Merge branch 'acpi-processor'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52 DRM_FORMAT_C8,
53 DRM_FORMAT_RGB565,
54 DRM_FORMAT_XRGB1555,
55 DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60 DRM_FORMAT_C8,
61 DRM_FORMAT_RGB565,
62 DRM_FORMAT_XRGB8888,
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_XRGB2101010,
65 DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69 DRM_FORMAT_C8,
70 DRM_FORMAT_RGB565,
71 DRM_FORMAT_XRGB8888,
72 DRM_FORMAT_XBGR8888,
73 DRM_FORMAT_ARGB8888,
74 DRM_FORMAT_ABGR8888,
75 DRM_FORMAT_XRGB2101010,
76 DRM_FORMAT_XBGR2101010,
77 DRM_FORMAT_YUYV,
78 DRM_FORMAT_YVYU,
79 DRM_FORMAT_UYVY,
80 DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85 DRM_FORMAT_ARGB8888,
86 };
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122 int min, max;
123 } intel_range_t;
124
125 typedef struct {
126 int dot_limit;
127 int p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
146
147 return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
152 {
153 u32 val;
154 int divider;
155
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
173 intel_pch_rawclk(struct drm_device *dev)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176
177 WARN_ON(!HAS_PCH_SPLIT(dev));
178
179 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
184 {
185 struct drm_i915_private *dev_priv = dev->dev_private;
186 uint32_t clkcfg;
187
188 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
190 return 200;
191
192 clkcfg = I915_READ(CLKCFG);
193 switch (clkcfg & CLKCFG_FSB_MASK) {
194 case CLKCFG_FSB_400:
195 return 100;
196 case CLKCFG_FSB_533:
197 return 133;
198 case CLKCFG_FSB_667:
199 return 166;
200 case CLKCFG_FSB_800:
201 return 200;
202 case CLKCFG_FSB_1067:
203 return 266;
204 case CLKCFG_FSB_1333:
205 return 333;
206 /* these two are just a guess; one of them might be right */
207 case CLKCFG_FSB_1600:
208 case CLKCFG_FSB_1600_ALT:
209 return 400;
210 default:
211 return 133;
212 }
213 }
214
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
218 return;
219
220 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221 CCK_CZ_CLOCK_CONTROL);
222
223 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229 if (IS_GEN5(dev)) {
230 struct drm_i915_private *dev_priv = dev->dev_private;
231 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232 } else
233 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237 .dot = { .min = 25000, .max = 350000 },
238 .vco = { .min = 908000, .max = 1512000 },
239 .n = { .min = 2, .max = 16 },
240 .m = { .min = 96, .max = 140 },
241 .m1 = { .min = 18, .max = 26 },
242 .m2 = { .min = 6, .max = 16 },
243 .p = { .min = 4, .max = 128 },
244 .p1 = { .min = 2, .max = 33 },
245 .p2 = { .dot_limit = 165000,
246 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250 .dot = { .min = 25000, .max = 350000 },
251 .vco = { .min = 908000, .max = 1512000 },
252 .n = { .min = 2, .max = 16 },
253 .m = { .min = 96, .max = 140 },
254 .m1 = { .min = 18, .max = 26 },
255 .m2 = { .min = 6, .max = 16 },
256 .p = { .min = 4, .max = 128 },
257 .p1 = { .min = 2, .max = 33 },
258 .p2 = { .dot_limit = 165000,
259 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 1, .max = 6 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276 .dot = { .min = 20000, .max = 400000 },
277 .vco = { .min = 1400000, .max = 2800000 },
278 .n = { .min = 1, .max = 6 },
279 .m = { .min = 70, .max = 120 },
280 .m1 = { .min = 8, .max = 18 },
281 .m2 = { .min = 3, .max = 7 },
282 .p = { .min = 5, .max = 80 },
283 .p1 = { .min = 1, .max = 8 },
284 .p2 = { .dot_limit = 200000,
285 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289 .dot = { .min = 20000, .max = 400000 },
290 .vco = { .min = 1400000, .max = 2800000 },
291 .n = { .min = 1, .max = 6 },
292 .m = { .min = 70, .max = 120 },
293 .m1 = { .min = 8, .max = 18 },
294 .m2 = { .min = 3, .max = 7 },
295 .p = { .min = 7, .max = 98 },
296 .p1 = { .min = 1, .max = 8 },
297 .p2 = { .dot_limit = 112000,
298 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303 .dot = { .min = 25000, .max = 270000 },
304 .vco = { .min = 1750000, .max = 3500000},
305 .n = { .min = 1, .max = 4 },
306 .m = { .min = 104, .max = 138 },
307 .m1 = { .min = 17, .max = 23 },
308 .m2 = { .min = 5, .max = 11 },
309 .p = { .min = 10, .max = 30 },
310 .p1 = { .min = 1, .max = 3},
311 .p2 = { .dot_limit = 270000,
312 .p2_slow = 10,
313 .p2_fast = 10
314 },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318 .dot = { .min = 22000, .max = 400000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 16, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 5, .max = 80 },
325 .p1 = { .min = 1, .max = 8},
326 .p2 = { .dot_limit = 165000,
327 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331 .dot = { .min = 20000, .max = 115000 },
332 .vco = { .min = 1750000, .max = 3500000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 104, .max = 138 },
335 .m1 = { .min = 17, .max = 23 },
336 .m2 = { .min = 5, .max = 11 },
337 .p = { .min = 28, .max = 112 },
338 .p1 = { .min = 2, .max = 8 },
339 .p2 = { .dot_limit = 0,
340 .p2_slow = 14, .p2_fast = 14
341 },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345 .dot = { .min = 80000, .max = 224000 },
346 .vco = { .min = 1750000, .max = 3500000 },
347 .n = { .min = 1, .max = 3 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 17, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 14, .max = 42 },
352 .p1 = { .min = 2, .max = 6 },
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 7, .p2_fast = 7
355 },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359 .dot = { .min = 20000, .max = 400000},
360 .vco = { .min = 1700000, .max = 3500000 },
361 /* Pineview's Ncounter is a ring counter */
362 .n = { .min = 3, .max = 6 },
363 .m = { .min = 2, .max = 256 },
364 /* Pineview only has one combined m divider, which we treat as m2. */
365 .m1 = { .min = 0, .max = 0 },
366 .m2 = { .min = 0, .max = 254 },
367 .p = { .min = 5, .max = 80 },
368 .p1 = { .min = 1, .max = 8 },
369 .p2 = { .dot_limit = 200000,
370 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374 .dot = { .min = 20000, .max = 400000 },
375 .vco = { .min = 1700000, .max = 3500000 },
376 .n = { .min = 3, .max = 6 },
377 .m = { .min = 2, .max = 256 },
378 .m1 = { .min = 0, .max = 0 },
379 .m2 = { .min = 0, .max = 254 },
380 .p = { .min = 7, .max = 112 },
381 .p1 = { .min = 1, .max = 8 },
382 .p2 = { .dot_limit = 112000,
383 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387 *
388 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389 * the range value for them is (actual_value - 2).
390 */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392 .dot = { .min = 25000, .max = 350000 },
393 .vco = { .min = 1760000, .max = 3510000 },
394 .n = { .min = 1, .max = 5 },
395 .m = { .min = 79, .max = 127 },
396 .m1 = { .min = 12, .max = 22 },
397 .m2 = { .min = 5, .max = 9 },
398 .p = { .min = 5, .max = 80 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 225000,
401 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405 .dot = { .min = 25000, .max = 350000 },
406 .vco = { .min = 1760000, .max = 3510000 },
407 .n = { .min = 1, .max = 3 },
408 .m = { .min = 79, .max = 118 },
409 .m1 = { .min = 12, .max = 22 },
410 .m2 = { .min = 5, .max = 9 },
411 .p = { .min = 28, .max = 112 },
412 .p1 = { .min = 2, .max = 8 },
413 .p2 = { .dot_limit = 225000,
414 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 3 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 14, .max = 56 },
425 .p1 = { .min = 2, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 2 },
435 .m = { .min = 79, .max = 126 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 126 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 42 },
452 .p1 = { .min = 2, .max = 6 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458 /*
459 * These are the data rate limits (measured in fast clocks)
460 * since those are the strictest limits we have. The fast
461 * clock and actual rate limits are more relaxed, so checking
462 * them would make no difference.
463 */
464 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465 .vco = { .min = 4000000, .max = 6000000 },
466 .n = { .min = 1, .max = 7 },
467 .m1 = { .min = 2, .max = 3 },
468 .m2 = { .min = 11, .max = 156 },
469 .p1 = { .min = 2, .max = 3 },
470 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474 /*
475 * These are the data rate limits (measured in fast clocks)
476 * since those are the strictest limits we have. The fast
477 * clock and actual rate limits are more relaxed, so checking
478 * them would make no difference.
479 */
480 .dot = { .min = 25000 * 5, .max = 540000 * 5},
481 .vco = { .min = 4800000, .max = 6480000 },
482 .n = { .min = 1, .max = 1 },
483 .m1 = { .min = 2, .max = 2 },
484 .m2 = { .min = 24 << 22, .max = 175 << 22 },
485 .p1 = { .min = 2, .max = 4 },
486 .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490 /* FIXME: find real dot limits */
491 .dot = { .min = 0, .max = INT_MAX },
492 .vco = { .min = 4800000, .max = 6700000 },
493 .n = { .min = 1, .max = 1 },
494 .m1 = { .min = 2, .max = 2 },
495 /* FIXME: find real m2 limits */
496 .m2 = { .min = 2 << 22, .max = 255 << 22 },
497 .p1 = { .min = 2, .max = 4 },
498 .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
503 {
504 return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508 * Returns whether any output on the specified pipe is of the specified type
509 */
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512 struct drm_device *dev = crtc->base.dev;
513 struct intel_encoder *encoder;
514
515 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516 if (encoder->type == type)
517 return true;
518
519 return false;
520 }
521
522 /**
523 * Returns whether any output on the specified pipe will have the specified
524 * type after a staged modeset is complete, i.e., the same as
525 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526 * encoder->crtc.
527 */
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529 int type)
530 {
531 struct drm_atomic_state *state = crtc_state->base.state;
532 struct drm_connector *connector;
533 struct drm_connector_state *connector_state;
534 struct intel_encoder *encoder;
535 int i, num_connectors = 0;
536
537 for_each_connector_in_state(state, connector, connector_state, i) {
538 if (connector_state->crtc != crtc_state->base.crtc)
539 continue;
540
541 num_connectors++;
542
543 encoder = to_intel_encoder(connector_state->best_encoder);
544 if (encoder->type == type)
545 return true;
546 }
547
548 WARN_ON(num_connectors == 0);
549
550 return false;
551 }
552
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556 struct drm_device *dev = crtc_state->base.crtc->dev;
557 const intel_limit_t *limit;
558
559 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560 if (intel_is_dual_link_lvds(dev)) {
561 if (refclk == 100000)
562 limit = &intel_limits_ironlake_dual_lvds_100m;
563 else
564 limit = &intel_limits_ironlake_dual_lvds;
565 } else {
566 if (refclk == 100000)
567 limit = &intel_limits_ironlake_single_lvds_100m;
568 else
569 limit = &intel_limits_ironlake_single_lvds;
570 }
571 } else
572 limit = &intel_limits_ironlake_dac;
573
574 return limit;
575 }
576
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580 struct drm_device *dev = crtc_state->base.crtc->dev;
581 const intel_limit_t *limit;
582
583 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584 if (intel_is_dual_link_lvds(dev))
585 limit = &intel_limits_g4x_dual_channel_lvds;
586 else
587 limit = &intel_limits_g4x_single_channel_lvds;
588 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590 limit = &intel_limits_g4x_hdmi;
591 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592 limit = &intel_limits_g4x_sdvo;
593 } else /* The option is for other outputs */
594 limit = &intel_limits_i9xx_sdvo;
595
596 return limit;
597 }
598
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602 struct drm_device *dev = crtc_state->base.crtc->dev;
603 const intel_limit_t *limit;
604
605 if (IS_BROXTON(dev))
606 limit = &intel_limits_bxt;
607 else if (HAS_PCH_SPLIT(dev))
608 limit = intel_ironlake_limit(crtc_state, refclk);
609 else if (IS_G4X(dev)) {
610 limit = intel_g4x_limit(crtc_state);
611 } else if (IS_PINEVIEW(dev)) {
612 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613 limit = &intel_limits_pineview_lvds;
614 else
615 limit = &intel_limits_pineview_sdvo;
616 } else if (IS_CHERRYVIEW(dev)) {
617 limit = &intel_limits_chv;
618 } else if (IS_VALLEYVIEW(dev)) {
619 limit = &intel_limits_vlv;
620 } else if (!IS_GEN2(dev)) {
621 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622 limit = &intel_limits_i9xx_lvds;
623 else
624 limit = &intel_limits_i9xx_sdvo;
625 } else {
626 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627 limit = &intel_limits_i8xx_lvds;
628 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629 limit = &intel_limits_i8xx_dvo;
630 else
631 limit = &intel_limits_i8xx_dac;
632 }
633 return limit;
634 }
635
636 /*
637 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640 * The helpers' return value is the rate of the clock that is fed to the
641 * display engine's pipe which can be the above fast dot clock rate or a
642 * divided-down version of it.
643 */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647 clock->m = clock->m2 + 2;
648 clock->p = clock->p1 * clock->p2;
649 if (WARN_ON(clock->n == 0 || clock->p == 0))
650 return 0;
651 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654 return clock->dot;
655 }
656
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664 clock->m = i9xx_dpll_compute_m(clock);
665 clock->p = clock->p1 * clock->p2;
666 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667 return 0;
668 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671 return clock->dot;
672 }
673
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676 clock->m = clock->m1 * clock->m2;
677 clock->p = clock->p1 * clock->p2;
678 if (WARN_ON(clock->n == 0 || clock->p == 0))
679 return 0;
680 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683 return clock->dot / 5;
684 }
685
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688 clock->m = clock->m1 * clock->m2;
689 clock->p = clock->p1 * clock->p2;
690 if (WARN_ON(clock->n == 0 || clock->p == 0))
691 return 0;
692 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693 clock->n << 22);
694 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696 return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701 * Returns whether the given set of divisors are valid for a given refclk with
702 * the given connectors.
703 */
704
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706 const intel_limit_t *limit,
707 const intel_clock_t *clock)
708 {
709 if (clock->n < limit->n.min || limit->n.max < clock->n)
710 INTELPllInvalid("n out of range\n");
711 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
712 INTELPllInvalid("p1 out of range\n");
713 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
714 INTELPllInvalid("m2 out of range\n");
715 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
716 INTELPllInvalid("m1 out of range\n");
717
718 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
719 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
720 if (clock->m1 <= clock->m2)
721 INTELPllInvalid("m1 <= m2\n");
722
723 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
724 if (clock->p < limit->p.min || limit->p.max < clock->p)
725 INTELPllInvalid("p out of range\n");
726 if (clock->m < limit->m.min || limit->m.max < clock->m)
727 INTELPllInvalid("m out of range\n");
728 }
729
730 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
731 INTELPllInvalid("vco out of range\n");
732 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733 * connector, etc., rather than just a single range.
734 */
735 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
736 INTELPllInvalid("dot out of range\n");
737
738 return true;
739 }
740
741 static int
742 i9xx_select_p2_div(const intel_limit_t *limit,
743 const struct intel_crtc_state *crtc_state,
744 int target)
745 {
746 struct drm_device *dev = crtc_state->base.crtc->dev;
747
748 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
749 /*
750 * For LVDS just rely on its current settings for dual-channel.
751 * We haven't figured out how to reliably set up different
752 * single/dual channel state, if we even can.
753 */
754 if (intel_is_dual_link_lvds(dev))
755 return limit->p2.p2_fast;
756 else
757 return limit->p2.p2_slow;
758 } else {
759 if (target < limit->p2.dot_limit)
760 return limit->p2.p2_slow;
761 else
762 return limit->p2.p2_fast;
763 }
764 }
765
766 static bool
767 i9xx_find_best_dpll(const intel_limit_t *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
771 {
772 struct drm_device *dev = crtc_state->base.crtc->dev;
773 intel_clock_t clock;
774 int err = target;
775
776 memset(best_clock, 0, sizeof(*best_clock));
777
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
784 if (clock.m2 >= clock.m1)
785 break;
786 for (clock.n = limit->n.min;
787 clock.n <= limit->n.max; clock.n++) {
788 for (clock.p1 = limit->p1.min;
789 clock.p1 <= limit->p1.max; clock.p1++) {
790 int this_err;
791
792 i9xx_calc_dpll_params(refclk, &clock);
793 if (!intel_PLL_is_valid(dev, limit,
794 &clock))
795 continue;
796 if (match_clock &&
797 clock.p != match_clock->p)
798 continue;
799
800 this_err = abs(clock.dot - target);
801 if (this_err < err) {
802 *best_clock = clock;
803 err = this_err;
804 }
805 }
806 }
807 }
808 }
809
810 return (err != target);
811 }
812
813 static bool
814 pnv_find_best_dpll(const intel_limit_t *limit,
815 struct intel_crtc_state *crtc_state,
816 int target, int refclk, intel_clock_t *match_clock,
817 intel_clock_t *best_clock)
818 {
819 struct drm_device *dev = crtc_state->base.crtc->dev;
820 intel_clock_t clock;
821 int err = target;
822
823 memset(best_clock, 0, sizeof(*best_clock));
824
825 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
827 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828 clock.m1++) {
829 for (clock.m2 = limit->m2.min;
830 clock.m2 <= limit->m2.max; clock.m2++) {
831 for (clock.n = limit->n.min;
832 clock.n <= limit->n.max; clock.n++) {
833 for (clock.p1 = limit->p1.min;
834 clock.p1 <= limit->p1.max; clock.p1++) {
835 int this_err;
836
837 pnv_calc_dpll_params(refclk, &clock);
838 if (!intel_PLL_is_valid(dev, limit,
839 &clock))
840 continue;
841 if (match_clock &&
842 clock.p != match_clock->p)
843 continue;
844
845 this_err = abs(clock.dot - target);
846 if (this_err < err) {
847 *best_clock = clock;
848 err = this_err;
849 }
850 }
851 }
852 }
853 }
854
855 return (err != target);
856 }
857
858 static bool
859 g4x_find_best_dpll(const intel_limit_t *limit,
860 struct intel_crtc_state *crtc_state,
861 int target, int refclk, intel_clock_t *match_clock,
862 intel_clock_t *best_clock)
863 {
864 struct drm_device *dev = crtc_state->base.crtc->dev;
865 intel_clock_t clock;
866 int max_n;
867 bool found = false;
868 /* approximately equals target * 0.00585 */
869 int err_most = (target >> 8) + (target >> 9);
870
871 memset(best_clock, 0, sizeof(*best_clock));
872
873 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
875 max_n = limit->n.max;
876 /* based on hardware requirement, prefer smaller n to precision */
877 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878 /* based on hardware requirement, prefere larger m1,m2 */
879 for (clock.m1 = limit->m1.max;
880 clock.m1 >= limit->m1.min; clock.m1--) {
881 for (clock.m2 = limit->m2.max;
882 clock.m2 >= limit->m2.min; clock.m2--) {
883 for (clock.p1 = limit->p1.max;
884 clock.p1 >= limit->p1.min; clock.p1--) {
885 int this_err;
886
887 i9xx_calc_dpll_params(refclk, &clock);
888 if (!intel_PLL_is_valid(dev, limit,
889 &clock))
890 continue;
891
892 this_err = abs(clock.dot - target);
893 if (this_err < err_most) {
894 *best_clock = clock;
895 err_most = this_err;
896 max_n = clock.n;
897 found = true;
898 }
899 }
900 }
901 }
902 }
903 return found;
904 }
905
906 /*
907 * Check if the calculated PLL configuration is more optimal compared to the
908 * best configuration and error found so far. Return the calculated error.
909 */
910 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911 const intel_clock_t *calculated_clock,
912 const intel_clock_t *best_clock,
913 unsigned int best_error_ppm,
914 unsigned int *error_ppm)
915 {
916 /*
917 * For CHV ignore the error and consider only the P value.
918 * Prefer a bigger P value based on HW requirements.
919 */
920 if (IS_CHERRYVIEW(dev)) {
921 *error_ppm = 0;
922
923 return calculated_clock->p > best_clock->p;
924 }
925
926 if (WARN_ON_ONCE(!target_freq))
927 return false;
928
929 *error_ppm = div_u64(1000000ULL *
930 abs(target_freq - calculated_clock->dot),
931 target_freq);
932 /*
933 * Prefer a better P value over a better (smaller) error if the error
934 * is small. Ensure this preference for future configurations too by
935 * setting the error to 0.
936 */
937 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938 *error_ppm = 0;
939
940 return true;
941 }
942
943 return *error_ppm + 10 < best_error_ppm;
944 }
945
946 static bool
947 vlv_find_best_dpll(const intel_limit_t *limit,
948 struct intel_crtc_state *crtc_state,
949 int target, int refclk, intel_clock_t *match_clock,
950 intel_clock_t *best_clock)
951 {
952 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
953 struct drm_device *dev = crtc->base.dev;
954 intel_clock_t clock;
955 unsigned int bestppm = 1000000;
956 /* min update 19.2 MHz */
957 int max_n = min(limit->n.max, refclk / 19200);
958 bool found = false;
959
960 target *= 5; /* fast clock */
961
962 memset(best_clock, 0, sizeof(*best_clock));
963
964 /* based on hardware requirement, prefer smaller n to precision */
965 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
966 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
967 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
968 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
969 clock.p = clock.p1 * clock.p2;
970 /* based on hardware requirement, prefer bigger m1,m2 values */
971 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
972 unsigned int ppm;
973
974 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975 refclk * clock.m1);
976
977 vlv_calc_dpll_params(refclk, &clock);
978
979 if (!intel_PLL_is_valid(dev, limit,
980 &clock))
981 continue;
982
983 if (!vlv_PLL_is_optimal(dev, target,
984 &clock,
985 best_clock,
986 bestppm, &ppm))
987 continue;
988
989 *best_clock = clock;
990 bestppm = ppm;
991 found = true;
992 }
993 }
994 }
995 }
996
997 return found;
998 }
999
1000 static bool
1001 chv_find_best_dpll(const intel_limit_t *limit,
1002 struct intel_crtc_state *crtc_state,
1003 int target, int refclk, intel_clock_t *match_clock,
1004 intel_clock_t *best_clock)
1005 {
1006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1007 struct drm_device *dev = crtc->base.dev;
1008 unsigned int best_error_ppm;
1009 intel_clock_t clock;
1010 uint64_t m2;
1011 int found = false;
1012
1013 memset(best_clock, 0, sizeof(*best_clock));
1014 best_error_ppm = 1000000;
1015
1016 /*
1017 * Based on hardware doc, the n always set to 1, and m1 always
1018 * set to 2. If requires to support 200Mhz refclk, we need to
1019 * revisit this because n may not 1 anymore.
1020 */
1021 clock.n = 1, clock.m1 = 2;
1022 target *= 5; /* fast clock */
1023
1024 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025 for (clock.p2 = limit->p2.p2_fast;
1026 clock.p2 >= limit->p2.p2_slow;
1027 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1028 unsigned int error_ppm;
1029
1030 clock.p = clock.p1 * clock.p2;
1031
1032 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033 clock.n) << 22, refclk * clock.m1);
1034
1035 if (m2 > INT_MAX/clock.m1)
1036 continue;
1037
1038 clock.m2 = m2;
1039
1040 chv_calc_dpll_params(refclk, &clock);
1041
1042 if (!intel_PLL_is_valid(dev, limit, &clock))
1043 continue;
1044
1045 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046 best_error_ppm, &error_ppm))
1047 continue;
1048
1049 *best_clock = clock;
1050 best_error_ppm = error_ppm;
1051 found = true;
1052 }
1053 }
1054
1055 return found;
1056 }
1057
1058 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059 intel_clock_t *best_clock)
1060 {
1061 int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064 target_clock, refclk, NULL, best_clock);
1065 }
1066
1067 bool intel_crtc_active(struct drm_crtc *crtc)
1068 {
1069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071 /* Be paranoid as we can arrive here with only partial
1072 * state retrieved from the hardware during setup.
1073 *
1074 * We can ditch the adjusted_mode.crtc_clock check as soon
1075 * as Haswell has gained clock readout/fastboot support.
1076 *
1077 * We can ditch the crtc->primary->fb check as soon as we can
1078 * properly reconstruct framebuffers.
1079 *
1080 * FIXME: The intel_crtc->active here should be switched to
1081 * crtc->state->active once we have proper CRTC states wired up
1082 * for atomic.
1083 */
1084 return intel_crtc->active && crtc->primary->state->fb &&
1085 intel_crtc->config->base.adjusted_mode.crtc_clock;
1086 }
1087
1088 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089 enum pipe pipe)
1090 {
1091 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
1094 return intel_crtc->config->cpu_transcoder;
1095 }
1096
1097 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098 {
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 i915_reg_t reg = PIPEDSL(pipe);
1101 u32 line1, line2;
1102 u32 line_mask;
1103
1104 if (IS_GEN2(dev))
1105 line_mask = DSL_LINEMASK_GEN2;
1106 else
1107 line_mask = DSL_LINEMASK_GEN3;
1108
1109 line1 = I915_READ(reg) & line_mask;
1110 msleep(5);
1111 line2 = I915_READ(reg) & line_mask;
1112
1113 return line1 == line2;
1114 }
1115
1116 /*
1117 * intel_wait_for_pipe_off - wait for pipe to turn off
1118 * @crtc: crtc whose pipe to wait for
1119 *
1120 * After disabling a pipe, we can't wait for vblank in the usual way,
1121 * spinning on the vblank interrupt status bit, since we won't actually
1122 * see an interrupt when the pipe is disabled.
1123 *
1124 * On Gen4 and above:
1125 * wait for the pipe register state bit to turn off
1126 *
1127 * Otherwise:
1128 * wait for the display line value to settle (it usually
1129 * ends up stopping at the start of the next frame).
1130 *
1131 */
1132 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1133 {
1134 struct drm_device *dev = crtc->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1137 enum pipe pipe = crtc->pipe;
1138
1139 if (INTEL_INFO(dev)->gen >= 4) {
1140 i915_reg_t reg = PIPECONF(cpu_transcoder);
1141
1142 /* Wait for the Pipe State to go off */
1143 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144 100))
1145 WARN(1, "pipe_off wait timed out\n");
1146 } else {
1147 /* Wait for the display line to settle */
1148 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1149 WARN(1, "pipe_off wait timed out\n");
1150 }
1151 }
1152
1153 /* Only for pre-ILK configs */
1154 void assert_pll(struct drm_i915_private *dev_priv,
1155 enum pipe pipe, bool state)
1156 {
1157 u32 val;
1158 bool cur_state;
1159
1160 val = I915_READ(DPLL(pipe));
1161 cur_state = !!(val & DPLL_VCO_ENABLE);
1162 I915_STATE_WARN(cur_state != state,
1163 "PLL state assertion failure (expected %s, current %s)\n",
1164 onoff(state), onoff(cur_state));
1165 }
1166
1167 /* XXX: the dsi pll is shared between MIPI DSI ports */
1168 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1169 {
1170 u32 val;
1171 bool cur_state;
1172
1173 mutex_lock(&dev_priv->sb_lock);
1174 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1175 mutex_unlock(&dev_priv->sb_lock);
1176
1177 cur_state = val & DSI_PLL_VCO_EN;
1178 I915_STATE_WARN(cur_state != state,
1179 "DSI PLL state assertion failure (expected %s, current %s)\n",
1180 onoff(state), onoff(cur_state));
1181 }
1182 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1183 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1184
1185 struct intel_shared_dpll *
1186 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1187 {
1188 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1189
1190 if (crtc->config->shared_dpll < 0)
1191 return NULL;
1192
1193 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1194 }
1195
1196 /* For ILK+ */
1197 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1198 struct intel_shared_dpll *pll,
1199 bool state)
1200 {
1201 bool cur_state;
1202 struct intel_dpll_hw_state hw_state;
1203
1204 if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
1205 return;
1206
1207 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1208 I915_STATE_WARN(cur_state != state,
1209 "%s assertion failure (expected %s, current %s)\n",
1210 pll->name, onoff(state), onoff(cur_state));
1211 }
1212
1213 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1214 enum pipe pipe, bool state)
1215 {
1216 bool cur_state;
1217 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1218 pipe);
1219
1220 if (HAS_DDI(dev_priv->dev)) {
1221 /* DDI does not have a specific FDI_TX register */
1222 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1223 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1224 } else {
1225 u32 val = I915_READ(FDI_TX_CTL(pipe));
1226 cur_state = !!(val & FDI_TX_ENABLE);
1227 }
1228 I915_STATE_WARN(cur_state != state,
1229 "FDI TX state assertion failure (expected %s, current %s)\n",
1230 onoff(state), onoff(cur_state));
1231 }
1232 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1233 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1234
1235 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1236 enum pipe pipe, bool state)
1237 {
1238 u32 val;
1239 bool cur_state;
1240
1241 val = I915_READ(FDI_RX_CTL(pipe));
1242 cur_state = !!(val & FDI_RX_ENABLE);
1243 I915_STATE_WARN(cur_state != state,
1244 "FDI RX state assertion failure (expected %s, current %s)\n",
1245 onoff(state), onoff(cur_state));
1246 }
1247 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1248 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1249
1250 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1251 enum pipe pipe)
1252 {
1253 u32 val;
1254
1255 /* ILK FDI PLL is always enabled */
1256 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1257 return;
1258
1259 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1260 if (HAS_DDI(dev_priv->dev))
1261 return;
1262
1263 val = I915_READ(FDI_TX_CTL(pipe));
1264 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1265 }
1266
1267 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1268 enum pipe pipe, bool state)
1269 {
1270 u32 val;
1271 bool cur_state;
1272
1273 val = I915_READ(FDI_RX_CTL(pipe));
1274 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1275 I915_STATE_WARN(cur_state != state,
1276 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1277 onoff(state), onoff(cur_state));
1278 }
1279
1280 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1281 enum pipe pipe)
1282 {
1283 struct drm_device *dev = dev_priv->dev;
1284 i915_reg_t pp_reg;
1285 u32 val;
1286 enum pipe panel_pipe = PIPE_A;
1287 bool locked = true;
1288
1289 if (WARN_ON(HAS_DDI(dev)))
1290 return;
1291
1292 if (HAS_PCH_SPLIT(dev)) {
1293 u32 port_sel;
1294
1295 pp_reg = PCH_PP_CONTROL;
1296 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1297
1298 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1299 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1300 panel_pipe = PIPE_B;
1301 /* XXX: else fix for eDP */
1302 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1303 /* presumably write lock depends on pipe, not port select */
1304 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1305 panel_pipe = pipe;
1306 } else {
1307 pp_reg = PP_CONTROL;
1308 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1309 panel_pipe = PIPE_B;
1310 }
1311
1312 val = I915_READ(pp_reg);
1313 if (!(val & PANEL_POWER_ON) ||
1314 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1315 locked = false;
1316
1317 I915_STATE_WARN(panel_pipe == pipe && locked,
1318 "panel assertion failure, pipe %c regs locked\n",
1319 pipe_name(pipe));
1320 }
1321
1322 static void assert_cursor(struct drm_i915_private *dev_priv,
1323 enum pipe pipe, bool state)
1324 {
1325 struct drm_device *dev = dev_priv->dev;
1326 bool cur_state;
1327
1328 if (IS_845G(dev) || IS_I865G(dev))
1329 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1330 else
1331 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1332
1333 I915_STATE_WARN(cur_state != state,
1334 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1335 pipe_name(pipe), onoff(state), onoff(cur_state));
1336 }
1337 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1338 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1339
1340 void assert_pipe(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, bool state)
1342 {
1343 bool cur_state;
1344 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1345 pipe);
1346 enum intel_display_power_domain power_domain;
1347
1348 /* if we need the pipe quirk it must be always on */
1349 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1350 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1351 state = true;
1352
1353 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1354 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1355 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1356 cur_state = !!(val & PIPECONF_ENABLE);
1357
1358 intel_display_power_put(dev_priv, power_domain);
1359 } else {
1360 cur_state = false;
1361 }
1362
1363 I915_STATE_WARN(cur_state != state,
1364 "pipe %c assertion failure (expected %s, current %s)\n",
1365 pipe_name(pipe), onoff(state), onoff(cur_state));
1366 }
1367
1368 static void assert_plane(struct drm_i915_private *dev_priv,
1369 enum plane plane, bool state)
1370 {
1371 u32 val;
1372 bool cur_state;
1373
1374 val = I915_READ(DSPCNTR(plane));
1375 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1376 I915_STATE_WARN(cur_state != state,
1377 "plane %c assertion failure (expected %s, current %s)\n",
1378 plane_name(plane), onoff(state), onoff(cur_state));
1379 }
1380
1381 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1382 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1383
1384 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe)
1386 {
1387 struct drm_device *dev = dev_priv->dev;
1388 int i;
1389
1390 /* Primary planes are fixed to pipes on gen4+ */
1391 if (INTEL_INFO(dev)->gen >= 4) {
1392 u32 val = I915_READ(DSPCNTR(pipe));
1393 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1394 "plane %c assertion failure, should be disabled but not\n",
1395 plane_name(pipe));
1396 return;
1397 }
1398
1399 /* Need to check both planes against the pipe */
1400 for_each_pipe(dev_priv, i) {
1401 u32 val = I915_READ(DSPCNTR(i));
1402 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1403 DISPPLANE_SEL_PIPE_SHIFT;
1404 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1405 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1406 plane_name(i), pipe_name(pipe));
1407 }
1408 }
1409
1410 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe)
1412 {
1413 struct drm_device *dev = dev_priv->dev;
1414 int sprite;
1415
1416 if (INTEL_INFO(dev)->gen >= 9) {
1417 for_each_sprite(dev_priv, pipe, sprite) {
1418 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1419 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1420 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1421 sprite, pipe_name(pipe));
1422 }
1423 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1424 for_each_sprite(dev_priv, pipe, sprite) {
1425 u32 val = I915_READ(SPCNTR(pipe, sprite));
1426 I915_STATE_WARN(val & SP_ENABLE,
1427 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1428 sprite_name(pipe, sprite), pipe_name(pipe));
1429 }
1430 } else if (INTEL_INFO(dev)->gen >= 7) {
1431 u32 val = I915_READ(SPRCTL(pipe));
1432 I915_STATE_WARN(val & SPRITE_ENABLE,
1433 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1434 plane_name(pipe), pipe_name(pipe));
1435 } else if (INTEL_INFO(dev)->gen >= 5) {
1436 u32 val = I915_READ(DVSCNTR(pipe));
1437 I915_STATE_WARN(val & DVS_ENABLE,
1438 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1439 plane_name(pipe), pipe_name(pipe));
1440 }
1441 }
1442
1443 static void assert_vblank_disabled(struct drm_crtc *crtc)
1444 {
1445 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1446 drm_crtc_vblank_put(crtc);
1447 }
1448
1449 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1450 {
1451 u32 val;
1452 bool enabled;
1453
1454 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1455
1456 val = I915_READ(PCH_DREF_CONTROL);
1457 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1458 DREF_SUPERSPREAD_SOURCE_MASK));
1459 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1460 }
1461
1462 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1463 enum pipe pipe)
1464 {
1465 u32 val;
1466 bool enabled;
1467
1468 val = I915_READ(PCH_TRANSCONF(pipe));
1469 enabled = !!(val & TRANS_ENABLE);
1470 I915_STATE_WARN(enabled,
1471 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1472 pipe_name(pipe));
1473 }
1474
1475 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1476 enum pipe pipe, u32 port_sel, u32 val)
1477 {
1478 if ((val & DP_PORT_EN) == 0)
1479 return false;
1480
1481 if (HAS_PCH_CPT(dev_priv->dev)) {
1482 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1483 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1484 return false;
1485 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1486 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1487 return false;
1488 } else {
1489 if ((val & DP_PIPE_MASK) != (pipe << 30))
1490 return false;
1491 }
1492 return true;
1493 }
1494
1495 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, u32 val)
1497 {
1498 if ((val & SDVO_ENABLE) == 0)
1499 return false;
1500
1501 if (HAS_PCH_CPT(dev_priv->dev)) {
1502 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1503 return false;
1504 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1505 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1506 return false;
1507 } else {
1508 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1509 return false;
1510 }
1511 return true;
1512 }
1513
1514 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1515 enum pipe pipe, u32 val)
1516 {
1517 if ((val & LVDS_PORT_EN) == 0)
1518 return false;
1519
1520 if (HAS_PCH_CPT(dev_priv->dev)) {
1521 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1522 return false;
1523 } else {
1524 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1525 return false;
1526 }
1527 return true;
1528 }
1529
1530 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1531 enum pipe pipe, u32 val)
1532 {
1533 if ((val & ADPA_DAC_ENABLE) == 0)
1534 return false;
1535 if (HAS_PCH_CPT(dev_priv->dev)) {
1536 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1537 return false;
1538 } else {
1539 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1540 return false;
1541 }
1542 return true;
1543 }
1544
1545 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1546 enum pipe pipe, i915_reg_t reg,
1547 u32 port_sel)
1548 {
1549 u32 val = I915_READ(reg);
1550 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1551 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1552 i915_mmio_reg_offset(reg), pipe_name(pipe));
1553
1554 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1555 && (val & DP_PIPEB_SELECT),
1556 "IBX PCH dp port still using transcoder B\n");
1557 }
1558
1559 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1560 enum pipe pipe, i915_reg_t reg)
1561 {
1562 u32 val = I915_READ(reg);
1563 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1564 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1565 i915_mmio_reg_offset(reg), pipe_name(pipe));
1566
1567 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1568 && (val & SDVO_PIPE_B_SELECT),
1569 "IBX PCH hdmi port still using transcoder B\n");
1570 }
1571
1572 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1573 enum pipe pipe)
1574 {
1575 u32 val;
1576
1577 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1580
1581 val = I915_READ(PCH_ADPA);
1582 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1583 "PCH VGA enabled on transcoder %c, should be disabled\n",
1584 pipe_name(pipe));
1585
1586 val = I915_READ(PCH_LVDS);
1587 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1588 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1589 pipe_name(pipe));
1590
1591 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1594 }
1595
1596 static void vlv_enable_pll(struct intel_crtc *crtc,
1597 const struct intel_crtc_state *pipe_config)
1598 {
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 i915_reg_t reg = DPLL(crtc->pipe);
1602 u32 dpll = pipe_config->dpll_hw_state.dpll;
1603
1604 assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606 /* PLL is protected by panel, make sure we can write it */
1607 if (IS_MOBILE(dev_priv->dev))
1608 assert_panel_unlocked(dev_priv, crtc->pipe);
1609
1610 I915_WRITE(reg, dpll);
1611 POSTING_READ(reg);
1612 udelay(150);
1613
1614 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1615 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1616
1617 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1618 POSTING_READ(DPLL_MD(crtc->pipe));
1619
1620 /* We do this three times for luck */
1621 I915_WRITE(reg, dpll);
1622 POSTING_READ(reg);
1623 udelay(150); /* wait for warmup */
1624 I915_WRITE(reg, dpll);
1625 POSTING_READ(reg);
1626 udelay(150); /* wait for warmup */
1627 I915_WRITE(reg, dpll);
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
1630 }
1631
1632 static void chv_enable_pll(struct intel_crtc *crtc,
1633 const struct intel_crtc_state *pipe_config)
1634 {
1635 struct drm_device *dev = crtc->base.dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 int pipe = crtc->pipe;
1638 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1639 u32 tmp;
1640
1641 assert_pipe_disabled(dev_priv, crtc->pipe);
1642
1643 mutex_lock(&dev_priv->sb_lock);
1644
1645 /* Enable back the 10bit clock to display controller */
1646 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1647 tmp |= DPIO_DCLKP_EN;
1648 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1649
1650 mutex_unlock(&dev_priv->sb_lock);
1651
1652 /*
1653 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1654 */
1655 udelay(1);
1656
1657 /* Enable PLL */
1658 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1659
1660 /* Check PLL is locked */
1661 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1662 DRM_ERROR("PLL %d failed to lock\n", pipe);
1663
1664 /* not sure when this should be written */
1665 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1666 POSTING_READ(DPLL_MD(pipe));
1667 }
1668
1669 static int intel_num_dvo_pipes(struct drm_device *dev)
1670 {
1671 struct intel_crtc *crtc;
1672 int count = 0;
1673
1674 for_each_intel_crtc(dev, crtc)
1675 count += crtc->base.state->active &&
1676 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1677
1678 return count;
1679 }
1680
1681 static void i9xx_enable_pll(struct intel_crtc *crtc)
1682 {
1683 struct drm_device *dev = crtc->base.dev;
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 i915_reg_t reg = DPLL(crtc->pipe);
1686 u32 dpll = crtc->config->dpll_hw_state.dpll;
1687
1688 assert_pipe_disabled(dev_priv, crtc->pipe);
1689
1690 /* No really, not for ILK+ */
1691 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1692
1693 /* PLL is protected by panel, make sure we can write it */
1694 if (IS_MOBILE(dev) && !IS_I830(dev))
1695 assert_panel_unlocked(dev_priv, crtc->pipe);
1696
1697 /* Enable DVO 2x clock on both PLLs if necessary */
1698 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1699 /*
1700 * It appears to be important that we don't enable this
1701 * for the current pipe before otherwise configuring the
1702 * PLL. No idea how this should be handled if multiple
1703 * DVO outputs are enabled simultaneosly.
1704 */
1705 dpll |= DPLL_DVO_2X_MODE;
1706 I915_WRITE(DPLL(!crtc->pipe),
1707 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1708 }
1709
1710 /*
1711 * Apparently we need to have VGA mode enabled prior to changing
1712 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1713 * dividers, even though the register value does change.
1714 */
1715 I915_WRITE(reg, 0);
1716
1717 I915_WRITE(reg, dpll);
1718
1719 /* Wait for the clocks to stabilize. */
1720 POSTING_READ(reg);
1721 udelay(150);
1722
1723 if (INTEL_INFO(dev)->gen >= 4) {
1724 I915_WRITE(DPLL_MD(crtc->pipe),
1725 crtc->config->dpll_hw_state.dpll_md);
1726 } else {
1727 /* The pixel multiplier can only be updated once the
1728 * DPLL is enabled and the clocks are stable.
1729 *
1730 * So write it again.
1731 */
1732 I915_WRITE(reg, dpll);
1733 }
1734
1735 /* We do this three times for luck */
1736 I915_WRITE(reg, dpll);
1737 POSTING_READ(reg);
1738 udelay(150); /* wait for warmup */
1739 I915_WRITE(reg, dpll);
1740 POSTING_READ(reg);
1741 udelay(150); /* wait for warmup */
1742 I915_WRITE(reg, dpll);
1743 POSTING_READ(reg);
1744 udelay(150); /* wait for warmup */
1745 }
1746
1747 /**
1748 * i9xx_disable_pll - disable a PLL
1749 * @dev_priv: i915 private structure
1750 * @pipe: pipe PLL to disable
1751 *
1752 * Disable the PLL for @pipe, making sure the pipe is off first.
1753 *
1754 * Note! This is for pre-ILK only.
1755 */
1756 static void i9xx_disable_pll(struct intel_crtc *crtc)
1757 {
1758 struct drm_device *dev = crtc->base.dev;
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 enum pipe pipe = crtc->pipe;
1761
1762 /* Disable DVO 2x clock on both PLLs if necessary */
1763 if (IS_I830(dev) &&
1764 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1765 !intel_num_dvo_pipes(dev)) {
1766 I915_WRITE(DPLL(PIPE_B),
1767 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1768 I915_WRITE(DPLL(PIPE_A),
1769 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1770 }
1771
1772 /* Don't disable pipe or pipe PLLs if needed */
1773 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1774 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1775 return;
1776
1777 /* Make sure the pipe isn't still relying on us */
1778 assert_pipe_disabled(dev_priv, pipe);
1779
1780 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1781 POSTING_READ(DPLL(pipe));
1782 }
1783
1784 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1785 {
1786 u32 val;
1787
1788 /* Make sure the pipe isn't still relying on us */
1789 assert_pipe_disabled(dev_priv, pipe);
1790
1791 /*
1792 * Leave integrated clock source and reference clock enabled for pipe B.
1793 * The latter is needed for VGA hotplug / manual detection.
1794 */
1795 val = DPLL_VGA_MODE_DIS;
1796 if (pipe == PIPE_B)
1797 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1798 I915_WRITE(DPLL(pipe), val);
1799 POSTING_READ(DPLL(pipe));
1800
1801 }
1802
1803 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1804 {
1805 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1806 u32 val;
1807
1808 /* Make sure the pipe isn't still relying on us */
1809 assert_pipe_disabled(dev_priv, pipe);
1810
1811 /* Set PLL en = 0 */
1812 val = DPLL_SSC_REF_CLK_CHV |
1813 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1814 if (pipe != PIPE_A)
1815 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1816 I915_WRITE(DPLL(pipe), val);
1817 POSTING_READ(DPLL(pipe));
1818
1819 mutex_lock(&dev_priv->sb_lock);
1820
1821 /* Disable 10bit clock to display controller */
1822 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1823 val &= ~DPIO_DCLKP_EN;
1824 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1825
1826 mutex_unlock(&dev_priv->sb_lock);
1827 }
1828
1829 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1830 struct intel_digital_port *dport,
1831 unsigned int expected_mask)
1832 {
1833 u32 port_mask;
1834 i915_reg_t dpll_reg;
1835
1836 switch (dport->port) {
1837 case PORT_B:
1838 port_mask = DPLL_PORTB_READY_MASK;
1839 dpll_reg = DPLL(0);
1840 break;
1841 case PORT_C:
1842 port_mask = DPLL_PORTC_READY_MASK;
1843 dpll_reg = DPLL(0);
1844 expected_mask <<= 4;
1845 break;
1846 case PORT_D:
1847 port_mask = DPLL_PORTD_READY_MASK;
1848 dpll_reg = DPIO_PHY_STATUS;
1849 break;
1850 default:
1851 BUG();
1852 }
1853
1854 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1855 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1856 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1857 }
1858
1859 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1860 {
1861 struct drm_device *dev = crtc->base.dev;
1862 struct drm_i915_private *dev_priv = dev->dev_private;
1863 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1864
1865 if (WARN_ON(pll == NULL))
1866 return;
1867
1868 WARN_ON(!pll->config.crtc_mask);
1869 if (pll->active == 0) {
1870 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1871 WARN_ON(pll->on);
1872 assert_shared_dpll_disabled(dev_priv, pll);
1873
1874 pll->mode_set(dev_priv, pll);
1875 }
1876 }
1877
1878 /**
1879 * intel_enable_shared_dpll - enable PCH PLL
1880 * @dev_priv: i915 private structure
1881 * @pipe: pipe PLL to enable
1882 *
1883 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1884 * drives the transcoder clock.
1885 */
1886 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1887 {
1888 struct drm_device *dev = crtc->base.dev;
1889 struct drm_i915_private *dev_priv = dev->dev_private;
1890 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1891
1892 if (WARN_ON(pll == NULL))
1893 return;
1894
1895 if (WARN_ON(pll->config.crtc_mask == 0))
1896 return;
1897
1898 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1899 pll->name, pll->active, pll->on,
1900 crtc->base.base.id);
1901
1902 if (pll->active++) {
1903 WARN_ON(!pll->on);
1904 assert_shared_dpll_enabled(dev_priv, pll);
1905 return;
1906 }
1907 WARN_ON(pll->on);
1908
1909 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1910
1911 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1912 pll->enable(dev_priv, pll);
1913 pll->on = true;
1914 }
1915
1916 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1917 {
1918 struct drm_device *dev = crtc->base.dev;
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1921
1922 /* PCH only available on ILK+ */
1923 if (INTEL_INFO(dev)->gen < 5)
1924 return;
1925
1926 if (pll == NULL)
1927 return;
1928
1929 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1930 return;
1931
1932 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1933 pll->name, pll->active, pll->on,
1934 crtc->base.base.id);
1935
1936 if (WARN_ON(pll->active == 0)) {
1937 assert_shared_dpll_disabled(dev_priv, pll);
1938 return;
1939 }
1940
1941 assert_shared_dpll_enabled(dev_priv, pll);
1942 WARN_ON(!pll->on);
1943 if (--pll->active)
1944 return;
1945
1946 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1947 pll->disable(dev_priv, pll);
1948 pll->on = false;
1949
1950 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1951 }
1952
1953 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1954 enum pipe pipe)
1955 {
1956 struct drm_device *dev = dev_priv->dev;
1957 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1959 i915_reg_t reg;
1960 uint32_t val, pipeconf_val;
1961
1962 /* PCH only available on ILK+ */
1963 BUG_ON(!HAS_PCH_SPLIT(dev));
1964
1965 /* Make sure PCH DPLL is enabled */
1966 assert_shared_dpll_enabled(dev_priv,
1967 intel_crtc_to_shared_dpll(intel_crtc));
1968
1969 /* FDI must be feeding us bits for PCH ports */
1970 assert_fdi_tx_enabled(dev_priv, pipe);
1971 assert_fdi_rx_enabled(dev_priv, pipe);
1972
1973 if (HAS_PCH_CPT(dev)) {
1974 /* Workaround: Set the timing override bit before enabling the
1975 * pch transcoder. */
1976 reg = TRANS_CHICKEN2(pipe);
1977 val = I915_READ(reg);
1978 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1979 I915_WRITE(reg, val);
1980 }
1981
1982 reg = PCH_TRANSCONF(pipe);
1983 val = I915_READ(reg);
1984 pipeconf_val = I915_READ(PIPECONF(pipe));
1985
1986 if (HAS_PCH_IBX(dev_priv->dev)) {
1987 /*
1988 * Make the BPC in transcoder be consistent with
1989 * that in pipeconf reg. For HDMI we must use 8bpc
1990 * here for both 8bpc and 12bpc.
1991 */
1992 val &= ~PIPECONF_BPC_MASK;
1993 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1994 val |= PIPECONF_8BPC;
1995 else
1996 val |= pipeconf_val & PIPECONF_BPC_MASK;
1997 }
1998
1999 val &= ~TRANS_INTERLACE_MASK;
2000 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2001 if (HAS_PCH_IBX(dev_priv->dev) &&
2002 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2003 val |= TRANS_LEGACY_INTERLACED_ILK;
2004 else
2005 val |= TRANS_INTERLACED;
2006 else
2007 val |= TRANS_PROGRESSIVE;
2008
2009 I915_WRITE(reg, val | TRANS_ENABLE);
2010 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2011 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2012 }
2013
2014 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2015 enum transcoder cpu_transcoder)
2016 {
2017 u32 val, pipeconf_val;
2018
2019 /* PCH only available on ILK+ */
2020 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2021
2022 /* FDI must be feeding us bits for PCH ports */
2023 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2024 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2025
2026 /* Workaround: set timing override bit. */
2027 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2028 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2029 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2030
2031 val = TRANS_ENABLE;
2032 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2033
2034 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2035 PIPECONF_INTERLACED_ILK)
2036 val |= TRANS_INTERLACED;
2037 else
2038 val |= TRANS_PROGRESSIVE;
2039
2040 I915_WRITE(LPT_TRANSCONF, val);
2041 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2042 DRM_ERROR("Failed to enable PCH transcoder\n");
2043 }
2044
2045 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2046 enum pipe pipe)
2047 {
2048 struct drm_device *dev = dev_priv->dev;
2049 i915_reg_t reg;
2050 uint32_t val;
2051
2052 /* FDI relies on the transcoder */
2053 assert_fdi_tx_disabled(dev_priv, pipe);
2054 assert_fdi_rx_disabled(dev_priv, pipe);
2055
2056 /* Ports must be off as well */
2057 assert_pch_ports_disabled(dev_priv, pipe);
2058
2059 reg = PCH_TRANSCONF(pipe);
2060 val = I915_READ(reg);
2061 val &= ~TRANS_ENABLE;
2062 I915_WRITE(reg, val);
2063 /* wait for PCH transcoder off, transcoder state */
2064 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2065 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2066
2067 if (HAS_PCH_CPT(dev)) {
2068 /* Workaround: Clear the timing override chicken bit again. */
2069 reg = TRANS_CHICKEN2(pipe);
2070 val = I915_READ(reg);
2071 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2072 I915_WRITE(reg, val);
2073 }
2074 }
2075
2076 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2077 {
2078 u32 val;
2079
2080 val = I915_READ(LPT_TRANSCONF);
2081 val &= ~TRANS_ENABLE;
2082 I915_WRITE(LPT_TRANSCONF, val);
2083 /* wait for PCH transcoder off, transcoder state */
2084 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2085 DRM_ERROR("Failed to disable PCH transcoder\n");
2086
2087 /* Workaround: clear timing override bit. */
2088 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2089 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2090 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2091 }
2092
2093 /**
2094 * intel_enable_pipe - enable a pipe, asserting requirements
2095 * @crtc: crtc responsible for the pipe
2096 *
2097 * Enable @crtc's pipe, making sure that various hardware specific requirements
2098 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2099 */
2100 static void intel_enable_pipe(struct intel_crtc *crtc)
2101 {
2102 struct drm_device *dev = crtc->base.dev;
2103 struct drm_i915_private *dev_priv = dev->dev_private;
2104 enum pipe pipe = crtc->pipe;
2105 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2106 enum pipe pch_transcoder;
2107 i915_reg_t reg;
2108 u32 val;
2109
2110 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2111
2112 assert_planes_disabled(dev_priv, pipe);
2113 assert_cursor_disabled(dev_priv, pipe);
2114 assert_sprites_disabled(dev_priv, pipe);
2115
2116 if (HAS_PCH_LPT(dev_priv->dev))
2117 pch_transcoder = TRANSCODER_A;
2118 else
2119 pch_transcoder = pipe;
2120
2121 /*
2122 * A pipe without a PLL won't actually be able to drive bits from
2123 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2124 * need the check.
2125 */
2126 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2127 if (crtc->config->has_dsi_encoder)
2128 assert_dsi_pll_enabled(dev_priv);
2129 else
2130 assert_pll_enabled(dev_priv, pipe);
2131 else {
2132 if (crtc->config->has_pch_encoder) {
2133 /* if driving the PCH, we need FDI enabled */
2134 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2135 assert_fdi_tx_pll_enabled(dev_priv,
2136 (enum pipe) cpu_transcoder);
2137 }
2138 /* FIXME: assert CPU port conditions for SNB+ */
2139 }
2140
2141 reg = PIPECONF(cpu_transcoder);
2142 val = I915_READ(reg);
2143 if (val & PIPECONF_ENABLE) {
2144 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2145 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2146 return;
2147 }
2148
2149 I915_WRITE(reg, val | PIPECONF_ENABLE);
2150 POSTING_READ(reg);
2151
2152 /*
2153 * Until the pipe starts DSL will read as 0, which would cause
2154 * an apparent vblank timestamp jump, which messes up also the
2155 * frame count when it's derived from the timestamps. So let's
2156 * wait for the pipe to start properly before we call
2157 * drm_crtc_vblank_on()
2158 */
2159 if (dev->max_vblank_count == 0 &&
2160 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2161 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2162 }
2163
2164 /**
2165 * intel_disable_pipe - disable a pipe, asserting requirements
2166 * @crtc: crtc whose pipes is to be disabled
2167 *
2168 * Disable the pipe of @crtc, making sure that various hardware
2169 * specific requirements are met, if applicable, e.g. plane
2170 * disabled, panel fitter off, etc.
