
3732 * - DP transcoding bits
3733 * - transcoder
3734 */
3735 static void ironlake_pch_enable(struct drm_crtc *crtc)
3736 {
3737 struct drm_device *dev = crtc->dev;
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740 int pipe = intel_crtc->pipe;
3741 u32 reg, temp;
3742
3743 assert_pch_transcoder_disabled(dev_priv, pipe);
3744
3745 if (IS_IVYBRIDGE(dev))
3746 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3747
3748 /* Write the TU size bits before fdi link training, so that error
3749 * detection works. */
3750 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3751 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3752
3753 /* For PCH output, training FDI link */
3754 dev_priv->display.fdi_link_train(crtc);
3755
3756 /* We need to program the right clock selection before writing the pixel
3757 * mutliplier into the DPLL. */
3758 if (HAS_PCH_CPT(dev)) {
3759 u32 sel;
3760
3761 temp = I915_READ(PCH_DPLL_SEL);
3762 temp |= TRANS_DPLL_ENABLE(pipe);
3763 sel = TRANS_DPLLB_SEL(pipe);
3764 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3765 temp |= sel;
3766 else
3767 temp &= ~sel;
3768 I915_WRITE(PCH_DPLL_SEL, temp);
3769 }
3770
3771 /* XXX: pch pll's can be enabled any time before we enable the PCH
3772 * transcoder, and we actually should do this to not upset any PCH
3773 * transcoder that already use the clock when we share it.
3774 *
3775 * Note that enable_shared_dpll tries to do the right thing, but
3776 * get_shared_dpll unconditionally resets the pll - we need that to have
3777 * the right LVDS enable sequence. */
3778 intel_enable_shared_dpll(intel_crtc);
3779
3780 /* set transcoder timing, panel must allow it */
3781 assert_panel_unlocked(dev_priv, pipe);
3782 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3783
3784 intel_fdi_normal_train(crtc);
3785
3786 /* For PCH DP, enable TRANS_DP_CTL */
3787 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3788 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3789 reg = TRANS_DP_CTL(pipe);
3790 temp = I915_READ(reg);
3791 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3792 TRANS_DP_SYNC_MASK |
3793 TRANS_DP_BPC_MASK);
3794 temp |= (TRANS_DP_OUTPUT_ENABLE |
3795 TRANS_DP_ENH_FRAMING);
3796 temp |= bpc << 9; /* same format but at 11:9 */
3797
3798 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3799 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3800 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3801 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3802
3803 switch (intel_trans_dp_port_sel(crtc)) {
3804 case PCH_DP_B:
3805 temp |= TRANS_DP_PORT_SEL_B;
3806 break;
3807 case PCH_DP_C:
3808 temp |= TRANS_DP_PORT_SEL_C;
3809 break;
3810 case PCH_DP_D:
3811 temp |= TRANS_DP_PORT_SEL_D;
3812 break;
3813 default:
3814 BUG();
3815 }
3816
3817 I915_WRITE(reg, temp);
3818 }
3819
3820 ironlake_enable_pch_transcoder(dev_priv, pipe);
3821 }
3822
3823 static void lpt_pch_enable(struct drm_crtc *crtc)
3824 {
3825 struct drm_device *dev = crtc->dev;
3826 struct drm_i915_private *dev_priv = dev->dev_private;
3827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3828 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3829
3830 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3831
3832 lpt_program_iclkip(crtc);
3833
3834 /* Set transcoder timing. */
3835 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3836
3837 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3838 }
3839
3840 void intel_put_shared_dpll(struct intel_crtc *crtc)
3841 {
3842 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3843
3844 if (pll == NULL)
3845 return;
3846
3847 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3848 WARN(1, "bad %s crtc mask\n", pll->name);
3849 return;
3850 }
3851
3852 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3853 if (pll->config.crtc_mask == 0) {
3854 WARN_ON(pll->on);
3855 WARN_ON(pll->active);
3856 }
3857
3858 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3859 }
3860
3861 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3862 {
3863 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3864 struct intel_shared_dpll *pll;
3865 enum intel_dpll_id i;
3866
3867 if (HAS_PCH_IBX(dev_priv->dev)) {
3868 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3869 i = (enum intel_dpll_id) crtc->pipe;
3870 pll = &dev_priv->shared_dplls[i];
3871
3872 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3873 crtc->base.base.id, pll->name);
3874
3875 WARN_ON(pll->new_config->crtc_mask);
3876
3877 goto found;
3878 }
3879
3880 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3881 pll = &dev_priv->shared_dplls[i];
3882
3883 /* Only want to check enabled timings first */
3884 if (pll->new_config->crtc_mask == 0)
3885 continue;
3886
3887 if (memcmp(&crtc->new_config->dpll_hw_state,
3888 &pll->new_config->hw_state,
3889 sizeof(pll->new_config->hw_state)) == 0) {
3890 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3891 crtc->base.base.id, pll->name,
3892 pll->new_config->crtc_mask,
3893 pll->active);
3894 goto found;
3895 }
3896 }
3897
3898 /* Ok no matching timings, maybe there's a free one? */
3899 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3900 pll = &dev_priv->shared_dplls[i];
3901 if (pll->new_config->crtc_mask == 0) {
3902 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3903 crtc->base.base.id, pll->name);
3904 goto found;
3905 }
3906 }
3907
3908 return NULL;
3909
3910 found:
3911 if (pll->new_config->crtc_mask == 0)
3912 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3913
3914 crtc->new_config->shared_dpll = i;
3915 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3916 pipe_name(crtc->pipe));
3917
3918 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3919
3920 return pll;
3921 }
3922
3923 /**
3924 * intel_shared_dpll_start_config - start a new PLL staged config
3925 * @dev_priv: DRM device
3926 * @clear_pipes: mask of pipes that will have their PLLs freed
3927 *
3928 * Starts a new PLL staged config, copying the current config but
3929 * releasing the references of pipes specified in clear_pipes.
3930 */
3931 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3932 unsigned clear_pipes)
3933 {
3934 struct intel_shared_dpll *pll;
3935 enum intel_dpll_id i;
3936
3937 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3938 pll = &dev_priv->shared_dplls[i];
3939
3940 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3941 GFP_KERNEL);
3942 if (!pll->new_config)
3943 goto cleanup;
3944
3945 pll->new_config->crtc_mask &= ~clear_pipes;
3946 }
3947
3948 return 0;
3949
3950 cleanup:
3951 while (--i >= 0) {
3952 pll = &dev_priv->shared_dplls[i];
3953 kfree(pll->new_config);
3954 pll->new_config = NULL;
3955 }
3956
3957 return -ENOMEM;
3958 }
3959
3960 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3961 {
3962 struct intel_shared_dpll *pll;
3963 enum intel_dpll_id i;
3964
3965 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3966 pll = &dev_priv->shared_dplls[i];
3967
3968 WARN_ON(pll->new_config == &pll->config);
3969
3970 pll->config = *pll->new_config;
3971 kfree(pll->new_config);
3972 pll->new_config = NULL;
3973 }
3974 }
3975
3976 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3977 {
3978 struct intel_shared_dpll *pll;
3979 enum intel_dpll_id i;
3980
3981 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3982 pll = &dev_priv->shared_dplls[i];
3983
3984 WARN_ON(pll->new_config == &pll->config);
3985
3986 kfree(pll->new_config);
3987 pll->new_config = NULL;
3988 }
3989 }
3990
3991 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3992 {
3993 struct drm_i915_private *dev_priv = dev->dev_private;
3994 int dslreg = PIPEDSL(pipe);
3995 u32 temp;
3996
3997 temp = I915_READ(dslreg);
3998 udelay(500);
3999 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4000 if (wait_for(I915_READ(dslreg) != temp, 5))
4001 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4002 }
4003 }
4004
4005 static void skylake_pfit_enable(struct intel_crtc *crtc)
4006 {
4007 struct drm_device *dev = crtc->base.dev;
4008 struct drm_i915_private *dev_priv = dev->dev_private;
4009 int pipe = crtc->pipe;
4010
4011 if (crtc->config.pch_pfit.enabled) {
4012 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4013 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4014 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4015 }
4016 }
4017
4018 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4019 {
4020 struct drm_device *dev = crtc->base.dev;
4021 struct drm_i915_private *dev_priv = dev->dev_private;
4022 int pipe = crtc->pipe;
4023
4024 if (crtc->config.pch_pfit.enabled) {
4025 /* Force use of hard-coded filter coefficients
4026 * as some pre-programmed values are broken,
4027 * e.g. x201.
4028 */
4029 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4030 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4031 PF_PIPE_SEL_IVB(pipe));
4032 else
4033 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4034 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4035 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4036 }
4037 }
4038
4039 static void intel_enable_planes(struct drm_crtc *crtc)
4040 {
4041 struct drm_device *dev = crtc->dev;
4042 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4043 struct drm_plane *plane;
4044 struct intel_plane *intel_plane;
4045
4046 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4047 intel_plane = to_intel_plane(plane);
4048 if (intel_plane->pipe == pipe)
4049 intel_plane_restore(&intel_plane->base);
4050 }
4051 }
4052
4053 static void intel_disable_planes(struct drm_crtc *crtc)
4054 {
4055 struct drm_device *dev = crtc->dev;
4056 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4057 struct drm_plane *plane;
4058 struct intel_plane *intel_plane;
4059
4060 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4061 intel_plane = to_intel_plane(plane);
4062 if (intel_plane->pipe == pipe)
4063 plane->funcs->disable_plane(plane);
4064 }
4065 }
4066
4067 void hsw_enable_ips(struct intel_crtc *crtc)
4068 {
4069 struct drm_device *dev = crtc->base.dev;
4070 struct drm_i915_private *dev_priv = dev->dev_private;
4071
4072 if (!crtc->config.ips_enabled)
4073 return;
4074
4075 /* We can only enable IPS after we enable a plane and wait for a vblank */
4076 intel_wait_for_vblank(dev, crtc->pipe);
4077
4078 assert_plane_enabled(dev_priv, crtc->plane);
4079 if (IS_BROADWELL(dev)) {
4080 mutex_lock(&dev_priv->rps.hw_lock);
4081 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4082 mutex_unlock(&dev_priv->rps.hw_lock);
4083 /* Quoting Art Runyan: "its not safe to expect any particular
4084 * value in IPS_CTL bit 31 after enabling IPS through the
4085 * mailbox." Moreover, the mailbox may return a bogus state,
4086 * so we need to just enable it and continue on.
4087 */
4088 } else {
4089 I915_WRITE(IPS_CTL, IPS_ENABLE);
4090 /* The bit only becomes 1 in the next vblank, so this wait here
4091 * is essentially intel_wait_for_vblank. If we don't have this
4092 * and don't wait for vblanks until the end of crtc_enable, then
4093 * the HW state readout code will complain that the expected
4094 * IPS_CTL value is not the one we read. */
4095 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4096 DRM_ERROR("Timed out waiting for IPS enable\n");
4097 }
4098 }
4099
4100 void hsw_disable_ips(struct intel_crtc *crtc)
4101 {
4102 struct drm_device *dev = crtc->base.dev;
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104
4105 if (!crtc->config.ips_enabled)
4106 return;
4107
4108 assert_plane_enabled(dev_priv, crtc->plane);
4109 if (IS_BROADWELL(dev)) {
4110 mutex_lock(&dev_priv->rps.hw_lock);
4111 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4112 mutex_unlock(&dev_priv->rps.hw_lock);
4113 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4114 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4115 DRM_ERROR("Timed out waiting for IPS disable\n");
4116 } else {
4117 I915_WRITE(IPS_CTL, 0);
4118 POSTING_READ(IPS_CTL);
4119 }
4120
4121 /* We need to wait for a vblank before we can disable the plane. */
4122 intel_wait_for_vblank(dev, crtc->pipe);
4123 }
4124
4125 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4126 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4127 {
4128 struct drm_device *dev = crtc->dev;
4129 struct drm_i915_private *dev_priv = dev->dev_private;
4130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4131 enum pipe pipe = intel_crtc->pipe;
4132 int palreg = PALETTE(pipe);
4133 int i;
4134 bool reenable_ips = false;
4135
4136 /* The clocks have to be on to load the palette. */
4137 if (!crtc->enabled || !intel_crtc->active)
4138 return;
4139
4140 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4141 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4142 assert_dsi_pll_enabled(dev_priv);
4143 else
4144 assert_pll_enabled(dev_priv, pipe);
4145 }
4146
4147 /* use legacy palette for Ironlake */
4148 if (!HAS_GMCH_DISPLAY(dev))
4149 palreg = LGC_PALETTE(pipe);
4150
4151 /* Workaround : Do not read or write the pipe palette/gamma data while
4152 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4153 */
4154 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4155 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4156 GAMMA_MODE_MODE_SPLIT)) {
4157 hsw_disable_ips(intel_crtc);
4158 reenable_ips = true;
4159 }
4160
4161 for (i = 0; i < 256; i++) {
4162 I915_WRITE(palreg + 4 * i,
4163 (intel_crtc->lut_r[i] << 16) |
4164 (intel_crtc->lut_g[i] << 8) |
4165 intel_crtc->lut_b[i]);
4166 }
4167
4168 if (reenable_ips)
4169 hsw_enable_ips(intel_crtc);
4170 }
4171
4172 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4173 {
4174 if (!enable && intel_crtc->overlay) {
4175 struct drm_device *dev = intel_crtc->base.dev;
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177
4178 mutex_lock(&dev->struct_mutex);
4179 dev_priv->mm.interruptible = false;
4180 (void) intel_overlay_switch_off(intel_crtc->overlay);
4181 dev_priv->mm.interruptible = true;
4182 mutex_unlock(&dev->struct_mutex);
4183 }
4184
4185 /* Let userspace switch the overlay on again. In most cases userspace
4186 * has to recompute where to put it anyway.
4187 */
4188 }
4189
4190 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4191 {
4192 struct drm_device *dev = crtc->dev;
4193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194 int pipe = intel_crtc->pipe;
4195
4196 intel_enable_primary_hw_plane(crtc->primary, crtc);
4197 intel_enable_planes(crtc);
4198 intel_crtc_update_cursor(crtc, true);
4199 intel_crtc_dpms_overlay(intel_crtc, true);
4200
4201 hsw_enable_ips(intel_crtc);
4202
4203 mutex_lock(&dev->struct_mutex);
4204 intel_fbc_update(dev);
4205 mutex_unlock(&dev->struct_mutex);
4206
4207 /*
4208 * FIXME: Once we grow proper nuclear flip support out of this we need
4209 * to compute the mask of flip planes precisely. For the time being
4210 * consider this a flip from a NULL plane.
4211 */
4212 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4213 }
4214
4215 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4216 {
4217 struct drm_device *dev = crtc->dev;
4218 struct drm_i915_private *dev_priv = dev->dev_private;
4219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4220 int pipe = intel_crtc->pipe;
4221 int plane = intel_crtc->plane;
4222
4223 intel_crtc_wait_for_pending_flips(crtc);
4224
4225 if (dev_priv->fbc.plane == plane)
4226 intel_fbc_disable(dev);
4227
4228 hsw_disable_ips(intel_crtc);
4229
4230 intel_crtc_dpms_overlay(intel_crtc, false);
4231 intel_crtc_update_cursor(crtc, false);
4232 intel_disable_planes(crtc);
4233 intel_disable_primary_hw_plane(crtc->primary, crtc);
4234
4235 /*
4236 * FIXME: Once we grow proper nuclear flip support out of this we need
4237 * to compute the mask of flip planes precisely. For the time being
4238 * consider this a flip to a NULL plane.
4239 */
4240 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4241 }
4242
4243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4244 {
4245 struct drm_device *dev = crtc->dev;
4246 struct drm_i915_private *dev_priv = dev->dev_private;
4247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4248 struct intel_encoder *encoder;
4249 int pipe = intel_crtc->pipe;
4250
4251 WARN_ON(!crtc->enabled);
4252
4253 if (intel_crtc->active)
4254 return;
4255
4256 if (intel_crtc->config.has_pch_encoder)
4257 intel_prepare_shared_dpll(intel_crtc);
4258
4259 if (intel_crtc->config.has_dp_encoder)
4260 intel_dp_set_m_n(intel_crtc);
4261
4262 intel_set_pipe_timings(intel_crtc);
4263
4264 if (intel_crtc->config.has_pch_encoder) {
4265 intel_cpu_transcoder_set_m_n(intel_crtc,
4266 &intel_crtc->config.fdi_m_n, NULL);
4267 }
4268
4269 ironlake_set_pipeconf(crtc);
4270
4271 intel_crtc->active = true;
4272
4273 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4274 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4275
4276 for_each_encoder_on_crtc(dev, crtc, encoder)
4277 if (encoder->pre_enable)
4278 encoder->pre_enable(encoder);
4279
4280 if (intel_crtc->config.has_pch_encoder) {
4281 /* Note: FDI PLL enabling _must_ be done before we enable the
4282 * cpu pipes, hence this is separate from all the other fdi/pch
4283 * enabling. */
4284 ironlake_fdi_pll_enable(intel_crtc);
4285 } else {
4286 assert_fdi_tx_disabled(dev_priv, pipe);
4287 assert_fdi_rx_disabled(dev_priv, pipe);
4288 }
4289
4290 ironlake_pfit_enable(intel_crtc);
4291
4292 /*
4293 * On ILK+ LUT must be loaded before the pipe is running but with
4294 * clocks enabled
4295 */
4296 intel_crtc_load_lut(crtc);
4297
4298 intel_update_watermarks(crtc);
4299 intel_enable_pipe(intel_crtc);
4300
4301 if (intel_crtc->config.has_pch_encoder)
4302 ironlake_pch_enable(crtc);
4303
4304 for_each_encoder_on_crtc(dev, crtc, encoder)
4305 encoder->enable(encoder);
4306
4307 if (HAS_PCH_CPT(dev))
4308 cpt_verify_modeset(dev, intel_crtc->pipe);
4309
4310 assert_vblank_disabled(crtc);
4311 drm_crtc_vblank_on(crtc);
4312
4313 intel_crtc_enable_planes(crtc);
4314 }
4315
4316 /* IPS only exists on ULT machines and is tied to pipe A. */
4317 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4318 {
4319 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4320 }
4321
4322 /*
4323 * This implements the workaround described in the "notes" section of the mode
4324 * set sequence documentation. When going from no pipes or single pipe to
4325 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4326 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4327 */
4328 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4329 {
4330 struct drm_device *dev = crtc->base.dev;
4331 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4332
4333 /* We want to get the other_active_crtc only if there's only 1 other
4334 * active crtc. */
4335 for_each_intel_crtc(dev, crtc_it) {
4336 if (!crtc_it->active || crtc_it == crtc)
4337 continue;
4338
4339 if (other_active_crtc)
4340 return;
4341
4342 other_active_crtc = crtc_it;
4343 }
4344 if (!other_active_crtc)
4345 return;
4346
4347 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4348 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4349 }
4350
4351 static void haswell_crtc_enable(struct drm_crtc *crtc)
4352 {
4353 struct drm_device *dev = crtc->dev;
4354 struct drm_i915_private *dev_priv = dev->dev_private;
4355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4356 struct intel_encoder *encoder;
4357 int pipe = intel_crtc->pipe;
4358
4359 WARN_ON(!crtc->enabled);
4360
4361 if (intel_crtc->active)
4362 return;
4363
4364 if (intel_crtc_to_shared_dpll(intel_crtc))
4365 intel_enable_shared_dpll(intel_crtc);
4366
4367 if (intel_crtc->config.has_dp_encoder)
4368 intel_dp_set_m_n(intel_crtc);
4369
4370 intel_set_pipe_timings(intel_crtc);
4371
4372 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4373 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4374 intel_crtc->config.pixel_multiplier - 1);
4375 }
4376
4377 if (intel_crtc->config.has_pch_encoder) {
4378 intel_cpu_transcoder_set_m_n(intel_crtc,
4379 &intel_crtc->config.fdi_m_n, NULL);
4380 }
4381
4382 haswell_set_pipeconf(crtc);
4383
4384 intel_set_pipe_csc(crtc);
4385
4386 intel_crtc->active = true;
4387
4388 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4389 for_each_encoder_on_crtc(dev, crtc, encoder)
4390 if (encoder->pre_enable)
4391 encoder->pre_enable(encoder);
4392
4393 if (intel_crtc->config.has_pch_encoder) {
4394 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4395 true);
4396 dev_priv->display.fdi_link_train(crtc);
4397 }
4398
4399 intel_ddi_enable_pipe_clock(intel_crtc);
4400
4401 if (IS_SKYLAKE(dev))
4402 skylake_pfit_enable(intel_crtc);
4403 else
4404 ironlake_pfit_enable(intel_crtc);
4405
4406 /*
4407 * On ILK+ LUT must be loaded before the pipe is running but with
4408 * clocks enabled
4409 */
4410 intel_crtc_load_lut(crtc);
4411
4412 intel_ddi_set_pipe_settings(crtc);
4413 intel_ddi_enable_transcoder_func(crtc);
4414
4415 intel_update_watermarks(crtc);
4416 intel_enable_pipe(intel_crtc);
4417
4418 if (intel_crtc->config.has_pch_encoder)
4419 lpt_pch_enable(crtc);
4420
4421 if (intel_crtc->config.dp_encoder_is_mst)
4422 intel_ddi_set_vc_payload_alloc(crtc, true);
4423
4424 for_each_encoder_on_crtc(dev, crtc, encoder) {
4425 encoder->enable(encoder);
4426 intel_opregion_notify_encoder(encoder, true);
4427 }
4428
4429 assert_vblank_disabled(crtc);
4430 drm_crtc_vblank_on(crtc);
4431
4432 /* If we change the relative order between pipe/planes enabling, we need
4433 * to change the workaround. */
4434 haswell_mode_set_planes_workaround(intel_crtc);
4435 intel_crtc_enable_planes(crtc);
4436 }
4437
4438 static void skylake_pfit_disable(struct intel_crtc *crtc)
4439 {
4440 struct drm_device *dev = crtc->base.dev;
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 int pipe = crtc->pipe;
4443
4444 /* To avoid upsetting the power well on haswell only disable the pfit if
4445 * it's in use. The hw state code will make sure we get this right. */
4446 if (crtc->config.pch_pfit.enabled) {
4447 I915_WRITE(PS_CTL(pipe), 0);
4448 I915_WRITE(PS_WIN_POS(pipe), 0);
4449 I915_WRITE(PS_WIN_SZ(pipe), 0);
4450 }
4451 }
4452
4453 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4454 {
4455 struct drm_device *dev = crtc->base.dev;
4456 struct drm_i915_private *dev_priv = dev->dev_private;
4457 int pipe = crtc->pipe;
4458
4459 /* To avoid upsetting the power well on haswell only disable the pfit if
4460 * it's in use. The hw state code will make sure we get this right. */
4461 if (crtc->config.pch_pfit.enabled) {
4462 I915_WRITE(PF_CTL(pipe), 0);
4463 I915_WRITE(PF_WIN_POS(pipe), 0);
4464 I915_WRITE(PF_WIN_SZ(pipe), 0);
4465 }
4466 }
4467
4468 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4469 {
4470 struct drm_device *dev = crtc->dev;
4471 struct drm_i915_private *dev_priv = dev->dev_private;
4472 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4473 struct intel_encoder *encoder;
4474 int pipe = intel_crtc->pipe;
4475 u32 reg, temp;
4476
4477 if (!intel_crtc->active)
4478 return;
4479
4480 intel_crtc_disable_planes(crtc);
4481
4482 drm_crtc_vblank_off(crtc);
4483 assert_vblank_disabled(crtc);
4484
4485 for_each_encoder_on_crtc(dev, crtc, encoder)
4486 encoder->disable(encoder);
4487
4488 if (intel_crtc->config.has_pch_encoder)
4489 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4490
4491 intel_disable_pipe(intel_crtc);
4492
4493 ironlake_pfit_disable(intel_crtc);
4494
4495 for_each_encoder_on_crtc(dev, crtc, encoder)
4496 if (encoder->post_disable)
4497 encoder->post_disable(encoder);
4498
4499 if (intel_crtc->config.has_pch_encoder) {
4500 ironlake_fdi_disable(crtc);
4501
4502 ironlake_disable_pch_transcoder(dev_priv, pipe);
4503
4504 if (HAS_PCH_CPT(dev)) {
4505 /* disable TRANS_DP_CTL */
4506 reg = TRANS_DP_CTL(pipe);
4507 temp = I915_READ(reg);
4508 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4509 TRANS_DP_PORT_SEL_MASK);
4510 temp |= TRANS_DP_PORT_SEL_NONE;
4511 I915_WRITE(reg, temp);
4512
4513 /* disable DPLL_SEL */
4514 temp = I915_READ(PCH_DPLL_SEL);
4515 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4516 I915_WRITE(PCH_DPLL_SEL, temp);
4517 }
4518
4519 /* disable PCH DPLL */
4520 intel_disable_shared_dpll(intel_crtc);
4521
4522 ironlake_fdi_pll_disable(intel_crtc);
4523 }
4524
4525 intel_crtc->active = false;
4526 intel_update_watermarks(crtc);
4527
4528 mutex_lock(&dev->struct_mutex);
4529 intel_fbc_update(dev);
4530 mutex_unlock(&dev->struct_mutex);
4531 }
4532
4533 static void haswell_crtc_disable(struct drm_crtc *crtc)
4534 {
4535 struct drm_device *dev = crtc->dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538 struct intel_encoder *encoder;
4539 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4540
4541 if (!intel_crtc->active)
4542 return;
4543
4544 intel_crtc_disable_planes(crtc);
4545
4546 drm_crtc_vblank_off(crtc);
4547 assert_vblank_disabled(crtc);
4548
4549 for_each_encoder_on_crtc(dev, crtc, encoder) {
4550 intel_opregion_notify_encoder(encoder, false);
4551 encoder->disable(encoder);
4552 }
4553
4554 if (intel_crtc->config.has_pch_encoder)
4555 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4556 false);
4557 intel_disable_pipe(intel_crtc);
4558
4559 if (intel_crtc->config.dp_encoder_is_mst)
4560 intel_ddi_set_vc_payload_alloc(crtc, false);
4561
4562 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4563
4564 if (IS_SKYLAKE(dev))
4565 skylake_pfit_disable(intel_crtc);
4566 else
4567 ironlake_pfit_disable(intel_crtc);
4568
4569 intel_ddi_disable_pipe_clock(intel_crtc);
4570
4571 if (intel_crtc->config.has_pch_encoder) {
4572 lpt_disable_pch_transcoder(dev_priv);
4573 intel_ddi_fdi_disable(crtc);
4574 }
4575
4576 for_each_encoder_on_crtc(dev, crtc, encoder)
4577 if (encoder->post_disable)
4578 encoder->post_disable(encoder);
4579
4580 intel_crtc->active = false;
4581 intel_update_watermarks(crtc);
4582
4583 mutex_lock(&dev->struct_mutex);
4584 intel_fbc_update(dev);
4585 mutex_unlock(&dev->struct_mutex);
4586
4587 if (intel_crtc_to_shared_dpll(intel_crtc))
4588 intel_disable_shared_dpll(intel_crtc);
4589 }
4590
4591 static void ironlake_crtc_off(struct drm_crtc *crtc)
4592 {
4593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4594 intel_put_shared_dpll(intel_crtc);
4595 }
4596
4597
4598 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4599 {
4600 struct drm_device *dev = crtc->base.dev;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602 struct intel_crtc_config *pipe_config = &crtc->config;
4603
4604 if (!crtc->config.gmch_pfit.control)
4605 return;
4606
4607 /*
4608 * The panel fitter should only be adjusted whilst the pipe is disabled,
4609 * according to register description and PRM.
4610 */
4611 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4612 assert_pipe_disabled(dev_priv, crtc->pipe);
4613
4614 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4615 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4616
4617 /* Border color in case we don't scale up to the full screen. Black by
4618 * default, change to something else for debugging. */
4619 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4620 }
4621
4622 static enum intel_display_power_domain port_to_power_domain(enum port port)
4623 {
4624 switch (port) {
4625 case PORT_A:
4626 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4627 case PORT_B:
4628 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4629 case PORT_C:
4630 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4631 case PORT_D:
4632 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4633 default:
4634 WARN_ON_ONCE(1);
4635 return POWER_DOMAIN_PORT_OTHER;
4636 }
4637 }
4638
4639 #define for_each_power_domain(domain, mask) \
4640 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4641 if ((1 << (domain)) & (mask))
4642
4643 enum intel_display_power_domain
4644 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4645 {
4646 struct drm_device *dev = intel_encoder->base.dev;
4647 struct intel_digital_port *intel_dig_port;
4648
4649 switch (intel_encoder->type) {
4650 case INTEL_OUTPUT_UNKNOWN:
4651 /* Only DDI platforms should ever use this output type */
4652 WARN_ON_ONCE(!HAS_DDI(dev));
4653 case INTEL_OUTPUT_DISPLAYPORT:
4654 case INTEL_OUTPUT_HDMI:
4655 case INTEL_OUTPUT_EDP:
4656 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4657 return port_to_power_domain(intel_dig_port->port);
4658 case INTEL_OUTPUT_DP_MST:
4659 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4660 return port_to_power_domain(intel_dig_port->port);
4661 case INTEL_OUTPUT_ANALOG:
4662 return POWER_DOMAIN_PORT_CRT;
4663 case INTEL_OUTPUT_DSI:
4664 return POWER_DOMAIN_PORT_DSI;
4665 default:
4666 return POWER_DOMAIN_PORT_OTHER;
4667 }
4668 }
4669
4670 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4671 {
4672 struct drm_device *dev = crtc->dev;
4673 struct intel_encoder *intel_encoder;
4674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4675 enum pipe pipe = intel_crtc->pipe;
4676 unsigned long mask;
4677 enum transcoder transcoder;
4678
4679 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4680
4681 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4682 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4683 if (intel_crtc->config.pch_pfit.enabled ||
4684 intel_crtc->config.pch_pfit.force_thru)
4685 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4686
4687 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4688 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4689
4690 return mask;
4691 }
4692
4693 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4694 {
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4697 struct intel_crtc *crtc;
4698
4699 /*
4700 * First get all needed power domains, then put all unneeded, to avoid
4701 * any unnecessary toggling of the power wells.
4702 */
4703 for_each_intel_crtc(dev, crtc) {
4704 enum intel_display_power_domain domain;
4705
4706 if (!crtc->base.enabled)
4707 continue;
4708
4709 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4710
4711 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4712 intel_display_power_get(dev_priv, domain);
4713 }
4714
4715 if (dev_priv->display.modeset_global_resources)
4716 dev_priv->display.modeset_global_resources(dev);
4717
4718 for_each_intel_crtc(dev, crtc) {
4719 enum intel_display_power_domain domain;
4720
4721 for_each_power_domain(domain, crtc->enabled_power_domains)
4722 intel_display_power_put(dev_priv, domain);
4723
4724 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4725 }
4726
4727 intel_display_set_init_power(dev_priv, false);
4728 }
4729
4730 /* returns HPLL frequency in kHz */
4731 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4732 {
4733 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4734
4735 /* Obtain SKU information */
4736 mutex_lock(&dev_priv->dpio_lock);
4737 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4738 CCK_FUSE_HPLL_FREQ_MASK;
4739 mutex_unlock(&dev_priv->dpio_lock);
4740
4741 return vco_freq[hpll_freq] * 1000;
4742 }
4743
4744 static void vlv_update_cdclk(struct drm_device *dev)
4745 {
4746 struct drm_i915_private *dev_priv = dev->dev_private;
4747
4748 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4749 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4750 dev_priv->vlv_cdclk_freq);
4751
4752 /*
4753 * Program the gmbus_freq based on the cdclk frequency.
4754 * BSpec erroneously claims we should aim for 4MHz, but
4755 * in fact 1MHz is the correct frequency.
4756 */
4757 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4758 }
4759
4760 /* Adjust CDclk dividers to allow high res or save power if possible */
4761 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4762 {
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764 u32 val, cmd;
4765
4766 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4767
4768 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4769 cmd = 2;
4770 else if (cdclk == 266667)
4771 cmd = 1;
4772 else
4773 cmd = 0;
4774
4775 mutex_lock(&dev_priv->rps.hw_lock);
4776 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4777 val &= ~DSPFREQGUAR_MASK;
4778 val |= (cmd << DSPFREQGUAR_SHIFT);
4779 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4780 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4781 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4782 50)) {
4783 DRM_ERROR("timed out waiting for CDclk change\n");
4784 }
4785 mutex_unlock(&dev_priv->rps.hw_lock);
4786
4787 if (cdclk == 400000) {
4788 u32 divider;
4789
4790 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4791
4792 mutex_lock(&dev_priv->dpio_lock);
4793 /* adjust cdclk divider */
4794 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4795 val &= ~DISPLAY_FREQUENCY_VALUES;
4796 val |= divider;
4797 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4798
4799 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4800 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4801 50))
4802 DRM_ERROR("timed out waiting for CDclk change\n");
4803 mutex_unlock(&dev_priv->dpio_lock);
4804 }
4805
4806 mutex_lock(&dev_priv->dpio_lock);
4807 /* adjust self-refresh exit latency value */
4808 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4809 val &= ~0x7f;
4810
4811 /*
4812 * For high bandwidth configs, we set a higher latency in the bunit
4813 * so that the core display fetch happens in time to avoid underruns.
4814 */
4815 if (cdclk == 400000)
4816 val |= 4500 / 250; /* 4.5 usec */
4817 else
4818 val |= 3000 / 250; /* 3.0 usec */
4819 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4820 mutex_unlock(&dev_priv->dpio_lock);
4821
4822 vlv_update_cdclk(dev);
4823 }
4824
4825 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4826 {
4827 struct drm_i915_private *dev_priv = dev->dev_private;
4828 u32 val, cmd;
4829
4830 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4831
4832 switch (cdclk) {
4833 case 400000:
4834 cmd = 3;
4835 break;
4836 case 333333:
4837 case 320000:
4838 cmd = 2;
4839 break;
4840 case 266667:
4841 cmd = 1;
4842 break;
4843 case 200000:
4844 cmd = 0;
4845 break;
4846 default:
4847 MISSING_CASE(cdclk);
4848 return;
4849 }
4850
4851 mutex_lock(&dev_priv->rps.hw_lock);
4852 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4853 val &= ~DSPFREQGUAR_MASK_CHV;
4854 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4855 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4856 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4857 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4858 50)) {
4859 DRM_ERROR("timed out waiting for CDclk change\n");
4860 }
4861 mutex_unlock(&dev_priv->rps.hw_lock);
4862
4863 vlv_update_cdclk(dev);
4864 }
4865
4866 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4867 int max_pixclk)
4868 {
4869 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4870
4871 /* FIXME: Punit isn't quite ready yet */
4872 if (IS_CHERRYVIEW(dev_priv->dev))
4873 return 400000;
4874
4875 /*
4876 * Really only a few cases to deal with, as only 4 CDclks are supported:
4877 * 200MHz
4878 * 267MHz
4879 * 320/333MHz (depends on HPLL freq)
4880 * 400MHz
4881 * So we check to see whether we're above 90% of the lower bin and
4882 * adjust if needed.
4883 *
4884 * We seem to get an unstable or solid color picture at 200MHz.
4885 * Not sure what's wrong. For now use 200MHz only when all pipes
4886 * are off.
4887 */
4888 if (max_pixclk > freq_320*9/10)
4889 return 400000;
4890 else if (max_pixclk > 266667*9/10)
4891 return freq_320;
4892 else if (max_pixclk > 0)
4893 return 266667;
4894 else
4895 return 200000;
4896 }
4897
4898 /* compute the max pixel clock for new configuration */
4899 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4900 {
4901 struct drm_device *dev = dev_priv->dev;
4902 struct intel_crtc *intel_crtc;
4903 int max_pixclk = 0;
4904
4905 for_each_intel_crtc(dev, intel_crtc) {
4906 if (intel_crtc->new_enabled)
4907 max_pixclk = max(max_pixclk,
4908 intel_crtc->new_config->adjusted_mode.crtc_clock);
4909 }
4910
4911 return max_pixclk;
4912 }
4913
4914 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4915 unsigned *prepare_pipes)
4916 {
4917 struct drm_i915_private *dev_priv = dev->dev_private;
4918 struct intel_crtc *intel_crtc;
4919 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4920
4921 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4922 dev_priv->vlv_cdclk_freq)
4923 return;
4924
4925 /* disable/enable all currently active pipes while we change cdclk */
4926 for_each_intel_crtc(dev, intel_crtc)
4927 if (intel_crtc->base.enabled)
4928 *prepare_pipes |= (1 << intel_crtc->pipe);
4929 }
4930
4931 static void valleyview_modeset_global_resources(struct drm_device *dev)
4932 {
4933 struct drm_i915_private *dev_priv = dev->dev_private;
4934 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4935 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4936
4937 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4938 /*
4939 * FIXME: We can end up here with all power domains off, yet
4940 * with a CDCLK frequency other than the minimum. To account
4941 * for this take the PIPE-A power domain, which covers the HW
4942 * blocks needed for the following programming. This can be
4943 * removed once it's guaranteed that we get here either with
4944 * the minimum CDCLK set, or the required power domains
4945 * enabled.