2171 *
2172 * Will wait until the pipe has shut down before returning.
2173 */
2174 static void intel_disable_pipe(struct intel_crtc *crtc)
2175 {
2176 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2177 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2178 enum pipe pipe = crtc->pipe;
2179 i915_reg_t reg;
2180 u32 val;
2181
2182 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2183
2184 /*
2185 * Make sure planes won't keep trying to pump pixels to us,
2186 * or we might hang the display.
2187 */
2188 assert_planes_disabled(dev_priv, pipe);
2189 assert_cursor_disabled(dev_priv, pipe);
2190 assert_sprites_disabled(dev_priv, pipe);
2191
2192 reg = PIPECONF(cpu_transcoder);
2193 val = I915_READ(reg);
2194 if ((val & PIPECONF_ENABLE) == 0)
2195 return;
2196
2197 /*
2198 * Double wide has implications for planes
2199 * so best keep it disabled when not needed.
2200 */
2201 if (crtc->config->double_wide)
2202 val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204 /* Don't disable pipe or pipe PLLs if needed */
2205 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2207 val &= ~PIPECONF_ENABLE;
2208
2209 I915_WRITE(reg, val);
2210 if ((val & PIPECONF_ENABLE) == 0)
2211 intel_wait_for_pipe_off(crtc);
2212 }
2213
2214 static bool need_vtd_wa(struct drm_device *dev)
2215 {
2216 #ifdef CONFIG_INTEL_IOMMU
2217 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2218 return true;
2219 #endif
2220 return false;
2221 }
2222
2223 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2224 {
2225 return IS_GEN2(dev_priv) ? 2048 : 4096;
2226 }
2227
2228 static unsigned int intel_tile_width(const struct drm_i915_private *dev_priv,
2229 uint64_t fb_modifier, unsigned int cpp)
2230 {
2231 switch (fb_modifier) {
2232 case DRM_FORMAT_MOD_NONE:
2233 return cpp;
2234 case I915_FORMAT_MOD_X_TILED:
2235 if (IS_GEN2(dev_priv))
2236 return 128;
2237 else
2238 return 512;
2239 case I915_FORMAT_MOD_Y_TILED:
2240 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2241 return 128;
2242 else
2243 return 512;
2244 case I915_FORMAT_MOD_Yf_TILED:
2245 switch (cpp) {
2246 case 1:
2247 return 64;
2248 case 2:
2249 case 4:
2250 return 128;
2251 case 8:
2252 case 16:
2253 return 256;
2254 default:
2255 MISSING_CASE(cpp);
2256 return cpp;
2257 }
2258 break;
2259 default:
2260 MISSING_CASE(fb_modifier);
2261 return cpp;
2262 }
2263 }
2264
2265 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2266 uint64_t fb_modifier, unsigned int cpp)
2267 {
2268 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2269 return 1;
2270 else
2271 return intel_tile_size(dev_priv) /
2272 intel_tile_width(dev_priv, fb_modifier, cpp);
2273 }
2274
2275 unsigned int
2276 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2277 uint32_t pixel_format, uint64_t fb_modifier)
2278 {
2279 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2280 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2281
2282 return ALIGN(height, tile_height);
2283 }
2284
2285 static void
2286 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2287 const struct drm_plane_state *plane_state)
2288 {
2289 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2290 struct intel_rotation_info *info = &view->params.rotated;
2291 unsigned int tile_size, tile_width, tile_height, cpp;
2292
2293 *view = i915_ggtt_view_normal;
2294
2295 if (!plane_state)
2296 return;
2297
2298 if (!intel_rotation_90_or_270(plane_state->rotation))
2299 return;
2300
2301 *view = i915_ggtt_view_rotated;
2302
2303 info->height = fb->height;
2304 info->pixel_format = fb->pixel_format;
2305 info->pitch = fb->pitches[0];
2306 info->uv_offset = fb->offsets[1];
2307 info->fb_modifier = fb->modifier[0];
2308
2309 tile_size = intel_tile_size(dev_priv);
2310
2311 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2312 tile_width = intel_tile_width(dev_priv, fb->modifier[0], cpp);
2313 tile_height = tile_size / tile_width;
2314
2315 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_width);
2316 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2317 info->size = info->width_pages * info->height_pages * tile_size;
2318
2319 if (info->pixel_format == DRM_FORMAT_NV12) {
2320 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2321 tile_width = intel_tile_width(dev_priv, fb->modifier[1], cpp);
2322 tile_height = tile_size / tile_width;
2323
2324 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[1], tile_width);
2325 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2, tile_height);
2326 info->size_uv = info->width_pages_uv * info->height_pages_uv * tile_size;
2327 }
2328 }
2329
2330 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2331 {
2332 if (INTEL_INFO(dev_priv)->gen >= 9)
2333 return 256 * 1024;
2334 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2335 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2336 return 128 * 1024;
2337 else if (INTEL_INFO(dev_priv)->gen >= 4)
2338 return 4 * 1024;
2339 else
2340 return 0;
2341 }
2342
2343 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2344 uint64_t fb_modifier)
2345 {
2346 switch (fb_modifier) {
2347 case DRM_FORMAT_MOD_NONE:
2348 return intel_linear_alignment(dev_priv);
2349 case I915_FORMAT_MOD_X_TILED:
2350 if (INTEL_INFO(dev_priv)->gen >= 9)
2351 return 256 * 1024;
2352 return 0;
2353 case I915_FORMAT_MOD_Y_TILED:
2354 case I915_FORMAT_MOD_Yf_TILED:
2355 return 1 * 1024 * 1024;
2356 default:
2357 MISSING_CASE(fb_modifier);
2358 return 0;
2359 }
2360 }
2361
2362 int
2363 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2364 struct drm_framebuffer *fb,
2365 const struct drm_plane_state *plane_state)
2366 {
2367 struct drm_device *dev = fb->dev;
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2370 struct i915_ggtt_view view;
2371 u32 alignment;
2372 int ret;
2373
2374 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2375
2376 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2377
2378 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2379
2380 /* Note that the w/a also requires 64 PTE of padding following the
2381 * bo. We currently fill all unused PTE with the shadow page and so
2382 * we should always have valid PTE following the scanout preventing
2383 * the VT-d warning.
2384 */
2385 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2386 alignment = 256 * 1024;
2387
2388 /*
2389 * Global gtt pte registers are special registers which actually forward
2390 * writes to a chunk of system memory. Which means that there is no risk
2391 * that the register values disappear as soon as we call
2392 * intel_runtime_pm_put(), so it is correct to wrap only the
2393 * pin/unpin/fence and not more.
2394 */
2395 intel_runtime_pm_get(dev_priv);
2396
2397 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2398 &view);
2399 if (ret)
2400 goto err_pm;
2401
2402 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2403 * fence, whereas 965+ only requires a fence if using
2404 * framebuffer compression. For simplicity, we always install
2405 * a fence as the cost is not that onerous.
2406 */
2407 if (view.type == I915_GGTT_VIEW_NORMAL) {
2408 ret = i915_gem_object_get_fence(obj);
2409 if (ret == -EDEADLK) {
2410 /*
2411 * -EDEADLK means there are no free fences
2412 * no pending flips.
2413 *
2414 * This is propagated to atomic, but it uses
2415 * -EDEADLK to force a locking recovery, so
2416 * change the returned error to -EBUSY.
2417 */
2418 ret = -EBUSY;
2419 goto err_unpin;
2420 } else if (ret)
2421 goto err_unpin;
2422
2423 i915_gem_object_pin_fence(obj);
2424 }
2425
2426 intel_runtime_pm_put(dev_priv);
2427 return 0;
2428
2429 err_unpin:
2430 i915_gem_object_unpin_from_display_plane(obj, &view);
2431 err_pm:
2432 intel_runtime_pm_put(dev_priv);
2433 return ret;
2434 }
2435
2436 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2437 const struct drm_plane_state *plane_state)
2438 {
2439 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2440 struct i915_ggtt_view view;
2441
2442 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2443
2444 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2445
2446 if (view.type == I915_GGTT_VIEW_NORMAL)
2447 i915_gem_object_unpin_fence(obj);
2448
2449 i915_gem_object_unpin_from_display_plane(obj, &view);
2450 }
2451
2452 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2453 * is assumed to be a power-of-two. */
2454 u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
2455 int *x, int *y,
2456 uint64_t fb_modifier,
2457 unsigned int cpp,
2458 unsigned int pitch)
2459 {
2460 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2461 unsigned int tile_size, tile_width, tile_height;
2462 unsigned int tile_rows, tiles;
2463
2464 tile_size = intel_tile_size(dev_priv);
2465 tile_width = intel_tile_width(dev_priv, fb_modifier, cpp);
2466 tile_height = tile_size / tile_width;
2467
2468 tile_rows = *y / tile_height;
2469 *y %= tile_height;
2470
2471 tiles = *x / (tile_width/cpp);
2472 *x %= tile_width/cpp;
2473
2474 return tile_rows * pitch * tile_height + tiles * tile_size;
2475 } else {
2476 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2477 unsigned int offset;
2478
2479 offset = *y * pitch + *x * cpp;
2480 *y = (offset & alignment) / pitch;
2481 *x = ((offset & alignment) - *y * pitch) / cpp;
2482 return offset & ~alignment;
2483 }
2484 }
2485
2486 static int i9xx_format_to_fourcc(int format)
2487 {
2488 switch (format) {
2489 case DISPPLANE_8BPP:
2490 return DRM_FORMAT_C8;
2491 case DISPPLANE_BGRX555:
2492 return DRM_FORMAT_XRGB1555;
2493 case DISPPLANE_BGRX565:
2494 return DRM_FORMAT_RGB565;
2495 default:
2496 case DISPPLANE_BGRX888:
2497 return DRM_FORMAT_XRGB8888;
2498 case DISPPLANE_RGBX888:
2499 return DRM_FORMAT_XBGR8888;
2500 case DISPPLANE_BGRX101010:
2501 return DRM_FORMAT_XRGB2101010;
2502 case DISPPLANE_RGBX101010:
2503 return DRM_FORMAT_XBGR2101010;
2504 }
2505 }
2506
2507 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2508 {
2509 switch (format) {
2510 case PLANE_CTL_FORMAT_RGB_565:
2511 return DRM_FORMAT_RGB565;
2512 default:
2513 case PLANE_CTL_FORMAT_XRGB_8888:
2514 if (rgb_order) {
2515 if (alpha)
2516 return DRM_FORMAT_ABGR8888;
2517 else
2518 return DRM_FORMAT_XBGR8888;
2519 } else {
2520 if (alpha)
2521 return DRM_FORMAT_ARGB8888;
2522 else
2523 return DRM_FORMAT_XRGB8888;
2524 }
2525 case PLANE_CTL_FORMAT_XRGB_2101010:
2526 if (rgb_order)
2527 return DRM_FORMAT_XBGR2101010;
2528 else
2529 return DRM_FORMAT_XRGB2101010;
2530 }
2531 }
2532
2533 static bool
2534 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2535 struct intel_initial_plane_config *plane_config)
2536 {
2537 struct drm_device *dev = crtc->base.dev;
2538 struct drm_i915_private *dev_priv = to_i915(dev);
2539 struct drm_i915_gem_object *obj = NULL;
2540 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2541 struct drm_framebuffer *fb = &plane_config->fb->base;
2542 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2543 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2544 PAGE_SIZE);
2545
2546 size_aligned -= base_aligned;
2547
2548 if (plane_config->size == 0)
2549 return false;
2550
2551 /* If the FB is too big, just don't use it since fbdev is not very
2552 * important and we should probably use that space with FBC or other
2553 * features. */
2554 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2555 return false;
2556
2557 mutex_lock(&dev->struct_mutex);
2558
2559 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2560 base_aligned,
2561 base_aligned,
2562 size_aligned);
2563 if (!obj) {
2564 mutex_unlock(&dev->struct_mutex);
2565 return false;
2566 }
2567
2568 obj->tiling_mode = plane_config->tiling;
2569 if (obj->tiling_mode == I915_TILING_X)
2570 obj->stride = fb->pitches[0];
2571
2572 mode_cmd.pixel_format = fb->pixel_format;
2573 mode_cmd.width = fb->width;
2574 mode_cmd.height = fb->height;
2575 mode_cmd.pitches[0] = fb->pitches[0];
2576 mode_cmd.modifier[0] = fb->modifier[0];
2577 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2578
2579 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2580 &mode_cmd, obj)) {
2581 DRM_DEBUG_KMS("intel fb init failed\n");
2582 goto out_unref_obj;
2583 }
2584
2585 mutex_unlock(&dev->struct_mutex);
2586
2587 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2588 return true;
2589
2590 out_unref_obj:
2591 drm_gem_object_unreference(&obj->base);
2592 mutex_unlock(&dev->struct_mutex);
2593 return false;
2594 }
2595
2596 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2597 static void
2598 update_state_fb(struct drm_plane *plane)
2599 {
2600 if (plane->fb == plane->state->fb)
2601 return;
2602
2603 if (plane->state->fb)
2604 drm_framebuffer_unreference(plane->state->fb);
2605 plane->state->fb = plane->fb;
2606 if (plane->state->fb)
2607 drm_framebuffer_reference(plane->state->fb);
2608 }
2609
2610 static void
2611 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2612 struct intel_initial_plane_config *plane_config)
2613 {
2614 struct drm_device *dev = intel_crtc->base.dev;
2615 struct drm_i915_private *dev_priv = dev->dev_private;
2616 struct drm_crtc *c;
2617 struct intel_crtc *i;
2618 struct drm_i915_gem_object *obj;
2619 struct drm_plane *primary = intel_crtc->base.primary;
2620 struct drm_plane_state *plane_state = primary->state;
2621 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2622 struct intel_plane *intel_plane = to_intel_plane(primary);
2623 struct intel_plane_state *intel_state =
2624 to_intel_plane_state(plane_state);
2625 struct drm_framebuffer *fb;
2626
2627 if (!plane_config->fb)
2628 return;
2629
2630 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2631 fb = &plane_config->fb->base;
2632 goto valid_fb;
2633 }
2634
2635 kfree(plane_config->fb);
2636
2637 /*
2638 * Failed to alloc the obj, check to see if we should share
2639 * an fb with another CRTC instead
2640 */
2641 for_each_crtc(dev, c) {
2642 i = to_intel_crtc(c);
2643
2644 if (c == &intel_crtc->base)
2645 continue;
2646
2647 if (!i->active)
2648 continue;
2649
2650 fb = c->primary->fb;
2651 if (!fb)
2652 continue;
2653
2654 obj = intel_fb_obj(fb);
2655 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2656 drm_framebuffer_reference(fb);
2657 goto valid_fb;
2658 }
2659 }
2660
2661 /*
2662 * We've failed to reconstruct the BIOS FB. Current display state
2663 * indicates that the primary plane is visible, but has a NULL FB,
2664 * which will lead to problems later if we don't fix it up. The
2665 * simplest solution is to just disable the primary plane now and
2666 * pretend the BIOS never had it enabled.
2667 */
2668 to_intel_plane_state(plane_state)->visible = false;
2669 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2670 intel_pre_disable_primary(&intel_crtc->base);
2671 intel_plane->disable_plane(primary, &intel_crtc->base);
2672
2673 return;
2674
2675 valid_fb:
2676 plane_state->src_x = 0;
2677 plane_state->src_y = 0;
2678 plane_state->src_w = fb->width << 16;
2679 plane_state->src_h = fb->height << 16;
2680
2681 plane_state->crtc_x = 0;
2682 plane_state->crtc_y = 0;
2683 plane_state->crtc_w = fb->width;
2684 plane_state->crtc_h = fb->height;
2685
2686 intel_state->src.x1 = plane_state->src_x;
2687 intel_state->src.y1 = plane_state->src_y;
2688 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2689 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2690 intel_state->dst.x1 = plane_state->crtc_x;
2691 intel_state->dst.y1 = plane_state->crtc_y;
2692 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2693 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2694
2695 obj = intel_fb_obj(fb);
2696 if (obj->tiling_mode != I915_TILING_NONE)
2697 dev_priv->preserve_bios_swizzle = true;
2698
2699 drm_framebuffer_reference(fb);
2700 primary->fb = primary->state->fb = fb;
2701 primary->crtc = primary->state->crtc = &intel_crtc->base;
2702 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2703 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2704 }
2705
2706 static void i9xx_update_primary_plane(struct drm_plane *primary,
2707 const struct intel_crtc_state *crtc_state,
2708 const struct intel_plane_state *plane_state)
2709 {
2710 struct drm_device *dev = primary->dev;
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2713 struct drm_framebuffer *fb = plane_state->base.fb;
2714 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2715 int plane = intel_crtc->plane;
2716 u32 linear_offset;
2717 u32 dspcntr;
2718 i915_reg_t reg = DSPCNTR(plane);
2719 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2720 int x = plane_state->src.x1 >> 16;
2721 int y = plane_state->src.y1 >> 16;
2722
2723 dspcntr = DISPPLANE_GAMMA_ENABLE;
2724
2725 dspcntr |= DISPLAY_PLANE_ENABLE;
2726
2727 if (INTEL_INFO(dev)->gen < 4) {
2728 if (intel_crtc->pipe == PIPE_B)
2729 dspcntr |= DISPPLANE_SEL_PIPE_B;
2730
2731 /* pipesrc and dspsize control the size that is scaled from,
2732 * which should always be the user's requested size.
2733 */
2734 I915_WRITE(DSPSIZE(plane),
2735 ((crtc_state->pipe_src_h - 1) << 16) |
2736 (crtc_state->pipe_src_w - 1));
2737 I915_WRITE(DSPPOS(plane), 0);
2738 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2739 I915_WRITE(PRIMSIZE(plane),
2740 ((crtc_state->pipe_src_h - 1) << 16) |
2741 (crtc_state->pipe_src_w - 1));
2742 I915_WRITE(PRIMPOS(plane), 0);
2743 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2744 }
2745
2746 switch (fb->pixel_format) {
2747 case DRM_FORMAT_C8:
2748 dspcntr |= DISPPLANE_8BPP;
2749 break;
2750 case DRM_FORMAT_XRGB1555:
2751 dspcntr |= DISPPLANE_BGRX555;
2752 break;
2753 case DRM_FORMAT_RGB565:
2754 dspcntr |= DISPPLANE_BGRX565;
2755 break;
2756 case DRM_FORMAT_XRGB8888:
2757 dspcntr |= DISPPLANE_BGRX888;
2758 break;
2759 case DRM_FORMAT_XBGR8888:
2760 dspcntr |= DISPPLANE_RGBX888;
2761 break;
2762 case DRM_FORMAT_XRGB2101010:
2763 dspcntr |= DISPPLANE_BGRX101010;
2764 break;
2765 case DRM_FORMAT_XBGR2101010:
2766 dspcntr |= DISPPLANE_RGBX101010;
2767 break;
2768 default:
2769 BUG();
2770 }
2771
2772 if (INTEL_INFO(dev)->gen >= 4 &&
2773 obj->tiling_mode != I915_TILING_NONE)
2774 dspcntr |= DISPPLANE_TILED;
2775
2776 if (IS_G4X(dev))
2777 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2778
2779 linear_offset = y * fb->pitches[0] + x * cpp;
2780
2781 if (INTEL_INFO(dev)->gen >= 4) {
2782 intel_crtc->dspaddr_offset =
2783 intel_compute_tile_offset(dev_priv, &x, &y,
2784 fb->modifier[0], cpp,
2785 fb->pitches[0]);
2786 linear_offset -= intel_crtc->dspaddr_offset;
2787 } else {
2788 intel_crtc->dspaddr_offset = linear_offset;
2789 }
2790
2791 if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2792 dspcntr |= DISPPLANE_ROTATE_180;
2793
2794 x += (crtc_state->pipe_src_w - 1);
2795 y += (crtc_state->pipe_src_h - 1);
2796
2797 /* Finding the last pixel of the last line of the display
2798 data and adding to linear_offset*/
2799 linear_offset +=
2800 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2801 (crtc_state->pipe_src_w - 1) * cpp;
2802 }
2803
2804 intel_crtc->adjusted_x = x;
2805 intel_crtc->adjusted_y = y;
2806
2807 I915_WRITE(reg, dspcntr);
2808
2809 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2810 if (INTEL_INFO(dev)->gen >= 4) {
2811 I915_WRITE(DSPSURF(plane),
2812 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2813 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2814 I915_WRITE(DSPLINOFF(plane), linear_offset);
2815 } else
2816 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2817 POSTING_READ(reg);
2818 }
2819
2820 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2821 struct drm_crtc *crtc)
2822 {
2823 struct drm_device *dev = crtc->dev;
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2826 int plane = intel_crtc->plane;
2827
2828 I915_WRITE(DSPCNTR(plane), 0);
2829 if (INTEL_INFO(dev_priv)->gen >= 4)
2830 I915_WRITE(DSPSURF(plane), 0);
2831 else
2832 I915_WRITE(DSPADDR(plane), 0);
2833 POSTING_READ(DSPCNTR(plane));
2834 }
2835
2836 static void ironlake_update_primary_plane(struct drm_plane *primary,
2837 const struct intel_crtc_state *crtc_state,
2838 const struct intel_plane_state *plane_state)
2839 {
2840 struct drm_device *dev = primary->dev;
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2843 struct drm_framebuffer *fb = plane_state->base.fb;
2844 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2845 int plane = intel_crtc->plane;
2846 u32 linear_offset;
2847 u32 dspcntr;
2848 i915_reg_t reg = DSPCNTR(plane);
2849 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2850 int x = plane_state->src.x1 >> 16;
2851 int y = plane_state->src.y1 >> 16;
2852
2853 dspcntr = DISPPLANE_GAMMA_ENABLE;
2854 dspcntr |= DISPLAY_PLANE_ENABLE;
2855
2856 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2857 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2858
2859 switch (fb->pixel_format) {
2860 case DRM_FORMAT_C8:
2861 dspcntr |= DISPPLANE_8BPP;
2862 break;
2863 case DRM_FORMAT_RGB565:
2864 dspcntr |= DISPPLANE_BGRX565;
2865 break;
2866 case DRM_FORMAT_XRGB8888:
2867 dspcntr |= DISPPLANE_BGRX888;
2868 break;
2869 case DRM_FORMAT_XBGR8888:
2870 dspcntr |= DISPPLANE_RGBX888;
2871 break;
2872 case DRM_FORMAT_XRGB2101010:
2873 dspcntr |= DISPPLANE_BGRX101010;
2874 break;
2875 case DRM_FORMAT_XBGR2101010:
2876 dspcntr |= DISPPLANE_RGBX101010;
2877 break;
2878 default:
2879 BUG();
2880 }
2881
2882 if (obj->tiling_mode != I915_TILING_NONE)
2883 dspcntr |= DISPPLANE_TILED;
2884
2885 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2886 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2887
2888 linear_offset = y * fb->pitches[0] + x * cpp;
2889 intel_crtc->dspaddr_offset =
2890 intel_compute_tile_offset(dev_priv, &x, &y,
2891 fb->modifier[0], cpp,
2892 fb->pitches[0]);
2893 linear_offset -= intel_crtc->dspaddr_offset;
2894 if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2895 dspcntr |= DISPPLANE_ROTATE_180;
2896
2897 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2898 x += (crtc_state->pipe_src_w - 1);
2899 y += (crtc_state->pipe_src_h - 1);
2900
2901 /* Finding the last pixel of the last line of the display
2902 data and adding to linear_offset*/
2903 linear_offset +=
2904 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2905 (crtc_state->pipe_src_w - 1) * cpp;
2906 }
2907 }
2908
2909 intel_crtc->adjusted_x = x;
2910 intel_crtc->adjusted_y = y;
2911
2912 I915_WRITE(reg, dspcntr);
2913
2914 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2915 I915_WRITE(DSPSURF(plane),
2916 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2917 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2918 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2919 } else {
2920 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2921 I915_WRITE(DSPLINOFF(plane), linear_offset);
2922 }
2923 POSTING_READ(reg);
2924 }
2925
2926 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2927 uint64_t fb_modifier, uint32_t pixel_format)
2928 {
2929 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2930 return 64;
2931 } else {
2932 int cpp = drm_format_plane_cpp(pixel_format, 0);
2933
2934 return intel_tile_width(dev_priv, fb_modifier, cpp);
2935 }
2936 }
2937
2938 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2939 struct drm_i915_gem_object *obj,
2940 unsigned int plane)
2941 {
2942 struct i915_ggtt_view view;
2943 struct i915_vma *vma;
2944 u64 offset;
2945
2946 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2947 intel_plane->base.state);
2948
2949 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2950 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2951 view.type))
2952 return -1;
2953
2954 offset = vma->node.start;
2955
2956 if (plane == 1) {
2957 offset += vma->ggtt_view.params.rotated.uv_start_page *
2958 PAGE_SIZE;
2959 }
2960
2961 WARN_ON(upper_32_bits(offset));
2962
2963 return lower_32_bits(offset);
2964 }
2965
2966 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2967 {
2968 struct drm_device *dev = intel_crtc->base.dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970
2971 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2972 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2973 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2974 }
2975
2976 /*
2977 * This function detaches (aka. unbinds) unused scalers in hardware
2978 */
2979 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2980 {
2981 struct intel_crtc_scaler_state *scaler_state;
2982 int i;
2983
2984 scaler_state = &intel_crtc->config->scaler_state;
2985
2986 /* loop through and disable scalers that aren't in use */
2987 for (i = 0; i < intel_crtc->num_scalers; i++) {
2988 if (!scaler_state->scalers[i].in_use)
2989 skl_detach_scaler(intel_crtc, i);
2990 }
2991 }
2992
2993 u32 skl_plane_ctl_format(uint32_t pixel_format)
2994 {
2995 switch (pixel_format) {
2996 case DRM_FORMAT_C8:
2997 return PLANE_CTL_FORMAT_INDEXED;
2998 case DRM_FORMAT_RGB565:
2999 return PLANE_CTL_FORMAT_RGB_565;
3000 case DRM_FORMAT_XBGR8888:
3001 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3002 case DRM_FORMAT_XRGB8888:
3003 return PLANE_CTL_FORMAT_XRGB_8888;
3004 /*
3005 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3006 * to be already pre-multiplied. We need to add a knob (or a different
3007 * DRM_FORMAT) for user-space to configure that.
3008 */
3009 case DRM_FORMAT_ABGR8888:
3010 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3011 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3012 case DRM_FORMAT_ARGB8888:
3013 return PLANE_CTL_FORMAT_XRGB_8888 |
3014 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3015 case DRM_FORMAT_XRGB2101010:
3016 return PLANE_CTL_FORMAT_XRGB_2101010;
3017 case DRM_FORMAT_XBGR2101010:
3018 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3019 case DRM_FORMAT_YUYV:
3020 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3021 case DRM_FORMAT_YVYU:
3022 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3023 case DRM_FORMAT_UYVY:
3024 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3025 case DRM_FORMAT_VYUY:
3026 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3027 default:
3028 MISSING_CASE(pixel_format);
3029 }
3030
3031 return 0;
3032 }
3033
3034 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3035 {
3036 switch (fb_modifier) {
3037 case DRM_FORMAT_MOD_NONE:
3038 break;
3039 case I915_FORMAT_MOD_X_TILED:
3040 return PLANE_CTL_TILED_X;
3041 case I915_FORMAT_MOD_Y_TILED:
3042 return PLANE_CTL_TILED_Y;
3043 case I915_FORMAT_MOD_Yf_TILED:
3044 return PLANE_CTL_TILED_YF;
3045 default:
3046 MISSING_CASE(fb_modifier);
3047 }
3048
3049 return 0;
3050 }
3051
3052 u32 skl_plane_ctl_rotation(unsigned int rotation)
3053 {
3054 switch (rotation) {
3055 case BIT(DRM_ROTATE_0):
3056 break;
3057 /*
3058 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3059 * while i915 HW rotation is clockwise, thats why this swapping.
3060 */
3061 case BIT(DRM_ROTATE_90):
3062 return PLANE_CTL_ROTATE_270;
3063 case BIT(DRM_ROTATE_180):
3064 return PLANE_CTL_ROTATE_180;
3065 case BIT(DRM_ROTATE_270):
3066 return PLANE_CTL_ROTATE_90;
3067 default:
3068 MISSING_CASE(rotation);
3069 }
3070
3071 return 0;
3072 }
3073
3074 static void skylake_update_primary_plane(struct drm_plane *plane,
3075 const struct intel_crtc_state *crtc_state,
3076 const struct intel_plane_state *plane_state)
3077 {
3078 struct drm_device *dev = plane->dev;
3079 struct drm_i915_private *dev_priv = dev->dev_private;
3080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3081 struct drm_framebuffer *fb = plane_state->base.fb;
3082 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3083 int pipe = intel_crtc->pipe;
3084 u32 plane_ctl, stride_div, stride;
3085 u32 tile_height, plane_offset, plane_size;
3086 unsigned int rotation = plane_state->base.rotation;
3087 int x_offset, y_offset;
3088 u32 surf_addr;
3089 int scaler_id = plane_state->scaler_id;
3090 int src_x = plane_state->src.x1 >> 16;
3091 int src_y = plane_state->src.y1 >> 16;
3092 int src_w = drm_rect_width(&plane_state->src) >> 16;
3093 int src_h = drm_rect_height(&plane_state->src) >> 16;
3094 int dst_x = plane_state->dst.x1;
3095 int dst_y = plane_state->dst.y1;
3096 int dst_w = drm_rect_width(&plane_state->dst);
3097 int dst_h = drm_rect_height(&plane_state->dst);
3098
3099 plane_ctl = PLANE_CTL_ENABLE |
3100 PLANE_CTL_PIPE_GAMMA_ENABLE |
3101 PLANE_CTL_PIPE_CSC_ENABLE;
3102
3103 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3104 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3105 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3106 plane_ctl |= skl_plane_ctl_rotation(rotation);
3107
3108 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3109 fb->pixel_format);
3110 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3111
3112 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3113
3114 if (intel_rotation_90_or_270(rotation)) {
3115 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3116
3117 /* stride = Surface height in tiles */
3118 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3119 stride = DIV_ROUND_UP(fb->height, tile_height);
3120 x_offset = stride * tile_height - src_y - src_h;
3121 y_offset = src_x;
3122 plane_size = (src_w - 1) << 16 | (src_h - 1);
3123 } else {
3124 stride = fb->pitches[0] / stride_div;
3125 x_offset = src_x;
3126 y_offset = src_y;
3127 plane_size = (src_h - 1) << 16 | (src_w - 1);
3128 }
3129 plane_offset = y_offset << 16 | x_offset;
3130
3131 intel_crtc->adjusted_x = x_offset;
3132 intel_crtc->adjusted_y = y_offset;
3133
3134 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3135 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3136 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3137 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3138
3139 if (scaler_id >= 0) {
3140 uint32_t ps_ctrl = 0;
3141
3142 WARN_ON(!dst_w || !dst_h);
3143 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3144 crtc_state->scaler_state.scalers[scaler_id].mode;
3145 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3146 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3147 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3148 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3149 I915_WRITE(PLANE_POS(pipe, 0), 0);
3150 } else {
3151 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3152 }
3153
3154 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3155
3156 POSTING_READ(PLANE_SURF(pipe, 0));
3157 }
3158
3159 static void skylake_disable_primary_plane(struct drm_plane *primary,
3160 struct drm_crtc *crtc)
3161 {
3162 struct drm_device *dev = crtc->dev;
3163 struct drm_i915_private *dev_priv = dev->dev_private;
3164 int pipe = to_intel_crtc(crtc)->pipe;
3165
3166 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3167 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3168 POSTING_READ(PLANE_SURF(pipe, 0));
3169 }
3170
3171 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3172 static int
3173 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3174 int x, int y, enum mode_set_atomic state)
3175 {
3176 /* Support for kgdboc is disabled, this needs a major rework. */
3177 DRM_ERROR("legacy panic handler not supported any more.\n");
3178
3179 return -ENODEV;
3180 }
3181
3182 static void intel_complete_page_flips(struct drm_device *dev)
3183 {
3184 struct drm_crtc *crtc;
3185
3186 for_each_crtc(dev, crtc) {
3187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188 enum plane plane = intel_crtc->plane;
3189
3190 intel_prepare_page_flip(dev, plane);
3191 intel_finish_page_flip_plane(dev, plane);
3192 }
3193 }
3194
3195 static void intel_update_primary_planes(struct drm_device *dev)
3196 {
3197 struct drm_crtc *crtc;
3198
3199 for_each_crtc(dev, crtc) {
3200 struct intel_plane *plane = to_intel_plane(crtc->primary);
3201 struct intel_plane_state *plane_state;
3202
3203 drm_modeset_lock_crtc(crtc, &plane->base);
3204 plane_state = to_intel_plane_state(plane->base.state);
3205
3206 if (plane_state->visible)
3207 plane->update_plane(&plane->base,
3208 to_intel_crtc_state(crtc->state),
3209 plane_state);
3210
3211 drm_modeset_unlock_crtc(crtc);
3212 }
3213 }
3214
3215 void intel_prepare_reset(struct drm_device *dev)
3216 {
3217 /* no reset support for gen2 */
3218 if (IS_GEN2(dev))
3219 return;
3220
3221 /* reset doesn't touch the display */
3222 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3223 return;
3224
3225 drm_modeset_lock_all(dev);
3226 /*
3227 * Disabling the crtcs gracefully seems nicer. Also the
3228 * g33 docs say we should at least disable all the planes.
3229 */
3230 intel_display_suspend(dev);
3231 }
3232
3233 void intel_finish_reset(struct drm_device *dev)
3234 {
3235 struct drm_i915_private *dev_priv = to_i915(dev);
3236
3237 /*
3238 * Flips in the rings will be nuked by the reset,
3239 * so complete all pending flips so that user space
3240 * will get its events and not get stuck.
3241 */
3242 intel_complete_page_flips(dev);
3243
3244 /* no reset support for gen2 */
3245 if (IS_GEN2(dev))
3246 return;
3247
3248 /* reset doesn't touch the display */
3249 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3250 /*
3251 * Flips in the rings have been nuked by the reset,
3252 * so update the base address of all primary
3253 * planes to the the last fb to make sure we're
3254 * showing the correct fb after a reset.
3255 *
3256 * FIXME: Atomic will make this obsolete since we won't schedule
3257 * CS-based flips (which might get lost in gpu resets) any more.
3258 */
3259 intel_update_primary_planes(dev);
3260 return;
3261 }
3262
3263 /*
3264 * The display has been reset as well,
3265 * so need a full re-initialization.
3266 */
3267 intel_runtime_pm_disable_interrupts(dev_priv);
3268 intel_runtime_pm_enable_interrupts(dev_priv);
3269
3270 intel_modeset_init_hw(dev);
3271
3272 spin_lock_irq(&dev_priv->irq_lock);
3273 if (dev_priv->display.hpd_irq_setup)
3274 dev_priv->display.hpd_irq_setup(dev);
3275 spin_unlock_irq(&dev_priv->irq_lock);
3276
3277 intel_display_resume(dev);
3278
3279 intel_hpd_init(dev_priv);
3280
3281 drm_modeset_unlock_all(dev);
3282 }
3283
3284 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3285 {
3286 struct drm_device *dev = crtc->dev;
3287 struct drm_i915_private *dev_priv = dev->dev_private;
3288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3289 bool pending;
3290
3291 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3292 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3293 return false;
3294
3295 spin_lock_irq(&dev->event_lock);
3296 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3297 spin_unlock_irq(&dev->event_lock);
3298
3299 return pending;
3300 }
3301
3302 static void intel_update_pipe_config(struct intel_crtc *crtc,
3303 struct intel_crtc_state *old_crtc_state)
3304 {
3305 struct drm_device *dev = crtc->base.dev;
3306 struct drm_i915_private *dev_priv = dev->dev_private;
3307 struct intel_crtc_state *pipe_config =
3308 to_intel_crtc_state(crtc->base.state);
3309
3310 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3311 crtc->base.mode = crtc->base.state->mode;
3312
3313 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3314 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3315 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3316
3317 if (HAS_DDI(dev))
3318 intel_set_pipe_csc(&crtc->base);
3319
3320 /*
3321 * Update pipe size and adjust fitter if needed: the reason for this is
3322 * that in compute_mode_changes we check the native mode (not the pfit
3323 * mode) to see if we can flip rather than do a full mode set. In the
3324 * fastboot case, we'll flip, but if we don't update the pipesrc and
3325 * pfit state, we'll end up with a big fb scanned out into the wrong
3326 * sized surface.
3327 */
3328
3329 I915_WRITE(PIPESRC(crtc->pipe),
3330 ((pipe_config->pipe_src_w - 1) << 16) |
3331 (pipe_config->pipe_src_h - 1));
3332
3333 /* on skylake this is done by detaching scalers */
3334 if (INTEL_INFO(dev)->gen >= 9) {
3335 skl_detach_scalers(crtc);
3336
3337 if (pipe_config->pch_pfit.enabled)
3338 skylake_pfit_enable(crtc);
3339 } else if (HAS_PCH_SPLIT(dev)) {
3340 if (pipe_config->pch_pfit.enabled)
3341 ironlake_pfit_enable(crtc);
3342 else if (old_crtc_state->pch_pfit.enabled)
3343 ironlake_pfit_disable(crtc, true);
3344 }
3345 }
3346
3347 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3348 {
3349 struct drm_device *dev = crtc->dev;
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3352 int pipe = intel_crtc->pipe;
3353 i915_reg_t reg;
3354 u32 temp;
3355
3356 /* enable normal train */
3357 reg = FDI_TX_CTL(pipe);
3358 temp = I915_READ(reg);
3359 if (IS_IVYBRIDGE(dev)) {
3360 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3361 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3362 } else {
3363 temp &= ~FDI_LINK_TRAIN_NONE;
3364 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3365 }
3366 I915_WRITE(reg, temp);
3367
3368 reg = FDI_RX_CTL(pipe);
3369 temp = I915_READ(reg);
3370 if (HAS_PCH_CPT(dev)) {
3371 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3372 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3373 } else {
3374 temp &= ~FDI_LINK_TRAIN_NONE;
3375 temp |= FDI_LINK_TRAIN_NONE;
3376 }
3377 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3378
3379 /* wait one idle pattern time */
3380 POSTING_READ(reg);
3381 udelay(1000);
3382
3383 /* IVB wants error correction enabled */
3384 if (IS_IVYBRIDGE(dev))
3385 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3386 FDI_FE_ERRC_ENABLE);
3387 }
3388
3389 /* The FDI link training functions for ILK/Ibexpeak. */
3390 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3391 {
3392 struct drm_device *dev = crtc->dev;
3393 struct drm_i915_private *dev_priv = dev->dev_private;
3394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3395 int pipe = intel_crtc->pipe;
3396 i915_reg_t reg;
3397 u32 temp, tries;
3398
3399 /* FDI needs bits from pipe first */
3400 assert_pipe_enabled(dev_priv, pipe);
3401
3402 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3403 for train result */
3404 reg = FDI_RX_IMR(pipe);
3405 temp = I915_READ(reg);
3406 temp &= ~FDI_RX_SYMBOL_LOCK;
3407 temp &= ~FDI_RX_BIT_LOCK;
3408 I915_WRITE(reg, temp);
3409 I915_READ(reg);
3410 udelay(150);
3411
3412 /* enable CPU FDI TX and PCH FDI RX */
3413 reg = FDI_TX_CTL(pipe);
3414 temp = I915_READ(reg);
3415 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3416 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3417 temp &= ~FDI_LINK_TRAIN_NONE;
3418 temp |= FDI_LINK_TRAIN_PATTERN_1;
3419 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3420
3421 reg = FDI_RX_CTL(pipe);
3422 temp = I915_READ(reg);
3423 temp &= ~FDI_LINK_TRAIN_NONE;
3424 temp |= FDI_LINK_TRAIN_PATTERN_1;
3425 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427 POSTING_READ(reg);
3428 udelay(150);
3429
3430 /* Ironlake workaround, enable clock pointer after FDI enable*/
3431 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3432 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3433 FDI_RX_PHASE_SYNC_POINTER_EN);
3434
3435 reg = FDI_RX_IIR(pipe);
3436 for (tries = 0; tries < 5; tries++) {
3437 temp = I915_READ(reg);
3438 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439
3440 if ((temp & FDI_RX_BIT_LOCK)) {
3441 DRM_DEBUG_KMS("FDI train 1 done.\n");
3442 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3443 break;
3444 }
3445 }
3446 if (tries == 5)
3447 DRM_ERROR("FDI train 1 fail!\n");
3448
3449 /* Train 2 */
3450 reg = FDI_TX_CTL(pipe);
3451 temp = I915_READ(reg);
3452 temp &= ~FDI_LINK_TRAIN_NONE;
3453 temp |= FDI_LINK_TRAIN_PATTERN_2;
3454 I915_WRITE(reg, temp);
3455
3456 reg = FDI_RX_CTL(pipe);
3457 temp = I915_READ(reg);
3458 temp &= ~FDI_LINK_TRAIN_NONE;
3459 temp |= FDI_LINK_TRAIN_PATTERN_2;
3460 I915_WRITE(reg, temp);
3461
3462 POSTING_READ(reg);
3463 udelay(150);
3464
3465 reg = FDI_RX_IIR(pipe);
3466 for (tries = 0; tries < 5; tries++) {
3467 temp = I915_READ(reg);
3468 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3469
3470 if (temp & FDI_RX_SYMBOL_LOCK) {
3471 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3472 DRM_DEBUG_KMS("FDI train 2 done.\n");
3473 break;
3474 }
3475 }
3476 if (tries == 5)
3477 DRM_ERROR("FDI train 2 fail!\n");
3478
3479 DRM_DEBUG_KMS("FDI train done\n");
3480
3481 }
3482
3483 static const int snb_b_fdi_train_param[] = {
3484 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3485 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3486 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3487 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3488 };
3489
3490 /* The FDI link training functions for SNB/Cougarpoint. */
3491 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3492 {
3493 struct drm_device *dev = crtc->dev;
3494 struct drm_i915_private *dev_priv = dev->dev_private;
3495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3496 int pipe = intel_crtc->pipe;
3497 i915_reg_t reg;
3498 u32 temp, i, retry;
3499
3500 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3501 for train result */
3502 reg = FDI_RX_IMR(pipe);
3503 temp = I915_READ(reg);
3504 temp &= ~FDI_RX_SYMBOL_LOCK;
3505 temp &= ~FDI_RX_BIT_LOCK;
3506 I915_WRITE(reg, temp);
3507
3508 POSTING_READ(reg);
3509 udelay(150);
3510
3511 /* enable CPU FDI TX and PCH FDI RX */
3512 reg = FDI_TX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3515 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3516 temp &= ~FDI_LINK_TRAIN_NONE;
3517 temp |= FDI_LINK_TRAIN_PATTERN_1;
3518 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3519 /* SNB-B */
3520 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3521 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3522
3523 I915_WRITE(FDI_RX_MISC(pipe),
3524 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 if (HAS_PCH_CPT(dev)) {
3529 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3530 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3531 } else {
3532 temp &= ~FDI_LINK_TRAIN_NONE;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1;
3534 }
3535 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3536
3537 POSTING_READ(reg);
3538 udelay(150);
3539
3540 for (i = 0; i < 4; i++) {
3541 reg = FDI_TX_CTL(pipe);
3542 temp = I915_READ(reg);
3543 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544 temp |= snb_b_fdi_train_param[i];
3545 I915_WRITE(reg, temp);
3546
3547 POSTING_READ(reg);
3548 udelay(500);
3549
3550 for (retry = 0; retry < 5; retry++) {
3551 reg = FDI_RX_IIR(pipe);
3552 temp = I915_READ(reg);
3553 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3554 if (temp & FDI_RX_BIT_LOCK) {
3555 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3556 DRM_DEBUG_KMS("FDI train 1 done.\n");
3557 break;
3558 }
3559 udelay(50);
3560 }
3561 if (retry < 5)
3562 break;
3563 }
3564 if (i == 4)
3565 DRM_ERROR("FDI train 1 fail!\n");
3566
3567 /* Train 2 */
3568 reg = FDI_TX_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~FDI_LINK_TRAIN_NONE;
3571 temp |= FDI_LINK_TRAIN_PATTERN_2;
3572 if (IS_GEN6(dev)) {
3573 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574 /* SNB-B */
3575 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3576 }
3577 I915_WRITE(reg, temp);
3578
3579 reg = FDI_RX_CTL(pipe);
3580 temp = I915_READ(reg);
3581 if (HAS_PCH_CPT(dev)) {
3582 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3584 } else {
3585 temp &= ~FDI_LINK_TRAIN_NONE;
3586 temp |= FDI_LINK_TRAIN_PATTERN_2;
3587 }
3588 I915_WRITE(reg, temp);
3589
3590 POSTING_READ(reg);
3591 udelay(150);
3592
3593 for (i = 0; i < 4; i++) {
3594 reg = FDI_TX_CTL(pipe);
3595 temp = I915_READ(reg);
3596 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597 temp |= snb_b_fdi_train_param[i];
3598 I915_WRITE(reg, temp);
3599
3600 POSTING_READ(reg);
3601 udelay(500);
3602
3603 for (retry = 0; retry < 5; retry++) {
3604 reg = FDI_RX_IIR(pipe);
3605 temp = I915_READ(reg);
3606 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3607 if (temp & FDI_RX_SYMBOL_LOCK) {
3608 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3609 DRM_DEBUG_KMS("FDI train 2 done.\n");
3610 break;
3611 }
3612 udelay(50);
3613 }
3614 if (retry < 5)
3615 break;
3616 }
3617 if (i == 4)
3618 DRM_ERROR("FDI train 2 fail!\n");
3619
3620 DRM_DEBUG_KMS("FDI train done.\n");
3621 }
3622
3623 /* Manual link training for Ivy Bridge A0 parts */
3624 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3625 {
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629 int pipe = intel_crtc->pipe;
3630 i915_reg_t reg;
3631 u32 temp, i, j;
3632
3633 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634 for train result */
3635 reg = FDI_RX_IMR(pipe);
3636 temp = I915_READ(reg);
3637 temp &= ~FDI_RX_SYMBOL_LOCK;
3638 temp &= ~FDI_RX_BIT_LOCK;
3639 I915_WRITE(reg, temp);
3640
3641 POSTING_READ(reg);
3642 udelay(150);
3643
3644 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645 I915_READ(FDI_RX_IIR(pipe)));
3646
3647 /* Try each vswing and preemphasis setting twice before moving on */
3648 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649 /* disable first in case we need to retry */
3650 reg = FDI_TX_CTL(pipe);
3651 temp = I915_READ(reg);
3652 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653 temp &= ~FDI_TX_ENABLE;
3654 I915_WRITE(reg, temp);
3655
3656 reg = FDI_RX_CTL(pipe);
3657 temp = I915_READ(reg);
3658 temp &= ~FDI_LINK_TRAIN_AUTO;
3659 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660 temp &= ~FDI_RX_ENABLE;
3661 I915_WRITE(reg, temp);
3662
3663 /* enable CPU FDI TX and PCH FDI RX */
3664 reg = FDI_TX_CTL(pipe);
3665 temp = I915_READ(reg);
3666 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3667 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3669 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3670 temp |= snb_b_fdi_train_param[j/2];
3671 temp |= FDI_COMPOSITE_SYNC;
3672 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3673
3674 I915_WRITE(FDI_RX_MISC(pipe),
3675 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3676
3677 reg = FDI_RX_CTL(pipe);
3678 temp = I915_READ(reg);
3679 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680 temp |= FDI_COMPOSITE_SYNC;
3681 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3682
3683 POSTING_READ(reg);
3684 udelay(1); /* should be 0.5us */
3685
3686 for (i = 0; i < 4; i++) {
3687 reg = FDI_RX_IIR(pipe);
3688 temp = I915_READ(reg);
3689 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691 if (temp & FDI_RX_BIT_LOCK ||
3692 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695 i);
3696 break;
3697 }
3698 udelay(1); /* should be 0.5us */
3699 }
3700 if (i == 4) {
3701 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702 continue;
3703 }
3704
3705 /* Train 2 */
3706 reg = FDI_TX_CTL(pipe);
3707 temp = I915_READ(reg);
3708 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710 I915_WRITE(reg, temp);
3711
3712 reg = FDI_RX_CTL(pipe);
3713 temp = I915_READ(reg);
3714 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3716 I915_WRITE(reg, temp);
3717
3718 POSTING_READ(reg);
3719 udelay(2); /* should be 1.5us */
3720
3721 for (i = 0; i < 4; i++) {
3722 reg = FDI_RX_IIR(pipe);
3723 temp = I915_READ(reg);
3724 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726 if (temp & FDI_RX_SYMBOL_LOCK ||
3727 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730 i);
3731 goto train_done;
3732 }
3733 udelay(2); /* should be 1.5us */
3734 }
3735 if (i == 4)
3736 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3737 }
3738
3739 train_done:
3740 DRM_DEBUG_KMS("FDI train done.\n");
3741 }
3742
3743 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3744 {
3745 struct drm_device *dev = intel_crtc->base.dev;
3746 struct drm_i915_private *dev_priv = dev->dev_private;
3747 int pipe = intel_crtc->pipe;
3748 i915_reg_t reg;
3749 u32 temp;
3750
3751 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3752 reg = FDI_RX_CTL(pipe);
3753 temp = I915_READ(reg);
3754 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3755 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3756 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759 POSTING_READ(reg);
3760 udelay(200);
3761
3762 /* Switch from Rawclk to PCDclk */
3763 temp = I915_READ(reg);
3764 I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766 POSTING_READ(reg);
3767 udelay(200);
3768
3769 /* Enable CPU FDI TX PLL, always on for Ironlake */
3770 reg = FDI_TX_CTL(pipe);
3771 temp = I915_READ(reg);
3772 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3774
3775 POSTING_READ(reg);
3776 udelay(100);
3777 }
3778 }
3779
3780 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781 {
3782 struct drm_device *dev = intel_crtc->base.dev;
3783 struct drm_i915_private *dev_priv = dev->dev_private;
3784 int pipe = intel_crtc->pipe;
3785 i915_reg_t reg;
3786 u32 temp;
3787
3788 /* Switch from PCDclk to Rawclk */
3789 reg = FDI_RX_CTL(pipe);
3790 temp = I915_READ(reg);
3791 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3792
3793 /* Disable CPU FDI TX PLL */
3794 reg = FDI_TX_CTL(pipe);
3795 temp = I915_READ(reg);
3796 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3797
3798 POSTING_READ(reg);
3799 udelay(100);
3800
3801 reg = FDI_RX_CTL(pipe);
3802 temp = I915_READ(reg);
3803 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3804
3805 /* Wait for the clocks to turn off. */
3806 POSTING_READ(reg);
3807 udelay(100);
3808 }
3809
3810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3811 {
3812 struct drm_device *dev = crtc->dev;
3813 struct drm_i915_private *dev_priv = dev->dev_private;
3814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3815 int pipe = intel_crtc->pipe;
3816 i915_reg_t reg;
3817 u32 temp;
3818
3819 /* disable CPU FDI tx and PCH FDI rx */
3820 reg = FDI_TX_CTL(pipe);
3821 temp = I915_READ(reg);
3822 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3823 POSTING_READ(reg);
3824
3825 reg = FDI_RX_CTL(pipe);
3826 temp = I915_READ(reg);
3827 temp &= ~(0x7 << 16);
3828 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3829 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3830
3831 POSTING_READ(reg);
3832 udelay(100);
3833
3834 /* Ironlake workaround, disable clock pointer after downing FDI */
3835 if (HAS_PCH_IBX(dev))
3836 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3837
3838 /* still set train pattern 1 */
3839 reg = FDI_TX_CTL(pipe);
3840 temp = I915_READ(reg);
3841 temp &= ~FDI_LINK_TRAIN_NONE;
3842 temp |= FDI_LINK_TRAIN_PATTERN_1;
3843 I915_WRITE(reg, temp);
3844
3845 reg = FDI_RX_CTL(pipe);
3846 temp = I915_READ(reg);
3847 if (HAS_PCH_CPT(dev)) {
3848 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3849 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3850 } else {
3851 temp &= ~FDI_LINK_TRAIN_NONE;
3852 temp |= FDI_LINK_TRAIN_PATTERN_1;
3853 }
3854 /* BPC in FDI rx is consistent with that in PIPECONF */
3855 temp &= ~(0x07 << 16);
3856 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3857 I915_WRITE(reg, temp);
3858
3859 POSTING_READ(reg);
3860 udelay(100);
3861 }
3862
3863 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3864 {
3865 struct intel_crtc *crtc;
3866
3867 /* Note that we don't need to be called with mode_config.lock here
3868 * as our list of CRTC objects is static for the lifetime of the
3869 * device and so cannot disappear as we iterate. Similarly, we can
3870 * happily treat the predicates as racy, atomic checks as userspace
3871 * cannot claim and pin a new fb without at least acquring the
3872 * struct_mutex and so serialising with us.
3873 */
3874 for_each_intel_crtc(dev, crtc) {
3875 if (atomic_read(&crtc->unpin_work_count) == 0)
3876 continue;
3877
3878 if (crtc->unpin_work)
3879 intel_wait_for_vblank(dev, crtc->pipe);
3880
3881 return true;
3882 }
3883
3884 return false;
3885 }
3886
3887 static void page_flip_completed(struct intel_crtc *intel_crtc)
3888 {
3889 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3890 struct intel_unpin_work *work = intel_crtc->unpin_work;
3891
3892 /* ensure that the unpin work is consistent wrt ->pending. */
3893 smp_rmb();
3894 intel_crtc->unpin_work = NULL;
3895
3896 if (work->event)
3897 drm_send_vblank_event(intel_crtc->base.dev,
3898 intel_crtc->pipe,
3899 work->event);
3900
3901 drm_crtc_vblank_put(&intel_crtc->base);
3902
3903 wake_up_all(&dev_priv->pending_flip_queue);
3904 queue_work(dev_priv->wq, &work->work);
3905
3906 trace_i915_flip_complete(intel_crtc->plane,
3907 work->pending_flip_obj);
3908 }
3909
3910 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3911 {
3912 struct drm_device *dev = crtc->dev;
3913 struct drm_i915_private *dev_priv = dev->dev_private;
3914 long ret;
3915
3916 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3917
3918 ret = wait_event_interruptible_timeout(
3919 dev_priv->pending_flip_queue,
3920 !intel_crtc_has_pending_flip(crtc),
3921 60*HZ);
3922
3923 if (ret < 0)
3924 return ret;
3925
3926 if (ret == 0) {
3927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3928
3929 spin_lock_irq(&dev->event_lock);
3930 if (intel_crtc->unpin_work) {
3931 WARN_ONCE(1, "Removing stuck page flip\n");
3932 page_flip_completed(intel_crtc);
3933 }
3934 spin_unlock_irq(&dev->event_lock);
3935 }
3936
3937 return 0;
3938 }
3939
3940 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3941 {
3942 u32 temp;
3943
3944 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3945
3946 mutex_lock(&dev_priv->sb_lock);
3947
3948 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3949 temp |= SBI_SSCCTL_DISABLE;
3950 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3951
3952 mutex_unlock(&dev_priv->sb_lock);
3953 }
3954
3955 /* Program iCLKIP clock to the desired frequency */
3956 static void lpt_program_iclkip(struct drm_crtc *crtc)
3957 {
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3961 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3962 u32 temp;
3963
3964 lpt_disable_iclkip(dev_priv);
3965
3966 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3967 if (clock == 20000) {
3968 auxdiv = 1;
3969 divsel = 0x41;
3970 phaseinc = 0x20;
3971 } else {
3972 /* The iCLK virtual clock root frequency is in MHz,
3973 * but the adjusted_mode->crtc_clock in in KHz. To get the
3974 * divisors, it is necessary to divide one by another, so we
3975 * convert the virtual clock precision to KHz here for higher
3976 * precision.