4946 */
4947 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4948
4949 if (IS_CHERRYVIEW(dev))
4950 cherryview_set_cdclk(dev, req_cdclk);
4951 else
4952 valleyview_set_cdclk(dev, req_cdclk);
4953
4954 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4955 }
4956 }
4957
4958 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4959 {
4960 struct drm_device *dev = crtc->dev;
4961 struct drm_i915_private *dev_priv = to_i915(dev);
4962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4963 struct intel_encoder *encoder;
4964 int pipe = intel_crtc->pipe;
4965 bool is_dsi;
4966
4967 WARN_ON(!crtc->enabled);
4968
4969 if (intel_crtc->active)
4970 return;
4971
4972 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4973
4974 if (!is_dsi) {
4975 if (IS_CHERRYVIEW(dev))
4976 chv_prepare_pll(intel_crtc, &intel_crtc->config);
4977 else
4978 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4979 }
4980
4981 if (intel_crtc->config.has_dp_encoder)
4982 intel_dp_set_m_n(intel_crtc);
4983
4984 intel_set_pipe_timings(intel_crtc);
4985
4986 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988
4989 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4990 I915_WRITE(CHV_CANVAS(pipe), 0);
4991 }
4992
4993 i9xx_set_pipeconf(intel_crtc);
4994
4995 intel_crtc->active = true;
4996
4997 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4998
4999 for_each_encoder_on_crtc(dev, crtc, encoder)
5000 if (encoder->pre_pll_enable)
5001 encoder->pre_pll_enable(encoder);
5002
5003 if (!is_dsi) {
5004 if (IS_CHERRYVIEW(dev))
5005 chv_enable_pll(intel_crtc, &intel_crtc->config);
5006 else
5007 vlv_enable_pll(intel_crtc, &intel_crtc->config);
5008 }
5009
5010 for_each_encoder_on_crtc(dev, crtc, encoder)
5011 if (encoder->pre_enable)
5012 encoder->pre_enable(encoder);
5013
5014 i9xx_pfit_enable(intel_crtc);
5015
5016 intel_crtc_load_lut(crtc);
5017
5018 intel_update_watermarks(crtc);
5019 intel_enable_pipe(intel_crtc);
5020
5021 for_each_encoder_on_crtc(dev, crtc, encoder)
5022 encoder->enable(encoder);
5023
5024 assert_vblank_disabled(crtc);
5025 drm_crtc_vblank_on(crtc);
5026
5027 intel_crtc_enable_planes(crtc);
5028
5029 /* Underruns don't raise interrupts, so check manually. */
5030 i9xx_check_fifo_underruns(dev_priv);
5031 }
5032
5033 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5034 {
5035 struct drm_device *dev = crtc->base.dev;
5036 struct drm_i915_private *dev_priv = dev->dev_private;
5037
5038 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5039 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5040 }
5041
5042 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5043 {
5044 struct drm_device *dev = crtc->dev;
5045 struct drm_i915_private *dev_priv = to_i915(dev);
5046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5047 struct intel_encoder *encoder;
5048 int pipe = intel_crtc->pipe;
5049
5050 WARN_ON(!crtc->enabled);
5051
5052 if (intel_crtc->active)
5053 return;
5054
5055 i9xx_set_pll_dividers(intel_crtc);
5056
5057 if (intel_crtc->config.has_dp_encoder)
5058 intel_dp_set_m_n(intel_crtc);
5059
5060 intel_set_pipe_timings(intel_crtc);
5061
5062 i9xx_set_pipeconf(intel_crtc);
5063
5064 intel_crtc->active = true;
5065
5066 if (!IS_GEN2(dev))
5067 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5068
5069 for_each_encoder_on_crtc(dev, crtc, encoder)
5070 if (encoder->pre_enable)
5071 encoder->pre_enable(encoder);
5072
5073 i9xx_enable_pll(intel_crtc);
5074
5075 i9xx_pfit_enable(intel_crtc);
5076
5077 intel_crtc_load_lut(crtc);
5078
5079 intel_update_watermarks(crtc);
5080 intel_enable_pipe(intel_crtc);
5081
5082 for_each_encoder_on_crtc(dev, crtc, encoder)
5083 encoder->enable(encoder);
5084
5085 assert_vblank_disabled(crtc);
5086 drm_crtc_vblank_on(crtc);
5087
5088 intel_crtc_enable_planes(crtc);
5089
5090 /*
5091 * Gen2 reports pipe underruns whenever all planes are disabled.
5092 * So don't enable underrun reporting before at least some planes
5093 * are enabled.
5094 * FIXME: Need to fix the logic to work when we turn off all planes
5095 * but leave the pipe running.
5096 */
5097 if (IS_GEN2(dev))
5098 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5099
5100 /* Underruns don't raise interrupts, so check manually. */
5101 i9xx_check_fifo_underruns(dev_priv);
5102 }
5103
5104 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5105 {
5106 struct drm_device *dev = crtc->base.dev;
5107 struct drm_i915_private *dev_priv = dev->dev_private;
5108
5109 if (!crtc->config.gmch_pfit.control)
5110 return;
5111
5112 assert_pipe_disabled(dev_priv, crtc->pipe);
5113
5114 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5115 I915_READ(PFIT_CONTROL));
5116 I915_WRITE(PFIT_CONTROL, 0);
5117 }
5118
5119 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5120 {
5121 struct drm_device *dev = crtc->dev;
5122 struct drm_i915_private *dev_priv = dev->dev_private;
5123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5124 struct intel_encoder *encoder;
5125 int pipe = intel_crtc->pipe;
5126
5127 if (!intel_crtc->active)
5128 return;
5129
5130 /*
5131 * Gen2 reports pipe underruns whenever all planes are disabled.
5132 * So diasble underrun reporting before all the planes get disabled.
5133 * FIXME: Need to fix the logic to work when we turn off all planes
5134 * but leave the pipe running.
5135 */
5136 if (IS_GEN2(dev))
5137 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5138
5139 /*
5140 * Vblank time updates from the shadow to live plane control register
5141 * are blocked if the memory self-refresh mode is active at that
5142 * moment. So to make sure the plane gets truly disabled, disable
5143 * first the self-refresh mode. The self-refresh enable bit in turn
5144 * will be checked/applied by the HW only at the next frame start
5145 * event which is after the vblank start event, so we need to have a
5146 * wait-for-vblank between disabling the plane and the pipe.
5147 */
5148 intel_set_memory_cxsr(dev_priv, false);
5149 intel_crtc_disable_planes(crtc);
5150
5151 /*
5152 * On gen2 planes are double buffered but the pipe isn't, so we must
5153 * wait for planes to fully turn off before disabling the pipe.
5154 * We also need to wait on all gmch platforms because of the
5155 * self-refresh mode constraint explained above.
5156 */
5157 intel_wait_for_vblank(dev, pipe);
5158
5159 drm_crtc_vblank_off(crtc);
5160 assert_vblank_disabled(crtc);
5161
5162 for_each_encoder_on_crtc(dev, crtc, encoder)
5163 encoder->disable(encoder);
5164
5165 intel_disable_pipe(intel_crtc);
5166
5167 i9xx_pfit_disable(intel_crtc);
5168
5169 for_each_encoder_on_crtc(dev, crtc, encoder)
5170 if (encoder->post_disable)
5171 encoder->post_disable(encoder);
5172
5173 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5174 if (IS_CHERRYVIEW(dev))
5175 chv_disable_pll(dev_priv, pipe);
5176 else if (IS_VALLEYVIEW(dev))
5177 vlv_disable_pll(dev_priv, pipe);
5178 else
5179 i9xx_disable_pll(intel_crtc);
5180 }
5181
5182 if (!IS_GEN2(dev))
5183 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5184
5185 intel_crtc->active = false;
5186 intel_update_watermarks(crtc);
5187
5188 mutex_lock(&dev->struct_mutex);
5189 intel_fbc_update(dev);
5190 mutex_unlock(&dev->struct_mutex);
5191 }
5192
5193 static void i9xx_crtc_off(struct drm_crtc *crtc)
5194 {
5195 }
5196
5197 /* Master function to enable/disable CRTC and corresponding power wells */
5198 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5199 {
5200 struct drm_device *dev = crtc->dev;
5201 struct drm_i915_private *dev_priv = dev->dev_private;
5202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5203 enum intel_display_power_domain domain;
5204 unsigned long domains;
5205
5206 if (enable) {
5207 if (!intel_crtc->active) {
5208 domains = get_crtc_power_domains(crtc);
5209 for_each_power_domain(domain, domains)
5210 intel_display_power_get(dev_priv, domain);
5211 intel_crtc->enabled_power_domains = domains;
5212
5213 dev_priv->display.crtc_enable(crtc);
5214 }
5215 } else {
5216 if (intel_crtc->active) {
5217 dev_priv->display.crtc_disable(crtc);
5218
5219 domains = intel_crtc->enabled_power_domains;
5220 for_each_power_domain(domain, domains)
5221 intel_display_power_put(dev_priv, domain);
5222 intel_crtc->enabled_power_domains = 0;
5223 }
5224 }
5225 }
5226
5227 /**
5228 * Sets the power management mode of the pipe and plane.
5229 */
5230 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5231 {
5232 struct drm_device *dev = crtc->dev;
5233 struct intel_encoder *intel_encoder;
5234 bool enable = false;
5235
5236 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5237 enable |= intel_encoder->connectors_active;
5238
5239 intel_crtc_control(crtc, enable);
5240 }
5241
5242 static void intel_crtc_disable(struct drm_crtc *crtc)
5243 {
5244 struct drm_device *dev = crtc->dev;
5245 struct drm_connector *connector;
5246 struct drm_i915_private *dev_priv = dev->dev_private;
5247
5248 /* crtc should still be enabled when we disable it. */
5249 WARN_ON(!crtc->enabled);
5250
5251 dev_priv->display.crtc_disable(crtc);
5252 dev_priv->display.off(crtc);
5253
5254 crtc->primary->funcs->disable_plane(crtc->primary);
5255
5256 /* Update computed state. */
5257 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5258 if (!connector->encoder || !connector->encoder->crtc)
5259 continue;
5260
5261 if (connector->encoder->crtc != crtc)
5262 continue;
5263
5264 connector->dpms = DRM_MODE_DPMS_OFF;
5265 to_intel_encoder(connector->encoder)->connectors_active = false;
5266 }
5267 }
5268
5269 void intel_encoder_destroy(struct drm_encoder *encoder)
5270 {
5271 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5272
5273 drm_encoder_cleanup(encoder);
5274 kfree(intel_encoder);
5275 }
5276
5277 /* Simple dpms helper for encoders with just one connector, no cloning and only
5278 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5279 * state of the entire output pipe. */
5280 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5281 {
5282 if (mode == DRM_MODE_DPMS_ON) {
5283 encoder->connectors_active = true;
5284
5285 intel_crtc_update_dpms(encoder->base.crtc);
5286 } else {
5287 encoder->connectors_active = false;
5288
5289 intel_crtc_update_dpms(encoder->base.crtc);
5290 }
5291 }
5292
5293 /* Cross check the actual hw state with our own modeset state tracking (and it's
5294 * internal consistency). */
5295 static void intel_connector_check_state(struct intel_connector *connector)
5296 {
5297 if (connector->get_hw_state(connector)) {
5298 struct intel_encoder *encoder = connector->encoder;
5299 struct drm_crtc *crtc;
5300 bool encoder_enabled;
5301 enum pipe pipe;
5302
5303 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5304 connector->base.base.id,
5305 connector->base.name);
5306
5307 /* there is no real hw state for MST connectors */
5308 if (connector->mst_port)
5309 return;
5310
5311 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5312 "wrong connector dpms state\n");
5313 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5314 "active connector not linked to encoder\n");
5315
5316 if (encoder) {
5317 I915_STATE_WARN(!encoder->connectors_active,
5318 "encoder->connectors_active not set\n");
5319
5320 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5321 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5322 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5323 return;
5324
5325 crtc = encoder->base.crtc;
5326
5327 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5328 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5329 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5330 "encoder active on the wrong pipe\n");
5331 }
5332 }
5333 }
5334
5335 /* Even simpler default implementation, if there's really no special case to
5336 * consider. */
5337 void intel_connector_dpms(struct drm_connector *connector, int mode)
5338 {
5339 /* All the simple cases only support two dpms states. */
5340 if (mode != DRM_MODE_DPMS_ON)
5341 mode = DRM_MODE_DPMS_OFF;
5342
5343 if (mode == connector->dpms)
5344 return;
5345
5346 connector->dpms = mode;
5347
5348 /* Only need to change hw state when actually enabled */
5349 if (connector->encoder)
5350 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5351
5352 intel_modeset_check_state(connector->dev);
5353 }
5354
5355 /* Simple connector->get_hw_state implementation for encoders that support only
5356 * one connector and no cloning and hence the encoder state determines the state
5357 * of the connector. */
5358 bool intel_connector_get_hw_state(struct intel_connector *connector)
5359 {
5360 enum pipe pipe = 0;
5361 struct intel_encoder *encoder = connector->encoder;
5362
5363 return encoder->get_hw_state(encoder, &pipe);
5364 }
5365
5366 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5367 struct intel_crtc_config *pipe_config)
5368 {
5369 struct drm_i915_private *dev_priv = dev->dev_private;
5370 struct intel_crtc *pipe_B_crtc =
5371 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5372
5373 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5374 pipe_name(pipe), pipe_config->fdi_lanes);
5375 if (pipe_config->fdi_lanes > 4) {
5376 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5377 pipe_name(pipe), pipe_config->fdi_lanes);
5378 return false;
5379 }
5380
5381 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5382 if (pipe_config->fdi_lanes > 2) {
5383 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5384 pipe_config->fdi_lanes);
5385 return false;
5386 } else {
5387 return true;
5388 }
5389 }
5390
5391 if (INTEL_INFO(dev)->num_pipes == 2)
5392 return true;
5393
5394 /* Ivybridge 3 pipe is really complicated */
5395 switch (pipe) {
5396 case PIPE_A:
5397 return true;
5398 case PIPE_B:
5399 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5400 pipe_config->fdi_lanes > 2) {
5401 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5402 pipe_name(pipe), pipe_config->fdi_lanes);
5403 return false;
5404 }
5405 return true;
5406 case PIPE_C:
5407 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5408 pipe_B_crtc->config.fdi_lanes <= 2) {
5409 if (pipe_config->fdi_lanes > 2) {
5410 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5411 pipe_name(pipe), pipe_config->fdi_lanes);
5412 return false;
5413 }
5414 } else {
5415 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5416 return false;
5417 }
5418 return true;
5419 default:
5420 BUG();
5421 }
5422 }
5423
5424 #define RETRY 1
5425 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5426 struct intel_crtc_config *pipe_config)
5427 {
5428 struct drm_device *dev = intel_crtc->base.dev;
5429 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5430 int lane, link_bw, fdi_dotclock;
5431 bool setup_ok, needs_recompute = false;
5432
5433 retry:
5434 /* FDI is a binary signal running at ~2.7GHz, encoding
5435 * each output octet as 10 bits. The actual frequency
5436 * is stored as a divider into a 100MHz clock, and the
5437 * mode pixel clock is stored in units of 1KHz.
5438 * Hence the bw of each lane in terms of the mode signal
5439 * is:
5440 */
5441 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5442
5443 fdi_dotclock = adjusted_mode->crtc_clock;
5444
5445 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5446 pipe_config->pipe_bpp);
5447
5448 pipe_config->fdi_lanes = lane;
5449
5450 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5451 link_bw, &pipe_config->fdi_m_n);
5452
5453 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5454 intel_crtc->pipe, pipe_config);
5455 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5456 pipe_config->pipe_bpp -= 2*3;
5457 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5458 pipe_config->pipe_bpp);
5459 needs_recompute = true;
5460 pipe_config->bw_constrained = true;
5461
5462 goto retry;
5463 }
5464
5465 if (needs_recompute)
5466 return RETRY;
5467
5468 return setup_ok ? 0 : -EINVAL;
5469 }
5470
5471 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5472 struct intel_crtc_config *pipe_config)
5473 {
5474 pipe_config->ips_enabled = i915.enable_ips &&
5475 hsw_crtc_supports_ips(crtc) &&
5476 pipe_config->pipe_bpp <= 24;
5477 }
5478
5479 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5480 struct intel_crtc_config *pipe_config)
5481 {
5482 struct drm_device *dev = crtc->base.dev;
5483 struct drm_i915_private *dev_priv = dev->dev_private;
5484 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5485
5486 /* FIXME should check pixel clock limits on all platforms */
5487 if (INTEL_INFO(dev)->gen < 4) {
5488 int clock_limit =
5489 dev_priv->display.get_display_clock_speed(dev);
5490
5491 /*
5492 * Enable pixel doubling when the dot clock
5493 * is > 90% of the (display) core speed.
5494 *
5495 * GDG double wide on either pipe,
5496 * otherwise pipe A only.
5497 */
5498 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5499 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5500 clock_limit *= 2;
5501 pipe_config->double_wide = true;
5502 }
5503
5504 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5505 return -EINVAL;
5506 }
5507
5508 /*
5509 * Pipe horizontal size must be even in:
5510 * - DVO ganged mode
5511 * - LVDS dual channel mode
5512 * - Double wide pipe
5513 */
5514 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5515 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5516 pipe_config->pipe_src_w &= ~1;
5517
5518 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5519 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5520 */
5521 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5522 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5523 return -EINVAL;
5524
5525 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5526 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5527 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5528 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5529 * for lvds. */
5530 pipe_config->pipe_bpp = 8*3;
5531 }
5532
5533 if (HAS_IPS(dev))
5534 hsw_compute_ips_config(crtc, pipe_config);
5535
5536 if (pipe_config->has_pch_encoder)
5537 return ironlake_fdi_compute_config(crtc, pipe_config);
5538
5539 return 0;
5540 }
5541
5542 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5543 {
5544 struct drm_i915_private *dev_priv = dev->dev_private;
5545 u32 val;
5546 int divider;
5547
5548 /* FIXME: Punit isn't quite ready yet */
5549 if (IS_CHERRYVIEW(dev))
5550 return 400000;
5551
5552 if (dev_priv->hpll_freq == 0)
5553 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5554
5555 mutex_lock(&dev_priv->dpio_lock);
5556 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5557 mutex_unlock(&dev_priv->dpio_lock);
5558
5559 divider = val & DISPLAY_FREQUENCY_VALUES;
5560
5561 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5562 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5563 "cdclk change in progress\n");
5564
5565 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5566 }
5567
5568 static int i945_get_display_clock_speed(struct drm_device *dev)
5569 {
5570 return 400000;
5571 }
5572
5573 static int i915_get_display_clock_speed(struct drm_device *dev)
5574 {
5575 return 333000;
5576 }
5577
5578 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5579 {
5580 return 200000;
5581 }
5582
5583 static int pnv_get_display_clock_speed(struct drm_device *dev)
5584 {
5585 u16 gcfgc = 0;
5586
5587 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5588
5589 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5590 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5591 return 267000;
5592 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5593 return 333000;
5594 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5595 return 444000;
5596 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5597 return 200000;
5598 default:
5599 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5600 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5601 return 133000;
5602 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5603 return 167000;
5604 }
5605 }
5606
5607 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5608 {
5609 u16 gcfgc = 0;
5610
5611 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5612
5613 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5614 return 133000;
5615 else {
5616 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5617 case GC_DISPLAY_CLOCK_333_MHZ:
5618 return 333000;
5619 default:
5620 case GC_DISPLAY_CLOCK_190_200_MHZ:
5621 return 190000;
5622 }
5623 }
5624 }
5625
5626 static int i865_get_display_clock_speed(struct drm_device *dev)
5627 {
5628 return 266000;
5629 }
5630
5631 static int i855_get_display_clock_speed(struct drm_device *dev)
5632 {
5633 u16 hpllcc = 0;
5634 /* Assume that the hardware is in the high speed state. This
5635 * should be the default.
5636 */
5637 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5638 case GC_CLOCK_133_200:
5639 case GC_CLOCK_100_200:
5640 return 200000;
5641 case GC_CLOCK_166_250:
5642 return 250000;
5643 case GC_CLOCK_100_133:
5644 return 133000;
5645 }
5646
5647 /* Shouldn't happen */
5648 return 0;
5649 }
5650
5651 static int i830_get_display_clock_speed(struct drm_device *dev)
5652 {
5653 return 133000;
5654 }
5655
5656 static void
5657 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5658 {
5659 while (*num > DATA_LINK_M_N_MASK ||
5660 *den > DATA_LINK_M_N_MASK) {
5661 *num >>= 1;
5662 *den >>= 1;
5663 }
5664 }
5665
5666 static void compute_m_n(unsigned int m, unsigned int n,
5667 uint32_t *ret_m, uint32_t *ret_n)
5668 {
5669 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5670 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5671 intel_reduce_m_n_ratio(ret_m, ret_n);
5672 }
5673
5674 void
5675 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5676 int pixel_clock, int link_clock,
5677 struct intel_link_m_n *m_n)
5678 {
5679 m_n->tu = 64;
5680
5681 compute_m_n(bits_per_pixel * pixel_clock,
5682 link_clock * nlanes * 8,
5683 &m_n->gmch_m, &m_n->gmch_n);
5684
5685 compute_m_n(pixel_clock, link_clock,
5686 &m_n->link_m, &m_n->link_n);
5687 }
5688
5689 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5690 {
5691 if (i915.panel_use_ssc >= 0)
5692 return i915.panel_use_ssc != 0;
5693 return dev_priv->vbt.lvds_use_ssc
5694 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5695 }
5696
5697 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5698 {
5699 struct drm_device *dev = crtc->base.dev;
5700 struct drm_i915_private *dev_priv = dev->dev_private;
5701 int refclk;
5702
5703 if (IS_VALLEYVIEW(dev)) {
5704 refclk = 100000;
5705 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5706 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5707 refclk = dev_priv->vbt.lvds_ssc_freq;
5708 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5709 } else if (!IS_GEN2(dev)) {
5710 refclk = 96000;
5711 } else {
5712 refclk = 48000;
5713 }
5714
5715 return refclk;
5716 }
5717
5718 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5719 {
5720 return (1 << dpll->n) << 16 | dpll->m2;
5721 }
5722
5723 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5724 {
5725 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5726 }
5727
5728 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5729 intel_clock_t *reduced_clock)
5730 {
5731 struct drm_device *dev = crtc->base.dev;
5732 u32 fp, fp2 = 0;
5733
5734 if (IS_PINEVIEW(dev)) {
5735 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5736 if (reduced_clock)
5737 fp2 = pnv_dpll_compute_fp(reduced_clock);
5738 } else {
5739 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5740 if (reduced_clock)
5741 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5742 }
5743
5744 crtc->new_config->dpll_hw_state.fp0 = fp;
5745
5746 crtc->lowfreq_avail = false;
5747 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5748 reduced_clock && i915.powersave) {
5749 crtc->new_config->dpll_hw_state.fp1 = fp2;
5750 crtc->lowfreq_avail = true;
5751 } else {
5752 crtc->new_config->dpll_hw_state.fp1 = fp;
5753 }
5754 }
5755
5756 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5757 pipe)
5758 {
5759 u32 reg_val;
5760
5761 /*
5762 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5763 * and set it to a reasonable value instead.
5764 */
5765 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5766 reg_val &= 0xffffff00;
5767 reg_val |= 0x00000030;
5768 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5769
5770 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5771 reg_val &= 0x8cffffff;
5772 reg_val = 0x8c000000;
5773 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5774
5775 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5776 reg_val &= 0xffffff00;
5777 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5778
5779 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5780 reg_val &= 0x00ffffff;
5781 reg_val |= 0xb0000000;
5782 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5783 }
5784
5785 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5786 struct intel_link_m_n *m_n)
5787 {
5788 struct drm_device *dev = crtc->base.dev;
5789 struct drm_i915_private *dev_priv = dev->dev_private;
5790 int pipe = crtc->pipe;
5791
5792 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5793 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5794 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5795 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5796 }
5797
5798 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5799 struct intel_link_m_n *m_n,
5800 struct intel_link_m_n *m2_n2)
5801 {
5802 struct drm_device *dev = crtc->base.dev;
5803 struct drm_i915_private *dev_priv = dev->dev_private;
5804 int pipe = crtc->pipe;
5805 enum transcoder transcoder = crtc->config.cpu_transcoder;
5806
5807 if (INTEL_INFO(dev)->gen >= 5) {
5808 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5809 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5810 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5811 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5812 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5813 * for gen < 8) and if DRRS is supported (to make sure the
5814 * registers are not unnecessarily accessed).
5815 */
5816 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5817 crtc->config.has_drrs) {
5818 I915_WRITE(PIPE_DATA_M2(transcoder),
5819 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5820 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5821 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5822 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5823 }
5824 } else {
5825 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5826 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5827 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5828 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5829 }
5830 }
5831
5832 void intel_dp_set_m_n(struct intel_crtc *crtc)
5833 {
5834 if (crtc->config.has_pch_encoder)
5835 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5836 else
5837 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5838 &crtc->config.dp_m2_n2);
5839 }
5840
5841 static void vlv_update_pll(struct intel_crtc *crtc,
5842 struct intel_crtc_config *pipe_config)
5843 {
5844 u32 dpll, dpll_md;
5845
5846 /*
5847 * Enable DPIO clock input. We should never disable the reference
5848 * clock for pipe B, since VGA hotplug / manual detection depends
5849 * on it.
5850 */
5851 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5852 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5853 /* We should never disable this, set it here for state tracking */
5854 if (crtc->pipe == PIPE_B)
5855 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5856 dpll |= DPLL_VCO_ENABLE;
5857 pipe_config->dpll_hw_state.dpll = dpll;
5858
5859 dpll_md = (pipe_config->pixel_multiplier - 1)
5860 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5861 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5862 }
5863
5864 static void vlv_prepare_pll(struct intel_crtc *crtc,
5865 const struct intel_crtc_config *pipe_config)
5866 {
5867 struct drm_device *dev = crtc->base.dev;
5868 struct drm_i915_private *dev_priv = dev->dev_private;
5869 int pipe = crtc->pipe;
5870 u32 mdiv;
5871 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5872 u32 coreclk, reg_val;
5873
5874 mutex_lock(&dev_priv->dpio_lock);
5875
5876 bestn = pipe_config->dpll.n;
5877 bestm1 = pipe_config->dpll.m1;
5878 bestm2 = pipe_config->dpll.m2;
5879 bestp1 = pipe_config->dpll.p1;
5880 bestp2 = pipe_config->dpll.p2;
5881
5882 /* See eDP HDMI DPIO driver vbios notes doc */
5883
5884 /* PLL B needs special handling */
5885 if (pipe == PIPE_B)
5886 vlv_pllb_recal_opamp(dev_priv, pipe);
5887
5888 /* Set up Tx target for periodic Rcomp update */
5889 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5890
5891 /* Disable target IRef on PLL */
5892 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5893 reg_val &= 0x00ffffff;
5894 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5895
5896 /* Disable fast lock */
5897 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5898
5899 /* Set idtafcrecal before PLL is enabled */
5900 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5901 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5902 mdiv |= ((bestn << DPIO_N_SHIFT));
5903 mdiv |= (1 << DPIO_K_SHIFT);
5904
5905 /*
5906 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5907 * but we don't support that).
5908 * Note: don't use the DAC post divider as it seems unstable.
5909 */
5910 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5911 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5912
5913 mdiv |= DPIO_ENABLE_CALIBRATION;
5914 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5915
5916 /* Set HBR and RBR LPF coefficients */
5917 if (pipe_config->port_clock == 162000 ||
5918 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5919 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5920 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5921 0x009f0003);
5922 else
5923 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5924 0x00d0000f);
5925
5926 if (crtc->config.has_dp_encoder) {
5927 /* Use SSC source */
5928 if (pipe == PIPE_A)
5929 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5930 0x0df40000);
5931 else
5932 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5933 0x0df70000);
5934 } else { /* HDMI or VGA */
5935 /* Use bend source */
5936 if (pipe == PIPE_A)
5937 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5938 0x0df70000);
5939 else
5940 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5941 0x0df40000);
5942 }
5943
5944 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5945 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5946 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5947 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5948 coreclk |= 0x01000000;
5949 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5950
5951 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5952 mutex_unlock(&dev_priv->dpio_lock);
5953 }
5954
5955 static void chv_update_pll(struct intel_crtc *crtc,
5956 struct intel_crtc_config *pipe_config)
5957 {
5958 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5959 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5960 DPLL_VCO_ENABLE;
5961 if (crtc->pipe != PIPE_A)
5962 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5963
5964 pipe_config->dpll_hw_state.dpll_md =
5965 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5966 }
5967
5968 static void chv_prepare_pll(struct intel_crtc *crtc,
5969 const struct intel_crtc_config *pipe_config)
5970 {
5971 struct drm_device *dev = crtc->base.dev;
5972 struct drm_i915_private *dev_priv = dev->dev_private;
5973 int pipe = crtc->pipe;
5974 int dpll_reg = DPLL(crtc->pipe);
5975 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5976 u32 loopfilter, intcoeff;
5977 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5978 int refclk;
5979
5980 bestn = pipe_config->dpll.n;
5981 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5982 bestm1 = pipe_config->dpll.m1;
5983 bestm2 = pipe_config->dpll.m2 >> 22;
5984 bestp1 = pipe_config->dpll.p1;
5985 bestp2 = pipe_config->dpll.p2;
5986
5987 /*
5988 * Enable Refclk and SSC
5989 */
5990 I915_WRITE(dpll_reg,
5991 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5992
5993 mutex_lock(&dev_priv->dpio_lock);
5994
5995 /* p1 and p2 divider */
5996 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5997 5 << DPIO_CHV_S1_DIV_SHIFT |
5998 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5999 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6000 1 << DPIO_CHV_K_DIV_SHIFT);
6001
6002 /* Feedback post-divider - m2 */
6003 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6004
6005 /* Feedback refclk divider - n and m1 */
6006 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6007 DPIO_CHV_M1_DIV_BY_2 |
6008 1 << DPIO_CHV_N_DIV_SHIFT);
6009
6010 /* M2 fraction division */
6011 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6012
6013 /* M2 fraction division enable */
6014 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6015 DPIO_CHV_FRAC_DIV_EN |
6016 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6017
6018 /* Loop filter */
6019 refclk = i9xx_get_refclk(crtc, 0);
6020 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6021 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6022 if (refclk == 100000)
6023 intcoeff = 11;
6024 else if (refclk == 38400)
6025 intcoeff = 10;
6026 else
6027 intcoeff = 9;
6028 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6029 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6030
6031 /* AFC Recal */
6032 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6033 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6034 DPIO_AFC_RECAL);
6035
6036 mutex_unlock(&dev_priv->dpio_lock);
6037 }
6038
6039 /**
6040 * vlv_force_pll_on - forcibly enable just the PLL
6041 * @dev_priv: i915 private structure
6042 * @pipe: pipe PLL to enable
6043 * @dpll: PLL configuration
6044 *
6045 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6046 * in cases where we need the PLL enabled even when @pipe is not going to
6047 * be enabled.
6048 */
6049 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6050 const struct dpll *dpll)
6051 {
6052 struct intel_crtc *crtc =
6053 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6054 struct intel_crtc_config pipe_config = {
6055 .pixel_multiplier = 1,
6056 .dpll = *dpll,
6057 };
6058
6059 if (IS_CHERRYVIEW(dev)) {
6060 chv_update_pll(crtc, &pipe_config);
6061 chv_prepare_pll(crtc, &pipe_config);
6062 chv_enable_pll(crtc, &pipe_config);
6063 } else {
6064 vlv_update_pll(crtc, &pipe_config);
6065 vlv_prepare_pll(crtc, &pipe_config);
6066 vlv_enable_pll(crtc, &pipe_config);
6067 }
6068 }
6069
6070 /**
6071 * vlv_force_pll_off - forcibly disable just the PLL
6072 * @dev_priv: i915 private structure
6073 * @pipe: pipe PLL to disable
6074 *
6075 * Disable the PLL for @pipe. To be used in cases where we need
6076 * the PLL enabled even when @pipe is not going to be enabled.
6077 */
6078 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6079 {
6080 if (IS_CHERRYVIEW(dev))
6081 chv_disable_pll(to_i915(dev), pipe);
6082 else
6083 vlv_disable_pll(to_i915(dev), pipe);
6084 }
6085
6086 static void i9xx_update_pll(struct intel_crtc *crtc,
6087 intel_clock_t *reduced_clock,
6088 int num_connectors)
6089 {
6090 struct drm_device *dev = crtc->base.dev;
6091 struct drm_i915_private *dev_priv = dev->dev_private;
6092 u32 dpll;
6093 bool is_sdvo;
6094 struct dpll *clock = &crtc->new_config->dpll;
6095
6096 i9xx_update_pll_dividers(crtc, reduced_clock);
6097
6098 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6099 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6100
6101 dpll = DPLL_VGA_MODE_DIS;
6102
6103 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6104 dpll |= DPLLB_MODE_LVDS;
6105 else
6106 dpll |= DPLLB_MODE_DAC_SERIAL;
6107
6108 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6109 dpll |= (crtc->new_config->pixel_multiplier - 1)
6110 << SDVO_MULTIPLIER_SHIFT_HIRES;
6111 }
6112
6113 if (is_sdvo)
6114 dpll |= DPLL_SDVO_HIGH_SPEED;
6115
6116 if (crtc->new_config->has_dp_encoder)
6117 dpll |= DPLL_SDVO_HIGH_SPEED;
6118
6119 /* compute bitmask from p1 value */
6120 if (IS_PINEVIEW(dev))
6121 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6122 else {
6123 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6124 if (IS_G4X(dev) && reduced_clock)
6125 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6126 }
6127 switch (clock->p2) {
6128 case 5:
6129 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6130 break;
6131 case 7:
6132 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6133 break;
6134 case 10:
6135 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6136 break;
6137 case 14:
6138 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6139 break;
6140 }
6141 if (INTEL_INFO(dev)->gen >= 4)
6142 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6143
6144 if (crtc->new_config->sdvo_tv_clock)
6145 dpll |= PLL_REF_INPUT_TVCLKINBC;
6146 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6147 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6148 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6149 else
6150 dpll |= PLL_REF_INPUT_DREFCLK;
6151
6152 dpll |= DPLL_VCO_ENABLE;
6153 crtc->new_config->dpll_hw_state.dpll = dpll;
6154
6155 if (INTEL_INFO(dev)->gen >= 4) {
6156 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6157 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6158 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6159 }
6160 }
6161
6162 static void i8xx_update_pll(struct intel_crtc *crtc,
6163 intel_clock_t *reduced_clock,
6164 int num_connectors)
6165 {
6166 struct drm_device *dev = crtc->base.dev;
6167 struct drm_i915_private *dev_priv = dev->dev_private;
6168 u32 dpll;
6169 struct dpll *clock = &crtc->new_config->dpll;
6170
6171 i9xx_update_pll_dividers(crtc, reduced_clock);
6172
6173 dpll = DPLL_VGA_MODE_DIS;
6174
6175 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6176 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6177 } else {
6178 if (clock->p1 == 2)
6179 dpll |= PLL_P1_DIVIDE_BY_TWO;
6180 else
6181 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6182 if (clock->p2 == 4)
6183 dpll |= PLL_P2_DIVIDE_BY_4;
6184 }
6185
6186 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6187 dpll |= DPLL_DVO_2X_MODE;
6188
6189 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6190 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6191 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6192 else
6193 dpll |= PLL_REF_INPUT_DREFCLK;
6194
6195 dpll |= DPLL_VCO_ENABLE;
6196 crtc->new_config->dpll_hw_state.dpll = dpll;
6197 }
6198
6199 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6200 {
6201 struct drm_device *dev = intel_crtc->base.dev;
6202 struct drm_i915_private *dev_priv = dev->dev_private;
6203 enum pipe pipe = intel_crtc->pipe;
6204 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6205 struct drm_display_mode *adjusted_mode =
6206 &intel_crtc->config.adjusted_mode;
6207 uint32_t crtc_vtotal, crtc_vblank_end;
6208 int vsyncshift = 0;
6209
6210 /* We need to be careful not to changed the adjusted mode, for otherwise
6211 * the hw state checker will get angry at the mismatch. */
6212 crtc_vtotal = adjusted_mode->crtc_vtotal;
6213 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6214
6215 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6216 /* the chip adds 2 halflines automatically */
6217 crtc_vtotal -= 1;
6218 crtc_vblank_end -= 1;
6219
6220 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6221 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6222 else
6223 vsyncshift = adjusted_mode->crtc_hsync_start -
6224 adjusted_mode->crtc_htotal / 2;
6225 if (vsyncshift < 0)
6226 vsyncshift += adjusted_mode->crtc_htotal;
6227 }
6228
6229 if (INTEL_INFO(dev)->gen > 3)
6230 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6231
6232 I915_WRITE(HTOTAL(cpu_transcoder),
6233 (adjusted_mode->crtc_hdisplay - 1) |
6234 ((adjusted_mode->crtc_htotal - 1) << 16));
6235 I915_WRITE(HBLANK(cpu_transcoder),
6236 (adjusted_mode->crtc_hblank_start - 1) |
6237 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6238 I915_WRITE(HSYNC(cpu_transcoder),
6239 (adjusted_mode->crtc_hsync_start - 1) |
6240 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6241
6242 I915_WRITE(VTOTAL(cpu_transcoder),
6243 (adjusted_mode->crtc_vdisplay - 1) |
6244 ((crtc_vtotal - 1) << 16));
6245 I915_WRITE(VBLANK(cpu_transcoder),
6246 (adjusted_mode->crtc_vblank_start - 1) |
6247 ((crtc_vblank_end - 1) << 16));
6248 I915_WRITE(VSYNC(cpu_transcoder),
6249 (adjusted_mode->crtc_vsync_start - 1) |
6250 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6251
6252 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6253 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6254 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6255 * bits. */
6256 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6257 (pipe == PIPE_B || pipe == PIPE_C))
6258 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6259
6260 /* pipesrc controls the size that is scaled from, which should
6261 * always be the user's requested size.