3977 */
3978 u32 iclk_virtual_root_freq = 172800 * 1000;
3979 u32 iclk_pi_range = 64;
3980 u32 desired_divisor, msb_divisor_value, pi_value;
3981
3982 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
3983 msb_divisor_value = desired_divisor / iclk_pi_range;
3984 pi_value = desired_divisor % iclk_pi_range;
3985
3986 auxdiv = 0;
3987 divsel = msb_divisor_value - 2;
3988 phaseinc = pi_value;
3989 }
3990
3991 /* This should not happen with any sane values */
3992 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3993 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3994 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3995 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3996
3997 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3998 clock,
3999 auxdiv,
4000 divsel,
4001 phasedir,
4002 phaseinc);
4003
4004 mutex_lock(&dev_priv->sb_lock);
4005
4006 /* Program SSCDIVINTPHASE6 */
4007 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4008 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4009 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4010 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4011 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4012 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4013 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4014 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4015
4016 /* Program SSCAUXDIV */
4017 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4018 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4019 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4020 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4021
4022 /* Enable modulator and associated divider */
4023 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4024 temp &= ~SBI_SSCCTL_DISABLE;
4025 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4026
4027 mutex_unlock(&dev_priv->sb_lock);
4028
4029 /* Wait for initialization time */
4030 udelay(24);
4031
4032 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4033 }
4034
4035 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4036 enum pipe pch_transcoder)
4037 {
4038 struct drm_device *dev = crtc->base.dev;
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4041
4042 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4043 I915_READ(HTOTAL(cpu_transcoder)));
4044 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4045 I915_READ(HBLANK(cpu_transcoder)));
4046 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4047 I915_READ(HSYNC(cpu_transcoder)));
4048
4049 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4050 I915_READ(VTOTAL(cpu_transcoder)));
4051 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4052 I915_READ(VBLANK(cpu_transcoder)));
4053 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4054 I915_READ(VSYNC(cpu_transcoder)));
4055 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4056 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4057 }
4058
4059 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4060 {
4061 struct drm_i915_private *dev_priv = dev->dev_private;
4062 uint32_t temp;
4063
4064 temp = I915_READ(SOUTH_CHICKEN1);
4065 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4066 return;
4067
4068 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4069 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4070
4071 temp &= ~FDI_BC_BIFURCATION_SELECT;
4072 if (enable)
4073 temp |= FDI_BC_BIFURCATION_SELECT;
4074
4075 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4076 I915_WRITE(SOUTH_CHICKEN1, temp);
4077 POSTING_READ(SOUTH_CHICKEN1);
4078 }
4079
4080 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4081 {
4082 struct drm_device *dev = intel_crtc->base.dev;
4083
4084 switch (intel_crtc->pipe) {
4085 case PIPE_A:
4086 break;
4087 case PIPE_B:
4088 if (intel_crtc->config->fdi_lanes > 2)
4089 cpt_set_fdi_bc_bifurcation(dev, false);
4090 else
4091 cpt_set_fdi_bc_bifurcation(dev, true);
4092
4093 break;
4094 case PIPE_C:
4095 cpt_set_fdi_bc_bifurcation(dev, true);
4096
4097 break;
4098 default:
4099 BUG();
4100 }
4101 }
4102
4103 /* Return which DP Port should be selected for Transcoder DP control */
4104 static enum port
4105 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4106 {
4107 struct drm_device *dev = crtc->dev;
4108 struct intel_encoder *encoder;
4109
4110 for_each_encoder_on_crtc(dev, crtc, encoder) {
4111 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4112 encoder->type == INTEL_OUTPUT_EDP)
4113 return enc_to_dig_port(&encoder->base)->port;
4114 }
4115
4116 return -1;
4117 }
4118
4119 /*
4120 * Enable PCH resources required for PCH ports:
4121 * - PCH PLLs
4122 * - FDI training & RX/TX
4123 * - update transcoder timings
4124 * - DP transcoding bits
4125 * - transcoder
4126 */
4127 static void ironlake_pch_enable(struct drm_crtc *crtc)
4128 {
4129 struct drm_device *dev = crtc->dev;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4132 int pipe = intel_crtc->pipe;
4133 u32 temp;
4134
4135 assert_pch_transcoder_disabled(dev_priv, pipe);
4136
4137 if (IS_IVYBRIDGE(dev))
4138 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4139
4140 /* Write the TU size bits before fdi link training, so that error
4141 * detection works. */
4142 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4143 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4144
4145 /*
4146 * Sometimes spurious CPU pipe underruns happen during FDI
4147 * training, at least with VGA+HDMI cloning. Suppress them.
4148 */
4149 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4150
4151 /* For PCH output, training FDI link */
4152 dev_priv->display.fdi_link_train(crtc);
4153
4154 /* We need to program the right clock selection before writing the pixel
4155 * mutliplier into the DPLL. */
4156 if (HAS_PCH_CPT(dev)) {
4157 u32 sel;
4158
4159 temp = I915_READ(PCH_DPLL_SEL);
4160 temp |= TRANS_DPLL_ENABLE(pipe);
4161 sel = TRANS_DPLLB_SEL(pipe);
4162 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4163 temp |= sel;
4164 else
4165 temp &= ~sel;
4166 I915_WRITE(PCH_DPLL_SEL, temp);
4167 }
4168
4169 /* XXX: pch pll's can be enabled any time before we enable the PCH
4170 * transcoder, and we actually should do this to not upset any PCH
4171 * transcoder that already use the clock when we share it.
4172 *
4173 * Note that enable_shared_dpll tries to do the right thing, but
4174 * get_shared_dpll unconditionally resets the pll - we need that to have
4175 * the right LVDS enable sequence. */
4176 intel_enable_shared_dpll(intel_crtc);
4177
4178 /* set transcoder timing, panel must allow it */
4179 assert_panel_unlocked(dev_priv, pipe);
4180 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4181
4182 intel_fdi_normal_train(crtc);
4183
4184 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4185
4186 /* For PCH DP, enable TRANS_DP_CTL */
4187 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4188 const struct drm_display_mode *adjusted_mode =
4189 &intel_crtc->config->base.adjusted_mode;
4190 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4191 i915_reg_t reg = TRANS_DP_CTL(pipe);
4192 temp = I915_READ(reg);
4193 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4194 TRANS_DP_SYNC_MASK |
4195 TRANS_DP_BPC_MASK);
4196 temp |= TRANS_DP_OUTPUT_ENABLE;
4197 temp |= bpc << 9; /* same format but at 11:9 */
4198
4199 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4200 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4201 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4202 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4203
4204 switch (intel_trans_dp_port_sel(crtc)) {
4205 case PORT_B:
4206 temp |= TRANS_DP_PORT_SEL_B;
4207 break;
4208 case PORT_C:
4209 temp |= TRANS_DP_PORT_SEL_C;
4210 break;
4211 case PORT_D:
4212 temp |= TRANS_DP_PORT_SEL_D;
4213 break;
4214 default:
4215 BUG();
4216 }
4217
4218 I915_WRITE(reg, temp);
4219 }
4220
4221 ironlake_enable_pch_transcoder(dev_priv, pipe);
4222 }
4223
4224 static void lpt_pch_enable(struct drm_crtc *crtc)
4225 {
4226 struct drm_device *dev = crtc->dev;
4227 struct drm_i915_private *dev_priv = dev->dev_private;
4228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4229 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4230
4231 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4232
4233 lpt_program_iclkip(crtc);
4234
4235 /* Set transcoder timing. */
4236 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4237
4238 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4239 }
4240
4241 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4242 struct intel_crtc_state *crtc_state)
4243 {
4244 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4245 struct intel_shared_dpll *pll;
4246 struct intel_shared_dpll_config *shared_dpll;
4247 enum intel_dpll_id i;
4248 int max = dev_priv->num_shared_dpll;
4249
4250 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4251
4252 if (HAS_PCH_IBX(dev_priv->dev)) {
4253 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4254 i = (enum intel_dpll_id) crtc->pipe;
4255 pll = &dev_priv->shared_dplls[i];
4256
4257 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258 crtc->base.base.id, pll->name);
4259
4260 WARN_ON(shared_dpll[i].crtc_mask);
4261
4262 goto found;
4263 }
4264
4265 if (IS_BROXTON(dev_priv->dev)) {
4266 /* PLL is attached to port in bxt */
4267 struct intel_encoder *encoder;
4268 struct intel_digital_port *intel_dig_port;
4269
4270 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4271 if (WARN_ON(!encoder))
4272 return NULL;
4273
4274 intel_dig_port = enc_to_dig_port(&encoder->base);
4275 /* 1:1 mapping between ports and PLLs */
4276 i = (enum intel_dpll_id)intel_dig_port->port;
4277 pll = &dev_priv->shared_dplls[i];
4278 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4279 crtc->base.base.id, pll->name);
4280 WARN_ON(shared_dpll[i].crtc_mask);
4281
4282 goto found;
4283 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4284 /* Do not consider SPLL */
4285 max = 2;
4286
4287 for (i = 0; i < max; i++) {
4288 pll = &dev_priv->shared_dplls[i];
4289
4290 /* Only want to check enabled timings first */
4291 if (shared_dpll[i].crtc_mask == 0)
4292 continue;
4293
4294 if (memcmp(&crtc_state->dpll_hw_state,
4295 &shared_dpll[i].hw_state,
4296 sizeof(crtc_state->dpll_hw_state)) == 0) {
4297 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4298 crtc->base.base.id, pll->name,
4299 shared_dpll[i].crtc_mask,
4300 pll->active);
4301 goto found;
4302 }
4303 }
4304
4305 /* Ok no matching timings, maybe there's a free one? */
4306 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4307 pll = &dev_priv->shared_dplls[i];
4308 if (shared_dpll[i].crtc_mask == 0) {
4309 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4310 crtc->base.base.id, pll->name);
4311 goto found;
4312 }
4313 }
4314
4315 return NULL;
4316
4317 found:
4318 if (shared_dpll[i].crtc_mask == 0)
4319 shared_dpll[i].hw_state =
4320 crtc_state->dpll_hw_state;
4321
4322 crtc_state->shared_dpll = i;
4323 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4324 pipe_name(crtc->pipe));
4325
4326 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4327
4328 return pll;
4329 }
4330
4331 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4332 {
4333 struct drm_i915_private *dev_priv = to_i915(state->dev);
4334 struct intel_shared_dpll_config *shared_dpll;
4335 struct intel_shared_dpll *pll;
4336 enum intel_dpll_id i;
4337
4338 if (!to_intel_atomic_state(state)->dpll_set)
4339 return;
4340
4341 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4342 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4343 pll = &dev_priv->shared_dplls[i];
4344 pll->config = shared_dpll[i];
4345 }
4346 }
4347
4348 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4349 {
4350 struct drm_i915_private *dev_priv = dev->dev_private;
4351 i915_reg_t dslreg = PIPEDSL(pipe);
4352 u32 temp;
4353
4354 temp = I915_READ(dslreg);
4355 udelay(500);
4356 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4357 if (wait_for(I915_READ(dslreg) != temp, 5))
4358 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4359 }
4360 }
4361
4362 static int
4363 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4364 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4365 int src_w, int src_h, int dst_w, int dst_h)
4366 {
4367 struct intel_crtc_scaler_state *scaler_state =
4368 &crtc_state->scaler_state;
4369 struct intel_crtc *intel_crtc =
4370 to_intel_crtc(crtc_state->base.crtc);
4371 int need_scaling;
4372
4373 need_scaling = intel_rotation_90_or_270(rotation) ?
4374 (src_h != dst_w || src_w != dst_h):
4375 (src_w != dst_w || src_h != dst_h);
4376
4377 /*
4378 * if plane is being disabled or scaler is no more required or force detach
4379 * - free scaler binded to this plane/crtc
4380 * - in order to do this, update crtc->scaler_usage
4381 *
4382 * Here scaler state in crtc_state is set free so that
4383 * scaler can be assigned to other user. Actual register
4384 * update to free the scaler is done in plane/panel-fit programming.
4385 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4386 */
4387 if (force_detach || !need_scaling) {
4388 if (*scaler_id >= 0) {
4389 scaler_state->scaler_users &= ~(1 << scaler_user);
4390 scaler_state->scalers[*scaler_id].in_use = 0;
4391
4392 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4393 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4394 intel_crtc->pipe, scaler_user, *scaler_id,
4395 scaler_state->scaler_users);
4396 *scaler_id = -1;
4397 }
4398 return 0;
4399 }
4400
4401 /* range checks */
4402 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4403 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4404
4405 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4406 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4407 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4408 "size is out of scaler range\n",
4409 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4410 return -EINVAL;
4411 }
4412
4413 /* mark this plane as a scaler user in crtc_state */
4414 scaler_state->scaler_users |= (1 << scaler_user);
4415 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4416 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4417 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4418 scaler_state->scaler_users);
4419
4420 return 0;
4421 }
4422
4423 /**
4424 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4425 *
4426 * @state: crtc's scaler state
4427 *
4428 * Return
4429 * 0 - scaler_usage updated successfully
4430 * error - requested scaling cannot be supported or other error condition
4431 */
4432 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4433 {
4434 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4435 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4436
4437 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4438 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4439
4440 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4441 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4442 state->pipe_src_w, state->pipe_src_h,
4443 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4444 }
4445
4446 /**
4447 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4448 *
4449 * @state: crtc's scaler state
4450 * @plane_state: atomic plane state to update
4451 *
4452 * Return
4453 * 0 - scaler_usage updated successfully
4454 * error - requested scaling cannot be supported or other error condition
4455 */
4456 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4457 struct intel_plane_state *plane_state)
4458 {
4459
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4461 struct intel_plane *intel_plane =
4462 to_intel_plane(plane_state->base.plane);
4463 struct drm_framebuffer *fb = plane_state->base.fb;
4464 int ret;
4465
4466 bool force_detach = !fb || !plane_state->visible;
4467
4468 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4469 intel_plane->base.base.id, intel_crtc->pipe,
4470 drm_plane_index(&intel_plane->base));
4471
4472 ret = skl_update_scaler(crtc_state, force_detach,
4473 drm_plane_index(&intel_plane->base),
4474 &plane_state->scaler_id,
4475 plane_state->base.rotation,
4476 drm_rect_width(&plane_state->src) >> 16,
4477 drm_rect_height(&plane_state->src) >> 16,
4478 drm_rect_width(&plane_state->dst),
4479 drm_rect_height(&plane_state->dst));
4480
4481 if (ret || plane_state->scaler_id < 0)
4482 return ret;
4483
4484 /* check colorkey */
4485 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4486 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4487 intel_plane->base.base.id);
4488 return -EINVAL;
4489 }
4490
4491 /* Check src format */
4492 switch (fb->pixel_format) {
4493 case DRM_FORMAT_RGB565:
4494 case DRM_FORMAT_XBGR8888:
4495 case DRM_FORMAT_XRGB8888:
4496 case DRM_FORMAT_ABGR8888:
4497 case DRM_FORMAT_ARGB8888:
4498 case DRM_FORMAT_XRGB2101010:
4499 case DRM_FORMAT_XBGR2101010:
4500 case DRM_FORMAT_YUYV:
4501 case DRM_FORMAT_YVYU:
4502 case DRM_FORMAT_UYVY:
4503 case DRM_FORMAT_VYUY:
4504 break;
4505 default:
4506 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4507 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4508 return -EINVAL;
4509 }
4510
4511 return 0;
4512 }
4513
4514 static void skylake_scaler_disable(struct intel_crtc *crtc)
4515 {
4516 int i;
4517
4518 for (i = 0; i < crtc->num_scalers; i++)
4519 skl_detach_scaler(crtc, i);
4520 }
4521
4522 static void skylake_pfit_enable(struct intel_crtc *crtc)
4523 {
4524 struct drm_device *dev = crtc->base.dev;
4525 struct drm_i915_private *dev_priv = dev->dev_private;
4526 int pipe = crtc->pipe;
4527 struct intel_crtc_scaler_state *scaler_state =
4528 &crtc->config->scaler_state;
4529
4530 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4531
4532 if (crtc->config->pch_pfit.enabled) {
4533 int id;
4534
4535 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4536 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4537 return;
4538 }
4539
4540 id = scaler_state->scaler_id;
4541 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4542 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4543 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4544 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4545
4546 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4547 }
4548 }
4549
4550 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4551 {
4552 struct drm_device *dev = crtc->base.dev;
4553 struct drm_i915_private *dev_priv = dev->dev_private;
4554 int pipe = crtc->pipe;
4555
4556 if (crtc->config->pch_pfit.enabled) {
4557 /* Force use of hard-coded filter coefficients
4558 * as some pre-programmed values are broken,
4559 * e.g. x201.
4560 */
4561 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4562 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4563 PF_PIPE_SEL_IVB(pipe));
4564 else
4565 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4566 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4567 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4568 }
4569 }
4570
4571 void hsw_enable_ips(struct intel_crtc *crtc)
4572 {
4573 struct drm_device *dev = crtc->base.dev;
4574 struct drm_i915_private *dev_priv = dev->dev_private;
4575
4576 if (!crtc->config->ips_enabled)
4577 return;
4578
4579 /* We can only enable IPS after we enable a plane and wait for a vblank */
4580 intel_wait_for_vblank(dev, crtc->pipe);
4581
4582 assert_plane_enabled(dev_priv, crtc->plane);
4583 if (IS_BROADWELL(dev)) {
4584 mutex_lock(&dev_priv->rps.hw_lock);
4585 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4586 mutex_unlock(&dev_priv->rps.hw_lock);
4587 /* Quoting Art Runyan: "its not safe to expect any particular
4588 * value in IPS_CTL bit 31 after enabling IPS through the
4589 * mailbox." Moreover, the mailbox may return a bogus state,
4590 * so we need to just enable it and continue on.
4591 */
4592 } else {
4593 I915_WRITE(IPS_CTL, IPS_ENABLE);
4594 /* The bit only becomes 1 in the next vblank, so this wait here
4595 * is essentially intel_wait_for_vblank. If we don't have this
4596 * and don't wait for vblanks until the end of crtc_enable, then
4597 * the HW state readout code will complain that the expected
4598 * IPS_CTL value is not the one we read. */
4599 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4600 DRM_ERROR("Timed out waiting for IPS enable\n");
4601 }
4602 }
4603
4604 void hsw_disable_ips(struct intel_crtc *crtc)
4605 {
4606 struct drm_device *dev = crtc->base.dev;
4607 struct drm_i915_private *dev_priv = dev->dev_private;
4608
4609 if (!crtc->config->ips_enabled)
4610 return;
4611
4612 assert_plane_enabled(dev_priv, crtc->plane);
4613 if (IS_BROADWELL(dev)) {
4614 mutex_lock(&dev_priv->rps.hw_lock);
4615 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4616 mutex_unlock(&dev_priv->rps.hw_lock);
4617 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4618 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4619 DRM_ERROR("Timed out waiting for IPS disable\n");
4620 } else {
4621 I915_WRITE(IPS_CTL, 0);
4622 POSTING_READ(IPS_CTL);
4623 }
4624
4625 /* We need to wait for a vblank before we can disable the plane. */
4626 intel_wait_for_vblank(dev, crtc->pipe);
4627 }
4628
4629 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4630 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4631 {
4632 struct drm_device *dev = crtc->dev;
4633 struct drm_i915_private *dev_priv = dev->dev_private;
4634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4635 enum pipe pipe = intel_crtc->pipe;
4636 int i;
4637 bool reenable_ips = false;
4638
4639 /* The clocks have to be on to load the palette. */
4640 if (!crtc->state->active)
4641 return;
4642
4643 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4644 if (intel_crtc->config->has_dsi_encoder)
4645 assert_dsi_pll_enabled(dev_priv);
4646 else
4647 assert_pll_enabled(dev_priv, pipe);
4648 }
4649
4650 /* Workaround : Do not read or write the pipe palette/gamma data while
4651 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4652 */
4653 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4654 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4655 GAMMA_MODE_MODE_SPLIT)) {
4656 hsw_disable_ips(intel_crtc);
4657 reenable_ips = true;
4658 }
4659
4660 for (i = 0; i < 256; i++) {
4661 i915_reg_t palreg;
4662
4663 if (HAS_GMCH_DISPLAY(dev))
4664 palreg = PALETTE(pipe, i);
4665 else
4666 palreg = LGC_PALETTE(pipe, i);
4667
4668 I915_WRITE(palreg,
4669 (intel_crtc->lut_r[i] << 16) |
4670 (intel_crtc->lut_g[i] << 8) |
4671 intel_crtc->lut_b[i]);
4672 }
4673
4674 if (reenable_ips)
4675 hsw_enable_ips(intel_crtc);
4676 }
4677
4678 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4679 {
4680 if (intel_crtc->overlay) {
4681 struct drm_device *dev = intel_crtc->base.dev;
4682 struct drm_i915_private *dev_priv = dev->dev_private;
4683
4684 mutex_lock(&dev->struct_mutex);
4685 dev_priv->mm.interruptible = false;
4686 (void) intel_overlay_switch_off(intel_crtc->overlay);
4687 dev_priv->mm.interruptible = true;
4688 mutex_unlock(&dev->struct_mutex);
4689 }
4690
4691 /* Let userspace switch the overlay on again. In most cases userspace
4692 * has to recompute where to put it anyway.
4693 */
4694 }
4695
4696 /**
4697 * intel_post_enable_primary - Perform operations after enabling primary plane
4698 * @crtc: the CRTC whose primary plane was just enabled
4699 *
4700 * Performs potentially sleeping operations that must be done after the primary
4701 * plane is enabled, such as updating FBC and IPS. Note that this may be
4702 * called due to an explicit primary plane update, or due to an implicit
4703 * re-enable that is caused when a sprite plane is updated to no longer
4704 * completely hide the primary plane.
4705 */
4706 static void
4707 intel_post_enable_primary(struct drm_crtc *crtc)
4708 {
4709 struct drm_device *dev = crtc->dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4712 int pipe = intel_crtc->pipe;
4713
4714 /*
4715 * FIXME IPS should be fine as long as one plane is
4716 * enabled, but in practice it seems to have problems
4717 * when going from primary only to sprite only and vice
4718 * versa.
4719 */
4720 hsw_enable_ips(intel_crtc);
4721
4722 /*
4723 * Gen2 reports pipe underruns whenever all planes are disabled.
4724 * So don't enable underrun reporting before at least some planes
4725 * are enabled.
4726 * FIXME: Need to fix the logic to work when we turn off all planes
4727 * but leave the pipe running.
4728 */
4729 if (IS_GEN2(dev))
4730 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4731
4732 /* Underruns don't always raise interrupts, so check manually. */
4733 intel_check_cpu_fifo_underruns(dev_priv);
4734 intel_check_pch_fifo_underruns(dev_priv);
4735 }
4736
4737 /**
4738 * intel_pre_disable_primary - Perform operations before disabling primary plane
4739 * @crtc: the CRTC whose primary plane is to be disabled
4740 *
4741 * Performs potentially sleeping operations that must be done before the
4742 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4743 * be called due to an explicit primary plane update, or due to an implicit
4744 * disable that is caused when a sprite plane completely hides the primary
4745 * plane.
4746 */
4747 static void
4748 intel_pre_disable_primary(struct drm_crtc *crtc)
4749 {
4750 struct drm_device *dev = crtc->dev;
4751 struct drm_i915_private *dev_priv = dev->dev_private;
4752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4753 int pipe = intel_crtc->pipe;
4754
4755 /*
4756 * Gen2 reports pipe underruns whenever all planes are disabled.
4757 * So diasble underrun reporting before all the planes get disabled.
4758 * FIXME: Need to fix the logic to work when we turn off all planes
4759 * but leave the pipe running.
4760 */
4761 if (IS_GEN2(dev))
4762 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4763
4764 /*
4765 * Vblank time updates from the shadow to live plane control register
4766 * are blocked if the memory self-refresh mode is active at that
4767 * moment. So to make sure the plane gets truly disabled, disable
4768 * first the self-refresh mode. The self-refresh enable bit in turn
4769 * will be checked/applied by the HW only at the next frame start
4770 * event which is after the vblank start event, so we need to have a
4771 * wait-for-vblank between disabling the plane and the pipe.
4772 */
4773 if (HAS_GMCH_DISPLAY(dev)) {
4774 intel_set_memory_cxsr(dev_priv, false);
4775 dev_priv->wm.vlv.cxsr = false;
4776 intel_wait_for_vblank(dev, pipe);
4777 }
4778
4779 /*
4780 * FIXME IPS should be fine as long as one plane is
4781 * enabled, but in practice it seems to have problems
4782 * when going from primary only to sprite only and vice
4783 * versa.
4784 */
4785 hsw_disable_ips(intel_crtc);
4786 }
4787
4788 static void intel_post_plane_update(struct intel_crtc *crtc)
4789 {
4790 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4791 struct intel_crtc_state *pipe_config =
4792 to_intel_crtc_state(crtc->base.state);
4793 struct drm_device *dev = crtc->base.dev;
4794
4795 intel_frontbuffer_flip(dev, atomic->fb_bits);
4796
4797 crtc->wm.cxsr_allowed = true;
4798
4799 if (pipe_config->wm_changed && pipe_config->base.active)
4800 intel_update_watermarks(&crtc->base);
4801
4802 if (atomic->update_fbc)
4803 intel_fbc_post_update(crtc);
4804
4805 if (atomic->post_enable_primary)
4806 intel_post_enable_primary(&crtc->base);
4807
4808 memset(atomic, 0, sizeof(*atomic));
4809 }
4810
4811 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4812 {
4813 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4814 struct drm_device *dev = crtc->base.dev;
4815 struct drm_i915_private *dev_priv = dev->dev_private;
4816 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4817 struct intel_crtc_state *pipe_config =
4818 to_intel_crtc_state(crtc->base.state);
4819 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4820 struct drm_plane *primary = crtc->base.primary;
4821 struct drm_plane_state *old_pri_state =
4822 drm_atomic_get_existing_plane_state(old_state, primary);
4823 bool modeset = needs_modeset(&pipe_config->base);
4824
4825 if (atomic->update_fbc)
4826 intel_fbc_pre_update(crtc);
4827
4828 if (old_pri_state) {
4829 struct intel_plane_state *primary_state =
4830 to_intel_plane_state(primary->state);
4831 struct intel_plane_state *old_primary_state =
4832 to_intel_plane_state(old_pri_state);
4833
4834 if (old_primary_state->visible &&
4835 (modeset || !primary_state->visible))
4836 intel_pre_disable_primary(&crtc->base);
4837 }
4838
4839 if (pipe_config->disable_cxsr) {
4840 crtc->wm.cxsr_allowed = false;
4841
4842 if (old_crtc_state->base.active)
4843 intel_set_memory_cxsr(dev_priv, false);
4844 }
4845
4846 if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4847 intel_update_watermarks(&crtc->base);
4848 }
4849
4850 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4851 {
4852 struct drm_device *dev = crtc->dev;
4853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854 struct drm_plane *p;
4855 int pipe = intel_crtc->pipe;
4856
4857 intel_crtc_dpms_overlay_disable(intel_crtc);
4858
4859 drm_for_each_plane_mask(p, dev, plane_mask)
4860 to_intel_plane(p)->disable_plane(p, crtc);
4861
4862 /*
4863 * FIXME: Once we grow proper nuclear flip support out of this we need
4864 * to compute the mask of flip planes precisely. For the time being
4865 * consider this a flip to a NULL plane.
4866 */
4867 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4868 }
4869
4870 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4871 {
4872 struct drm_device *dev = crtc->dev;
4873 struct drm_i915_private *dev_priv = dev->dev_private;
4874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875 struct intel_encoder *encoder;
4876 int pipe = intel_crtc->pipe;
4877
4878 if (WARN_ON(intel_crtc->active))
4879 return;
4880
4881 if (intel_crtc->config->has_pch_encoder)
4882 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4883
4884 if (intel_crtc->config->has_pch_encoder)
4885 intel_prepare_shared_dpll(intel_crtc);
4886
4887 if (intel_crtc->config->has_dp_encoder)
4888 intel_dp_set_m_n(intel_crtc, M1_N1);
4889
4890 intel_set_pipe_timings(intel_crtc);
4891
4892 if (intel_crtc->config->has_pch_encoder) {
4893 intel_cpu_transcoder_set_m_n(intel_crtc,
4894 &intel_crtc->config->fdi_m_n, NULL);
4895 }
4896
4897 ironlake_set_pipeconf(crtc);
4898
4899 intel_crtc->active = true;
4900
4901 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4902
4903 for_each_encoder_on_crtc(dev, crtc, encoder)
4904 if (encoder->pre_enable)
4905 encoder->pre_enable(encoder);
4906
4907 if (intel_crtc->config->has_pch_encoder) {
4908 /* Note: FDI PLL enabling _must_ be done before we enable the
4909 * cpu pipes, hence this is separate from all the other fdi/pch
4910 * enabling. */
4911 ironlake_fdi_pll_enable(intel_crtc);
4912 } else {
4913 assert_fdi_tx_disabled(dev_priv, pipe);
4914 assert_fdi_rx_disabled(dev_priv, pipe);
4915 }
4916
4917 ironlake_pfit_enable(intel_crtc);
4918
4919 /*
4920 * On ILK+ LUT must be loaded before the pipe is running but with
4921 * clocks enabled
4922 */
4923 intel_crtc_load_lut(crtc);
4924
4925 intel_update_watermarks(crtc);
4926 intel_enable_pipe(intel_crtc);
4927
4928 if (intel_crtc->config->has_pch_encoder)
4929 ironlake_pch_enable(crtc);
4930
4931 assert_vblank_disabled(crtc);
4932 drm_crtc_vblank_on(crtc);
4933
4934 for_each_encoder_on_crtc(dev, crtc, encoder)
4935 encoder->enable(encoder);
4936
4937 if (HAS_PCH_CPT(dev))
4938 cpt_verify_modeset(dev, intel_crtc->pipe);
4939
4940 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4941 if (intel_crtc->config->has_pch_encoder)
4942 intel_wait_for_vblank(dev, pipe);
4943 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4944 }
4945
4946 /* IPS only exists on ULT machines and is tied to pipe A. */
4947 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4948 {
4949 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4950 }
4951
4952 static void haswell_crtc_enable(struct drm_crtc *crtc)
4953 {
4954 struct drm_device *dev = crtc->dev;
4955 struct drm_i915_private *dev_priv = dev->dev_private;
4956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4957 struct intel_encoder *encoder;
4958 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4959 struct intel_crtc_state *pipe_config =
4960 to_intel_crtc_state(crtc->state);
4961
4962 if (WARN_ON(intel_crtc->active))
4963 return;
4964
4965 if (intel_crtc->config->has_pch_encoder)
4966 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4967 false);
4968
4969 if (intel_crtc_to_shared_dpll(intel_crtc))
4970 intel_enable_shared_dpll(intel_crtc);
4971
4972 if (intel_crtc->config->has_dp_encoder)
4973 intel_dp_set_m_n(intel_crtc, M1_N1);
4974
4975 intel_set_pipe_timings(intel_crtc);
4976
4977 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4978 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4979 intel_crtc->config->pixel_multiplier - 1);
4980 }
4981
4982 if (intel_crtc->config->has_pch_encoder) {
4983 intel_cpu_transcoder_set_m_n(intel_crtc,
4984 &intel_crtc->config->fdi_m_n, NULL);
4985 }
4986
4987 haswell_set_pipeconf(crtc);
4988
4989 intel_set_pipe_csc(crtc);
4990
4991 intel_crtc->active = true;
4992
4993 if (intel_crtc->config->has_pch_encoder)
4994 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4995 else
4996 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4997
4998 for_each_encoder_on_crtc(dev, crtc, encoder) {
4999 if (encoder->pre_enable)
5000 encoder->pre_enable(encoder);
5001 }
5002
5003 if (intel_crtc->config->has_pch_encoder)
5004 dev_priv->display.fdi_link_train(crtc);
5005
5006 if (!intel_crtc->config->has_dsi_encoder)
5007 intel_ddi_enable_pipe_clock(intel_crtc);
5008
5009 if (INTEL_INFO(dev)->gen >= 9)
5010 skylake_pfit_enable(intel_crtc);
5011 else
5012 ironlake_pfit_enable(intel_crtc);
5013
5014 /*
5015 * On ILK+ LUT must be loaded before the pipe is running but with
5016 * clocks enabled
5017 */
5018 intel_crtc_load_lut(crtc);
5019
5020 intel_ddi_set_pipe_settings(crtc);
5021 if (!intel_crtc->config->has_dsi_encoder)
5022 intel_ddi_enable_transcoder_func(crtc);
5023
5024 intel_update_watermarks(crtc);
5025 intel_enable_pipe(intel_crtc);
5026
5027 if (intel_crtc->config->has_pch_encoder)
5028 lpt_pch_enable(crtc);
5029
5030 if (intel_crtc->config->dp_encoder_is_mst)
5031 intel_ddi_set_vc_payload_alloc(crtc, true);
5032
5033 assert_vblank_disabled(crtc);
5034 drm_crtc_vblank_on(crtc);
5035
5036 for_each_encoder_on_crtc(dev, crtc, encoder) {
5037 encoder->enable(encoder);
5038 intel_opregion_notify_encoder(encoder, true);
5039 }
5040
5041 if (intel_crtc->config->has_pch_encoder) {
5042 intel_wait_for_vblank(dev, pipe);
5043 intel_wait_for_vblank(dev, pipe);
5044 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5045 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5046 true);
5047 }
5048
5049 /* If we change the relative order between pipe/planes enabling, we need
5050 * to change the workaround. */
5051 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5052 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5053 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5054 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5055 }
5056 }
5057
5058 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5059 {
5060 struct drm_device *dev = crtc->base.dev;
5061 struct drm_i915_private *dev_priv = dev->dev_private;
5062 int pipe = crtc->pipe;
5063
5064 /* To avoid upsetting the power well on haswell only disable the pfit if
5065 * it's in use. The hw state code will make sure we get this right. */
5066 if (force || crtc->config->pch_pfit.enabled) {
5067 I915_WRITE(PF_CTL(pipe), 0);
5068 I915_WRITE(PF_WIN_POS(pipe), 0);
5069 I915_WRITE(PF_WIN_SZ(pipe), 0);
5070 }
5071 }
5072
5073 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5074 {
5075 struct drm_device *dev = crtc->dev;
5076 struct drm_i915_private *dev_priv = dev->dev_private;
5077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078 struct intel_encoder *encoder;
5079 int pipe = intel_crtc->pipe;
5080
5081 if (intel_crtc->config->has_pch_encoder)
5082 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5083
5084 for_each_encoder_on_crtc(dev, crtc, encoder)
5085 encoder->disable(encoder);
5086
5087 drm_crtc_vblank_off(crtc);
5088 assert_vblank_disabled(crtc);
5089
5090 /*
5091 * Sometimes spurious CPU pipe underruns happen when the
5092 * pipe is already disabled, but FDI RX/TX is still enabled.
5093 * Happens at least with VGA+HDMI cloning. Suppress them.
5094 */
5095 if (intel_crtc->config->has_pch_encoder)
5096 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5097
5098 intel_disable_pipe(intel_crtc);
5099
5100 ironlake_pfit_disable(intel_crtc, false);
5101
5102 if (intel_crtc->config->has_pch_encoder) {
5103 ironlake_fdi_disable(crtc);
5104 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5105 }
5106
5107 for_each_encoder_on_crtc(dev, crtc, encoder)
5108 if (encoder->post_disable)
5109 encoder->post_disable(encoder);
5110
5111 if (intel_crtc->config->has_pch_encoder) {
5112 ironlake_disable_pch_transcoder(dev_priv, pipe);
5113
5114 if (HAS_PCH_CPT(dev)) {
5115 i915_reg_t reg;
5116 u32 temp;
5117
5118 /* disable TRANS_DP_CTL */
5119 reg = TRANS_DP_CTL(pipe);
5120 temp = I915_READ(reg);
5121 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5122 TRANS_DP_PORT_SEL_MASK);
5123 temp |= TRANS_DP_PORT_SEL_NONE;
5124 I915_WRITE(reg, temp);
5125
5126 /* disable DPLL_SEL */
5127 temp = I915_READ(PCH_DPLL_SEL);
5128 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5129 I915_WRITE(PCH_DPLL_SEL, temp);
5130 }
5131
5132 ironlake_fdi_pll_disable(intel_crtc);
5133 }
5134
5135 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5136 }
5137
5138 static void haswell_crtc_disable(struct drm_crtc *crtc)
5139 {
5140 struct drm_device *dev = crtc->dev;
5141 struct drm_i915_private *dev_priv = dev->dev_private;
5142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5143 struct intel_encoder *encoder;
5144 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5145
5146 if (intel_crtc->config->has_pch_encoder)
5147 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5148 false);
5149
5150 for_each_encoder_on_crtc(dev, crtc, encoder) {
5151 intel_opregion_notify_encoder(encoder, false);
5152 encoder->disable(encoder);
5153 }
5154
5155 drm_crtc_vblank_off(crtc);
5156 assert_vblank_disabled(crtc);
5157
5158 intel_disable_pipe(intel_crtc);
5159
5160 if (intel_crtc->config->dp_encoder_is_mst)
5161 intel_ddi_set_vc_payload_alloc(crtc, false);
5162
5163 if (!intel_crtc->config->has_dsi_encoder)
5164 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5165
5166 if (INTEL_INFO(dev)->gen >= 9)
5167 skylake_scaler_disable(intel_crtc);
5168 else
5169 ironlake_pfit_disable(intel_crtc, false);
5170
5171 if (!intel_crtc->config->has_dsi_encoder)
5172 intel_ddi_disable_pipe_clock(intel_crtc);
5173
5174 for_each_encoder_on_crtc(dev, crtc, encoder)
5175 if (encoder->post_disable)
5176 encoder->post_disable(encoder);
5177
5178 if (intel_crtc->config->has_pch_encoder) {
5179 lpt_disable_pch_transcoder(dev_priv);
5180 lpt_disable_iclkip(dev_priv);
5181 intel_ddi_fdi_disable(crtc);
5182
5183 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5184 true);
5185 }
5186 }
5187
5188 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5189 {
5190 struct drm_device *dev = crtc->base.dev;
5191 struct drm_i915_private *dev_priv = dev->dev_private;
5192 struct intel_crtc_state *pipe_config = crtc->config;
5193
5194 if (!pipe_config->gmch_pfit.control)
5195 return;
5196
5197 /*
5198 * The panel fitter should only be adjusted whilst the pipe is disabled,
5199 * according to register description and PRM.
5200 */
5201 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5202 assert_pipe_disabled(dev_priv, crtc->pipe);
5203
5204 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5205 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5206
5207 /* Border color in case we don't scale up to the full screen. Black by
5208 * default, change to something else for debugging. */
5209 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5210 }
5211
5212 static enum intel_display_power_domain port_to_power_domain(enum port port)
5213 {
5214 switch (port) {
5215 case PORT_A:
5216 return POWER_DOMAIN_PORT_DDI_A_LANES;
5217 case PORT_B:
5218 return POWER_DOMAIN_PORT_DDI_B_LANES;
5219 case PORT_C:
5220 return POWER_DOMAIN_PORT_DDI_C_LANES;
5221 case PORT_D:
5222 return POWER_DOMAIN_PORT_DDI_D_LANES;
5223 case PORT_E:
5224 return POWER_DOMAIN_PORT_DDI_E_LANES;
5225 default:
5226 MISSING_CASE(port);
5227 return POWER_DOMAIN_PORT_OTHER;
5228 }
5229 }
5230
5231 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5232 {
5233 switch (port) {
5234 case PORT_A:
5235 return POWER_DOMAIN_AUX_A;
5236 case PORT_B:
5237 return POWER_DOMAIN_AUX_B;
5238 case PORT_C:
5239 return POWER_DOMAIN_AUX_C;
5240 case PORT_D:
5241 return POWER_DOMAIN_AUX_D;
5242 case PORT_E:
5243 /* FIXME: Check VBT for actual wiring of PORT E */
5244 return POWER_DOMAIN_AUX_D;
5245 default:
5246 MISSING_CASE(port);
5247 return POWER_DOMAIN_AUX_A;
5248 }
5249 }
5250
5251 enum intel_display_power_domain
5252 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5253 {
5254 struct drm_device *dev = intel_encoder->base.dev;
5255 struct intel_digital_port *intel_dig_port;
5256
5257 switch (intel_encoder->type) {
5258 case INTEL_OUTPUT_UNKNOWN:
5259 /* Only DDI platforms should ever use this output type */
5260 WARN_ON_ONCE(!HAS_DDI(dev));
5261 case INTEL_OUTPUT_DISPLAYPORT:
5262 case INTEL_OUTPUT_HDMI:
5263 case INTEL_OUTPUT_EDP:
5264 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5265 return port_to_power_domain(intel_dig_port->port);
5266 case INTEL_OUTPUT_DP_MST:
5267 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5268 return port_to_power_domain(intel_dig_port->port);
5269 case INTEL_OUTPUT_ANALOG:
5270 return POWER_DOMAIN_PORT_CRT;
5271 case INTEL_OUTPUT_DSI:
5272 return POWER_DOMAIN_PORT_DSI;
5273 default:
5274 return POWER_DOMAIN_PORT_OTHER;
5275 }
5276 }
5277
5278 enum intel_display_power_domain
5279 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5280 {
5281 struct drm_device *dev = intel_encoder->base.dev;
5282 struct intel_digital_port *intel_dig_port;
5283
5284 switch (intel_encoder->type) {
5285 case INTEL_OUTPUT_UNKNOWN:
5286 case INTEL_OUTPUT_HDMI:
5287 /*
5288 * Only DDI platforms should ever use these output types.
5289 * We can get here after the HDMI detect code has already set
5290 * the type of the shared encoder. Since we can't be sure
5291 * what's the status of the given connectors, play safe and
5292 * run the DP detection too.
5293 */
5294 WARN_ON_ONCE(!HAS_DDI(dev));
5295 case INTEL_OUTPUT_DISPLAYPORT:
5296 case INTEL_OUTPUT_EDP:
5297 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5298 return port_to_aux_power_domain(intel_dig_port->port);
5299 case INTEL_OUTPUT_DP_MST:
5300 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5301 return port_to_aux_power_domain(intel_dig_port->port);
5302 default:
5303 MISSING_CASE(intel_encoder->type);
5304 return POWER_DOMAIN_AUX_A;
5305 }
5306 }
5307
5308 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5309 struct intel_crtc_state *crtc_state)
5310 {
5311 struct drm_device *dev = crtc->dev;
5312 struct drm_encoder *encoder;
5313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5314 enum pipe pipe = intel_crtc->pipe;
5315 unsigned long mask;
5316 enum transcoder transcoder = crtc_state->cpu_transcoder;
5317
5318 if (!crtc_state->base.active)
5319 return 0;
5320
5321 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5322 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5323 if (crtc_state->pch_pfit.enabled ||
5324 crtc_state->pch_pfit.force_thru)
5325 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5326
5327 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5328 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5329
5330 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5331 }
5332
5333 return mask;
5334 }
5335
5336 static unsigned long
5337 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5338 struct intel_crtc_state *crtc_state)
5339 {
5340 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5342 enum intel_display_power_domain domain;
5343 unsigned long domains, new_domains, old_domains;
5344
5345 old_domains = intel_crtc->enabled_power_domains;
5346 intel_crtc->enabled_power_domains = new_domains =
5347 get_crtc_power_domains(crtc, crtc_state);
5348
5349 domains = new_domains & ~old_domains;
5350
5351 for_each_power_domain(domain, domains)
5352 intel_display_power_get(dev_priv, domain);
5353
5354 return old_domains & ~new_domains;
5355 }
5356
5357 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5358 unsigned long domains)
5359 {
5360 enum intel_display_power_domain domain;
5361
5362 for_each_power_domain(domain, domains)
5363 intel_display_power_put(dev_priv, domain);
5364 }
5365
5366 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5367 {
5368 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5369
5370 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5371 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5372 return max_cdclk_freq;
5373 else if (IS_CHERRYVIEW(dev_priv))
5374 return max_cdclk_freq*95/100;
5375 else if (INTEL_INFO(dev_priv)->gen < 4)
5376 return 2*max_cdclk_freq*90/100;
5377 else
5378 return max_cdclk_freq*90/100;
5379 }
5380
5381 static void intel_update_max_cdclk(struct drm_device *dev)
5382 {
5383 struct drm_i915_private *dev_priv = dev->dev_private;
5384
5385 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5386 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5387
5388 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5389 dev_priv->max_cdclk_freq = 675000;
5390 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5391 dev_priv->max_cdclk_freq = 540000;
5392 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5393 dev_priv->max_cdclk_freq = 450000;
5394 else
5395 dev_priv->max_cdclk_freq = 337500;
5396 } else if (IS_BROADWELL(dev)) {
5397 /*
5398 * FIXME with extra cooling we can allow
5399 * 540 MHz for ULX and 675 Mhz for ULT.
5400 * How can we know if extra cooling is
5401 * available? PCI ID, VTB, something else?
5402 */
5403 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5404 dev_priv->max_cdclk_freq = 450000;
5405 else if (IS_BDW_ULX(dev))
5406 dev_priv->max_cdclk_freq = 450000;
5407 else if (IS_BDW_ULT(dev))
5408 dev_priv->max_cdclk_freq = 540000;
5409 else
5410 dev_priv->max_cdclk_freq = 675000;
5411 } else if (IS_CHERRYVIEW(dev)) {
5412 dev_priv->max_cdclk_freq = 320000;
5413 } else if (IS_VALLEYVIEW(dev)) {
5414 dev_priv->max_cdclk_freq = 400000;
5415 } else {
5416 /* otherwise assume cdclk is fixed */
5417 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5418 }
5419
5420 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5421
5422 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5423 dev_priv->max_cdclk_freq);
5424
5425 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5426 dev_priv->max_dotclk_freq);
5427 }
5428
5429 static void intel_update_cdclk(struct drm_device *dev)
5430 {
5431 struct drm_i915_private *dev_priv = dev->dev_private;
5432
5433 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5434 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5435 dev_priv->cdclk_freq);
5436
5437 /*
5438 * Program the gmbus_freq based on the cdclk frequency.
5439 * BSpec erroneously claims we should aim for 4MHz, but
5440 * in fact 1MHz is the correct frequency.
5441 */
5442 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5443 /*
5444 * Program the gmbus_freq based on the cdclk frequency.
5445 * BSpec erroneously claims we should aim for 4MHz, but
5446 * in fact 1MHz is the correct frequency.
5447 */
5448 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5449 }
5450
5451 if (dev_priv->max_cdclk_freq == 0)
5452 intel_update_max_cdclk(dev);
5453 }
5454
5455 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5456 {
5457 struct drm_i915_private *dev_priv = dev->dev_private;
5458 uint32_t divider;
5459 uint32_t ratio;
5460 uint32_t current_freq;
5461 int ret;
5462
5463 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5464 switch (frequency) {
5465 case 144000:
5466 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5467 ratio = BXT_DE_PLL_RATIO(60);
5468 break;
5469 case 288000:
5470 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5471 ratio = BXT_DE_PLL_RATIO(60);
5472 break;
5473 case 384000:
5474 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5475 ratio = BXT_DE_PLL_RATIO(60);
5476 break;
5477 case 576000:
5478 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5479 ratio = BXT_DE_PLL_RATIO(60);
5480 break;
5481 case 624000:
5482 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5483 ratio = BXT_DE_PLL_RATIO(65);
5484 break;
5485 case 19200:
5486 /*
5487 * Bypass frequency with DE PLL disabled. Init ratio, divider
5488 * to suppress GCC warning.
5489 */
5490 ratio = 0;
5491 divider = 0;
5492 break;
5493 default:
5494 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5495
5496 return;
5497 }
5498
5499 mutex_lock(&dev_priv->rps.hw_lock);
5500 /* Inform power controller of upcoming frequency change */
5501 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5502 0x80000000);
5503 mutex_unlock(&dev_priv->rps.hw_lock);
5504
5505 if (ret) {
5506 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5507 ret, frequency);
5508 return;
5509 }
5510
5511 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5512 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5513 current_freq = current_freq * 500 + 1000;
5514
5515 /*
5516 * DE PLL has to be disabled when
5517 * - setting to 19.2MHz (bypass, PLL isn't used)
5518 * - before setting to 624MHz (PLL needs toggling)
5519 * - before setting to any frequency from 624MHz (PLL needs toggling)
5520 */
5521 if (frequency == 19200 || frequency == 624000 ||
5522 current_freq == 624000) {
5523 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5524 /* Timeout 200us */
5525 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5526 1))
5527 DRM_ERROR("timout waiting for DE PLL unlock\n");
5528 }
5529
5530 if (frequency != 19200) {
5531 uint32_t val;
5532
5533 val = I915_READ(BXT_DE_PLL_CTL);
5534 val &= ~BXT_DE_PLL_RATIO_MASK;
5535 val |= ratio;
5536 I915_WRITE(BXT_DE_PLL_CTL, val);
5537
5538 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5539 /* Timeout 200us */
5540 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5541 DRM_ERROR("timeout waiting for DE PLL lock\n");
5542
5543 val = I915_READ(CDCLK_CTL);
5544 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5545 val |= divider;
5546 /*
5547 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5548 * enable otherwise.
5549 */
5550 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5551 if (frequency >= 500000)
5552 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5553
5554 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5555 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5556 val |= (frequency - 1000) / 500;
5557 I915_WRITE(CDCLK_CTL, val);
5558 }
5559
5560 mutex_lock(&dev_priv->rps.hw_lock);
5561 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5562 DIV_ROUND_UP(frequency, 25000));
5563 mutex_unlock(&dev_priv->rps.hw_lock);
5564
5565 if (ret) {
5566 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5567 ret, frequency);
5568 return;
5569 }
5570
5571 intel_update_cdclk(dev);
5572 }
5573
5574 void broxton_init_cdclk(struct drm_device *dev)
5575 {
5576 struct drm_i915_private *dev_priv = dev->dev_private;
5577 uint32_t val;
5578
5579 /*
5580 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5581 * or else the reset will hang because there is no PCH to respond.
5582 * Move the handshake programming to initialization sequence.
5583 * Previously was left up to BIOS.
5584 */
5585 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5586 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5587 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5588
5589 /* Enable PG1 for cdclk */
5590 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5591
5592 /* check if cd clock is enabled */
5593 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5594 DRM_DEBUG_KMS("Display already initialized\n");
5595 return;
5596 }
5597
5598 /*
5599 * FIXME:
5600 * - The initial CDCLK needs to be read from VBT.
5601 * Need to make this change after VBT has changes for BXT.
5602 * - check if setting the max (or any) cdclk freq is really necessary
5603 * here, it belongs to modeset time
5604 */
5605 broxton_set_cdclk(dev, 624000);
5606
5607 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5608 POSTING_READ(DBUF_CTL);
5609
5610 udelay(10);
5611
5612 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5613 DRM_ERROR("DBuf power enable timeout!\n");
5614 }
5615
5616 void broxton_uninit_cdclk(struct drm_device *dev)
5617 {
5618 struct drm_i915_private *dev_priv = dev->dev_private;
5619
5620 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5621 POSTING_READ(DBUF_CTL);
5622
5623 udelay(10);
5624
5625 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5626 DRM_ERROR("DBuf power disable timeout!\n");
5627
5628 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5629 broxton_set_cdclk(dev, 19200);
5630
5631 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5632 }
5633
5634 static const struct skl_cdclk_entry {
5635 unsigned int freq;
5636 unsigned int vco;
5637 } skl_cdclk_frequencies[] = {
5638 { .freq = 308570, .vco = 8640 },
5639 { .freq = 337500, .vco = 8100 },
5640 { .freq = 432000, .vco = 8640 },
5641 { .freq = 450000, .vco = 8100 },
5642 { .freq = 540000, .vco = 8100 },
5643 { .freq = 617140, .vco = 8640 },
5644 { .freq = 675000, .vco = 8100 },
5645 };
5646
5647 static unsigned int skl_cdclk_decimal(unsigned int freq)
5648 {
5649 return (freq - 1000) / 500;
5650 }
5651
5652 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5653 {
5654 unsigned int i;
5655
5656 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5657 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5658
5659 if (e->freq == freq)
5660 return e->vco;
5661 }
5662
5663 return 8100;
5664 }
5665
5666 static void
5667 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5668 {
5669 unsigned int min_freq;
5670 u32 val;
5671
5672 /* select the minimum CDCLK before enabling DPLL 0 */
5673 val = I915_READ(CDCLK_CTL);
5674 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5675 val |= CDCLK_FREQ_337_308;
5676
5677 if (required_vco == 8640)
5678 min_freq = 308570;
5679 else
5680 min_freq = 337500;
5681
5682 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5683
5684 I915_WRITE(CDCLK_CTL, val);
5685 POSTING_READ(CDCLK_CTL);
5686
5687 /*
5688 * We always enable DPLL0 with the lowest link rate possible, but still
5689 * taking into account the VCO required to operate the eDP panel at the
5690 * desired frequency. The usual DP link rates operate with a VCO of
5691 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5692 * The modeset code is responsible for the selection of the exact link
5693 * rate later on, with the constraint of choosing a frequency that
5694 * works with required_vco.
5695 */
5696 val = I915_READ(DPLL_CTRL1);
5697
5698 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5699 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5700 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5701 if (required_vco == 8640)
5702 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5703 SKL_DPLL0);
5704 else
5705 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5706 SKL_DPLL0);
5707
5708 I915_WRITE(DPLL_CTRL1, val);
5709 POSTING_READ(DPLL_CTRL1);
5710
5711 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5712
5713 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5714 DRM_ERROR("DPLL0 not locked\n");
5715 }
5716
5717 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5718 {
5719 int ret;
5720 u32 val;
5721
5722 /* inform PCU we want to change CDCLK */
5723 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5724 mutex_lock(&dev_priv->rps.hw_lock);
5725 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5726 mutex_unlock(&dev_priv->rps.hw_lock);
5727
5728 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5729 }
5730
5731 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5732 {
5733 unsigned int i;
5734
5735 for (i = 0; i < 15; i++) {
5736 if (skl_cdclk_pcu_ready(dev_priv))
5737 return true;
5738 udelay(10);
5739 }
5740
5741 return false;
5742 }
5743
5744 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5745 {
5746 struct drm_device *dev = dev_priv->dev;
5747 u32 freq_select, pcu_ack;
5748
5749 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5750
5751 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5752 DRM_ERROR("failed to inform PCU about cdclk change\n");
5753 return;
5754 }
5755
5756 /* set CDCLK_CTL */
5757 switch(freq) {
5758 case 450000:
5759 case 432000:
5760 freq_select = CDCLK_FREQ_450_432;
5761 pcu_ack = 1;
5762 break;
5763 case 540000:
5764 freq_select = CDCLK_FREQ_540;
5765 pcu_ack = 2;
5766 break;
5767 case 308570:
5768 case 337500:
5769 default:
5770 freq_select = CDCLK_FREQ_337_308;
5771 pcu_ack = 0;
5772 break;
5773 case 617140:
5774 case 675000:
5775 freq_select = CDCLK_FREQ_675_617;
5776 pcu_ack = 3;
5777 break;
5778 }
5779
5780 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5781 POSTING_READ(CDCLK_CTL);
5782
5783 /* inform PCU of the change */
5784 mutex_lock(&dev_priv->rps.hw_lock);
5785 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5786 mutex_unlock(&dev_priv->rps.hw_lock);
5787
5788 intel_update_cdclk(dev);
5789 }
5790
5791 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5792 {
5793 /* disable DBUF power */
5794 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5795 POSTING_READ(DBUF_CTL);
5796
5797 udelay(10);
5798
5799 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5800 DRM_ERROR("DBuf power disable timeout\n");
5801
5802 /* disable DPLL0 */
5803 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5804 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5805 DRM_ERROR("Couldn't disable DPLL0\n");
5806 }
5807
5808 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5809 {
5810 unsigned int required_vco;
5811
5812 /* DPLL0 not enabled (happens on early BIOS versions) */
5813 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5814 /* enable DPLL0 */
5815 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5816 skl_dpll0_enable(dev_priv, required_vco);
5817 }
5818
5819 /* set CDCLK to the frequency the BIOS chose */
5820 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5821
5822 /* enable DBUF power */
5823 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5824 POSTING_READ(DBUF_CTL);
5825
5826 udelay(10);
5827
5828 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5829 DRM_ERROR("DBuf power enable timeout\n");
5830 }
5831
5832 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5833 {
5834 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5835 uint32_t cdctl = I915_READ(CDCLK_CTL);
5836 int freq = dev_priv->skl_boot_cdclk;
5837
5838 /*
5839 * check if the pre-os intialized the display
5840 * There is SWF18 scratchpad register defined which is set by the
5841 * pre-os which can be used by the OS drivers to check the status
5842 */
5843 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5844 goto sanitize;
5845
5846 /* Is PLL enabled and locked ? */
5847 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5848 goto sanitize;
5849
5850 /* DPLL okay; verify the cdclock
5851 *
5852 * Noticed in some instances that the freq selection is correct but
5853 * decimal part is programmed wrong from BIOS where pre-os does not
5854 * enable display. Verify the same as well.
5855 */
5856 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5857 /* All well; nothing to sanitize */
5858 return false;
5859 sanitize:
5860 /*
5861 * As of now initialize with max cdclk till
5862 * we get dynamic cdclk support
5863 * */
5864 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5865 skl_init_cdclk(dev_priv);
5866
5867 /* we did have to sanitize */
5868 return true;
5869 }
5870
5871 /* Adjust CDclk dividers to allow high res or save power if possible */
5872 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5873 {
5874 struct drm_i915_private *dev_priv = dev->dev_private;
5875 u32 val, cmd;
5876
5877 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5878 != dev_priv->cdclk_freq);
5879
5880 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5881 cmd = 2;
5882 else if (cdclk == 266667)
5883 cmd = 1;
5884 else
5885 cmd = 0;
5886
5887 mutex_lock(&dev_priv->rps.hw_lock);
5888 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5889 val &= ~DSPFREQGUAR_MASK;
5890 val |= (cmd << DSPFREQGUAR_SHIFT);
5891 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5892 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5893 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5894 50)) {
5895 DRM_ERROR("timed out waiting for CDclk change\n");
5896 }
5897 mutex_unlock(&dev_priv->rps.hw_lock);
5898
5899 mutex_lock(&dev_priv->sb_lock);
5900
5901 if (cdclk == 400000) {
5902 u32 divider;
5903
5904 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5905
5906 /* adjust cdclk divider */
5907 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5908 val &= ~CCK_FREQUENCY_VALUES;
5909 val |= divider;
5910 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5911
5912 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5913 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5914 50))
5915 DRM_ERROR("timed out waiting for CDclk change\n");
5916 }
5917
5918 /* adjust self-refresh exit latency value */
5919 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5920 val &= ~0x7f;
5921
5922 /*
5923 * For high bandwidth configs, we set a higher latency in the bunit
5924 * so that the core display fetch happens in time to avoid underruns.
5925 */
5926 if (cdclk == 400000)
5927 val |= 4500 / 250; /* 4.5 usec */
5928 else
5929 val |= 3000 / 250; /* 3.0 usec */
5930 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5931
5932 mutex_unlock(&dev_priv->sb_lock);
5933
5934 intel_update_cdclk(dev);
5935 }
5936
5937 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5938 {
5939 struct drm_i915_private *dev_priv = dev->dev_private;
5940 u32 val, cmd;
5941
5942 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5943 != dev_priv->cdclk_freq);
5944
5945 switch (cdclk) {
5946 case 333333:
5947 case 320000:
5948 case 266667:
5949 case 200000:
5950 break;
5951 default:
5952 MISSING_CASE(cdclk);
5953 return;
5954 }
5955
5956 /*
5957 * Specs are full of misinformation, but testing on actual
5958 * hardware has shown that we just need to write the desired
5959 * CCK divider into the Punit register.
5960 */
5961 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5962
5963 mutex_lock(&dev_priv->rps.hw_lock);
5964 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5965 val &= ~DSPFREQGUAR_MASK_CHV;
5966 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5967 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5968 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5969 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5970 50)) {
5971 DRM_ERROR("timed out waiting for CDclk change\n");
5972 }
5973 mutex_unlock(&dev_priv->rps.hw_lock);
5974
5975 intel_update_cdclk(dev);
5976 }
5977
5978 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5979 int max_pixclk)
5980 {
5981 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5982 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5983
5984 /*
5985 * Really only a few cases to deal with, as only 4 CDclks are supported:
5986 * 200MHz
5987 * 267MHz
5988 * 320/333MHz (depends on HPLL freq)
5989 * 400MHz (VLV only)
5990 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5991 * of the lower bin and adjust if needed.
5992 *
5993 * We seem to get an unstable or solid color picture at 200MHz.
5994 * Not sure what's wrong. For now use 200MHz only when all pipes
5995 * are off.
5996 */
5997 if (!IS_CHERRYVIEW(dev_priv) &&
5998 max_pixclk > freq_320*limit/100)
5999 return 400000;
6000 else if (max_pixclk > 266667*limit/100)
6001 return freq_320;
6002 else if (max_pixclk > 0)
6003 return 266667;
6004 else
6005 return 200000;
6006 }
6007
6008 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6009 int max_pixclk)
6010 {
6011 /*
6012 * FIXME:
6013 * - remove the guardband, it's not needed on BXT
6014 * - set 19.2MHz bypass frequency if there are no active pipes
6015 */
6016 if (max_pixclk > 576000*9/10)
6017 return 624000;
6018 else if (max_pixclk > 384000*9/10)
6019 return 576000;
6020 else if (max_pixclk > 288000*9/10)
6021 return 384000;
6022 else if (max_pixclk > 144000*9/10)
6023 return 288000;
6024 else
6025 return 144000;
6026 }
6027
6028 /* Compute the max pixel clock for new configuration. */
6029 static int intel_mode_max_pixclk(struct drm_device *dev,
6030 struct drm_atomic_state *state)
6031 {
6032 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6033 struct drm_i915_private *dev_priv = dev->dev_private;
6034 struct drm_crtc *crtc;
6035 struct drm_crtc_state *crtc_state;
6036 unsigned max_pixclk = 0, i;
6037 enum pipe pipe;
6038
6039 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6040 sizeof(intel_state->min_pixclk));
6041
6042 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6043 int pixclk = 0;
6044
6045 if (crtc_state->enable)
6046 pixclk = crtc_state->adjusted_mode.crtc_clock;
6047
6048 intel_state->min_pixclk[i] = pixclk;
6049 }
6050
6051 for_each_pipe(dev_priv, pipe)
6052 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6053
6054 return max_pixclk;
6055 }
6056
6057 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6058 {
6059 struct drm_device *dev = state->dev;
6060 struct drm_i915_private *dev_priv = dev->dev_private;
6061 int max_pixclk = intel_mode_max_pixclk(dev, state);
6062 struct intel_atomic_state *intel_state =
6063 to_intel_atomic_state(state);
6064
6065 if (max_pixclk < 0)
6066 return max_pixclk;
6067
6068 intel_state->cdclk = intel_state->dev_cdclk =
6069 valleyview_calc_cdclk(dev_priv, max_pixclk);
6070
6071 if (!intel_state->active_crtcs)
6072 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6073
6074 return 0;
6075 }
6076
6077 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6078 {
6079 struct drm_device *dev = state->dev;
6080 struct drm_i915_private *dev_priv = dev->dev_private;
6081 int max_pixclk = intel_mode_max_pixclk(dev, state);
6082 struct intel_atomic_state *intel_state =
6083 to_intel_atomic_state(state);
6084
6085 if (max_pixclk < 0)
6086 return max_pixclk;
6087
6088 intel_state->cdclk = intel_state->dev_cdclk =
6089 broxton_calc_cdclk(dev_priv, max_pixclk);
6090
6091 if (!intel_state->active_crtcs)
6092 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6093
6094 return 0;
6095 }
6096
6097 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6098 {
6099 unsigned int credits, default_credits;
6100
6101 if (IS_CHERRYVIEW(dev_priv))
6102 default_credits = PFI_CREDIT(12);
6103 else
6104 default_credits = PFI_CREDIT(8);
6105
6106 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6107 /* CHV suggested value is 31 or 63 */
6108 if (IS_CHERRYVIEW(dev_priv))
6109 credits = PFI_CREDIT_63;
6110 else
6111 credits = PFI_CREDIT(15);
6112 } else {
6113 credits = default_credits;
6114 }
6115
6116 /*
6117 * WA - write default credits before re-programming
6118 * FIXME: should we also set the resend bit here?
6119 */
6120 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6121 default_credits);
6122
6123 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6124 credits | PFI_CREDIT_RESEND);
6125
6126 /*
6127 * FIXME is this guaranteed to clear
6128 * immediately or should we poll for it?
6129 */
6130 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6131 }
6132
6133 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6134 {
6135 struct drm_device *dev = old_state->dev;
6136 struct drm_i915_private *dev_priv = dev->dev_private;
6137 struct intel_atomic_state *old_intel_state =
6138 to_intel_atomic_state(old_state);
6139 unsigned req_cdclk = old_intel_state->dev_cdclk;
6140
6141 /*
6142 * FIXME: We can end up here with all power domains off, yet
6143 * with a CDCLK frequency other than the minimum. To account
6144 * for this take the PIPE-A power domain, which covers the HW
6145 * blocks needed for the following programming. This can be
6146 * removed once it's guaranteed that we get here either with
6147 * the minimum CDCLK set, or the required power domains
6148 * enabled.
6149 */
6150 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6151
6152 if (IS_CHERRYVIEW(dev))
6153 cherryview_set_cdclk(dev, req_cdclk);
6154 else
6155 valleyview_set_cdclk(dev, req_cdclk);
6156
6157 vlv_program_pfi_credits(dev_priv);
6158
6159 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6160 }
6161
6162 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6163 {
6164 struct drm_device *dev = crtc->dev;
6165 struct drm_i915_private *dev_priv = to_i915(dev);
6166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6167 struct intel_encoder *encoder;
6168 int pipe = intel_crtc->pipe;
6169
6170 if (WARN_ON(intel_crtc->active))
6171 return;
6172
6173 if (intel_crtc->config->has_dp_encoder)
6174 intel_dp_set_m_n(intel_crtc, M1_N1);
6175
6176 intel_set_pipe_timings(intel_crtc);
6177
6178 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6179 struct drm_i915_private *dev_priv = dev->dev_private;
6180
6181 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6182 I915_WRITE(CHV_CANVAS(pipe), 0);
6183 }
6184
6185 i9xx_set_pipeconf(intel_crtc);
6186
6187 intel_crtc->active = true;
6188
6189 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6190
6191 for_each_encoder_on_crtc(dev, crtc, encoder)
6192 if (encoder->pre_pll_enable)
6193 encoder->pre_pll_enable(encoder);
6194
6195 if (!intel_crtc->config->has_dsi_encoder) {
6196 if (IS_CHERRYVIEW(dev)) {
6197 chv_prepare_pll(intel_crtc, intel_crtc->config);
6198 chv_enable_pll(intel_crtc, intel_crtc->config);
6199 } else {
6200 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6201 vlv_enable_pll(intel_crtc, intel_crtc->config);
6202 }
6203 }
6204
6205 for_each_encoder_on_crtc(dev, crtc, encoder)
6206 if (encoder->pre_enable)
6207 encoder->pre_enable(encoder);
6208
6209 i9xx_pfit_enable(intel_crtc);
6210
6211 intel_crtc_load_lut(crtc);
6212
6213 intel_enable_pipe(intel_crtc);
6214
6215 assert_vblank_disabled(crtc);
6216 drm_crtc_vblank_on(crtc);
6217
6218 for_each_encoder_on_crtc(dev, crtc, encoder)
6219 encoder->enable(encoder);
6220 }
6221
6222 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6223 {
6224 struct drm_device *dev = crtc->base.dev;
6225 struct drm_i915_private *dev_priv = dev->dev_private;
6226
6227 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6228 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6229 }
6230
6231 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6232 {
6233 struct drm_device *dev = crtc->dev;
6234 struct drm_i915_private *dev_priv = to_i915(dev);
6235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6236 struct intel_encoder *encoder;
6237 int pipe = intel_crtc->pipe;
6238
6239 if (WARN_ON(intel_crtc->active))
6240 return;
6241
6242 i9xx_set_pll_dividers(intel_crtc);
6243
6244 if (intel_crtc->config->has_dp_encoder)
6245 intel_dp_set_m_n(intel_crtc, M1_N1);
6246
6247 intel_set_pipe_timings(intel_crtc);
6248
6249 i9xx_set_pipeconf(intel_crtc);
6250
6251 intel_crtc->active = true;
6252
6253 if (!IS_GEN2(dev))
6254 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6255
6256 for_each_encoder_on_crtc(dev, crtc, encoder)
6257 if (encoder->pre_enable)
6258 encoder->pre_enable(encoder);
6259
6260 i9xx_enable_pll(intel_crtc);
6261
6262 i9xx_pfit_enable(intel_crtc);
6263
6264 intel_crtc_load_lut(crtc);
6265
6266 intel_update_watermarks(crtc);
6267 intel_enable_pipe(intel_crtc);
6268
6269 assert_vblank_disabled(crtc);
6270 drm_crtc_vblank_on(crtc);
6271
6272 for_each_encoder_on_crtc(dev, crtc, encoder)
6273 encoder->enable(encoder);
6274 }
6275
6276 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6277 {
6278 struct drm_device *dev = crtc->base.dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280
6281 if (!crtc->config->gmch_pfit.control)
6282 return;
6283
6284 assert_pipe_disabled(dev_priv, crtc->pipe);
6285
6286 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6287 I915_READ(PFIT_CONTROL));
6288 I915_WRITE(PFIT_CONTROL, 0);
6289 }
6290
6291 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6292 {
6293 struct drm_device *dev = crtc->dev;
6294 struct drm_i915_private *dev_priv = dev->dev_private;
6295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6296 struct intel_encoder *encoder;
6297 int pipe = intel_crtc->pipe;
6298
6299 /*
6300 * On gen2 planes are double buffered but the pipe isn't, so we must
6301 * wait for planes to fully turn off before disabling the pipe.
6302 * We also need to wait on all gmch platforms because of the
6303 * self-refresh mode constraint explained above.
6304 */
6305 intel_wait_for_vblank(dev, pipe);
6306
6307 for_each_encoder_on_crtc(dev, crtc, encoder)
6308 encoder->disable(encoder);
6309
6310 drm_crtc_vblank_off(crtc);
6311 assert_vblank_disabled(crtc);
6312
6313 intel_disable_pipe(intel_crtc);
6314
6315 i9xx_pfit_disable(intel_crtc);
6316
6317 for_each_encoder_on_crtc(dev, crtc, encoder)
6318 if (encoder->post_disable)
6319 encoder->post_disable(encoder);
6320
6321 if (!intel_crtc->config->has_dsi_encoder) {
6322 if (IS_CHERRYVIEW(dev))
6323 chv_disable_pll(dev_priv, pipe);
6324 else if (IS_VALLEYVIEW(dev))
6325 vlv_disable_pll(dev_priv, pipe);
6326 else
6327 i9xx_disable_pll(intel_crtc);
6328 }
6329
6330 for_each_encoder_on_crtc(dev, crtc, encoder)
6331 if (encoder->post_pll_disable)
6332 encoder->post_pll_disable(encoder);
6333
6334 if (!IS_GEN2(dev))
6335 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6336 }
6337
6338 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6339 {
6340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6341 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6342 enum intel_display_power_domain domain;
6343 unsigned long domains;
6344
6345 if (!intel_crtc->active)
6346 return;
6347
6348 if (to_intel_plane_state(crtc->primary->state)->visible) {
6349 WARN_ON(intel_crtc->unpin_work);
6350
6351 intel_pre_disable_primary(crtc);
6352
6353 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6354 to_intel_plane_state(crtc->primary->state)->visible = false;
6355 }
6356
6357 dev_priv->display.crtc_disable(crtc);
6358 intel_crtc->active = false;
6359 intel_fbc_disable(intel_crtc);
6360 intel_update_watermarks(crtc);
6361 intel_disable_shared_dpll(intel_crtc);
6362
6363 domains = intel_crtc->enabled_power_domains;
6364 for_each_power_domain(domain, domains)
6365 intel_display_power_put(dev_priv, domain);
6366 intel_crtc->enabled_power_domains = 0;
6367
6368 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6369 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6370 }
6371
6372 /*
6373 * turn all crtc's off, but do not adjust state
6374 * This has to be paired with a call to intel_modeset_setup_hw_state.
6375 */
6376 int intel_display_suspend(struct drm_device *dev)
6377 {
6378 struct drm_i915_private *dev_priv = to_i915(dev);
6379 struct drm_atomic_state *state;
6380 int ret;
6381
6382 state = drm_atomic_helper_suspend(dev);
6383 ret = PTR_ERR_OR_ZERO(state);
6384 if (ret)
6385 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6386 else
6387 dev_priv->modeset_restore_state = state;
6388 return ret;
6389 }
6390
6391 void intel_encoder_destroy(struct drm_encoder *encoder)
6392 {
6393 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6394
6395 drm_encoder_cleanup(encoder);
6396 kfree(intel_encoder);
6397 }
6398
6399 /* Cross check the actual hw state with our own modeset state tracking (and it's
6400 * internal consistency). */
6401 static void intel_connector_check_state(struct intel_connector *connector)
6402 {
6403 struct drm_crtc *crtc = connector->base.state->crtc;
6404
6405 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6406 connector->base.base.id,
6407 connector->base.name);
6408
6409 if (connector->get_hw_state(connector)) {
6410 struct intel_encoder *encoder = connector->encoder;
6411 struct drm_connector_state *conn_state = connector->base.state;
6412
6413 I915_STATE_WARN(!crtc,
6414 "connector enabled without attached crtc\n");
6415
6416 if (!crtc)
6417 return;
6418
6419 I915_STATE_WARN(!crtc->state->active,
6420 "connector is active, but attached crtc isn't\n");
6421
6422 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6423 return;
6424
6425 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6426 "atomic encoder doesn't match attached encoder\n");
6427
6428 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6429 "attached encoder crtc differs from connector crtc\n");
6430 } else {
6431 I915_STATE_WARN(crtc && crtc->state->active,
6432 "attached crtc is active, but connector isn't\n");
6433 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6434 "best encoder set without crtc!\n");
6435 }
6436 }
6437
6438 int intel_connector_init(struct intel_connector *connector)
6439 {
6440 drm_atomic_helper_connector_reset(&connector->base);
6441
6442 if (!connector->base.state)
6443 return -ENOMEM;
6444
6445 return 0;
6446 }
6447
6448 struct intel_connector *intel_connector_alloc(void)
6449 {
6450 struct intel_connector *connector;
6451
6452 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6453 if (!connector)
6454 return NULL;
6455
6456 if (intel_connector_init(connector) < 0) {
6457 kfree(connector);
6458 return NULL;
6459 }
6460
6461 return connector;
6462 }
6463
6464 /* Simple connector->get_hw_state implementation for encoders that support only
6465 * one connector and no cloning and hence the encoder state determines the state
6466 * of the connector. */
6467 bool intel_connector_get_hw_state(struct intel_connector *connector)
6468 {
6469 enum pipe pipe = 0;
6470 struct intel_encoder *encoder = connector->encoder;
6471
6472 return encoder->get_hw_state(encoder, &pipe);
6473 }
6474
6475 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6476 {
6477 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6478 return crtc_state->fdi_lanes;
6479
6480 return 0;
6481 }
6482
6483 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6484 struct intel_crtc_state *pipe_config)
6485 {
6486 struct drm_atomic_state *state = pipe_config->base.state;
6487 struct intel_crtc *other_crtc;
6488 struct intel_crtc_state *other_crtc_state;
6489
6490 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6491 pipe_name(pipe), pipe_config->fdi_lanes);
6492 if (pipe_config->fdi_lanes > 4) {
6493 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6494 pipe_name(pipe), pipe_config->fdi_lanes);
6495 return -EINVAL;
6496 }
6497
6498 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6499 if (pipe_config->fdi_lanes > 2) {
6500 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6501 pipe_config->fdi_lanes);
6502 return -EINVAL;
6503 } else {
6504 return 0;
6505 }
6506 }
6507
6508 if (INTEL_INFO(dev)->num_pipes == 2)
6509 return 0;
6510
6511 /* Ivybridge 3 pipe is really complicated */
6512 switch (pipe) {
6513 case PIPE_A:
6514 return 0;
6515 case PIPE_B:
6516 if (pipe_config->fdi_lanes <= 2)
6517 return 0;
6518
6519 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6520 other_crtc_state =
6521 intel_atomic_get_crtc_state(state, other_crtc);
6522 if (IS_ERR(other_crtc_state))
6523 return PTR_ERR(other_crtc_state);
6524
6525 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6526 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6527 pipe_name(pipe), pipe_config->fdi_lanes);
6528 return -EINVAL;
6529 }
6530 return 0;
6531 case PIPE_C:
6532 if (pipe_config->fdi_lanes > 2) {
6533 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6534 pipe_name(pipe), pipe_config->fdi_lanes);
6535 return -EINVAL;
6536 }
6537
6538 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6539 other_crtc_state =
6540 intel_atomic_get_crtc_state(state, other_crtc);
6541 if (IS_ERR(other_crtc_state))
6542 return PTR_ERR(other_crtc_state);
6543
6544 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6545 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6546 return -EINVAL;
6547 }
6548 return 0;
6549 default:
6550 BUG();
6551 }
6552 }
6553
6554 #define RETRY 1
6555 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6556 struct intel_crtc_state *pipe_config)
6557 {
6558 struct drm_device *dev = intel_crtc->base.dev;
6559 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6560 int lane, link_bw, fdi_dotclock, ret;
6561 bool needs_recompute = false;
6562
6563 retry:
6564 /* FDI is a binary signal running at ~2.7GHz, encoding
6565 * each output octet as 10 bits. The actual frequency
6566 * is stored as a divider into a 100MHz clock, and the
6567 * mode pixel clock is stored in units of 1KHz.
6568 * Hence the bw of each lane in terms of the mode signal
6569 * is:
6570 */
6571 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6572
6573 fdi_dotclock = adjusted_mode->crtc_clock;
6574
6575 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6576 pipe_config->pipe_bpp);
6577
6578 pipe_config->fdi_lanes = lane;
6579
6580 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6581 link_bw, &pipe_config->fdi_m_n);
6582
6583 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6584 intel_crtc->pipe, pipe_config);
6585 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6586 pipe_config->pipe_bpp -= 2*3;
6587 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6588 pipe_config->pipe_bpp);
6589 needs_recompute = true;
6590 pipe_config->bw_constrained = true;
6591
6592 goto retry;
6593 }
6594
6595 if (needs_recompute)
6596 return RETRY;
6597
6598 return ret;
6599 }
6600
6601 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6602 struct intel_crtc_state *pipe_config)
6603 {
6604 if (pipe_config->pipe_bpp > 24)
6605 return false;
6606
6607 /* HSW can handle pixel rate up to cdclk? */
6608 if (IS_HASWELL(dev_priv->dev))
6609 return true;
6610
6611 /*
6612 * We compare against max which means we must take
6613 * the increased cdclk requirement into account when
6614 * calculating the new cdclk.
6615 *
6616 * Should measure whether using a lower cdclk w/o IPS
6617 */
6618 return ilk_pipe_pixel_rate(pipe_config) <=
6619 dev_priv->max_cdclk_freq * 95 / 100;
6620 }
6621
6622 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6623 struct intel_crtc_state *pipe_config)
6624 {
6625 struct drm_device *dev = crtc->base.dev;
6626 struct drm_i915_private *dev_priv = dev->dev_private;
6627
6628 pipe_config->ips_enabled = i915.enable_ips &&
6629 hsw_crtc_supports_ips(crtc) &&
6630 pipe_config_supports_ips(dev_priv, pipe_config);
6631 }
6632
6633 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6634 {
6635 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6636
6637 /* GDG double wide on either pipe, otherwise pipe A only */
6638 return INTEL_INFO(dev_priv)->gen < 4 &&
6639 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6640 }
6641
6642 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6643 struct intel_crtc_state *pipe_config)
6644 {
6645 struct drm_device *dev = crtc->base.dev;
6646 struct drm_i915_private *dev_priv = dev->dev_private;
6647 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6648
6649 /* FIXME should check pixel clock limits on all platforms */
6650 if (INTEL_INFO(dev)->gen < 4) {
6651 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6652
6653 /*
6654 * Enable double wide mode when the dot clock
6655 * is > 90% of the (display) core speed.
6656 */
6657 if (intel_crtc_supports_double_wide(crtc) &&
6658 adjusted_mode->crtc_clock > clock_limit) {
6659 clock_limit *= 2;
6660 pipe_config->double_wide = true;
6661 }
6662
6663 if (adjusted_mode->crtc_clock > clock_limit) {
6664 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6665 adjusted_mode->crtc_clock, clock_limit,
6666 yesno(pipe_config->double_wide));
6667 return -EINVAL;
6668 }
6669 }
6670
6671 /*
6672 * Pipe horizontal size must be even in:
6673 * - DVO ganged mode
6674 * - LVDS dual channel mode
6675 * - Double wide pipe
6676 */
6677 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6678 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6679 pipe_config->pipe_src_w &= ~1;
6680
6681 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6682 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6683 */
6684 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6685 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6686 return -EINVAL;
6687
6688 if (HAS_IPS(dev))
6689 hsw_compute_ips_config(crtc, pipe_config);
6690
6691 if (pipe_config->has_pch_encoder)
6692 return ironlake_fdi_compute_config(crtc, pipe_config);
6693
6694 return 0;
6695 }
6696
6697 static int skylake_get_display_clock_speed(struct drm_device *dev)
6698 {
6699 struct drm_i915_private *dev_priv = to_i915(dev);
6700 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6701 uint32_t cdctl = I915_READ(CDCLK_CTL);
6702 uint32_t linkrate;
6703
6704 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6705 return 24000; /* 24MHz is the cd freq with NSSC ref */
6706
6707 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6708 return 540000;
6709
6710 linkrate = (I915_READ(DPLL_CTRL1) &
6711 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6712
6713 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6714 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6715 /* vco 8640 */
6716 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6717 case CDCLK_FREQ_450_432:
6718 return 432000;
6719 case CDCLK_FREQ_337_308:
6720 return 308570;
6721 case CDCLK_FREQ_675_617:
6722 return 617140;
6723 default:
6724 WARN(1, "Unknown cd freq selection\n");
6725 }
6726 } else {
6727 /* vco 8100 */
6728 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6729 case CDCLK_FREQ_450_432:
6730 return 450000;
6731 case CDCLK_FREQ_337_308:
6732 return 337500;
6733 case CDCLK_FREQ_675_617:
6734 return 675000;
6735 default:
6736 WARN(1, "Unknown cd freq selection\n");
6737 }
6738 }
6739
6740 /* error case, do as if DPLL0 isn't enabled */
6741 return 24000;
6742 }
6743
6744 static int broxton_get_display_clock_speed(struct drm_device *dev)
6745 {
6746 struct drm_i915_private *dev_priv = to_i915(dev);
6747 uint32_t cdctl = I915_READ(CDCLK_CTL);
6748 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6749 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6750 int cdclk;
6751
6752 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6753 return 19200;
6754
6755 cdclk = 19200 * pll_ratio / 2;
6756
6757 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6758 case BXT_CDCLK_CD2X_DIV_SEL_1:
6759 return cdclk; /* 576MHz or 624MHz */
6760 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6761 return cdclk * 2 / 3; /* 384MHz */
6762 case BXT_CDCLK_CD2X_DIV_SEL_2:
6763 return cdclk / 2; /* 288MHz */
6764 case BXT_CDCLK_CD2X_DIV_SEL_4:
6765 return cdclk / 4; /* 144MHz */
6766 }
6767
6768 /* error case, do as if DE PLL isn't enabled */
6769 return 19200;
6770 }
6771
6772 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6773 {
6774 struct drm_i915_private *dev_priv = dev->dev_private;
6775 uint32_t lcpll = I915_READ(LCPLL_CTL);
6776 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6777
6778 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6779 return 800000;
6780 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6781 return 450000;
6782 else if (freq == LCPLL_CLK_FREQ_450)
6783 return 450000;
6784 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6785 return 540000;
6786 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6787 return 337500;
6788 else
6789 return 675000;
6790 }
6791
6792 static int haswell_get_display_clock_speed(struct drm_device *dev)
6793 {
6794 struct drm_i915_private *dev_priv = dev->dev_private;
6795 uint32_t lcpll = I915_READ(LCPLL_CTL);
6796 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6797
6798 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6799 return 800000;
6800 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6801 return 450000;
6802 else if (freq == LCPLL_CLK_FREQ_450)
6803 return 450000;
6804 else if (IS_HSW_ULT(dev))
6805 return 337500;
6806 else
6807 return 540000;
6808 }
6809
6810 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6811 {
6812 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6813 CCK_DISPLAY_CLOCK_CONTROL);
6814 }
6815
6816 static int ilk_get_display_clock_speed(struct drm_device *dev)
6817 {
6818 return 450000;
6819 }
6820
6821 static int i945_get_display_clock_speed(struct drm_device *dev)
6822 {
6823 return 400000;
6824 }
6825
6826 static int i915_get_display_clock_speed(struct drm_device *dev)
6827 {
6828 return 333333;
6829 }
6830
6831 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6832 {
6833 return 200000;
6834 }
6835
6836 static int pnv_get_display_clock_speed(struct drm_device *dev)
6837 {
6838 u16 gcfgc = 0;
6839
6840 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6841
6842 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6843 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6844 return 266667;
6845 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6846 return 333333;
6847 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6848 return 444444;
6849 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6850 return 200000;
6851 default:
6852 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6853 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6854 return 133333;
6855 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6856 return 166667;
6857 }
6858 }
6859
6860 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6861 {
6862 u16 gcfgc = 0;
6863
6864 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6865
6866 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6867 return 133333;
6868 else {
6869 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6870 case GC_DISPLAY_CLOCK_333_MHZ:
6871 return 333333;
6872 default:
6873 case GC_DISPLAY_CLOCK_190_200_MHZ:
6874 return 190000;
6875 }
6876 }
6877 }
6878
6879 static int i865_get_display_clock_speed(struct drm_device *dev)
6880 {
6881 return 266667;
6882 }
6883
6884 static int i85x_get_display_clock_speed(struct drm_device *dev)
6885 {
6886 u16 hpllcc = 0;
6887
6888 /*
6889 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6890 * encoding is different :(
6891 * FIXME is this the right way to detect 852GM/852GMV?
6892 */
6893 if (dev->pdev->revision == 0x1)
6894 return 133333;
6895
6896 pci_bus_read_config_word(dev->pdev->bus,
6897 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6898
6899 /* Assume that the hardware is in the high speed state. This
6900 * should be the default.
6901 */
6902 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6903 case GC_CLOCK_133_200:
6904 case GC_CLOCK_133_200_2:
6905 case GC_CLOCK_100_200:
6906 return 200000;
6907 case GC_CLOCK_166_250:
6908 return 250000;
6909 case GC_CLOCK_100_133:
6910 return 133333;
6911 case GC_CLOCK_133_266:
6912 case GC_CLOCK_133_266_2:
6913 case GC_CLOCK_166_266:
6914 return 266667;
6915 }
6916
6917 /* Shouldn't happen */
6918 return 0;
6919 }
6920
6921 static int i830_get_display_clock_speed(struct drm_device *dev)
6922 {
6923 return 133333;
6924 }
6925
6926 static unsigned int intel_hpll_vco(struct drm_device *dev)
6927 {
6928 struct drm_i915_private *dev_priv = dev->dev_private;
6929 static const unsigned int blb_vco[8] = {
6930 [0] = 3200000,
6931 [1] = 4000000,
6932 [2] = 5333333,
6933 [3] = 4800000,
6934 [4] = 6400000,
6935 };
6936 static const unsigned int pnv_vco[8] = {
6937 [0] = 3200000,
6938 [1] = 4000000,
6939 [2] = 5333333,
6940 [3] = 4800000,
6941 [4] = 2666667,
6942 };
6943 static const unsigned int cl_vco[8] = {
6944 [0] = 3200000,
6945 [1] = 4000000,
6946 [2] = 5333333,
6947 [3] = 6400000,
6948 [4] = 3333333,
6949 [5] = 3566667,
6950 [6] = 4266667,
6951 };
6952 static const unsigned int elk_vco[8] = {
6953 [0] = 3200000,
6954 [1] = 4000000,
6955 [2] = 5333333,
6956 [3] = 4800000,
6957 };
6958 static const unsigned int ctg_vco[8] = {
6959 [0] = 3200000,
6960 [1] = 4000000,
6961 [2] = 5333333,
6962 [3] = 6400000,
6963 [4] = 2666667,
6964 [5] = 4266667,
6965 };
6966 const unsigned int *vco_table;
6967 unsigned int vco;
6968 uint8_t tmp = 0;
6969
6970 /* FIXME other chipsets? */
6971 if (IS_GM45(dev))
6972 vco_table = ctg_vco;
6973 else if (IS_G4X(dev))
6974 vco_table = elk_vco;
6975 else if (IS_CRESTLINE(dev))
6976 vco_table = cl_vco;
6977 else if (IS_PINEVIEW(dev))
6978 vco_table = pnv_vco;
6979 else if (IS_G33(dev))
6980 vco_table = blb_vco;
6981 else
6982 return 0;
6983
6984 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6985
6986 vco = vco_table[tmp & 0x7];
6987 if (vco == 0)
6988 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6989 else
6990 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6991
6992 return vco;
6993 }
6994
6995 static int gm45_get_display_clock_speed(struct drm_device *dev)
6996 {
6997 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6998 uint16_t tmp = 0;
6999
7000 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7001
7002 cdclk_sel = (tmp >> 12) & 0x1;
7003
7004 switch (vco) {
7005 case 2666667:
7006 case 4000000:
7007 case 5333333:
7008 return cdclk_sel ? 333333 : 222222;
7009 case 3200000:
7010 return cdclk_sel ? 320000 : 228571;
7011 default:
7012 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7013 return 222222;
7014 }
7015 }
7016
7017 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7018 {
7019 static const uint8_t div_3200[] = { 16, 10, 8 };
7020 static const uint8_t div_4000[] = { 20, 12, 10 };
7021 static const uint8_t div_5333[] = { 24, 16, 14 };
7022 const uint8_t *div_table;
7023 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7024 uint16_t tmp = 0;
7025
7026 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7027
7028 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7029
7030 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7031 goto fail;
7032
7033 switch (vco) {
7034 case 3200000:
7035 div_table = div_3200;
7036 break;
7037 case 4000000:
7038 div_table = div_4000;
7039 break;
7040 case 5333333:
7041 div_table = div_5333;
7042 break;
7043 default:
7044 goto fail;
7045 }
7046
7047 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7048
7049 fail:
7050 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7051 return 200000;
7052 }
7053
7054 static int g33_get_display_clock_speed(struct drm_device *dev)
7055 {
7056 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7057 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7058 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7059 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7060 const uint8_t *div_table;
7061 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7062 uint16_t tmp = 0;
7063
7064 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7065
7066 cdclk_sel = (tmp >> 4) & 0x7;
7067
7068 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7069 goto fail;
7070
7071 switch (vco) {
7072 case 3200000:
7073 div_table = div_3200;
7074 break;
7075 case 4000000:
7076 div_table = div_4000;
7077 break;
7078 case 4800000:
7079 div_table = div_4800;
7080 break;
7081 case 5333333:
7082 div_table = div_5333;
7083 break;
7084 default:
7085 goto fail;
7086 }
7087
7088 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7089
7090 fail:
7091 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7092 return 190476;
7093 }
7094
7095 static void
7096 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7097 {
7098 while (*num > DATA_LINK_M_N_MASK ||
7099 *den > DATA_LINK_M_N_MASK) {
7100 *num >>= 1;
7101 *den >>= 1;
7102 }
7103 }
7104
7105 static void compute_m_n(unsigned int m, unsigned int n,
7106 uint32_t *ret_m, uint32_t *ret_n)
7107 {
7108 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7109 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7110 intel_reduce_m_n_ratio(ret_m, ret_n);
7111 }
7112
7113 void
7114 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7115 int pixel_clock, int link_clock,
7116 struct intel_link_m_n *m_n)
7117 {
7118 m_n->tu = 64;
7119
7120 compute_m_n(bits_per_pixel * pixel_clock,
7121 link_clock * nlanes * 8,
7122 &m_n->gmch_m, &m_n->gmch_n);
7123
7124 compute_m_n(pixel_clock, link_clock,
7125 &m_n->link_m, &m_n->link_n);
7126 }
7127
7128 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7129 {
7130 if (i915.panel_use_ssc >= 0)
7131 return i915.panel_use_ssc != 0;
7132 return dev_priv->vbt.lvds_use_ssc
7133 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7134 }
7135
7136 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7137 int num_connectors)
7138 {
7139 struct drm_device *dev = crtc_state->base.crtc->dev;
7140 struct drm_i915_private *dev_priv = dev->dev_private;
7141 int refclk;
7142
7143 WARN_ON(!crtc_state->base.state);
7144
7145 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7146 refclk = 100000;
7147 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7148 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7149 refclk = dev_priv->vbt.lvds_ssc_freq;
7150 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7151 } else if (!IS_GEN2(dev)) {
7152 refclk = 96000;
7153 } else {
7154 refclk = 48000;
7155 }
7156
7157 return refclk;
7158 }
7159
7160 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7161 {
7162 return (1 << dpll->n) << 16 | dpll->m2;
7163 }
7164
7165 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7166 {
7167 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7168 }
7169
7170 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7171 struct intel_crtc_state *crtc_state,
7172 intel_clock_t *reduced_clock)
7173 {
7174 struct drm_device *dev = crtc->base.dev;
7175 u32 fp, fp2 = 0;
7176
7177 if (IS_PINEVIEW(dev)) {
7178 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7179 if (reduced_clock)
7180 fp2 = pnv_dpll_compute_fp(reduced_clock);
7181 } else {
7182 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7183 if (reduced_clock)
7184 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7185 }
7186
7187 crtc_state->dpll_hw_state.fp0 = fp;
7188
7189 crtc->lowfreq_avail = false;
7190 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7191 reduced_clock) {
7192 crtc_state->dpll_hw_state.fp1 = fp2;
7193 crtc->lowfreq_avail = true;
7194 } else {
7195 crtc_state->dpll_hw_state.fp1 = fp;
7196 }
7197 }
7198
7199 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7200 pipe)
7201 {
7202 u32 reg_val;
7203
7204 /*
7205 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7206 * and set it to a reasonable value instead.
7207 */
7208 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7209 reg_val &= 0xffffff00;
7210 reg_val |= 0x00000030;
7211 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7212
7213 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7214 reg_val &= 0x8cffffff;
7215 reg_val = 0x8c000000;
7216 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7217
7218 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7219 reg_val &= 0xffffff00;
7220 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7221
7222 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7223 reg_val &= 0x00ffffff;
7224 reg_val |= 0xb0000000;
7225 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7226 }
7227
7228 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7229 struct intel_link_m_n *m_n)
7230 {
7231 struct drm_device *dev = crtc->base.dev;
7232 struct drm_i915_private *dev_priv = dev->dev_private;
7233 int pipe = crtc->pipe;
7234
7235 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7236 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7237 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7238 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7239 }
7240
7241 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7242 struct intel_link_m_n *m_n,
7243 struct intel_link_m_n *m2_n2)
7244 {
7245 struct drm_device *dev = crtc->base.dev;
7246 struct drm_i915_private *dev_priv = dev->dev_private;
7247 int pipe = crtc->pipe;
7248 enum transcoder transcoder = crtc->config->cpu_transcoder;
7249
7250 if (INTEL_INFO(dev)->gen >= 5) {
7251 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7252 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7253 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7254 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7255 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7256 * for gen < 8) and if DRRS is supported (to make sure the
7257 * registers are not unnecessarily accessed).
7258 */
7259 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7260 crtc->config->has_drrs) {
7261 I915_WRITE(PIPE_DATA_M2(transcoder),
7262 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7263 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7264 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7265 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7266 }
7267 } else {
7268 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7269 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7270 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7271 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7272 }
7273 }
7274
7275 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7276 {
7277 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7278
7279 if (m_n == M1_N1) {
7280 dp_m_n = &crtc->config->dp_m_n;
7281 dp_m2_n2 = &crtc->config->dp_m2_n2;
7282 } else if (m_n == M2_N2) {
7283
7284 /*
7285 * M2_N2 registers are not supported. Hence m2_n2 divider value
7286 * needs to be programmed into M1_N1.
7287 */
7288 dp_m_n = &crtc->config->dp_m2_n2;
7289 } else {
7290 DRM_ERROR("Unsupported divider value\n");
7291 return;
7292 }
7293
7294 if (crtc->config->has_pch_encoder)
7295 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7296 else
7297 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7298 }
7299
7300 static void vlv_compute_dpll(struct intel_crtc *crtc,
7301 struct intel_crtc_state *pipe_config)
7302 {
7303 u32 dpll, dpll_md;
7304
7305 /*
7306 * Enable DPIO clock input. We should never disable the reference
7307 * clock for pipe B, since VGA hotplug / manual detection depends
7308 * on it.
7309 */
7310 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7311 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7312 /* We should never disable this, set it here for state tracking */
7313 if (crtc->pipe == PIPE_B)
7314 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7315 dpll |= DPLL_VCO_ENABLE;
7316 pipe_config->dpll_hw_state.dpll = dpll;
7317
7318 dpll_md = (pipe_config->pixel_multiplier - 1)
7319 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7320 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7321 }
7322
7323 static void vlv_prepare_pll(struct intel_crtc *crtc,
7324 const struct intel_crtc_state *pipe_config)
7325 {
7326 struct drm_device *dev = crtc->base.dev;
7327 struct drm_i915_private *dev_priv = dev->dev_private;
7328 int pipe = crtc->pipe;
7329 u32 mdiv;
7330 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7331 u32 coreclk, reg_val;
7332
7333 mutex_lock(&dev_priv->sb_lock);
7334
7335 bestn = pipe_config->dpll.n;
7336 bestm1 = pipe_config->dpll.m1;
7337 bestm2 = pipe_config->dpll.m2;
7338 bestp1 = pipe_config->dpll.p1;
7339 bestp2 = pipe_config->dpll.p2;
7340
7341 /* See eDP HDMI DPIO driver vbios notes doc */
7342
7343 /* PLL B needs special handling */
7344 if (pipe == PIPE_B)
7345 vlv_pllb_recal_opamp(dev_priv, pipe);
7346
7347 /* Set up Tx target for periodic Rcomp update */
7348 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7349
7350 /* Disable target IRef on PLL */
7351 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7352 reg_val &= 0x00ffffff;
7353 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7354
7355 /* Disable fast lock */
7356 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7357
7358 /* Set idtafcrecal before PLL is enabled */
7359 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7360 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7361 mdiv |= ((bestn << DPIO_N_SHIFT));
7362 mdiv |= (1 << DPIO_K_SHIFT);
7363
7364 /*
7365 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7366 * but we don't support that).
7367 * Note: don't use the DAC post divider as it seems unstable.
7368 */
7369 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7370 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7371
7372 mdiv |= DPIO_ENABLE_CALIBRATION;
7373 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7374
7375 /* Set HBR and RBR LPF coefficients */
7376 if (pipe_config->port_clock == 162000 ||
7377 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7378 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7379 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7380 0x009f0003);
7381 else
7382 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7383 0x00d0000f);
7384
7385 if (pipe_config->has_dp_encoder) {
7386 /* Use SSC source */
7387 if (pipe == PIPE_A)
7388 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7389 0x0df40000);
7390 else
7391 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7392 0x0df70000);
7393 } else { /* HDMI or VGA */
7394 /* Use bend source */
7395 if (pipe == PIPE_A)
7396 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7397 0x0df70000);
7398 else
7399 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7400 0x0df40000);
7401 }
7402
7403 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7404 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7405 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7406 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7407 coreclk |= 0x01000000;
7408 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7409
7410 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7411 mutex_unlock(&dev_priv->sb_lock);
7412 }
7413
7414 static void chv_compute_dpll(struct intel_crtc *crtc,
7415 struct intel_crtc_state *pipe_config)
7416 {
7417 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7418 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7419 DPLL_VCO_ENABLE;
7420 if (crtc->pipe != PIPE_A)
7421 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7422
7423 pipe_config->dpll_hw_state.dpll_md =
7424 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7425 }
7426
7427 static void chv_prepare_pll(struct intel_crtc *crtc,
7428 const struct intel_crtc_state *pipe_config)
7429 {
7430 struct drm_device *dev = crtc->base.dev;
7431 struct drm_i915_private *dev_priv = dev->dev_private;
7432 int pipe = crtc->pipe;
7433 i915_reg_t dpll_reg = DPLL(crtc->pipe);
7434 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7435 u32 loopfilter, tribuf_calcntr;
7436 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7437 u32 dpio_val;
7438 int vco;
7439
7440 bestn = pipe_config->dpll.n;
7441 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7442 bestm1 = pipe_config->dpll.m1;
7443 bestm2 = pipe_config->dpll.m2 >> 22;
7444 bestp1 = pipe_config->dpll.p1;
7445 bestp2 = pipe_config->dpll.p2;
7446 vco = pipe_config->dpll.vco;
7447 dpio_val = 0;
7448 loopfilter = 0;
7449
7450 /*
7451 * Enable Refclk and SSC
7452 */
7453 I915_WRITE(dpll_reg,
7454 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7455
7456 mutex_lock(&dev_priv->sb_lock);
7457
7458 /* p1 and p2 divider */
7459 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7460 5 << DPIO_CHV_S1_DIV_SHIFT |
7461 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7462 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7463 1 << DPIO_CHV_K_DIV_SHIFT);
7464
7465 /* Feedback post-divider - m2 */
7466 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7467
7468 /* Feedback refclk divider - n and m1 */
7469 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7470 DPIO_CHV_M1_DIV_BY_2 |
7471 1 << DPIO_CHV_N_DIV_SHIFT);
7472
7473 /* M2 fraction division */
7474 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7475
7476 /* M2 fraction division enable */
7477 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7478 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7479 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7480 if (bestm2_frac)
7481 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7482 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7483
7484 /* Program digital lock detect threshold */
7485 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7486 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7487 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7488 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7489 if (!bestm2_frac)
7490 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7491 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7492
7493 /* Loop filter */
7494 if (vco == 5400000) {
7495 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7496 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7497 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7498 tribuf_calcntr = 0x9;
7499 } else if (vco <= 6200000) {
7500 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7501 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7502 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503 tribuf_calcntr = 0x9;
7504 } else if (vco <= 6480000) {
7505 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7506 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7507 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7508 tribuf_calcntr = 0x8;
7509 } else {
7510 /* Not supported. Apply the same limits as in the max case */
7511 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7512 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7513 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7514 tribuf_calcntr = 0;
7515 }
7516 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7517
7518 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7519 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7520 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7521 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7522
7523 /* AFC Recal */
7524 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7525 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7526 DPIO_AFC_RECAL);
7527
7528 mutex_unlock(&dev_priv->sb_lock);
7529 }
7530
7531 /**
7532 * vlv_force_pll_on - forcibly enable just the PLL
7533 * @dev_priv: i915 private structure
7534 * @pipe: pipe PLL to enable
7535 * @dpll: PLL configuration
7536 *
7537 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7538 * in cases where we need the PLL enabled even when @pipe is not going to
7539 * be enabled.
7540 */
7541 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7542 const struct dpll *dpll)
7543 {
7544 struct intel_crtc *crtc =
7545 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7546 struct intel_crtc_state *pipe_config;
7547
7548 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7549 if (!pipe_config)
7550 return -ENOMEM;
7551
7552 pipe_config->base.crtc = &crtc->base;
7553 pipe_config->pixel_multiplier = 1;
7554 pipe_config->dpll = *dpll;
7555
7556 if (IS_CHERRYVIEW(dev)) {
7557 chv_compute_dpll(crtc, pipe_config);
7558 chv_prepare_pll(crtc, pipe_config);
7559 chv_enable_pll(crtc, pipe_config);
7560 } else {
7561 vlv_compute_dpll(crtc, pipe_config);
7562 vlv_prepare_pll(crtc, pipe_config);
7563 vlv_enable_pll(crtc, pipe_config);
7564 }
7565
7566 kfree(pipe_config);
7567
7568 return 0;
7569 }
7570
7571 /**
7572 * vlv_force_pll_off - forcibly disable just the PLL
7573 * @dev_priv: i915 private structure
7574 * @pipe: pipe PLL to disable
7575 *
7576 * Disable the PLL for @pipe. To be used in cases where we need
7577 * the PLL enabled even when @pipe is not going to be enabled.
7578 */
7579 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7580 {
7581 if (IS_CHERRYVIEW(dev))
7582 chv_disable_pll(to_i915(dev), pipe);
7583 else
7584 vlv_disable_pll(to_i915(dev), pipe);
7585 }
7586
7587 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7588 struct intel_crtc_state *crtc_state,
7589 intel_clock_t *reduced_clock,
7590 int num_connectors)
7591 {
7592 struct drm_device *dev = crtc->base.dev;
7593 struct drm_i915_private *dev_priv = dev->dev_private;
7594 u32 dpll;
7595 bool is_sdvo;
7596 struct dpll *clock = &crtc_state->dpll;
7597
7598 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7599
7600 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7601 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7602
7603 dpll = DPLL_VGA_MODE_DIS;
7604
7605 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7606 dpll |= DPLLB_MODE_LVDS;
7607 else
7608 dpll |= DPLLB_MODE_DAC_SERIAL;
7609
7610 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7611 dpll |= (crtc_state->pixel_multiplier - 1)
7612 << SDVO_MULTIPLIER_SHIFT_HIRES;
7613 }
7614
7615 if (is_sdvo)
7616 dpll |= DPLL_SDVO_HIGH_SPEED;
7617
7618 if (crtc_state->has_dp_encoder)
7619 dpll |= DPLL_SDVO_HIGH_SPEED;
7620
7621 /* compute bitmask from p1 value */
7622 if (IS_PINEVIEW(dev))
7623 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7624 else {
7625 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7626 if (IS_G4X(dev) && reduced_clock)
7627 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7628 }
7629 switch (clock->p2) {
7630 case 5:
7631 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7632 break;
7633 case 7:
7634 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7635 break;
7636 case 10:
7637 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7638 break;
7639 case 14:
7640 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7641 break;
7642 }
7643 if (INTEL_INFO(dev)->gen >= 4)
7644 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7645
7646 if (crtc_state->sdvo_tv_clock)
7647 dpll |= PLL_REF_INPUT_TVCLKINBC;
7648 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7649 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7650 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7651 else
7652 dpll |= PLL_REF_INPUT_DREFCLK;
7653
7654 dpll |= DPLL_VCO_ENABLE;
7655 crtc_state->dpll_hw_state.dpll = dpll;
7656
7657 if (INTEL_INFO(dev)->gen >= 4) {
7658 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7659 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7660 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7661 }
7662 }
7663
7664 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7665 struct intel_crtc_state *crtc_state,
7666 intel_clock_t *reduced_clock,
7667 int num_connectors)
7668 {
7669 struct drm_device *dev = crtc->base.dev;
7670 struct drm_i915_private *dev_priv = dev->dev_private;
7671 u32 dpll;
7672 struct dpll *clock = &crtc_state->dpll;
7673
7674 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7675
7676 dpll = DPLL_VGA_MODE_DIS;
7677
7678 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7679 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7680 } else {
7681 if (clock->p1 == 2)
7682 dpll |= PLL_P1_DIVIDE_BY_TWO;
7683 else
7684 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7685 if (clock->p2 == 4)
7686 dpll |= PLL_P2_DIVIDE_BY_4;
7687 }
7688
7689 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7690 dpll |= DPLL_DVO_2X_MODE;
7691
7692 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7693 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7694 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7695 else
7696 dpll |= PLL_REF_INPUT_DREFCLK;
7697
7698 dpll |= DPLL_VCO_ENABLE;
7699 crtc_state->dpll_hw_state.dpll = dpll;
7700 }
7701
7702 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7703 {
7704 struct drm_device *dev = intel_crtc->base.dev;
7705 struct drm_i915_private *dev_priv = dev->dev_private;
7706 enum pipe pipe = intel_crtc->pipe;
7707 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7708 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7709 uint32_t crtc_vtotal, crtc_vblank_end;
7710 int vsyncshift = 0;
7711
7712 /* We need to be careful not to changed the adjusted mode, for otherwise
7713 * the hw state checker will get angry at the mismatch. */
7714 crtc_vtotal = adjusted_mode->crtc_vtotal;
7715 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7716
7717 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7718 /* the chip adds 2 halflines automatically */
7719 crtc_vtotal -= 1;
7720 crtc_vblank_end -= 1;
7721
7722 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7723 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7724 else
7725 vsyncshift = adjusted_mode->crtc_hsync_start -
7726 adjusted_mode->crtc_htotal / 2;
7727 if (vsyncshift < 0)
7728 vsyncshift += adjusted_mode->crtc_htotal;
7729 }
7730
7731 if (INTEL_INFO(dev)->gen > 3)
7732 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7733
7734 I915_WRITE(HTOTAL(cpu_transcoder),
7735 (adjusted_mode->crtc_hdisplay - 1) |
7736 ((adjusted_mode->crtc_htotal - 1) << 16));
7737 I915_WRITE(HBLANK(cpu_transcoder),
7738 (adjusted_mode->crtc_hblank_start - 1) |
7739 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7740 I915_WRITE(HSYNC(cpu_transcoder),
7741 (adjusted_mode->crtc_hsync_start - 1) |
7742 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7743
7744 I915_WRITE(VTOTAL(cpu_transcoder),
7745 (adjusted_mode->crtc_vdisplay - 1) |
7746 ((crtc_vtotal - 1) << 16));
7747 I915_WRITE(VBLANK(cpu_transcoder),
7748 (adjusted_mode->crtc_vblank_start - 1) |
7749 ((crtc_vblank_end - 1) << 16));
7750 I915_WRITE(VSYNC(cpu_transcoder),
7751 (adjusted_mode->crtc_vsync_start - 1) |
7752 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7753
7754 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7755 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7756 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7757 * bits. */
7758 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7759 (pipe == PIPE_B || pipe == PIPE_C))
7760 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7761
7762 /* pipesrc controls the size that is scaled from, which should
7763 * always be the user's requested size.