6262 */
6263 I915_WRITE(PIPESRC(pipe),
6264 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6265 (intel_crtc->config.pipe_src_h - 1));
6266 }
6267
6268 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6269 struct intel_crtc_config *pipe_config)
6270 {
6271 struct drm_device *dev = crtc->base.dev;
6272 struct drm_i915_private *dev_priv = dev->dev_private;
6273 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6274 uint32_t tmp;
6275
6276 tmp = I915_READ(HTOTAL(cpu_transcoder));
6277 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6278 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6279 tmp = I915_READ(HBLANK(cpu_transcoder));
6280 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6281 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6282 tmp = I915_READ(HSYNC(cpu_transcoder));
6283 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6284 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6285
6286 tmp = I915_READ(VTOTAL(cpu_transcoder));
6287 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6288 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6289 tmp = I915_READ(VBLANK(cpu_transcoder));
6290 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6291 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6292 tmp = I915_READ(VSYNC(cpu_transcoder));
6293 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6294 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6295
6296 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6297 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6298 pipe_config->adjusted_mode.crtc_vtotal += 1;
6299 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6300 }
6301
6302 tmp = I915_READ(PIPESRC(crtc->pipe));
6303 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6304 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6305
6306 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6307 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6308 }
6309
6310 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6311 struct intel_crtc_config *pipe_config)
6312 {
6313 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6314 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6315 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6316 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6317
6318 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6319 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6320 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6321 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6322
6323 mode->flags = pipe_config->adjusted_mode.flags;
6324
6325 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6326 mode->flags |= pipe_config->adjusted_mode.flags;
6327 }
6328
6329 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6330 {
6331 struct drm_device *dev = intel_crtc->base.dev;
6332 struct drm_i915_private *dev_priv = dev->dev_private;
6333 uint32_t pipeconf;
6334
6335 pipeconf = 0;
6336
6337 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6338 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6339 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6340
6341 if (intel_crtc->config.double_wide)
6342 pipeconf |= PIPECONF_DOUBLE_WIDE;
6343
6344 /* only g4x and later have fancy bpc/dither controls */
6345 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6346 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6347 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6348 pipeconf |= PIPECONF_DITHER_EN |
6349 PIPECONF_DITHER_TYPE_SP;
6350
6351 switch (intel_crtc->config.pipe_bpp) {
6352 case 18:
6353 pipeconf |= PIPECONF_6BPC;
6354 break;
6355 case 24:
6356 pipeconf |= PIPECONF_8BPC;
6357 break;
6358 case 30:
6359 pipeconf |= PIPECONF_10BPC;
6360 break;
6361 default:
6362 /* Case prevented by intel_choose_pipe_bpp_dither. */
6363 BUG();
6364 }
6365 }
6366
6367 if (HAS_PIPE_CXSR(dev)) {
6368 if (intel_crtc->lowfreq_avail) {
6369 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6370 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6371 } else {
6372 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6373 }
6374 }
6375
6376 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6377 if (INTEL_INFO(dev)->gen < 4 ||
6378 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6379 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6380 else
6381 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6382 } else
6383 pipeconf |= PIPECONF_PROGRESSIVE;
6384
6385 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6386 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6387
6388 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6389 POSTING_READ(PIPECONF(intel_crtc->pipe));
6390 }
6391
6392 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6393 {
6394 struct drm_device *dev = crtc->base.dev;
6395 struct drm_i915_private *dev_priv = dev->dev_private;
6396 int refclk, num_connectors = 0;
6397 intel_clock_t clock, reduced_clock;
6398 bool ok, has_reduced_clock = false;
6399 bool is_lvds = false, is_dsi = false;
6400 struct intel_encoder *encoder;
6401 const intel_limit_t *limit;
6402
6403 for_each_intel_encoder(dev, encoder) {
6404 if (encoder->new_crtc != crtc)
6405 continue;
6406
6407 switch (encoder->type) {
6408 case INTEL_OUTPUT_LVDS:
6409 is_lvds = true;
6410 break;
6411 case INTEL_OUTPUT_DSI:
6412 is_dsi = true;
6413 break;
6414 default:
6415 break;
6416 }
6417
6418 num_connectors++;
6419 }
6420
6421 if (is_dsi)
6422 return 0;
6423
6424 if (!crtc->new_config->clock_set) {
6425 refclk = i9xx_get_refclk(crtc, num_connectors);
6426
6427 /*
6428 * Returns a set of divisors for the desired target clock with
6429 * the given refclk, or FALSE. The returned values represent
6430 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6431 * 2) / p1 / p2.
6432 */
6433 limit = intel_limit(crtc, refclk);
6434 ok = dev_priv->display.find_dpll(limit, crtc,
6435 crtc->new_config->port_clock,
6436 refclk, NULL, &clock);
6437 if (!ok) {
6438 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6439 return -EINVAL;
6440 }
6441
6442 if (is_lvds && dev_priv->lvds_downclock_avail) {
6443 /*
6444 * Ensure we match the reduced clock's P to the target
6445 * clock. If the clocks don't match, we can't switch
6446 * the display clock by using the FP0/FP1. In such case
6447 * we will disable the LVDS downclock feature.
6448 */
6449 has_reduced_clock =
6450 dev_priv->display.find_dpll(limit, crtc,
6451 dev_priv->lvds_downclock,
6452 refclk, &clock,
6453 &reduced_clock);
6454 }
6455 /* Compat-code for transition, will disappear. */
6456 crtc->new_config->dpll.n = clock.n;
6457 crtc->new_config->dpll.m1 = clock.m1;
6458 crtc->new_config->dpll.m2 = clock.m2;
6459 crtc->new_config->dpll.p1 = clock.p1;
6460 crtc->new_config->dpll.p2 = clock.p2;
6461 }
6462
6463 if (IS_GEN2(dev)) {
6464 i8xx_update_pll(crtc,
6465 has_reduced_clock ? &reduced_clock : NULL,
6466 num_connectors);
6467 } else if (IS_CHERRYVIEW(dev)) {
6468 chv_update_pll(crtc, crtc->new_config);
6469 } else if (IS_VALLEYVIEW(dev)) {
6470 vlv_update_pll(crtc, crtc->new_config);
6471 } else {
6472 i9xx_update_pll(crtc,
6473 has_reduced_clock ? &reduced_clock : NULL,
6474 num_connectors);
6475 }
6476
6477 return 0;
6478 }
6479
6480 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6481 struct intel_crtc_config *pipe_config)
6482 {
6483 struct drm_device *dev = crtc->base.dev;
6484 struct drm_i915_private *dev_priv = dev->dev_private;
6485 uint32_t tmp;
6486
6487 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6488 return;
6489
6490 tmp = I915_READ(PFIT_CONTROL);
6491 if (!(tmp & PFIT_ENABLE))
6492 return;
6493
6494 /* Check whether the pfit is attached to our pipe. */
6495 if (INTEL_INFO(dev)->gen < 4) {
6496 if (crtc->pipe != PIPE_B)
6497 return;
6498 } else {
6499 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6500 return;
6501 }
6502
6503 pipe_config->gmch_pfit.control = tmp;
6504 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6505 if (INTEL_INFO(dev)->gen < 5)
6506 pipe_config->gmch_pfit.lvds_border_bits =
6507 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6508 }
6509
6510 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6511 struct intel_crtc_config *pipe_config)
6512 {
6513 struct drm_device *dev = crtc->base.dev;
6514 struct drm_i915_private *dev_priv = dev->dev_private;
6515 int pipe = pipe_config->cpu_transcoder;
6516 intel_clock_t clock;
6517 u32 mdiv;
6518 int refclk = 100000;
6519
6520 /* In case of MIPI DPLL will not even be used */
6521 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6522 return;
6523
6524 mutex_lock(&dev_priv->dpio_lock);
6525 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6526 mutex_unlock(&dev_priv->dpio_lock);
6527
6528 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6529 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6530 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6531 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6532 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6533
6534 vlv_clock(refclk, &clock);
6535
6536 /* clock.dot is the fast clock */
6537 pipe_config->port_clock = clock.dot / 5;
6538 }
6539
6540 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6541 struct intel_plane_config *plane_config)
6542 {
6543 struct drm_device *dev = crtc->base.dev;
6544 struct drm_i915_private *dev_priv = dev->dev_private;
6545 u32 val, base, offset;
6546 int pipe = crtc->pipe, plane = crtc->plane;
6547 int fourcc, pixel_format;
6548 int aligned_height;
6549
6550 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6551 if (!crtc->base.primary->fb) {
6552 DRM_DEBUG_KMS("failed to alloc fb\n");
6553 return;
6554 }
6555
6556 val = I915_READ(DSPCNTR(plane));
6557
6558 if (INTEL_INFO(dev)->gen >= 4)
6559 if (val & DISPPLANE_TILED)
6560 plane_config->tiled = true;
6561
6562 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6563 fourcc = intel_format_to_fourcc(pixel_format);
6564 crtc->base.primary->fb->pixel_format = fourcc;
6565 crtc->base.primary->fb->bits_per_pixel =
6566 drm_format_plane_cpp(fourcc, 0) * 8;
6567
6568 if (INTEL_INFO(dev)->gen >= 4) {
6569 if (plane_config->tiled)
6570 offset = I915_READ(DSPTILEOFF(plane));
6571 else
6572 offset = I915_READ(DSPLINOFF(plane));
6573 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6574 } else {
6575 base = I915_READ(DSPADDR(plane));
6576 }
6577 plane_config->base = base;
6578
6579 val = I915_READ(PIPESRC(pipe));
6580 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6581 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6582
6583 val = I915_READ(DSPSTRIDE(pipe));
6584 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6585
6586 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6587 plane_config->tiled);
6588
6589 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6590 aligned_height);
6591
6592 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6593 pipe, plane, crtc->base.primary->fb->width,
6594 crtc->base.primary->fb->height,
6595 crtc->base.primary->fb->bits_per_pixel, base,
6596 crtc->base.primary->fb->pitches[0],
6597 plane_config->size);
6598
6599 }
6600
6601 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6602 struct intel_crtc_config *pipe_config)
6603 {
6604 struct drm_device *dev = crtc->base.dev;
6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 int pipe = pipe_config->cpu_transcoder;
6607 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6608 intel_clock_t clock;
6609 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6610 int refclk = 100000;
6611
6612 mutex_lock(&dev_priv->dpio_lock);
6613 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6614 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6615 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6616 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6617 mutex_unlock(&dev_priv->dpio_lock);
6618
6619 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6620 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6621 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6622 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6623 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6624
6625 chv_clock(refclk, &clock);
6626
6627 /* clock.dot is the fast clock */
6628 pipe_config->port_clock = clock.dot / 5;
6629 }
6630
6631 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6632 struct intel_crtc_config *pipe_config)
6633 {
6634 struct drm_device *dev = crtc->base.dev;
6635 struct drm_i915_private *dev_priv = dev->dev_private;
6636 uint32_t tmp;
6637
6638 if (!intel_display_power_is_enabled(dev_priv,
6639 POWER_DOMAIN_PIPE(crtc->pipe)))
6640 return false;
6641
6642 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6643 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6644
6645 tmp = I915_READ(PIPECONF(crtc->pipe));
6646 if (!(tmp & PIPECONF_ENABLE))
6647 return false;
6648
6649 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6650 switch (tmp & PIPECONF_BPC_MASK) {
6651 case PIPECONF_6BPC:
6652 pipe_config->pipe_bpp = 18;
6653 break;
6654 case PIPECONF_8BPC:
6655 pipe_config->pipe_bpp = 24;
6656 break;
6657 case PIPECONF_10BPC:
6658 pipe_config->pipe_bpp = 30;
6659 break;
6660 default:
6661 break;
6662 }
6663 }
6664
6665 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6666 pipe_config->limited_color_range = true;
6667
6668 if (INTEL_INFO(dev)->gen < 4)
6669 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6670
6671 intel_get_pipe_timings(crtc, pipe_config);
6672
6673 i9xx_get_pfit_config(crtc, pipe_config);
6674
6675 if (INTEL_INFO(dev)->gen >= 4) {
6676 tmp = I915_READ(DPLL_MD(crtc->pipe));
6677 pipe_config->pixel_multiplier =
6678 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6679 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6680 pipe_config->dpll_hw_state.dpll_md = tmp;
6681 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6682 tmp = I915_READ(DPLL(crtc->pipe));
6683 pipe_config->pixel_multiplier =
6684 ((tmp & SDVO_MULTIPLIER_MASK)
6685 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6686 } else {
6687 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6688 * port and will be fixed up in the encoder->get_config
6689 * function. */
6690 pipe_config->pixel_multiplier = 1;
6691 }
6692 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6693 if (!IS_VALLEYVIEW(dev)) {
6694 /*
6695 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6696 * on 830. Filter it out here so that we don't
6697 * report errors due to that.
6698 */
6699 if (IS_I830(dev))
6700 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6701
6702 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6703 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6704 } else {
6705 /* Mask out read-only status bits. */
6706 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6707 DPLL_PORTC_READY_MASK |
6708 DPLL_PORTB_READY_MASK);
6709 }
6710
6711 if (IS_CHERRYVIEW(dev))
6712 chv_crtc_clock_get(crtc, pipe_config);
6713 else if (IS_VALLEYVIEW(dev))
6714 vlv_crtc_clock_get(crtc, pipe_config);
6715 else
6716 i9xx_crtc_clock_get(crtc, pipe_config);
6717
6718 return true;
6719 }
6720
6721 static void ironlake_init_pch_refclk(struct drm_device *dev)
6722 {
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724 struct intel_encoder *encoder;
6725 u32 val, final;
6726 bool has_lvds = false;
6727 bool has_cpu_edp = false;
6728 bool has_panel = false;
6729 bool has_ck505 = false;
6730 bool can_ssc = false;
6731
6732 /* We need to take the global config into account */
6733 for_each_intel_encoder(dev, encoder) {
6734 switch (encoder->type) {
6735 case INTEL_OUTPUT_LVDS:
6736 has_panel = true;
6737 has_lvds = true;
6738 break;
6739 case INTEL_OUTPUT_EDP:
6740 has_panel = true;
6741 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6742 has_cpu_edp = true;
6743 break;
6744 default:
6745 break;
6746 }
6747 }
6748
6749 if (HAS_PCH_IBX(dev)) {
6750 has_ck505 = dev_priv->vbt.display_clock_mode;
6751 can_ssc = has_ck505;
6752 } else {
6753 has_ck505 = false;
6754 can_ssc = true;
6755 }
6756
6757 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6758 has_panel, has_lvds, has_ck505);
6759
6760 /* Ironlake: try to setup display ref clock before DPLL
6761 * enabling. This is only under driver's control after
6762 * PCH B stepping, previous chipset stepping should be
6763 * ignoring this setting.
6764 */
6765 val = I915_READ(PCH_DREF_CONTROL);
6766
6767 /* As we must carefully and slowly disable/enable each source in turn,
6768 * compute the final state we want first and check if we need to
6769 * make any changes at all.
6770 */
6771 final = val;
6772 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6773 if (has_ck505)
6774 final |= DREF_NONSPREAD_CK505_ENABLE;
6775 else
6776 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6777
6778 final &= ~DREF_SSC_SOURCE_MASK;
6779 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6780 final &= ~DREF_SSC1_ENABLE;
6781
6782 if (has_panel) {
6783 final |= DREF_SSC_SOURCE_ENABLE;
6784
6785 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6786 final |= DREF_SSC1_ENABLE;
6787
6788 if (has_cpu_edp) {
6789 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6790 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6791 else
6792 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6793 } else
6794 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6795 } else {
6796 final |= DREF_SSC_SOURCE_DISABLE;
6797 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6798 }
6799
6800 if (final == val)
6801 return;
6802
6803 /* Always enable nonspread source */
6804 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6805
6806 if (has_ck505)
6807 val |= DREF_NONSPREAD_CK505_ENABLE;
6808 else
6809 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6810
6811 if (has_panel) {
6812 val &= ~DREF_SSC_SOURCE_MASK;
6813 val |= DREF_SSC_SOURCE_ENABLE;
6814
6815 /* SSC must be turned on before enabling the CPU output */
6816 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6817 DRM_DEBUG_KMS("Using SSC on panel\n");
6818 val |= DREF_SSC1_ENABLE;
6819 } else
6820 val &= ~DREF_SSC1_ENABLE;
6821
6822 /* Get SSC going before enabling the outputs */
6823 I915_WRITE(PCH_DREF_CONTROL, val);
6824 POSTING_READ(PCH_DREF_CONTROL);
6825 udelay(200);
6826
6827 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6828
6829 /* Enable CPU source on CPU attached eDP */
6830 if (has_cpu_edp) {
6831 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6832 DRM_DEBUG_KMS("Using SSC on eDP\n");
6833 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6834 } else
6835 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6836 } else
6837 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6838
6839 I915_WRITE(PCH_DREF_CONTROL, val);
6840 POSTING_READ(PCH_DREF_CONTROL);
6841 udelay(200);
6842 } else {
6843 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6844
6845 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6846
6847 /* Turn off CPU output */
6848 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6849
6850 I915_WRITE(PCH_DREF_CONTROL, val);
6851 POSTING_READ(PCH_DREF_CONTROL);
6852 udelay(200);
6853
6854 /* Turn off the SSC source */
6855 val &= ~DREF_SSC_SOURCE_MASK;
6856 val |= DREF_SSC_SOURCE_DISABLE;
6857
6858 /* Turn off SSC1 */
6859 val &= ~DREF_SSC1_ENABLE;
6860
6861 I915_WRITE(PCH_DREF_CONTROL, val);
6862 POSTING_READ(PCH_DREF_CONTROL);
6863 udelay(200);
6864 }
6865
6866 BUG_ON(val != final);
6867 }
6868
6869 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6870 {
6871 uint32_t tmp;
6872
6873 tmp = I915_READ(SOUTH_CHICKEN2);
6874 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6875 I915_WRITE(SOUTH_CHICKEN2, tmp);
6876
6877 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6878 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6879 DRM_ERROR("FDI mPHY reset assert timeout\n");
6880
6881 tmp = I915_READ(SOUTH_CHICKEN2);
6882 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6883 I915_WRITE(SOUTH_CHICKEN2, tmp);
6884
6885 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6886 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6887 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6888 }
6889
6890 /* WaMPhyProgramming:hsw */
6891 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6892 {
6893 uint32_t tmp;
6894
6895 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6896 tmp &= ~(0xFF << 24);
6897 tmp |= (0x12 << 24);
6898 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6899
6900 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6901 tmp |= (1 << 11);
6902 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6903
6904 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6905 tmp |= (1 << 11);
6906 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6907
6908 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6909 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6910 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6911
6912 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6913 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6914 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6915
6916 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6917 tmp &= ~(7 << 13);
6918 tmp |= (5 << 13);
6919 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6920
6921 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6922 tmp &= ~(7 << 13);
6923 tmp |= (5 << 13);
6924 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6925
6926 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6927 tmp &= ~0xFF;
6928 tmp |= 0x1C;
6929 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6930
6931 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6932 tmp &= ~0xFF;
6933 tmp |= 0x1C;
6934 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6935
6936 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6937 tmp &= ~(0xFF << 16);
6938 tmp |= (0x1C << 16);
6939 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6940
6941 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6942 tmp &= ~(0xFF << 16);
6943 tmp |= (0x1C << 16);
6944 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6945
6946 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6947 tmp |= (1 << 27);
6948 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6949
6950 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6951 tmp |= (1 << 27);
6952 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6953
6954 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6955 tmp &= ~(0xF << 28);
6956 tmp |= (4 << 28);
6957 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6958
6959 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6960 tmp &= ~(0xF << 28);
6961 tmp |= (4 << 28);
6962 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6963 }
6964
6965 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6966 * Programming" based on the parameters passed:
6967 * - Sequence to enable CLKOUT_DP
6968 * - Sequence to enable CLKOUT_DP without spread
6969 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6970 */
6971 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6972 bool with_fdi)
6973 {
6974 struct drm_i915_private *dev_priv = dev->dev_private;
6975 uint32_t reg, tmp;
6976
6977 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6978 with_spread = true;
6979 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6980 with_fdi, "LP PCH doesn't have FDI\n"))
6981 with_fdi = false;
6982
6983 mutex_lock(&dev_priv->dpio_lock);
6984
6985 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6986 tmp &= ~SBI_SSCCTL_DISABLE;
6987 tmp |= SBI_SSCCTL_PATHALT;
6988 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6989
6990 udelay(24);
6991
6992 if (with_spread) {
6993 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6994 tmp &= ~SBI_SSCCTL_PATHALT;
6995 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6996
6997 if (with_fdi) {
6998 lpt_reset_fdi_mphy(dev_priv);
6999 lpt_program_fdi_mphy(dev_priv);
7000 }
7001 }
7002
7003 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7004 SBI_GEN0 : SBI_DBUFF0;
7005 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7006 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7007 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7008
7009 mutex_unlock(&dev_priv->dpio_lock);
7010 }
7011
7012 /* Sequence to disable CLKOUT_DP */
7013 static void lpt_disable_clkout_dp(struct drm_device *dev)
7014 {
7015 struct drm_i915_private *dev_priv = dev->dev_private;
7016 uint32_t reg, tmp;
7017
7018 mutex_lock(&dev_priv->dpio_lock);
7019
7020 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7021 SBI_GEN0 : SBI_DBUFF0;
7022 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7023 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7024 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7025
7026 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7027 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7028 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7029 tmp |= SBI_SSCCTL_PATHALT;
7030 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7031 udelay(32);
7032 }
7033 tmp |= SBI_SSCCTL_DISABLE;
7034 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7035 }
7036
7037 mutex_unlock(&dev_priv->dpio_lock);
7038 }
7039
7040 static void lpt_init_pch_refclk(struct drm_device *dev)
7041 {
7042 struct intel_encoder *encoder;
7043 bool has_vga = false;
7044
7045 for_each_intel_encoder(dev, encoder) {
7046 switch (encoder->type) {
7047 case INTEL_OUTPUT_ANALOG:
7048 has_vga = true;
7049 break;
7050 default:
7051 break;
7052 }
7053 }
7054
7055 if (has_vga)
7056 lpt_enable_clkout_dp(dev, true, true);
7057 else
7058 lpt_disable_clkout_dp(dev);
7059 }
7060
7061 /*
7062 * Initialize reference clocks when the driver loads
7063 */
7064 void intel_init_pch_refclk(struct drm_device *dev)
7065 {
7066 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7067 ironlake_init_pch_refclk(dev);
7068 else if (HAS_PCH_LPT(dev))
7069 lpt_init_pch_refclk(dev);
7070 }
7071
7072 static int ironlake_get_refclk(struct drm_crtc *crtc)
7073 {
7074 struct drm_device *dev = crtc->dev;
7075 struct drm_i915_private *dev_priv = dev->dev_private;
7076 struct intel_encoder *encoder;
7077 int num_connectors = 0;
7078 bool is_lvds = false;
7079
7080 for_each_intel_encoder(dev, encoder) {
7081 if (encoder->new_crtc != to_intel_crtc(crtc))
7082 continue;
7083
7084 switch (encoder->type) {
7085 case INTEL_OUTPUT_LVDS:
7086 is_lvds = true;
7087 break;
7088 default:
7089 break;
7090 }
7091 num_connectors++;
7092 }
7093
7094 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7095 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7096 dev_priv->vbt.lvds_ssc_freq);
7097 return dev_priv->vbt.lvds_ssc_freq;
7098 }
7099
7100 return 120000;
7101 }
7102
7103 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7104 {
7105 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7107 int pipe = intel_crtc->pipe;
7108 uint32_t val;
7109
7110 val = 0;
7111
7112 switch (intel_crtc->config.pipe_bpp) {
7113 case 18:
7114 val |= PIPECONF_6BPC;
7115 break;
7116 case 24:
7117 val |= PIPECONF_8BPC;
7118 break;
7119 case 30:
7120 val |= PIPECONF_10BPC;
7121 break;
7122 case 36:
7123 val |= PIPECONF_12BPC;
7124 break;
7125 default:
7126 /* Case prevented by intel_choose_pipe_bpp_dither. */
7127 BUG();
7128 }
7129
7130 if (intel_crtc->config.dither)
7131 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7132
7133 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7134 val |= PIPECONF_INTERLACED_ILK;
7135 else
7136 val |= PIPECONF_PROGRESSIVE;
7137
7138 if (intel_crtc->config.limited_color_range)
7139 val |= PIPECONF_COLOR_RANGE_SELECT;
7140
7141 I915_WRITE(PIPECONF(pipe), val);
7142 POSTING_READ(PIPECONF(pipe));
7143 }
7144
7145 /*
7146 * Set up the pipe CSC unit.
7147 *
7148 * Currently only full range RGB to limited range RGB conversion
7149 * is supported, but eventually this should handle various
7150 * RGB<->YCbCr scenarios as well.
7151 */
7152 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7153 {
7154 struct drm_device *dev = crtc->dev;
7155 struct drm_i915_private *dev_priv = dev->dev_private;
7156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7157 int pipe = intel_crtc->pipe;
7158 uint16_t coeff = 0x7800; /* 1.0 */
7159
7160 /*
7161 * TODO: Check what kind of values actually come out of the pipe
7162 * with these coeff/postoff values and adjust to get the best
7163 * accuracy. Perhaps we even need to take the bpc value into
7164 * consideration.
7165 */
7166
7167 if (intel_crtc->config.limited_color_range)
7168 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7169
7170 /*
7171 * GY/GU and RY/RU should be the other way around according
7172 * to BSpec, but reality doesn't agree. Just set them up in
7173 * a way that results in the correct picture.
7174 */
7175 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7176 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7177
7178 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7179 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7180
7181 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7182 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7183
7184 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7185 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7186 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7187
7188 if (INTEL_INFO(dev)->gen > 6) {
7189 uint16_t postoff = 0;
7190
7191 if (intel_crtc->config.limited_color_range)
7192 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7193
7194 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7195 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7196 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7197
7198 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7199 } else {
7200 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7201
7202 if (intel_crtc->config.limited_color_range)
7203 mode |= CSC_BLACK_SCREEN_OFFSET;
7204
7205 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7206 }
7207 }
7208
7209 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7210 {
7211 struct drm_device *dev = crtc->dev;
7212 struct drm_i915_private *dev_priv = dev->dev_private;
7213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7214 enum pipe pipe = intel_crtc->pipe;
7215 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7216 uint32_t val;
7217
7218 val = 0;
7219
7220 if (IS_HASWELL(dev) && intel_crtc->config.dither)
7221 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7222
7223 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7224 val |= PIPECONF_INTERLACED_ILK;
7225 else
7226 val |= PIPECONF_PROGRESSIVE;
7227
7228 I915_WRITE(PIPECONF(cpu_transcoder), val);
7229 POSTING_READ(PIPECONF(cpu_transcoder));
7230
7231 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7232 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7233
7234 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7235 val = 0;
7236
7237 switch (intel_crtc->config.pipe_bpp) {
7238 case 18:
7239 val |= PIPEMISC_DITHER_6_BPC;
7240 break;
7241 case 24:
7242 val |= PIPEMISC_DITHER_8_BPC;
7243 break;
7244 case 30:
7245 val |= PIPEMISC_DITHER_10_BPC;
7246 break;
7247 case 36:
7248 val |= PIPEMISC_DITHER_12_BPC;
7249 break;
7250 default:
7251 /* Case prevented by pipe_config_set_bpp. */
7252 BUG();
7253 }
7254
7255 if (intel_crtc->config.dither)
7256 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7257
7258 I915_WRITE(PIPEMISC(pipe), val);
7259 }
7260 }
7261
7262 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7263 intel_clock_t *clock,
7264 bool *has_reduced_clock,
7265 intel_clock_t *reduced_clock)
7266 {
7267 struct drm_device *dev = crtc->dev;
7268 struct drm_i915_private *dev_priv = dev->dev_private;
7269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7270 int refclk;
7271 const intel_limit_t *limit;
7272 bool ret, is_lvds = false;
7273
7274 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7275
7276 refclk = ironlake_get_refclk(crtc);
7277
7278 /*
7279 * Returns a set of divisors for the desired target clock with the given
7280 * refclk, or FALSE. The returned values represent the clock equation:
7281 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7282 */
7283 limit = intel_limit(intel_crtc, refclk);
7284 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7285 intel_crtc->new_config->port_clock,
7286 refclk, NULL, clock);
7287 if (!ret)
7288 return false;
7289
7290 if (is_lvds && dev_priv->lvds_downclock_avail) {
7291 /*
7292 * Ensure we match the reduced clock's P to the target clock.
7293 * If the clocks don't match, we can't switch the display clock
7294 * by using the FP0/FP1. In such case we will disable the LVDS
7295 * downclock feature.
7296 */
7297 *has_reduced_clock =
7298 dev_priv->display.find_dpll(limit, intel_crtc,
7299 dev_priv->lvds_downclock,
7300 refclk, clock,
7301 reduced_clock);
7302 }
7303
7304 return true;
7305 }
7306
7307 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7308 {
7309 /*
7310 * Account for spread spectrum to avoid
7311 * oversubscribing the link. Max center spread
7312 * is 2.5%; use 5% for safety's sake.
7313 */
7314 u32 bps = target_clock * bpp * 21 / 20;
7315 return DIV_ROUND_UP(bps, link_bw * 8);
7316 }
7317
7318 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7319 {
7320 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7321 }
7322
7323 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7324 u32 *fp,
7325 intel_clock_t *reduced_clock, u32 *fp2)
7326 {
7327 struct drm_crtc *crtc = &intel_crtc->base;
7328 struct drm_device *dev = crtc->dev;
7329 struct drm_i915_private *dev_priv = dev->dev_private;
7330 struct intel_encoder *intel_encoder;
7331 uint32_t dpll;
7332 int factor, num_connectors = 0;
7333 bool is_lvds = false, is_sdvo = false;
7334
7335 for_each_intel_encoder(dev, intel_encoder) {
7336 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7337 continue;
7338
7339 switch (intel_encoder->type) {
7340 case INTEL_OUTPUT_LVDS:
7341 is_lvds = true;
7342 break;
7343 case INTEL_OUTPUT_SDVO:
7344 case INTEL_OUTPUT_HDMI:
7345 is_sdvo = true;
7346 break;
7347 default:
7348 break;
7349 }
7350
7351 num_connectors++;
7352 }
7353
7354 /* Enable autotuning of the PLL clock (if permissible) */
7355 factor = 21;
7356 if (is_lvds) {
7357 if ((intel_panel_use_ssc(dev_priv) &&
7358 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7359 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7360 factor = 25;
7361 } else if (intel_crtc->new_config->sdvo_tv_clock)
7362 factor = 20;
7363
7364 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7365 *fp |= FP_CB_TUNE;
7366
7367 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7368 *fp2 |= FP_CB_TUNE;
7369
7370 dpll = 0;
7371
7372 if (is_lvds)
7373 dpll |= DPLLB_MODE_LVDS;
7374 else
7375 dpll |= DPLLB_MODE_DAC_SERIAL;
7376
7377 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7378 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7379
7380 if (is_sdvo)
7381 dpll |= DPLL_SDVO_HIGH_SPEED;
7382 if (intel_crtc->new_config->has_dp_encoder)
7383 dpll |= DPLL_SDVO_HIGH_SPEED;
7384
7385 /* compute bitmask from p1 value */
7386 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7387 /* also FPA1 */
7388 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7389
7390 switch (intel_crtc->new_config->dpll.p2) {
7391 case 5:
7392 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7393 break;
7394 case 7:
7395 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7396 break;
7397 case 10:
7398 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7399 break;
7400 case 14:
7401 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7402 break;
7403 }
7404
7405 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7406 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7407 else
7408 dpll |= PLL_REF_INPUT_DREFCLK;
7409
7410 return dpll | DPLL_VCO_ENABLE;
7411 }
7412
7413 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7414 {
7415 struct drm_device *dev = crtc->base.dev;
7416 intel_clock_t clock, reduced_clock;
7417 u32 dpll = 0, fp = 0, fp2 = 0;
7418 bool ok, has_reduced_clock = false;
7419 bool is_lvds = false;
7420 struct intel_shared_dpll *pll;
7421
7422 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7423
7424 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7425 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7426
7427 ok = ironlake_compute_clocks(&crtc->base, &clock,
7428 &has_reduced_clock, &reduced_clock);
7429 if (!ok && !crtc->new_config->clock_set) {
7430 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7431 return -EINVAL;
7432 }
7433 /* Compat-code for transition, will disappear. */
7434 if (!crtc->new_config->clock_set) {
7435 crtc->new_config->dpll.n = clock.n;
7436 crtc->new_config->dpll.m1 = clock.m1;
7437 crtc->new_config->dpll.m2 = clock.m2;
7438 crtc->new_config->dpll.p1 = clock.p1;
7439 crtc->new_config->dpll.p2 = clock.p2;
7440 }
7441
7442 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7443 if (crtc->new_config->has_pch_encoder) {
7444 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7445 if (has_reduced_clock)
7446 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7447
7448 dpll = ironlake_compute_dpll(crtc,
7449 &fp, &reduced_clock,
7450 has_reduced_clock ? &fp2 : NULL);
7451
7452 crtc->new_config->dpll_hw_state.dpll = dpll;
7453 crtc->new_config->dpll_hw_state.fp0 = fp;
7454 if (has_reduced_clock)
7455 crtc->new_config->dpll_hw_state.fp1 = fp2;
7456 else
7457 crtc->new_config->dpll_hw_state.fp1 = fp;
7458
7459 pll = intel_get_shared_dpll(crtc);
7460 if (pll == NULL) {
7461 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7462 pipe_name(crtc->pipe));
7463 return -EINVAL;
7464 }
7465 }
7466
7467 if (is_lvds && has_reduced_clock && i915.powersave)
7468 crtc->lowfreq_avail = true;
7469 else
7470 crtc->lowfreq_avail = false;
7471
7472 return 0;
7473 }
7474
7475 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7476 struct intel_link_m_n *m_n)
7477 {
7478 struct drm_device *dev = crtc->base.dev;
7479 struct drm_i915_private *dev_priv = dev->dev_private;
7480 enum pipe pipe = crtc->pipe;
7481
7482 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7483 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7484 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7485 & ~TU_SIZE_MASK;
7486 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7487 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7488 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7489 }
7490
7491 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7492 enum transcoder transcoder,
7493 struct intel_link_m_n *m_n,
7494 struct intel_link_m_n *m2_n2)
7495 {
7496 struct drm_device *dev = crtc->base.dev;
7497 struct drm_i915_private *dev_priv = dev->dev_private;
7498 enum pipe pipe = crtc->pipe;
7499
7500 if (INTEL_INFO(dev)->gen >= 5) {
7501 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7502 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7503 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7504 & ~TU_SIZE_MASK;
7505 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7506 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7507 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7508 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7509 * gen < 8) and if DRRS is supported (to make sure the
7510 * registers are not unnecessarily read).
7511 */
7512 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7513 crtc->config.has_drrs) {
7514 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7515 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7516 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7517 & ~TU_SIZE_MASK;
7518 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7519 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7520 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7521 }
7522 } else {
7523 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7524 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7525 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7526 & ~TU_SIZE_MASK;
7527 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7528 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7529 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7530 }
7531 }
7532
7533 void intel_dp_get_m_n(struct intel_crtc *crtc,
7534 struct intel_crtc_config *pipe_config)
7535 {
7536 if (crtc->config.has_pch_encoder)
7537 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7538 else
7539 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7540 &pipe_config->dp_m_n,
7541 &pipe_config->dp_m2_n2);
7542 }
7543
7544 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7545 struct intel_crtc_config *pipe_config)
7546 {
7547 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7548 &pipe_config->fdi_m_n, NULL);
7549 }
7550
7551 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7552 struct intel_crtc_config *pipe_config)
7553 {
7554 struct drm_device *dev = crtc->base.dev;
7555 struct drm_i915_private *dev_priv = dev->dev_private;
7556 uint32_t tmp;
7557
7558 tmp = I915_READ(PS_CTL(crtc->pipe));
7559
7560 if (tmp & PS_ENABLE) {
7561 pipe_config->pch_pfit.enabled = true;
7562 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7563 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7564 }
7565 }
7566
7567 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7568 struct intel_crtc_config *pipe_config)
7569 {
7570 struct drm_device *dev = crtc->base.dev;
7571 struct drm_i915_private *dev_priv = dev->dev_private;
7572 uint32_t tmp;
7573
7574 tmp = I915_READ(PF_CTL(crtc->pipe));
7575
7576 if (tmp & PF_ENABLE) {
7577 pipe_config->pch_pfit.enabled = true;
7578 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7579 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7580
7581 /* We currently do not free assignements of panel fitters on
7582 * ivb/hsw (since we don't use the higher upscaling modes which
7583 * differentiates them) so just WARN about this case for now. */
7584 if (IS_GEN7(dev)) {
7585 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7586 PF_PIPE_SEL_IVB(crtc->pipe));
7587 }
7588 }
7589 }
7590
7591 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7592 struct intel_plane_config *plane_config)
7593 {
7594 struct drm_device *dev = crtc->base.dev;
7595 struct drm_i915_private *dev_priv = dev->dev_private;
7596 u32 val, base, offset;
7597 int pipe = crtc->pipe, plane = crtc->plane;
7598 int fourcc, pixel_format;
7599 int aligned_height;
7600
7601 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7602 if (!crtc->base.primary->fb) {
7603 DRM_DEBUG_KMS("failed to alloc fb\n");
7604 return;
7605 }
7606
7607 val = I915_READ(DSPCNTR(plane));
7608
7609 if (INTEL_INFO(dev)->gen >= 4)
7610 if (val & DISPPLANE_TILED)
7611 plane_config->tiled = true;
7612
7613 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7614 fourcc = intel_format_to_fourcc(pixel_format);
7615 crtc->base.primary->fb->pixel_format = fourcc;
7616 crtc->base.primary->fb->bits_per_pixel =
7617 drm_format_plane_cpp(fourcc, 0) * 8;
7618
7619 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7620 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7621 offset = I915_READ(DSPOFFSET(plane));
7622 } else {
7623 if (plane_config->tiled)
7624 offset = I915_READ(DSPTILEOFF(plane));
7625 else
7626 offset = I915_READ(DSPLINOFF(plane));
7627 }
7628 plane_config->base = base;
7629
7630 val = I915_READ(PIPESRC(pipe));
7631 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7632 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7633
7634 val = I915_READ(DSPSTRIDE(pipe));
7635 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7636
7637 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7638 plane_config->tiled);
7639
7640 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7641 aligned_height);
7642
7643 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7644 pipe, plane, crtc->base.primary->fb->width,
7645 crtc->base.primary->fb->height,
7646 crtc->base.primary->fb->bits_per_pixel, base,
7647 crtc->base.primary->fb->pitches[0],
7648 plane_config->size);
7649 }
7650
7651 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7652 struct intel_crtc_config *pipe_config)
7653 {
7654 struct drm_device *dev = crtc->base.dev;
7655 struct drm_i915_private *dev_priv = dev->dev_private;
7656 uint32_t tmp;
7657
7658 if (!intel_display_power_is_enabled(dev_priv,
7659 POWER_DOMAIN_PIPE(crtc->pipe)))
7660 return false;
7661
7662 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7663 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7664
7665 tmp = I915_READ(PIPECONF(crtc->pipe));
7666 if (!(tmp & PIPECONF_ENABLE))
7667 return false;
7668
7669 switch (tmp & PIPECONF_BPC_MASK) {
7670 case PIPECONF_6BPC:
7671 pipe_config->pipe_bpp = 18;
7672 break;
7673 case PIPECONF_8BPC:
7674 pipe_config->pipe_bpp = 24;
7675 break;
7676 case PIPECONF_10BPC:
7677 pipe_config->pipe_bpp = 30;
7678 break;
7679 case PIPECONF_12BPC:
7680 pipe_config->pipe_bpp = 36;
7681 break;
7682 default:
7683 break;
7684 }
7685
7686 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7687 pipe_config->limited_color_range = true;
7688
7689 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7690 struct intel_shared_dpll *pll;
7691
7692 pipe_config->has_pch_encoder = true;
7693
7694 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7695 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7696 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7697
7698 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7699
7700 if (HAS_PCH_IBX(dev_priv->dev)) {
7701 pipe_config->shared_dpll =
7702 (enum intel_dpll_id) crtc->pipe;
7703 } else {
7704 tmp = I915_READ(PCH_DPLL_SEL);
7705 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7706 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7707 else
7708 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7709 }
7710
7711 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7712
7713 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7714 &pipe_config->dpll_hw_state));
7715
7716 tmp = pipe_config->dpll_hw_state.dpll;
7717 pipe_config->pixel_multiplier =
7718 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7719 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7720
7721 ironlake_pch_clock_get(crtc, pipe_config);
7722 } else {
7723 pipe_config->pixel_multiplier = 1;
7724 }
7725
7726 intel_get_pipe_timings(crtc, pipe_config);
7727
7728 ironlake_get_pfit_config(crtc, pipe_config);
7729
7730 return true;
7731 }
7732
7733 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7734 {
7735 struct drm_device *dev = dev_priv->dev;
7736 struct intel_crtc *crtc;
7737
7738 for_each_intel_crtc(dev, crtc)
7739 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7740 pipe_name(crtc->pipe));
7741
7742 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7743 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7744 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7745 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7746 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7747 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7748 "CPU PWM1 enabled\n");
7749 if (IS_HASWELL(dev))
7750 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7751 "CPU PWM2 enabled\n");
7752 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7753 "PCH PWM1 enabled\n");
7754 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7755 "Utility pin enabled\n");
7756 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7757
7758 /*
7759 * In theory we can still leave IRQs enabled, as long as only the HPD
7760 * interrupts remain enabled. We used to check for that, but since it's
7761 * gen-specific and since we only disable LCPLL after we fully disable
7762 * the interrupts, the check below should be enough.
7763 */
7764 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7765 }
7766
7767 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7768 {
7769 struct drm_device *dev = dev_priv->dev;
7770
7771 if (IS_HASWELL(dev))
7772 return I915_READ(D_COMP_HSW);
7773 else
7774 return I915_READ(D_COMP_BDW);
7775 }
7776
7777 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7778 {
7779 struct drm_device *dev = dev_priv->dev;
7780
7781 if (IS_HASWELL(dev)) {
7782 mutex_lock(&dev_priv->rps.hw_lock);
7783 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7784 val))
7785 DRM_ERROR("Failed to write to D_COMP\n");
7786 mutex_unlock(&dev_priv->rps.hw_lock);
7787 } else {
7788 I915_WRITE(D_COMP_BDW, val);
7789 POSTING_READ(D_COMP_BDW);
7790 }
7791 }
7792
7793 /*
7794 * This function implements pieces of two sequences from BSpec:
7795 * - Sequence for display software to disable LCPLL
7796 * - Sequence for display software to allow package C8+
7797 * The steps implemented here are just the steps that actually touch the LCPLL
7798 * register. Callers should take care of disabling all the display engine
7799 * functions, doing the mode unset, fixing interrupts, etc.
7800 */
7801 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7802 bool switch_to_fclk, bool allow_power_down)
7803 {
7804 uint32_t val;
7805
7806 assert_can_disable_lcpll(dev_priv);
7807
7808 val = I915_READ(LCPLL_CTL);
7809
7810 if (switch_to_fclk) {
7811 val |= LCPLL_CD_SOURCE_FCLK;
7812 I915_WRITE(LCPLL_CTL, val);
7813
7814 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7815 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7816 DRM_ERROR("Switching to FCLK failed\n");
7817
7818 val = I915_READ(LCPLL_CTL);
7819 }
7820
7821 val |= LCPLL_PLL_DISABLE;
7822 I915_WRITE(LCPLL_CTL, val);
7823 POSTING_READ(LCPLL_CTL);
7824
7825 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7826 DRM_ERROR("LCPLL still locked\n");
7827
7828 val = hsw_read_dcomp(dev_priv);
7829 val |= D_COMP_COMP_DISABLE;
7830 hsw_write_dcomp(dev_priv, val);
7831 ndelay(100);
7832
7833 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7834 1))
7835 DRM_ERROR("D_COMP RCOMP still in progress\n");
7836
7837 if (allow_power_down) {
7838 val = I915_READ(LCPLL_CTL);
7839 val |= LCPLL_POWER_DOWN_ALLOW;
7840 I915_WRITE(LCPLL_CTL, val);
7841 POSTING_READ(LCPLL_CTL);
7842 }
7843 }
7844
7845 /*
7846 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7847 * source.
7848 */
7849 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7850 {
7851 uint32_t val;
7852
7853 val = I915_READ(LCPLL_CTL);
7854
7855 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7856 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7857 return;
7858
7859 /*
7860 * Make sure we're not on PC8 state before disabling PC8, otherwise
7861 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7862 *
7863 * The other problem is that hsw_restore_lcpll() is called as part of
7864 * the runtime PM resume sequence, so we can't just call
7865 * gen6_gt_force_wake_get() because that function calls
7866 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7867 * while we are on the resume sequence. So to solve this problem we have
7868 * to call special forcewake code that doesn't touch runtime PM and
7869 * doesn't enable the forcewake delayed work.
7870 */
7871 spin_lock_irq(&dev_priv->uncore.lock);
7872 if (dev_priv->uncore.forcewake_count++ == 0)
7873 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7874 spin_unlock_irq(&dev_priv->uncore.lock);
7875
7876 if (val & LCPLL_POWER_DOWN_ALLOW) {
7877 val &= ~LCPLL_POWER_DOWN_ALLOW;
7878 I915_WRITE(LCPLL_CTL, val);
7879 POSTING_READ(LCPLL_CTL);
7880 }
7881
7882 val = hsw_read_dcomp(dev_priv);
7883 val |= D_COMP_COMP_FORCE;
7884 val &= ~D_COMP_COMP_DISABLE;
7885 hsw_write_dcomp(dev_priv, val);
7886
7887 val = I915_READ(LCPLL_CTL);
7888 val &= ~LCPLL_PLL_DISABLE;
7889 I915_WRITE(LCPLL_CTL, val);
7890
7891 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7892 DRM_ERROR("LCPLL not locked yet\n");
7893
7894 if (val & LCPLL_CD_SOURCE_FCLK) {
7895 val = I915_READ(LCPLL_CTL);
7896 val &= ~LCPLL_CD_SOURCE_FCLK;
7897 I915_WRITE(LCPLL_CTL, val);
7898
7899 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7900 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7901 DRM_ERROR("Switching back to LCPLL failed\n");
7902 }
7903
7904 /* See the big comment above. */
7905 spin_lock_irq(&dev_priv->uncore.lock);
7906 if (--dev_priv->uncore.forcewake_count == 0)
7907 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7908 spin_unlock_irq(&dev_priv->uncore.lock);
7909 }
7910
7911 /*
7912 * Package states C8 and deeper are really deep PC states that can only be
7913 * reached when all the devices on the system allow it, so even if the graphics
7914 * device allows PC8+, it doesn't mean the system will actually get to these
7915 * states. Our driver only allows PC8+ when going into runtime PM.
7916 *
7917 * The requirements for PC8+ are that all the outputs are disabled, the power
7918 * well is disabled and most interrupts are disabled, and these are also
7919 * requirements for runtime PM. When these conditions are met, we manually do
7920 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7921 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7922 * hang the machine.
7923 *
7924 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7925 * the state of some registers, so when we come back from PC8+ we need to
7926 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7927 * need to take care of the registers kept by RC6. Notice that this happens even
7928 * if we don't put the device in PCI D3 state (which is what currently happens
7929 * because of the runtime PM support).
7930 *
7931 * For more, read "Display Sequences for Package C8" on the hardware
7932 * documentation.
7933 */
7934 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7935 {
7936 struct drm_device *dev = dev_priv->dev;
7937 uint32_t val;
7938
7939 DRM_DEBUG_KMS("Enabling package C8+\n");
7940
7941 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7942 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7943 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7944 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7945 }
7946
7947 lpt_disable_clkout_dp(dev);
7948 hsw_disable_lcpll(dev_priv, true, true);
7949 }
7950
7951 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7952 {
7953 struct drm_device *dev = dev_priv->dev;
7954 uint32_t val;
7955
7956 DRM_DEBUG_KMS("Disabling package C8+\n");
7957
7958 hsw_restore_lcpll(dev_priv);
7959 lpt_init_pch_refclk(dev);
7960
7961 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7962 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7963 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7964 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7965 }
7966
7967 intel_prepare_ddi(dev);
7968 }
7969
7970 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7971 {
7972 if (!intel_ddi_pll_select(crtc))
7973 return -EINVAL;
7974
7975 crtc->lowfreq_avail = false;
7976
7977 return 0;
7978 }
7979
7980 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
7981 enum port port,
7982 struct intel_crtc_config *pipe_config)
7983 {
7984 u32 temp, dpll_ctl1;
7985
7986 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
7987 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
7988
7989 switch (pipe_config->ddi_pll_sel) {
7990 case SKL_DPLL0:
7991 /*
7992 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
7993 * of the shared DPLL framework and thus needs to be read out
7994 * separately
7995 */
7996 dpll_ctl1 = I915_READ(DPLL_CTRL1);
7997 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
7998 break;
7999 case SKL_DPLL1:
8000 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8001 break;
8002 case SKL_DPLL2:
8003 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8004 break;
8005 case SKL_DPLL3:
8006 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8007 break;
8008 }
8009 }
8010
8011 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8012 enum port port,
8013 struct intel_crtc_config *pipe_config)
8014 {
8015 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8016
8017 switch (pipe_config->ddi_pll_sel) {
8018 case PORT_CLK_SEL_WRPLL1:
8019 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8020 break;
8021 case PORT_CLK_SEL_WRPLL2:
8022 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8023 break;
8024 }
8025 }
8026
8027 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8028 struct intel_crtc_config *pipe_config)
8029 {
8030 struct drm_device *dev = crtc->base.dev;
8031 struct drm_i915_private *dev_priv = dev->dev_private;
8032 struct intel_shared_dpll *pll;
8033 enum port port;
8034 uint32_t tmp;
8035
8036 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8037
8038 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8039
8040 if (IS_SKYLAKE(dev))
8041 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8042 else
8043 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8044
8045 if (pipe_config->shared_dpll >= 0) {
8046 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8047
8048 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8049 &pipe_config->dpll_hw_state));
8050 }
8051
8052 /*
8053 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8054 * DDI E. So just check whether this pipe is wired to DDI E and whether
8055 * the PCH transcoder is on.
8056 */
8057 if (INTEL_INFO(dev)->gen < 9 &&
8058 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8059 pipe_config->has_pch_encoder = true;
8060
8061 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8062 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8063 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8064
8065 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8066 }
8067 }
8068
8069 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8070 struct intel_crtc_config *pipe_config)
8071 {
8072 struct drm_device *dev = crtc->base.dev;
8073 struct drm_i915_private *dev_priv = dev->dev_private;
8074 enum intel_display_power_domain pfit_domain;
8075 uint32_t tmp;
8076
8077 if (!intel_display_power_is_enabled(dev_priv,
8078 POWER_DOMAIN_PIPE(crtc->pipe)))
8079 return false;
8080
8081 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8082 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8083
8084 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8085 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8086 enum pipe trans_edp_pipe;
8087 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8088 default:
8089 WARN(1, "unknown pipe linked to edp transcoder\n");
8090 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8091 case TRANS_DDI_EDP_INPUT_A_ON:
8092 trans_edp_pipe = PIPE_A;
8093 break;
8094 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8095 trans_edp_pipe = PIPE_B;
8096 break;
8097 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8098 trans_edp_pipe = PIPE_C;
8099 break;
8100 }
8101
8102 if (trans_edp_pipe == crtc->pipe)
8103 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8104 }
8105
8106 if (!intel_display_power_is_enabled(dev_priv,
8107 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8108 return false;
8109
8110 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8111 if (!(tmp & PIPECONF_ENABLE))
8112 return false;
8113
8114 haswell_get_ddi_port_state(crtc, pipe_config);
8115
8116 intel_get_pipe_timings(crtc, pipe_config);
8117
8118 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8119 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8120 if (IS_SKYLAKE(dev))
8121 skylake_get_pfit_config(crtc, pipe_config);
8122 else
8123 ironlake_get_pfit_config(crtc, pipe_config);
8124 }
8125
8126 if (IS_HASWELL(dev))
8127 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8128 (I915_READ(IPS_CTL) & IPS_ENABLE);
8129
8130 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8131 pipe_config->pixel_multiplier =
8132 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8133 } else {
8134 pipe_config->pixel_multiplier = 1;
8135 }
8136
8137 return true;
8138 }
8139
8140 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8141 {
8142 struct drm_device *dev = crtc->dev;
8143 struct drm_i915_private *dev_priv = dev->dev_private;
8144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8145 uint32_t cntl = 0, size = 0;
8146
8147 if (base) {
8148 unsigned int width = intel_crtc->cursor_width;
8149 unsigned int height = intel_crtc->cursor_height;
8150 unsigned int stride = roundup_pow_of_two(width) * 4;
8151
8152 switch (stride) {
8153 default:
8154 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8155 width, stride);
8156 stride = 256;
8157 /* fallthrough */
8158 case 256:
8159 case 512:
8160 case 1024:
8161 case 2048:
8162 break;
8163 }
8164
8165 cntl |= CURSOR_ENABLE |
8166 CURSOR_GAMMA_ENABLE |
8167 CURSOR_FORMAT_ARGB |
8168 CURSOR_STRIDE(stride);
8169
8170 size = (height << 12) | width;
8171 }
8172
8173 if (intel_crtc->cursor_cntl != 0 &&
8174 (intel_crtc->cursor_base != base ||
8175 intel_crtc->cursor_size != size ||
8176 intel_crtc->cursor_cntl != cntl)) {
8177 /* On these chipsets we can only modify the base/size/stride
8178 * whilst the cursor is disabled.
8179 */
8180 I915_WRITE(_CURACNTR, 0);
8181 POSTING_READ(_CURACNTR);
8182 intel_crtc->cursor_cntl = 0;
8183 }
8184
8185 if (intel_crtc->cursor_base != base) {
8186 I915_WRITE(_CURABASE, base);
8187 intel_crtc->cursor_base = base;
8188 }
8189
8190 if (intel_crtc->cursor_size != size) {
8191 I915_WRITE(CURSIZE, size);
8192 intel_crtc->cursor_size = size;
8193 }
8194
8195 if (intel_crtc->cursor_cntl != cntl) {
8196 I915_WRITE(_CURACNTR, cntl);
8197 POSTING_READ(_CURACNTR);
8198 intel_crtc->cursor_cntl = cntl;
8199 }
8200 }
8201
8202 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8203 {
8204 struct drm_device *dev = crtc->dev;
8205 struct drm_i915_private *dev_priv = dev->dev_private;
8206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8207 int pipe = intel_crtc->pipe;
8208 uint32_t cntl;
8209
8210 cntl = 0;
8211 if (base) {
8212 cntl = MCURSOR_GAMMA_ENABLE;
8213 switch (intel_crtc->cursor_width) {
8214 case 64:
8215 cntl |= CURSOR_MODE_64_ARGB_AX;
8216 break;
8217 case 128:
8218 cntl |= CURSOR_MODE_128_ARGB_AX;
8219 break;
8220 case 256:
8221 cntl |= CURSOR_MODE_256_ARGB_AX;
8222 break;
8223 default:
8224 MISSING_CASE(intel_crtc->cursor_width);
8225 return;
8226 }
8227 cntl |= pipe << 28; /* Connect to correct pipe */
8228
8229 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8230 cntl |= CURSOR_PIPE_CSC_ENABLE;
8231 }
8232
8233 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8234 cntl |= CURSOR_ROTATE_180;
8235
8236 if (intel_crtc->cursor_cntl != cntl) {
8237 I915_WRITE(CURCNTR(pipe), cntl);
8238 POSTING_READ(CURCNTR(pipe));
8239 intel_crtc->cursor_cntl = cntl;
8240 }
8241
8242 /* and commit changes on next vblank */
8243 I915_WRITE(CURBASE(pipe), base);
8244 POSTING_READ(CURBASE(pipe));
8245
8246 intel_crtc->cursor_base = base;
8247 }
8248
8249 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8250 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8251 bool on)
8252 {
8253 struct drm_device *dev = crtc->dev;
8254 struct drm_i915_private *dev_priv = dev->dev_private;
8255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8256 int pipe = intel_crtc->pipe;
8257 int x = crtc->cursor_x;
8258 int y = crtc->cursor_y;
8259 u32 base = 0, pos = 0;
8260
8261 if (on)
8262 base = intel_crtc->cursor_addr;
8263
8264 if (x >= intel_crtc->config.pipe_src_w)
8265 base = 0;
8266
8267 if (y >= intel_crtc->config.pipe_src_h)
8268 base = 0;
8269
8270 if (x < 0) {
8271 if (x + intel_crtc->cursor_width <= 0)
8272 base = 0;
8273
8274 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8275 x = -x;
8276 }
8277 pos |= x << CURSOR_X_SHIFT;
8278
8279 if (y < 0) {
8280 if (y + intel_crtc->cursor_height <= 0)
8281 base = 0;
8282
8283 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8284 y = -y;
8285 }
8286 pos |= y << CURSOR_Y_SHIFT;
8287
8288 if (base == 0 && intel_crtc->cursor_base == 0)
8289 return;
8290
8291 I915_WRITE(CURPOS(pipe), pos);
8292
8293 /* ILK+ do this automagically */
8294 if (HAS_GMCH_DISPLAY(dev) &&
8295 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8296 base += (intel_crtc->cursor_height *
8297 intel_crtc->cursor_width - 1) * 4;
8298 }
8299
8300 if (IS_845G(dev) || IS_I865G(dev))
8301 i845_update_cursor(crtc, base);
8302 else
8303 i9xx_update_cursor(crtc, base);
8304 }
8305
8306 static bool cursor_size_ok(struct drm_device *dev,
8307 uint32_t width, uint32_t height)
8308 {
8309 if (width == 0 || height == 0)
8310 return false;
8311
8312 /*
8313 * 845g/865g are special in that they are only limited by
8314 * the width of their cursors, the height is arbitrary up to
8315 * the precision of the register. Everything else requires
8316 * square cursors, limited to a few power-of-two sizes.
8317 */
8318 if (IS_845G(dev) || IS_I865G(dev)) {
8319 if ((width & 63) != 0)
8320 return false;
8321
8322 if (width > (IS_845G(dev) ? 64 : 512))
8323 return false;
8324
8325 if (height > 1023)
8326 return false;
8327 } else {
8328 switch (width | height) {
8329 case 256:
8330 case 128:
8331 if (IS_GEN2(dev))
8332 return false;
8333 case 64:
8334 break;
8335 default:
8336 return false;
8337 }
8338 }
8339
8340 return true;
8341 }
8342
8343 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8344 u16 *blue, uint32_t start, uint32_t size)
8345 {
8346 int end = (start + size > 256) ? 256 : start + size, i;
8347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8348
8349 for (i = start; i < end; i++) {
8350 intel_crtc->lut_r[i] = red[i] >> 8;
8351 intel_crtc->lut_g[i] = green[i] >> 8;
8352 intel_crtc->lut_b[i] = blue[i] >> 8;
8353 }
8354
8355 intel_crtc_load_lut(crtc);
8356 }
8357
8358 /* VESA 640x480x72Hz mode to set on the pipe */
8359 static struct drm_display_mode load_detect_mode = {
8360 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8361 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8362 };
8363
8364 struct drm_framebuffer *
8365 __intel_framebuffer_create(struct drm_device *dev,
8366 struct drm_mode_fb_cmd2 *mode_cmd,
8367 struct drm_i915_gem_object *obj)
8368 {
8369 struct intel_framebuffer *intel_fb;
8370 int ret;
8371
8372 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8373 if (!intel_fb) {
8374 drm_gem_object_unreference(&obj->base);
8375 return ERR_PTR(-ENOMEM);
8376 }
8377
8378 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8379 if (ret)
8380 goto err;
8381
8382 return &intel_fb->base;
8383 err:
8384 drm_gem_object_unreference(&obj->base);
8385 kfree(intel_fb);
8386
8387 return ERR_PTR(ret);
8388 }
8389
8390 static struct drm_framebuffer *
8391 intel_framebuffer_create(struct drm_device *dev,
8392 struct drm_mode_fb_cmd2 *mode_cmd,
8393 struct drm_i915_gem_object *obj)
8394 {
8395 struct drm_framebuffer *fb;
8396 int ret;
8397
8398 ret = i915_mutex_lock_interruptible(dev);
8399 if (ret)
8400 return ERR_PTR(ret);
8401 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8402 mutex_unlock(&dev->struct_mutex);
8403
8404 return fb;
8405 }
8406
8407 static u32
8408 intel_framebuffer_pitch_for_width(int width, int bpp)
8409 {
8410 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8411 return ALIGN(pitch, 64);
8412 }
8413
8414 static u32
8415 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8416 {
8417 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8418 return PAGE_ALIGN(pitch * mode->vdisplay);
8419 }
8420
8421 static struct drm_framebuffer *
8422 intel_framebuffer_create_for_mode(struct drm_device *dev,
8423 struct drm_display_mode *mode,
8424 int depth, int bpp)
8425 {
8426 struct drm_i915_gem_object *obj;
8427 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8428
8429 obj = i915_gem_alloc_object(dev,
8430 intel_framebuffer_size_for_mode(mode, bpp));
8431 if (obj == NULL)
8432 return ERR_PTR(-ENOMEM);
8433
8434 mode_cmd.width = mode->hdisplay;
8435 mode_cmd.height = mode->vdisplay;
8436 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8437 bpp);
8438 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8439
8440 return intel_framebuffer_create(dev, &mode_cmd, obj);
8441 }
8442
8443 static struct drm_framebuffer *
8444 mode_fits_in_fbdev(struct drm_device *dev,
8445 struct drm_display_mode *mode)
8446 {
8447 #ifdef CONFIG_DRM_I915_FBDEV
8448 struct drm_i915_private *dev_priv = dev->dev_private;
8449 struct drm_i915_gem_object *obj;
8450 struct drm_framebuffer *fb;
8451
8452 if (!dev_priv->fbdev)
8453 return NULL;
8454
8455 if (!dev_priv->fbdev->fb)
8456 return NULL;
8457
8458 obj = dev_priv->fbdev->fb->obj;
8459 BUG_ON(!obj);
8460
8461 fb = &dev_priv->fbdev->fb->base;
8462 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8463 fb->bits_per_pixel))
8464 return NULL;
8465
8466 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8467 return NULL;
8468
8469 return fb;
8470 #else
8471 return NULL;
8472 #endif
8473 }
8474
8475 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8476 struct drm_display_mode *mode,
8477 struct intel_load_detect_pipe *old,
8478 struct drm_modeset_acquire_ctx *ctx)
8479 {
8480 struct intel_crtc *intel_crtc;
8481 struct intel_encoder *intel_encoder =
8482 intel_attached_encoder(connector);
8483 struct drm_crtc *possible_crtc;
8484 struct drm_encoder *encoder = &intel_encoder->base;
8485 struct drm_crtc *crtc = NULL;
8486 struct drm_device *dev = encoder->dev;
8487 struct drm_framebuffer *fb;
8488 struct drm_mode_config *config = &dev->mode_config;
8489 int ret, i = -1;
8490
8491 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8492 connector->base.id, connector->name,
8493 encoder->base.id, encoder->name);
8494
8495 retry:
8496 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8497 if (ret)
8498 goto fail_unlock;
8499
8500 /*
8501 * Algorithm gets a little messy:
8502 *
8503 * - if the connector already has an assigned crtc, use it (but make
8504 * sure it's on first)
8505 *
8506 * - try to find the first unused crtc that can drive this connector,
8507 * and use that if we find one
8508 */
8509
8510 /* See if we already have a CRTC for this connector */
8511 if (encoder->crtc) {
8512 crtc = encoder->crtc;
8513
8514 ret = drm_modeset_lock(&crtc->mutex, ctx);
8515 if (ret)
8516 goto fail_unlock;
8517 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8518 if (ret)
8519 goto fail_unlock;
8520
8521 old->dpms_mode = connector->dpms;
8522 old->load_detect_temp = false;
8523
8524 /* Make sure the crtc and connector are running */
8525 if (connector->dpms != DRM_MODE_DPMS_ON)
8526 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8527
8528 return true;
8529 }
8530
8531 /* Find an unused one (if possible) */
8532 for_each_crtc(dev, possible_crtc) {
8533 i++;
8534 if (!(encoder->possible_crtcs & (1 << i)))
8535 continue;
8536 if (possible_crtc->enabled)
8537 continue;
8538 /* This can occur when applying the pipe A quirk on resume. */
8539 if (to_intel_crtc(possible_crtc)->new_enabled)
8540 continue;
8541
8542 crtc = possible_crtc;
8543 break;
8544 }
8545
8546 /*
8547 * If we didn't find an unused CRTC, don't use any.
8548 */
8549 if (!crtc) {
8550 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8551 goto fail_unlock;
8552 }
8553
8554 ret = drm_modeset_lock(&crtc->mutex, ctx);
8555 if (ret)
8556 goto fail_unlock;
8557 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8558 if (ret)
8559 goto fail_unlock;
8560 intel_encoder->new_crtc = to_intel_crtc(crtc);
8561 to_intel_connector(connector)->new_encoder = intel_encoder;
8562
8563 intel_crtc = to_intel_crtc(crtc);
8564 intel_crtc->new_enabled = true;
8565 intel_crtc->new_config = &intel_crtc->config;
8566 old->dpms_mode = connector->dpms;
8567 old->load_detect_temp = true;
8568 old->release_fb = NULL;
8569
8570 if (!mode)
8571 mode = &load_detect_mode;
8572
8573 /* We need a framebuffer large enough to accommodate all accesses
8574 * that the plane may generate whilst we perform load detection.
8575 * We can not rely on the fbcon either being present (we get called
8576 * during its initialisation to detect all boot displays, or it may
8577 * not even exist) or that it is large enough to satisfy the
8578 * requested mode.
8579 */
8580 fb = mode_fits_in_fbdev(dev, mode);
8581 if (fb == NULL) {
8582 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8583 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8584 old->release_fb = fb;
8585 } else
8586 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8587 if (IS_ERR(fb)) {
8588 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8589 goto fail;
8590 }
8591
8592 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8593 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8594 if (old->release_fb)
8595 old->release_fb->funcs->destroy(old->release_fb);
8596 goto fail;
8597 }
8598
8599 /* let the connector get through one full cycle before testing */
8600 intel_wait_for_vblank(dev, intel_crtc->pipe);
8601 return true;
8602
8603 fail:
8604 intel_crtc->new_enabled = crtc->enabled;
8605 if (intel_crtc->new_enabled)
8606 intel_crtc->new_config = &intel_crtc->config;
8607 else
8608 intel_crtc->new_config = NULL;
8609 fail_unlock:
8610 if (ret == -EDEADLK) {
8611 drm_modeset_backoff(ctx);
8612 goto retry;
8613 }
8614
8615 return false;
8616 }
8617
8618 void intel_release_load_detect_pipe(struct drm_connector *connector,
8619 struct intel_load_detect_pipe *old)
8620 {
8621 struct intel_encoder *intel_encoder =
8622 intel_attached_encoder(connector);
8623 struct drm_encoder *encoder = &intel_encoder->base;
8624 struct drm_crtc *crtc = encoder->crtc;
8625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8626
8627 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8628 connector->base.id, connector->name,
8629 encoder->base.id, encoder->name);
8630
8631 if (old->load_detect_temp) {
8632 to_intel_connector(connector)->new_encoder = NULL;
8633 intel_encoder->new_crtc = NULL;
8634 intel_crtc->new_enabled = false;
8635 intel_crtc->new_config = NULL;
8636 intel_set_mode(crtc, NULL, 0, 0, NULL);
8637
8638 if (old->release_fb) {
8639 drm_framebuffer_unregister_private(old->release_fb);
8640 drm_framebuffer_unreference(old->release_fb);
8641 }
8642
8643 return;
8644 }
8645
8646 /* Switch crtc and encoder back off if necessary */
8647 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8648 connector->funcs->dpms(connector, old->dpms_mode);
8649 }
8650
8651 static int i9xx_pll_refclk(struct drm_device *dev,
8652 const struct intel_crtc_config *pipe_config)
8653 {
8654 struct drm_i915_private *dev_priv = dev->dev_private;
8655 u32 dpll = pipe_config->dpll_hw_state.dpll;
8656
8657 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8658 return dev_priv->vbt.lvds_ssc_freq;
8659 else if (HAS_PCH_SPLIT(dev))
8660 return 120000;
8661 else if (!IS_GEN2(dev))
8662 return 96000;
8663 else
8664 return 48000;
8665 }
8666
8667 /* Returns the clock of the currently programmed mode of the given pipe. */
8668 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8669 struct intel_crtc_config *pipe_config)
8670 {
8671 struct drm_device *dev = crtc->base.dev;
8672 struct drm_i915_private *dev_priv = dev->dev_private;
8673 int pipe = pipe_config->cpu_transcoder;
8674 u32 dpll = pipe_config->dpll_hw_state.dpll;
8675 u32 fp;
8676 intel_clock_t clock;
8677 int refclk = i9xx_pll_refclk(dev, pipe_config);
8678
8679 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8680 fp = pipe_config->dpll_hw_state.fp0;
8681 else
8682 fp = pipe_config->dpll_hw_state.fp1;
8683
8684 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8685 if (IS_PINEVIEW(dev)) {
8686 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8687 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8688 } else {
8689 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8690 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8691 }
8692
8693 if (!IS_GEN2(dev)) {
8694 if (IS_PINEVIEW(dev))
8695 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8696 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8697 else
8698 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8699 DPLL_FPA01_P1_POST_DIV_SHIFT);
8700
8701 switch (dpll & DPLL_MODE_MASK) {
8702 case DPLLB_MODE_DAC_SERIAL:
8703 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8704 5 : 10;
8705 break;
8706 case DPLLB_MODE_LVDS:
8707 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8708 7 : 14;
8709 break;
8710 default:
8711 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8712 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8713 return;
8714 }
8715
8716 if (IS_PINEVIEW(dev))
8717 pineview_clock(refclk, &clock);
8718 else
8719 i9xx_clock(refclk, &clock);
8720 } else {
8721 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8722 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8723
8724 if (is_lvds) {
8725 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8726 DPLL_FPA01_P1_POST_DIV_SHIFT);
8727
8728 if (lvds & LVDS_CLKB_POWER_UP)
8729 clock.p2 = 7;
8730 else
8731 clock.p2 = 14;
8732 } else {
8733 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8734 clock.p1 = 2;
8735 else {
8736 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8737 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8738 }
8739 if (dpll & PLL_P2_DIVIDE_BY_4)
8740 clock.p2 = 4;
8741 else
8742 clock.p2 = 2;
8743 }
8744
8745 i9xx_clock(refclk, &clock);
8746 }
8747
8748 /*
8749 * This value includes pixel_multiplier. We will use
8750 * port_clock to compute adjusted_mode.crtc_clock in the
8751 * encoder's get_config() function.
8752 */
8753 pipe_config->port_clock = clock.dot;
8754 }
8755
8756 int intel_dotclock_calculate(int link_freq,
8757 const struct intel_link_m_n *m_n)
8758 {
8759 /*
8760 * The calculation for the data clock is:
8761 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8762 * But we want to avoid losing precison if possible, so:
8763 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8764 *
8765 * and the link clock is simpler:
8766 * link_clock = (m * link_clock) / n
8767 */
8768
8769 if (!m_n->link_n)
8770 return 0;
8771
8772 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8773 }
8774
8775 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8776 struct intel_crtc_config *pipe_config)
8777 {
8778 struct drm_device *dev = crtc->base.dev;
8779
8780 /* read out port_clock from the DPLL */
8781 i9xx_crtc_clock_get(crtc, pipe_config);
8782
8783 /*
8784 * This value does not include pixel_multiplier.
8785 * We will check that port_clock and adjusted_mode.crtc_clock
8786 * agree once we know their relationship in the encoder's
8787 * get_config() function.
8788 */
8789 pipe_config->adjusted_mode.crtc_clock =
8790 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8791 &pipe_config->fdi_m_n);
8792 }
8793
8794 /** Returns the currently programmed mode of the given pipe. */
8795 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8796 struct drm_crtc *crtc)
8797 {
8798 struct drm_i915_private *dev_priv = dev->dev_private;
8799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8800 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8801 struct drm_display_mode *mode;
8802 struct intel_crtc_config pipe_config;
8803 int htot = I915_READ(HTOTAL(cpu_transcoder));
8804 int hsync = I915_READ(HSYNC(cpu_transcoder));
8805 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8806 int vsync = I915_READ(VSYNC(cpu_transcoder));
8807 enum pipe pipe = intel_crtc->pipe;
8808
8809 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8810 if (!mode)
8811 return NULL;
8812
8813 /*
8814 * Construct a pipe_config sufficient for getting the clock info
8815 * back out of crtc_clock_get.
8816 *
8817 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8818 * to use a real value here instead.
8819 */
8820 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8821 pipe_config.pixel_multiplier = 1;
8822 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8823 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8824 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8825 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8826
8827 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8828 mode->hdisplay = (htot & 0xffff) + 1;
8829 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8830 mode->hsync_start = (hsync & 0xffff) + 1;
8831 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8832 mode->vdisplay = (vtot & 0xffff) + 1;
8833 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8834 mode->vsync_start = (vsync & 0xffff) + 1;
8835 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8836
8837 drm_mode_set_name(mode);
8838
8839 return mode;
8840 }
8841
8842 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8843 {
8844 struct drm_device *dev = crtc->dev;
8845 struct drm_i915_private *dev_priv = dev->dev_private;
8846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8847
8848 if (!HAS_GMCH_DISPLAY(dev))
8849 return;
8850
8851 if (!dev_priv->lvds_downclock_avail)
8852 return;
8853
8854 /*
8855 * Since this is called by a timer, we should never get here in
8856 * the manual case.
8857 */
8858 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8859 int pipe = intel_crtc->pipe;
8860 int dpll_reg = DPLL(pipe);
8861 int dpll;
8862
8863 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8864
8865 assert_panel_unlocked(dev_priv, pipe);
8866
8867 dpll = I915_READ(dpll_reg);
8868 dpll |= DISPLAY_RATE_SELECT_FPA1;
8869 I915_WRITE(dpll_reg, dpll);
8870 intel_wait_for_vblank(dev, pipe);
8871 dpll = I915_READ(dpll_reg);
8872 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8873 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8874 }
8875
8876 }
8877
8878 void intel_mark_busy(struct drm_device *dev)
8879 {
8880 struct drm_i915_private *dev_priv = dev->dev_private;
8881
8882 if (dev_priv->mm.busy)
8883 return;
8884
8885 intel_runtime_pm_get(dev_priv);
8886 i915_update_gfx_val(dev_priv);
8887 dev_priv->mm.busy = true;
8888 }
8889
8890 void intel_mark_idle(struct drm_device *dev)
8891 {
8892 struct drm_i915_private *dev_priv = dev->dev_private;
8893 struct drm_crtc *crtc;
8894
8895 if (!dev_priv->mm.busy)
8896 return;
8897
8898 dev_priv->mm.busy = false;
8899
8900 if (!i915.powersave)
8901 goto out;
8902
8903 for_each_crtc(dev, crtc) {
8904 if (!crtc->primary->fb)
8905 continue;
8906
8907 intel_decrease_pllclock(crtc);
8908 }
8909
8910 if (INTEL_INFO(dev)->gen >= 6)
8911 gen6_rps_idle(dev->dev_private);
8912
8913 out:
8914 intel_runtime_pm_put(dev_priv);
8915 }
8916
8917 static void intel_crtc_destroy(struct drm_crtc *crtc)
8918 {
8919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8920 struct drm_device *dev = crtc->dev;
8921 struct intel_unpin_work *work;
8922
8923 spin_lock_irq(&dev->event_lock);
8924 work = intel_crtc->unpin_work;
8925 intel_crtc->unpin_work = NULL;
8926 spin_unlock_irq(&dev->event_lock);
8927
8928 if (work) {
8929 cancel_work_sync(&work->work);
8930 kfree(work);
8931 }
8932
8933 drm_crtc_cleanup(crtc);
8934
8935 kfree(intel_crtc);
8936 }
8937
8938 static void intel_unpin_work_fn(struct work_struct *__work)
8939 {
8940 struct intel_unpin_work *work =
8941 container_of(__work, struct intel_unpin_work, work);
8942 struct drm_device *dev = work->crtc->dev;
8943 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
8944
8945 mutex_lock(&dev->struct_mutex);
8946 intel_unpin_fb_obj(work->old_fb_obj);
8947 drm_gem_object_unreference(&work->pending_flip_obj->base);
8948 drm_gem_object_unreference(&work->old_fb_obj->base);
8949
8950 intel_fbc_update(dev);
8951
8952 if (work->flip_queued_req)
8953 i915_gem_request_assign(&work->flip_queued_req, NULL);
8954 mutex_unlock(&dev->struct_mutex);
8955
8956 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
8957
8958 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8959 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8960
8961 kfree(work);
8962 }
8963
8964 static void do_intel_finish_page_flip(struct drm_device *dev,
8965 struct drm_crtc *crtc)
8966 {
8967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8968 struct intel_unpin_work *work;
8969 unsigned long flags;
8970
8971 /* Ignore early vblank irqs */
8972 if (intel_crtc == NULL)
8973 return;
8974
8975 /*
8976 * This is called both by irq handlers and the reset code (to complete
8977 * lost pageflips) so needs the full irqsave spinlocks.