7764 */
7765 I915_WRITE(PIPESRC(pipe),
7766 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7767 (intel_crtc->config->pipe_src_h - 1));
7768 }
7769
7770 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7771 struct intel_crtc_state *pipe_config)
7772 {
7773 struct drm_device *dev = crtc->base.dev;
7774 struct drm_i915_private *dev_priv = dev->dev_private;
7775 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7776 uint32_t tmp;
7777
7778 tmp = I915_READ(HTOTAL(cpu_transcoder));
7779 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7780 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7781 tmp = I915_READ(HBLANK(cpu_transcoder));
7782 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7783 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7784 tmp = I915_READ(HSYNC(cpu_transcoder));
7785 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7786 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7787
7788 tmp = I915_READ(VTOTAL(cpu_transcoder));
7789 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7790 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7791 tmp = I915_READ(VBLANK(cpu_transcoder));
7792 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7793 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7794 tmp = I915_READ(VSYNC(cpu_transcoder));
7795 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7796 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7797
7798 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7799 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7800 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7801 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7802 }
7803
7804 tmp = I915_READ(PIPESRC(crtc->pipe));
7805 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7806 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7807
7808 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7809 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7810 }
7811
7812 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7813 struct intel_crtc_state *pipe_config)
7814 {
7815 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7816 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7817 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7818 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7819
7820 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7821 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7822 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7823 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7824
7825 mode->flags = pipe_config->base.adjusted_mode.flags;
7826 mode->type = DRM_MODE_TYPE_DRIVER;
7827
7828 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7829 mode->flags |= pipe_config->base.adjusted_mode.flags;
7830
7831 mode->hsync = drm_mode_hsync(mode);
7832 mode->vrefresh = drm_mode_vrefresh(mode);
7833 drm_mode_set_name(mode);
7834 }
7835
7836 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7837 {
7838 struct drm_device *dev = intel_crtc->base.dev;
7839 struct drm_i915_private *dev_priv = dev->dev_private;
7840 uint32_t pipeconf;
7841
7842 pipeconf = 0;
7843
7844 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7845 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7846 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7847
7848 if (intel_crtc->config->double_wide)
7849 pipeconf |= PIPECONF_DOUBLE_WIDE;
7850
7851 /* only g4x and later have fancy bpc/dither controls */
7852 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7853 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7854 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7855 pipeconf |= PIPECONF_DITHER_EN |
7856 PIPECONF_DITHER_TYPE_SP;
7857
7858 switch (intel_crtc->config->pipe_bpp) {
7859 case 18:
7860 pipeconf |= PIPECONF_6BPC;
7861 break;
7862 case 24:
7863 pipeconf |= PIPECONF_8BPC;
7864 break;
7865 case 30:
7866 pipeconf |= PIPECONF_10BPC;
7867 break;
7868 default:
7869 /* Case prevented by intel_choose_pipe_bpp_dither. */
7870 BUG();
7871 }
7872 }
7873
7874 if (HAS_PIPE_CXSR(dev)) {
7875 if (intel_crtc->lowfreq_avail) {
7876 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7877 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7878 } else {
7879 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7880 }
7881 }
7882
7883 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7884 if (INTEL_INFO(dev)->gen < 4 ||
7885 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7886 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7887 else
7888 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7889 } else
7890 pipeconf |= PIPECONF_PROGRESSIVE;
7891
7892 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7893 intel_crtc->config->limited_color_range)
7894 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7895
7896 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7897 POSTING_READ(PIPECONF(intel_crtc->pipe));
7898 }
7899
7900 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7901 struct intel_crtc_state *crtc_state)
7902 {
7903 struct drm_device *dev = crtc->base.dev;
7904 struct drm_i915_private *dev_priv = dev->dev_private;
7905 int refclk, num_connectors = 0;
7906 intel_clock_t clock;
7907 bool ok;
7908 const intel_limit_t *limit;
7909 struct drm_atomic_state *state = crtc_state->base.state;
7910 struct drm_connector *connector;
7911 struct drm_connector_state *connector_state;
7912 int i;
7913
7914 memset(&crtc_state->dpll_hw_state, 0,
7915 sizeof(crtc_state->dpll_hw_state));
7916
7917 if (crtc_state->has_dsi_encoder)
7918 return 0;
7919
7920 for_each_connector_in_state(state, connector, connector_state, i) {
7921 if (connector_state->crtc == &crtc->base)
7922 num_connectors++;
7923 }
7924
7925 if (!crtc_state->clock_set) {
7926 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7927
7928 /*
7929 * Returns a set of divisors for the desired target clock with
7930 * the given refclk, or FALSE. The returned values represent
7931 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7932 * 2) / p1 / p2.
7933 */
7934 limit = intel_limit(crtc_state, refclk);
7935 ok = dev_priv->display.find_dpll(limit, crtc_state,
7936 crtc_state->port_clock,
7937 refclk, NULL, &clock);
7938 if (!ok) {
7939 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7940 return -EINVAL;
7941 }
7942
7943 /* Compat-code for transition, will disappear. */
7944 crtc_state->dpll.n = clock.n;
7945 crtc_state->dpll.m1 = clock.m1;
7946 crtc_state->dpll.m2 = clock.m2;
7947 crtc_state->dpll.p1 = clock.p1;
7948 crtc_state->dpll.p2 = clock.p2;
7949 }
7950
7951 if (IS_GEN2(dev)) {
7952 i8xx_compute_dpll(crtc, crtc_state, NULL,
7953 num_connectors);
7954 } else if (IS_CHERRYVIEW(dev)) {
7955 chv_compute_dpll(crtc, crtc_state);
7956 } else if (IS_VALLEYVIEW(dev)) {
7957 vlv_compute_dpll(crtc, crtc_state);
7958 } else {
7959 i9xx_compute_dpll(crtc, crtc_state, NULL,
7960 num_connectors);
7961 }
7962
7963 return 0;
7964 }
7965
7966 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7967 struct intel_crtc_state *pipe_config)
7968 {
7969 struct drm_device *dev = crtc->base.dev;
7970 struct drm_i915_private *dev_priv = dev->dev_private;
7971 uint32_t tmp;
7972
7973 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7974 return;
7975
7976 tmp = I915_READ(PFIT_CONTROL);
7977 if (!(tmp & PFIT_ENABLE))
7978 return;
7979
7980 /* Check whether the pfit is attached to our pipe. */
7981 if (INTEL_INFO(dev)->gen < 4) {
7982 if (crtc->pipe != PIPE_B)
7983 return;
7984 } else {
7985 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7986 return;
7987 }
7988
7989 pipe_config->gmch_pfit.control = tmp;
7990 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7991 if (INTEL_INFO(dev)->gen < 5)
7992 pipe_config->gmch_pfit.lvds_border_bits =
7993 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7994 }
7995
7996 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7997 struct intel_crtc_state *pipe_config)
7998 {
7999 struct drm_device *dev = crtc->base.dev;
8000 struct drm_i915_private *dev_priv = dev->dev_private;
8001 int pipe = pipe_config->cpu_transcoder;
8002 intel_clock_t clock;
8003 u32 mdiv;
8004 int refclk = 100000;
8005
8006 /* In case of MIPI DPLL will not even be used */
8007 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8008 return;
8009
8010 mutex_lock(&dev_priv->sb_lock);
8011 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8012 mutex_unlock(&dev_priv->sb_lock);
8013
8014 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8015 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8016 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8017 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8018 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8019
8020 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8021 }
8022
8023 static void
8024 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8025 struct intel_initial_plane_config *plane_config)
8026 {
8027 struct drm_device *dev = crtc->base.dev;
8028 struct drm_i915_private *dev_priv = dev->dev_private;
8029 u32 val, base, offset;
8030 int pipe = crtc->pipe, plane = crtc->plane;
8031 int fourcc, pixel_format;
8032 unsigned int aligned_height;
8033 struct drm_framebuffer *fb;
8034 struct intel_framebuffer *intel_fb;
8035
8036 val = I915_READ(DSPCNTR(plane));
8037 if (!(val & DISPLAY_PLANE_ENABLE))
8038 return;
8039
8040 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8041 if (!intel_fb) {
8042 DRM_DEBUG_KMS("failed to alloc fb\n");
8043 return;
8044 }
8045
8046 fb = &intel_fb->base;
8047
8048 if (INTEL_INFO(dev)->gen >= 4) {
8049 if (val & DISPPLANE_TILED) {
8050 plane_config->tiling = I915_TILING_X;
8051 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8052 }
8053 }
8054
8055 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8056 fourcc = i9xx_format_to_fourcc(pixel_format);
8057 fb->pixel_format = fourcc;
8058 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8059
8060 if (INTEL_INFO(dev)->gen >= 4) {
8061 if (plane_config->tiling)
8062 offset = I915_READ(DSPTILEOFF(plane));
8063 else
8064 offset = I915_READ(DSPLINOFF(plane));
8065 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8066 } else {
8067 base = I915_READ(DSPADDR(plane));
8068 }
8069 plane_config->base = base;
8070
8071 val = I915_READ(PIPESRC(pipe));
8072 fb->width = ((val >> 16) & 0xfff) + 1;
8073 fb->height = ((val >> 0) & 0xfff) + 1;
8074
8075 val = I915_READ(DSPSTRIDE(pipe));
8076 fb->pitches[0] = val & 0xffffffc0;
8077
8078 aligned_height = intel_fb_align_height(dev, fb->height,
8079 fb->pixel_format,
8080 fb->modifier[0]);
8081
8082 plane_config->size = fb->pitches[0] * aligned_height;
8083
8084 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8085 pipe_name(pipe), plane, fb->width, fb->height,
8086 fb->bits_per_pixel, base, fb->pitches[0],
8087 plane_config->size);
8088
8089 plane_config->fb = intel_fb;
8090 }
8091
8092 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8093 struct intel_crtc_state *pipe_config)
8094 {
8095 struct drm_device *dev = crtc->base.dev;
8096 struct drm_i915_private *dev_priv = dev->dev_private;
8097 int pipe = pipe_config->cpu_transcoder;
8098 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8099 intel_clock_t clock;
8100 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8101 int refclk = 100000;
8102
8103 mutex_lock(&dev_priv->sb_lock);
8104 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8105 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8106 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8107 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8108 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8109 mutex_unlock(&dev_priv->sb_lock);
8110
8111 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8112 clock.m2 = (pll_dw0 & 0xff) << 22;
8113 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8114 clock.m2 |= pll_dw2 & 0x3fffff;
8115 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8116 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8117 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8118
8119 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8120 }
8121
8122 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8123 struct intel_crtc_state *pipe_config)
8124 {
8125 struct drm_device *dev = crtc->base.dev;
8126 struct drm_i915_private *dev_priv = dev->dev_private;
8127 enum intel_display_power_domain power_domain;
8128 uint32_t tmp;
8129 bool ret;
8130
8131 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8132 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8133 return false;
8134
8135 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8136 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8137
8138 ret = false;
8139
8140 tmp = I915_READ(PIPECONF(crtc->pipe));
8141 if (!(tmp & PIPECONF_ENABLE))
8142 goto out;
8143
8144 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8145 switch (tmp & PIPECONF_BPC_MASK) {
8146 case PIPECONF_6BPC:
8147 pipe_config->pipe_bpp = 18;
8148 break;
8149 case PIPECONF_8BPC:
8150 pipe_config->pipe_bpp = 24;
8151 break;
8152 case PIPECONF_10BPC:
8153 pipe_config->pipe_bpp = 30;
8154 break;
8155 default:
8156 break;
8157 }
8158 }
8159
8160 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8161 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8162 pipe_config->limited_color_range = true;
8163
8164 if (INTEL_INFO(dev)->gen < 4)
8165 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8166
8167 intel_get_pipe_timings(crtc, pipe_config);
8168
8169 i9xx_get_pfit_config(crtc, pipe_config);
8170
8171 if (INTEL_INFO(dev)->gen >= 4) {
8172 tmp = I915_READ(DPLL_MD(crtc->pipe));
8173 pipe_config->pixel_multiplier =
8174 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8175 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8176 pipe_config->dpll_hw_state.dpll_md = tmp;
8177 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8178 tmp = I915_READ(DPLL(crtc->pipe));
8179 pipe_config->pixel_multiplier =
8180 ((tmp & SDVO_MULTIPLIER_MASK)
8181 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8182 } else {
8183 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8184 * port and will be fixed up in the encoder->get_config
8185 * function. */
8186 pipe_config->pixel_multiplier = 1;
8187 }
8188 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8189 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8190 /*
8191 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8192 * on 830. Filter it out here so that we don't
8193 * report errors due to that.
8194 */
8195 if (IS_I830(dev))
8196 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8197
8198 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8199 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8200 } else {
8201 /* Mask out read-only status bits. */
8202 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8203 DPLL_PORTC_READY_MASK |
8204 DPLL_PORTB_READY_MASK);
8205 }
8206
8207 if (IS_CHERRYVIEW(dev))
8208 chv_crtc_clock_get(crtc, pipe_config);
8209 else if (IS_VALLEYVIEW(dev))
8210 vlv_crtc_clock_get(crtc, pipe_config);
8211 else
8212 i9xx_crtc_clock_get(crtc, pipe_config);
8213
8214 /*
8215 * Normally the dotclock is filled in by the encoder .get_config()
8216 * but in case the pipe is enabled w/o any ports we need a sane
8217 * default.
8218 */
8219 pipe_config->base.adjusted_mode.crtc_clock =
8220 pipe_config->port_clock / pipe_config->pixel_multiplier;
8221
8222 ret = true;
8223
8224 out:
8225 intel_display_power_put(dev_priv, power_domain);
8226
8227 return ret;
8228 }
8229
8230 static void ironlake_init_pch_refclk(struct drm_device *dev)
8231 {
8232 struct drm_i915_private *dev_priv = dev->dev_private;
8233 struct intel_encoder *encoder;
8234 u32 val, final;
8235 bool has_lvds = false;
8236 bool has_cpu_edp = false;
8237 bool has_panel = false;
8238 bool has_ck505 = false;
8239 bool can_ssc = false;
8240
8241 /* We need to take the global config into account */
8242 for_each_intel_encoder(dev, encoder) {
8243 switch (encoder->type) {
8244 case INTEL_OUTPUT_LVDS:
8245 has_panel = true;
8246 has_lvds = true;
8247 break;
8248 case INTEL_OUTPUT_EDP:
8249 has_panel = true;
8250 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8251 has_cpu_edp = true;
8252 break;
8253 default:
8254 break;
8255 }
8256 }
8257
8258 if (HAS_PCH_IBX(dev)) {
8259 has_ck505 = dev_priv->vbt.display_clock_mode;
8260 can_ssc = has_ck505;
8261 } else {
8262 has_ck505 = false;
8263 can_ssc = true;
8264 }
8265
8266 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8267 has_panel, has_lvds, has_ck505);
8268
8269 /* Ironlake: try to setup display ref clock before DPLL
8270 * enabling. This is only under driver's control after
8271 * PCH B stepping, previous chipset stepping should be
8272 * ignoring this setting.
8273 */
8274 val = I915_READ(PCH_DREF_CONTROL);
8275
8276 /* As we must carefully and slowly disable/enable each source in turn,
8277 * compute the final state we want first and check if we need to
8278 * make any changes at all.
8279 */
8280 final = val;
8281 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8282 if (has_ck505)
8283 final |= DREF_NONSPREAD_CK505_ENABLE;
8284 else
8285 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8286
8287 final &= ~DREF_SSC_SOURCE_MASK;
8288 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8289 final &= ~DREF_SSC1_ENABLE;
8290
8291 if (has_panel) {
8292 final |= DREF_SSC_SOURCE_ENABLE;
8293
8294 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8295 final |= DREF_SSC1_ENABLE;
8296
8297 if (has_cpu_edp) {
8298 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8299 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8300 else
8301 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8302 } else
8303 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8304 } else {
8305 final |= DREF_SSC_SOURCE_DISABLE;
8306 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8307 }
8308
8309 if (final == val)
8310 return;
8311
8312 /* Always enable nonspread source */
8313 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8314
8315 if (has_ck505)
8316 val |= DREF_NONSPREAD_CK505_ENABLE;
8317 else
8318 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8319
8320 if (has_panel) {
8321 val &= ~DREF_SSC_SOURCE_MASK;
8322 val |= DREF_SSC_SOURCE_ENABLE;
8323
8324 /* SSC must be turned on before enabling the CPU output */
8325 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8326 DRM_DEBUG_KMS("Using SSC on panel\n");
8327 val |= DREF_SSC1_ENABLE;
8328 } else
8329 val &= ~DREF_SSC1_ENABLE;
8330
8331 /* Get SSC going before enabling the outputs */
8332 I915_WRITE(PCH_DREF_CONTROL, val);
8333 POSTING_READ(PCH_DREF_CONTROL);
8334 udelay(200);
8335
8336 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8337
8338 /* Enable CPU source on CPU attached eDP */
8339 if (has_cpu_edp) {
8340 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8341 DRM_DEBUG_KMS("Using SSC on eDP\n");
8342 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8343 } else
8344 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8345 } else
8346 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8347
8348 I915_WRITE(PCH_DREF_CONTROL, val);
8349 POSTING_READ(PCH_DREF_CONTROL);
8350 udelay(200);
8351 } else {
8352 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8353
8354 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8355
8356 /* Turn off CPU output */
8357 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8358
8359 I915_WRITE(PCH_DREF_CONTROL, val);
8360 POSTING_READ(PCH_DREF_CONTROL);
8361 udelay(200);
8362
8363 /* Turn off the SSC source */
8364 val &= ~DREF_SSC_SOURCE_MASK;
8365 val |= DREF_SSC_SOURCE_DISABLE;
8366
8367 /* Turn off SSC1 */
8368 val &= ~DREF_SSC1_ENABLE;
8369
8370 I915_WRITE(PCH_DREF_CONTROL, val);
8371 POSTING_READ(PCH_DREF_CONTROL);
8372 udelay(200);
8373 }
8374
8375 BUG_ON(val != final);
8376 }
8377
8378 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8379 {
8380 uint32_t tmp;
8381
8382 tmp = I915_READ(SOUTH_CHICKEN2);
8383 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8384 I915_WRITE(SOUTH_CHICKEN2, tmp);
8385
8386 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8387 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8388 DRM_ERROR("FDI mPHY reset assert timeout\n");
8389
8390 tmp = I915_READ(SOUTH_CHICKEN2);
8391 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8392 I915_WRITE(SOUTH_CHICKEN2, tmp);
8393
8394 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8395 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8396 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8397 }
8398
8399 /* WaMPhyProgramming:hsw */
8400 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8401 {
8402 uint32_t tmp;
8403
8404 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8405 tmp &= ~(0xFF << 24);
8406 tmp |= (0x12 << 24);
8407 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8408
8409 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8410 tmp |= (1 << 11);
8411 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8412
8413 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8414 tmp |= (1 << 11);
8415 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8416
8417 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8418 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8419 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8420
8421 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8422 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8423 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8424
8425 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8426 tmp &= ~(7 << 13);
8427 tmp |= (5 << 13);
8428 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8429
8430 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8431 tmp &= ~(7 << 13);
8432 tmp |= (5 << 13);
8433 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8434
8435 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8436 tmp &= ~0xFF;
8437 tmp |= 0x1C;
8438 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8439
8440 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8441 tmp &= ~0xFF;
8442 tmp |= 0x1C;
8443 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8444
8445 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8446 tmp &= ~(0xFF << 16);
8447 tmp |= (0x1C << 16);
8448 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8449
8450 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8451 tmp &= ~(0xFF << 16);
8452 tmp |= (0x1C << 16);
8453 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8454
8455 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8456 tmp |= (1 << 27);
8457 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8458
8459 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8460 tmp |= (1 << 27);
8461 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8462
8463 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8464 tmp &= ~(0xF << 28);
8465 tmp |= (4 << 28);
8466 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8467
8468 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8469 tmp &= ~(0xF << 28);
8470 tmp |= (4 << 28);
8471 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8472 }
8473
8474 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8475 * Programming" based on the parameters passed:
8476 * - Sequence to enable CLKOUT_DP
8477 * - Sequence to enable CLKOUT_DP without spread
8478 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8479 */
8480 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8481 bool with_fdi)
8482 {
8483 struct drm_i915_private *dev_priv = dev->dev_private;
8484 uint32_t reg, tmp;
8485
8486 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8487 with_spread = true;
8488 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8489 with_fdi = false;
8490
8491 mutex_lock(&dev_priv->sb_lock);
8492
8493 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8494 tmp &= ~SBI_SSCCTL_DISABLE;
8495 tmp |= SBI_SSCCTL_PATHALT;
8496 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8497
8498 udelay(24);
8499
8500 if (with_spread) {
8501 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8502 tmp &= ~SBI_SSCCTL_PATHALT;
8503 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8504
8505 if (with_fdi) {
8506 lpt_reset_fdi_mphy(dev_priv);
8507 lpt_program_fdi_mphy(dev_priv);
8508 }
8509 }
8510
8511 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8512 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8513 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8514 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8515
8516 mutex_unlock(&dev_priv->sb_lock);
8517 }
8518
8519 /* Sequence to disable CLKOUT_DP */
8520 static void lpt_disable_clkout_dp(struct drm_device *dev)
8521 {
8522 struct drm_i915_private *dev_priv = dev->dev_private;
8523 uint32_t reg, tmp;
8524
8525 mutex_lock(&dev_priv->sb_lock);
8526
8527 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8528 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8529 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8530 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8531
8532 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8533 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8534 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8535 tmp |= SBI_SSCCTL_PATHALT;
8536 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8537 udelay(32);
8538 }
8539 tmp |= SBI_SSCCTL_DISABLE;
8540 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8541 }
8542
8543 mutex_unlock(&dev_priv->sb_lock);
8544 }
8545
8546 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8547
8548 static const uint16_t sscdivintphase[] = {
8549 [BEND_IDX( 50)] = 0x3B23,
8550 [BEND_IDX( 45)] = 0x3B23,
8551 [BEND_IDX( 40)] = 0x3C23,
8552 [BEND_IDX( 35)] = 0x3C23,
8553 [BEND_IDX( 30)] = 0x3D23,
8554 [BEND_IDX( 25)] = 0x3D23,
8555 [BEND_IDX( 20)] = 0x3E23,
8556 [BEND_IDX( 15)] = 0x3E23,
8557 [BEND_IDX( 10)] = 0x3F23,
8558 [BEND_IDX( 5)] = 0x3F23,
8559 [BEND_IDX( 0)] = 0x0025,
8560 [BEND_IDX( -5)] = 0x0025,
8561 [BEND_IDX(-10)] = 0x0125,
8562 [BEND_IDX(-15)] = 0x0125,
8563 [BEND_IDX(-20)] = 0x0225,
8564 [BEND_IDX(-25)] = 0x0225,
8565 [BEND_IDX(-30)] = 0x0325,
8566 [BEND_IDX(-35)] = 0x0325,
8567 [BEND_IDX(-40)] = 0x0425,
8568 [BEND_IDX(-45)] = 0x0425,
8569 [BEND_IDX(-50)] = 0x0525,
8570 };
8571
8572 /*
8573 * Bend CLKOUT_DP
8574 * steps -50 to 50 inclusive, in steps of 5
8575 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8576 * change in clock period = -(steps / 10) * 5.787 ps
8577 */
8578 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8579 {
8580 uint32_t tmp;
8581 int idx = BEND_IDX(steps);
8582
8583 if (WARN_ON(steps % 5 != 0))
8584 return;
8585
8586 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8587 return;
8588
8589 mutex_lock(&dev_priv->sb_lock);
8590
8591 if (steps % 10 != 0)
8592 tmp = 0xAAAAAAAB;
8593 else
8594 tmp = 0x00000000;
8595 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8596
8597 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8598 tmp &= 0xffff0000;
8599 tmp |= sscdivintphase[idx];
8600 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8601
8602 mutex_unlock(&dev_priv->sb_lock);
8603 }
8604
8605 #undef BEND_IDX
8606
8607 static void lpt_init_pch_refclk(struct drm_device *dev)
8608 {
8609 struct intel_encoder *encoder;
8610 bool has_vga = false;
8611
8612 for_each_intel_encoder(dev, encoder) {
8613 switch (encoder->type) {
8614 case INTEL_OUTPUT_ANALOG:
8615 has_vga = true;
8616 break;
8617 default:
8618 break;
8619 }
8620 }
8621
8622 if (has_vga) {
8623 lpt_bend_clkout_dp(to_i915(dev), 0);
8624 lpt_enable_clkout_dp(dev, true, true);
8625 } else {
8626 lpt_disable_clkout_dp(dev);
8627 }
8628 }
8629
8630 /*
8631 * Initialize reference clocks when the driver loads
8632 */
8633 void intel_init_pch_refclk(struct drm_device *dev)
8634 {
8635 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8636 ironlake_init_pch_refclk(dev);
8637 else if (HAS_PCH_LPT(dev))
8638 lpt_init_pch_refclk(dev);
8639 }
8640
8641 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8642 {
8643 struct drm_device *dev = crtc_state->base.crtc->dev;
8644 struct drm_i915_private *dev_priv = dev->dev_private;
8645 struct drm_atomic_state *state = crtc_state->base.state;
8646 struct drm_connector *connector;
8647 struct drm_connector_state *connector_state;
8648 struct intel_encoder *encoder;
8649 int num_connectors = 0, i;
8650 bool is_lvds = false;
8651
8652 for_each_connector_in_state(state, connector, connector_state, i) {
8653 if (connector_state->crtc != crtc_state->base.crtc)
8654 continue;
8655
8656 encoder = to_intel_encoder(connector_state->best_encoder);
8657
8658 switch (encoder->type) {
8659 case INTEL_OUTPUT_LVDS:
8660 is_lvds = true;
8661 break;
8662 default:
8663 break;
8664 }
8665 num_connectors++;
8666 }
8667
8668 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8669 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8670 dev_priv->vbt.lvds_ssc_freq);
8671 return dev_priv->vbt.lvds_ssc_freq;
8672 }
8673
8674 return 120000;
8675 }
8676
8677 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8678 {
8679 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8681 int pipe = intel_crtc->pipe;
8682 uint32_t val;
8683
8684 val = 0;
8685
8686 switch (intel_crtc->config->pipe_bpp) {
8687 case 18:
8688 val |= PIPECONF_6BPC;
8689 break;
8690 case 24:
8691 val |= PIPECONF_8BPC;
8692 break;
8693 case 30:
8694 val |= PIPECONF_10BPC;
8695 break;
8696 case 36:
8697 val |= PIPECONF_12BPC;
8698 break;
8699 default:
8700 /* Case prevented by intel_choose_pipe_bpp_dither. */
8701 BUG();
8702 }
8703
8704 if (intel_crtc->config->dither)
8705 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8706
8707 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8708 val |= PIPECONF_INTERLACED_ILK;
8709 else
8710 val |= PIPECONF_PROGRESSIVE;
8711
8712 if (intel_crtc->config->limited_color_range)
8713 val |= PIPECONF_COLOR_RANGE_SELECT;
8714
8715 I915_WRITE(PIPECONF(pipe), val);
8716 POSTING_READ(PIPECONF(pipe));
8717 }
8718
8719 /*
8720 * Set up the pipe CSC unit.
8721 *
8722 * Currently only full range RGB to limited range RGB conversion
8723 * is supported, but eventually this should handle various
8724 * RGB<->YCbCr scenarios as well.
8725 */
8726 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8727 {
8728 struct drm_device *dev = crtc->dev;
8729 struct drm_i915_private *dev_priv = dev->dev_private;
8730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8731 int pipe = intel_crtc->pipe;
8732 uint16_t coeff = 0x7800; /* 1.0 */
8733
8734 /*
8735 * TODO: Check what kind of values actually come out of the pipe
8736 * with these coeff/postoff values and adjust to get the best
8737 * accuracy. Perhaps we even need to take the bpc value into
8738 * consideration.
8739 */
8740
8741 if (intel_crtc->config->limited_color_range)
8742 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8743
8744 /*
8745 * GY/GU and RY/RU should be the other way around according
8746 * to BSpec, but reality doesn't agree. Just set them up in
8747 * a way that results in the correct picture.
8748 */
8749 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8750 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8751
8752 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8753 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8754
8755 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8756 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8757
8758 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8759 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8760 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8761
8762 if (INTEL_INFO(dev)->gen > 6) {
8763 uint16_t postoff = 0;
8764
8765 if (intel_crtc->config->limited_color_range)
8766 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8767
8768 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8769 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8770 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8771
8772 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8773 } else {
8774 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8775
8776 if (intel_crtc->config->limited_color_range)
8777 mode |= CSC_BLACK_SCREEN_OFFSET;
8778
8779 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8780 }
8781 }
8782
8783 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8784 {
8785 struct drm_device *dev = crtc->dev;
8786 struct drm_i915_private *dev_priv = dev->dev_private;
8787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8788 enum pipe pipe = intel_crtc->pipe;
8789 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8790 uint32_t val;
8791
8792 val = 0;
8793
8794 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8795 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8796
8797 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8798 val |= PIPECONF_INTERLACED_ILK;
8799 else
8800 val |= PIPECONF_PROGRESSIVE;
8801
8802 I915_WRITE(PIPECONF(cpu_transcoder), val);
8803 POSTING_READ(PIPECONF(cpu_transcoder));
8804
8805 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8806 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8807
8808 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8809 val = 0;
8810
8811 switch (intel_crtc->config->pipe_bpp) {
8812 case 18:
8813 val |= PIPEMISC_DITHER_6_BPC;
8814 break;
8815 case 24:
8816 val |= PIPEMISC_DITHER_8_BPC;
8817 break;
8818 case 30:
8819 val |= PIPEMISC_DITHER_10_BPC;
8820 break;
8821 case 36:
8822 val |= PIPEMISC_DITHER_12_BPC;
8823 break;
8824 default:
8825 /* Case prevented by pipe_config_set_bpp. */
8826 BUG();
8827 }
8828
8829 if (intel_crtc->config->dither)
8830 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8831
8832 I915_WRITE(PIPEMISC(pipe), val);
8833 }
8834 }
8835
8836 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8837 struct intel_crtc_state *crtc_state,
8838 intel_clock_t *clock,
8839 bool *has_reduced_clock,
8840 intel_clock_t *reduced_clock)
8841 {
8842 struct drm_device *dev = crtc->dev;
8843 struct drm_i915_private *dev_priv = dev->dev_private;
8844 int refclk;
8845 const intel_limit_t *limit;
8846 bool ret;
8847
8848 refclk = ironlake_get_refclk(crtc_state);
8849
8850 /*
8851 * Returns a set of divisors for the desired target clock with the given
8852 * refclk, or FALSE. The returned values represent the clock equation:
8853 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8854 */
8855 limit = intel_limit(crtc_state, refclk);
8856 ret = dev_priv->display.find_dpll(limit, crtc_state,
8857 crtc_state->port_clock,
8858 refclk, NULL, clock);
8859 if (!ret)
8860 return false;
8861
8862 return true;
8863 }
8864
8865 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8866 {
8867 /*
8868 * Account for spread spectrum to avoid
8869 * oversubscribing the link. Max center spread
8870 * is 2.5%; use 5% for safety's sake.
8871 */
8872 u32 bps = target_clock * bpp * 21 / 20;
8873 return DIV_ROUND_UP(bps, link_bw * 8);
8874 }
8875
8876 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8877 {
8878 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8879 }
8880
8881 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8882 struct intel_crtc_state *crtc_state,
8883 u32 *fp,
8884 intel_clock_t *reduced_clock, u32 *fp2)
8885 {
8886 struct drm_crtc *crtc = &intel_crtc->base;
8887 struct drm_device *dev = crtc->dev;
8888 struct drm_i915_private *dev_priv = dev->dev_private;
8889 struct drm_atomic_state *state = crtc_state->base.state;
8890 struct drm_connector *connector;
8891 struct drm_connector_state *connector_state;
8892 struct intel_encoder *encoder;
8893 uint32_t dpll;
8894 int factor, num_connectors = 0, i;
8895 bool is_lvds = false, is_sdvo = false;
8896
8897 for_each_connector_in_state(state, connector, connector_state, i) {
8898 if (connector_state->crtc != crtc_state->base.crtc)
8899 continue;
8900
8901 encoder = to_intel_encoder(connector_state->best_encoder);
8902
8903 switch (encoder->type) {
8904 case INTEL_OUTPUT_LVDS:
8905 is_lvds = true;
8906 break;
8907 case INTEL_OUTPUT_SDVO:
8908 case INTEL_OUTPUT_HDMI:
8909 is_sdvo = true;
8910 break;
8911 default:
8912 break;
8913 }
8914
8915 num_connectors++;
8916 }
8917
8918 /* Enable autotuning of the PLL clock (if permissible) */
8919 factor = 21;
8920 if (is_lvds) {
8921 if ((intel_panel_use_ssc(dev_priv) &&
8922 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8923 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8924 factor = 25;
8925 } else if (crtc_state->sdvo_tv_clock)
8926 factor = 20;
8927
8928 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8929 *fp |= FP_CB_TUNE;
8930
8931 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8932 *fp2 |= FP_CB_TUNE;
8933
8934 dpll = 0;
8935
8936 if (is_lvds)
8937 dpll |= DPLLB_MODE_LVDS;
8938 else
8939 dpll |= DPLLB_MODE_DAC_SERIAL;
8940
8941 dpll |= (crtc_state->pixel_multiplier - 1)
8942 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8943
8944 if (is_sdvo)
8945 dpll |= DPLL_SDVO_HIGH_SPEED;
8946 if (crtc_state->has_dp_encoder)
8947 dpll |= DPLL_SDVO_HIGH_SPEED;
8948
8949 /* compute bitmask from p1 value */
8950 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8951 /* also FPA1 */
8952 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8953
8954 switch (crtc_state->dpll.p2) {
8955 case 5:
8956 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8957 break;
8958 case 7:
8959 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8960 break;
8961 case 10:
8962 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8963 break;
8964 case 14:
8965 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8966 break;
8967 }
8968
8969 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8970 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8971 else
8972 dpll |= PLL_REF_INPUT_DREFCLK;
8973
8974 return dpll | DPLL_VCO_ENABLE;
8975 }
8976
8977 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8978 struct intel_crtc_state *crtc_state)
8979 {
8980 struct drm_device *dev = crtc->base.dev;
8981 intel_clock_t clock, reduced_clock;
8982 u32 dpll = 0, fp = 0, fp2 = 0;
8983 bool ok, has_reduced_clock = false;
8984 bool is_lvds = false;
8985 struct intel_shared_dpll *pll;
8986
8987 memset(&crtc_state->dpll_hw_state, 0,
8988 sizeof(crtc_state->dpll_hw_state));
8989
8990 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8991
8992 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8993 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8994
8995 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8996 &has_reduced_clock, &reduced_clock);
8997 if (!ok && !crtc_state->clock_set) {
8998 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8999 return -EINVAL;
9000 }
9001 /* Compat-code for transition, will disappear. */
9002 if (!crtc_state->clock_set) {
9003 crtc_state->dpll.n = clock.n;
9004 crtc_state->dpll.m1 = clock.m1;
9005 crtc_state->dpll.m2 = clock.m2;
9006 crtc_state->dpll.p1 = clock.p1;
9007 crtc_state->dpll.p2 = clock.p2;
9008 }
9009
9010 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9011 if (crtc_state->has_pch_encoder) {
9012 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9013 if (has_reduced_clock)
9014 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9015
9016 dpll = ironlake_compute_dpll(crtc, crtc_state,
9017 &fp, &reduced_clock,
9018 has_reduced_clock ? &fp2 : NULL);
9019
9020 crtc_state->dpll_hw_state.dpll = dpll;
9021 crtc_state->dpll_hw_state.fp0 = fp;
9022 if (has_reduced_clock)
9023 crtc_state->dpll_hw_state.fp1 = fp2;
9024 else
9025 crtc_state->dpll_hw_state.fp1 = fp;
9026
9027 pll = intel_get_shared_dpll(crtc, crtc_state);
9028 if (pll == NULL) {
9029 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9030 pipe_name(crtc->pipe));
9031 return -EINVAL;
9032 }
9033 }
9034
9035 if (is_lvds && has_reduced_clock)
9036 crtc->lowfreq_avail = true;
9037 else
9038 crtc->lowfreq_avail = false;
9039
9040 return 0;
9041 }
9042
9043 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9044 struct intel_link_m_n *m_n)
9045 {
9046 struct drm_device *dev = crtc->base.dev;
9047 struct drm_i915_private *dev_priv = dev->dev_private;
9048 enum pipe pipe = crtc->pipe;
9049
9050 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9051 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9052 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9053 & ~TU_SIZE_MASK;
9054 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9055 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9056 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9057 }
9058
9059 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9060 enum transcoder transcoder,
9061 struct intel_link_m_n *m_n,
9062 struct intel_link_m_n *m2_n2)
9063 {
9064 struct drm_device *dev = crtc->base.dev;
9065 struct drm_i915_private *dev_priv = dev->dev_private;
9066 enum pipe pipe = crtc->pipe;
9067
9068 if (INTEL_INFO(dev)->gen >= 5) {
9069 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9070 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9071 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9072 & ~TU_SIZE_MASK;
9073 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9074 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9075 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9076 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9077 * gen < 8) and if DRRS is supported (to make sure the
9078 * registers are not unnecessarily read).
9079 */
9080 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9081 crtc->config->has_drrs) {
9082 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9083 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9084 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9085 & ~TU_SIZE_MASK;
9086 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9087 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9088 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9089 }
9090 } else {
9091 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9092 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9093 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9094 & ~TU_SIZE_MASK;
9095 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9096 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9097 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9098 }
9099 }
9100
9101 void intel_dp_get_m_n(struct intel_crtc *crtc,
9102 struct intel_crtc_state *pipe_config)
9103 {
9104 if (pipe_config->has_pch_encoder)
9105 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9106 else
9107 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9108 &pipe_config->dp_m_n,
9109 &pipe_config->dp_m2_n2);
9110 }
9111
9112 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9113 struct intel_crtc_state *pipe_config)
9114 {
9115 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9116 &pipe_config->fdi_m_n, NULL);
9117 }
9118
9119 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9120 struct intel_crtc_state *pipe_config)
9121 {
9122 struct drm_device *dev = crtc->base.dev;
9123 struct drm_i915_private *dev_priv = dev->dev_private;
9124 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9125 uint32_t ps_ctrl = 0;
9126 int id = -1;
9127 int i;
9128
9129 /* find scaler attached to this pipe */
9130 for (i = 0; i < crtc->num_scalers; i++) {
9131 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9132 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9133 id = i;
9134 pipe_config->pch_pfit.enabled = true;
9135 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9136 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9137 break;
9138 }
9139 }
9140
9141 scaler_state->scaler_id = id;
9142 if (id >= 0) {
9143 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9144 } else {
9145 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9146 }
9147 }
9148
9149 static void
9150 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9151 struct intel_initial_plane_config *plane_config)
9152 {
9153 struct drm_device *dev = crtc->base.dev;
9154 struct drm_i915_private *dev_priv = dev->dev_private;
9155 u32 val, base, offset, stride_mult, tiling;
9156 int pipe = crtc->pipe;
9157 int fourcc, pixel_format;
9158 unsigned int aligned_height;
9159 struct drm_framebuffer *fb;
9160 struct intel_framebuffer *intel_fb;
9161
9162 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9163 if (!intel_fb) {
9164 DRM_DEBUG_KMS("failed to alloc fb\n");
9165 return;
9166 }
9167
9168 fb = &intel_fb->base;
9169
9170 val = I915_READ(PLANE_CTL(pipe, 0));
9171 if (!(val & PLANE_CTL_ENABLE))
9172 goto error;
9173
9174 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9175 fourcc = skl_format_to_fourcc(pixel_format,
9176 val & PLANE_CTL_ORDER_RGBX,
9177 val & PLANE_CTL_ALPHA_MASK);
9178 fb->pixel_format = fourcc;
9179 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9180
9181 tiling = val & PLANE_CTL_TILED_MASK;
9182 switch (tiling) {
9183 case PLANE_CTL_TILED_LINEAR:
9184 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9185 break;
9186 case PLANE_CTL_TILED_X:
9187 plane_config->tiling = I915_TILING_X;
9188 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9189 break;
9190 case PLANE_CTL_TILED_Y:
9191 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9192 break;
9193 case PLANE_CTL_TILED_YF:
9194 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9195 break;
9196 default:
9197 MISSING_CASE(tiling);
9198 goto error;
9199 }
9200
9201 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9202 plane_config->base = base;
9203
9204 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9205
9206 val = I915_READ(PLANE_SIZE(pipe, 0));
9207 fb->height = ((val >> 16) & 0xfff) + 1;
9208 fb->width = ((val >> 0) & 0x1fff) + 1;
9209
9210 val = I915_READ(PLANE_STRIDE(pipe, 0));
9211 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9212 fb->pixel_format);
9213 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9214
9215 aligned_height = intel_fb_align_height(dev, fb->height,
9216 fb->pixel_format,
9217 fb->modifier[0]);
9218
9219 plane_config->size = fb->pitches[0] * aligned_height;
9220
9221 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9222 pipe_name(pipe), fb->width, fb->height,
9223 fb->bits_per_pixel, base, fb->pitches[0],
9224 plane_config->size);
9225
9226 plane_config->fb = intel_fb;
9227 return;
9228
9229 error:
9230 kfree(fb);
9231 }
9232
9233 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9234 struct intel_crtc_state *pipe_config)
9235 {
9236 struct drm_device *dev = crtc->base.dev;
9237 struct drm_i915_private *dev_priv = dev->dev_private;
9238 uint32_t tmp;
9239
9240 tmp = I915_READ(PF_CTL(crtc->pipe));
9241
9242 if (tmp & PF_ENABLE) {
9243 pipe_config->pch_pfit.enabled = true;
9244 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9245 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9246
9247 /* We currently do not free assignements of panel fitters on
9248 * ivb/hsw (since we don't use the higher upscaling modes which
9249 * differentiates them) so just WARN about this case for now. */
9250 if (IS_GEN7(dev)) {
9251 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9252 PF_PIPE_SEL_IVB(crtc->pipe));
9253 }
9254 }
9255 }
9256
9257 static void
9258 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9259 struct intel_initial_plane_config *plane_config)
9260 {
9261 struct drm_device *dev = crtc->base.dev;
9262 struct drm_i915_private *dev_priv = dev->dev_private;
9263 u32 val, base, offset;
9264 int pipe = crtc->pipe;
9265 int fourcc, pixel_format;
9266 unsigned int aligned_height;
9267 struct drm_framebuffer *fb;
9268 struct intel_framebuffer *intel_fb;
9269
9270 val = I915_READ(DSPCNTR(pipe));
9271 if (!(val & DISPLAY_PLANE_ENABLE))
9272 return;
9273
9274 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9275 if (!intel_fb) {
9276 DRM_DEBUG_KMS("failed to alloc fb\n");
9277 return;
9278 }
9279
9280 fb = &intel_fb->base;
9281
9282 if (INTEL_INFO(dev)->gen >= 4) {
9283 if (val & DISPPLANE_TILED) {
9284 plane_config->tiling = I915_TILING_X;
9285 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9286 }
9287 }
9288
9289 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9290 fourcc = i9xx_format_to_fourcc(pixel_format);
9291 fb->pixel_format = fourcc;
9292 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9293
9294 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9295 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9296 offset = I915_READ(DSPOFFSET(pipe));
9297 } else {
9298 if (plane_config->tiling)
9299 offset = I915_READ(DSPTILEOFF(pipe));
9300 else
9301 offset = I915_READ(DSPLINOFF(pipe));
9302 }
9303 plane_config->base = base;
9304
9305 val = I915_READ(PIPESRC(pipe));
9306 fb->width = ((val >> 16) & 0xfff) + 1;
9307 fb->height = ((val >> 0) & 0xfff) + 1;
9308
9309 val = I915_READ(DSPSTRIDE(pipe));
9310 fb->pitches[0] = val & 0xffffffc0;
9311
9312 aligned_height = intel_fb_align_height(dev, fb->height,
9313 fb->pixel_format,
9314 fb->modifier[0]);
9315
9316 plane_config->size = fb->pitches[0] * aligned_height;
9317
9318 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9319 pipe_name(pipe), fb->width, fb->height,
9320 fb->bits_per_pixel, base, fb->pitches[0],
9321 plane_config->size);
9322
9323 plane_config->fb = intel_fb;
9324 }
9325
9326 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9327 struct intel_crtc_state *pipe_config)
9328 {
9329 struct drm_device *dev = crtc->base.dev;
9330 struct drm_i915_private *dev_priv = dev->dev_private;
9331 enum intel_display_power_domain power_domain;
9332 uint32_t tmp;
9333 bool ret;
9334
9335 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9336 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9337 return false;
9338
9339 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9340 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9341
9342 ret = false;
9343 tmp = I915_READ(PIPECONF(crtc->pipe));
9344 if (!(tmp & PIPECONF_ENABLE))
9345 goto out;
9346
9347 switch (tmp & PIPECONF_BPC_MASK) {
9348 case PIPECONF_6BPC:
9349 pipe_config->pipe_bpp = 18;
9350 break;
9351 case PIPECONF_8BPC:
9352 pipe_config->pipe_bpp = 24;
9353 break;
9354 case PIPECONF_10BPC:
9355 pipe_config->pipe_bpp = 30;
9356 break;
9357 case PIPECONF_12BPC:
9358 pipe_config->pipe_bpp = 36;
9359 break;
9360 default:
9361 break;
9362 }
9363
9364 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9365 pipe_config->limited_color_range = true;
9366
9367 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9368 struct intel_shared_dpll *pll;
9369
9370 pipe_config->has_pch_encoder = true;
9371
9372 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9373 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9374 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9375
9376 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9377
9378 if (HAS_PCH_IBX(dev_priv->dev)) {
9379 pipe_config->shared_dpll =
9380 (enum intel_dpll_id) crtc->pipe;
9381 } else {
9382 tmp = I915_READ(PCH_DPLL_SEL);
9383 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9384 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9385 else
9386 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9387 }
9388
9389 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9390
9391 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9392 &pipe_config->dpll_hw_state));
9393
9394 tmp = pipe_config->dpll_hw_state.dpll;
9395 pipe_config->pixel_multiplier =
9396 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9397 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9398
9399 ironlake_pch_clock_get(crtc, pipe_config);
9400 } else {
9401 pipe_config->pixel_multiplier = 1;
9402 }
9403
9404 intel_get_pipe_timings(crtc, pipe_config);
9405
9406 ironlake_get_pfit_config(crtc, pipe_config);
9407
9408 ret = true;
9409
9410 out:
9411 intel_display_power_put(dev_priv, power_domain);
9412
9413 return ret;
9414 }
9415
9416 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9417 {
9418 struct drm_device *dev = dev_priv->dev;
9419 struct intel_crtc *crtc;
9420
9421 for_each_intel_crtc(dev, crtc)
9422 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9423 pipe_name(crtc->pipe));
9424
9425 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9426 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9427 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9428 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9429 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9430 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9431 "CPU PWM1 enabled\n");
9432 if (IS_HASWELL(dev))
9433 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9434 "CPU PWM2 enabled\n");
9435 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9436 "PCH PWM1 enabled\n");
9437 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9438 "Utility pin enabled\n");
9439 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9440
9441 /*
9442 * In theory we can still leave IRQs enabled, as long as only the HPD
9443 * interrupts remain enabled. We used to check for that, but since it's
9444 * gen-specific and since we only disable LCPLL after we fully disable
9445 * the interrupts, the check below should be enough.
9446 */
9447 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9448 }
9449
9450 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9451 {
9452 struct drm_device *dev = dev_priv->dev;
9453
9454 if (IS_HASWELL(dev))
9455 return I915_READ(D_COMP_HSW);
9456 else
9457 return I915_READ(D_COMP_BDW);
9458 }
9459
9460 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9461 {
9462 struct drm_device *dev = dev_priv->dev;
9463
9464 if (IS_HASWELL(dev)) {
9465 mutex_lock(&dev_priv->rps.hw_lock);
9466 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9467 val))
9468 DRM_ERROR("Failed to write to D_COMP\n");
9469 mutex_unlock(&dev_priv->rps.hw_lock);
9470 } else {
9471 I915_WRITE(D_COMP_BDW, val);
9472 POSTING_READ(D_COMP_BDW);
9473 }
9474 }
9475
9476 /*
9477 * This function implements pieces of two sequences from BSpec:
9478 * - Sequence for display software to disable LCPLL
9479 * - Sequence for display software to allow package C8+
9480 * The steps implemented here are just the steps that actually touch the LCPLL
9481 * register. Callers should take care of disabling all the display engine
9482 * functions, doing the mode unset, fixing interrupts, etc.
9483 */
9484 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9485 bool switch_to_fclk, bool allow_power_down)
9486 {
9487 uint32_t val;
9488
9489 assert_can_disable_lcpll(dev_priv);
9490
9491 val = I915_READ(LCPLL_CTL);
9492
9493 if (switch_to_fclk) {
9494 val |= LCPLL_CD_SOURCE_FCLK;
9495 I915_WRITE(LCPLL_CTL, val);
9496
9497 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9498 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9499 DRM_ERROR("Switching to FCLK failed\n");
9500
9501 val = I915_READ(LCPLL_CTL);
9502 }
9503
9504 val |= LCPLL_PLL_DISABLE;
9505 I915_WRITE(LCPLL_CTL, val);
9506 POSTING_READ(LCPLL_CTL);
9507
9508 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9509 DRM_ERROR("LCPLL still locked\n");
9510
9511 val = hsw_read_dcomp(dev_priv);
9512 val |= D_COMP_COMP_DISABLE;
9513 hsw_write_dcomp(dev_priv, val);
9514 ndelay(100);
9515
9516 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9517 1))
9518 DRM_ERROR("D_COMP RCOMP still in progress\n");
9519
9520 if (allow_power_down) {
9521 val = I915_READ(LCPLL_CTL);
9522 val |= LCPLL_POWER_DOWN_ALLOW;
9523 I915_WRITE(LCPLL_CTL, val);
9524 POSTING_READ(LCPLL_CTL);
9525 }
9526 }
9527
9528 /*
9529 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9530 * source.
9531 */
9532 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9533 {
9534 uint32_t val;
9535
9536 val = I915_READ(LCPLL_CTL);
9537
9538 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9539 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9540 return;
9541
9542 /*
9543 * Make sure we're not on PC8 state before disabling PC8, otherwise
9544 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9545 */
9546 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9547
9548 if (val & LCPLL_POWER_DOWN_ALLOW) {
9549 val &= ~LCPLL_POWER_DOWN_ALLOW;
9550 I915_WRITE(LCPLL_CTL, val);
9551 POSTING_READ(LCPLL_CTL);
9552 }
9553
9554 val = hsw_read_dcomp(dev_priv);
9555 val |= D_COMP_COMP_FORCE;
9556 val &= ~D_COMP_COMP_DISABLE;
9557 hsw_write_dcomp(dev_priv, val);
9558
9559 val = I915_READ(LCPLL_CTL);
9560 val &= ~LCPLL_PLL_DISABLE;
9561 I915_WRITE(LCPLL_CTL, val);
9562
9563 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9564 DRM_ERROR("LCPLL not locked yet\n");
9565
9566 if (val & LCPLL_CD_SOURCE_FCLK) {
9567 val = I915_READ(LCPLL_CTL);
9568 val &= ~LCPLL_CD_SOURCE_FCLK;
9569 I915_WRITE(LCPLL_CTL, val);
9570
9571 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9572 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9573 DRM_ERROR("Switching back to LCPLL failed\n");
9574 }
9575
9576 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9577 intel_update_cdclk(dev_priv->dev);
9578 }
9579
9580 /*
9581 * Package states C8 and deeper are really deep PC states that can only be
9582 * reached when all the devices on the system allow it, so even if the graphics
9583 * device allows PC8+, it doesn't mean the system will actually get to these
9584 * states. Our driver only allows PC8+ when going into runtime PM.
9585 *
9586 * The requirements for PC8+ are that all the outputs are disabled, the power
9587 * well is disabled and most interrupts are disabled, and these are also
9588 * requirements for runtime PM. When these conditions are met, we manually do
9589 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9590 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9591 * hang the machine.
9592 *
9593 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9594 * the state of some registers, so when we come back from PC8+ we need to
9595 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9596 * need to take care of the registers kept by RC6. Notice that this happens even
9597 * if we don't put the device in PCI D3 state (which is what currently happens
9598 * because of the runtime PM support).
9599 *
9600 * For more, read "Display Sequences for Package C8" on the hardware
9601 * documentation.