8978 */
8979 spin_lock_irqsave(&dev->event_lock, flags);
8980 work = intel_crtc->unpin_work;
8981
8982 /* Ensure we don't miss a work->pending update ... */
8983 smp_rmb();
8984
8985 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8986 spin_unlock_irqrestore(&dev->event_lock, flags);
8987 return;
8988 }
8989
8990 page_flip_completed(intel_crtc);
8991
8992 spin_unlock_irqrestore(&dev->event_lock, flags);
8993 }
8994
8995 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8996 {
8997 struct drm_i915_private *dev_priv = dev->dev_private;
8998 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8999
9000 do_intel_finish_page_flip(dev, crtc);
9001 }
9002
9003 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9004 {
9005 struct drm_i915_private *dev_priv = dev->dev_private;
9006 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9007
9008 do_intel_finish_page_flip(dev, crtc);
9009 }
9010
9011 /* Is 'a' after or equal to 'b'? */
9012 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9013 {
9014 return !((a - b) & 0x80000000);
9015 }
9016
9017 static bool page_flip_finished(struct intel_crtc *crtc)
9018 {
9019 struct drm_device *dev = crtc->base.dev;
9020 struct drm_i915_private *dev_priv = dev->dev_private;
9021
9022 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9023 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9024 return true;
9025
9026 /*
9027 * The relevant registers doen't exist on pre-ctg.
9028 * As the flip done interrupt doesn't trigger for mmio
9029 * flips on gmch platforms, a flip count check isn't
9030 * really needed there. But since ctg has the registers,
9031 * include it in the check anyway.
9032 */
9033 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9034 return true;
9035
9036 /*
9037 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9038 * used the same base address. In that case the mmio flip might
9039 * have completed, but the CS hasn't even executed the flip yet.
9040 *
9041 * A flip count check isn't enough as the CS might have updated
9042 * the base address just after start of vblank, but before we
9043 * managed to process the interrupt. This means we'd complete the
9044 * CS flip too soon.
9045 *
9046 * Combining both checks should get us a good enough result. It may
9047 * still happen that the CS flip has been executed, but has not
9048 * yet actually completed. But in case the base address is the same
9049 * anyway, we don't really care.
9050 */
9051 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9052 crtc->unpin_work->gtt_offset &&
9053 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9054 crtc->unpin_work->flip_count);
9055 }
9056
9057 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9058 {
9059 struct drm_i915_private *dev_priv = dev->dev_private;
9060 struct intel_crtc *intel_crtc =
9061 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9062 unsigned long flags;
9063
9064
9065 /*
9066 * This is called both by irq handlers and the reset code (to complete
9067 * lost pageflips) so needs the full irqsave spinlocks.
9068 *
9069 * NB: An MMIO update of the plane base pointer will also
9070 * generate a page-flip completion irq, i.e. every modeset
9071 * is also accompanied by a spurious intel_prepare_page_flip().
9072 */
9073 spin_lock_irqsave(&dev->event_lock, flags);
9074 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9075 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9076 spin_unlock_irqrestore(&dev->event_lock, flags);
9077 }
9078
9079 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9080 {
9081 /* Ensure that the work item is consistent when activating it ... */
9082 smp_wmb();
9083 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9084 /* and that it is marked active as soon as the irq could fire. */
9085 smp_wmb();
9086 }
9087
9088 static int intel_gen2_queue_flip(struct drm_device *dev,
9089 struct drm_crtc *crtc,
9090 struct drm_framebuffer *fb,
9091 struct drm_i915_gem_object *obj,
9092 struct intel_engine_cs *ring,
9093 uint32_t flags)
9094 {
9095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9096 u32 flip_mask;
9097 int ret;
9098
9099 ret = intel_ring_begin(ring, 6);
9100 if (ret)
9101 return ret;
9102
9103 /* Can't queue multiple flips, so wait for the previous
9104 * one to finish before executing the next.
9105 */
9106 if (intel_crtc->plane)
9107 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9108 else
9109 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9110 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9111 intel_ring_emit(ring, MI_NOOP);
9112 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9113 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9114 intel_ring_emit(ring, fb->pitches[0]);
9115 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9116 intel_ring_emit(ring, 0); /* aux display base address, unused */
9117
9118 intel_mark_page_flip_active(intel_crtc);
9119 __intel_ring_advance(ring);
9120 return 0;
9121 }
9122
9123 static int intel_gen3_queue_flip(struct drm_device *dev,
9124 struct drm_crtc *crtc,
9125 struct drm_framebuffer *fb,
9126 struct drm_i915_gem_object *obj,
9127 struct intel_engine_cs *ring,
9128 uint32_t flags)
9129 {
9130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9131 u32 flip_mask;
9132 int ret;
9133
9134 ret = intel_ring_begin(ring, 6);
9135 if (ret)
9136 return ret;
9137
9138 if (intel_crtc->plane)
9139 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9140 else
9141 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9142 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9143 intel_ring_emit(ring, MI_NOOP);
9144 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9145 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9146 intel_ring_emit(ring, fb->pitches[0]);
9147 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9148 intel_ring_emit(ring, MI_NOOP);
9149
9150 intel_mark_page_flip_active(intel_crtc);
9151 __intel_ring_advance(ring);
9152 return 0;
9153 }
9154
9155 static int intel_gen4_queue_flip(struct drm_device *dev,
9156 struct drm_crtc *crtc,
9157 struct drm_framebuffer *fb,
9158 struct drm_i915_gem_object *obj,
9159 struct intel_engine_cs *ring,
9160 uint32_t flags)
9161 {
9162 struct drm_i915_private *dev_priv = dev->dev_private;
9163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9164 uint32_t pf, pipesrc;
9165 int ret;
9166
9167 ret = intel_ring_begin(ring, 4);
9168 if (ret)
9169 return ret;
9170
9171 /* i965+ uses the linear or tiled offsets from the
9172 * Display Registers (which do not change across a page-flip)
9173 * so we need only reprogram the base address.
9174 */
9175 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9176 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9177 intel_ring_emit(ring, fb->pitches[0]);
9178 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9179 obj->tiling_mode);
9180
9181 /* XXX Enabling the panel-fitter across page-flip is so far
9182 * untested on non-native modes, so ignore it for now.
9183 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9184 */
9185 pf = 0;
9186 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9187 intel_ring_emit(ring, pf | pipesrc);
9188
9189 intel_mark_page_flip_active(intel_crtc);
9190 __intel_ring_advance(ring);
9191 return 0;
9192 }
9193
9194 static int intel_gen6_queue_flip(struct drm_device *dev,
9195 struct drm_crtc *crtc,
9196 struct drm_framebuffer *fb,
9197 struct drm_i915_gem_object *obj,
9198 struct intel_engine_cs *ring,
9199 uint32_t flags)
9200 {
9201 struct drm_i915_private *dev_priv = dev->dev_private;
9202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9203 uint32_t pf, pipesrc;
9204 int ret;
9205
9206 ret = intel_ring_begin(ring, 4);
9207 if (ret)
9208 return ret;
9209
9210 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9211 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9212 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9213 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9214
9215 /* Contrary to the suggestions in the documentation,
9216 * "Enable Panel Fitter" does not seem to be required when page
9217 * flipping with a non-native mode, and worse causes a normal
9218 * modeset to fail.
9219 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9220 */
9221 pf = 0;
9222 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9223 intel_ring_emit(ring, pf | pipesrc);
9224
9225 intel_mark_page_flip_active(intel_crtc);
9226 __intel_ring_advance(ring);
9227 return 0;
9228 }
9229
9230 static int intel_gen7_queue_flip(struct drm_device *dev,
9231 struct drm_crtc *crtc,
9232 struct drm_framebuffer *fb,
9233 struct drm_i915_gem_object *obj,
9234 struct intel_engine_cs *ring,
9235 uint32_t flags)
9236 {
9237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9238 uint32_t plane_bit = 0;
9239 int len, ret;
9240
9241 switch (intel_crtc->plane) {
9242 case PLANE_A:
9243 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9244 break;
9245 case PLANE_B:
9246 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9247 break;
9248 case PLANE_C:
9249 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9250 break;
9251 default:
9252 WARN_ONCE(1, "unknown plane in flip command\n");
9253 return -ENODEV;
9254 }
9255
9256 len = 4;
9257 if (ring->id == RCS) {
9258 len += 6;
9259 /*
9260 * On Gen 8, SRM is now taking an extra dword to accommodate
9261 * 48bits addresses, and we need a NOOP for the batch size to
9262 * stay even.
9263 */
9264 if (IS_GEN8(dev))
9265 len += 2;
9266 }
9267
9268 /*
9269 * BSpec MI_DISPLAY_FLIP for IVB:
9270 * "The full packet must be contained within the same cache line."
9271 *
9272 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9273 * cacheline, if we ever start emitting more commands before
9274 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9275 * then do the cacheline alignment, and finally emit the
9276 * MI_DISPLAY_FLIP.
9277 */
9278 ret = intel_ring_cacheline_align(ring);
9279 if (ret)
9280 return ret;
9281
9282 ret = intel_ring_begin(ring, len);
9283 if (ret)
9284 return ret;
9285
9286 /* Unmask the flip-done completion message. Note that the bspec says that
9287 * we should do this for both the BCS and RCS, and that we must not unmask
9288 * more than one flip event at any time (or ensure that one flip message
9289 * can be sent by waiting for flip-done prior to queueing new flips).
9290 * Experimentation says that BCS works despite DERRMR masking all
9291 * flip-done completion events and that unmasking all planes at once
9292 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9293 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9294 */
9295 if (ring->id == RCS) {
9296 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9297 intel_ring_emit(ring, DERRMR);
9298 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9299 DERRMR_PIPEB_PRI_FLIP_DONE |
9300 DERRMR_PIPEC_PRI_FLIP_DONE));
9301 if (IS_GEN8(dev))
9302 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9303 MI_SRM_LRM_GLOBAL_GTT);
9304 else
9305 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9306 MI_SRM_LRM_GLOBAL_GTT);
9307 intel_ring_emit(ring, DERRMR);
9308 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9309 if (IS_GEN8(dev)) {
9310 intel_ring_emit(ring, 0);
9311 intel_ring_emit(ring, MI_NOOP);
9312 }
9313 }
9314
9315 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9316 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9317 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9318 intel_ring_emit(ring, (MI_NOOP));
9319
9320 intel_mark_page_flip_active(intel_crtc);
9321 __intel_ring_advance(ring);
9322 return 0;
9323 }
9324
9325 static bool use_mmio_flip(struct intel_engine_cs *ring,
9326 struct drm_i915_gem_object *obj)
9327 {
9328 /*
9329 * This is not being used for older platforms, because
9330 * non-availability of flip done interrupt forces us to use
9331 * CS flips. Older platforms derive flip done using some clever
9332 * tricks involving the flip_pending status bits and vblank irqs.
9333 * So using MMIO flips there would disrupt this mechanism.
9334 */
9335
9336 if (ring == NULL)
9337 return true;
9338
9339 if (INTEL_INFO(ring->dev)->gen < 5)
9340 return false;
9341
9342 if (i915.use_mmio_flip < 0)
9343 return false;
9344 else if (i915.use_mmio_flip > 0)
9345 return true;
9346 else if (i915.enable_execlists)
9347 return true;
9348 else
9349 return ring != i915_gem_request_get_ring(obj->last_read_req);
9350 }
9351
9352 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9353 {
9354 struct drm_device *dev = intel_crtc->base.dev;
9355 struct drm_i915_private *dev_priv = dev->dev_private;
9356 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9357 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9358 struct drm_i915_gem_object *obj = intel_fb->obj;
9359 const enum pipe pipe = intel_crtc->pipe;
9360 u32 ctl, stride;
9361
9362 ctl = I915_READ(PLANE_CTL(pipe, 0));
9363 ctl &= ~PLANE_CTL_TILED_MASK;
9364 if (obj->tiling_mode == I915_TILING_X)
9365 ctl |= PLANE_CTL_TILED_X;
9366
9367 /*
9368 * The stride is either expressed as a multiple of 64 bytes chunks for
9369 * linear buffers or in number of tiles for tiled buffers.
9370 */
9371 stride = fb->pitches[0] >> 6;
9372 if (obj->tiling_mode == I915_TILING_X)
9373 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9374
9375 /*
9376 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9377 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9378 */
9379 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9380 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9381
9382 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9383 POSTING_READ(PLANE_SURF(pipe, 0));
9384 }
9385
9386 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9387 {
9388 struct drm_device *dev = intel_crtc->base.dev;
9389 struct drm_i915_private *dev_priv = dev->dev_private;
9390 struct intel_framebuffer *intel_fb =
9391 to_intel_framebuffer(intel_crtc->base.primary->fb);
9392 struct drm_i915_gem_object *obj = intel_fb->obj;
9393 u32 dspcntr;
9394 u32 reg;
9395
9396 reg = DSPCNTR(intel_crtc->plane);
9397 dspcntr = I915_READ(reg);
9398
9399 if (obj->tiling_mode != I915_TILING_NONE)
9400 dspcntr |= DISPPLANE_TILED;
9401 else
9402 dspcntr &= ~DISPPLANE_TILED;
9403
9404 I915_WRITE(reg, dspcntr);
9405
9406 I915_WRITE(DSPSURF(intel_crtc->plane),
9407 intel_crtc->unpin_work->gtt_offset);
9408 POSTING_READ(DSPSURF(intel_crtc->plane));
9409
9410 }
9411
9412 /*
9413 * XXX: This is the temporary way to update the plane registers until we get
9414 * around to using the usual plane update functions for MMIO flips
9415 */
9416 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9417 {
9418 struct drm_device *dev = intel_crtc->base.dev;
9419 bool atomic_update;
9420 u32 start_vbl_count;
9421
9422 intel_mark_page_flip_active(intel_crtc);
9423
9424 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9425
9426 if (INTEL_INFO(dev)->gen >= 9)
9427 skl_do_mmio_flip(intel_crtc);
9428 else
9429 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9430 ilk_do_mmio_flip(intel_crtc);
9431
9432 if (atomic_update)
9433 intel_pipe_update_end(intel_crtc, start_vbl_count);
9434 }
9435
9436 static void intel_mmio_flip_work_func(struct work_struct *work)
9437 {
9438 struct intel_crtc *crtc =
9439 container_of(work, struct intel_crtc, mmio_flip.work);
9440 struct intel_mmio_flip *mmio_flip;
9441
9442 mmio_flip = &crtc->mmio_flip;
9443 if (mmio_flip->req)
9444 WARN_ON(__i915_wait_request(mmio_flip->req,
9445 crtc->reset_counter,
9446 false, NULL, NULL) != 0);
9447
9448 intel_do_mmio_flip(crtc);
9449 if (mmio_flip->req) {
9450 mutex_lock(&crtc->base.dev->struct_mutex);
9451 i915_gem_request_assign(&mmio_flip->req, NULL);
9452 mutex_unlock(&crtc->base.dev->struct_mutex);
9453 }
9454 }
9455
9456 static int intel_queue_mmio_flip(struct drm_device *dev,
9457 struct drm_crtc *crtc,
9458 struct drm_framebuffer *fb,
9459 struct drm_i915_gem_object *obj,
9460 struct intel_engine_cs *ring,
9461 uint32_t flags)
9462 {
9463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9464
9465 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9466 obj->last_write_req);
9467
9468 schedule_work(&intel_crtc->mmio_flip.work);
9469
9470 return 0;
9471 }
9472
9473 static int intel_gen9_queue_flip(struct drm_device *dev,
9474 struct drm_crtc *crtc,
9475 struct drm_framebuffer *fb,
9476 struct drm_i915_gem_object *obj,
9477 struct intel_engine_cs *ring,
9478 uint32_t flags)
9479 {
9480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9481 uint32_t plane = 0, stride;
9482 int ret;
9483
9484 switch(intel_crtc->pipe) {
9485 case PIPE_A:
9486 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9487 break;
9488 case PIPE_B:
9489 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9490 break;
9491 case PIPE_C:
9492 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9493 break;
9494 default:
9495 WARN_ONCE(1, "unknown plane in flip command\n");
9496 return -ENODEV;
9497 }
9498
9499 switch (obj->tiling_mode) {
9500 case I915_TILING_NONE:
9501 stride = fb->pitches[0] >> 6;
9502 break;
9503 case I915_TILING_X:
9504 stride = fb->pitches[0] >> 9;
9505 break;
9506 default:
9507 WARN_ONCE(1, "unknown tiling in flip command\n");
9508 return -ENODEV;
9509 }
9510
9511 ret = intel_ring_begin(ring, 10);
9512 if (ret)
9513 return ret;
9514
9515 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9516 intel_ring_emit(ring, DERRMR);
9517 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9518 DERRMR_PIPEB_PRI_FLIP_DONE |
9519 DERRMR_PIPEC_PRI_FLIP_DONE));
9520 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9521 MI_SRM_LRM_GLOBAL_GTT);
9522 intel_ring_emit(ring, DERRMR);
9523 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9524 intel_ring_emit(ring, 0);
9525
9526 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9527 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9528 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9529
9530 intel_mark_page_flip_active(intel_crtc);
9531 __intel_ring_advance(ring);
9532
9533 return 0;
9534 }
9535
9536 static int intel_default_queue_flip(struct drm_device *dev,
9537 struct drm_crtc *crtc,
9538 struct drm_framebuffer *fb,
9539 struct drm_i915_gem_object *obj,
9540 struct intel_engine_cs *ring,
9541 uint32_t flags)
9542 {
9543 return -ENODEV;
9544 }
9545
9546 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9547 struct drm_crtc *crtc)
9548 {
9549 struct drm_i915_private *dev_priv = dev->dev_private;
9550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9551 struct intel_unpin_work *work = intel_crtc->unpin_work;
9552 u32 addr;
9553
9554 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9555 return true;
9556
9557 if (!work->enable_stall_check)
9558 return false;
9559
9560 if (work->flip_ready_vblank == 0) {
9561 if (work->flip_queued_req &&
9562 !i915_gem_request_completed(work->flip_queued_req, true))
9563 return false;
9564
9565 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9566 }
9567
9568 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9569 return false;
9570
9571 /* Potential stall - if we see that the flip has happened,
9572 * assume a missed interrupt. */
9573 if (INTEL_INFO(dev)->gen >= 4)
9574 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9575 else
9576 addr = I915_READ(DSPADDR(intel_crtc->plane));
9577
9578 /* There is a potential issue here with a false positive after a flip
9579 * to the same address. We could address this by checking for a
9580 * non-incrementing frame counter.
9581 */
9582 return addr == work->gtt_offset;
9583 }
9584
9585 void intel_check_page_flip(struct drm_device *dev, int pipe)
9586 {
9587 struct drm_i915_private *dev_priv = dev->dev_private;
9588 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9590
9591 WARN_ON(!in_irq());
9592
9593 if (crtc == NULL)
9594 return;
9595
9596 spin_lock(&dev->event_lock);
9597 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9598 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9599 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9600 page_flip_completed(intel_crtc);
9601 }
9602 spin_unlock(&dev->event_lock);
9603 }
9604
9605 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9606 struct drm_framebuffer *fb,
9607 struct drm_pending_vblank_event *event,
9608 uint32_t page_flip_flags)
9609 {
9610 struct drm_device *dev = crtc->dev;
9611 struct drm_i915_private *dev_priv = dev->dev_private;
9612 struct drm_framebuffer *old_fb = crtc->primary->fb;
9613 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9615 struct drm_plane *primary = crtc->primary;
9616 struct intel_plane *intel_plane = to_intel_plane(primary);
9617 enum pipe pipe = intel_crtc->pipe;
9618 struct intel_unpin_work *work;
9619 struct intel_engine_cs *ring;
9620 int ret;
9621
9622 /*
9623 * drm_mode_page_flip_ioctl() should already catch this, but double
9624 * check to be safe. In the future we may enable pageflipping from
9625 * a disabled primary plane.
9626 */
9627 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9628 return -EBUSY;
9629
9630 /* Can't change pixel format via MI display flips. */
9631 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9632 return -EINVAL;
9633
9634 /*
9635 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9636 * Note that pitch changes could also affect these register.
9637 */
9638 if (INTEL_INFO(dev)->gen > 3 &&
9639 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9640 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9641 return -EINVAL;
9642
9643 if (i915_terminally_wedged(&dev_priv->gpu_error))
9644 goto out_hang;
9645
9646 work = kzalloc(sizeof(*work), GFP_KERNEL);
9647 if (work == NULL)
9648 return -ENOMEM;
9649
9650 work->event = event;
9651 work->crtc = crtc;
9652 work->old_fb_obj = intel_fb_obj(old_fb);
9653 INIT_WORK(&work->work, intel_unpin_work_fn);
9654
9655 ret = drm_crtc_vblank_get(crtc);
9656 if (ret)
9657 goto free_work;
9658
9659 /* We borrow the event spin lock for protecting unpin_work */
9660 spin_lock_irq(&dev->event_lock);
9661 if (intel_crtc->unpin_work) {
9662 /* Before declaring the flip queue wedged, check if
9663 * the hardware completed the operation behind our backs.
9664 */
9665 if (__intel_pageflip_stall_check(dev, crtc)) {
9666 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9667 page_flip_completed(intel_crtc);
9668 } else {
9669 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9670 spin_unlock_irq(&dev->event_lock);
9671
9672 drm_crtc_vblank_put(crtc);
9673 kfree(work);
9674 return -EBUSY;
9675 }
9676 }
9677 intel_crtc->unpin_work = work;
9678 spin_unlock_irq(&dev->event_lock);
9679
9680 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9681 flush_workqueue(dev_priv->wq);
9682
9683 ret = i915_mutex_lock_interruptible(dev);
9684 if (ret)
9685 goto cleanup;
9686
9687 /* Reference the objects for the scheduled work. */
9688 drm_gem_object_reference(&work->old_fb_obj->base);
9689 drm_gem_object_reference(&obj->base);
9690
9691 crtc->primary->fb = fb;
9692
9693 work->pending_flip_obj = obj;
9694
9695 atomic_inc(&intel_crtc->unpin_work_count);
9696 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9697
9698 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9699 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9700
9701 if (IS_VALLEYVIEW(dev)) {
9702 ring = &dev_priv->ring[BCS];
9703 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9704 /* vlv: DISPLAY_FLIP fails to change tiling */
9705 ring = NULL;
9706 } else if (IS_IVYBRIDGE(dev)) {
9707 ring = &dev_priv->ring[BCS];
9708 } else if (INTEL_INFO(dev)->gen >= 7) {
9709 ring = i915_gem_request_get_ring(obj->last_read_req);
9710 if (ring == NULL || ring->id != RCS)
9711 ring = &dev_priv->ring[BCS];
9712 } else {
9713 ring = &dev_priv->ring[RCS];
9714 }
9715
9716 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9717 if (ret)
9718 goto cleanup_pending;
9719
9720 work->gtt_offset =
9721 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9722
9723 if (use_mmio_flip(ring, obj)) {
9724 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9725 page_flip_flags);
9726 if (ret)
9727 goto cleanup_unpin;
9728
9729 i915_gem_request_assign(&work->flip_queued_req,
9730 obj->last_write_req);
9731 } else {
9732 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9733 page_flip_flags);
9734 if (ret)
9735 goto cleanup_unpin;
9736
9737 i915_gem_request_assign(&work->flip_queued_req,
9738 intel_ring_get_request(ring));
9739 }
9740
9741 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9742 work->enable_stall_check = true;
9743
9744 i915_gem_track_fb(work->old_fb_obj, obj,
9745 INTEL_FRONTBUFFER_PRIMARY(pipe));
9746
9747 intel_fbc_disable(dev);
9748 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9749 mutex_unlock(&dev->struct_mutex);
9750
9751 trace_i915_flip_request(intel_crtc->plane, obj);
9752
9753 return 0;
9754
9755 cleanup_unpin:
9756 intel_unpin_fb_obj(obj);
9757 cleanup_pending:
9758 atomic_dec(&intel_crtc->unpin_work_count);
9759 crtc->primary->fb = old_fb;
9760 drm_gem_object_unreference(&work->old_fb_obj->base);
9761 drm_gem_object_unreference(&obj->base);
9762 mutex_unlock(&dev->struct_mutex);
9763
9764 cleanup:
9765 spin_lock_irq(&dev->event_lock);
9766 intel_crtc->unpin_work = NULL;
9767 spin_unlock_irq(&dev->event_lock);
9768
9769 drm_crtc_vblank_put(crtc);
9770 free_work:
9771 kfree(work);
9772
9773 if (ret == -EIO) {
9774 out_hang:
9775 ret = primary->funcs->update_plane(primary, crtc, fb,
9776 intel_plane->crtc_x,
9777 intel_plane->crtc_y,
9778 intel_plane->crtc_h,
9779 intel_plane->crtc_w,
9780 intel_plane->src_x,
9781 intel_plane->src_y,
9782 intel_plane->src_h,
9783 intel_plane->src_w);
9784 if (ret == 0 && event) {
9785 spin_lock_irq(&dev->event_lock);
9786 drm_send_vblank_event(dev, pipe, event);
9787 spin_unlock_irq(&dev->event_lock);
9788 }
9789 }
9790 return ret;
9791 }
9792
9793 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9794 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9795 .load_lut = intel_crtc_load_lut,
9796 };
9797
9798 /**
9799 * intel_modeset_update_staged_output_state
9800 *
9801 * Updates the staged output configuration state, e.g. after we've read out the
9802 * current hw state.
9803 */
9804 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9805 {
9806 struct intel_crtc *crtc;
9807 struct intel_encoder *encoder;
9808 struct intel_connector *connector;
9809
9810 list_for_each_entry(connector, &dev->mode_config.connector_list,
9811 base.head) {
9812 connector->new_encoder =
9813 to_intel_encoder(connector->base.encoder);
9814 }
9815
9816 for_each_intel_encoder(dev, encoder) {
9817 encoder->new_crtc =
9818 to_intel_crtc(encoder->base.crtc);
9819 }
9820
9821 for_each_intel_crtc(dev, crtc) {
9822 crtc->new_enabled = crtc->base.enabled;
9823
9824 if (crtc->new_enabled)
9825 crtc->new_config = &crtc->config;
9826 else
9827 crtc->new_config = NULL;
9828 }
9829 }
9830
9831 /**
9832 * intel_modeset_commit_output_state
9833 *
9834 * This function copies the stage display pipe configuration to the real one.
9835 */
9836 static void intel_modeset_commit_output_state(struct drm_device *dev)
9837 {
9838 struct intel_crtc *crtc;
9839 struct intel_encoder *encoder;
9840 struct intel_connector *connector;
9841
9842 list_for_each_entry(connector, &dev->mode_config.connector_list,
9843 base.head) {
9844 connector->base.encoder = &connector->new_encoder->base;
9845 }
9846
9847 for_each_intel_encoder(dev, encoder) {
9848 encoder->base.crtc = &encoder->new_crtc->base;
9849 }
9850
9851 for_each_intel_crtc(dev, crtc) {
9852 crtc->base.enabled = crtc->new_enabled;
9853 }
9854 }
9855
9856 static void
9857 connected_sink_compute_bpp(struct intel_connector *connector,
9858 struct intel_crtc_config *pipe_config)
9859 {
9860 int bpp = pipe_config->pipe_bpp;
9861
9862 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9863 connector->base.base.id,
9864 connector->base.name);
9865
9866 /* Don't use an invalid EDID bpc value */
9867 if (connector->base.display_info.bpc &&
9868 connector->base.display_info.bpc * 3 < bpp) {
9869 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9870 bpp, connector->base.display_info.bpc*3);
9871 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9872 }
9873
9874 /* Clamp bpp to 8 on screens without EDID 1.4 */
9875 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9876 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9877 bpp);
9878 pipe_config->pipe_bpp = 24;
9879 }
9880 }
9881
9882 static int
9883 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9884 struct drm_framebuffer *fb,
9885 struct intel_crtc_config *pipe_config)
9886 {
9887 struct drm_device *dev = crtc->base.dev;
9888 struct intel_connector *connector;
9889 int bpp;
9890
9891 switch (fb->pixel_format) {
9892 case DRM_FORMAT_C8:
9893 bpp = 8*3; /* since we go through a colormap */
9894 break;
9895 case DRM_FORMAT_XRGB1555:
9896 case DRM_FORMAT_ARGB1555:
9897 /* checked in intel_framebuffer_init already */
9898 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9899 return -EINVAL;
9900 case DRM_FORMAT_RGB565:
9901 bpp = 6*3; /* min is 18bpp */
9902 break;
9903 case DRM_FORMAT_XBGR8888:
9904 case DRM_FORMAT_ABGR8888:
9905 /* checked in intel_framebuffer_init already */
9906 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9907 return -EINVAL;
9908 case DRM_FORMAT_XRGB8888:
9909 case DRM_FORMAT_ARGB8888:
9910 bpp = 8*3;
9911 break;
9912 case DRM_FORMAT_XRGB2101010:
9913 case DRM_FORMAT_ARGB2101010:
9914 case DRM_FORMAT_XBGR2101010:
9915 case DRM_FORMAT_ABGR2101010:
9916 /* checked in intel_framebuffer_init already */
9917 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9918 return -EINVAL;
9919 bpp = 10*3;
9920 break;
9921 /* TODO: gen4+ supports 16 bpc floating point, too. */
9922 default:
9923 DRM_DEBUG_KMS("unsupported depth\n");
9924 return -EINVAL;
9925 }
9926
9927 pipe_config->pipe_bpp = bpp;
9928
9929 /* Clamp display bpp to EDID value */
9930 list_for_each_entry(connector, &dev->mode_config.connector_list,
9931 base.head) {
9932 if (!connector->new_encoder ||
9933 connector->new_encoder->new_crtc != crtc)
9934 continue;
9935
9936 connected_sink_compute_bpp(connector, pipe_config);
9937 }
9938
9939 return bpp;
9940 }
9941
9942 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9943 {
9944 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9945 "type: 0x%x flags: 0x%x\n",
9946 mode->crtc_clock,
9947 mode->crtc_hdisplay, mode->crtc_hsync_start,
9948 mode->crtc_hsync_end, mode->crtc_htotal,
9949 mode->crtc_vdisplay, mode->crtc_vsync_start,
9950 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9951 }
9952
9953 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9954 struct intel_crtc_config *pipe_config,
9955 const char *context)
9956 {
9957 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9958 context, pipe_name(crtc->pipe));
9959
9960 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9961 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9962 pipe_config->pipe_bpp, pipe_config->dither);
9963 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9964 pipe_config->has_pch_encoder,
9965 pipe_config->fdi_lanes,
9966 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9967 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9968 pipe_config->fdi_m_n.tu);
9969 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9970 pipe_config->has_dp_encoder,
9971 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9972 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9973 pipe_config->dp_m_n.tu);
9974
9975 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9976 pipe_config->has_dp_encoder,
9977 pipe_config->dp_m2_n2.gmch_m,
9978 pipe_config->dp_m2_n2.gmch_n,
9979 pipe_config->dp_m2_n2.link_m,
9980 pipe_config->dp_m2_n2.link_n,
9981 pipe_config->dp_m2_n2.tu);
9982
9983 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
9984 pipe_config->has_audio,
9985 pipe_config->has_infoframe);
9986
9987 DRM_DEBUG_KMS("requested mode:\n");
9988 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9989 DRM_DEBUG_KMS("adjusted mode:\n");
9990 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9991 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9992 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9993 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9994 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9995 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9996 pipe_config->gmch_pfit.control,
9997 pipe_config->gmch_pfit.pgm_ratios,
9998 pipe_config->gmch_pfit.lvds_border_bits);
9999 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10000 pipe_config->pch_pfit.pos,
10001 pipe_config->pch_pfit.size,
10002 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10003 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10004 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10005 }
10006
10007 static bool encoders_cloneable(const struct intel_encoder *a,
10008 const struct intel_encoder *b)
10009 {
10010 /* masks could be asymmetric, so check both ways */
10011 return a == b || (a->cloneable & (1 << b->type) &&
10012 b->cloneable & (1 << a->type));
10013 }
10014
10015 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10016 struct intel_encoder *encoder)
10017 {
10018 struct drm_device *dev = crtc->base.dev;
10019 struct intel_encoder *source_encoder;
10020
10021 for_each_intel_encoder(dev, source_encoder) {
10022 if (source_encoder->new_crtc != crtc)
10023 continue;
10024
10025 if (!encoders_cloneable(encoder, source_encoder))
10026 return false;
10027 }
10028
10029 return true;
10030 }
10031
10032 static bool check_encoder_cloning(struct intel_crtc *crtc)
10033 {
10034 struct drm_device *dev = crtc->base.dev;
10035 struct intel_encoder *encoder;
10036
10037 for_each_intel_encoder(dev, encoder) {
10038 if (encoder->new_crtc != crtc)
10039 continue;
10040
10041 if (!check_single_encoder_cloning(crtc, encoder))
10042 return false;
10043 }
10044
10045 return true;
10046 }
10047
10048 static bool check_digital_port_conflicts(struct drm_device *dev)
10049 {
10050 struct intel_connector *connector;
10051 unsigned int used_ports = 0;
10052
10053 /*
10054 * Walk the connector list instead of the encoder
10055 * list to detect the problem on ddi platforms
10056 * where there's just one encoder per digital port.
10057 */
10058 list_for_each_entry(connector,
10059 &dev->mode_config.connector_list, base.head) {
10060 struct intel_encoder *encoder = connector->new_encoder;
10061
10062 if (!encoder)
10063 continue;
10064
10065 WARN_ON(!encoder->new_crtc);
10066
10067 switch (encoder->type) {
10068 unsigned int port_mask;
10069 case INTEL_OUTPUT_UNKNOWN:
10070 if (WARN_ON(!HAS_DDI(dev)))
10071 break;
10072 case INTEL_OUTPUT_DISPLAYPORT:
10073 case INTEL_OUTPUT_HDMI:
10074 case INTEL_OUTPUT_EDP:
10075 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10076
10077 /* the same port mustn't appear more than once */
10078 if (used_ports & port_mask)
10079 return false;
10080
10081 used_ports |= port_mask;
10082 default:
10083 break;
10084 }
10085 }
10086
10087 return true;
10088 }
10089
10090 static struct intel_crtc_config *
10091 intel_modeset_pipe_config(struct drm_crtc *crtc,
10092 struct drm_framebuffer *fb,
10093 struct drm_display_mode *mode)
10094 {
10095 struct drm_device *dev = crtc->dev;
10096 struct intel_encoder *encoder;
10097 struct intel_crtc_config *pipe_config;
10098 int plane_bpp, ret = -EINVAL;
10099 bool retry = true;
10100
10101 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10102 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10103 return ERR_PTR(-EINVAL);
10104 }
10105
10106 if (!check_digital_port_conflicts(dev)) {
10107 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10108 return ERR_PTR(-EINVAL);
10109 }
10110
10111 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10112 if (!pipe_config)
10113 return ERR_PTR(-ENOMEM);
10114
10115 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10116 drm_mode_copy(&pipe_config->requested_mode, mode);
10117
10118 pipe_config->cpu_transcoder =
10119 (enum transcoder) to_intel_crtc(crtc)->pipe;
10120 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10121
10122 /*
10123 * Sanitize sync polarity flags based on requested ones. If neither
10124 * positive or negative polarity is requested, treat this as meaning
10125 * negative polarity.
10126 */
10127 if (!(pipe_config->adjusted_mode.flags &
10128 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10129 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10130
10131 if (!(pipe_config->adjusted_mode.flags &
10132 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10133 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10134
10135 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10136 * plane pixel format and any sink constraints into account. Returns the
10137 * source plane bpp so that dithering can be selected on mismatches
10138 * after encoders and crtc also have had their say. */
10139 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10140 fb, pipe_config);
10141 if (plane_bpp < 0)
10142 goto fail;
10143
10144 /*
10145 * Determine the real pipe dimensions. Note that stereo modes can
10146 * increase the actual pipe size due to the frame doubling and
10147 * insertion of additional space for blanks between the frame. This
10148 * is stored in the crtc timings. We use the requested mode to do this
10149 * computation to clearly distinguish it from the adjusted mode, which
10150 * can be changed by the connectors in the below retry loop.
10151 */
10152 drm_crtc_get_hv_timing(&pipe_config->requested_mode,
10153 &pipe_config->pipe_src_w,
10154 &pipe_config->pipe_src_h);
10155
10156 encoder_retry:
10157 /* Ensure the port clock defaults are reset when retrying. */
10158 pipe_config->port_clock = 0;
10159 pipe_config->pixel_multiplier = 1;
10160
10161 /* Fill in default crtc timings, allow encoders to overwrite them. */
10162 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10163
10164 /* Pass our mode to the connectors and the CRTC to give them a chance to
10165 * adjust it according to limitations or connector properties, and also
10166 * a chance to reject the mode entirely.
10167 */
10168 for_each_intel_encoder(dev, encoder) {
10169
10170 if (&encoder->new_crtc->base != crtc)
10171 continue;
10172
10173 if (!(encoder->compute_config(encoder, pipe_config))) {
10174 DRM_DEBUG_KMS("Encoder config failure\n");
10175 goto fail;
10176 }
10177 }
10178
10179 /* Set default port clock if not overwritten by the encoder. Needs to be
10180 * done afterwards in case the encoder adjusts the mode. */
10181 if (!pipe_config->port_clock)
10182 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10183 * pipe_config->pixel_multiplier;
10184
10185 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10186 if (ret < 0) {
10187 DRM_DEBUG_KMS("CRTC fixup failed\n");
10188 goto fail;
10189 }
10190
10191 if (ret == RETRY) {
10192 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10193 ret = -EINVAL;
10194 goto fail;
10195 }
10196
10197 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10198 retry = false;
10199 goto encoder_retry;
10200 }
10201
10202 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10203 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10204 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10205
10206 return pipe_config;
10207 fail:
10208 kfree(pipe_config);
10209 return ERR_PTR(ret);
10210 }
10211
10212 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10213 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10214 static void
10215 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10216 unsigned *prepare_pipes, unsigned *disable_pipes)
10217 {
10218 struct intel_crtc *intel_crtc;
10219 struct drm_device *dev = crtc->dev;
10220 struct intel_encoder *encoder;
10221 struct intel_connector *connector;
10222 struct drm_crtc *tmp_crtc;
10223
10224 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10225
10226 /* Check which crtcs have changed outputs connected to them, these need
10227 * to be part of the prepare_pipes mask. We don't (yet) support global
10228 * modeset across multiple crtcs, so modeset_pipes will only have one
10229 * bit set at most. */
10230 list_for_each_entry(connector, &dev->mode_config.connector_list,
10231 base.head) {
10232 if (connector->base.encoder == &connector->new_encoder->base)
10233 continue;
10234
10235 if (connector->base.encoder) {
10236 tmp_crtc = connector->base.encoder->crtc;
10237
10238 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10239 }
10240
10241 if (connector->new_encoder)
10242 *prepare_pipes |=
10243 1 << connector->new_encoder->new_crtc->pipe;
10244 }
10245
10246 for_each_intel_encoder(dev, encoder) {
10247 if (encoder->base.crtc == &encoder->new_crtc->base)
10248 continue;
10249
10250 if (encoder->base.crtc) {
10251 tmp_crtc = encoder->base.crtc;
10252
10253 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10254 }
10255
10256 if (encoder->new_crtc)
10257 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10258 }
10259
10260 /* Check for pipes that will be enabled/disabled ... */
10261 for_each_intel_crtc(dev, intel_crtc) {
10262 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10263 continue;
10264
10265 if (!intel_crtc->new_enabled)
10266 *disable_pipes |= 1 << intel_crtc->pipe;
10267 else
10268 *prepare_pipes |= 1 << intel_crtc->pipe;
10269 }
10270
10271
10272 /* set_mode is also used to update properties on life display pipes. */
10273 intel_crtc = to_intel_crtc(crtc);
10274 if (intel_crtc->new_enabled)
10275 *prepare_pipes |= 1 << intel_crtc->pipe;
10276
10277 /*
10278 * For simplicity do a full modeset on any pipe where the output routing
10279 * changed. We could be more clever, but that would require us to be
10280 * more careful with calling the relevant encoder->mode_set functions.
10281 */
10282 if (*prepare_pipes)
10283 *modeset_pipes = *prepare_pipes;
10284
10285 /* ... and mask these out. */
10286 *modeset_pipes &= ~(*disable_pipes);
10287 *prepare_pipes &= ~(*disable_pipes);
10288
10289 /*
10290 * HACK: We don't (yet) fully support global modesets. intel_set_config
10291 * obies this rule, but the modeset restore mode of
10292 * intel_modeset_setup_hw_state does not.
10293 */
10294 *modeset_pipes &= 1 << intel_crtc->pipe;
10295 *prepare_pipes &= 1 << intel_crtc->pipe;
10296
10297 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10298 *modeset_pipes, *prepare_pipes, *disable_pipes);
10299 }
10300
10301 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10302 {
10303 struct drm_encoder *encoder;
10304 struct drm_device *dev = crtc->dev;
10305
10306 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10307 if (encoder->crtc == crtc)
10308 return true;
10309
10310 return false;
10311 }
10312
10313 static void
10314 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10315 {
10316 struct drm_i915_private *dev_priv = dev->dev_private;
10317 struct intel_encoder *intel_encoder;
10318 struct intel_crtc *intel_crtc;
10319 struct drm_connector *connector;
10320
10321 intel_shared_dpll_commit(dev_priv);
10322
10323 for_each_intel_encoder(dev, intel_encoder) {
10324 if (!intel_encoder->base.crtc)
10325 continue;
10326
10327 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10328
10329 if (prepare_pipes & (1 << intel_crtc->pipe))
10330 intel_encoder->connectors_active = false;
10331 }
10332
10333 intel_modeset_commit_output_state(dev);
10334
10335 /* Double check state. */
10336 for_each_intel_crtc(dev, intel_crtc) {
10337 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10338 WARN_ON(intel_crtc->new_config &&
10339 intel_crtc->new_config != &intel_crtc->config);
10340 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10341 }
10342
10343 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10344 if (!connector->encoder || !connector->encoder->crtc)
10345 continue;
10346
10347 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10348
10349 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10350 struct drm_property *dpms_property =
10351 dev->mode_config.dpms_property;
10352
10353 connector->dpms = DRM_MODE_DPMS_ON;
10354 drm_object_property_set_value(&connector->base,
10355 dpms_property,
10356 DRM_MODE_DPMS_ON);
10357
10358 intel_encoder = to_intel_encoder(connector->encoder);
10359 intel_encoder->connectors_active = true;
10360 }
10361 }
10362
10363 }
10364
10365 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10366 {
10367 int diff;
10368
10369 if (clock1 == clock2)
10370 return true;
10371
10372 if (!clock1 || !clock2)
10373 return false;
10374
10375 diff = abs(clock1 - clock2);
10376
10377 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10378 return true;
10379
10380 return false;
10381 }
10382
10383 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10384 list_for_each_entry((intel_crtc), \
10385 &(dev)->mode_config.crtc_list, \
10386 base.head) \
10387 if (mask & (1 <<(intel_crtc)->pipe))
10388
10389 static bool
10390 intel_pipe_config_compare(struct drm_device *dev,
10391 struct intel_crtc_config *current_config,
10392 struct intel_crtc_config *pipe_config)
10393 {
10394 #define PIPE_CONF_CHECK_X(name) \
10395 if (current_config->name != pipe_config->name) { \
10396 DRM_ERROR("mismatch in " #name " " \
10397 "(expected 0x%08x, found 0x%08x)\n", \
10398 current_config->name, \
10399 pipe_config->name); \
10400 return false; \
10401 }
10402
10403 #define PIPE_CONF_CHECK_I(name) \
10404 if (current_config->name != pipe_config->name) { \
10405 DRM_ERROR("mismatch in " #name " " \
10406 "(expected %i, found %i)\n", \
10407 current_config->name, \
10408 pipe_config->name); \
10409 return false; \
10410 }
10411
10412 /* This is required for BDW+ where there is only one set of registers for
10413 * switching between high and low RR.
10414 * This macro can be used whenever a comparison has to be made between one
10415 * hw state and multiple sw state variables.
10416 */
10417 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10418 if ((current_config->name != pipe_config->name) && \
10419 (current_config->alt_name != pipe_config->name)) { \
10420 DRM_ERROR("mismatch in " #name " " \
10421 "(expected %i or %i, found %i)\n", \
10422 current_config->name, \
10423 current_config->alt_name, \
10424 pipe_config->name); \
10425 return false; \
10426 }
10427
10428 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10429 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10430 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10431 "(expected %i, found %i)\n", \
10432 current_config->name & (mask), \
10433 pipe_config->name & (mask)); \
10434 return false; \
10435 }
10436
10437 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10438 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10439 DRM_ERROR("mismatch in " #name " " \
10440 "(expected %i, found %i)\n", \
10441 current_config->name, \
10442 pipe_config->name); \
10443 return false; \
10444 }
10445
10446 #define PIPE_CONF_QUIRK(quirk) \
10447 ((current_config->quirks | pipe_config->quirks) & (quirk))
10448
10449 PIPE_CONF_CHECK_I(cpu_transcoder);
10450
10451 PIPE_CONF_CHECK_I(has_pch_encoder);
10452 PIPE_CONF_CHECK_I(fdi_lanes);
10453 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10454 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10455 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10456 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10457 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10458
10459 PIPE_CONF_CHECK_I(has_dp_encoder);
10460
10461 if (INTEL_INFO(dev)->gen < 8) {
10462 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10463 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10464 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10465 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10466 PIPE_CONF_CHECK_I(dp_m_n.tu);
10467
10468 if (current_config->has_drrs) {
10469 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10470 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10471 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10472 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10473 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10474 }
10475 } else {
10476 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10477 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10478 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10479 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10480 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10481 }
10482
10483 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10484 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10485 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10486 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10487 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10488 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10489
10490 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10491 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10492 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10493 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10494 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10495 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10496
10497 PIPE_CONF_CHECK_I(pixel_multiplier);
10498 PIPE_CONF_CHECK_I(has_hdmi_sink);
10499 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10500 IS_VALLEYVIEW(dev))
10501 PIPE_CONF_CHECK_I(limited_color_range);
10502 PIPE_CONF_CHECK_I(has_infoframe);
10503
10504 PIPE_CONF_CHECK_I(has_audio);
10505
10506 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10507 DRM_MODE_FLAG_INTERLACE);
10508
10509 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10510 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10511 DRM_MODE_FLAG_PHSYNC);
10512 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10513 DRM_MODE_FLAG_NHSYNC);
10514 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10515 DRM_MODE_FLAG_PVSYNC);
10516 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10517 DRM_MODE_FLAG_NVSYNC);
10518 }
10519
10520 PIPE_CONF_CHECK_I(pipe_src_w);
10521 PIPE_CONF_CHECK_I(pipe_src_h);
10522
10523 /*
10524 * FIXME: BIOS likes to set up a cloned config with lvds+external
10525 * screen. Since we don't yet re-compute the pipe config when moving
10526 * just the lvds port away to another pipe the sw tracking won't match.
10527 *
10528 * Proper atomic modesets with recomputed global state will fix this.
10529 * Until then just don't check gmch state for inherited modes.
10530 */
10531 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10532 PIPE_CONF_CHECK_I(gmch_pfit.control);
10533 /* pfit ratios are autocomputed by the hw on gen4+ */
10534 if (INTEL_INFO(dev)->gen < 4)
10535 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10536 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10537 }
10538
10539 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10540 if (current_config->pch_pfit.enabled) {
10541 PIPE_CONF_CHECK_I(pch_pfit.pos);
10542 PIPE_CONF_CHECK_I(pch_pfit.size);
10543 }
10544
10545 /* BDW+ don't expose a synchronous way to read the state */
10546 if (IS_HASWELL(dev))
10547 PIPE_CONF_CHECK_I(ips_enabled);
10548
10549 PIPE_CONF_CHECK_I(double_wide);
10550
10551 PIPE_CONF_CHECK_X(ddi_pll_sel);
10552
10553 PIPE_CONF_CHECK_I(shared_dpll);
10554 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10555 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10556 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10557 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10558 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10559 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10560 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10561 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10562
10563 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10564 PIPE_CONF_CHECK_I(pipe_bpp);
10565
10566 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10567 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10568
10569 #undef PIPE_CONF_CHECK_X
10570 #undef PIPE_CONF_CHECK_I
10571 #undef PIPE_CONF_CHECK_I_ALT
10572 #undef PIPE_CONF_CHECK_FLAGS
10573 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10574 #undef PIPE_CONF_QUIRK
10575
10576 return true;
10577 }
10578
10579 static void check_wm_state(struct drm_device *dev)
10580 {
10581 struct drm_i915_private *dev_priv = dev->dev_private;
10582 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10583 struct intel_crtc *intel_crtc;
10584 int plane;
10585
10586 if (INTEL_INFO(dev)->gen < 9)
10587 return;
10588
10589 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10590 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10591
10592 for_each_intel_crtc(dev, intel_crtc) {
10593 struct skl_ddb_entry *hw_entry, *sw_entry;
10594 const enum pipe pipe = intel_crtc->pipe;
10595
10596 if (!intel_crtc->active)
10597 continue;
10598
10599 /* planes */
10600 for_each_plane(pipe, plane) {
10601 hw_entry = &hw_ddb.plane[pipe][plane];
10602 sw_entry = &sw_ddb->plane[pipe][plane];
10603
10604 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10605 continue;
10606
10607 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10608 "(expected (%u,%u), found (%u,%u))\n",
10609 pipe_name(pipe), plane + 1,
10610 sw_entry->start, sw_entry->end,
10611 hw_entry->start, hw_entry->end);
10612 }
10613
10614 /* cursor */
10615 hw_entry = &hw_ddb.cursor[pipe];
10616 sw_entry = &sw_ddb->cursor[pipe];
10617
10618 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10619 continue;
10620
10621 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10622 "(expected (%u,%u), found (%u,%u))\n",
10623 pipe_name(pipe),
10624 sw_entry->start, sw_entry->end,
10625 hw_entry->start, hw_entry->end);
10626 }
10627 }
10628
10629 static void
10630 check_connector_state(struct drm_device *dev)
10631 {
10632 struct intel_connector *connector;
10633
10634 list_for_each_entry(connector, &dev->mode_config.connector_list,
10635 base.head) {
10636 /* This also checks the encoder/connector hw state with the
10637 * ->get_hw_state callbacks. */
10638 intel_connector_check_state(connector);
10639
10640 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10641 "connector's staged encoder doesn't match current encoder\n");
10642 }
10643 }
10644
10645 static void
10646 check_encoder_state(struct drm_device *dev)
10647 {
10648 struct intel_encoder *encoder;
10649 struct intel_connector *connector;
10650
10651 for_each_intel_encoder(dev, encoder) {
10652 bool enabled = false;
10653 bool active = false;
10654 enum pipe pipe, tracked_pipe;
10655
10656 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10657 encoder->base.base.id,
10658 encoder->base.name);
10659
10660 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10661 "encoder's stage crtc doesn't match current crtc\n");
10662 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10663 "encoder's active_connectors set, but no crtc\n");
10664
10665 list_for_each_entry(connector, &dev->mode_config.connector_list,
10666 base.head) {
10667 if (connector->base.encoder != &encoder->base)
10668 continue;
10669 enabled = true;
10670 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10671 active = true;
10672 }
10673 /*
10674 * for MST connectors if we unplug the connector is gone
10675 * away but the encoder is still connected to a crtc
10676 * until a modeset happens in response to the hotplug.
10677 */
10678 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10679 continue;
10680
10681 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10682 "encoder's enabled state mismatch "
10683 "(expected %i, found %i)\n",
10684 !!encoder->base.crtc, enabled);
10685 I915_STATE_WARN(active && !encoder->base.crtc,
10686 "active encoder with no crtc\n");
10687
10688 I915_STATE_WARN(encoder->connectors_active != active,
10689 "encoder's computed active state doesn't match tracked active state "
10690 "(expected %i, found %i)\n", active, encoder->connectors_active);
10691
10692 active = encoder->get_hw_state(encoder, &pipe);
10693 I915_STATE_WARN(active != encoder->connectors_active,
10694 "encoder's hw state doesn't match sw tracking "
10695 "(expected %i, found %i)\n",
10696 encoder->connectors_active, active);
10697
10698 if (!encoder->base.crtc)
10699 continue;
10700
10701 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10702 I915_STATE_WARN(active && pipe != tracked_pipe,
10703 "active encoder's pipe doesn't match"
10704 "(expected %i, found %i)\n",
10705 tracked_pipe, pipe);
10706
10707 }
10708 }
10709
10710 static void
10711 check_crtc_state(struct drm_device *dev)
10712 {
10713 struct drm_i915_private *dev_priv = dev->dev_private;
10714 struct intel_crtc *crtc;
10715 struct intel_encoder *encoder;
10716 struct intel_crtc_config pipe_config;
10717
10718 for_each_intel_crtc(dev, crtc) {
10719 bool enabled = false;
10720 bool active = false;
10721
10722 memset(&pipe_config, 0, sizeof(pipe_config));
10723
10724 DRM_DEBUG_KMS("[CRTC:%d]\n",
10725 crtc->base.base.id);
10726
10727 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10728 "active crtc, but not enabled in sw tracking\n");
10729
10730 for_each_intel_encoder(dev, encoder) {
10731 if (encoder->base.crtc != &crtc->base)
10732 continue;
10733 enabled = true;
10734 if (encoder->connectors_active)
10735 active = true;
10736 }
10737
10738 I915_STATE_WARN(active != crtc->active,
10739 "crtc's computed active state doesn't match tracked active state "
10740 "(expected %i, found %i)\n", active, crtc->active);
10741 I915_STATE_WARN(enabled != crtc->base.enabled,
10742 "crtc's computed enabled state doesn't match tracked enabled state "
10743 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10744
10745 active = dev_priv->display.get_pipe_config(crtc,
10746 &pipe_config);
10747
10748 /* hw state is inconsistent with the pipe quirk */
10749 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10750 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10751 active = crtc->active;
10752
10753 for_each_intel_encoder(dev, encoder) {
10754 enum pipe pipe;
10755 if (encoder->base.crtc != &crtc->base)
10756 continue;
10757 if (encoder->get_hw_state(encoder, &pipe))
10758 encoder->get_config(encoder, &pipe_config);
10759 }
10760
10761 I915_STATE_WARN(crtc->active != active,
10762 "crtc active state doesn't match with hw state "
10763 "(expected %i, found %i)\n", crtc->active, active);
10764
10765 if (active &&
10766 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10767 I915_STATE_WARN(1, "pipe state doesn't match!\n");
10768 intel_dump_pipe_config(crtc, &pipe_config,
10769 "[hw state]");
10770 intel_dump_pipe_config(crtc, &crtc->config,
10771 "[sw state]");
10772 }
10773 }
10774 }
10775
10776 static void
10777 check_shared_dpll_state(struct drm_device *dev)
10778 {
10779 struct drm_i915_private *dev_priv = dev->dev_private;
10780 struct intel_crtc *crtc;
10781 struct intel_dpll_hw_state dpll_hw_state;
10782 int i;
10783
10784 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10785 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10786 int enabled_crtcs = 0, active_crtcs = 0;
10787 bool active;
10788
10789 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10790
10791 DRM_DEBUG_KMS("%s\n", pll->name);
10792
10793 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10794
10795 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10796 "more active pll users than references: %i vs %i\n",
10797 pll->active, hweight32(pll->config.crtc_mask));
10798 I915_STATE_WARN(pll->active && !pll->on,
10799 "pll in active use but not on in sw tracking\n");
10800 I915_STATE_WARN(pll->on && !pll->active,
10801 "pll in on but not on in use in sw tracking\n");
10802 I915_STATE_WARN(pll->on != active,
10803 "pll on state mismatch (expected %i, found %i)\n",
10804 pll->on, active);
10805
10806 for_each_intel_crtc(dev, crtc) {
10807 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10808 enabled_crtcs++;
10809 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10810 active_crtcs++;
10811 }
10812 I915_STATE_WARN(pll->active != active_crtcs,
10813 "pll active crtcs mismatch (expected %i, found %i)\n",
10814 pll->active, active_crtcs);
10815 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10816 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10817 hweight32(pll->config.crtc_mask), enabled_crtcs);
10818
10819 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10820 sizeof(dpll_hw_state)),
10821 "pll hw state mismatch\n");
10822 }
10823 }
10824
10825 void
10826 intel_modeset_check_state(struct drm_device *dev)
10827 {
10828 check_wm_state(dev);
10829 check_connector_state(dev);
10830 check_encoder_state(dev);
10831 check_crtc_state(dev);
10832 check_shared_dpll_state(dev);
10833 }
10834
10835 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10836 int dotclock)
10837 {
10838 /*
10839 * FDI already provided one idea for the dotclock.
10840 * Yell if the encoder disagrees.
10841 */
10842 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10843 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10844 pipe_config->adjusted_mode.crtc_clock, dotclock);
10845 }
10846
10847 static void update_scanline_offset(struct intel_crtc *crtc)
10848 {
10849 struct drm_device *dev = crtc->base.dev;
10850
10851 /*
10852 * The scanline counter increments at the leading edge of hsync.
10853 *
10854 * On most platforms it starts counting from vtotal-1 on the
10855 * first active line. That means the scanline counter value is
10856 * always one less than what we would expect. Ie. just after
10857 * start of vblank, which also occurs at start of hsync (on the
10858 * last active line), the scanline counter will read vblank_start-1.
10859 *
10860 * On gen2 the scanline counter starts counting from 1 instead
10861 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10862 * to keep the value positive), instead of adding one.
10863 *
10864 * On HSW+ the behaviour of the scanline counter depends on the output
10865 * type. For DP ports it behaves like most other platforms, but on HDMI
10866 * there's an extra 1 line difference. So we need to add two instead of
10867 * one to the value.
10868 */
10869 if (IS_GEN2(dev)) {
10870 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10871 int vtotal;
10872
10873 vtotal = mode->crtc_vtotal;
10874 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10875 vtotal /= 2;
10876
10877 crtc->scanline_offset = vtotal - 1;
10878 } else if (HAS_DDI(dev) &&
10879 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10880 crtc->scanline_offset = 2;
10881 } else
10882 crtc->scanline_offset = 1;
10883 }
10884
10885 static struct intel_crtc_config *
10886 intel_modeset_compute_config(struct drm_crtc *crtc,
10887 struct drm_display_mode *mode,
10888 struct drm_framebuffer *fb,
10889 unsigned *modeset_pipes,
10890 unsigned *prepare_pipes,
10891 unsigned *disable_pipes)
10892 {
10893 struct intel_crtc_config *pipe_config = NULL;
10894
10895 intel_modeset_affected_pipes(crtc, modeset_pipes,
10896 prepare_pipes, disable_pipes);
10897
10898 if ((*modeset_pipes) == 0)
10899 goto out;
10900
10901 /*
10902 * Note this needs changes when we start tracking multiple modes
10903 * and crtcs. At that point we'll need to compute the whole config
10904 * (i.e. one pipe_config for each crtc) rather than just the one
10905 * for this crtc.
10906 */
10907 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10908 if (IS_ERR(pipe_config)) {
10909 goto out;
10910 }
10911 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10912 "[modeset]");
10913
10914 out:
10915 return pipe_config;
10916 }
10917
10918 static int __intel_set_mode(struct drm_crtc *crtc,
10919 struct drm_display_mode *mode,
10920 int x, int y, struct drm_framebuffer *fb,
10921 struct intel_crtc_config *pipe_config,
10922 unsigned modeset_pipes,
10923 unsigned prepare_pipes,
10924 unsigned disable_pipes)
10925 {
10926 struct drm_device *dev = crtc->dev;
10927 struct drm_i915_private *dev_priv = dev->dev_private;
10928 struct drm_display_mode *saved_mode;
10929 struct intel_crtc *intel_crtc;
10930 int ret = 0;
10931
10932 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10933 if (!saved_mode)
10934 return -ENOMEM;
10935
10936 *saved_mode = crtc->mode;
10937
10938 if (modeset_pipes)
10939 to_intel_crtc(crtc)->new_config = pipe_config;
10940
10941 /*
10942 * See if the config requires any additional preparation, e.g.
10943 * to adjust global state with pipes off. We need to do this
10944 * here so we can get the modeset_pipe updated config for the new
10945 * mode set on this crtc. For other crtcs we need to use the
10946 * adjusted_mode bits in the crtc directly.
10947 */
10948 if (IS_VALLEYVIEW(dev)) {
10949 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10950
10951 /* may have added more to prepare_pipes than we should */
10952 prepare_pipes &= ~disable_pipes;
10953 }
10954
10955 if (dev_priv->display.crtc_compute_clock) {
10956 unsigned clear_pipes = modeset_pipes | disable_pipes;
10957
10958 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10959 if (ret)
10960 goto done;
10961
10962 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10963 ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10964 if (ret) {
10965 intel_shared_dpll_abort_config(dev_priv);
10966 goto done;
10967 }
10968 }
10969 }
10970
10971 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10972 intel_crtc_disable(&intel_crtc->base);
10973
10974 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10975 if (intel_crtc->base.enabled)
10976 dev_priv->display.crtc_disable(&intel_crtc->base);
10977 }
10978
10979 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10980 * to set it here already despite that we pass it down the callchain.
10981 *
10982 * Note we'll need to fix this up when we start tracking multiple
10983 * pipes; here we assume a single modeset_pipe and only track the
10984 * single crtc and mode.
10985 */
10986 if (modeset_pipes) {
10987 crtc->mode = *mode;
10988 /* mode_set/enable/disable functions rely on a correct pipe
10989 * config. */
10990 to_intel_crtc(crtc)->config = *pipe_config;
10991 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10992
10993 /*
10994 * Calculate and store various constants which
10995 * are later needed by vblank and swap-completion
10996 * timestamping. They are derived from true hwmode.
10997 */
10998 drm_calc_timestamping_constants(crtc,
10999 &pipe_config->adjusted_mode);
11000 }
11001
11002 /* Only after disabling all output pipelines that will be changed can we
11003 * update the the output configuration. */
11004 intel_modeset_update_state(dev, prepare_pipes);
11005
11006 modeset_update_crtc_power_domains(dev);
11007
11008 /* Set up the DPLL and any encoders state that needs to adjust or depend
11009 * on the DPLL.
11010 */
11011 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11012 struct drm_plane *primary = intel_crtc->base.primary;
11013 int vdisplay, hdisplay;
11014
11015 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11016 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11017 fb, 0, 0,
11018 hdisplay, vdisplay,
11019 x << 16, y << 16,
11020 hdisplay << 16, vdisplay << 16);
11021 }
11022
11023 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11024 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11025 update_scanline_offset(intel_crtc);
11026
11027 dev_priv->display.crtc_enable(&intel_crtc->base);
11028 }
11029
11030 /* FIXME: add subpixel order */
11031 done:
11032 if (ret && crtc->enabled)
11033 crtc->mode = *saved_mode;
11034
11035 kfree(pipe_config);
11036 kfree(saved_mode);
11037 return ret;
11038 }
11039
11040 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11041 struct drm_display_mode *mode,
11042 int x, int y, struct drm_framebuffer *fb,
11043 struct intel_crtc_config *pipe_config,
11044 unsigned modeset_pipes,
11045 unsigned prepare_pipes,
11046 unsigned disable_pipes)
11047 {
11048 int ret;
11049
11050 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11051 prepare_pipes, disable_pipes);
11052
11053 if (ret == 0)
11054 intel_modeset_check_state(crtc->dev);
11055
11056 return ret;
11057 }
11058
11059 static int intel_set_mode(struct drm_crtc *crtc,
11060 struct drm_display_mode *mode,
11061 int x, int y, struct drm_framebuffer *fb)
11062 {
11063 struct intel_crtc_config *pipe_config;
11064 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11065
11066 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11067 &modeset_pipes,
11068 &prepare_pipes,
11069 &disable_pipes);
11070
11071 if (IS_ERR(pipe_config))
11072 return PTR_ERR(pipe_config);
11073
11074 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11075 modeset_pipes, prepare_pipes,
11076 disable_pipes);
11077 }
11078
11079 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11080 {
11081 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11082 }
11083
11084 #undef for_each_intel_crtc_masked
11085
11086 static void intel_set_config_free(struct intel_set_config *config)
11087 {
11088 if (!config)
11089 return;
11090
11091 kfree(config->save_connector_encoders);
11092 kfree(config->save_encoder_crtcs);
11093 kfree(config->save_crtc_enabled);
11094 kfree(config);
11095 }
11096
11097 static int intel_set_config_save_state(struct drm_device *dev,
11098 struct intel_set_config *config)
11099 {
11100 struct drm_crtc *crtc;
11101 struct drm_encoder *encoder;
11102 struct drm_connector *connector;
11103 int count;
11104
11105 config->save_crtc_enabled =
11106 kcalloc(dev->mode_config.num_crtc,
11107 sizeof(bool), GFP_KERNEL);
11108 if (!config->save_crtc_enabled)
11109 return -ENOMEM;
11110
11111 config->save_encoder_crtcs =
11112 kcalloc(dev->mode_config.num_encoder,
11113 sizeof(struct drm_crtc *), GFP_KERNEL);
11114 if (!config->save_encoder_crtcs)
11115 return -ENOMEM;
11116
11117 config->save_connector_encoders =
11118 kcalloc(dev->mode_config.num_connector,
11119 sizeof(struct drm_encoder *), GFP_KERNEL);
11120 if (!config->save_connector_encoders)
11121 return -ENOMEM;
11122
11123 /* Copy data. Note that driver private data is not affected.
11124 * Should anything bad happen only the expected state is
11125 * restored, not the drivers personal bookkeeping.
11126 */
11127 count = 0;
11128 for_each_crtc(dev, crtc) {
11129 config->save_crtc_enabled[count++] = crtc->enabled;
11130 }
11131
11132 count = 0;
11133 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11134 config->save_encoder_crtcs[count++] = encoder->crtc;
11135 }
11136
11137 count = 0;
11138 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11139 config->save_connector_encoders[count++] = connector->encoder;
11140 }
11141
11142 return 0;
11143 }
11144
11145 static void intel_set_config_restore_state(struct drm_device *dev,
11146 struct intel_set_config *config)
11147 {
11148 struct intel_crtc *crtc;
11149 struct intel_encoder *encoder;
11150 struct intel_connector *connector;
11151 int count;
11152
11153 count = 0;
11154 for_each_intel_crtc(dev, crtc) {
11155 crtc->new_enabled = config->save_crtc_enabled[count++];
11156
11157 if (crtc->new_enabled)
11158 crtc->new_config = &crtc->config;
11159 else
11160 crtc->new_config = NULL;
11161 }
11162
11163 count = 0;
11164 for_each_intel_encoder(dev, encoder) {
11165 encoder->new_crtc =
11166 to_intel_crtc(config->save_encoder_crtcs[count++]);
11167 }
11168
11169 count = 0;
11170 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11171 connector->new_encoder =
11172 to_intel_encoder(config->save_connector_encoders[count++]);
11173 }
11174 }
11175
11176 static bool
11177 is_crtc_connector_off(struct drm_mode_set *set)
11178 {
11179 int i;
11180
11181 if (set->num_connectors == 0)
11182 return false;
11183
11184 if (WARN_ON(set->connectors == NULL))
11185 return false;
11186
11187 for (i = 0; i < set->num_connectors; i++)
11188 if (set->connectors[i]->encoder &&
11189 set->connectors[i]->encoder->crtc == set->crtc &&
11190 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11191 return true;
11192
11193 return false;
11194 }
11195
11196 static void
11197 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11198 struct intel_set_config *config)
11199 {
11200
11201 /* We should be able to check here if the fb has the same properties
11202 * and then just flip_or_move it */
11203 if (is_crtc_connector_off(set)) {
11204 config->mode_changed = true;
11205 } else if (set->crtc->primary->fb != set->fb) {
11206 /*
11207 * If we have no fb, we can only flip as long as the crtc is
11208 * active, otherwise we need a full mode set. The crtc may
11209 * be active if we've only disabled the primary plane, or
11210 * in fastboot situations.
11211 */
11212 if (set->crtc->primary->fb == NULL) {
11213 struct intel_crtc *intel_crtc =
11214 to_intel_crtc(set->crtc);
11215
11216 if (intel_crtc->active) {
11217 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11218 config->fb_changed = true;
11219 } else {
11220 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11221 config->mode_changed = true;
11222 }
11223 } else if (set->fb == NULL) {
11224 config->mode_changed = true;
11225 } else if (set->fb->pixel_format !=
11226 set->crtc->primary->fb->pixel_format) {
11227 config->mode_changed = true;
11228 } else {
11229 config->fb_changed = true;
11230 }
11231 }
11232
11233 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11234 config->fb_changed = true;
11235
11236 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11237 DRM_DEBUG_KMS("modes are different, full mode set\n");
11238 drm_mode_debug_printmodeline(&set->crtc->mode);
11239 drm_mode_debug_printmodeline(set->mode);
11240 config->mode_changed = true;
11241 }
11242
11243 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11244 set->crtc->base.id, config->mode_changed, config->fb_changed);
11245 }
11246
11247 static int
11248 intel_modeset_stage_output_state(struct drm_device *dev,
11249 struct drm_mode_set *set,
11250 struct intel_set_config *config)
11251 {
11252 struct intel_connector *connector;
11253 struct intel_encoder *encoder;
11254 struct intel_crtc *crtc;
11255 int ro;
11256
11257 /* The upper layers ensure that we either disable a crtc or have a list
11258 * of connectors. For paranoia, double-check this. */
11259 WARN_ON(!set->fb && (set->num_connectors != 0));
11260 WARN_ON(set->fb && (set->num_connectors == 0));
11261
11262 list_for_each_entry(connector, &dev->mode_config.connector_list,
11263 base.head) {
11264 /* Otherwise traverse passed in connector list and get encoders
11265 * for them. */
11266 for (ro = 0; ro < set->num_connectors; ro++) {
11267 if (set->connectors[ro] == &connector->base) {
11268 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11269 break;
11270 }
11271 }
11272
11273 /* If we disable the crtc, disable all its connectors. Also, if
11274 * the connector is on the changing crtc but not on the new
11275 * connector list, disable it. */
11276 if ((!set->fb || ro == set->num_connectors) &&
11277 connector->base.encoder &&
11278 connector->base.encoder->crtc == set->crtc) {
11279 connector->new_encoder = NULL;
11280
11281 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11282 connector->base.base.id,
11283 connector->base.name);
11284 }
11285
11286
11287 if (&connector->new_encoder->base != connector->base.encoder) {
11288 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11289 config->mode_changed = true;
11290 }
11291 }
11292 /* connector->new_encoder is now updated for all connectors. */
11293
11294 /* Update crtc of enabled connectors. */
11295 list_for_each_entry(connector, &dev->mode_config.connector_list,
11296 base.head) {
11297 struct drm_crtc *new_crtc;
11298
11299 if (!connector->new_encoder)
11300 continue;
11301
11302 new_crtc = connector->new_encoder->base.crtc;
11303
11304 for (ro = 0; ro < set->num_connectors; ro++) {
11305 if (set->connectors[ro] == &connector->base)
11306 new_crtc = set->crtc;
11307 }
11308
11309 /* Make sure the new CRTC will work with the encoder */
11310 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11311 new_crtc)) {
11312 return -EINVAL;
11313 }
11314 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11315
11316 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11317 connector->base.base.id,
11318 connector->base.name,
11319 new_crtc->base.id);
11320 }
11321
11322 /* Check for any encoders that needs to be disabled. */
11323 for_each_intel_encoder(dev, encoder) {
11324 int num_connectors = 0;
11325 list_for_each_entry(connector,
11326 &dev->mode_config.connector_list,
11327 base.head) {
11328 if (connector->new_encoder == encoder) {
11329 WARN_ON(!connector->new_encoder->new_crtc);
11330 num_connectors++;
11331 }
11332 }
11333
11334 if (num_connectors == 0)
11335 encoder->new_crtc = NULL;
11336 else if (num_connectors > 1)
11337 return -EINVAL;
11338
11339 /* Only now check for crtc changes so we don't miss encoders
11340 * that will be disabled. */
11341 if (&encoder->new_crtc->base != encoder->base.crtc) {
11342 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11343 config->mode_changed = true;
11344 }
11345 }
11346 /* Now we've also updated encoder->new_crtc for all encoders. */
11347 list_for_each_entry(connector, &dev->mode_config.connector_list,
11348 base.head) {
11349 if (connector->new_encoder)
11350 if (connector->new_encoder != connector->encoder)
11351 connector->encoder = connector->new_encoder;
11352 }
11353 for_each_intel_crtc(dev, crtc) {
11354 crtc->new_enabled = false;
11355
11356 for_each_intel_encoder(dev, encoder) {
11357 if (encoder->new_crtc == crtc) {
11358 crtc->new_enabled = true;
11359 break;
11360 }
11361 }
11362
11363 if (crtc->new_enabled != crtc->base.enabled) {
11364 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11365 crtc->new_enabled ? "en" : "dis");
11366 config->mode_changed = true;
11367 }
11368
11369 if (crtc->new_enabled)
11370 crtc->new_config = &crtc->config;
11371 else
11372 crtc->new_config = NULL;
11373 }
11374
11375 return 0;
11376 }
11377
11378 static void disable_crtc_nofb(struct intel_crtc *crtc)
11379 {
11380 struct drm_device *dev = crtc->base.dev;
11381 struct intel_encoder *encoder;
11382 struct intel_connector *connector;
11383
11384 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11385 pipe_name(crtc->pipe));
11386
11387 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11388 if (connector->new_encoder &&
11389 connector->new_encoder->new_crtc == crtc)
11390 connector->new_encoder = NULL;
11391 }
11392
11393 for_each_intel_encoder(dev, encoder) {
11394 if (encoder->new_crtc == crtc)
11395 encoder->new_crtc = NULL;
11396 }
11397
11398 crtc->new_enabled = false;
11399 crtc->new_config = NULL;
11400 }
11401
11402 static int intel_crtc_set_config(struct drm_mode_set *set)
11403 {
11404 struct drm_device *dev;
11405 struct drm_mode_set save_set;
11406 struct intel_set_config *config;
11407 struct intel_crtc_config *pipe_config;
11408 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11409 int ret;
11410
11411 BUG_ON(!set);
11412 BUG_ON(!set->crtc);
11413 BUG_ON(!set->crtc->helper_private);
11414
11415 /* Enforce sane interface api - has been abused by the fb helper. */
11416 BUG_ON(!set->mode && set->fb);
11417 BUG_ON(set->fb && set->num_connectors == 0);
11418
11419 if (set->fb) {
11420 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11421 set->crtc->base.id, set->fb->base.id,
11422 (int)set->num_connectors, set->x, set->y);
11423 } else {
11424 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11425 }
11426
11427 dev = set->crtc->dev;
11428
11429 ret = -ENOMEM;
11430 config = kzalloc(sizeof(*config), GFP_KERNEL);
11431 if (!config)
11432 goto out_config;
11433
11434 ret = intel_set_config_save_state(dev, config);
11435 if (ret)
11436 goto out_config;
11437
11438 save_set.crtc = set->crtc;
11439 save_set.mode = &set->crtc->mode;
11440 save_set.x = set->crtc->x;
11441 save_set.y = set->crtc->y;
11442 save_set.fb = set->crtc->primary->fb;
11443
11444 /* Compute whether we need a full modeset, only an fb base update or no
11445 * change at all. In the future we might also check whether only the
11446 * mode changed, e.g. for LVDS where we only change the panel fitter in
11447 * such cases. */
11448 intel_set_config_compute_mode_changes(set, config);
11449
11450 ret = intel_modeset_stage_output_state(dev, set, config);
11451 if (ret)
11452 goto fail;
11453
11454 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11455 set->fb,
11456 &modeset_pipes,
11457 &prepare_pipes,
11458 &disable_pipes);
11459 if (IS_ERR(pipe_config)) {
11460 ret = PTR_ERR(pipe_config);
11461 goto fail;
11462 } else if (pipe_config) {
11463 if (pipe_config->has_audio !=
11464 to_intel_crtc(set->crtc)->config.has_audio)
11465 config->mode_changed = true;
11466
11467 /*
11468 * Note we have an issue here with infoframes: current code
11469 * only updates them on the full mode set path per hw
11470 * requirements. So here we should be checking for any
11471 * required changes and forcing a mode set.