9602 */
9603 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9604 {
9605 struct drm_device *dev = dev_priv->dev;
9606 uint32_t val;
9607
9608 DRM_DEBUG_KMS("Enabling package C8+\n");
9609
9610 if (HAS_PCH_LPT_LP(dev)) {
9611 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9612 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9613 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9614 }
9615
9616 lpt_disable_clkout_dp(dev);
9617 hsw_disable_lcpll(dev_priv, true, true);
9618 }
9619
9620 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9621 {
9622 struct drm_device *dev = dev_priv->dev;
9623 uint32_t val;
9624
9625 DRM_DEBUG_KMS("Disabling package C8+\n");
9626
9627 hsw_restore_lcpll(dev_priv);
9628 lpt_init_pch_refclk(dev);
9629
9630 if (HAS_PCH_LPT_LP(dev)) {
9631 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9632 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9633 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9634 }
9635 }
9636
9637 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9638 {
9639 struct drm_device *dev = old_state->dev;
9640 struct intel_atomic_state *old_intel_state =
9641 to_intel_atomic_state(old_state);
9642 unsigned int req_cdclk = old_intel_state->dev_cdclk;
9643
9644 broxton_set_cdclk(dev, req_cdclk);
9645 }
9646
9647 /* compute the max rate for new configuration */
9648 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9649 {
9650 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9651 struct drm_i915_private *dev_priv = state->dev->dev_private;
9652 struct drm_crtc *crtc;
9653 struct drm_crtc_state *cstate;
9654 struct intel_crtc_state *crtc_state;
9655 unsigned max_pixel_rate = 0, i;
9656 enum pipe pipe;
9657
9658 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9659 sizeof(intel_state->min_pixclk));
9660
9661 for_each_crtc_in_state(state, crtc, cstate, i) {
9662 int pixel_rate;
9663
9664 crtc_state = to_intel_crtc_state(cstate);
9665 if (!crtc_state->base.enable) {
9666 intel_state->min_pixclk[i] = 0;
9667 continue;
9668 }
9669
9670 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9671
9672 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9673 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9674 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9675
9676 intel_state->min_pixclk[i] = pixel_rate;
9677 }
9678
9679 for_each_pipe(dev_priv, pipe)
9680 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9681
9682 return max_pixel_rate;
9683 }
9684
9685 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9686 {
9687 struct drm_i915_private *dev_priv = dev->dev_private;
9688 uint32_t val, data;
9689 int ret;
9690
9691 if (WARN((I915_READ(LCPLL_CTL) &
9692 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9693 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9694 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9695 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9696 "trying to change cdclk frequency with cdclk not enabled\n"))
9697 return;
9698
9699 mutex_lock(&dev_priv->rps.hw_lock);
9700 ret = sandybridge_pcode_write(dev_priv,
9701 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9702 mutex_unlock(&dev_priv->rps.hw_lock);
9703 if (ret) {
9704 DRM_ERROR("failed to inform pcode about cdclk change\n");
9705 return;
9706 }
9707
9708 val = I915_READ(LCPLL_CTL);
9709 val |= LCPLL_CD_SOURCE_FCLK;
9710 I915_WRITE(LCPLL_CTL, val);
9711
9712 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9713 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9714 DRM_ERROR("Switching to FCLK failed\n");
9715
9716 val = I915_READ(LCPLL_CTL);
9717 val &= ~LCPLL_CLK_FREQ_MASK;
9718
9719 switch (cdclk) {
9720 case 450000:
9721 val |= LCPLL_CLK_FREQ_450;
9722 data = 0;
9723 break;
9724 case 540000:
9725 val |= LCPLL_CLK_FREQ_54O_BDW;
9726 data = 1;
9727 break;
9728 case 337500:
9729 val |= LCPLL_CLK_FREQ_337_5_BDW;
9730 data = 2;
9731 break;
9732 case 675000:
9733 val |= LCPLL_CLK_FREQ_675_BDW;
9734 data = 3;
9735 break;
9736 default:
9737 WARN(1, "invalid cdclk frequency\n");
9738 return;
9739 }
9740
9741 I915_WRITE(LCPLL_CTL, val);
9742
9743 val = I915_READ(LCPLL_CTL);
9744 val &= ~LCPLL_CD_SOURCE_FCLK;
9745 I915_WRITE(LCPLL_CTL, val);
9746
9747 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9748 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9749 DRM_ERROR("Switching back to LCPLL failed\n");
9750
9751 mutex_lock(&dev_priv->rps.hw_lock);
9752 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9753 mutex_unlock(&dev_priv->rps.hw_lock);
9754
9755 intel_update_cdclk(dev);
9756
9757 WARN(cdclk != dev_priv->cdclk_freq,
9758 "cdclk requested %d kHz but got %d kHz\n",
9759 cdclk, dev_priv->cdclk_freq);
9760 }
9761
9762 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9763 {
9764 struct drm_i915_private *dev_priv = to_i915(state->dev);
9765 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9766 int max_pixclk = ilk_max_pixel_rate(state);
9767 int cdclk;
9768
9769 /*
9770 * FIXME should also account for plane ratio
9771 * once 64bpp pixel formats are supported.
9772 */
9773 if (max_pixclk > 540000)
9774 cdclk = 675000;
9775 else if (max_pixclk > 450000)
9776 cdclk = 540000;
9777 else if (max_pixclk > 337500)
9778 cdclk = 450000;
9779 else
9780 cdclk = 337500;
9781
9782 if (cdclk > dev_priv->max_cdclk_freq) {
9783 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9784 cdclk, dev_priv->max_cdclk_freq);
9785 return -EINVAL;
9786 }
9787
9788 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9789 if (!intel_state->active_crtcs)
9790 intel_state->dev_cdclk = 337500;
9791
9792 return 0;
9793 }
9794
9795 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9796 {
9797 struct drm_device *dev = old_state->dev;
9798 struct intel_atomic_state *old_intel_state =
9799 to_intel_atomic_state(old_state);
9800 unsigned req_cdclk = old_intel_state->dev_cdclk;
9801
9802 broadwell_set_cdclk(dev, req_cdclk);
9803 }
9804
9805 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9806 struct intel_crtc_state *crtc_state)
9807 {
9808 struct intel_encoder *intel_encoder =
9809 intel_ddi_get_crtc_new_encoder(crtc_state);
9810
9811 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9812 if (!intel_ddi_pll_select(crtc, crtc_state))
9813 return -EINVAL;
9814 }
9815
9816 crtc->lowfreq_avail = false;
9817
9818 return 0;
9819 }
9820
9821 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9822 enum port port,
9823 struct intel_crtc_state *pipe_config)
9824 {
9825 switch (port) {
9826 case PORT_A:
9827 pipe_config->ddi_pll_sel = SKL_DPLL0;
9828 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9829 break;
9830 case PORT_B:
9831 pipe_config->ddi_pll_sel = SKL_DPLL1;
9832 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9833 break;
9834 case PORT_C:
9835 pipe_config->ddi_pll_sel = SKL_DPLL2;
9836 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9837 break;
9838 default:
9839 DRM_ERROR("Incorrect port type\n");
9840 }
9841 }
9842
9843 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9844 enum port port,
9845 struct intel_crtc_state *pipe_config)
9846 {
9847 u32 temp, dpll_ctl1;
9848
9849 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9850 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9851
9852 switch (pipe_config->ddi_pll_sel) {
9853 case SKL_DPLL0:
9854 /*
9855 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9856 * of the shared DPLL framework and thus needs to be read out
9857 * separately
9858 */
9859 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9860 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9861 break;
9862 case SKL_DPLL1:
9863 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9864 break;
9865 case SKL_DPLL2:
9866 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9867 break;
9868 case SKL_DPLL3:
9869 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9870 break;
9871 }
9872 }
9873
9874 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9875 enum port port,
9876 struct intel_crtc_state *pipe_config)
9877 {
9878 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9879
9880 switch (pipe_config->ddi_pll_sel) {
9881 case PORT_CLK_SEL_WRPLL1:
9882 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9883 break;
9884 case PORT_CLK_SEL_WRPLL2:
9885 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9886 break;
9887 case PORT_CLK_SEL_SPLL:
9888 pipe_config->shared_dpll = DPLL_ID_SPLL;
9889 break;
9890 }
9891 }
9892
9893 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9894 struct intel_crtc_state *pipe_config)
9895 {
9896 struct drm_device *dev = crtc->base.dev;
9897 struct drm_i915_private *dev_priv = dev->dev_private;
9898 struct intel_shared_dpll *pll;
9899 enum port port;
9900 uint32_t tmp;
9901
9902 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9903
9904 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9905
9906 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9907 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9908 else if (IS_BROXTON(dev))
9909 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9910 else
9911 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9912
9913 if (pipe_config->shared_dpll >= 0) {
9914 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9915
9916 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9917 &pipe_config->dpll_hw_state));
9918 }
9919
9920 /*
9921 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9922 * DDI E. So just check whether this pipe is wired to DDI E and whether
9923 * the PCH transcoder is on.
9924 */
9925 if (INTEL_INFO(dev)->gen < 9 &&
9926 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9927 pipe_config->has_pch_encoder = true;
9928
9929 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9930 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9931 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9932
9933 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9934 }
9935 }
9936
9937 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9938 struct intel_crtc_state *pipe_config)
9939 {
9940 struct drm_device *dev = crtc->base.dev;
9941 struct drm_i915_private *dev_priv = dev->dev_private;
9942 enum intel_display_power_domain power_domain;
9943 unsigned long power_domain_mask;
9944 uint32_t tmp;
9945 bool ret;
9946
9947 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9948 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9949 return false;
9950 power_domain_mask = BIT(power_domain);
9951
9952 ret = false;
9953
9954 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9955 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9956
9957 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9958 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9959 enum pipe trans_edp_pipe;
9960 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9961 default:
9962 WARN(1, "unknown pipe linked to edp transcoder\n");
9963 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9964 case TRANS_DDI_EDP_INPUT_A_ON:
9965 trans_edp_pipe = PIPE_A;
9966 break;
9967 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9968 trans_edp_pipe = PIPE_B;
9969 break;
9970 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9971 trans_edp_pipe = PIPE_C;
9972 break;
9973 }
9974
9975 if (trans_edp_pipe == crtc->pipe)
9976 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9977 }
9978
9979 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9980 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9981 goto out;
9982 power_domain_mask |= BIT(power_domain);
9983
9984 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9985 if (!(tmp & PIPECONF_ENABLE))
9986 goto out;
9987
9988 haswell_get_ddi_port_state(crtc, pipe_config);
9989
9990 intel_get_pipe_timings(crtc, pipe_config);
9991
9992 if (INTEL_INFO(dev)->gen >= 9) {
9993 skl_init_scalers(dev, crtc, pipe_config);
9994 }
9995
9996 if (INTEL_INFO(dev)->gen >= 9) {
9997 pipe_config->scaler_state.scaler_id = -1;
9998 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9999 }
10000
10001 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10002 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10003 power_domain_mask |= BIT(power_domain);
10004 if (INTEL_INFO(dev)->gen >= 9)
10005 skylake_get_pfit_config(crtc, pipe_config);
10006 else
10007 ironlake_get_pfit_config(crtc, pipe_config);
10008 }
10009
10010 if (IS_HASWELL(dev))
10011 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10012 (I915_READ(IPS_CTL) & IPS_ENABLE);
10013
10014 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10015 pipe_config->pixel_multiplier =
10016 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10017 } else {
10018 pipe_config->pixel_multiplier = 1;
10019 }
10020
10021 ret = true;
10022
10023 out:
10024 for_each_power_domain(power_domain, power_domain_mask)
10025 intel_display_power_put(dev_priv, power_domain);
10026
10027 return ret;
10028 }
10029
10030 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10031 const struct intel_plane_state *plane_state)
10032 {
10033 struct drm_device *dev = crtc->dev;
10034 struct drm_i915_private *dev_priv = dev->dev_private;
10035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10036 uint32_t cntl = 0, size = 0;
10037
10038 if (plane_state && plane_state->visible) {
10039 unsigned int width = plane_state->base.crtc_w;
10040 unsigned int height = plane_state->base.crtc_h;
10041 unsigned int stride = roundup_pow_of_two(width) * 4;
10042
10043 switch (stride) {
10044 default:
10045 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10046 width, stride);
10047 stride = 256;
10048 /* fallthrough */
10049 case 256:
10050 case 512:
10051 case 1024:
10052 case 2048:
10053 break;
10054 }
10055
10056 cntl |= CURSOR_ENABLE |
10057 CURSOR_GAMMA_ENABLE |
10058 CURSOR_FORMAT_ARGB |
10059 CURSOR_STRIDE(stride);
10060
10061 size = (height << 12) | width;
10062 }
10063
10064 if (intel_crtc->cursor_cntl != 0 &&
10065 (intel_crtc->cursor_base != base ||
10066 intel_crtc->cursor_size != size ||
10067 intel_crtc->cursor_cntl != cntl)) {
10068 /* On these chipsets we can only modify the base/size/stride
10069 * whilst the cursor is disabled.
10070 */
10071 I915_WRITE(CURCNTR(PIPE_A), 0);
10072 POSTING_READ(CURCNTR(PIPE_A));
10073 intel_crtc->cursor_cntl = 0;
10074 }
10075
10076 if (intel_crtc->cursor_base != base) {
10077 I915_WRITE(CURBASE(PIPE_A), base);
10078 intel_crtc->cursor_base = base;
10079 }
10080
10081 if (intel_crtc->cursor_size != size) {
10082 I915_WRITE(CURSIZE, size);
10083 intel_crtc->cursor_size = size;
10084 }
10085
10086 if (intel_crtc->cursor_cntl != cntl) {
10087 I915_WRITE(CURCNTR(PIPE_A), cntl);
10088 POSTING_READ(CURCNTR(PIPE_A));
10089 intel_crtc->cursor_cntl = cntl;
10090 }
10091 }
10092
10093 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10094 const struct intel_plane_state *plane_state)
10095 {
10096 struct drm_device *dev = crtc->dev;
10097 struct drm_i915_private *dev_priv = dev->dev_private;
10098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10099 int pipe = intel_crtc->pipe;
10100 uint32_t cntl = 0;
10101
10102 if (plane_state && plane_state->visible) {
10103 cntl = MCURSOR_GAMMA_ENABLE;
10104 switch (plane_state->base.crtc_w) {
10105 case 64:
10106 cntl |= CURSOR_MODE_64_ARGB_AX;
10107 break;
10108 case 128:
10109 cntl |= CURSOR_MODE_128_ARGB_AX;
10110 break;
10111 case 256:
10112 cntl |= CURSOR_MODE_256_ARGB_AX;
10113 break;
10114 default:
10115 MISSING_CASE(plane_state->base.crtc_w);
10116 return;
10117 }
10118 cntl |= pipe << 28; /* Connect to correct pipe */
10119
10120 if (HAS_DDI(dev))
10121 cntl |= CURSOR_PIPE_CSC_ENABLE;
10122
10123 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10124 cntl |= CURSOR_ROTATE_180;
10125 }
10126
10127 if (intel_crtc->cursor_cntl != cntl) {
10128 I915_WRITE(CURCNTR(pipe), cntl);
10129 POSTING_READ(CURCNTR(pipe));
10130 intel_crtc->cursor_cntl = cntl;
10131 }
10132
10133 /* and commit changes on next vblank */
10134 I915_WRITE(CURBASE(pipe), base);
10135 POSTING_READ(CURBASE(pipe));
10136
10137 intel_crtc->cursor_base = base;
10138 }
10139
10140 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10141 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10142 const struct intel_plane_state *plane_state)
10143 {
10144 struct drm_device *dev = crtc->dev;
10145 struct drm_i915_private *dev_priv = dev->dev_private;
10146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10147 int pipe = intel_crtc->pipe;
10148 u32 base = intel_crtc->cursor_addr;
10149 u32 pos = 0;
10150
10151 if (plane_state) {
10152 int x = plane_state->base.crtc_x;
10153 int y = plane_state->base.crtc_y;
10154
10155 if (x < 0) {
10156 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10157 x = -x;
10158 }
10159 pos |= x << CURSOR_X_SHIFT;
10160
10161 if (y < 0) {
10162 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10163 y = -y;
10164 }
10165 pos |= y << CURSOR_Y_SHIFT;
10166
10167 /* ILK+ do this automagically */
10168 if (HAS_GMCH_DISPLAY(dev) &&
10169 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10170 base += (plane_state->base.crtc_h *
10171 plane_state->base.crtc_w - 1) * 4;
10172 }
10173 }
10174
10175 I915_WRITE(CURPOS(pipe), pos);
10176
10177 if (IS_845G(dev) || IS_I865G(dev))
10178 i845_update_cursor(crtc, base, plane_state);
10179 else
10180 i9xx_update_cursor(crtc, base, plane_state);
10181 }
10182
10183 static bool cursor_size_ok(struct drm_device *dev,
10184 uint32_t width, uint32_t height)
10185 {
10186 if (width == 0 || height == 0)
10187 return false;
10188
10189 /*
10190 * 845g/865g are special in that they are only limited by
10191 * the width of their cursors, the height is arbitrary up to
10192 * the precision of the register. Everything else requires
10193 * square cursors, limited to a few power-of-two sizes.
10194 */
10195 if (IS_845G(dev) || IS_I865G(dev)) {
10196 if ((width & 63) != 0)
10197 return false;
10198
10199 if (width > (IS_845G(dev) ? 64 : 512))
10200 return false;
10201
10202 if (height > 1023)
10203 return false;
10204 } else {
10205 switch (width | height) {
10206 case 256:
10207 case 128:
10208 if (IS_GEN2(dev))
10209 return false;
10210 case 64:
10211 break;
10212 default:
10213 return false;
10214 }
10215 }
10216
10217 return true;
10218 }
10219
10220 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10221 u16 *blue, uint32_t start, uint32_t size)
10222 {
10223 int end = (start + size > 256) ? 256 : start + size, i;
10224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10225
10226 for (i = start; i < end; i++) {
10227 intel_crtc->lut_r[i] = red[i] >> 8;
10228 intel_crtc->lut_g[i] = green[i] >> 8;
10229 intel_crtc->lut_b[i] = blue[i] >> 8;
10230 }
10231
10232 intel_crtc_load_lut(crtc);
10233 }
10234
10235 /* VESA 640x480x72Hz mode to set on the pipe */
10236 static struct drm_display_mode load_detect_mode = {
10237 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10238 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10239 };
10240
10241 struct drm_framebuffer *
10242 __intel_framebuffer_create(struct drm_device *dev,
10243 struct drm_mode_fb_cmd2 *mode_cmd,
10244 struct drm_i915_gem_object *obj)
10245 {
10246 struct intel_framebuffer *intel_fb;
10247 int ret;
10248
10249 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10250 if (!intel_fb)
10251 return ERR_PTR(-ENOMEM);
10252
10253 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10254 if (ret)
10255 goto err;
10256
10257 return &intel_fb->base;
10258
10259 err:
10260 kfree(intel_fb);
10261 return ERR_PTR(ret);
10262 }
10263
10264 static struct drm_framebuffer *
10265 intel_framebuffer_create(struct drm_device *dev,
10266 struct drm_mode_fb_cmd2 *mode_cmd,
10267 struct drm_i915_gem_object *obj)
10268 {
10269 struct drm_framebuffer *fb;
10270 int ret;
10271
10272 ret = i915_mutex_lock_interruptible(dev);
10273 if (ret)
10274 return ERR_PTR(ret);
10275 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10276 mutex_unlock(&dev->struct_mutex);
10277
10278 return fb;
10279 }
10280
10281 static u32
10282 intel_framebuffer_pitch_for_width(int width, int bpp)
10283 {
10284 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10285 return ALIGN(pitch, 64);
10286 }
10287
10288 static u32
10289 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10290 {
10291 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10292 return PAGE_ALIGN(pitch * mode->vdisplay);
10293 }
10294
10295 static struct drm_framebuffer *
10296 intel_framebuffer_create_for_mode(struct drm_device *dev,
10297 struct drm_display_mode *mode,
10298 int depth, int bpp)
10299 {
10300 struct drm_framebuffer *fb;
10301 struct drm_i915_gem_object *obj;
10302 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10303
10304 obj = i915_gem_alloc_object(dev,
10305 intel_framebuffer_size_for_mode(mode, bpp));
10306 if (obj == NULL)
10307 return ERR_PTR(-ENOMEM);
10308
10309 mode_cmd.width = mode->hdisplay;
10310 mode_cmd.height = mode->vdisplay;
10311 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10312 bpp);
10313 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10314
10315 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10316 if (IS_ERR(fb))
10317 drm_gem_object_unreference_unlocked(&obj->base);
10318
10319 return fb;
10320 }
10321
10322 static struct drm_framebuffer *
10323 mode_fits_in_fbdev(struct drm_device *dev,
10324 struct drm_display_mode *mode)
10325 {
10326 #ifdef CONFIG_DRM_FBDEV_EMULATION
10327 struct drm_i915_private *dev_priv = dev->dev_private;
10328 struct drm_i915_gem_object *obj;
10329 struct drm_framebuffer *fb;
10330
10331 if (!dev_priv->fbdev)
10332 return NULL;
10333
10334 if (!dev_priv->fbdev->fb)
10335 return NULL;
10336
10337 obj = dev_priv->fbdev->fb->obj;
10338 BUG_ON(!obj);
10339
10340 fb = &dev_priv->fbdev->fb->base;
10341 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10342 fb->bits_per_pixel))
10343 return NULL;
10344
10345 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10346 return NULL;
10347
10348 drm_framebuffer_reference(fb);
10349 return fb;
10350 #else
10351 return NULL;
10352 #endif
10353 }
10354
10355 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10356 struct drm_crtc *crtc,
10357 struct drm_display_mode *mode,
10358 struct drm_framebuffer *fb,
10359 int x, int y)
10360 {
10361 struct drm_plane_state *plane_state;
10362 int hdisplay, vdisplay;
10363 int ret;
10364
10365 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10366 if (IS_ERR(plane_state))
10367 return PTR_ERR(plane_state);
10368
10369 if (mode)
10370 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10371 else
10372 hdisplay = vdisplay = 0;
10373
10374 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10375 if (ret)
10376 return ret;
10377 drm_atomic_set_fb_for_plane(plane_state, fb);
10378 plane_state->crtc_x = 0;
10379 plane_state->crtc_y = 0;
10380 plane_state->crtc_w = hdisplay;
10381 plane_state->crtc_h = vdisplay;
10382 plane_state->src_x = x << 16;
10383 plane_state->src_y = y << 16;
10384 plane_state->src_w = hdisplay << 16;
10385 plane_state->src_h = vdisplay << 16;
10386
10387 return 0;
10388 }
10389
10390 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10391 struct drm_display_mode *mode,
10392 struct intel_load_detect_pipe *old,
10393 struct drm_modeset_acquire_ctx *ctx)
10394 {
10395 struct intel_crtc *intel_crtc;
10396 struct intel_encoder *intel_encoder =
10397 intel_attached_encoder(connector);
10398 struct drm_crtc *possible_crtc;
10399 struct drm_encoder *encoder = &intel_encoder->base;
10400 struct drm_crtc *crtc = NULL;
10401 struct drm_device *dev = encoder->dev;
10402 struct drm_framebuffer *fb;
10403 struct drm_mode_config *config = &dev->mode_config;
10404 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10405 struct drm_connector_state *connector_state;
10406 struct intel_crtc_state *crtc_state;
10407 int ret, i = -1;
10408
10409 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10410 connector->base.id, connector->name,
10411 encoder->base.id, encoder->name);
10412
10413 old->restore_state = NULL;
10414
10415 retry:
10416 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10417 if (ret)
10418 goto fail;
10419
10420 /*
10421 * Algorithm gets a little messy:
10422 *
10423 * - if the connector already has an assigned crtc, use it (but make
10424 * sure it's on first)
10425 *
10426 * - try to find the first unused crtc that can drive this connector,
10427 * and use that if we find one
10428 */
10429
10430 /* See if we already have a CRTC for this connector */
10431 if (connector->state->crtc) {
10432 crtc = connector->state->crtc;
10433
10434 ret = drm_modeset_lock(&crtc->mutex, ctx);
10435 if (ret)
10436 goto fail;
10437
10438 /* Make sure the crtc and connector are running */
10439 goto found;
10440 }
10441
10442 /* Find an unused one (if possible) */
10443 for_each_crtc(dev, possible_crtc) {
10444 i++;
10445 if (!(encoder->possible_crtcs & (1 << i)))
10446 continue;
10447
10448 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10449 if (ret)
10450 goto fail;
10451
10452 if (possible_crtc->state->enable) {
10453 drm_modeset_unlock(&possible_crtc->mutex);
10454 continue;
10455 }
10456
10457 crtc = possible_crtc;
10458 break;
10459 }
10460
10461 /*
10462 * If we didn't find an unused CRTC, don't use any.
10463 */
10464 if (!crtc) {
10465 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10466 goto fail;
10467 }
10468
10469 found:
10470 intel_crtc = to_intel_crtc(crtc);
10471
10472 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10473 if (ret)
10474 goto fail;
10475
10476 state = drm_atomic_state_alloc(dev);
10477 restore_state = drm_atomic_state_alloc(dev);
10478 if (!state || !restore_state) {
10479 ret = -ENOMEM;
10480 goto fail;
10481 }
10482
10483 state->acquire_ctx = ctx;
10484 restore_state->acquire_ctx = ctx;
10485
10486 connector_state = drm_atomic_get_connector_state(state, connector);
10487 if (IS_ERR(connector_state)) {
10488 ret = PTR_ERR(connector_state);
10489 goto fail;
10490 }
10491
10492 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10493 if (ret)
10494 goto fail;
10495
10496 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10497 if (IS_ERR(crtc_state)) {
10498 ret = PTR_ERR(crtc_state);
10499 goto fail;
10500 }
10501
10502 crtc_state->base.active = crtc_state->base.enable = true;
10503
10504 if (!mode)
10505 mode = &load_detect_mode;
10506
10507 /* We need a framebuffer large enough to accommodate all accesses
10508 * that the plane may generate whilst we perform load detection.
10509 * We can not rely on the fbcon either being present (we get called
10510 * during its initialisation to detect all boot displays, or it may
10511 * not even exist) or that it is large enough to satisfy the
10512 * requested mode.
10513 */
10514 fb = mode_fits_in_fbdev(dev, mode);
10515 if (fb == NULL) {
10516 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10517 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10518 } else
10519 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10520 if (IS_ERR(fb)) {
10521 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10522 goto fail;
10523 }
10524
10525 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10526 if (ret)
10527 goto fail;
10528
10529 drm_framebuffer_unreference(fb);
10530
10531 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10532 if (ret)
10533 goto fail;
10534
10535 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10536 if (!ret)
10537 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10538 if (!ret)
10539 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10540 if (ret) {
10541 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10542 goto fail;
10543 }
10544
10545 ret = drm_atomic_commit(state);
10546 if (ret) {
10547 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10548 goto fail;
10549 }
10550
10551 old->restore_state = restore_state;
10552
10553 /* let the connector get through one full cycle before testing */
10554 intel_wait_for_vblank(dev, intel_crtc->pipe);
10555 return true;
10556
10557 fail:
10558 drm_atomic_state_free(state);
10559 drm_atomic_state_free(restore_state);
10560 restore_state = state = NULL;
10561
10562 if (ret == -EDEADLK) {
10563 drm_modeset_backoff(ctx);
10564 goto retry;
10565 }
10566
10567 return false;
10568 }
10569
10570 void intel_release_load_detect_pipe(struct drm_connector *connector,
10571 struct intel_load_detect_pipe *old,
10572 struct drm_modeset_acquire_ctx *ctx)
10573 {
10574 struct intel_encoder *intel_encoder =
10575 intel_attached_encoder(connector);
10576 struct drm_encoder *encoder = &intel_encoder->base;
10577 struct drm_atomic_state *state = old->restore_state;
10578 int ret;
10579
10580 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10581 connector->base.id, connector->name,
10582 encoder->base.id, encoder->name);
10583
10584 if (!state)
10585 return;
10586
10587 ret = drm_atomic_commit(state);
10588 if (ret) {
10589 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10590 drm_atomic_state_free(state);
10591 }
10592 }
10593
10594 static int i9xx_pll_refclk(struct drm_device *dev,
10595 const struct intel_crtc_state *pipe_config)
10596 {
10597 struct drm_i915_private *dev_priv = dev->dev_private;
10598 u32 dpll = pipe_config->dpll_hw_state.dpll;
10599
10600 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10601 return dev_priv->vbt.lvds_ssc_freq;
10602 else if (HAS_PCH_SPLIT(dev))
10603 return 120000;
10604 else if (!IS_GEN2(dev))
10605 return 96000;
10606 else
10607 return 48000;
10608 }
10609
10610 /* Returns the clock of the currently programmed mode of the given pipe. */
10611 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10612 struct intel_crtc_state *pipe_config)
10613 {
10614 struct drm_device *dev = crtc->base.dev;
10615 struct drm_i915_private *dev_priv = dev->dev_private;
10616 int pipe = pipe_config->cpu_transcoder;
10617 u32 dpll = pipe_config->dpll_hw_state.dpll;
10618 u32 fp;
10619 intel_clock_t clock;
10620 int port_clock;
10621 int refclk = i9xx_pll_refclk(dev, pipe_config);
10622
10623 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10624 fp = pipe_config->dpll_hw_state.fp0;
10625 else
10626 fp = pipe_config->dpll_hw_state.fp1;
10627
10628 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10629 if (IS_PINEVIEW(dev)) {
10630 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10631 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10632 } else {
10633 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10634 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10635 }
10636
10637 if (!IS_GEN2(dev)) {
10638 if (IS_PINEVIEW(dev))
10639 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10640 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10641 else
10642 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10643 DPLL_FPA01_P1_POST_DIV_SHIFT);
10644
10645 switch (dpll & DPLL_MODE_MASK) {
10646 case DPLLB_MODE_DAC_SERIAL:
10647 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10648 5 : 10;
10649 break;
10650 case DPLLB_MODE_LVDS:
10651 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10652 7 : 14;
10653 break;
10654 default:
10655 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10656 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10657 return;
10658 }
10659
10660 if (IS_PINEVIEW(dev))
10661 port_clock = pnv_calc_dpll_params(refclk, &clock);
10662 else
10663 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10664 } else {
10665 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10666 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10667
10668 if (is_lvds) {
10669 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10670 DPLL_FPA01_P1_POST_DIV_SHIFT);
10671
10672 if (lvds & LVDS_CLKB_POWER_UP)
10673 clock.p2 = 7;
10674 else
10675 clock.p2 = 14;
10676 } else {
10677 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10678 clock.p1 = 2;
10679 else {
10680 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10681 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10682 }
10683 if (dpll & PLL_P2_DIVIDE_BY_4)
10684 clock.p2 = 4;
10685 else
10686 clock.p2 = 2;
10687 }
10688
10689 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10690 }
10691
10692 /*
10693 * This value includes pixel_multiplier. We will use
10694 * port_clock to compute adjusted_mode.crtc_clock in the
10695 * encoder's get_config() function.
10696 */
10697 pipe_config->port_clock = port_clock;
10698 }
10699
10700 int intel_dotclock_calculate(int link_freq,
10701 const struct intel_link_m_n *m_n)
10702 {
10703 /*
10704 * The calculation for the data clock is:
10705 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10706 * But we want to avoid losing precison if possible, so:
10707 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10708 *
10709 * and the link clock is simpler:
10710 * link_clock = (m * link_clock) / n
10711 */
10712
10713 if (!m_n->link_n)
10714 return 0;
10715
10716 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10717 }
10718
10719 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10720 struct intel_crtc_state *pipe_config)
10721 {
10722 struct drm_device *dev = crtc->base.dev;
10723
10724 /* read out port_clock from the DPLL */
10725 i9xx_crtc_clock_get(crtc, pipe_config);
10726
10727 /*
10728 * This value does not include pixel_multiplier.
10729 * We will check that port_clock and adjusted_mode.crtc_clock
10730 * agree once we know their relationship in the encoder's
10731 * get_config() function.
10732 */
10733 pipe_config->base.adjusted_mode.crtc_clock =
10734 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10735 &pipe_config->fdi_m_n);
10736 }
10737
10738 /** Returns the currently programmed mode of the given pipe. */
10739 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10740 struct drm_crtc *crtc)
10741 {
10742 struct drm_i915_private *dev_priv = dev->dev_private;
10743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10744 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10745 struct drm_display_mode *mode;
10746 struct intel_crtc_state *pipe_config;
10747 int htot = I915_READ(HTOTAL(cpu_transcoder));
10748 int hsync = I915_READ(HSYNC(cpu_transcoder));
10749 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10750 int vsync = I915_READ(VSYNC(cpu_transcoder));
10751 enum pipe pipe = intel_crtc->pipe;
10752
10753 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10754 if (!mode)
10755 return NULL;
10756
10757 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10758 if (!pipe_config) {
10759 kfree(mode);
10760 return NULL;
10761 }
10762
10763 /*
10764 * Construct a pipe_config sufficient for getting the clock info
10765 * back out of crtc_clock_get.
10766 *
10767 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10768 * to use a real value here instead.
10769 */
10770 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10771 pipe_config->pixel_multiplier = 1;
10772 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10773 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10774 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10775 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10776
10777 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10778 mode->hdisplay = (htot & 0xffff) + 1;
10779 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10780 mode->hsync_start = (hsync & 0xffff) + 1;
10781 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10782 mode->vdisplay = (vtot & 0xffff) + 1;
10783 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10784 mode->vsync_start = (vsync & 0xffff) + 1;
10785 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10786
10787 drm_mode_set_name(mode);
10788
10789 kfree(pipe_config);
10790
10791 return mode;
10792 }
10793
10794 void intel_mark_busy(struct drm_device *dev)
10795 {
10796 struct drm_i915_private *dev_priv = dev->dev_private;
10797
10798 if (dev_priv->mm.busy)
10799 return;
10800
10801 intel_runtime_pm_get(dev_priv);
10802 i915_update_gfx_val(dev_priv);
10803 if (INTEL_INFO(dev)->gen >= 6)
10804 gen6_rps_busy(dev_priv);
10805 dev_priv->mm.busy = true;
10806 }
10807
10808 void intel_mark_idle(struct drm_device *dev)
10809 {
10810 struct drm_i915_private *dev_priv = dev->dev_private;
10811
10812 if (!dev_priv->mm.busy)
10813 return;
10814
10815 dev_priv->mm.busy = false;
10816
10817 if (INTEL_INFO(dev)->gen >= 6)
10818 gen6_rps_idle(dev->dev_private);
10819
10820 intel_runtime_pm_put(dev_priv);
10821 }
10822
10823 static void intel_crtc_destroy(struct drm_crtc *crtc)
10824 {
10825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10826 struct drm_device *dev = crtc->dev;
10827 struct intel_unpin_work *work;
10828
10829 spin_lock_irq(&dev->event_lock);
10830 work = intel_crtc->unpin_work;
10831 intel_crtc->unpin_work = NULL;
10832 spin_unlock_irq(&dev->event_lock);
10833
10834 if (work) {
10835 cancel_work_sync(&work->work);
10836 kfree(work);
10837 }
10838
10839 drm_crtc_cleanup(crtc);
10840
10841 kfree(intel_crtc);
10842 }
10843
10844 static void intel_unpin_work_fn(struct work_struct *__work)
10845 {
10846 struct intel_unpin_work *work =
10847 container_of(__work, struct intel_unpin_work, work);
10848 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10849 struct drm_device *dev = crtc->base.dev;
10850 struct drm_plane *primary = crtc->base.primary;
10851
10852 mutex_lock(&dev->struct_mutex);
10853 intel_unpin_fb_obj(work->old_fb, primary->state);
10854 drm_gem_object_unreference(&work->pending_flip_obj->base);
10855
10856 if (work->flip_queued_req)
10857 i915_gem_request_assign(&work->flip_queued_req, NULL);
10858 mutex_unlock(&dev->struct_mutex);
10859
10860 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10861 intel_fbc_post_update(crtc);
10862 drm_framebuffer_unreference(work->old_fb);
10863
10864 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10865 atomic_dec(&crtc->unpin_work_count);
10866
10867 kfree(work);
10868 }
10869
10870 static void do_intel_finish_page_flip(struct drm_device *dev,
10871 struct drm_crtc *crtc)
10872 {
10873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10874 struct intel_unpin_work *work;
10875 unsigned long flags;
10876
10877 /* Ignore early vblank irqs */
10878 if (intel_crtc == NULL)
10879 return;
10880
10881 /*
10882 * This is called both by irq handlers and the reset code (to complete
10883 * lost pageflips) so needs the full irqsave spinlocks.
10884 */
10885 spin_lock_irqsave(&dev->event_lock, flags);
10886 work = intel_crtc->unpin_work;
10887
10888 /* Ensure we don't miss a work->pending update ... */
10889 smp_rmb();
10890
10891 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10892 spin_unlock_irqrestore(&dev->event_lock, flags);
10893 return;
10894 }
10895
10896 page_flip_completed(intel_crtc);
10897
10898 spin_unlock_irqrestore(&dev->event_lock, flags);
10899 }
10900
10901 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10902 {
10903 struct drm_i915_private *dev_priv = dev->dev_private;
10904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10905
10906 do_intel_finish_page_flip(dev, crtc);
10907 }
10908
10909 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10910 {
10911 struct drm_i915_private *dev_priv = dev->dev_private;
10912 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10913
10914 do_intel_finish_page_flip(dev, crtc);
10915 }
10916
10917 /* Is 'a' after or equal to 'b'? */
10918 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10919 {
10920 return !((a - b) & 0x80000000);
10921 }
10922
10923 static bool page_flip_finished(struct intel_crtc *crtc)
10924 {
10925 struct drm_device *dev = crtc->base.dev;
10926 struct drm_i915_private *dev_priv = dev->dev_private;
10927
10928 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10929 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10930 return true;
10931
10932 /*
10933 * The relevant registers doen't exist on pre-ctg.
10934 * As the flip done interrupt doesn't trigger for mmio
10935 * flips on gmch platforms, a flip count check isn't
10936 * really needed there. But since ctg has the registers,
10937 * include it in the check anyway.
10938 */
10939 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10940 return true;
10941
10942 /*
10943 * BDW signals flip done immediately if the plane
10944 * is disabled, even if the plane enable is already
10945 * armed to occur at the next vblank :(
10946 */
10947
10948 /*
10949 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10950 * used the same base address. In that case the mmio flip might
10951 * have completed, but the CS hasn't even executed the flip yet.
10952 *
10953 * A flip count check isn't enough as the CS might have updated
10954 * the base address just after start of vblank, but before we
10955 * managed to process the interrupt. This means we'd complete the
10956 * CS flip too soon.
10957 *
10958 * Combining both checks should get us a good enough result. It may
10959 * still happen that the CS flip has been executed, but has not
10960 * yet actually completed. But in case the base address is the same
10961 * anyway, we don't really care.
10962 */
10963 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10964 crtc->unpin_work->gtt_offset &&
10965 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10966 crtc->unpin_work->flip_count);
10967 }
10968
10969 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10970 {
10971 struct drm_i915_private *dev_priv = dev->dev_private;
10972 struct intel_crtc *intel_crtc =
10973 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10974 unsigned long flags;
10975
10976
10977 /*
10978 * This is called both by irq handlers and the reset code (to complete
10979 * lost pageflips) so needs the full irqsave spinlocks.
10980 *
10981 * NB: An MMIO update of the plane base pointer will also
10982 * generate a page-flip completion irq, i.e. every modeset
10983 * is also accompanied by a spurious intel_prepare_page_flip().
10984 */
10985 spin_lock_irqsave(&dev->event_lock, flags);
10986 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10987 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10988 spin_unlock_irqrestore(&dev->event_lock, flags);
10989 }
10990
10991 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10992 {
10993 /* Ensure that the work item is consistent when activating it ... */
10994 smp_wmb();
10995 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10996 /* and that it is marked active as soon as the irq could fire. */
10997 smp_wmb();
10998 }
10999
11000 static int intel_gen2_queue_flip(struct drm_device *dev,
11001 struct drm_crtc *crtc,
11002 struct drm_framebuffer *fb,
11003 struct drm_i915_gem_object *obj,
11004 struct drm_i915_gem_request *req,
11005 uint32_t flags)
11006 {
11007 struct intel_engine_cs *ring = req->ring;
11008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11009 u32 flip_mask;
11010 int ret;
11011
11012 ret = intel_ring_begin(req, 6);
11013 if (ret)
11014 return ret;
11015
11016 /* Can't queue multiple flips, so wait for the previous
11017 * one to finish before executing the next.
11018 */
11019 if (intel_crtc->plane)
11020 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11021 else
11022 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11023 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11024 intel_ring_emit(ring, MI_NOOP);
11025 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11026 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11027 intel_ring_emit(ring, fb->pitches[0]);
11028 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11029 intel_ring_emit(ring, 0); /* aux display base address, unused */
11030
11031 intel_mark_page_flip_active(intel_crtc->unpin_work);
11032 return 0;
11033 }
11034
11035 static int intel_gen3_queue_flip(struct drm_device *dev,
11036 struct drm_crtc *crtc,
11037 struct drm_framebuffer *fb,
11038 struct drm_i915_gem_object *obj,
11039 struct drm_i915_gem_request *req,
11040 uint32_t flags)
11041 {
11042 struct intel_engine_cs *ring = req->ring;
11043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11044 u32 flip_mask;
11045 int ret;
11046
11047 ret = intel_ring_begin(req, 6);
11048 if (ret)
11049 return ret;
11050
11051 if (intel_crtc->plane)
11052 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11053 else
11054 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11055 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11056 intel_ring_emit(ring, MI_NOOP);
11057 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11058 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11059 intel_ring_emit(ring, fb->pitches[0]);
11060 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11061 intel_ring_emit(ring, MI_NOOP);
11062
11063 intel_mark_page_flip_active(intel_crtc->unpin_work);
11064 return 0;
11065 }
11066
11067 static int intel_gen4_queue_flip(struct drm_device *dev,
11068 struct drm_crtc *crtc,
11069 struct drm_framebuffer *fb,
11070 struct drm_i915_gem_object *obj,
11071 struct drm_i915_gem_request *req,
11072 uint32_t flags)
11073 {
11074 struct intel_engine_cs *ring = req->ring;
11075 struct drm_i915_private *dev_priv = dev->dev_private;
11076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11077 uint32_t pf, pipesrc;
11078 int ret;
11079
11080 ret = intel_ring_begin(req, 4);
11081 if (ret)
11082 return ret;
11083
11084 /* i965+ uses the linear or tiled offsets from the
11085 * Display Registers (which do not change across a page-flip)
11086 * so we need only reprogram the base address.
11087 */
11088 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11089 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11090 intel_ring_emit(ring, fb->pitches[0]);
11091 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11092 obj->tiling_mode);
11093
11094 /* XXX Enabling the panel-fitter across page-flip is so far
11095 * untested on non-native modes, so ignore it for now.
11096 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11097 */
11098 pf = 0;
11099 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11100 intel_ring_emit(ring, pf | pipesrc);
11101
11102 intel_mark_page_flip_active(intel_crtc->unpin_work);
11103 return 0;
11104 }
11105
11106 static int intel_gen6_queue_flip(struct drm_device *dev,
11107 struct drm_crtc *crtc,
11108 struct drm_framebuffer *fb,
11109 struct drm_i915_gem_object *obj,
11110 struct drm_i915_gem_request *req,
11111 uint32_t flags)
11112 {
11113 struct intel_engine_cs *ring = req->ring;
11114 struct drm_i915_private *dev_priv = dev->dev_private;
11115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11116 uint32_t pf, pipesrc;
11117 int ret;
11118
11119 ret = intel_ring_begin(req, 4);
11120 if (ret)
11121 return ret;
11122
11123 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11124 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11125 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11126 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11127
11128 /* Contrary to the suggestions in the documentation,
11129 * "Enable Panel Fitter" does not seem to be required when page
11130 * flipping with a non-native mode, and worse causes a normal
11131 * modeset to fail.
11132 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11133 */
11134 pf = 0;
11135 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11136 intel_ring_emit(ring, pf | pipesrc);
11137
11138 intel_mark_page_flip_active(intel_crtc->unpin_work);
11139 return 0;
11140 }
11141
11142 static int intel_gen7_queue_flip(struct drm_device *dev,
11143 struct drm_crtc *crtc,
11144 struct drm_framebuffer *fb,
11145 struct drm_i915_gem_object *obj,
11146 struct drm_i915_gem_request *req,
11147 uint32_t flags)
11148 {
11149 struct intel_engine_cs *ring = req->ring;
11150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11151 uint32_t plane_bit = 0;
11152 int len, ret;
11153
11154 switch (intel_crtc->plane) {
11155 case PLANE_A:
11156 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11157 break;
11158 case PLANE_B:
11159 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11160 break;
11161 case PLANE_C:
11162 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11163 break;
11164 default:
11165 WARN_ONCE(1, "unknown plane in flip command\n");
11166 return -ENODEV;
11167 }
11168
11169 len = 4;
11170 if (ring->id == RCS) {
11171 len += 6;
11172 /*
11173 * On Gen 8, SRM is now taking an extra dword to accommodate
11174 * 48bits addresses, and we need a NOOP for the batch size to
11175 * stay even.
11176 */
11177 if (IS_GEN8(dev))
11178 len += 2;
11179 }
11180
11181 /*
11182 * BSpec MI_DISPLAY_FLIP for IVB:
11183 * "The full packet must be contained within the same cache line."
11184 *
11185 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11186 * cacheline, if we ever start emitting more commands before
11187 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11188 * then do the cacheline alignment, and finally emit the
11189 * MI_DISPLAY_FLIP.
11190 */
11191 ret = intel_ring_cacheline_align(req);
11192 if (ret)
11193 return ret;
11194
11195 ret = intel_ring_begin(req, len);
11196 if (ret)
11197 return ret;
11198
11199 /* Unmask the flip-done completion message. Note that the bspec says that
11200 * we should do this for both the BCS and RCS, and that we must not unmask
11201 * more than one flip event at any time (or ensure that one flip message
11202 * can be sent by waiting for flip-done prior to queueing new flips).
11203 * Experimentation says that BCS works despite DERRMR masking all
11204 * flip-done completion events and that unmasking all planes at once
11205 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11206 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11207 */
11208 if (ring->id == RCS) {
11209 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11210 intel_ring_emit_reg(ring, DERRMR);
11211 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11212 DERRMR_PIPEB_PRI_FLIP_DONE |
11213 DERRMR_PIPEC_PRI_FLIP_DONE));
11214 if (IS_GEN8(dev))
11215 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11216 MI_SRM_LRM_GLOBAL_GTT);
11217 else
11218 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11219 MI_SRM_LRM_GLOBAL_GTT);
11220 intel_ring_emit_reg(ring, DERRMR);
11221 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11222 if (IS_GEN8(dev)) {
11223 intel_ring_emit(ring, 0);
11224 intel_ring_emit(ring, MI_NOOP);
11225 }
11226 }
11227
11228 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11229 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11230 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11231 intel_ring_emit(ring, (MI_NOOP));
11232
11233 intel_mark_page_flip_active(intel_crtc->unpin_work);
11234 return 0;
11235 }
11236
11237 static bool use_mmio_flip(struct intel_engine_cs *ring,
11238 struct drm_i915_gem_object *obj)
11239 {
11240 /*
11241 * This is not being used for older platforms, because
11242 * non-availability of flip done interrupt forces us to use
11243 * CS flips. Older platforms derive flip done using some clever
11244 * tricks involving the flip_pending status bits and vblank irqs.
11245 * So using MMIO flips there would disrupt this mechanism.
11246 */
11247
11248 if (ring == NULL)
11249 return true;
11250
11251 if (INTEL_INFO(ring->dev)->gen < 5)
11252 return false;
11253
11254 if (i915.use_mmio_flip < 0)
11255 return false;
11256 else if (i915.use_mmio_flip > 0)
11257 return true;
11258 else if (i915.enable_execlists)
11259 return true;
11260 else if (obj->base.dma_buf &&
11261 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11262 false))
11263 return true;
11264 else
11265 return ring != i915_gem_request_get_ring(obj->last_write_req);
11266 }
11267
11268 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11269 unsigned int rotation,
11270 struct intel_unpin_work *work)
11271 {
11272 struct drm_device *dev = intel_crtc->base.dev;
11273 struct drm_i915_private *dev_priv = dev->dev_private;
11274 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11275 const enum pipe pipe = intel_crtc->pipe;
11276 u32 ctl, stride, tile_height;
11277
11278 ctl = I915_READ(PLANE_CTL(pipe, 0));
11279 ctl &= ~PLANE_CTL_TILED_MASK;
11280 switch (fb->modifier[0]) {
11281 case DRM_FORMAT_MOD_NONE:
11282 break;
11283 case I915_FORMAT_MOD_X_TILED:
11284 ctl |= PLANE_CTL_TILED_X;
11285 break;
11286 case I915_FORMAT_MOD_Y_TILED:
11287 ctl |= PLANE_CTL_TILED_Y;
11288 break;
11289 case I915_FORMAT_MOD_Yf_TILED:
11290 ctl |= PLANE_CTL_TILED_YF;
11291 break;
11292 default:
11293 MISSING_CASE(fb->modifier[0]);
11294 }
11295
11296 /*
11297 * The stride is either expressed as a multiple of 64 bytes chunks for
11298 * linear buffers or in number of tiles for tiled buffers.
11299 */
11300 if (intel_rotation_90_or_270(rotation)) {
11301 /* stride = Surface height in tiles */
11302 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11303 stride = DIV_ROUND_UP(fb->height, tile_height);
11304 } else {
11305 stride = fb->pitches[0] /
11306 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11307 fb->pixel_format);
11308 }
11309
11310 /*
11311 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11312 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11313 */
11314 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11315 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11316
11317 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11318 POSTING_READ(PLANE_SURF(pipe, 0));
11319 }
11320
11321 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11322 struct intel_unpin_work *work)
11323 {
11324 struct drm_device *dev = intel_crtc->base.dev;
11325 struct drm_i915_private *dev_priv = dev->dev_private;
11326 struct intel_framebuffer *intel_fb =
11327 to_intel_framebuffer(intel_crtc->base.primary->fb);
11328 struct drm_i915_gem_object *obj = intel_fb->obj;
11329 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11330 u32 dspcntr;
11331
11332 dspcntr = I915_READ(reg);
11333
11334 if (obj->tiling_mode != I915_TILING_NONE)
11335 dspcntr |= DISPPLANE_TILED;
11336 else
11337 dspcntr &= ~DISPPLANE_TILED;
11338
11339 I915_WRITE(reg, dspcntr);
11340
11341 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11342 POSTING_READ(DSPSURF(intel_crtc->plane));
11343 }
11344
11345 /*
11346 * XXX: This is the temporary way to update the plane registers until we get
11347 * around to using the usual plane update functions for MMIO flips
11348 */
11349 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11350 {
11351 struct intel_crtc *crtc = mmio_flip->crtc;
11352 struct intel_unpin_work *work;
11353
11354 spin_lock_irq(&crtc->base.dev->event_lock);
11355 work = crtc->unpin_work;
11356 spin_unlock_irq(&crtc->base.dev->event_lock);
11357 if (work == NULL)
11358 return;
11359
11360 intel_mark_page_flip_active(work);
11361
11362 intel_pipe_update_start(crtc);
11363
11364 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11365 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11366 else
11367 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11368 ilk_do_mmio_flip(crtc, work);
11369
11370 intel_pipe_update_end(crtc);
11371 }
11372
11373 static void intel_mmio_flip_work_func(struct work_struct *work)
11374 {
11375 struct intel_mmio_flip *mmio_flip =
11376 container_of(work, struct intel_mmio_flip, work);
11377 struct intel_framebuffer *intel_fb =
11378 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11379 struct drm_i915_gem_object *obj = intel_fb->obj;
11380
11381 if (mmio_flip->req) {
11382 WARN_ON(__i915_wait_request(mmio_flip->req,
11383 mmio_flip->crtc->reset_counter,
11384 false, NULL,
11385 &mmio_flip->i915->rps.mmioflips));
11386 i915_gem_request_unreference__unlocked(mmio_flip->req);
11387 }
11388
11389 /* For framebuffer backed by dmabuf, wait for fence */
11390 if (obj->base.dma_buf)
11391 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11392 false, false,
11393 MAX_SCHEDULE_TIMEOUT) < 0);
11394
11395 intel_do_mmio_flip(mmio_flip);
11396 kfree(mmio_flip);
11397 }
11398
11399 static int intel_queue_mmio_flip(struct drm_device *dev,
11400 struct drm_crtc *crtc,
11401 struct drm_i915_gem_object *obj)
11402 {
11403 struct intel_mmio_flip *mmio_flip;
11404
11405 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11406 if (mmio_flip == NULL)
11407 return -ENOMEM;
11408
11409 mmio_flip->i915 = to_i915(dev);
11410 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11411 mmio_flip->crtc = to_intel_crtc(crtc);
11412 mmio_flip->rotation = crtc->primary->state->rotation;
11413
11414 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11415 schedule_work(&mmio_flip->work);
11416
11417 return 0;
11418 }
11419
11420 static int intel_default_queue_flip(struct drm_device *dev,
11421 struct drm_crtc *crtc,
11422 struct drm_framebuffer *fb,
11423 struct drm_i915_gem_object *obj,
11424 struct drm_i915_gem_request *req,
11425 uint32_t flags)
11426 {
11427 return -ENODEV;
11428 }
11429
11430 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11431 struct drm_crtc *crtc)
11432 {
11433 struct drm_i915_private *dev_priv = dev->dev_private;
11434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11435 struct intel_unpin_work *work = intel_crtc->unpin_work;
11436 u32 addr;
11437
11438 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11439 return true;
11440
11441 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11442 return false;
11443
11444 if (!work->enable_stall_check)
11445 return false;
11446
11447 if (work->flip_ready_vblank == 0) {
11448 if (work->flip_queued_req &&
11449 !i915_gem_request_completed(work->flip_queued_req, true))
11450 return false;
11451
11452 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11453 }
11454
11455 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11456 return false;
11457
11458 /* Potential stall - if we see that the flip has happened,
11459 * assume a missed interrupt. */
11460 if (INTEL_INFO(dev)->gen >= 4)
11461 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11462 else
11463 addr = I915_READ(DSPADDR(intel_crtc->plane));
11464
11465 /* There is a potential issue here with a false positive after a flip
11466 * to the same address. We could address this by checking for a
11467 * non-incrementing frame counter.