11472 */
11473 }
11474
11475 /* set_mode will free it in the mode_changed case */
11476 if (!config->mode_changed)
11477 kfree(pipe_config);
11478
11479 intel_update_pipe_size(to_intel_crtc(set->crtc));
11480
11481 if (config->mode_changed) {
11482 ret = intel_set_mode_pipes(set->crtc, set->mode,
11483 set->x, set->y, set->fb, pipe_config,
11484 modeset_pipes, prepare_pipes,
11485 disable_pipes);
11486 } else if (config->fb_changed) {
11487 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11488 struct drm_plane *primary = set->crtc->primary;
11489 int vdisplay, hdisplay;
11490
11491 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11492 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11493 0, 0, hdisplay, vdisplay,
11494 set->x << 16, set->y << 16,
11495 hdisplay << 16, vdisplay << 16);
11496
11497 /*
11498 * We need to make sure the primary plane is re-enabled if it
11499 * has previously been turned off.
11500 */
11501 if (!intel_crtc->primary_enabled && ret == 0) {
11502 WARN_ON(!intel_crtc->active);
11503 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11504 }
11505
11506 /*
11507 * In the fastboot case this may be our only check of the
11508 * state after boot. It would be better to only do it on
11509 * the first update, but we don't have a nice way of doing that
11510 * (and really, set_config isn't used much for high freq page
11511 * flipping, so increasing its cost here shouldn't be a big
11512 * deal).
11513 */
11514 if (i915.fastboot && ret == 0)
11515 intel_modeset_check_state(set->crtc->dev);
11516 }
11517
11518 if (ret) {
11519 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11520 set->crtc->base.id, ret);
11521 fail:
11522 intel_set_config_restore_state(dev, config);
11523
11524 /*
11525 * HACK: if the pipe was on, but we didn't have a framebuffer,
11526 * force the pipe off to avoid oopsing in the modeset code
11527 * due to fb==NULL. This should only happen during boot since
11528 * we don't yet reconstruct the FB from the hardware state.
11529 */
11530 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11531 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11532
11533 /* Try to restore the config */
11534 if (config->mode_changed &&
11535 intel_set_mode(save_set.crtc, save_set.mode,
11536 save_set.x, save_set.y, save_set.fb))
11537 DRM_ERROR("failed to restore config after modeset failure\n");
11538 }
11539
11540 out_config:
11541 intel_set_config_free(config);
11542 return ret;
11543 }
11544
11545 static const struct drm_crtc_funcs intel_crtc_funcs = {
11546 .gamma_set = intel_crtc_gamma_set,
11547 .set_config = intel_crtc_set_config,
11548 .destroy = intel_crtc_destroy,
11549 .page_flip = intel_crtc_page_flip,
11550 };
11551
11552 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11553 struct intel_shared_dpll *pll,
11554 struct intel_dpll_hw_state *hw_state)
11555 {
11556 uint32_t val;
11557
11558 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11559 return false;
11560
11561 val = I915_READ(PCH_DPLL(pll->id));
11562 hw_state->dpll = val;
11563 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11564 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11565
11566 return val & DPLL_VCO_ENABLE;
11567 }
11568
11569 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11570 struct intel_shared_dpll *pll)
11571 {
11572 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11573 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11574 }
11575
11576 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11577 struct intel_shared_dpll *pll)
11578 {
11579 /* PCH refclock must be enabled first */
11580 ibx_assert_pch_refclk_enabled(dev_priv);
11581
11582 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11583
11584 /* Wait for the clocks to stabilize. */
11585 POSTING_READ(PCH_DPLL(pll->id));
11586 udelay(150);
11587
11588 /* The pixel multiplier can only be updated once the
11589 * DPLL is enabled and the clocks are stable.
11590 *
11591 * So write it again.
11592 */
11593 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11594 POSTING_READ(PCH_DPLL(pll->id));
11595 udelay(200);
11596 }
11597
11598 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11599 struct intel_shared_dpll *pll)
11600 {
11601 struct drm_device *dev = dev_priv->dev;
11602 struct intel_crtc *crtc;
11603
11604 /* Make sure no transcoder isn't still depending on us. */
11605 for_each_intel_crtc(dev, crtc) {
11606 if (intel_crtc_to_shared_dpll(crtc) == pll)
11607 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11608 }
11609
11610 I915_WRITE(PCH_DPLL(pll->id), 0);
11611 POSTING_READ(PCH_DPLL(pll->id));
11612 udelay(200);
11613 }
11614
11615 static char *ibx_pch_dpll_names[] = {
11616 "PCH DPLL A",
11617 "PCH DPLL B",
11618 };
11619
11620 static void ibx_pch_dpll_init(struct drm_device *dev)
11621 {
11622 struct drm_i915_private *dev_priv = dev->dev_private;
11623 int i;
11624
11625 dev_priv->num_shared_dpll = 2;
11626
11627 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11628 dev_priv->shared_dplls[i].id = i;
11629 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11630 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11631 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11632 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11633 dev_priv->shared_dplls[i].get_hw_state =
11634 ibx_pch_dpll_get_hw_state;
11635 }
11636 }
11637
11638 static void intel_shared_dpll_init(struct drm_device *dev)
11639 {
11640 struct drm_i915_private *dev_priv = dev->dev_private;
11641
11642 if (HAS_DDI(dev))
11643 intel_ddi_pll_init(dev);
11644 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11645 ibx_pch_dpll_init(dev);
11646 else
11647 dev_priv->num_shared_dpll = 0;
11648
11649 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11650 }
11651
11652 /**
11653 * intel_prepare_plane_fb - Prepare fb for usage on plane
11654 * @plane: drm plane to prepare for
11655 * @fb: framebuffer to prepare for presentation
11656 *
11657 * Prepares a framebuffer for usage on a display plane. Generally this
11658 * involves pinning the underlying object and updating the frontbuffer tracking
11659 * bits. Some older platforms need special physical address handling for
11660 * cursor planes.
11661 *
11662 * Returns 0 on success, negative error code on failure.
11663 */
11664 int
11665 intel_prepare_plane_fb(struct drm_plane *plane,
11666 struct drm_framebuffer *fb)
11667 {
11668 struct drm_device *dev = plane->dev;
11669 struct intel_plane *intel_plane = to_intel_plane(plane);
11670 enum pipe pipe = intel_plane->pipe;
11671 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11672 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11673 unsigned frontbuffer_bits = 0;
11674 int ret = 0;
11675
11676 if (WARN_ON(fb == plane->fb || !obj))
11677 return 0;
11678
11679 switch (plane->type) {
11680 case DRM_PLANE_TYPE_PRIMARY:
11681 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11682 break;
11683 case DRM_PLANE_TYPE_CURSOR:
11684 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11685 break;
11686 case DRM_PLANE_TYPE_OVERLAY:
11687 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11688 break;
11689 }
11690
11691 mutex_lock(&dev->struct_mutex);
11692
11693 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11694 INTEL_INFO(dev)->cursor_needs_physical) {
11695 int align = IS_I830(dev) ? 16 * 1024 : 256;
11696 ret = i915_gem_object_attach_phys(obj, align);
11697 if (ret)
11698 DRM_DEBUG_KMS("failed to attach phys object\n");
11699 } else {
11700 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11701 }
11702
11703 if (ret == 0)
11704 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11705
11706 mutex_unlock(&dev->struct_mutex);
11707
11708 return ret;
11709 }
11710
11711 /**
11712 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11713 * @plane: drm plane to clean up for
11714 * @fb: old framebuffer that was on plane
11715 *
11716 * Cleans up a framebuffer that has just been removed from a plane.
11717 */
11718 void
11719 intel_cleanup_plane_fb(struct drm_plane *plane,
11720 struct drm_framebuffer *fb)
11721 {
11722 struct drm_device *dev = plane->dev;
11723 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11724
11725 if (WARN_ON(!obj))
11726 return;
11727
11728 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11729 !INTEL_INFO(dev)->cursor_needs_physical) {
11730 mutex_lock(&dev->struct_mutex);
11731 intel_unpin_fb_obj(obj);
11732 mutex_unlock(&dev->struct_mutex);
11733 }
11734 }
11735
11736 static int
11737 intel_check_primary_plane(struct drm_plane *plane,
11738 struct intel_plane_state *state)
11739 {
11740 struct drm_crtc *crtc = state->base.crtc;
11741 struct drm_framebuffer *fb = state->base.fb;
11742 struct drm_rect *dest = &state->dst;
11743 struct drm_rect *src = &state->src;
11744 const struct drm_rect *clip = &state->clip;
11745 int ret;
11746
11747 ret = drm_plane_helper_check_update(plane, crtc, fb,
11748 src, dest, clip,
11749 DRM_PLANE_HELPER_NO_SCALING,
11750 DRM_PLANE_HELPER_NO_SCALING,
11751 false, true, &state->visible);
11752 if (ret)
11753 return ret;
11754
11755 intel_crtc_wait_for_pending_flips(crtc);
11756 if (intel_crtc_has_pending_flip(crtc)) {
11757 DRM_ERROR("pipe is still busy with an old pageflip\n");
11758 return -EBUSY;
11759 }
11760
11761 return 0;
11762 }
11763
11764 static void
11765 intel_commit_primary_plane(struct drm_plane *plane,
11766 struct intel_plane_state *state)
11767 {
11768 struct drm_crtc *crtc = state->base.crtc;
11769 struct drm_framebuffer *fb = state->base.fb;
11770 struct drm_device *dev = plane->dev;
11771 struct drm_i915_private *dev_priv = dev->dev_private;
11772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11773 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11774 struct intel_plane *intel_plane = to_intel_plane(plane);
11775 struct drm_rect *src = &state->src;
11776 enum pipe pipe = intel_plane->pipe;
11777
11778 if (!fb) {
11779 /*
11780 * 'prepare' is never called when plane is being disabled, so
11781 * we need to handle frontbuffer tracking here
11782 */
11783 mutex_lock(&dev->struct_mutex);
11784 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11785 INTEL_FRONTBUFFER_PRIMARY(pipe));
11786 mutex_unlock(&dev->struct_mutex);
11787 }
11788
11789 plane->fb = fb;
11790 crtc->x = src->x1 >> 16;
11791 crtc->y = src->y1 >> 16;
11792
11793 intel_plane->crtc_x = state->orig_dst.x1;
11794 intel_plane->crtc_y = state->orig_dst.y1;
11795 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11796 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11797 intel_plane->src_x = state->orig_src.x1;
11798 intel_plane->src_y = state->orig_src.y1;
11799 intel_plane->src_w = drm_rect_width(&state->orig_src);
11800 intel_plane->src_h = drm_rect_height(&state->orig_src);
11801 intel_plane->obj = obj;
11802
11803 if (intel_crtc->active) {
11804 /*
11805 * FBC does not work on some platforms for rotated
11806 * planes, so disable it when rotation is not 0 and
11807 * update it when rotation is set back to 0.
11808 *
11809 * FIXME: This is redundant with the fbc update done in
11810 * the primary plane enable function except that that
11811 * one is done too late. We eventually need to unify
11812 * this.
11813 */
11814 if (intel_crtc->primary_enabled &&
11815 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11816 dev_priv->fbc.plane == intel_crtc->plane &&
11817 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11818 intel_fbc_disable(dev);
11819 }
11820
11821 if (state->visible) {
11822 bool was_enabled = intel_crtc->primary_enabled;
11823
11824 /* FIXME: kill this fastboot hack */
11825 intel_update_pipe_size(intel_crtc);
11826
11827 intel_crtc->primary_enabled = true;
11828
11829 dev_priv->display.update_primary_plane(crtc, plane->fb,
11830 crtc->x, crtc->y);
11831
11832 /*
11833 * BDW signals flip done immediately if the plane
11834 * is disabled, even if the plane enable is already
11835 * armed to occur at the next vblank :(
11836 */
11837 if (IS_BROADWELL(dev) && !was_enabled)
11838 intel_wait_for_vblank(dev, intel_crtc->pipe);
11839 } else {
11840 /*
11841 * If clipping results in a non-visible primary plane,
11842 * we'll disable the primary plane. Note that this is
11843 * a bit different than what happens if userspace
11844 * explicitly disables the plane by passing fb=0
11845 * because plane->fb still gets set and pinned.
11846 */
11847 intel_disable_primary_hw_plane(plane, crtc);
11848 }
11849
11850 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11851
11852 mutex_lock(&dev->struct_mutex);
11853 intel_fbc_update(dev);
11854 mutex_unlock(&dev->struct_mutex);
11855 }
11856 }
11857
11858 int
11859 intel_update_plane(struct drm_plane *plane, struct drm_crtc *crtc,
11860 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11861 unsigned int crtc_w, unsigned int crtc_h,
11862 uint32_t src_x, uint32_t src_y,
11863 uint32_t src_w, uint32_t src_h)
11864 {
11865 struct drm_device *dev = plane->dev;
11866 struct drm_i915_private *dev_priv = dev->dev_private;
11867 struct drm_framebuffer *old_fb = plane->fb;
11868 struct intel_plane_state state;
11869 struct intel_plane *intel_plane = to_intel_plane(plane);
11870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11871 int ret;
11872
11873 state.base.crtc = crtc ? crtc : plane->crtc;
11874 state.base.fb = fb;
11875
11876 /* sample coordinates in 16.16 fixed point */
11877 state.src.x1 = src_x;
11878 state.src.x2 = src_x + src_w;
11879 state.src.y1 = src_y;
11880 state.src.y2 = src_y + src_h;
11881
11882 /* integer pixels */
11883 state.dst.x1 = crtc_x;
11884 state.dst.x2 = crtc_x + crtc_w;
11885 state.dst.y1 = crtc_y;
11886 state.dst.y2 = crtc_y + crtc_h;
11887
11888 state.clip.x1 = 0;
11889 state.clip.y1 = 0;
11890 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11891 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11892
11893 state.orig_src = state.src;
11894 state.orig_dst = state.dst;
11895
11896 ret = intel_plane->check_plane(plane, &state);
11897 if (ret)
11898 return ret;
11899
11900 if (fb != old_fb && fb) {
11901 ret = intel_prepare_plane_fb(plane, fb);
11902 if (ret)
11903 return ret;
11904 }
11905
11906 intel_runtime_pm_get(dev_priv);
11907 intel_plane->commit_plane(plane, &state);
11908 intel_runtime_pm_put(dev_priv);
11909
11910 if (fb != old_fb && old_fb) {
11911 if (intel_crtc->active)
11912 intel_wait_for_vblank(dev, intel_crtc->pipe);
11913 intel_cleanup_plane_fb(plane, old_fb);
11914 }
11915
11916 plane->fb = fb;
11917
11918 return 0;
11919 }
11920
11921 /**
11922 * intel_disable_plane - disable a plane
11923 * @plane: plane to disable
11924 *
11925 * General disable handler for all plane types.
11926 */
11927 int
11928 intel_disable_plane(struct drm_plane *plane)
11929 {
11930 if (!plane->fb)
11931 return 0;
11932
11933 if (WARN_ON(!plane->crtc))
11934 return -EINVAL;
11935
11936 return plane->funcs->update_plane(plane, plane->crtc, NULL,
11937 0, 0, 0, 0, 0, 0, 0, 0);
11938 }
11939
11940 /* Common destruction function for both primary and cursor planes */
11941 static void intel_plane_destroy(struct drm_plane *plane)
11942 {
11943 struct intel_plane *intel_plane = to_intel_plane(plane);
11944 drm_plane_cleanup(plane);
11945 kfree(intel_plane);
11946 }
11947
11948 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11949 .update_plane = intel_update_plane,
11950 .disable_plane = intel_disable_plane,
11951 .destroy = intel_plane_destroy,
11952 .set_property = intel_plane_set_property
11953 };
11954
11955 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11956 int pipe)
11957 {
11958 struct intel_plane *primary;
11959 const uint32_t *intel_primary_formats;
11960 int num_formats;
11961
11962 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11963 if (primary == NULL)
11964 return NULL;
11965
11966 primary->can_scale = false;
11967 primary->max_downscale = 1;
11968 primary->pipe = pipe;
11969 primary->plane = pipe;
11970 primary->rotation = BIT(DRM_ROTATE_0);
11971 primary->check_plane = intel_check_primary_plane;
11972 primary->commit_plane = intel_commit_primary_plane;
11973 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11974 primary->plane = !pipe;
11975
11976 if (INTEL_INFO(dev)->gen <= 3) {
11977 intel_primary_formats = intel_primary_formats_gen2;
11978 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11979 } else {
11980 intel_primary_formats = intel_primary_formats_gen4;
11981 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11982 }
11983
11984 drm_universal_plane_init(dev, &primary->base, 0,
11985 &intel_primary_plane_funcs,
11986 intel_primary_formats, num_formats,
11987 DRM_PLANE_TYPE_PRIMARY);
11988
11989 if (INTEL_INFO(dev)->gen >= 4) {
11990 if (!dev->mode_config.rotation_property)
11991 dev->mode_config.rotation_property =
11992 drm_mode_create_rotation_property(dev,
11993 BIT(DRM_ROTATE_0) |
11994 BIT(DRM_ROTATE_180));
11995 if (dev->mode_config.rotation_property)
11996 drm_object_attach_property(&primary->base.base,
11997 dev->mode_config.rotation_property,
11998 primary->rotation);
11999 }
12000
12001 return &primary->base;
12002 }
12003
12004 static int
12005 intel_check_cursor_plane(struct drm_plane *plane,
12006 struct intel_plane_state *state)
12007 {
12008 struct drm_crtc *crtc = state->base.crtc;
12009 struct drm_device *dev = crtc->dev;
12010 struct drm_framebuffer *fb = state->base.fb;
12011 struct drm_rect *dest = &state->dst;
12012 struct drm_rect *src = &state->src;
12013 const struct drm_rect *clip = &state->clip;
12014 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12015 int crtc_w, crtc_h;
12016 unsigned stride;
12017 int ret;
12018
12019 ret = drm_plane_helper_check_update(plane, crtc, fb,
12020 src, dest, clip,
12021 DRM_PLANE_HELPER_NO_SCALING,
12022 DRM_PLANE_HELPER_NO_SCALING,
12023 true, true, &state->visible);
12024 if (ret)
12025 return ret;
12026
12027
12028 /* if we want to turn off the cursor ignore width and height */
12029 if (!obj)
12030 return 0;
12031
12032 /* Check for which cursor types we support */
12033 crtc_w = drm_rect_width(&state->orig_dst);
12034 crtc_h = drm_rect_height(&state->orig_dst);
12035 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12036 DRM_DEBUG("Cursor dimension not supported\n");
12037 return -EINVAL;
12038 }
12039
12040 stride = roundup_pow_of_two(crtc_w) * 4;
12041 if (obj->base.size < stride * crtc_h) {
12042 DRM_DEBUG_KMS("buffer is too small\n");
12043 return -ENOMEM;
12044 }
12045
12046 if (fb == crtc->cursor->fb)
12047 return 0;
12048
12049 /* we only need to pin inside GTT if cursor is non-phy */
12050 mutex_lock(&dev->struct_mutex);
12051 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12052 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12053 ret = -EINVAL;
12054 }
12055 mutex_unlock(&dev->struct_mutex);
12056
12057 return ret;
12058 }
12059
12060 static void
12061 intel_commit_cursor_plane(struct drm_plane *plane,
12062 struct intel_plane_state *state)
12063 {
12064 struct drm_crtc *crtc = state->base.crtc;
12065 struct drm_device *dev = crtc->dev;
12066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12067 struct intel_plane *intel_plane = to_intel_plane(plane);
12068 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12069 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12070 enum pipe pipe = intel_crtc->pipe;
12071 unsigned old_width;
12072 uint32_t addr;
12073
12074 plane->fb = state->base.fb;
12075 crtc->cursor_x = state->orig_dst.x1;
12076 crtc->cursor_y = state->orig_dst.y1;
12077
12078 intel_plane->crtc_x = state->orig_dst.x1;
12079 intel_plane->crtc_y = state->orig_dst.y1;
12080 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12081 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12082 intel_plane->src_x = state->orig_src.x1;
12083 intel_plane->src_y = state->orig_src.y1;
12084 intel_plane->src_w = drm_rect_width(&state->orig_src);
12085 intel_plane->src_h = drm_rect_height(&state->orig_src);
12086 intel_plane->obj = obj;
12087
12088 if (intel_crtc->cursor_bo == obj)
12089 goto update;
12090
12091 /*
12092 * 'prepare' is only called when fb != NULL; we still need to update
12093 * frontbuffer tracking for the 'disable' case here.
12094 */
12095 if (!obj) {
12096 mutex_lock(&dev->struct_mutex);
12097 i915_gem_track_fb(old_obj, NULL,
12098 INTEL_FRONTBUFFER_CURSOR(pipe));
12099 mutex_unlock(&dev->struct_mutex);
12100 }
12101
12102 if (!obj)
12103 addr = 0;
12104 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12105 addr = i915_gem_obj_ggtt_offset(obj);
12106 else
12107 addr = obj->phys_handle->busaddr;
12108
12109 intel_crtc->cursor_addr = addr;
12110 intel_crtc->cursor_bo = obj;
12111 update:
12112 old_width = intel_crtc->cursor_width;
12113
12114 intel_crtc->cursor_width = drm_rect_width(&state->orig_dst);
12115 intel_crtc->cursor_height = drm_rect_height(&state->orig_dst);
12116
12117 if (intel_crtc->active) {
12118 if (old_width != intel_crtc->cursor_width)
12119 intel_update_watermarks(crtc);
12120 intel_crtc_update_cursor(crtc, state->visible);
12121
12122 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
12123 }
12124 }
12125
12126 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12127 .update_plane = intel_update_plane,
12128 .disable_plane = intel_disable_plane,
12129 .destroy = intel_plane_destroy,
12130 .set_property = intel_plane_set_property,
12131 };
12132
12133 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12134 int pipe)
12135 {
12136 struct intel_plane *cursor;
12137
12138 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12139 if (cursor == NULL)
12140 return NULL;
12141
12142 cursor->can_scale = false;
12143 cursor->max_downscale = 1;
12144 cursor->pipe = pipe;
12145 cursor->plane = pipe;
12146 cursor->rotation = BIT(DRM_ROTATE_0);
12147 cursor->check_plane = intel_check_cursor_plane;
12148 cursor->commit_plane = intel_commit_cursor_plane;
12149
12150 drm_universal_plane_init(dev, &cursor->base, 0,
12151 &intel_cursor_plane_funcs,
12152 intel_cursor_formats,
12153 ARRAY_SIZE(intel_cursor_formats),
12154 DRM_PLANE_TYPE_CURSOR);
12155
12156 if (INTEL_INFO(dev)->gen >= 4) {
12157 if (!dev->mode_config.rotation_property)
12158 dev->mode_config.rotation_property =
12159 drm_mode_create_rotation_property(dev,
12160 BIT(DRM_ROTATE_0) |
12161 BIT(DRM_ROTATE_180));
12162 if (dev->mode_config.rotation_property)
12163 drm_object_attach_property(&cursor->base.base,
12164 dev->mode_config.rotation_property,
12165 cursor->rotation);
12166 }
12167
12168 return &cursor->base;
12169 }
12170
12171 static void intel_crtc_init(struct drm_device *dev, int pipe)
12172 {
12173 struct drm_i915_private *dev_priv = dev->dev_private;
12174 struct intel_crtc *intel_crtc;
12175 struct drm_plane *primary = NULL;
12176 struct drm_plane *cursor = NULL;
12177 int i, ret;
12178
12179 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12180 if (intel_crtc == NULL)
12181 return;
12182
12183 primary = intel_primary_plane_create(dev, pipe);
12184 if (!primary)
12185 goto fail;
12186
12187 cursor = intel_cursor_plane_create(dev, pipe);
12188 if (!cursor)
12189 goto fail;
12190
12191 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12192 cursor, &intel_crtc_funcs);
12193 if (ret)
12194 goto fail;
12195
12196 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12197 for (i = 0; i < 256; i++) {
12198 intel_crtc->lut_r[i] = i;
12199 intel_crtc->lut_g[i] = i;
12200 intel_crtc->lut_b[i] = i;
12201 }
12202
12203 /*
12204 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12205 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12206 */
12207 intel_crtc->pipe = pipe;
12208 intel_crtc->plane = pipe;
12209 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12210 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12211 intel_crtc->plane = !pipe;
12212 }
12213
12214 intel_crtc->cursor_base = ~0;
12215 intel_crtc->cursor_cntl = ~0;
12216 intel_crtc->cursor_size = ~0;
12217
12218 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12219 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12220 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12221 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12222
12223 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12224
12225 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12226
12227 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12228 return;
12229
12230 fail:
12231 if (primary)
12232 drm_plane_cleanup(primary);
12233 if (cursor)
12234 drm_plane_cleanup(cursor);
12235 kfree(intel_crtc);
12236 }
12237
12238 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12239 {
12240 struct drm_encoder *encoder = connector->base.encoder;
12241 struct drm_device *dev = connector->base.dev;
12242
12243 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12244
12245 if (!encoder || WARN_ON(!encoder->crtc))
12246 return INVALID_PIPE;
12247
12248 return to_intel_crtc(encoder->crtc)->pipe;
12249 }
12250
12251 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12252 struct drm_file *file)
12253 {
12254 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12255 struct drm_crtc *drmmode_crtc;
12256 struct intel_crtc *crtc;
12257
12258 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12259 return -ENODEV;
12260
12261 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12262
12263 if (!drmmode_crtc) {
12264 DRM_ERROR("no such CRTC id\n");
12265 return -ENOENT;
12266 }
12267
12268 crtc = to_intel_crtc(drmmode_crtc);
12269 pipe_from_crtc_id->pipe = crtc->pipe;
12270
12271 return 0;
12272 }
12273
12274 static int intel_encoder_clones(struct intel_encoder *encoder)
12275 {
12276 struct drm_device *dev = encoder->base.dev;
12277 struct intel_encoder *source_encoder;
12278 int index_mask = 0;
12279 int entry = 0;
12280
12281 for_each_intel_encoder(dev, source_encoder) {
12282 if (encoders_cloneable(encoder, source_encoder))
12283 index_mask |= (1 << entry);
12284
12285 entry++;
12286 }
12287
12288 return index_mask;
12289 }
12290
12291 static bool has_edp_a(struct drm_device *dev)
12292 {
12293 struct drm_i915_private *dev_priv = dev->dev_private;
12294
12295 if (!IS_MOBILE(dev))
12296 return false;
12297
12298 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12299 return false;
12300
12301 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12302 return false;
12303
12304 return true;
12305 }
12306
12307 static bool intel_crt_present(struct drm_device *dev)
12308 {
12309 struct drm_i915_private *dev_priv = dev->dev_private;
12310
12311 if (INTEL_INFO(dev)->gen >= 9)
12312 return false;
12313
12314 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12315 return false;
12316
12317 if (IS_CHERRYVIEW(dev))
12318 return false;
12319
12320 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12321 return false;
12322
12323 return true;
12324 }
12325
12326 static void intel_setup_outputs(struct drm_device *dev)
12327 {
12328 struct drm_i915_private *dev_priv = dev->dev_private;
12329 struct intel_encoder *encoder;
12330 bool dpd_is_edp = false;
12331
12332 intel_lvds_init(dev);
12333
12334 if (intel_crt_present(dev))
12335 intel_crt_init(dev);
12336
12337 if (HAS_DDI(dev)) {
12338 int found;
12339
12340 /* Haswell uses DDI functions to detect digital outputs */
12341 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12342 /* DDI A only supports eDP */
12343 if (found)
12344 intel_ddi_init(dev, PORT_A);
12345
12346 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12347 * register */
12348 found = I915_READ(SFUSE_STRAP);
12349
12350 if (found & SFUSE_STRAP_DDIB_DETECTED)
12351 intel_ddi_init(dev, PORT_B);
12352 if (found & SFUSE_STRAP_DDIC_DETECTED)
12353 intel_ddi_init(dev, PORT_C);
12354 if (found & SFUSE_STRAP_DDID_DETECTED)
12355 intel_ddi_init(dev, PORT_D);
12356 } else if (HAS_PCH_SPLIT(dev)) {
12357 int found;
12358 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12359
12360 if (has_edp_a(dev))
12361 intel_dp_init(dev, DP_A, PORT_A);
12362
12363 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12364 /* PCH SDVOB multiplex with HDMIB */
12365 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12366 if (!found)
12367 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12368 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12369 intel_dp_init(dev, PCH_DP_B, PORT_B);
12370 }
12371
12372 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12373 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12374
12375 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12376 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12377
12378 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12379 intel_dp_init(dev, PCH_DP_C, PORT_C);
12380
12381 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12382 intel_dp_init(dev, PCH_DP_D, PORT_D);
12383 } else if (IS_VALLEYVIEW(dev)) {
12384 /*
12385 * The DP_DETECTED bit is the latched state of the DDC
12386 * SDA pin at boot. However since eDP doesn't require DDC
12387 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12388 * eDP ports may have been muxed to an alternate function.
12389 * Thus we can't rely on the DP_DETECTED bit alone to detect
12390 * eDP ports. Consult the VBT as well as DP_DETECTED to
12391 * detect eDP ports.
12392 */
12393 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12394 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12395 PORT_B);
12396 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12397 intel_dp_is_edp(dev, PORT_B))
12398 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12399
12400 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12401 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12402 PORT_C);
12403 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12404 intel_dp_is_edp(dev, PORT_C))
12405 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12406
12407 if (IS_CHERRYVIEW(dev)) {
12408 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12409 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12410 PORT_D);
12411 /* eDP not supported on port D, so don't check VBT */
12412 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12413 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12414 }
12415
12416 intel_dsi_init(dev);
12417 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12418 bool found = false;
12419
12420 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12421 DRM_DEBUG_KMS("probing SDVOB\n");
12422 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12423 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12424 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12425 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12426 }
12427
12428 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12429 intel_dp_init(dev, DP_B, PORT_B);
12430 }
12431
12432 /* Before G4X SDVOC doesn't have its own detect register */
12433
12434 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12435 DRM_DEBUG_KMS("probing SDVOC\n");
12436 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12437 }
12438
12439 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12440
12441 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12442 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12443 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12444 }
12445 if (SUPPORTS_INTEGRATED_DP(dev))
12446 intel_dp_init(dev, DP_C, PORT_C);
12447 }
12448
12449 if (SUPPORTS_INTEGRATED_DP(dev) &&
12450 (I915_READ(DP_D) & DP_DETECTED))
12451 intel_dp_init(dev, DP_D, PORT_D);
12452 } else if (IS_GEN2(dev))
12453 intel_dvo_init(dev);
12454
12455 if (SUPPORTS_TV(dev))
12456 intel_tv_init(dev);
12457
12458 intel_psr_init(dev);
12459
12460 for_each_intel_encoder(dev, encoder) {
12461 encoder->base.possible_crtcs = encoder->crtc_mask;
12462 encoder->base.possible_clones =
12463 intel_encoder_clones(encoder);
12464 }
12465
12466 intel_init_pch_refclk(dev);
12467
12468 drm_helper_move_panel_connectors_to_head(dev);
12469 }
12470
12471 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12472 {
12473 struct drm_device *dev = fb->dev;
12474 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12475
12476 drm_framebuffer_cleanup(fb);
12477 mutex_lock(&dev->struct_mutex);
12478 WARN_ON(!intel_fb->obj->framebuffer_references--);
12479 drm_gem_object_unreference(&intel_fb->obj->base);
12480 mutex_unlock(&dev->struct_mutex);
12481 kfree(intel_fb);
12482 }
12483
12484 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12485 struct drm_file *file,
12486 unsigned int *handle)
12487 {
12488 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12489 struct drm_i915_gem_object *obj = intel_fb->obj;
12490
12491 return drm_gem_handle_create(file, &obj->base, handle);
12492 }
12493
12494 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12495 .destroy = intel_user_framebuffer_destroy,
12496 .create_handle = intel_user_framebuffer_create_handle,
12497 };
12498
12499 static int intel_framebuffer_init(struct drm_device *dev,
12500 struct intel_framebuffer *intel_fb,
12501 struct drm_mode_fb_cmd2 *mode_cmd,
12502 struct drm_i915_gem_object *obj)
12503 {
12504 int aligned_height;
12505 int pitch_limit;
12506 int ret;
12507
12508 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12509
12510 if (obj->tiling_mode == I915_TILING_Y) {
12511 DRM_DEBUG("hardware does not support tiling Y\n");
12512 return -EINVAL;
12513 }
12514
12515 if (mode_cmd->pitches[0] & 63) {
12516 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12517 mode_cmd->pitches[0]);
12518 return -EINVAL;
12519 }
12520
12521 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12522 pitch_limit = 32*1024;
12523 } else if (INTEL_INFO(dev)->gen >= 4) {
12524 if (obj->tiling_mode)
12525 pitch_limit = 16*1024;
12526 else
12527 pitch_limit = 32*1024;
12528 } else if (INTEL_INFO(dev)->gen >= 3) {
12529 if (obj->tiling_mode)
12530 pitch_limit = 8*1024;
12531 else
12532 pitch_limit = 16*1024;
12533 } else
12534 /* XXX DSPC is limited to 4k tiled */
12535 pitch_limit = 8*1024;
12536
12537 if (mode_cmd->pitches[0] > pitch_limit) {
12538 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12539 obj->tiling_mode ? "tiled" : "linear",
12540 mode_cmd->pitches[0], pitch_limit);
12541 return -EINVAL;
12542 }
12543
12544 if (obj->tiling_mode != I915_TILING_NONE &&
12545 mode_cmd->pitches[0] != obj->stride) {
12546 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12547 mode_cmd->pitches[0], obj->stride);
12548 return -EINVAL;
12549 }
12550
12551 /* Reject formats not supported by any plane early. */
12552 switch (mode_cmd->pixel_format) {
12553 case DRM_FORMAT_C8:
12554 case DRM_FORMAT_RGB565:
12555 case DRM_FORMAT_XRGB8888:
12556 case DRM_FORMAT_ARGB8888:
12557 break;
12558 case DRM_FORMAT_XRGB1555:
12559 case DRM_FORMAT_ARGB1555:
12560 if (INTEL_INFO(dev)->gen > 3) {
12561 DRM_DEBUG("unsupported pixel format: %s\n",
12562 drm_get_format_name(mode_cmd->pixel_format));
12563 return -EINVAL;
12564 }
12565 break;
12566 case DRM_FORMAT_XBGR8888:
12567 case DRM_FORMAT_ABGR8888:
12568 case DRM_FORMAT_XRGB2101010:
12569 case DRM_FORMAT_ARGB2101010:
12570 case DRM_FORMAT_XBGR2101010:
12571 case DRM_FORMAT_ABGR2101010:
12572 if (INTEL_INFO(dev)->gen < 4) {
12573 DRM_DEBUG("unsupported pixel format: %s\n",
12574 drm_get_format_name(mode_cmd->pixel_format));
12575 return -EINVAL;
12576 }
12577 break;
12578 case DRM_FORMAT_YUYV:
12579 case DRM_FORMAT_UYVY:
12580 case DRM_FORMAT_YVYU:
12581 case DRM_FORMAT_VYUY:
12582 if (INTEL_INFO(dev)->gen < 5) {
12583 DRM_DEBUG("unsupported pixel format: %s\n",
12584 drm_get_format_name(mode_cmd->pixel_format));
12585 return -EINVAL;
12586 }
12587 break;
12588 default:
12589 DRM_DEBUG("unsupported pixel format: %s\n",
12590 drm_get_format_name(mode_cmd->pixel_format));
12591 return -EINVAL;
12592 }
12593
12594 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12595 if (mode_cmd->offsets[0] != 0)
12596 return -EINVAL;
12597
12598 aligned_height = intel_align_height(dev, mode_cmd->height,
12599 obj->tiling_mode);
12600 /* FIXME drm helper for size checks (especially planar formats)? */
12601 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12602 return -EINVAL;
12603
12604 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12605 intel_fb->obj = obj;
12606 intel_fb->obj->framebuffer_references++;
12607
12608 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12609 if (ret) {
12610 DRM_ERROR("framebuffer init failed %d\n", ret);
12611 return ret;
12612 }
12613
12614 return 0;
12615 }
12616
12617 static struct drm_framebuffer *
12618 intel_user_framebuffer_create(struct drm_device *dev,
12619 struct drm_file *filp,
12620 struct drm_mode_fb_cmd2 *mode_cmd)
12621 {
12622 struct drm_i915_gem_object *obj;
12623
12624 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12625 mode_cmd->handles[0]));
12626 if (&obj->base == NULL)
12627 return ERR_PTR(-ENOENT);
12628
12629 return intel_framebuffer_create(dev, mode_cmd, obj);
12630 }
12631
12632 #ifndef CONFIG_DRM_I915_FBDEV
12633 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12634 {
12635 }
12636 #endif
12637
12638 static const struct drm_mode_config_funcs intel_mode_funcs = {
12639 .fb_create = intel_user_framebuffer_create,
12640 .output_poll_changed = intel_fbdev_output_poll_changed,
12641 };
12642
12643 /* Set up chip specific display functions */
12644 static void intel_init_display(struct drm_device *dev)
12645 {
12646 struct drm_i915_private *dev_priv = dev->dev_private;
12647
12648 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12649 dev_priv->display.find_dpll = g4x_find_best_dpll;
12650 else if (IS_CHERRYVIEW(dev))
12651 dev_priv->display.find_dpll = chv_find_best_dpll;
12652 else if (IS_VALLEYVIEW(dev))
12653 dev_priv->display.find_dpll = vlv_find_best_dpll;
12654 else if (IS_PINEVIEW(dev))
12655 dev_priv->display.find_dpll = pnv_find_best_dpll;
12656 else
12657 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12658
12659 if (HAS_DDI(dev)) {
12660 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12661 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12662 dev_priv->display.crtc_compute_clock =
12663 haswell_crtc_compute_clock;
12664 dev_priv->display.crtc_enable = haswell_crtc_enable;
12665 dev_priv->display.crtc_disable = haswell_crtc_disable;
12666 dev_priv->display.off = ironlake_crtc_off;
12667 if (INTEL_INFO(dev)->gen >= 9)
12668 dev_priv->display.update_primary_plane =
12669 skylake_update_primary_plane;
12670 else
12671 dev_priv->display.update_primary_plane =
12672 ironlake_update_primary_plane;
12673 } else if (HAS_PCH_SPLIT(dev)) {
12674 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12675 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12676 dev_priv->display.crtc_compute_clock =
12677 ironlake_crtc_compute_clock;
12678 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12679 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12680 dev_priv->display.off = ironlake_crtc_off;
12681 dev_priv->display.update_primary_plane =
12682 ironlake_update_primary_plane;
12683 } else if (IS_VALLEYVIEW(dev)) {
12684 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12685 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12686 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12687 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12688 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12689 dev_priv->display.off = i9xx_crtc_off;
12690 dev_priv->display.update_primary_plane =
12691 i9xx_update_primary_plane;
12692 } else {
12693 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12694 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12695 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12696 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12697 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12698 dev_priv->display.off = i9xx_crtc_off;
12699 dev_priv->display.update_primary_plane =
12700 i9xx_update_primary_plane;
12701 }
12702
12703 /* Returns the core display clock speed */
12704 if (IS_VALLEYVIEW(dev))
12705 dev_priv->display.get_display_clock_speed =
12706 valleyview_get_display_clock_speed;
12707 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12708 dev_priv->display.get_display_clock_speed =
12709 i945_get_display_clock_speed;
12710 else if (IS_I915G(dev))
12711 dev_priv->display.get_display_clock_speed =
12712 i915_get_display_clock_speed;
12713 else if (IS_I945GM(dev) || IS_845G(dev))
12714 dev_priv->display.get_display_clock_speed =
12715 i9xx_misc_get_display_clock_speed;
12716 else if (IS_PINEVIEW(dev))
12717 dev_priv->display.get_display_clock_speed =
12718 pnv_get_display_clock_speed;
12719 else if (IS_I915GM(dev))
12720 dev_priv->display.get_display_clock_speed =
12721 i915gm_get_display_clock_speed;
12722 else if (IS_I865G(dev))
12723 dev_priv->display.get_display_clock_speed =
12724 i865_get_display_clock_speed;
12725 else if (IS_I85X(dev))
12726 dev_priv->display.get_display_clock_speed =
12727 i855_get_display_clock_speed;
12728 else /* 852, 830 */
12729 dev_priv->display.get_display_clock_speed =
12730 i830_get_display_clock_speed;
12731
12732 if (IS_GEN5(dev)) {
12733 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12734 } else if (IS_GEN6(dev)) {
12735 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12736 } else if (IS_IVYBRIDGE(dev)) {
12737 /* FIXME: detect B0+ stepping and use auto training */
12738 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12739 dev_priv->display.modeset_global_resources =
12740 ivb_modeset_global_resources;
12741 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12742 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12743 } else if (IS_VALLEYVIEW(dev)) {
12744 dev_priv->display.modeset_global_resources =
12745 valleyview_modeset_global_resources;
12746 }
12747
12748 /* Default just returns -ENODEV to indicate unsupported */
12749 dev_priv->display.queue_flip = intel_default_queue_flip;
12750
12751 switch (INTEL_INFO(dev)->gen) {
12752 case 2:
12753 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12754 break;
12755
12756 case 3:
12757 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12758 break;
12759
12760 case 4:
12761 case 5:
12762 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12763 break;
12764
12765 case 6:
12766 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12767 break;
12768 case 7:
12769 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12770 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12771 break;
12772 case 9:
12773 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12774 break;
12775 }
12776
12777 intel_panel_init_backlight_funcs(dev);
12778
12779 mutex_init(&dev_priv->pps_mutex);
12780 }
12781
12782 /*
12783 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12784 * resume, or other times. This quirk makes sure that's the case for
12785 * affected systems.
12786 */
12787 static void quirk_pipea_force(struct drm_device *dev)
12788 {
12789 struct drm_i915_private *dev_priv = dev->dev_private;
12790
12791 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12792 DRM_INFO("applying pipe a force quirk\n");
12793 }
12794
12795 static void quirk_pipeb_force(struct drm_device *dev)
12796 {
12797 struct drm_i915_private *dev_priv = dev->dev_private;
12798
12799 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12800 DRM_INFO("applying pipe b force quirk\n");
12801 }
12802
12803 /*
12804 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12805 */
12806 static void quirk_ssc_force_disable(struct drm_device *dev)
12807 {
12808 struct drm_i915_private *dev_priv = dev->dev_private;
12809 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12810 DRM_INFO("applying lvds SSC disable quirk\n");
12811 }
12812
12813 /*
12814 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12815 * brightness value
12816 */
12817 static void quirk_invert_brightness(struct drm_device *dev)
12818 {
12819 struct drm_i915_private *dev_priv = dev->dev_private;
12820 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12821 DRM_INFO("applying inverted panel brightness quirk\n");
12822 }
12823
12824 /* Some VBT's incorrectly indicate no backlight is present */
12825 static void quirk_backlight_present(struct drm_device *dev)
12826 {
12827 struct drm_i915_private *dev_priv = dev->dev_private;
12828 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12829 DRM_INFO("applying backlight present quirk\n");
12830 }
12831
12832 struct intel_quirk {
12833 int device;
12834 int subsystem_vendor;
12835 int subsystem_device;
12836 void (*hook)(struct drm_device *dev);
12837 };
12838
12839 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12840 struct intel_dmi_quirk {
12841 void (*hook)(struct drm_device *dev);
12842 const struct dmi_system_id (*dmi_id_list)[];
12843 };
12844
12845 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12846 {
12847 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12848 return 1;
12849 }
12850
12851 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12852 {
12853 .dmi_id_list = &(const struct dmi_system_id[]) {
12854 {
12855 .callback = intel_dmi_reverse_brightness,
12856 .ident = "NCR Corporation",
12857 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12858 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12859 },
12860 },
12861 { } /* terminating entry */
12862 },
12863 .hook = quirk_invert_brightness,
12864 },
12865 };
12866
12867 static struct intel_quirk intel_quirks[] = {
12868 /* HP Mini needs pipe A force quirk (LP: #322104) */
12869 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12870
12871 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12872 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12873
12874 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12875 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12876
12877 /* 830 needs to leave pipe A & dpll A up */
12878 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12879
12880 /* 830 needs to leave pipe B & dpll B up */
12881 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12882
12883 /* Lenovo U160 cannot use SSC on LVDS */
12884 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12885
12886 /* Sony Vaio Y cannot use SSC on LVDS */
12887 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12888
12889 /* Acer Aspire 5734Z must invert backlight brightness */
12890 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12891
12892 /* Acer/eMachines G725 */
12893 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12894
12895 /* Acer/eMachines e725 */
12896 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12897
12898 /* Acer/Packard Bell NCL20 */
12899 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12900
12901 /* Acer Aspire 4736Z */
12902 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12903
12904 /* Acer Aspire 5336 */
12905 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12906
12907 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12908 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12909
12910 /* Acer C720 Chromebook (Core i3 4005U) */
12911 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12912
12913 /* Apple Macbook 2,1 (Core 2 T7400) */
12914 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12915
12916 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12917 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12918
12919 /* HP Chromebook 14 (Celeron 2955U) */
12920 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12921 };
12922
12923 static void intel_init_quirks(struct drm_device *dev)
12924 {
12925 struct pci_dev *d = dev->pdev;
12926 int i;
12927
12928 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12929 struct intel_quirk *q = &intel_quirks[i];
12930
12931 if (d->device == q->device &&
12932 (d->subsystem_vendor == q->subsystem_vendor ||
12933 q->subsystem_vendor == PCI_ANY_ID) &&
12934 (d->subsystem_device == q->subsystem_device ||
12935 q->subsystem_device == PCI_ANY_ID))
12936 q->hook(dev);
12937 }
12938 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12939 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12940 intel_dmi_quirks[i].hook(dev);
12941 }
12942 }
12943
12944 /* Disable the VGA plane that we never use */
12945 static void i915_disable_vga(struct drm_device *dev)
12946 {
12947 struct drm_i915_private *dev_priv = dev->dev_private;
12948 u8 sr1;
12949 u32 vga_reg = i915_vgacntrl_reg(dev);
12950
12951 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12952 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12953 outb(SR01, VGA_SR_INDEX);
12954 sr1 = inb(VGA_SR_DATA);
12955 outb(sr1 | 1<<5, VGA_SR_DATA);
12956 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12957 udelay(300);
12958
12959 /*
12960 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12961 * from S3 without preserving (some of?) the other bits.
12962 */
12963 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12964 POSTING_READ(vga_reg);
12965 }
12966
12967 void intel_modeset_init_hw(struct drm_device *dev)
12968 {
12969 intel_prepare_ddi(dev);
12970
12971 if (IS_VALLEYVIEW(dev))
12972 vlv_update_cdclk(dev);
12973
12974 intel_init_clock_gating(dev);
12975
12976 intel_enable_gt_powersave(dev);
12977 }
12978
12979 void intel_modeset_init(struct drm_device *dev)
12980 {
12981 struct drm_i915_private *dev_priv = dev->dev_private;
12982 int sprite, ret;
12983 enum pipe pipe;
12984 struct intel_crtc *crtc;
12985
12986 drm_mode_config_init(dev);
12987
12988 dev->mode_config.min_width = 0;
12989 dev->mode_config.min_height = 0;
12990
12991 dev->mode_config.preferred_depth = 24;
12992 dev->mode_config.prefer_shadow = 1;
12993
12994 dev->mode_config.funcs = &intel_mode_funcs;
12995
12996 intel_init_quirks(dev);
12997
12998 intel_init_pm(dev);
12999
13000 if (INTEL_INFO(dev)->num_pipes == 0)
13001 return;
13002
13003 intel_init_display(dev);
13004 intel_init_audio(dev);
13005
13006 if (IS_GEN2(dev)) {
13007 dev->mode_config.max_width = 2048;
13008 dev->mode_config.max_height = 2048;
13009 } else if (IS_GEN3(dev)) {
13010 dev->mode_config.max_width = 4096;
13011 dev->mode_config.max_height = 4096;
13012 } else {
13013 dev->mode_config.max_width = 8192;
13014 dev->mode_config.max_height = 8192;
13015 }
13016
13017 if (IS_845G(dev) || IS_I865G(dev)) {
13018 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13019 dev->mode_config.cursor_height = 1023;
13020 } else if (IS_GEN2(dev)) {
13021 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13022 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13023 } else {
13024 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13025 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13026 }
13027
13028 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13029
13030 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13031 INTEL_INFO(dev)->num_pipes,
13032 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13033
13034 for_each_pipe(dev_priv, pipe) {
13035 intel_crtc_init(dev, pipe);
13036 for_each_sprite(pipe, sprite) {
13037 ret = intel_plane_init(dev, pipe, sprite);
13038 if (ret)
13039 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13040 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13041 }
13042 }
13043
13044 intel_init_dpio(dev);
13045
13046 intel_shared_dpll_init(dev);
13047
13048 /* save the BIOS value before clobbering it */
13049 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13050 /* Just disable it once at startup */
13051 i915_disable_vga(dev);
13052 intel_setup_outputs(dev);
13053
13054 /* Just in case the BIOS is doing something questionable. */
13055 intel_fbc_disable(dev);
13056
13057 drm_modeset_lock_all(dev);
13058 intel_modeset_setup_hw_state(dev, false);
13059 drm_modeset_unlock_all(dev);
13060
13061 for_each_intel_crtc(dev, crtc) {
13062 if (!crtc->active)
13063 continue;
13064
13065 /*
13066 * Note that reserving the BIOS fb up front prevents us
13067 * from stuffing other stolen allocations like the ring
13068 * on top. This prevents some ugliness at boot time, and
13069 * can even allow for smooth boot transitions if the BIOS
13070 * fb is large enough for the active pipe configuration.
13071 */
13072 if (dev_priv->display.get_plane_config) {
13073 dev_priv->display.get_plane_config(crtc,
13074 &crtc->plane_config);
13075 /*
13076 * If the fb is shared between multiple heads, we'll
13077 * just get the first one.
13078 */
13079 intel_find_plane_obj(crtc, &crtc->plane_config);
13080 }
13081 }
13082 }
13083
13084 static void intel_enable_pipe_a(struct drm_device *dev)
13085 {
13086 struct intel_connector *connector;
13087 struct drm_connector *crt = NULL;
13088 struct intel_load_detect_pipe load_detect_temp;
13089 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13090
13091 /* We can't just switch on the pipe A, we need to set things up with a
13092 * proper mode and output configuration. As a gross hack, enable pipe A
13093 * by enabling the load detect pipe once. */
13094 list_for_each_entry(connector,
13095 &dev->mode_config.connector_list,
13096 base.head) {
13097 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13098 crt = &connector->base;
13099 break;
13100 }
13101 }
13102
13103 if (!crt)
13104 return;
13105
13106 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13107 intel_release_load_detect_pipe(crt, &load_detect_temp);
13108 }
13109
13110 static bool
13111 intel_check_plane_mapping(struct intel_crtc *crtc)
13112 {
13113 struct drm_device *dev = crtc->base.dev;
13114 struct drm_i915_private *dev_priv = dev->dev_private;
13115 u32 reg, val;
13116
13117 if (INTEL_INFO(dev)->num_pipes == 1)
13118 return true;
13119
13120 reg = DSPCNTR(!crtc->plane);
13121 val = I915_READ(reg);
13122
13123 if ((val & DISPLAY_PLANE_ENABLE) &&
13124 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13125 return false;
13126
13127 return true;
13128 }
13129
13130 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13131 {
13132 struct drm_device *dev = crtc->base.dev;
13133 struct drm_i915_private *dev_priv = dev->dev_private;
13134 u32 reg;
13135
13136 /* Clear any frame start delays used for debugging left by the BIOS */
13137 reg = PIPECONF(crtc->config.cpu_transcoder);
13138 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13139
13140 /* restore vblank interrupts to correct state */
13141 if (crtc->active) {
13142 update_scanline_offset(crtc);
13143 drm_vblank_on(dev, crtc->pipe);
13144 } else
13145 drm_vblank_off(dev, crtc->pipe);
13146
13147 /* We need to sanitize the plane -> pipe mapping first because this will
13148 * disable the crtc (and hence change the state) if it is wrong. Note
13149 * that gen4+ has a fixed plane -> pipe mapping. */
13150 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13151 struct intel_connector *connector;
13152 bool plane;
13153
13154 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13155 crtc->base.base.id);
13156
13157 /* Pipe has the wrong plane attached and the plane is active.
13158 * Temporarily change the plane mapping and disable everything
13159 * ... */
13160 plane = crtc->plane;
13161 crtc->plane = !plane;
13162 crtc->primary_enabled = true;
13163 dev_priv->display.crtc_disable(&crtc->base);
13164 crtc->plane = plane;
13165
13166 /* ... and break all links. */
13167 list_for_each_entry(connector, &dev->mode_config.connector_list,
13168 base.head) {
13169 if (connector->encoder->base.crtc != &crtc->base)
13170 continue;
13171
13172 connector->base.dpms = DRM_MODE_DPMS_OFF;
13173 connector->base.encoder = NULL;
13174 }
13175 /* multiple connectors may have the same encoder:
13176 * handle them and break crtc link separately */
13177 list_for_each_entry(connector, &dev->mode_config.connector_list,
13178 base.head)
13179 if (connector->encoder->base.crtc == &crtc->base) {
13180 connector->encoder->base.crtc = NULL;
13181 connector->encoder->connectors_active = false;
13182 }
13183
13184 WARN_ON(crtc->active);
13185 crtc->base.enabled = false;
13186 }
13187
13188 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13189 crtc->pipe == PIPE_A && !crtc->active) {
13190 /* BIOS forgot to enable pipe A, this mostly happens after
13191 * resume. Force-enable the pipe to fix this, the update_dpms
13192 * call below we restore the pipe to the right state, but leave
13193 * the required bits on. */
13194 intel_enable_pipe_a(dev);
13195 }
13196
13197 /* Adjust the state of the output pipe according to whether we
13198 * have active connectors/encoders. */
13199 intel_crtc_update_dpms(&crtc->base);
13200
13201 if (crtc->active != crtc->base.enabled) {
13202 struct intel_encoder *encoder;
13203
13204 /* This can happen either due to bugs in the get_hw_state
13205 * functions or because the pipe is force-enabled due to the
13206 * pipe A quirk. */
13207 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13208 crtc->base.base.id,
13209 crtc->base.enabled ? "enabled" : "disabled",
13210 crtc->active ? "enabled" : "disabled");
13211
13212 crtc->base.enabled = crtc->active;
13213
13214 /* Because we only establish the connector -> encoder ->
13215 * crtc links if something is active, this means the
13216 * crtc is now deactivated. Break the links. connector
13217 * -> encoder links are only establish when things are
13218 * actually up, hence no need to break them. */
13219 WARN_ON(crtc->active);
13220
13221 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13222 WARN_ON(encoder->connectors_active);
13223 encoder->base.crtc = NULL;
13224 }
13225 }
13226
13227 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13228 /*
13229 * We start out with underrun reporting disabled to avoid races.
13230 * For correct bookkeeping mark this on active crtcs.
13231 *
13232 * Also on gmch platforms we dont have any hardware bits to
13233 * disable the underrun reporting. Which means we need to start
13234 * out with underrun reporting disabled also on inactive pipes,
13235 * since otherwise we'll complain about the garbage we read when
13236 * e.g. coming up after runtime pm.
13237 *
13238 * No protection against concurrent access is required - at
13239 * worst a fifo underrun happens which also sets this to false.
13240 */
13241 crtc->cpu_fifo_underrun_disabled = true;
13242 crtc->pch_fifo_underrun_disabled = true;
13243 }
13244 }
13245
13246 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13247 {
13248 struct intel_connector *connector;
13249 struct drm_device *dev = encoder->base.dev;
13250
13251 /* We need to check both for a crtc link (meaning that the
13252 * encoder is active and trying to read from a pipe) and the
13253 * pipe itself being active. */
13254 bool has_active_crtc = encoder->base.crtc &&
13255 to_intel_crtc(encoder->base.crtc)->active;
13256
13257 if (encoder->connectors_active && !has_active_crtc) {
13258 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13259 encoder->base.base.id,
13260 encoder->base.name);
13261
13262 /* Connector is active, but has no active pipe. This is
13263 * fallout from our resume register restoring. Disable
13264 * the encoder manually again. */
13265 if (encoder->base.crtc) {
13266 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13267 encoder->base.base.id,
13268 encoder->base.name);
13269 encoder->disable(encoder);
13270 if (encoder->post_disable)
13271 encoder->post_disable(encoder);
13272 }
13273 encoder->base.crtc = NULL;
13274 encoder->connectors_active = false;
13275
13276 /* Inconsistent output/port/pipe state happens presumably due to
13277 * a bug in one of the get_hw_state functions. Or someplace else
13278 * in our code, like the register restore mess on resume. Clamp
13279 * things to off as a safer default. */
13280 list_for_each_entry(connector,
13281 &dev->mode_config.connector_list,
13282 base.head) {
13283 if (connector->encoder != encoder)
13284 continue;
13285 connector->base.dpms = DRM_MODE_DPMS_OFF;
13286 connector->base.encoder = NULL;
13287 }
13288 }
13289 /* Enabled encoders without active connectors will be fixed in
13290 * the crtc fixup. */
13291 }
13292
13293 void i915_redisable_vga_power_on(struct drm_device *dev)
13294 {
13295 struct drm_i915_private *dev_priv = dev->dev_private;
13296 u32 vga_reg = i915_vgacntrl_reg(dev);
13297
13298 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13299 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13300 i915_disable_vga(dev);
13301 }
13302 }
13303
13304 void i915_redisable_vga(struct drm_device *dev)
13305 {
13306 struct drm_i915_private *dev_priv = dev->dev_private;
13307
13308 /* This function can be called both from intel_modeset_setup_hw_state or
13309 * at a very early point in our resume sequence, where the power well
13310 * structures are not yet restored. Since this function is at a very
13311 * paranoid "someone might have enabled VGA while we were not looking"
13312 * level, just check if the power well is enabled instead of trying to
13313 * follow the "don't touch the power well if we don't need it" policy
13314 * the rest of the driver uses. */
13315 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13316 return;
13317
13318 i915_redisable_vga_power_on(dev);
13319 }
13320
13321 static bool primary_get_hw_state(struct intel_crtc *crtc)
13322 {
13323 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13324
13325 if (!crtc->active)
13326 return false;
13327
13328 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13329 }
13330
13331 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13332 {
13333 struct drm_i915_private *dev_priv = dev->dev_private;
13334 enum pipe pipe;
13335 struct intel_crtc *crtc;
13336 struct intel_encoder *encoder;
13337 struct intel_connector *connector;
13338 int i;
13339
13340 for_each_intel_crtc(dev, crtc) {
13341 memset(&crtc->config, 0, sizeof(crtc->config));
13342
13343 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13344
13345 crtc->active = dev_priv->display.get_pipe_config(crtc,
13346 &crtc->config);
13347
13348 crtc->base.enabled = crtc->active;
13349 crtc->primary_enabled = primary_get_hw_state(crtc);
13350
13351 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13352 crtc->base.base.id,
13353 crtc->active ? "enabled" : "disabled");
13354 }
13355
13356 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13357 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13358
13359 pll->on = pll->get_hw_state(dev_priv, pll,
13360 &pll->config.hw_state);
13361 pll->active = 0;
13362 pll->config.crtc_mask = 0;
13363 for_each_intel_crtc(dev, crtc) {
13364 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13365 pll->active++;
13366 pll->config.crtc_mask |= 1 << crtc->pipe;
13367 }
13368 }
13369
13370 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13371 pll->name, pll->config.crtc_mask, pll->on);
13372
13373 if (pll->config.crtc_mask)
13374 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13375 }
13376
13377 for_each_intel_encoder(dev, encoder) {
13378 pipe = 0;
13379
13380 if (encoder->get_hw_state(encoder, &pipe)) {
13381 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13382 encoder->base.crtc = &crtc->base;
13383 encoder->get_config(encoder, &crtc->config);
13384 } else {
13385 encoder->base.crtc = NULL;
13386 }
13387
13388 encoder->connectors_active = false;
13389 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13390 encoder->base.base.id,
13391 encoder->base.name,
13392 encoder->base.crtc ? "enabled" : "disabled",
13393 pipe_name(pipe));
13394 }
13395
13396 list_for_each_entry(connector, &dev->mode_config.connector_list,
13397 base.head) {
13398 if (connector->get_hw_state(connector)) {
13399 connector->base.dpms = DRM_MODE_DPMS_ON;
13400 connector->encoder->connectors_active = true;
13401 connector->base.encoder = &connector->encoder->base;
13402 } else {
13403 connector->base.dpms = DRM_MODE_DPMS_OFF;
13404 connector->base.encoder = NULL;
13405 }
13406 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13407 connector->base.base.id,
13408 connector->base.name,
13409 connector->base.encoder ? "enabled" : "disabled");
13410 }
13411 }
13412
13413 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13414 * and i915 state tracking structures. */
13415 void intel_modeset_setup_hw_state(struct drm_device *dev,
13416 bool force_restore)
13417 {
13418 struct drm_i915_private *dev_priv = dev->dev_private;
13419 enum pipe pipe;
13420 struct intel_crtc *crtc;
13421 struct intel_encoder *encoder;
13422 int i;
13423
13424 intel_modeset_readout_hw_state(dev);
13425
13426 /*
13427 * Now that we have the config, copy it to each CRTC struct
13428 * Note that this could go away if we move to using crtc_config
13429 * checking everywhere.
13430 */
13431 for_each_intel_crtc(dev, crtc) {
13432 if (crtc->active && i915.fastboot) {
13433 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13434 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13435 crtc->base.base.id);
13436 drm_mode_debug_printmodeline(&crtc->base.mode);
13437 }
13438 }
13439
13440 /* HW state is read out, now we need to sanitize this mess. */
13441 for_each_intel_encoder(dev, encoder) {
13442 intel_sanitize_encoder(encoder);
13443 }
13444
13445 for_each_pipe(dev_priv, pipe) {
13446 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13447 intel_sanitize_crtc(crtc);
13448 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13449 }
13450
13451 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13452 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13453
13454 if (!pll->on || pll->active)
13455 continue;
13456
13457 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13458
13459 pll->disable(dev_priv, pll);
13460 pll->on = false;
13461 }
13462
13463 if (IS_GEN9(dev))
13464 skl_wm_get_hw_state(dev);
13465 else if (HAS_PCH_SPLIT(dev))
13466 ilk_wm_get_hw_state(dev);
13467
13468 if (force_restore) {
13469 i915_redisable_vga(dev);
13470
13471 /*
13472 * We need to use raw interfaces for restoring state to avoid
13473 * checking (bogus) intermediate states.
13474 */
13475 for_each_pipe(dev_priv, pipe) {
13476 struct drm_crtc *crtc =
13477 dev_priv->pipe_to_crtc_mapping[pipe];
13478
13479 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13480 crtc->primary->fb);
13481 }
13482 } else {
13483 intel_modeset_update_staged_output_state(dev);
13484 }
13485
13486 intel_modeset_check_state(dev);
13487 }
13488
13489 void intel_modeset_gem_init(struct drm_device *dev)
13490 {
13491 struct drm_i915_private *dev_priv = dev->dev_private;
13492 struct drm_crtc *c;
13493 struct drm_i915_gem_object *obj;
13494
13495 mutex_lock(&dev->struct_mutex);
13496 intel_init_gt_powersave(dev);
13497 mutex_unlock(&dev->struct_mutex);
13498
13499 /*
13500 * There may be no VBT; and if the BIOS enabled SSC we can
13501 * just keep using it to avoid unnecessary flicker. Whereas if the
13502 * BIOS isn't using it, don't assume it will work even if the VBT
13503 * indicates as much.
13504 */
13505 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13506 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13507 DREF_SSC1_ENABLE);
13508
13509 intel_modeset_init_hw(dev);
13510
13511 intel_setup_overlay(dev);
13512
13513 /*
13514 * Make sure any fbs we allocated at startup are properly
13515 * pinned & fenced. When we do the allocation it's too early
13516 * for this.
13517 */
13518 mutex_lock(&dev->struct_mutex);
13519 for_each_crtc(dev, c) {
13520 obj = intel_fb_obj(c->primary->fb);
13521 if (obj == NULL)
13522 continue;
13523
13524 if (intel_pin_and_fence_fb_obj(c->primary,
13525 c->primary->fb,
13526 NULL)) {
13527 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13528 to_intel_crtc(c)->pipe);
13529 drm_framebuffer_unreference(c->primary->fb);
13530 c->primary->fb = NULL;
13531 }
13532 }
13533 mutex_unlock(&dev->struct_mutex);
13534
13535 intel_backlight_register(dev);
13536 }
13537
13538 void intel_connector_unregister(struct intel_connector *intel_connector)
13539 {
13540 struct drm_connector *connector = &intel_connector->base;
13541
13542 intel_panel_destroy_backlight(connector);
13543 drm_connector_unregister(connector);
13544 }
13545
13546 void intel_modeset_cleanup(struct drm_device *dev)
13547 {
13548 struct drm_i915_private *dev_priv = dev->dev_private;
13549 struct drm_connector *connector;
13550
13551 intel_disable_gt_powersave(dev);
13552
13553 intel_backlight_unregister(dev);
13554
13555 /*
13556 * Interrupts and polling as the first thing to avoid creating havoc.
13557 * Too much stuff here (turning of connectors, ...) would
13558 * experience fancy races otherwise.
13559 */
13560 intel_irq_uninstall(dev_priv);
13561
13562 /*
13563 * Due to the hpd irq storm handling the hotplug work can re-arm the
13564 * poll handlers. Hence disable polling after hpd handling is shut down.
13565 */
13566 drm_kms_helper_poll_fini(dev);
13567
13568 mutex_lock(&dev->struct_mutex);
13569
13570 intel_unregister_dsm_handler();
13571
13572 intel_fbc_disable(dev);
13573
13574 ironlake_teardown_rc6(dev);
13575
13576 mutex_unlock(&dev->struct_mutex);
13577
13578 /* flush any delayed tasks or pending work */
13579 flush_scheduled_work();
13580
13581 /* destroy the backlight and sysfs files before encoders/connectors */
13582 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13583 struct intel_connector *intel_connector;
13584
13585 intel_connector = to_intel_connector(connector);
13586 intel_connector->unregister(intel_connector);
13587 }
13588
13589 drm_mode_config_cleanup(dev);
13590
13591 intel_cleanup_overlay(dev);
13592
13593 mutex_lock(&dev->struct_mutex);
13594 intel_cleanup_gt_powersave(dev);
13595 mutex_unlock(&dev->struct_mutex);
13596 }
13597
13598 /*
13599 * Return which encoder is currently attached for connector.
13600 */
13601 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13602 {
13603 return &intel_attached_encoder(connector)->base;
13604 }
13605
13606 void intel_connector_attach_encoder(struct intel_connector *connector,
13607 struct intel_encoder *encoder)
13608 {
13609 connector->encoder = encoder;
13610 drm_mode_connector_attach_encoder(&connector->base,
13611 &encoder->base);
13612 }
13613
13614 /*
13615 * set vga decode state - true == enable VGA decode
13616 */
13617 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13618 {
13619 struct drm_i915_private *dev_priv = dev->dev_private;
13620 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13621 u16 gmch_ctrl;
13622
13623 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13624 DRM_ERROR("failed to read control word\n");
13625 return -EIO;
13626 }
13627
13628 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13629 return 0;
13630
13631 if (state)
13632 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13633 else
13634 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13635
13636 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13637 DRM_ERROR("failed to write control word\n");
13638 return -EIO;
13639 }
13640
13641 return 0;
13642 }
13643
13644 struct intel_display_error_state {
13645
13646 u32 power_well_driver;
13647
13648 int num_transcoders;
13649
13650 struct intel_cursor_error_state {
13651 u32 control;
13652 u32 position;
13653 u32 base;
13654 u32 size;
13655 } cursor[I915_MAX_PIPES];
13656
13657 struct intel_pipe_error_state {
13658 bool power_domain_on;
13659 u32 source;
13660 u32 stat;
13661 } pipe[I915_MAX_PIPES];
13662
13663 struct intel_plane_error_state {
13664 u32 control;
13665 u32 stride;
13666 u32 size;
13667 u32 pos;
13668 u32 addr;
13669 u32 surface;
13670 u32 tile_offset;
13671 } plane[I915_MAX_PIPES];
13672
13673 struct intel_transcoder_error_state {
13674 bool power_domain_on;
13675 enum transcoder cpu_transcoder;
13676
13677 u32 conf;
13678
13679 u32 htotal;
13680 u32 hblank;
13681 u32 hsync;
13682 u32 vtotal;
13683 u32 vblank;
13684 u32 vsync;
13685 } transcoder[4];
13686 };
13687
13688 struct intel_display_error_state *
13689 intel_display_capture_error_state(struct drm_device *dev)
13690 {
13691 struct drm_i915_private *dev_priv = dev->dev_private;
13692 struct intel_display_error_state *error;
13693 int transcoders[] = {
13694 TRANSCODER_A,
13695 TRANSCODER_B,
13696 TRANSCODER_C,
13697 TRANSCODER_EDP,
13698 };
13699 int i;
13700
13701 if (INTEL_INFO(dev)->num_pipes == 0)
13702 return NULL;
13703
13704 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13705 if (error == NULL)
13706 return NULL;
13707
13708 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13709 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13710
13711 for_each_pipe(dev_priv, i) {
13712 error->pipe[i].power_domain_on =
13713 __intel_display_power_is_enabled(dev_priv,
13714 POWER_DOMAIN_PIPE(i));
13715 if (!error->pipe[i].power_domain_on)
13716 continue;
13717
13718 error->cursor[i].control = I915_READ(CURCNTR(i));
13719 error->cursor[i].position = I915_READ(CURPOS(i));
13720 error->cursor[i].base = I915_READ(CURBASE(i));
13721
13722 error->plane[i].control = I915_READ(DSPCNTR(i));
13723 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13724 if (INTEL_INFO(dev)->gen <= 3) {
13725 error->plane[i].size = I915_READ(DSPSIZE(i));
13726 error->plane[i].pos = I915_READ(DSPPOS(i));
13727 }
13728 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13729 error->plane[i].addr = I915_READ(DSPADDR(i));
13730 if (INTEL_INFO(dev)->gen >= 4) {
13731 error->plane[i].surface = I915_READ(DSPSURF(i));
13732 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13733 }
13734
13735 error->pipe[i].source = I915_READ(PIPESRC(i));
13736
13737 if (HAS_GMCH_DISPLAY(dev))
13738 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13739 }
13740
13741 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13742 if (HAS_DDI(dev_priv->dev))
13743 error->num_transcoders++; /* Account for eDP. */
13744
13745 for (i = 0; i < error->num_transcoders; i++) {
13746 enum transcoder cpu_transcoder = transcoders[i];
13747
13748 error->transcoder[i].power_domain_on =
13749 __intel_display_power_is_enabled(dev_priv,
13750 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13751 if (!error->transcoder[i].power_domain_on)
13752 continue;
13753
13754 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13755
13756 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13757 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13758 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13759 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13760 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13761 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13762 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13763 }
13764
13765 return error;
13766 }
13767
13768 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13769
13770 void
13771 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13772 struct drm_device *dev,
13773 struct intel_display_error_state *error)
13774 {
13775 struct drm_i915_private *dev_priv = dev->dev_private;
13776 int i;
13777
13778 if (!error)
13779 return;
13780
13781 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13782 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13783 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13784 error->power_well_driver);
13785 for_each_pipe(dev_priv, i) {
13786 err_printf(m, "Pipe [%d]:\n", i);
13787 err_printf(m, " Power: %s\n",
13788 error->pipe[i].power_domain_on ? "on" : "off");
13789 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13790 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13791
13792 err_printf(m, "Plane [%d]:\n", i);
13793 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13794 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13795 if (INTEL_INFO(dev)->gen <= 3) {
13796 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13797 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13798 }
13799 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13800 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13801 if (INTEL_INFO(dev)->gen >= 4) {
13802 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13803 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13804 }
13805
13806 err_printf(m, "Cursor [%d]:\n", i);
13807 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13808 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13809 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13810 }
13811
13812 for (i = 0; i < error->num_transcoders; i++) {
13813 err_printf(m, "CPU transcoder: %c\n",
13814 transcoder_name(error->transcoder[i].cpu_transcoder));
13815 err_printf(m, " Power: %s\n",
13816 error->transcoder[i].power_domain_on ? "on" : "off");
13817 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13818 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13819 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13820 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13821 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13822 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13823 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13824 }
13825 }
13826
13827 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13828 {
13829 struct intel_crtc *crtc;
13830
13831 for_each_intel_crtc(dev, crtc) {
13832 struct intel_unpin_work *work;
13833
13834 spin_lock_irq(&dev->event_lock);
13835
13836 work = crtc->unpin_work;
13837
13838 if (work && work->event &&
13839 work->event->base.file_priv == file) {
13840 kfree(work->event);
13841 work->event = NULL;
13842 }
13843
13844 spin_unlock_irq(&dev->event_lock);
13845 }
13846 }
This page took 0.332652 seconds and 5 git commands to generate.