11468 */
11469 return addr == work->gtt_offset;
11470 }
11471
11472 void intel_check_page_flip(struct drm_device *dev, int pipe)
11473 {
11474 struct drm_i915_private *dev_priv = dev->dev_private;
11475 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11477 struct intel_unpin_work *work;
11478
11479 WARN_ON(!in_interrupt());
11480
11481 if (crtc == NULL)
11482 return;
11483
11484 spin_lock(&dev->event_lock);
11485 work = intel_crtc->unpin_work;
11486 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11487 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11488 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11489 page_flip_completed(intel_crtc);
11490 work = NULL;
11491 }
11492 if (work != NULL &&
11493 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11494 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11495 spin_unlock(&dev->event_lock);
11496 }
11497
11498 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11499 struct drm_framebuffer *fb,
11500 struct drm_pending_vblank_event *event,
11501 uint32_t page_flip_flags)
11502 {
11503 struct drm_device *dev = crtc->dev;
11504 struct drm_i915_private *dev_priv = dev->dev_private;
11505 struct drm_framebuffer *old_fb = crtc->primary->fb;
11506 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11507 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11508 struct drm_plane *primary = crtc->primary;
11509 enum pipe pipe = intel_crtc->pipe;
11510 struct intel_unpin_work *work;
11511 struct intel_engine_cs *ring;
11512 bool mmio_flip;
11513 struct drm_i915_gem_request *request = NULL;
11514 int ret;
11515
11516 /*
11517 * drm_mode_page_flip_ioctl() should already catch this, but double
11518 * check to be safe. In the future we may enable pageflipping from
11519 * a disabled primary plane.
11520 */
11521 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11522 return -EBUSY;
11523
11524 /* Can't change pixel format via MI display flips. */
11525 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11526 return -EINVAL;
11527
11528 /*
11529 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11530 * Note that pitch changes could also affect these register.
11531 */
11532 if (INTEL_INFO(dev)->gen > 3 &&
11533 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11534 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11535 return -EINVAL;
11536
11537 if (i915_terminally_wedged(&dev_priv->gpu_error))
11538 goto out_hang;
11539
11540 work = kzalloc(sizeof(*work), GFP_KERNEL);
11541 if (work == NULL)
11542 return -ENOMEM;
11543
11544 work->event = event;
11545 work->crtc = crtc;
11546 work->old_fb = old_fb;
11547 INIT_WORK(&work->work, intel_unpin_work_fn);
11548
11549 ret = drm_crtc_vblank_get(crtc);
11550 if (ret)
11551 goto free_work;
11552
11553 /* We borrow the event spin lock for protecting unpin_work */
11554 spin_lock_irq(&dev->event_lock);
11555 if (intel_crtc->unpin_work) {
11556 /* Before declaring the flip queue wedged, check if
11557 * the hardware completed the operation behind our backs.
11558 */
11559 if (__intel_pageflip_stall_check(dev, crtc)) {
11560 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11561 page_flip_completed(intel_crtc);
11562 } else {
11563 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11564 spin_unlock_irq(&dev->event_lock);
11565
11566 drm_crtc_vblank_put(crtc);
11567 kfree(work);
11568 return -EBUSY;
11569 }
11570 }
11571 intel_crtc->unpin_work = work;
11572 spin_unlock_irq(&dev->event_lock);
11573
11574 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11575 flush_workqueue(dev_priv->wq);
11576
11577 /* Reference the objects for the scheduled work. */
11578 drm_framebuffer_reference(work->old_fb);
11579 drm_gem_object_reference(&obj->base);
11580
11581 crtc->primary->fb = fb;
11582 update_state_fb(crtc->primary);
11583 intel_fbc_pre_update(intel_crtc);
11584
11585 work->pending_flip_obj = obj;
11586
11587 ret = i915_mutex_lock_interruptible(dev);
11588 if (ret)
11589 goto cleanup;
11590
11591 atomic_inc(&intel_crtc->unpin_work_count);
11592 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11593
11594 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11595 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11596
11597 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11598 ring = &dev_priv->ring[BCS];
11599 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11600 /* vlv: DISPLAY_FLIP fails to change tiling */
11601 ring = NULL;
11602 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11603 ring = &dev_priv->ring[BCS];
11604 } else if (INTEL_INFO(dev)->gen >= 7) {
11605 ring = i915_gem_request_get_ring(obj->last_write_req);
11606 if (ring == NULL || ring->id != RCS)
11607 ring = &dev_priv->ring[BCS];
11608 } else {
11609 ring = &dev_priv->ring[RCS];
11610 }
11611
11612 mmio_flip = use_mmio_flip(ring, obj);
11613
11614 /* When using CS flips, we want to emit semaphores between rings.
11615 * However, when using mmio flips we will create a task to do the
11616 * synchronisation, so all we want here is to pin the framebuffer
11617 * into the display plane and skip any waits.
11618 */
11619 if (!mmio_flip) {
11620 ret = i915_gem_object_sync(obj, ring, &request);
11621 if (ret)
11622 goto cleanup_pending;
11623 }
11624
11625 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11626 crtc->primary->state);
11627 if (ret)
11628 goto cleanup_pending;
11629
11630 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11631 obj, 0);
11632 work->gtt_offset += intel_crtc->dspaddr_offset;
11633
11634 if (mmio_flip) {
11635 ret = intel_queue_mmio_flip(dev, crtc, obj);
11636 if (ret)
11637 goto cleanup_unpin;
11638
11639 i915_gem_request_assign(&work->flip_queued_req,
11640 obj->last_write_req);
11641 } else {
11642 if (!request) {
11643 request = i915_gem_request_alloc(ring, NULL);
11644 if (IS_ERR(request)) {
11645 ret = PTR_ERR(request);
11646 goto cleanup_unpin;
11647 }
11648 }
11649
11650 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11651 page_flip_flags);
11652 if (ret)
11653 goto cleanup_unpin;
11654
11655 i915_gem_request_assign(&work->flip_queued_req, request);
11656 }
11657
11658 if (request)
11659 i915_add_request_no_flush(request);
11660
11661 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11662 work->enable_stall_check = true;
11663
11664 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11665 to_intel_plane(primary)->frontbuffer_bit);
11666 mutex_unlock(&dev->struct_mutex);
11667
11668 intel_frontbuffer_flip_prepare(dev,
11669 to_intel_plane(primary)->frontbuffer_bit);
11670
11671 trace_i915_flip_request(intel_crtc->plane, obj);
11672
11673 return 0;
11674
11675 cleanup_unpin:
11676 intel_unpin_fb_obj(fb, crtc->primary->state);
11677 cleanup_pending:
11678 if (!IS_ERR_OR_NULL(request))
11679 i915_gem_request_cancel(request);
11680 atomic_dec(&intel_crtc->unpin_work_count);
11681 mutex_unlock(&dev->struct_mutex);
11682 cleanup:
11683 crtc->primary->fb = old_fb;
11684 update_state_fb(crtc->primary);
11685
11686 drm_gem_object_unreference_unlocked(&obj->base);
11687 drm_framebuffer_unreference(work->old_fb);
11688
11689 spin_lock_irq(&dev->event_lock);
11690 intel_crtc->unpin_work = NULL;
11691 spin_unlock_irq(&dev->event_lock);
11692
11693 drm_crtc_vblank_put(crtc);
11694 free_work:
11695 kfree(work);
11696
11697 if (ret == -EIO) {
11698 struct drm_atomic_state *state;
11699 struct drm_plane_state *plane_state;
11700
11701 out_hang:
11702 state = drm_atomic_state_alloc(dev);
11703 if (!state)
11704 return -ENOMEM;
11705 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11706
11707 retry:
11708 plane_state = drm_atomic_get_plane_state(state, primary);
11709 ret = PTR_ERR_OR_ZERO(plane_state);
11710 if (!ret) {
11711 drm_atomic_set_fb_for_plane(plane_state, fb);
11712
11713 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11714 if (!ret)
11715 ret = drm_atomic_commit(state);
11716 }
11717
11718 if (ret == -EDEADLK) {
11719 drm_modeset_backoff(state->acquire_ctx);
11720 drm_atomic_state_clear(state);
11721 goto retry;
11722 }
11723
11724 if (ret)
11725 drm_atomic_state_free(state);
11726
11727 if (ret == 0 && event) {
11728 spin_lock_irq(&dev->event_lock);
11729 drm_send_vblank_event(dev, pipe, event);
11730 spin_unlock_irq(&dev->event_lock);
11731 }
11732 }
11733 return ret;
11734 }
11735
11736
11737 /**
11738 * intel_wm_need_update - Check whether watermarks need updating
11739 * @plane: drm plane
11740 * @state: new plane state
11741 *
11742 * Check current plane state versus the new one to determine whether
11743 * watermarks need to be recalculated.
11744 *
11745 * Returns true or false.
11746 */
11747 static bool intel_wm_need_update(struct drm_plane *plane,
11748 struct drm_plane_state *state)
11749 {
11750 struct intel_plane_state *new = to_intel_plane_state(state);
11751 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11752
11753 /* Update watermarks on tiling or size changes. */
11754 if (new->visible != cur->visible)
11755 return true;
11756
11757 if (!cur->base.fb || !new->base.fb)
11758 return false;
11759
11760 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11761 cur->base.rotation != new->base.rotation ||
11762 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11763 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11764 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11765 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11766 return true;
11767
11768 return false;
11769 }
11770
11771 static bool needs_scaling(struct intel_plane_state *state)
11772 {
11773 int src_w = drm_rect_width(&state->src) >> 16;
11774 int src_h = drm_rect_height(&state->src) >> 16;
11775 int dst_w = drm_rect_width(&state->dst);
11776 int dst_h = drm_rect_height(&state->dst);
11777
11778 return (src_w != dst_w || src_h != dst_h);
11779 }
11780
11781 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11782 struct drm_plane_state *plane_state)
11783 {
11784 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11785 struct drm_crtc *crtc = crtc_state->crtc;
11786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11787 struct drm_plane *plane = plane_state->plane;
11788 struct drm_device *dev = crtc->dev;
11789 struct intel_plane_state *old_plane_state =
11790 to_intel_plane_state(plane->state);
11791 int idx = intel_crtc->base.base.id, ret;
11792 bool mode_changed = needs_modeset(crtc_state);
11793 bool was_crtc_enabled = crtc->state->active;
11794 bool is_crtc_enabled = crtc_state->active;
11795 bool turn_off, turn_on, visible, was_visible;
11796 struct drm_framebuffer *fb = plane_state->fb;
11797
11798 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11799 plane->type != DRM_PLANE_TYPE_CURSOR) {
11800 ret = skl_update_scaler_plane(
11801 to_intel_crtc_state(crtc_state),
11802 to_intel_plane_state(plane_state));
11803 if (ret)
11804 return ret;
11805 }
11806
11807 was_visible = old_plane_state->visible;
11808 visible = to_intel_plane_state(plane_state)->visible;
11809
11810 if (!was_crtc_enabled && WARN_ON(was_visible))
11811 was_visible = false;
11812
11813 /*
11814 * Visibility is calculated as if the crtc was on, but
11815 * after scaler setup everything depends on it being off
11816 * when the crtc isn't active.
11817 */
11818 if (!is_crtc_enabled)
11819 to_intel_plane_state(plane_state)->visible = visible = false;
11820
11821 if (!was_visible && !visible)
11822 return 0;
11823
11824 if (fb != old_plane_state->base.fb)
11825 pipe_config->fb_changed = true;
11826
11827 turn_off = was_visible && (!visible || mode_changed);
11828 turn_on = visible && (!was_visible || mode_changed);
11829
11830 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11831 plane->base.id, fb ? fb->base.id : -1);
11832
11833 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11834 plane->base.id, was_visible, visible,
11835 turn_off, turn_on, mode_changed);
11836
11837 if (turn_on || turn_off) {
11838 pipe_config->wm_changed = true;
11839
11840 /* must disable cxsr around plane enable/disable */
11841 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11842 pipe_config->disable_cxsr = true;
11843 } else if (intel_wm_need_update(plane, plane_state)) {
11844 pipe_config->wm_changed = true;
11845 }
11846
11847 if (visible || was_visible)
11848 intel_crtc->atomic.fb_bits |=
11849 to_intel_plane(plane)->frontbuffer_bit;
11850
11851 switch (plane->type) {
11852 case DRM_PLANE_TYPE_PRIMARY:
11853 intel_crtc->atomic.post_enable_primary = turn_on;
11854 intel_crtc->atomic.update_fbc = true;
11855
11856 break;
11857 case DRM_PLANE_TYPE_CURSOR:
11858 break;
11859 case DRM_PLANE_TYPE_OVERLAY:
11860 /*
11861 * WaCxSRDisabledForSpriteScaling:ivb
11862 *
11863 * cstate->update_wm was already set above, so this flag will
11864 * take effect when we commit and program watermarks.
11865 */
11866 if (IS_IVYBRIDGE(dev) &&
11867 needs_scaling(to_intel_plane_state(plane_state)) &&
11868 !needs_scaling(old_plane_state))
11869 pipe_config->disable_lp_wm = true;
11870
11871 break;
11872 }
11873 return 0;
11874 }
11875
11876 static bool encoders_cloneable(const struct intel_encoder *a,
11877 const struct intel_encoder *b)
11878 {
11879 /* masks could be asymmetric, so check both ways */
11880 return a == b || (a->cloneable & (1 << b->type) &&
11881 b->cloneable & (1 << a->type));
11882 }
11883
11884 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11885 struct intel_crtc *crtc,
11886 struct intel_encoder *encoder)
11887 {
11888 struct intel_encoder *source_encoder;
11889 struct drm_connector *connector;
11890 struct drm_connector_state *connector_state;
11891 int i;
11892
11893 for_each_connector_in_state(state, connector, connector_state, i) {
11894 if (connector_state->crtc != &crtc->base)
11895 continue;
11896
11897 source_encoder =
11898 to_intel_encoder(connector_state->best_encoder);
11899 if (!encoders_cloneable(encoder, source_encoder))
11900 return false;
11901 }
11902
11903 return true;
11904 }
11905
11906 static bool check_encoder_cloning(struct drm_atomic_state *state,
11907 struct intel_crtc *crtc)
11908 {
11909 struct intel_encoder *encoder;
11910 struct drm_connector *connector;
11911 struct drm_connector_state *connector_state;
11912 int i;
11913
11914 for_each_connector_in_state(state, connector, connector_state, i) {
11915 if (connector_state->crtc != &crtc->base)
11916 continue;
11917
11918 encoder = to_intel_encoder(connector_state->best_encoder);
11919 if (!check_single_encoder_cloning(state, crtc, encoder))
11920 return false;
11921 }
11922
11923 return true;
11924 }
11925
11926 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11927 struct drm_crtc_state *crtc_state)
11928 {
11929 struct drm_device *dev = crtc->dev;
11930 struct drm_i915_private *dev_priv = dev->dev_private;
11931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11932 struct intel_crtc_state *pipe_config =
11933 to_intel_crtc_state(crtc_state);
11934 struct drm_atomic_state *state = crtc_state->state;
11935 int ret;
11936 bool mode_changed = needs_modeset(crtc_state);
11937
11938 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11939 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11940 return -EINVAL;
11941 }
11942
11943 if (mode_changed && !crtc_state->active)
11944 pipe_config->wm_changed = true;
11945
11946 if (mode_changed && crtc_state->enable &&
11947 dev_priv->display.crtc_compute_clock &&
11948 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11949 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11950 pipe_config);
11951 if (ret)
11952 return ret;
11953 }
11954
11955 ret = 0;
11956 if (dev_priv->display.compute_pipe_wm) {
11957 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11958 if (ret)
11959 return ret;
11960 }
11961
11962 if (INTEL_INFO(dev)->gen >= 9) {
11963 if (mode_changed)
11964 ret = skl_update_scaler_crtc(pipe_config);
11965
11966 if (!ret)
11967 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11968 pipe_config);
11969 }
11970
11971 return ret;
11972 }
11973
11974 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11975 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11976 .load_lut = intel_crtc_load_lut,
11977 .atomic_begin = intel_begin_crtc_commit,
11978 .atomic_flush = intel_finish_crtc_commit,
11979 .atomic_check = intel_crtc_atomic_check,
11980 };
11981
11982 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11983 {
11984 struct intel_connector *connector;
11985
11986 for_each_intel_connector(dev, connector) {
11987 if (connector->base.encoder) {
11988 connector->base.state->best_encoder =
11989 connector->base.encoder;
11990 connector->base.state->crtc =
11991 connector->base.encoder->crtc;
11992 } else {
11993 connector->base.state->best_encoder = NULL;
11994 connector->base.state->crtc = NULL;
11995 }
11996 }
11997 }
11998
11999 static void
12000 connected_sink_compute_bpp(struct intel_connector *connector,
12001 struct intel_crtc_state *pipe_config)
12002 {
12003 int bpp = pipe_config->pipe_bpp;
12004
12005 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12006 connector->base.base.id,
12007 connector->base.name);
12008
12009 /* Don't use an invalid EDID bpc value */
12010 if (connector->base.display_info.bpc &&
12011 connector->base.display_info.bpc * 3 < bpp) {
12012 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12013 bpp, connector->base.display_info.bpc*3);
12014 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12015 }
12016
12017 /* Clamp bpp to default limit on screens without EDID 1.4 */
12018 if (connector->base.display_info.bpc == 0) {
12019 int type = connector->base.connector_type;
12020 int clamp_bpp = 24;
12021
12022 /* Fall back to 18 bpp when DP sink capability is unknown. */
12023 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12024 type == DRM_MODE_CONNECTOR_eDP)
12025 clamp_bpp = 18;
12026
12027 if (bpp > clamp_bpp) {
12028 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12029 bpp, clamp_bpp);
12030 pipe_config->pipe_bpp = clamp_bpp;
12031 }
12032 }
12033 }
12034
12035 static int
12036 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12037 struct intel_crtc_state *pipe_config)
12038 {
12039 struct drm_device *dev = crtc->base.dev;
12040 struct drm_atomic_state *state;
12041 struct drm_connector *connector;
12042 struct drm_connector_state *connector_state;
12043 int bpp, i;
12044
12045 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12046 bpp = 10*3;
12047 else if (INTEL_INFO(dev)->gen >= 5)
12048 bpp = 12*3;
12049 else
12050 bpp = 8*3;
12051
12052
12053 pipe_config->pipe_bpp = bpp;
12054
12055 state = pipe_config->base.state;
12056
12057 /* Clamp display bpp to EDID value */
12058 for_each_connector_in_state(state, connector, connector_state, i) {
12059 if (connector_state->crtc != &crtc->base)
12060 continue;
12061
12062 connected_sink_compute_bpp(to_intel_connector(connector),
12063 pipe_config);
12064 }
12065
12066 return bpp;
12067 }
12068
12069 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12070 {
12071 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12072 "type: 0x%x flags: 0x%x\n",
12073 mode->crtc_clock,
12074 mode->crtc_hdisplay, mode->crtc_hsync_start,
12075 mode->crtc_hsync_end, mode->crtc_htotal,
12076 mode->crtc_vdisplay, mode->crtc_vsync_start,
12077 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12078 }
12079
12080 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12081 struct intel_crtc_state *pipe_config,
12082 const char *context)
12083 {
12084 struct drm_device *dev = crtc->base.dev;
12085 struct drm_plane *plane;
12086 struct intel_plane *intel_plane;
12087 struct intel_plane_state *state;
12088 struct drm_framebuffer *fb;
12089
12090 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12091 context, pipe_config, pipe_name(crtc->pipe));
12092
12093 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12094 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12095 pipe_config->pipe_bpp, pipe_config->dither);
12096 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12097 pipe_config->has_pch_encoder,
12098 pipe_config->fdi_lanes,
12099 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12100 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12101 pipe_config->fdi_m_n.tu);
12102 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12103 pipe_config->has_dp_encoder,
12104 pipe_config->lane_count,
12105 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12106 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12107 pipe_config->dp_m_n.tu);
12108
12109 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12110 pipe_config->has_dp_encoder,
12111 pipe_config->lane_count,
12112 pipe_config->dp_m2_n2.gmch_m,
12113 pipe_config->dp_m2_n2.gmch_n,
12114 pipe_config->dp_m2_n2.link_m,
12115 pipe_config->dp_m2_n2.link_n,
12116 pipe_config->dp_m2_n2.tu);
12117
12118 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12119 pipe_config->has_audio,
12120 pipe_config->has_infoframe);
12121
12122 DRM_DEBUG_KMS("requested mode:\n");
12123 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12124 DRM_DEBUG_KMS("adjusted mode:\n");
12125 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12126 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12127 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12128 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12129 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12130 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12131 crtc->num_scalers,
12132 pipe_config->scaler_state.scaler_users,
12133 pipe_config->scaler_state.scaler_id);
12134 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12135 pipe_config->gmch_pfit.control,
12136 pipe_config->gmch_pfit.pgm_ratios,
12137 pipe_config->gmch_pfit.lvds_border_bits);
12138 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12139 pipe_config->pch_pfit.pos,
12140 pipe_config->pch_pfit.size,
12141 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12142 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12143 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12144
12145 if (IS_BROXTON(dev)) {
12146 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12147 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12148 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12149 pipe_config->ddi_pll_sel,
12150 pipe_config->dpll_hw_state.ebb0,
12151 pipe_config->dpll_hw_state.ebb4,
12152 pipe_config->dpll_hw_state.pll0,
12153 pipe_config->dpll_hw_state.pll1,
12154 pipe_config->dpll_hw_state.pll2,
12155 pipe_config->dpll_hw_state.pll3,
12156 pipe_config->dpll_hw_state.pll6,
12157 pipe_config->dpll_hw_state.pll8,
12158 pipe_config->dpll_hw_state.pll9,
12159 pipe_config->dpll_hw_state.pll10,
12160 pipe_config->dpll_hw_state.pcsdw12);
12161 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12162 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12163 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12164 pipe_config->ddi_pll_sel,
12165 pipe_config->dpll_hw_state.ctrl1,
12166 pipe_config->dpll_hw_state.cfgcr1,
12167 pipe_config->dpll_hw_state.cfgcr2);
12168 } else if (HAS_DDI(dev)) {
12169 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12170 pipe_config->ddi_pll_sel,
12171 pipe_config->dpll_hw_state.wrpll,
12172 pipe_config->dpll_hw_state.spll);
12173 } else {
12174 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12175 "fp0: 0x%x, fp1: 0x%x\n",
12176 pipe_config->dpll_hw_state.dpll,
12177 pipe_config->dpll_hw_state.dpll_md,
12178 pipe_config->dpll_hw_state.fp0,
12179 pipe_config->dpll_hw_state.fp1);
12180 }
12181
12182 DRM_DEBUG_KMS("planes on this crtc\n");
12183 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12184 intel_plane = to_intel_plane(plane);
12185 if (intel_plane->pipe != crtc->pipe)
12186 continue;
12187
12188 state = to_intel_plane_state(plane->state);
12189 fb = state->base.fb;
12190 if (!fb) {
12191 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12192 "disabled, scaler_id = %d\n",
12193 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12194 plane->base.id, intel_plane->pipe,
12195 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12196 drm_plane_index(plane), state->scaler_id);
12197 continue;
12198 }
12199
12200 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12201 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12202 plane->base.id, intel_plane->pipe,
12203 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12204 drm_plane_index(plane));
12205 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12206 fb->base.id, fb->width, fb->height, fb->pixel_format);
12207 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12208 state->scaler_id,
12209 state->src.x1 >> 16, state->src.y1 >> 16,
12210 drm_rect_width(&state->src) >> 16,
12211 drm_rect_height(&state->src) >> 16,
12212 state->dst.x1, state->dst.y1,
12213 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12214 }
12215 }
12216
12217 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12218 {
12219 struct drm_device *dev = state->dev;
12220 struct drm_connector *connector;
12221 unsigned int used_ports = 0;
12222
12223 /*
12224 * Walk the connector list instead of the encoder
12225 * list to detect the problem on ddi platforms
12226 * where there's just one encoder per digital port.
12227 */
12228 drm_for_each_connector(connector, dev) {
12229 struct drm_connector_state *connector_state;
12230 struct intel_encoder *encoder;
12231
12232 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12233 if (!connector_state)
12234 connector_state = connector->state;
12235
12236 if (!connector_state->best_encoder)
12237 continue;
12238
12239 encoder = to_intel_encoder(connector_state->best_encoder);
12240
12241 WARN_ON(!connector_state->crtc);
12242
12243 switch (encoder->type) {
12244 unsigned int port_mask;
12245 case INTEL_OUTPUT_UNKNOWN:
12246 if (WARN_ON(!HAS_DDI(dev)))
12247 break;
12248 case INTEL_OUTPUT_DISPLAYPORT:
12249 case INTEL_OUTPUT_HDMI:
12250 case INTEL_OUTPUT_EDP:
12251 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12252
12253 /* the same port mustn't appear more than once */
12254 if (used_ports & port_mask)
12255 return false;
12256
12257 used_ports |= port_mask;
12258 default:
12259 break;
12260 }
12261 }
12262
12263 return true;
12264 }
12265
12266 static void
12267 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12268 {
12269 struct drm_crtc_state tmp_state;
12270 struct intel_crtc_scaler_state scaler_state;
12271 struct intel_dpll_hw_state dpll_hw_state;
12272 enum intel_dpll_id shared_dpll;
12273 uint32_t ddi_pll_sel;
12274 bool force_thru;
12275
12276 /* FIXME: before the switch to atomic started, a new pipe_config was
12277 * kzalloc'd. Code that depends on any field being zero should be
12278 * fixed, so that the crtc_state can be safely duplicated. For now,
12279 * only fields that are know to not cause problems are preserved. */
12280
12281 tmp_state = crtc_state->base;
12282 scaler_state = crtc_state->scaler_state;
12283 shared_dpll = crtc_state->shared_dpll;
12284 dpll_hw_state = crtc_state->dpll_hw_state;
12285 ddi_pll_sel = crtc_state->ddi_pll_sel;
12286 force_thru = crtc_state->pch_pfit.force_thru;
12287
12288 memset(crtc_state, 0, sizeof *crtc_state);
12289
12290 crtc_state->base = tmp_state;
12291 crtc_state->scaler_state = scaler_state;
12292 crtc_state->shared_dpll = shared_dpll;
12293 crtc_state->dpll_hw_state = dpll_hw_state;
12294 crtc_state->ddi_pll_sel = ddi_pll_sel;
12295 crtc_state->pch_pfit.force_thru = force_thru;
12296 }
12297
12298 static int
12299 intel_modeset_pipe_config(struct drm_crtc *crtc,
12300 struct intel_crtc_state *pipe_config)
12301 {
12302 struct drm_atomic_state *state = pipe_config->base.state;
12303 struct intel_encoder *encoder;
12304 struct drm_connector *connector;
12305 struct drm_connector_state *connector_state;
12306 int base_bpp, ret = -EINVAL;
12307 int i;
12308 bool retry = true;
12309
12310 clear_intel_crtc_state(pipe_config);
12311
12312 pipe_config->cpu_transcoder =
12313 (enum transcoder) to_intel_crtc(crtc)->pipe;
12314
12315 /*
12316 * Sanitize sync polarity flags based on requested ones. If neither
12317 * positive or negative polarity is requested, treat this as meaning
12318 * negative polarity.
12319 */
12320 if (!(pipe_config->base.adjusted_mode.flags &
12321 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12322 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12323
12324 if (!(pipe_config->base.adjusted_mode.flags &
12325 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12326 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12327
12328 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12329 pipe_config);
12330 if (base_bpp < 0)
12331 goto fail;
12332
12333 /*
12334 * Determine the real pipe dimensions. Note that stereo modes can
12335 * increase the actual pipe size due to the frame doubling and
12336 * insertion of additional space for blanks between the frame. This
12337 * is stored in the crtc timings. We use the requested mode to do this
12338 * computation to clearly distinguish it from the adjusted mode, which
12339 * can be changed by the connectors in the below retry loop.
12340 */
12341 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12342 &pipe_config->pipe_src_w,
12343 &pipe_config->pipe_src_h);
12344
12345 encoder_retry:
12346 /* Ensure the port clock defaults are reset when retrying. */
12347 pipe_config->port_clock = 0;
12348 pipe_config->pixel_multiplier = 1;
12349
12350 /* Fill in default crtc timings, allow encoders to overwrite them. */
12351 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12352 CRTC_STEREO_DOUBLE);
12353
12354 /* Pass our mode to the connectors and the CRTC to give them a chance to
12355 * adjust it according to limitations or connector properties, and also
12356 * a chance to reject the mode entirely.
12357 */
12358 for_each_connector_in_state(state, connector, connector_state, i) {
12359 if (connector_state->crtc != crtc)
12360 continue;
12361
12362 encoder = to_intel_encoder(connector_state->best_encoder);
12363
12364 if (!(encoder->compute_config(encoder, pipe_config))) {
12365 DRM_DEBUG_KMS("Encoder config failure\n");
12366 goto fail;
12367 }
12368 }
12369
12370 /* Set default port clock if not overwritten by the encoder. Needs to be
12371 * done afterwards in case the encoder adjusts the mode. */
12372 if (!pipe_config->port_clock)
12373 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12374 * pipe_config->pixel_multiplier;
12375
12376 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12377 if (ret < 0) {
12378 DRM_DEBUG_KMS("CRTC fixup failed\n");
12379 goto fail;
12380 }
12381
12382 if (ret == RETRY) {
12383 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12384 ret = -EINVAL;
12385 goto fail;
12386 }
12387
12388 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12389 retry = false;
12390 goto encoder_retry;
12391 }
12392
12393 /* Dithering seems to not pass-through bits correctly when it should, so
12394 * only enable it on 6bpc panels. */
12395 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12396 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12397 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12398
12399 fail:
12400 return ret;
12401 }
12402
12403 static void
12404 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12405 {
12406 struct drm_crtc *crtc;
12407 struct drm_crtc_state *crtc_state;
12408 int i;
12409
12410 /* Double check state. */
12411 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12412 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12413
12414 /* Update hwmode for vblank functions */
12415 if (crtc->state->active)
12416 crtc->hwmode = crtc->state->adjusted_mode;
12417 else
12418 crtc->hwmode.crtc_clock = 0;
12419
12420 /*
12421 * Update legacy state to satisfy fbc code. This can
12422 * be removed when fbc uses the atomic state.
12423 */
12424 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12425 struct drm_plane_state *plane_state = crtc->primary->state;
12426
12427 crtc->primary->fb = plane_state->fb;
12428 crtc->x = plane_state->src_x >> 16;
12429 crtc->y = plane_state->src_y >> 16;
12430 }
12431 }
12432 }
12433
12434 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12435 {
12436 int diff;
12437
12438 if (clock1 == clock2)
12439 return true;
12440
12441 if (!clock1 || !clock2)
12442 return false;
12443
12444 diff = abs(clock1 - clock2);
12445
12446 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12447 return true;
12448
12449 return false;
12450 }
12451
12452 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12453 list_for_each_entry((intel_crtc), \
12454 &(dev)->mode_config.crtc_list, \
12455 base.head) \
12456 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12457
12458 static bool
12459 intel_compare_m_n(unsigned int m, unsigned int n,
12460 unsigned int m2, unsigned int n2,
12461 bool exact)
12462 {
12463 if (m == m2 && n == n2)
12464 return true;
12465
12466 if (exact || !m || !n || !m2 || !n2)
12467 return false;
12468
12469 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12470
12471 if (n > n2) {
12472 while (n > n2) {
12473 m2 <<= 1;
12474 n2 <<= 1;
12475 }
12476 } else if (n < n2) {
12477 while (n < n2) {
12478 m <<= 1;
12479 n <<= 1;
12480 }
12481 }
12482
12483 if (n != n2)
12484 return false;
12485
12486 return intel_fuzzy_clock_check(m, m2);
12487 }
12488
12489 static bool
12490 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12491 struct intel_link_m_n *m2_n2,
12492 bool adjust)
12493 {
12494 if (m_n->tu == m2_n2->tu &&
12495 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12496 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12497 intel_compare_m_n(m_n->link_m, m_n->link_n,
12498 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12499 if (adjust)
12500 *m2_n2 = *m_n;
12501
12502 return true;
12503 }
12504
12505 return false;
12506 }
12507
12508 static bool
12509 intel_pipe_config_compare(struct drm_device *dev,
12510 struct intel_crtc_state *current_config,
12511 struct intel_crtc_state *pipe_config,
12512 bool adjust)
12513 {
12514 bool ret = true;
12515
12516 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12517 do { \
12518 if (!adjust) \
12519 DRM_ERROR(fmt, ##__VA_ARGS__); \
12520 else \
12521 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12522 } while (0)
12523
12524 #define PIPE_CONF_CHECK_X(name) \
12525 if (current_config->name != pipe_config->name) { \
12526 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12527 "(expected 0x%08x, found 0x%08x)\n", \
12528 current_config->name, \
12529 pipe_config->name); \
12530 ret = false; \
12531 }
12532
12533 #define PIPE_CONF_CHECK_I(name) \
12534 if (current_config->name != pipe_config->name) { \
12535 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12536 "(expected %i, found %i)\n", \
12537 current_config->name, \
12538 pipe_config->name); \
12539 ret = false; \
12540 }
12541
12542 #define PIPE_CONF_CHECK_M_N(name) \
12543 if (!intel_compare_link_m_n(&current_config->name, \
12544 &pipe_config->name,\
12545 adjust)) { \
12546 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12547 "(expected tu %i gmch %i/%i link %i/%i, " \
12548 "found tu %i, gmch %i/%i link %i/%i)\n", \
12549 current_config->name.tu, \
12550 current_config->name.gmch_m, \
12551 current_config->name.gmch_n, \
12552 current_config->name.link_m, \
12553 current_config->name.link_n, \
12554 pipe_config->name.tu, \
12555 pipe_config->name.gmch_m, \
12556 pipe_config->name.gmch_n, \
12557 pipe_config->name.link_m, \
12558 pipe_config->name.link_n); \
12559 ret = false; \
12560 }
12561
12562 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12563 if (!intel_compare_link_m_n(&current_config->name, \
12564 &pipe_config->name, adjust) && \
12565 !intel_compare_link_m_n(&current_config->alt_name, \
12566 &pipe_config->name, adjust)) { \
12567 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12568 "(expected tu %i gmch %i/%i link %i/%i, " \
12569 "or tu %i gmch %i/%i link %i/%i, " \
12570 "found tu %i, gmch %i/%i link %i/%i)\n", \
12571 current_config->name.tu, \
12572 current_config->name.gmch_m, \
12573 current_config->name.gmch_n, \
12574 current_config->name.link_m, \
12575 current_config->name.link_n, \
12576 current_config->alt_name.tu, \
12577 current_config->alt_name.gmch_m, \
12578 current_config->alt_name.gmch_n, \
12579 current_config->alt_name.link_m, \
12580 current_config->alt_name.link_n, \
12581 pipe_config->name.tu, \
12582 pipe_config->name.gmch_m, \
12583 pipe_config->name.gmch_n, \
12584 pipe_config->name.link_m, \
12585 pipe_config->name.link_n); \
12586 ret = false; \
12587 }
12588
12589 /* This is required for BDW+ where there is only one set of registers for
12590 * switching between high and low RR.
12591 * This macro can be used whenever a comparison has to be made between one
12592 * hw state and multiple sw state variables.
12593 */
12594 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12595 if ((current_config->name != pipe_config->name) && \
12596 (current_config->alt_name != pipe_config->name)) { \
12597 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12598 "(expected %i or %i, found %i)\n", \
12599 current_config->name, \
12600 current_config->alt_name, \
12601 pipe_config->name); \
12602 ret = false; \
12603 }
12604
12605 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12606 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12607 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12608 "(expected %i, found %i)\n", \
12609 current_config->name & (mask), \
12610 pipe_config->name & (mask)); \
12611 ret = false; \
12612 }
12613
12614 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12615 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12616 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12617 "(expected %i, found %i)\n", \
12618 current_config->name, \
12619 pipe_config->name); \
12620 ret = false; \
12621 }
12622
12623 #define PIPE_CONF_QUIRK(quirk) \
12624 ((current_config->quirks | pipe_config->quirks) & (quirk))
12625
12626 PIPE_CONF_CHECK_I(cpu_transcoder);
12627
12628 PIPE_CONF_CHECK_I(has_pch_encoder);
12629 PIPE_CONF_CHECK_I(fdi_lanes);
12630 PIPE_CONF_CHECK_M_N(fdi_m_n);
12631
12632 PIPE_CONF_CHECK_I(has_dp_encoder);
12633 PIPE_CONF_CHECK_I(lane_count);
12634
12635 if (INTEL_INFO(dev)->gen < 8) {
12636 PIPE_CONF_CHECK_M_N(dp_m_n);
12637
12638 if (current_config->has_drrs)
12639 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12640 } else
12641 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12642
12643 PIPE_CONF_CHECK_I(has_dsi_encoder);
12644
12645 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12646 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12647 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12648 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12649 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12650 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12651
12652 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12653 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12654 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12655 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12656 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12657 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12658
12659 PIPE_CONF_CHECK_I(pixel_multiplier);
12660 PIPE_CONF_CHECK_I(has_hdmi_sink);
12661 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12662 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12663 PIPE_CONF_CHECK_I(limited_color_range);
12664 PIPE_CONF_CHECK_I(has_infoframe);
12665
12666 PIPE_CONF_CHECK_I(has_audio);
12667
12668 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12669 DRM_MODE_FLAG_INTERLACE);
12670
12671 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12672 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12673 DRM_MODE_FLAG_PHSYNC);
12674 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12675 DRM_MODE_FLAG_NHSYNC);
12676 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12677 DRM_MODE_FLAG_PVSYNC);
12678 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12679 DRM_MODE_FLAG_NVSYNC);
12680 }
12681
12682 PIPE_CONF_CHECK_X(gmch_pfit.control);
12683 /* pfit ratios are autocomputed by the hw on gen4+ */
12684 if (INTEL_INFO(dev)->gen < 4)
12685 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12686 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12687
12688 if (!adjust) {
12689 PIPE_CONF_CHECK_I(pipe_src_w);
12690 PIPE_CONF_CHECK_I(pipe_src_h);
12691
12692 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12693 if (current_config->pch_pfit.enabled) {
12694 PIPE_CONF_CHECK_X(pch_pfit.pos);
12695 PIPE_CONF_CHECK_X(pch_pfit.size);
12696 }
12697
12698 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12699 }
12700
12701 /* BDW+ don't expose a synchronous way to read the state */
12702 if (IS_HASWELL(dev))
12703 PIPE_CONF_CHECK_I(ips_enabled);
12704
12705 PIPE_CONF_CHECK_I(double_wide);
12706
12707 PIPE_CONF_CHECK_X(ddi_pll_sel);
12708
12709 PIPE_CONF_CHECK_I(shared_dpll);
12710 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12711 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12712 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12713 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12714 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12715 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12716 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12717 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12718 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12719
12720 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12721 PIPE_CONF_CHECK_I(pipe_bpp);
12722
12723 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12724 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12725
12726 #undef PIPE_CONF_CHECK_X
12727 #undef PIPE_CONF_CHECK_I
12728 #undef PIPE_CONF_CHECK_I_ALT
12729 #undef PIPE_CONF_CHECK_FLAGS
12730 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12731 #undef PIPE_CONF_QUIRK
12732 #undef INTEL_ERR_OR_DBG_KMS
12733
12734 return ret;
12735 }
12736
12737 static void check_wm_state(struct drm_device *dev)
12738 {
12739 struct drm_i915_private *dev_priv = dev->dev_private;
12740 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12741 struct intel_crtc *intel_crtc;
12742 int plane;
12743
12744 if (INTEL_INFO(dev)->gen < 9)
12745 return;
12746
12747 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12748 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12749
12750 for_each_intel_crtc(dev, intel_crtc) {
12751 struct skl_ddb_entry *hw_entry, *sw_entry;
12752 const enum pipe pipe = intel_crtc->pipe;
12753
12754 if (!intel_crtc->active)
12755 continue;
12756
12757 /* planes */
12758 for_each_plane(dev_priv, pipe, plane) {
12759 hw_entry = &hw_ddb.plane[pipe][plane];
12760 sw_entry = &sw_ddb->plane[pipe][plane];
12761
12762 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12763 continue;
12764
12765 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12766 "(expected (%u,%u), found (%u,%u))\n",
12767 pipe_name(pipe), plane + 1,
12768 sw_entry->start, sw_entry->end,
12769 hw_entry->start, hw_entry->end);
12770 }
12771
12772 /* cursor */
12773 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12774 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12775
12776 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12777 continue;
12778
12779 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12780 "(expected (%u,%u), found (%u,%u))\n",
12781 pipe_name(pipe),
12782 sw_entry->start, sw_entry->end,
12783 hw_entry->start, hw_entry->end);
12784 }
12785 }
12786
12787 static void
12788 check_connector_state(struct drm_device *dev,
12789 struct drm_atomic_state *old_state)
12790 {
12791 struct drm_connector_state *old_conn_state;
12792 struct drm_connector *connector;
12793 int i;
12794
12795 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12796 struct drm_encoder *encoder = connector->encoder;
12797 struct drm_connector_state *state = connector->state;
12798
12799 /* This also checks the encoder/connector hw state with the
12800 * ->get_hw_state callbacks. */
12801 intel_connector_check_state(to_intel_connector(connector));
12802
12803 I915_STATE_WARN(state->best_encoder != encoder,
12804 "connector's atomic encoder doesn't match legacy encoder\n");
12805 }
12806 }
12807
12808 static void
12809 check_encoder_state(struct drm_device *dev)
12810 {
12811 struct intel_encoder *encoder;
12812 struct intel_connector *connector;
12813
12814 for_each_intel_encoder(dev, encoder) {
12815 bool enabled = false;
12816 enum pipe pipe;
12817
12818 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12819 encoder->base.base.id,
12820 encoder->base.name);
12821
12822 for_each_intel_connector(dev, connector) {
12823 if (connector->base.state->best_encoder != &encoder->base)
12824 continue;
12825 enabled = true;
12826
12827 I915_STATE_WARN(connector->base.state->crtc !=
12828 encoder->base.crtc,
12829 "connector's crtc doesn't match encoder crtc\n");
12830 }
12831
12832 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12833 "encoder's enabled state mismatch "
12834 "(expected %i, found %i)\n",
12835 !!encoder->base.crtc, enabled);
12836
12837 if (!encoder->base.crtc) {
12838 bool active;
12839
12840 active = encoder->get_hw_state(encoder, &pipe);
12841 I915_STATE_WARN(active,
12842 "encoder detached but still enabled on pipe %c.\n",
12843 pipe_name(pipe));
12844 }
12845 }
12846 }
12847
12848 static void
12849 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12850 {
12851 struct drm_i915_private *dev_priv = dev->dev_private;
12852 struct intel_encoder *encoder;
12853 struct drm_crtc_state *old_crtc_state;
12854 struct drm_crtc *crtc;
12855 int i;
12856
12857 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12859 struct intel_crtc_state *pipe_config, *sw_config;
12860 bool active;
12861
12862 if (!needs_modeset(crtc->state) &&
12863 !to_intel_crtc_state(crtc->state)->update_pipe)
12864 continue;
12865
12866 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12867 pipe_config = to_intel_crtc_state(old_crtc_state);
12868 memset(pipe_config, 0, sizeof(*pipe_config));
12869 pipe_config->base.crtc = crtc;
12870 pipe_config->base.state = old_state;
12871
12872 DRM_DEBUG_KMS("[CRTC:%d]\n",
12873 crtc->base.id);
12874
12875 active = dev_priv->display.get_pipe_config(intel_crtc,
12876 pipe_config);
12877
12878 /* hw state is inconsistent with the pipe quirk */
12879 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12880 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12881 active = crtc->state->active;
12882
12883 I915_STATE_WARN(crtc->state->active != active,
12884 "crtc active state doesn't match with hw state "
12885 "(expected %i, found %i)\n", crtc->state->active, active);
12886
12887 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12888 "transitional active state does not match atomic hw state "
12889 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12890
12891 for_each_encoder_on_crtc(dev, crtc, encoder) {
12892 enum pipe pipe;
12893
12894 active = encoder->get_hw_state(encoder, &pipe);
12895 I915_STATE_WARN(active != crtc->state->active,
12896 "[ENCODER:%i] active %i with crtc active %i\n",
12897 encoder->base.base.id, active, crtc->state->active);
12898
12899 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12900 "Encoder connected to wrong pipe %c\n",
12901 pipe_name(pipe));
12902
12903 if (active)
12904 encoder->get_config(encoder, pipe_config);
12905 }
12906
12907 if (!crtc->state->active)
12908 continue;
12909
12910 sw_config = to_intel_crtc_state(crtc->state);
12911 if (!intel_pipe_config_compare(dev, sw_config,
12912 pipe_config, false)) {
12913 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12914 intel_dump_pipe_config(intel_crtc, pipe_config,
12915 "[hw state]");
12916 intel_dump_pipe_config(intel_crtc, sw_config,
12917 "[sw state]");
12918 }
12919 }
12920 }
12921
12922 static void
12923 check_shared_dpll_state(struct drm_device *dev)
12924 {
12925 struct drm_i915_private *dev_priv = dev->dev_private;
12926 struct intel_crtc *crtc;
12927 struct intel_dpll_hw_state dpll_hw_state;
12928 int i;
12929
12930 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12931 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12932 int enabled_crtcs = 0, active_crtcs = 0;
12933 bool active;
12934
12935 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12936
12937 DRM_DEBUG_KMS("%s\n", pll->name);
12938
12939 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12940
12941 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12942 "more active pll users than references: %i vs %i\n",
12943 pll->active, hweight32(pll->config.crtc_mask));
12944 I915_STATE_WARN(pll->active && !pll->on,
12945 "pll in active use but not on in sw tracking\n");
12946 I915_STATE_WARN(pll->on && !pll->active,
12947 "pll in on but not on in use in sw tracking\n");
12948 I915_STATE_WARN(pll->on != active,
12949 "pll on state mismatch (expected %i, found %i)\n",
12950 pll->on, active);
12951
12952 for_each_intel_crtc(dev, crtc) {
12953 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12954 enabled_crtcs++;
12955 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12956 active_crtcs++;
12957 }
12958 I915_STATE_WARN(pll->active != active_crtcs,
12959 "pll active crtcs mismatch (expected %i, found %i)\n",
12960 pll->active, active_crtcs);
12961 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12962 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12963 hweight32(pll->config.crtc_mask), enabled_crtcs);
12964
12965 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12966 sizeof(dpll_hw_state)),
12967 "pll hw state mismatch\n");
12968 }
12969 }
12970
12971 static void
12972 intel_modeset_check_state(struct drm_device *dev,
12973 struct drm_atomic_state *old_state)
12974 {
12975 check_wm_state(dev);
12976 check_connector_state(dev, old_state);
12977 check_encoder_state(dev);
12978 check_crtc_state(dev, old_state);
12979 check_shared_dpll_state(dev);
12980 }
12981
12982 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12983 int dotclock)
12984 {
12985 /*
12986 * FDI already provided one idea for the dotclock.
12987 * Yell if the encoder disagrees.
12988 */
12989 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12990 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12991 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12992 }
12993
12994 static void update_scanline_offset(struct intel_crtc *crtc)
12995 {
12996 struct drm_device *dev = crtc->base.dev;
12997
12998 /*
12999 * The scanline counter increments at the leading edge of hsync.
13000 *
13001 * On most platforms it starts counting from vtotal-1 on the
13002 * first active line. That means the scanline counter value is
13003 * always one less than what we would expect. Ie. just after
13004 * start of vblank, which also occurs at start of hsync (on the
13005 * last active line), the scanline counter will read vblank_start-1.
13006 *
13007 * On gen2 the scanline counter starts counting from 1 instead
13008 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13009 * to keep the value positive), instead of adding one.
13010 *
13011 * On HSW+ the behaviour of the scanline counter depends on the output
13012 * type. For DP ports it behaves like most other platforms, but on HDMI
13013 * there's an extra 1 line difference. So we need to add two instead of
13014 * one to the value.
13015 */
13016 if (IS_GEN2(dev)) {
13017 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13018 int vtotal;
13019
13020 vtotal = adjusted_mode->crtc_vtotal;
13021 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13022 vtotal /= 2;
13023
13024 crtc->scanline_offset = vtotal - 1;
13025 } else if (HAS_DDI(dev) &&
13026 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13027 crtc->scanline_offset = 2;
13028 } else
13029 crtc->scanline_offset = 1;
13030 }
13031
13032 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13033 {
13034 struct drm_device *dev = state->dev;
13035 struct drm_i915_private *dev_priv = to_i915(dev);
13036 struct intel_shared_dpll_config *shared_dpll = NULL;
13037 struct drm_crtc *crtc;
13038 struct drm_crtc_state *crtc_state;
13039 int i;
13040
13041 if (!dev_priv->display.crtc_compute_clock)
13042 return;
13043
13044 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13045 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13046 int old_dpll = to_intel_crtc_state(crtc->state)->shared_dpll;
13047
13048 if (!needs_modeset(crtc_state))
13049 continue;
13050
13051 to_intel_crtc_state(crtc_state)->shared_dpll = DPLL_ID_PRIVATE;
13052
13053 if (old_dpll == DPLL_ID_PRIVATE)
13054 continue;
13055
13056 if (!shared_dpll)
13057 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13058
13059 shared_dpll[old_dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13060 }
13061 }
13062
13063 /*
13064 * This implements the workaround described in the "notes" section of the mode
13065 * set sequence documentation. When going from no pipes or single pipe to
13066 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13067 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13068 */
13069 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13070 {
13071 struct drm_crtc_state *crtc_state;
13072 struct intel_crtc *intel_crtc;
13073 struct drm_crtc *crtc;
13074 struct intel_crtc_state *first_crtc_state = NULL;
13075 struct intel_crtc_state *other_crtc_state = NULL;
13076 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13077 int i;
13078
13079 /* look at all crtc's that are going to be enabled in during modeset */
13080 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13081 intel_crtc = to_intel_crtc(crtc);
13082
13083 if (!crtc_state->active || !needs_modeset(crtc_state))
13084 continue;
13085
13086 if (first_crtc_state) {
13087 other_crtc_state = to_intel_crtc_state(crtc_state);
13088 break;
13089 } else {
13090 first_crtc_state = to_intel_crtc_state(crtc_state);
13091 first_pipe = intel_crtc->pipe;
13092 }
13093 }
13094
13095 /* No workaround needed? */
13096 if (!first_crtc_state)
13097 return 0;
13098
13099 /* w/a possibly needed, check how many crtc's are already enabled. */
13100 for_each_intel_crtc(state->dev, intel_crtc) {
13101 struct intel_crtc_state *pipe_config;
13102
13103 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13104 if (IS_ERR(pipe_config))
13105 return PTR_ERR(pipe_config);
13106
13107 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13108
13109 if (!pipe_config->base.active ||
13110 needs_modeset(&pipe_config->base))
13111 continue;
13112
13113 /* 2 or more enabled crtcs means no need for w/a */
13114 if (enabled_pipe != INVALID_PIPE)
13115 return 0;
13116
13117 enabled_pipe = intel_crtc->pipe;
13118 }
13119
13120 if (enabled_pipe != INVALID_PIPE)
13121 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13122 else if (other_crtc_state)
13123 other_crtc_state->hsw_workaround_pipe = first_pipe;
13124
13125 return 0;
13126 }
13127
13128 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13129 {
13130 struct drm_crtc *crtc;
13131 struct drm_crtc_state *crtc_state;
13132 int ret = 0;
13133
13134 /* add all active pipes to the state */
13135 for_each_crtc(state->dev, crtc) {
13136 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13137 if (IS_ERR(crtc_state))
13138 return PTR_ERR(crtc_state);
13139
13140 if (!crtc_state->active || needs_modeset(crtc_state))
13141 continue;
13142
13143 crtc_state->mode_changed = true;
13144
13145 ret = drm_atomic_add_affected_connectors(state, crtc);
13146 if (ret)
13147 break;
13148
13149 ret = drm_atomic_add_affected_planes(state, crtc);
13150 if (ret)
13151 break;
13152 }
13153
13154 return ret;
13155 }
13156
13157 static int intel_modeset_checks(struct drm_atomic_state *state)
13158 {
13159 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13160 struct drm_i915_private *dev_priv = state->dev->dev_private;
13161 struct drm_crtc *crtc;
13162 struct drm_crtc_state *crtc_state;
13163 int ret = 0, i;
13164
13165 if (!check_digital_port_conflicts(state)) {
13166 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13167 return -EINVAL;
13168 }
13169
13170 intel_state->modeset = true;
13171 intel_state->active_crtcs = dev_priv->active_crtcs;
13172
13173 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13174 if (crtc_state->active)
13175 intel_state->active_crtcs |= 1 << i;
13176 else
13177 intel_state->active_crtcs &= ~(1 << i);
13178 }
13179
13180 /*
13181 * See if the config requires any additional preparation, e.g.
13182 * to adjust global state with pipes off. We need to do this
13183 * here so we can get the modeset_pipe updated config for the new
13184 * mode set on this crtc. For other crtcs we need to use the
13185 * adjusted_mode bits in the crtc directly.
13186 */
13187 if (dev_priv->display.modeset_calc_cdclk) {
13188 ret = dev_priv->display.modeset_calc_cdclk(state);
13189
13190 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13191 ret = intel_modeset_all_pipes(state);
13192
13193 if (ret < 0)
13194 return ret;
13195
13196 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13197 intel_state->cdclk, intel_state->dev_cdclk);
13198 } else
13199 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13200
13201 intel_modeset_clear_plls(state);
13202
13203 if (IS_HASWELL(dev_priv))
13204 return haswell_mode_set_planes_workaround(state);
13205
13206 return 0;
13207 }
13208
13209 /*
13210 * Handle calculation of various watermark data at the end of the atomic check
13211 * phase. The code here should be run after the per-crtc and per-plane 'check'
13212 * handlers to ensure that all derived state has been updated.
13213 */
13214 static void calc_watermark_data(struct drm_atomic_state *state)
13215 {
13216 struct drm_device *dev = state->dev;
13217 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13218 struct drm_crtc *crtc;
13219 struct drm_crtc_state *cstate;
13220 struct drm_plane *plane;
13221 struct drm_plane_state *pstate;
13222
13223 /*
13224 * Calculate watermark configuration details now that derived
13225 * plane/crtc state is all properly updated.
13226 */
13227 drm_for_each_crtc(crtc, dev) {
13228 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13229 crtc->state;
13230
13231 if (cstate->active)
13232 intel_state->wm_config.num_pipes_active++;
13233 }
13234 drm_for_each_legacy_plane(plane, dev) {
13235 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13236 plane->state;
13237
13238 if (!to_intel_plane_state(pstate)->visible)
13239 continue;
13240
13241 intel_state->wm_config.sprites_enabled = true;
13242 if (pstate->crtc_w != pstate->src_w >> 16 ||
13243 pstate->crtc_h != pstate->src_h >> 16)
13244 intel_state->wm_config.sprites_scaled = true;
13245 }
13246 }
13247
13248 /**
13249 * intel_atomic_check - validate state object
13250 * @dev: drm device
13251 * @state: state to validate
13252 */
13253 static int intel_atomic_check(struct drm_device *dev,
13254 struct drm_atomic_state *state)
13255 {
13256 struct drm_i915_private *dev_priv = to_i915(dev);
13257 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13258 struct drm_crtc *crtc;
13259 struct drm_crtc_state *crtc_state;
13260 int ret, i;
13261 bool any_ms = false;
13262
13263 ret = drm_atomic_helper_check_modeset(dev, state);
13264 if (ret)
13265 return ret;
13266
13267 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13268 struct intel_crtc_state *pipe_config =
13269 to_intel_crtc_state(crtc_state);
13270
13271 memset(&to_intel_crtc(crtc)->atomic, 0,
13272 sizeof(struct intel_crtc_atomic_commit));
13273
13274 /* Catch I915_MODE_FLAG_INHERITED */
13275 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13276 crtc_state->mode_changed = true;
13277
13278 if (!crtc_state->enable) {
13279 if (needs_modeset(crtc_state))
13280 any_ms = true;
13281 continue;
13282 }
13283
13284 if (!needs_modeset(crtc_state))
13285 continue;
13286
13287 /* FIXME: For only active_changed we shouldn't need to do any
13288 * state recomputation at all. */
13289
13290 ret = drm_atomic_add_affected_connectors(state, crtc);
13291 if (ret)
13292 return ret;
13293
13294 ret = intel_modeset_pipe_config(crtc, pipe_config);
13295 if (ret)
13296 return ret;
13297
13298 if (i915.fastboot &&
13299 intel_pipe_config_compare(dev,
13300 to_intel_crtc_state(crtc->state),
13301 pipe_config, true)) {
13302 crtc_state->mode_changed = false;
13303 to_intel_crtc_state(crtc_state)->update_pipe = true;
13304 }
13305
13306 if (needs_modeset(crtc_state)) {
13307 any_ms = true;
13308
13309 ret = drm_atomic_add_affected_planes(state, crtc);
13310 if (ret)
13311 return ret;
13312 }
13313
13314 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13315 needs_modeset(crtc_state) ?
13316 "[modeset]" : "[fastset]");
13317 }
13318
13319 if (any_ms) {
13320 ret = intel_modeset_checks(state);
13321
13322 if (ret)
13323 return ret;
13324 } else
13325 intel_state->cdclk = dev_priv->cdclk_freq;
13326
13327 ret = drm_atomic_helper_check_planes(dev, state);
13328 if (ret)
13329 return ret;
13330
13331 intel_fbc_choose_crtc(dev_priv, state);
13332 calc_watermark_data(state);
13333
13334 return 0;
13335 }
13336
13337 static int intel_atomic_prepare_commit(struct drm_device *dev,
13338 struct drm_atomic_state *state,
13339 bool async)
13340 {
13341 struct drm_i915_private *dev_priv = dev->dev_private;
13342 struct drm_plane_state *plane_state;
13343 struct drm_crtc_state *crtc_state;
13344 struct drm_plane *plane;
13345 struct drm_crtc *crtc;
13346 int i, ret;
13347
13348 if (async) {
13349 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13350 return -EINVAL;
13351 }
13352
13353 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13354 ret = intel_crtc_wait_for_pending_flips(crtc);
13355 if (ret)
13356 return ret;
13357
13358 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13359 flush_workqueue(dev_priv->wq);
13360 }
13361
13362 ret = mutex_lock_interruptible(&dev->struct_mutex);
13363 if (ret)
13364 return ret;
13365
13366 ret = drm_atomic_helper_prepare_planes(dev, state);
13367 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13368 u32 reset_counter;
13369
13370 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13371 mutex_unlock(&dev->struct_mutex);
13372
13373 for_each_plane_in_state(state, plane, plane_state, i) {
13374 struct intel_plane_state *intel_plane_state =
13375 to_intel_plane_state(plane_state);
13376
13377 if (!intel_plane_state->wait_req)
13378 continue;
13379
13380 ret = __i915_wait_request(intel_plane_state->wait_req,
13381 reset_counter, true,
13382 NULL, NULL);
13383
13384 /* Swallow -EIO errors to allow updates during hw lockup. */
13385 if (ret == -EIO)
13386 ret = 0;
13387
13388 if (ret)
13389 break;
13390 }
13391
13392 if (!ret)
13393 return 0;
13394
13395 mutex_lock(&dev->struct_mutex);
13396 drm_atomic_helper_cleanup_planes(dev, state);
13397 }
13398
13399 mutex_unlock(&dev->struct_mutex);
13400 return ret;
13401 }
13402
13403 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13404 struct drm_i915_private *dev_priv,
13405 unsigned crtc_mask)
13406 {
13407 unsigned last_vblank_count[I915_MAX_PIPES];
13408 enum pipe pipe;
13409 int ret;
13410
13411 if (!crtc_mask)
13412 return;
13413
13414 for_each_pipe(dev_priv, pipe) {
13415 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13416
13417 if (!((1 << pipe) & crtc_mask))
13418 continue;
13419
13420 ret = drm_crtc_vblank_get(crtc);
13421 if (WARN_ON(ret != 0)) {
13422 crtc_mask &= ~(1 << pipe);
13423 continue;
13424 }
13425
13426 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13427 }
13428
13429 for_each_pipe(dev_priv, pipe) {
13430 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13431 long lret;
13432
13433 if (!((1 << pipe) & crtc_mask))
13434 continue;
13435
13436 lret = wait_event_timeout(dev->vblank[pipe].queue,
13437 last_vblank_count[pipe] !=
13438 drm_crtc_vblank_count(crtc),
13439 msecs_to_jiffies(50));
13440
13441 WARN_ON(!lret);
13442
13443 drm_crtc_vblank_put(crtc);
13444 }
13445 }
13446
13447 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13448 {
13449 /* fb updated, need to unpin old fb */
13450 if (crtc_state->fb_changed)
13451 return true;
13452
13453 /* wm changes, need vblank before final wm's */
13454 if (crtc_state->wm_changed)
13455 return true;
13456
13457 /*
13458 * cxsr is re-enabled after vblank.
13459 * This is already handled by crtc_state->wm_changed,
13460 * but added for clarity.
13461 */
13462 if (crtc_state->disable_cxsr)
13463 return true;
13464
13465 return false;
13466 }
13467
13468 /**
13469 * intel_atomic_commit - commit validated state object
13470 * @dev: DRM device
13471 * @state: the top-level driver state object
13472 * @async: asynchronous commit
13473 *
13474 * This function commits a top-level state object that has been validated
13475 * with drm_atomic_helper_check().
13476 *
13477 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13478 * we can only handle plane-related operations and do not yet support
13479 * asynchronous commit.
13480 *
13481 * RETURNS
13482 * Zero for success or -errno.
13483 */
13484 static int intel_atomic_commit(struct drm_device *dev,
13485 struct drm_atomic_state *state,
13486 bool async)
13487 {
13488 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13489 struct drm_i915_private *dev_priv = dev->dev_private;
13490 struct drm_crtc_state *crtc_state;
13491 struct drm_crtc *crtc;
13492 int ret = 0, i;
13493 bool hw_check = intel_state->modeset;
13494 unsigned long put_domains[I915_MAX_PIPES] = {};
13495 unsigned crtc_vblank_mask = 0;
13496
13497 ret = intel_atomic_prepare_commit(dev, state, async);
13498 if (ret) {
13499 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13500 return ret;
13501 }
13502
13503 drm_atomic_helper_swap_state(dev, state);
13504 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13505
13506 if (intel_state->modeset) {
13507 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13508 sizeof(intel_state->min_pixclk));
13509 dev_priv->active_crtcs = intel_state->active_crtcs;
13510 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13511
13512 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13513 }
13514
13515 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13517
13518 if (needs_modeset(crtc->state) ||
13519 to_intel_crtc_state(crtc->state)->update_pipe) {
13520 hw_check = true;
13521
13522 put_domains[to_intel_crtc(crtc)->pipe] =
13523 modeset_get_crtc_power_domains(crtc,
13524 to_intel_crtc_state(crtc->state));
13525 }
13526
13527 if (!needs_modeset(crtc->state))
13528 continue;
13529
13530 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13531
13532 if (crtc_state->active) {
13533 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13534 dev_priv->display.crtc_disable(crtc);
13535 intel_crtc->active = false;
13536 intel_fbc_disable(intel_crtc);
13537 intel_disable_shared_dpll(intel_crtc);
13538
13539 /*
13540 * Underruns don't always raise
13541 * interrupts, so check manually.
13542 */
13543 intel_check_cpu_fifo_underruns(dev_priv);
13544 intel_check_pch_fifo_underruns(dev_priv);
13545
13546 if (!crtc->state->active)
13547 intel_update_watermarks(crtc);
13548 }
13549 }
13550
13551 /* Only after disabling all output pipelines that will be changed can we
13552 * update the the output configuration. */
13553 intel_modeset_update_crtc_state(state);
13554
13555 if (intel_state->modeset) {
13556 intel_shared_dpll_commit(state);
13557
13558 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13559
13560 if (dev_priv->display.modeset_commit_cdclk &&
13561 intel_state->dev_cdclk != dev_priv->cdclk_freq)
13562 dev_priv->display.modeset_commit_cdclk(state);
13563 }
13564
13565 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13566 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13568 bool modeset = needs_modeset(crtc->state);
13569 struct intel_crtc_state *pipe_config =
13570 to_intel_crtc_state(crtc->state);
13571 bool update_pipe = !modeset && pipe_config->update_pipe;
13572
13573 if (modeset && crtc->state->active) {
13574 update_scanline_offset(to_intel_crtc(crtc));
13575 dev_priv->display.crtc_enable(crtc);
13576 }
13577
13578 if (!modeset)
13579 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13580
13581 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13582 intel_fbc_enable(intel_crtc);
13583
13584 if (crtc->state->active &&
13585 (crtc->state->planes_changed || update_pipe))
13586 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13587
13588 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13589 crtc_vblank_mask |= 1 << i;
13590 }
13591
13592 /* FIXME: add subpixel order */
13593
13594 if (!state->legacy_cursor_update)
13595 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13596
13597 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13598 intel_post_plane_update(to_intel_crtc(crtc));
13599
13600 if (put_domains[i])
13601 modeset_put_power_domains(dev_priv, put_domains[i]);
13602 }
13603
13604 if (intel_state->modeset)
13605 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13606
13607 mutex_lock(&dev->struct_mutex);
13608 drm_atomic_helper_cleanup_planes(dev, state);
13609 mutex_unlock(&dev->struct_mutex);
13610
13611 if (hw_check)
13612 intel_modeset_check_state(dev, state);
13613
13614 drm_atomic_state_free(state);
13615
13616 /* As one of the primary mmio accessors, KMS has a high likelihood
13617 * of triggering bugs in unclaimed access. After we finish
13618 * modesetting, see if an error has been flagged, and if so
13619 * enable debugging for the next modeset - and hope we catch
13620 * the culprit.
13621 *
13622 * XXX note that we assume display power is on at this point.
13623 * This might hold true now but we need to add pm helper to check
13624 * unclaimed only when the hardware is on, as atomic commits
13625 * can happen also when the device is completely off.
13626 */
13627 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13628
13629 return 0;
13630 }
13631
13632 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13633 {
13634 struct drm_device *dev = crtc->dev;
13635 struct drm_atomic_state *state;
13636 struct drm_crtc_state *crtc_state;
13637 int ret;
13638
13639 state = drm_atomic_state_alloc(dev);
13640 if (!state) {
13641 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13642 crtc->base.id);
13643 return;
13644 }
13645
13646 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13647
13648 retry:
13649 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13650 ret = PTR_ERR_OR_ZERO(crtc_state);
13651 if (!ret) {
13652 if (!crtc_state->active)
13653 goto out;
13654
13655 crtc_state->mode_changed = true;
13656 ret = drm_atomic_commit(state);
13657 }
13658
13659 if (ret == -EDEADLK) {
13660 drm_atomic_state_clear(state);
13661 drm_modeset_backoff(state->acquire_ctx);
13662 goto retry;
13663 }
13664
13665 if (ret)
13666 out:
13667 drm_atomic_state_free(state);
13668 }
13669
13670 #undef for_each_intel_crtc_masked
13671
13672 static const struct drm_crtc_funcs intel_crtc_funcs = {
13673 .gamma_set = intel_crtc_gamma_set,
13674 .set_config = drm_atomic_helper_set_config,
13675 .destroy = intel_crtc_destroy,
13676 .page_flip = intel_crtc_page_flip,
13677 .atomic_duplicate_state = intel_crtc_duplicate_state,
13678 .atomic_destroy_state = intel_crtc_destroy_state,
13679 };
13680
13681 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13682 struct intel_shared_dpll *pll,
13683 struct intel_dpll_hw_state *hw_state)
13684 {
13685 uint32_t val;
13686
13687 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
13688 return false;
13689
13690 val = I915_READ(PCH_DPLL(pll->id));
13691 hw_state->dpll = val;
13692 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13693 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13694
13695 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
13696
13697 return val & DPLL_VCO_ENABLE;
13698 }
13699
13700 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13701 struct intel_shared_dpll *pll)
13702 {
13703 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13704 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13705 }
13706
13707 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13708 struct intel_shared_dpll *pll)
13709 {
13710 /* PCH refclock must be enabled first */
13711 ibx_assert_pch_refclk_enabled(dev_priv);
13712
13713 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13714
13715 /* Wait for the clocks to stabilize. */
13716 POSTING_READ(PCH_DPLL(pll->id));
13717 udelay(150);
13718
13719 /* The pixel multiplier can only be updated once the
13720 * DPLL is enabled and the clocks are stable.
13721 *
13722 * So write it again.
13723 */
13724 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13725 POSTING_READ(PCH_DPLL(pll->id));
13726 udelay(200);
13727 }
13728
13729 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13730 struct intel_shared_dpll *pll)
13731 {
13732 struct drm_device *dev = dev_priv->dev;
13733 struct intel_crtc *crtc;
13734
13735 /* Make sure no transcoder isn't still depending on us. */
13736 for_each_intel_crtc(dev, crtc) {
13737 if (intel_crtc_to_shared_dpll(crtc) == pll)
13738 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13739 }
13740
13741 I915_WRITE(PCH_DPLL(pll->id), 0);
13742 POSTING_READ(PCH_DPLL(pll->id));
13743 udelay(200);
13744 }
13745
13746 static char *ibx_pch_dpll_names[] = {
13747 "PCH DPLL A",
13748 "PCH DPLL B",
13749 };
13750
13751 static void ibx_pch_dpll_init(struct drm_device *dev)
13752 {
13753 struct drm_i915_private *dev_priv = dev->dev_private;
13754 int i;
13755
13756 dev_priv->num_shared_dpll = 2;
13757
13758 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13759 dev_priv->shared_dplls[i].id = i;
13760 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13761 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13762 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13763 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13764 dev_priv->shared_dplls[i].get_hw_state =
13765 ibx_pch_dpll_get_hw_state;
13766 }
13767 }
13768
13769 static void intel_shared_dpll_init(struct drm_device *dev)
13770 {
13771 struct drm_i915_private *dev_priv = dev->dev_private;
13772
13773 if (HAS_DDI(dev))
13774 intel_ddi_pll_init(dev);
13775 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13776 ibx_pch_dpll_init(dev);
13777 else
13778 dev_priv->num_shared_dpll = 0;
13779
13780 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13781 }
13782
13783 /**
13784 * intel_prepare_plane_fb - Prepare fb for usage on plane
13785 * @plane: drm plane to prepare for
13786 * @fb: framebuffer to prepare for presentation
13787 *
13788 * Prepares a framebuffer for usage on a display plane. Generally this
13789 * involves pinning the underlying object and updating the frontbuffer tracking
13790 * bits. Some older platforms need special physical address handling for
13791 * cursor planes.
13792 *
13793 * Must be called with struct_mutex held.
13794 *
13795 * Returns 0 on success, negative error code on failure.
13796 */
13797 int
13798 intel_prepare_plane_fb(struct drm_plane *plane,
13799 const struct drm_plane_state *new_state)
13800 {
13801 struct drm_device *dev = plane->dev;
13802 struct drm_framebuffer *fb = new_state->fb;
13803 struct intel_plane *intel_plane = to_intel_plane(plane);
13804 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13805 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13806 int ret = 0;
13807
13808 if (!obj && !old_obj)
13809 return 0;
13810
13811 if (old_obj) {
13812 struct drm_crtc_state *crtc_state =
13813 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13814
13815 /* Big Hammer, we also need to ensure that any pending
13816 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13817 * current scanout is retired before unpinning the old
13818 * framebuffer. Note that we rely on userspace rendering
13819 * into the buffer attached to the pipe they are waiting
13820 * on. If not, userspace generates a GPU hang with IPEHR
13821 * point to the MI_WAIT_FOR_EVENT.
13822 *
13823 * This should only fail upon a hung GPU, in which case we
13824 * can safely continue.
13825 */
13826 if (needs_modeset(crtc_state))
13827 ret = i915_gem_object_wait_rendering(old_obj, true);
13828
13829 /* Swallow -EIO errors to allow updates during hw lockup. */
13830 if (ret && ret != -EIO)
13831 return ret;
13832 }
13833
13834 /* For framebuffer backed by dmabuf, wait for fence */
13835 if (obj && obj->base.dma_buf) {
13836 long lret;
13837
13838 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13839 false, true,
13840 MAX_SCHEDULE_TIMEOUT);
13841 if (lret == -ERESTARTSYS)
13842 return lret;
13843
13844 WARN(lret < 0, "waiting returns %li\n", lret);
13845 }
13846
13847 if (!obj) {
13848 ret = 0;
13849 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13850 INTEL_INFO(dev)->cursor_needs_physical) {
13851 int align = IS_I830(dev) ? 16 * 1024 : 256;
13852 ret = i915_gem_object_attach_phys(obj, align);
13853 if (ret)
13854 DRM_DEBUG_KMS("failed to attach phys object\n");
13855 } else {
13856 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13857 }
13858
13859 if (ret == 0) {
13860 if (obj) {
13861 struct intel_plane_state *plane_state =
13862 to_intel_plane_state(new_state);
13863
13864 i915_gem_request_assign(&plane_state->wait_req,
13865 obj->last_write_req);
13866 }
13867
13868 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13869 }
13870
13871 return ret;
13872 }
13873
13874 /**
13875 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13876 * @plane: drm plane to clean up for
13877 * @fb: old framebuffer that was on plane
13878 *
13879 * Cleans up a framebuffer that has just been removed from a plane.
13880 *
13881 * Must be called with struct_mutex held.
13882 */
13883 void
13884 intel_cleanup_plane_fb(struct drm_plane *plane,
13885 const struct drm_plane_state *old_state)
13886 {
13887 struct drm_device *dev = plane->dev;
13888 struct intel_plane *intel_plane = to_intel_plane(plane);
13889 struct intel_plane_state *old_intel_state;
13890 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13891 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13892
13893 old_intel_state = to_intel_plane_state(old_state);
13894
13895 if (!obj && !old_obj)
13896 return;
13897
13898 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13899 !INTEL_INFO(dev)->cursor_needs_physical))
13900 intel_unpin_fb_obj(old_state->fb, old_state);
13901
13902 /* prepare_fb aborted? */
13903 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13904 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13905 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13906
13907 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13908
13909 }
13910
13911 int
13912 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13913 {
13914 int max_scale;
13915 struct drm_device *dev;
13916 struct drm_i915_private *dev_priv;
13917 int crtc_clock, cdclk;
13918
13919 if (!intel_crtc || !crtc_state->base.enable)
13920 return DRM_PLANE_HELPER_NO_SCALING;
13921
13922 dev = intel_crtc->base.dev;
13923 dev_priv = dev->dev_private;
13924 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13925 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13926
13927 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13928 return DRM_PLANE_HELPER_NO_SCALING;
13929
13930 /*
13931 * skl max scale is lower of:
13932 * close to 3 but not 3, -1 is for that purpose
13933 * or
13934 * cdclk/crtc_clock
13935 */
13936 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13937
13938 return max_scale;
13939 }
13940
13941 static int
13942 intel_check_primary_plane(struct drm_plane *plane,
13943 struct intel_crtc_state *crtc_state,
13944 struct intel_plane_state *state)
13945 {
13946 struct drm_crtc *crtc = state->base.crtc;
13947 struct drm_framebuffer *fb = state->base.fb;
13948 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13949 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13950 bool can_position = false;
13951
13952 if (INTEL_INFO(plane->dev)->gen >= 9) {
13953 /* use scaler when colorkey is not required */
13954 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13955 min_scale = 1;
13956 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13957 }
13958 can_position = true;
13959 }
13960
13961 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13962 &state->dst, &state->clip,
13963 min_scale, max_scale,
13964 can_position, true,
13965 &state->visible);
13966 }
13967
13968 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13969 struct drm_crtc_state *old_crtc_state)
13970 {
13971 struct drm_device *dev = crtc->dev;
13972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13973 struct intel_crtc_state *old_intel_state =
13974 to_intel_crtc_state(old_crtc_state);
13975 bool modeset = needs_modeset(crtc->state);
13976
13977 /* Perform vblank evasion around commit operation */
13978 intel_pipe_update_start(intel_crtc);
13979
13980 if (modeset)
13981 return;
13982
13983 if (to_intel_crtc_state(crtc->state)->update_pipe)
13984 intel_update_pipe_config(intel_crtc, old_intel_state);
13985 else if (INTEL_INFO(dev)->gen >= 9)
13986 skl_detach_scalers(intel_crtc);
13987 }
13988
13989 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13990 struct drm_crtc_state *old_crtc_state)
13991 {
13992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13993
13994 intel_pipe_update_end(intel_crtc);
13995 }
13996
13997 /**
13998 * intel_plane_destroy - destroy a plane
13999 * @plane: plane to destroy
14000 *
14001 * Common destruction function for all types of planes (primary, cursor,
14002 * sprite).
14003 */
14004 void intel_plane_destroy(struct drm_plane *plane)
14005 {
14006 struct intel_plane *intel_plane = to_intel_plane(plane);
14007 drm_plane_cleanup(plane);
14008 kfree(intel_plane);
14009 }
14010
14011 const struct drm_plane_funcs intel_plane_funcs = {
14012 .update_plane = drm_atomic_helper_update_plane,
14013 .disable_plane = drm_atomic_helper_disable_plane,
14014 .destroy = intel_plane_destroy,
14015 .set_property = drm_atomic_helper_plane_set_property,
14016 .atomic_get_property = intel_plane_atomic_get_property,
14017 .atomic_set_property = intel_plane_atomic_set_property,
14018 .atomic_duplicate_state = intel_plane_duplicate_state,
14019 .atomic_destroy_state = intel_plane_destroy_state,
14020
14021 };
14022
14023 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14024 int pipe)
14025 {
14026 struct intel_plane *primary;
14027 struct intel_plane_state *state;
14028 const uint32_t *intel_primary_formats;
14029 unsigned int num_formats;
14030
14031 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14032 if (primary == NULL)
14033 return NULL;
14034
14035 state = intel_create_plane_state(&primary->base);
14036 if (!state) {
14037 kfree(primary);
14038 return NULL;
14039 }
14040 primary->base.state = &state->base;
14041
14042 primary->can_scale = false;
14043 primary->max_downscale = 1;
14044 if (INTEL_INFO(dev)->gen >= 9) {
14045 primary->can_scale = true;
14046 state->scaler_id = -1;
14047 }
14048 primary->pipe = pipe;
14049 primary->plane = pipe;
14050 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14051 primary->check_plane = intel_check_primary_plane;
14052 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14053 primary->plane = !pipe;
14054
14055 if (INTEL_INFO(dev)->gen >= 9) {
14056 intel_primary_formats = skl_primary_formats;
14057 num_formats = ARRAY_SIZE(skl_primary_formats);
14058
14059 primary->update_plane = skylake_update_primary_plane;
14060 primary->disable_plane = skylake_disable_primary_plane;
14061 } else if (HAS_PCH_SPLIT(dev)) {
14062 intel_primary_formats = i965_primary_formats;
14063 num_formats = ARRAY_SIZE(i965_primary_formats);
14064
14065 primary->update_plane = ironlake_update_primary_plane;
14066 primary->disable_plane = i9xx_disable_primary_plane;
14067 } else if (INTEL_INFO(dev)->gen >= 4) {
14068 intel_primary_formats = i965_primary_formats;
14069 num_formats = ARRAY_SIZE(i965_primary_formats);
14070
14071 primary->update_plane = i9xx_update_primary_plane;
14072 primary->disable_plane = i9xx_disable_primary_plane;
14073 } else {
14074 intel_primary_formats = i8xx_primary_formats;
14075 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14076
14077 primary->update_plane = i9xx_update_primary_plane;
14078 primary->disable_plane = i9xx_disable_primary_plane;
14079 }
14080
14081 drm_universal_plane_init(dev, &primary->base, 0,
14082 &intel_plane_funcs,
14083 intel_primary_formats, num_formats,
14084 DRM_PLANE_TYPE_PRIMARY, NULL);
14085
14086 if (INTEL_INFO(dev)->gen >= 4)
14087 intel_create_rotation_property(dev, primary);
14088
14089 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14090
14091 return &primary->base;
14092 }
14093
14094 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14095 {
14096 if (!dev->mode_config.rotation_property) {
14097 unsigned long flags = BIT(DRM_ROTATE_0) |
14098 BIT(DRM_ROTATE_180);
14099
14100 if (INTEL_INFO(dev)->gen >= 9)
14101 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14102
14103 dev->mode_config.rotation_property =
14104 drm_mode_create_rotation_property(dev, flags);
14105 }
14106 if (dev->mode_config.rotation_property)
14107 drm_object_attach_property(&plane->base.base,
14108 dev->mode_config.rotation_property,
14109 plane->base.state->rotation);
14110 }
14111
14112 static int
14113 intel_check_cursor_plane(struct drm_plane *plane,
14114 struct intel_crtc_state *crtc_state,
14115 struct intel_plane_state *state)
14116 {
14117 struct drm_crtc *crtc = crtc_state->base.crtc;
14118 struct drm_framebuffer *fb = state->base.fb;
14119 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14120 enum pipe pipe = to_intel_plane(plane)->pipe;
14121 unsigned stride;
14122 int ret;
14123
14124 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14125 &state->dst, &state->clip,
14126 DRM_PLANE_HELPER_NO_SCALING,
14127 DRM_PLANE_HELPER_NO_SCALING,
14128 true, true, &state->visible);
14129 if (ret)
14130 return ret;
14131
14132 /* if we want to turn off the cursor ignore width and height */
14133 if (!obj)
14134 return 0;
14135
14136 /* Check for which cursor types we support */
14137 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14138 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14139 state->base.crtc_w, state->base.crtc_h);
14140 return -EINVAL;
14141 }
14142
14143 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14144 if (obj->base.size < stride * state->base.crtc_h) {
14145 DRM_DEBUG_KMS("buffer is too small\n");
14146 return -ENOMEM;
14147 }
14148
14149 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14150 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14151 return -EINVAL;
14152 }
14153
14154 /*
14155 * There's something wrong with the cursor on CHV pipe C.
14156 * If it straddles the left edge of the screen then
14157 * moving it away from the edge or disabling it often
14158 * results in a pipe underrun, and often that can lead to
14159 * dead pipe (constant underrun reported, and it scans
14160 * out just a solid color). To recover from that, the
14161 * display power well must be turned off and on again.
14162 * Refuse the put the cursor into that compromised position.
14163 */
14164 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14165 state->visible && state->base.crtc_x < 0) {
14166 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14167 return -EINVAL;
14168 }
14169
14170 return 0;
14171 }
14172
14173 static void
14174 intel_disable_cursor_plane(struct drm_plane *plane,
14175 struct drm_crtc *crtc)
14176 {
14177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14178
14179 intel_crtc->cursor_addr = 0;
14180 intel_crtc_update_cursor(crtc, NULL);
14181 }
14182
14183 static void
14184 intel_update_cursor_plane(struct drm_plane *plane,
14185 const struct intel_crtc_state *crtc_state,
14186 const struct intel_plane_state *state)
14187 {
14188 struct drm_crtc *crtc = crtc_state->base.crtc;
14189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14190 struct drm_device *dev = plane->dev;
14191 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14192 uint32_t addr;
14193
14194 if (!obj)
14195 addr = 0;
14196 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14197 addr = i915_gem_obj_ggtt_offset(obj);
14198 else
14199 addr = obj->phys_handle->busaddr;
14200
14201 intel_crtc->cursor_addr = addr;
14202 intel_crtc_update_cursor(crtc, state);
14203 }
14204
14205 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14206 int pipe)
14207 {
14208 struct intel_plane *cursor;
14209 struct intel_plane_state *state;
14210
14211 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14212 if (cursor == NULL)
14213 return NULL;
14214
14215 state = intel_create_plane_state(&cursor->base);
14216 if (!state) {
14217 kfree(cursor);
14218 return NULL;
14219 }
14220 cursor->base.state = &state->base;
14221
14222 cursor->can_scale = false;
14223 cursor->max_downscale = 1;
14224 cursor->pipe = pipe;
14225 cursor->plane = pipe;
14226 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14227 cursor->check_plane = intel_check_cursor_plane;
14228 cursor->update_plane = intel_update_cursor_plane;
14229 cursor->disable_plane = intel_disable_cursor_plane;
14230
14231 drm_universal_plane_init(dev, &cursor->base, 0,
14232 &intel_plane_funcs,
14233 intel_cursor_formats,
14234 ARRAY_SIZE(intel_cursor_formats),
14235 DRM_PLANE_TYPE_CURSOR, NULL);
14236
14237 if (INTEL_INFO(dev)->gen >= 4) {
14238 if (!dev->mode_config.rotation_property)
14239 dev->mode_config.rotation_property =
14240 drm_mode_create_rotation_property(dev,
14241 BIT(DRM_ROTATE_0) |
14242 BIT(DRM_ROTATE_180));
14243 if (dev->mode_config.rotation_property)
14244 drm_object_attach_property(&cursor->base.base,
14245 dev->mode_config.rotation_property,
14246 state->base.rotation);
14247 }
14248
14249 if (INTEL_INFO(dev)->gen >=9)
14250 state->scaler_id = -1;
14251
14252 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14253
14254 return &cursor->base;
14255 }
14256
14257 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14258 struct intel_crtc_state *crtc_state)
14259 {
14260 int i;
14261 struct intel_scaler *intel_scaler;
14262 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14263
14264 for (i = 0; i < intel_crtc->num_scalers; i++) {
14265 intel_scaler = &scaler_state->scalers[i];
14266 intel_scaler->in_use = 0;
14267 intel_scaler->mode = PS_SCALER_MODE_DYN;
14268 }
14269
14270 scaler_state->scaler_id = -1;
14271 }
14272
14273 static void intel_crtc_init(struct drm_device *dev, int pipe)
14274 {
14275 struct drm_i915_private *dev_priv = dev->dev_private;
14276 struct intel_crtc *intel_crtc;
14277 struct intel_crtc_state *crtc_state = NULL;
14278 struct drm_plane *primary = NULL;
14279 struct drm_plane *cursor = NULL;
14280 int i, ret;
14281
14282 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14283 if (intel_crtc == NULL)
14284 return;
14285
14286 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14287 if (!crtc_state)
14288 goto fail;
14289 intel_crtc->config = crtc_state;
14290 intel_crtc->base.state = &crtc_state->base;
14291 crtc_state->base.crtc = &intel_crtc->base;
14292
14293 /* initialize shared scalers */
14294 if (INTEL_INFO(dev)->gen >= 9) {
14295 if (pipe == PIPE_C)
14296 intel_crtc->num_scalers = 1;
14297 else
14298 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14299
14300 skl_init_scalers(dev, intel_crtc, crtc_state);
14301 }
14302
14303 primary = intel_primary_plane_create(dev, pipe);
14304 if (!primary)
14305 goto fail;
14306
14307 cursor = intel_cursor_plane_create(dev, pipe);
14308 if (!cursor)
14309 goto fail;
14310
14311 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14312 cursor, &intel_crtc_funcs, NULL);
14313 if (ret)
14314 goto fail;
14315
14316 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14317 for (i = 0; i < 256; i++) {
14318 intel_crtc->lut_r[i] = i;
14319 intel_crtc->lut_g[i] = i;
14320 intel_crtc->lut_b[i] = i;
14321 }
14322
14323 /*
14324 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14325 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14326 */
14327 intel_crtc->pipe = pipe;
14328 intel_crtc->plane = pipe;
14329 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14330 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14331 intel_crtc->plane = !pipe;
14332 }
14333
14334 intel_crtc->cursor_base = ~0;
14335 intel_crtc->cursor_cntl = ~0;
14336 intel_crtc->cursor_size = ~0;
14337
14338 intel_crtc->wm.cxsr_allowed = true;
14339
14340 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14341 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14342 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14343 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14344
14345 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14346
14347 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14348 return;
14349
14350 fail:
14351 if (primary)
14352 drm_plane_cleanup(primary);
14353 if (cursor)
14354 drm_plane_cleanup(cursor);
14355 kfree(crtc_state);
14356 kfree(intel_crtc);
14357 }
14358
14359 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14360 {
14361 struct drm_encoder *encoder = connector->base.encoder;
14362 struct drm_device *dev = connector->base.dev;
14363
14364 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14365
14366 if (!encoder || WARN_ON(!encoder->crtc))
14367 return INVALID_PIPE;
14368
14369 return to_intel_crtc(encoder->crtc)->pipe;
14370 }
14371
14372 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14373 struct drm_file *file)
14374 {
14375 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14376 struct drm_crtc *drmmode_crtc;
14377 struct intel_crtc *crtc;
14378
14379 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14380
14381 if (!drmmode_crtc) {
14382 DRM_ERROR("no such CRTC id\n");
14383 return -ENOENT;
14384 }
14385
14386 crtc = to_intel_crtc(drmmode_crtc);
14387 pipe_from_crtc_id->pipe = crtc->pipe;
14388
14389 return 0;
14390 }
14391
14392 static int intel_encoder_clones(struct intel_encoder *encoder)
14393 {
14394 struct drm_device *dev = encoder->base.dev;
14395 struct intel_encoder *source_encoder;
14396 int index_mask = 0;
14397 int entry = 0;
14398
14399 for_each_intel_encoder(dev, source_encoder) {
14400 if (encoders_cloneable(encoder, source_encoder))
14401 index_mask |= (1 << entry);
14402
14403 entry++;
14404 }
14405
14406 return index_mask;
14407 }
14408
14409 static bool has_edp_a(struct drm_device *dev)
14410 {
14411 struct drm_i915_private *dev_priv = dev->dev_private;
14412
14413 if (!IS_MOBILE(dev))
14414 return false;
14415
14416 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14417 return false;
14418
14419 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14420 return false;
14421
14422 return true;
14423 }
14424
14425 static bool intel_crt_present(struct drm_device *dev)
14426 {
14427 struct drm_i915_private *dev_priv = dev->dev_private;
14428
14429 if (INTEL_INFO(dev)->gen >= 9)
14430 return false;
14431
14432 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14433 return false;
14434
14435 if (IS_CHERRYVIEW(dev))
14436 return false;
14437
14438 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14439 return false;
14440
14441 /* DDI E can't be used if DDI A requires 4 lanes */
14442 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14443 return false;
14444
14445 if (!dev_priv->vbt.int_crt_support)
14446 return false;
14447
14448 return true;
14449 }
14450
14451 static void intel_setup_outputs(struct drm_device *dev)
14452 {
14453 struct drm_i915_private *dev_priv = dev->dev_private;
14454 struct intel_encoder *encoder;
14455 bool dpd_is_edp = false;
14456
14457 intel_lvds_init(dev);
14458
14459 if (intel_crt_present(dev))
14460 intel_crt_init(dev);
14461
14462 if (IS_BROXTON(dev)) {
14463 /*
14464 * FIXME: Broxton doesn't support port detection via the
14465 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14466 * detect the ports.
14467 */
14468 intel_ddi_init(dev, PORT_A);
14469 intel_ddi_init(dev, PORT_B);
14470 intel_ddi_init(dev, PORT_C);
14471 } else if (HAS_DDI(dev)) {
14472 int found;
14473
14474 /*
14475 * Haswell uses DDI functions to detect digital outputs.
14476 * On SKL pre-D0 the strap isn't connected, so we assume
14477 * it's there.
14478 */
14479 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14480 /* WaIgnoreDDIAStrap: skl */
14481 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14482 intel_ddi_init(dev, PORT_A);
14483
14484 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14485 * register */
14486 found = I915_READ(SFUSE_STRAP);
14487
14488 if (found & SFUSE_STRAP_DDIB_DETECTED)
14489 intel_ddi_init(dev, PORT_B);
14490 if (found & SFUSE_STRAP_DDIC_DETECTED)
14491 intel_ddi_init(dev, PORT_C);
14492 if (found & SFUSE_STRAP_DDID_DETECTED)
14493 intel_ddi_init(dev, PORT_D);
14494 /*
14495 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14496 */
14497 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14498 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14499 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14500 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14501 intel_ddi_init(dev, PORT_E);
14502
14503 } else if (HAS_PCH_SPLIT(dev)) {
14504 int found;
14505 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14506
14507 if (has_edp_a(dev))
14508 intel_dp_init(dev, DP_A, PORT_A);
14509
14510 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14511 /* PCH SDVOB multiplex with HDMIB */
14512 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14513 if (!found)
14514 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14515 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14516 intel_dp_init(dev, PCH_DP_B, PORT_B);
14517 }
14518
14519 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14520 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14521
14522 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14523 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14524
14525 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14526 intel_dp_init(dev, PCH_DP_C, PORT_C);
14527
14528 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14529 intel_dp_init(dev, PCH_DP_D, PORT_D);
14530 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14531 /*
14532 * The DP_DETECTED bit is the latched state of the DDC
14533 * SDA pin at boot. However since eDP doesn't require DDC
14534 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14535 * eDP ports may have been muxed to an alternate function.
14536 * Thus we can't rely on the DP_DETECTED bit alone to detect
14537 * eDP ports. Consult the VBT as well as DP_DETECTED to
14538 * detect eDP ports.
14539 */
14540 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14541 !intel_dp_is_edp(dev, PORT_B))
14542 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14543 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14544 intel_dp_is_edp(dev, PORT_B))
14545 intel_dp_init(dev, VLV_DP_B, PORT_B);
14546
14547 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14548 !intel_dp_is_edp(dev, PORT_C))
14549 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14550 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14551 intel_dp_is_edp(dev, PORT_C))
14552 intel_dp_init(dev, VLV_DP_C, PORT_C);
14553
14554 if (IS_CHERRYVIEW(dev)) {
14555 /* eDP not supported on port D, so don't check VBT */
14556 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14557 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14558 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14559 intel_dp_init(dev, CHV_DP_D, PORT_D);
14560 }
14561
14562 intel_dsi_init(dev);
14563 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14564 bool found = false;
14565
14566 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14567 DRM_DEBUG_KMS("probing SDVOB\n");
14568 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14569 if (!found && IS_G4X(dev)) {
14570 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14571 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14572 }
14573
14574 if (!found && IS_G4X(dev))
14575 intel_dp_init(dev, DP_B, PORT_B);
14576 }
14577
14578 /* Before G4X SDVOC doesn't have its own detect register */
14579
14580 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14581 DRM_DEBUG_KMS("probing SDVOC\n");
14582 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14583 }
14584
14585 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14586
14587 if (IS_G4X(dev)) {
14588 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14589 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14590 }
14591 if (IS_G4X(dev))
14592 intel_dp_init(dev, DP_C, PORT_C);
14593 }
14594
14595 if (IS_G4X(dev) &&
14596 (I915_READ(DP_D) & DP_DETECTED))
14597 intel_dp_init(dev, DP_D, PORT_D);
14598 } else if (IS_GEN2(dev))
14599 intel_dvo_init(dev);
14600
14601 if (SUPPORTS_TV(dev))
14602 intel_tv_init(dev);
14603
14604 intel_psr_init(dev);
14605
14606 for_each_intel_encoder(dev, encoder) {
14607 encoder->base.possible_crtcs = encoder->crtc_mask;
14608 encoder->base.possible_clones =
14609 intel_encoder_clones(encoder);
14610 }
14611
14612 intel_init_pch_refclk(dev);
14613
14614 drm_helper_move_panel_connectors_to_head(dev);
14615 }
14616
14617 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14618 {
14619 struct drm_device *dev = fb->dev;
14620 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14621
14622 drm_framebuffer_cleanup(fb);
14623 mutex_lock(&dev->struct_mutex);
14624 WARN_ON(!intel_fb->obj->framebuffer_references--);
14625 drm_gem_object_unreference(&intel_fb->obj->base);
14626 mutex_unlock(&dev->struct_mutex);
14627 kfree(intel_fb);
14628 }
14629
14630 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14631 struct drm_file *file,
14632 unsigned int *handle)
14633 {
14634 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14635 struct drm_i915_gem_object *obj = intel_fb->obj;
14636
14637 if (obj->userptr.mm) {
14638 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14639 return -EINVAL;
14640 }
14641
14642 return drm_gem_handle_create(file, &obj->base, handle);
14643 }
14644
14645 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14646 struct drm_file *file,
14647 unsigned flags, unsigned color,
14648 struct drm_clip_rect *clips,
14649 unsigned num_clips)
14650 {
14651 struct drm_device *dev = fb->dev;
14652 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14653 struct drm_i915_gem_object *obj = intel_fb->obj;
14654
14655 mutex_lock(&dev->struct_mutex);
14656 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14657 mutex_unlock(&dev->struct_mutex);
14658
14659 return 0;
14660 }
14661
14662 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14663 .destroy = intel_user_framebuffer_destroy,
14664 .create_handle = intel_user_framebuffer_create_handle,
14665 .dirty = intel_user_framebuffer_dirty,
14666 };
14667
14668 static
14669 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14670 uint32_t pixel_format)
14671 {
14672 u32 gen = INTEL_INFO(dev)->gen;
14673
14674 if (gen >= 9) {
14675 int cpp = drm_format_plane_cpp(pixel_format, 0);
14676
14677 /* "The stride in bytes must not exceed the of the size of 8K
14678 * pixels and 32K bytes."
14679 */
14680 return min(8192 * cpp, 32768);
14681 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14682 return 32*1024;
14683 } else if (gen >= 4) {
14684 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14685 return 16*1024;
14686 else
14687 return 32*1024;
14688 } else if (gen >= 3) {
14689 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14690 return 8*1024;
14691 else
14692 return 16*1024;
14693 } else {
14694 /* XXX DSPC is limited to 4k tiled */
14695 return 8*1024;
14696 }
14697 }
14698
14699 static int intel_framebuffer_init(struct drm_device *dev,
14700 struct intel_framebuffer *intel_fb,
14701 struct drm_mode_fb_cmd2 *mode_cmd,
14702 struct drm_i915_gem_object *obj)
14703 {
14704 struct drm_i915_private *dev_priv = to_i915(dev);
14705 unsigned int aligned_height;
14706 int ret;
14707 u32 pitch_limit, stride_alignment;
14708
14709 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14710
14711 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14712 /* Enforce that fb modifier and tiling mode match, but only for
14713 * X-tiled. This is needed for FBC. */
14714 if (!!(obj->tiling_mode == I915_TILING_X) !=
14715 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14716 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14717 return -EINVAL;
14718 }
14719 } else {
14720 if (obj->tiling_mode == I915_TILING_X)
14721 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14722 else if (obj->tiling_mode == I915_TILING_Y) {
14723 DRM_DEBUG("No Y tiling for legacy addfb\n");
14724 return -EINVAL;
14725 }
14726 }
14727
14728 /* Passed in modifier sanity checking. */
14729 switch (mode_cmd->modifier[0]) {
14730 case I915_FORMAT_MOD_Y_TILED:
14731 case I915_FORMAT_MOD_Yf_TILED:
14732 if (INTEL_INFO(dev)->gen < 9) {
14733 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14734 mode_cmd->modifier[0]);
14735 return -EINVAL;
14736 }
14737 case DRM_FORMAT_MOD_NONE:
14738 case I915_FORMAT_MOD_X_TILED:
14739 break;
14740 default:
14741 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14742 mode_cmd->modifier[0]);
14743 return -EINVAL;
14744 }
14745
14746 stride_alignment = intel_fb_stride_alignment(dev_priv,
14747 mode_cmd->modifier[0],
14748 mode_cmd->pixel_format);
14749 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14750 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14751 mode_cmd->pitches[0], stride_alignment);
14752 return -EINVAL;
14753 }
14754
14755 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14756 mode_cmd->pixel_format);
14757 if (mode_cmd->pitches[0] > pitch_limit) {
14758 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14759 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14760 "tiled" : "linear",
14761 mode_cmd->pitches[0], pitch_limit);
14762 return -EINVAL;
14763 }
14764
14765 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14766 mode_cmd->pitches[0] != obj->stride) {
14767 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14768 mode_cmd->pitches[0], obj->stride);
14769 return -EINVAL;
14770 }
14771
14772 /* Reject formats not supported by any plane early. */
14773 switch (mode_cmd->pixel_format) {
14774 case DRM_FORMAT_C8:
14775 case DRM_FORMAT_RGB565:
14776 case DRM_FORMAT_XRGB8888:
14777 case DRM_FORMAT_ARGB8888:
14778 break;
14779 case DRM_FORMAT_XRGB1555:
14780 if (INTEL_INFO(dev)->gen > 3) {
14781 DRM_DEBUG("unsupported pixel format: %s\n",
14782 drm_get_format_name(mode_cmd->pixel_format));
14783 return -EINVAL;
14784 }
14785 break;
14786 case DRM_FORMAT_ABGR8888:
14787 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14788 INTEL_INFO(dev)->gen < 9) {
14789 DRM_DEBUG("unsupported pixel format: %s\n",
14790 drm_get_format_name(mode_cmd->pixel_format));
14791 return -EINVAL;
14792 }
14793 break;
14794 case DRM_FORMAT_XBGR8888:
14795 case DRM_FORMAT_XRGB2101010:
14796 case DRM_FORMAT_XBGR2101010:
14797 if (INTEL_INFO(dev)->gen < 4) {
14798 DRM_DEBUG("unsupported pixel format: %s\n",
14799 drm_get_format_name(mode_cmd->pixel_format));
14800 return -EINVAL;
14801 }
14802 break;
14803 case DRM_FORMAT_ABGR2101010:
14804 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14805 DRM_DEBUG("unsupported pixel format: %s\n",
14806 drm_get_format_name(mode_cmd->pixel_format));
14807 return -EINVAL;
14808 }
14809 break;
14810 case DRM_FORMAT_YUYV:
14811 case DRM_FORMAT_UYVY:
14812 case DRM_FORMAT_YVYU:
14813 case DRM_FORMAT_VYUY:
14814 if (INTEL_INFO(dev)->gen < 5) {
14815 DRM_DEBUG("unsupported pixel format: %s\n",
14816 drm_get_format_name(mode_cmd->pixel_format));
14817 return -EINVAL;
14818 }
14819 break;
14820 default:
14821 DRM_DEBUG("unsupported pixel format: %s\n",
14822 drm_get_format_name(mode_cmd->pixel_format));
14823 return -EINVAL;
14824 }
14825
14826 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14827 if (mode_cmd->offsets[0] != 0)
14828 return -EINVAL;
14829
14830 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14831 mode_cmd->pixel_format,
14832 mode_cmd->modifier[0]);
14833 /* FIXME drm helper for size checks (especially planar formats)? */
14834 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14835 return -EINVAL;
14836
14837 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14838 intel_fb->obj = obj;
14839
14840 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14841 if (ret) {
14842 DRM_ERROR("framebuffer init failed %d\n", ret);
14843 return ret;
14844 }
14845
14846 intel_fb->obj->framebuffer_references++;
14847
14848 return 0;
14849 }
14850
14851 static struct drm_framebuffer *
14852 intel_user_framebuffer_create(struct drm_device *dev,
14853 struct drm_file *filp,
14854 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14855 {
14856 struct drm_framebuffer *fb;
14857 struct drm_i915_gem_object *obj;
14858 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14859
14860 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14861 mode_cmd.handles[0]));
14862 if (&obj->base == NULL)
14863 return ERR_PTR(-ENOENT);
14864
14865 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14866 if (IS_ERR(fb))
14867 drm_gem_object_unreference_unlocked(&obj->base);
14868
14869 return fb;
14870 }
14871
14872 #ifndef CONFIG_DRM_FBDEV_EMULATION
14873 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14874 {
14875 }
14876 #endif
14877
14878 static const struct drm_mode_config_funcs intel_mode_funcs = {
14879 .fb_create = intel_user_framebuffer_create,
14880 .output_poll_changed = intel_fbdev_output_poll_changed,
14881 .atomic_check = intel_atomic_check,
14882 .atomic_commit = intel_atomic_commit,
14883 .atomic_state_alloc = intel_atomic_state_alloc,
14884 .atomic_state_clear = intel_atomic_state_clear,
14885 };
14886
14887 /* Set up chip specific display functions */
14888 static void intel_init_display(struct drm_device *dev)
14889 {
14890 struct drm_i915_private *dev_priv = dev->dev_private;
14891
14892 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14893 dev_priv->display.find_dpll = g4x_find_best_dpll;
14894 else if (IS_CHERRYVIEW(dev))
14895 dev_priv->display.find_dpll = chv_find_best_dpll;
14896 else if (IS_VALLEYVIEW(dev))
14897 dev_priv->display.find_dpll = vlv_find_best_dpll;
14898 else if (IS_PINEVIEW(dev))
14899 dev_priv->display.find_dpll = pnv_find_best_dpll;
14900 else
14901 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14902
14903 if (INTEL_INFO(dev)->gen >= 9) {
14904 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14905 dev_priv->display.get_initial_plane_config =
14906 skylake_get_initial_plane_config;
14907 dev_priv->display.crtc_compute_clock =
14908 haswell_crtc_compute_clock;
14909 dev_priv->display.crtc_enable = haswell_crtc_enable;
14910 dev_priv->display.crtc_disable = haswell_crtc_disable;
14911 } else if (HAS_DDI(dev)) {
14912 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14913 dev_priv->display.get_initial_plane_config =
14914 ironlake_get_initial_plane_config;
14915 dev_priv->display.crtc_compute_clock =
14916 haswell_crtc_compute_clock;
14917 dev_priv->display.crtc_enable = haswell_crtc_enable;
14918 dev_priv->display.crtc_disable = haswell_crtc_disable;
14919 } else if (HAS_PCH_SPLIT(dev)) {
14920 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14921 dev_priv->display.get_initial_plane_config =
14922 ironlake_get_initial_plane_config;
14923 dev_priv->display.crtc_compute_clock =
14924 ironlake_crtc_compute_clock;
14925 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14926 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14927 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14928 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14929 dev_priv->display.get_initial_plane_config =
14930 i9xx_get_initial_plane_config;
14931 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14932 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14933 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14934 } else {
14935 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14936 dev_priv->display.get_initial_plane_config =
14937 i9xx_get_initial_plane_config;
14938 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14939 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14940 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14941 }
14942
14943 /* Returns the core display clock speed */
14944 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14945 dev_priv->display.get_display_clock_speed =
14946 skylake_get_display_clock_speed;
14947 else if (IS_BROXTON(dev))
14948 dev_priv->display.get_display_clock_speed =
14949 broxton_get_display_clock_speed;
14950 else if (IS_BROADWELL(dev))
14951 dev_priv->display.get_display_clock_speed =
14952 broadwell_get_display_clock_speed;
14953 else if (IS_HASWELL(dev))
14954 dev_priv->display.get_display_clock_speed =
14955 haswell_get_display_clock_speed;
14956 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14957 dev_priv->display.get_display_clock_speed =
14958 valleyview_get_display_clock_speed;
14959 else if (IS_GEN5(dev))
14960 dev_priv->display.get_display_clock_speed =
14961 ilk_get_display_clock_speed;
14962 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14963 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14964 dev_priv->display.get_display_clock_speed =
14965 i945_get_display_clock_speed;
14966 else if (IS_GM45(dev))
14967 dev_priv->display.get_display_clock_speed =
14968 gm45_get_display_clock_speed;
14969 else if (IS_CRESTLINE(dev))
14970 dev_priv->display.get_display_clock_speed =
14971 i965gm_get_display_clock_speed;
14972 else if (IS_PINEVIEW(dev))
14973 dev_priv->display.get_display_clock_speed =
14974 pnv_get_display_clock_speed;
14975 else if (IS_G33(dev) || IS_G4X(dev))
14976 dev_priv->display.get_display_clock_speed =
14977 g33_get_display_clock_speed;
14978 else if (IS_I915G(dev))
14979 dev_priv->display.get_display_clock_speed =
14980 i915_get_display_clock_speed;
14981 else if (IS_I945GM(dev) || IS_845G(dev))
14982 dev_priv->display.get_display_clock_speed =
14983 i9xx_misc_get_display_clock_speed;
14984 else if (IS_I915GM(dev))
14985 dev_priv->display.get_display_clock_speed =
14986 i915gm_get_display_clock_speed;
14987 else if (IS_I865G(dev))
14988 dev_priv->display.get_display_clock_speed =
14989 i865_get_display_clock_speed;
14990 else if (IS_I85X(dev))
14991 dev_priv->display.get_display_clock_speed =
14992 i85x_get_display_clock_speed;
14993 else { /* 830 */
14994 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14995 dev_priv->display.get_display_clock_speed =
14996 i830_get_display_clock_speed;
14997 }
14998
14999 if (IS_GEN5(dev)) {
15000 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15001 } else if (IS_GEN6(dev)) {
15002 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15003 } else if (IS_IVYBRIDGE(dev)) {
15004 /* FIXME: detect B0+ stepping and use auto training */
15005 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15006 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
15007 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15008 if (IS_BROADWELL(dev)) {
15009 dev_priv->display.modeset_commit_cdclk =
15010 broadwell_modeset_commit_cdclk;
15011 dev_priv->display.modeset_calc_cdclk =
15012 broadwell_modeset_calc_cdclk;
15013 }
15014 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15015 dev_priv->display.modeset_commit_cdclk =
15016 valleyview_modeset_commit_cdclk;
15017 dev_priv->display.modeset_calc_cdclk =
15018 valleyview_modeset_calc_cdclk;
15019 } else if (IS_BROXTON(dev)) {
15020 dev_priv->display.modeset_commit_cdclk =
15021 broxton_modeset_commit_cdclk;
15022 dev_priv->display.modeset_calc_cdclk =
15023 broxton_modeset_calc_cdclk;
15024 }
15025
15026 switch (INTEL_INFO(dev)->gen) {
15027 case 2:
15028 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15029 break;
15030
15031 case 3:
15032 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15033 break;
15034
15035 case 4:
15036 case 5:
15037 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15038 break;
15039
15040 case 6:
15041 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15042 break;
15043 case 7:
15044 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15045 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15046 break;
15047 case 9:
15048 /* Drop through - unsupported since execlist only. */
15049 default:
15050 /* Default just returns -ENODEV to indicate unsupported */
15051 dev_priv->display.queue_flip = intel_default_queue_flip;
15052 }
15053
15054 mutex_init(&dev_priv->pps_mutex);
15055 }
15056
15057 /*
15058 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15059 * resume, or other times. This quirk makes sure that's the case for
15060 * affected systems.
15061 */
15062 static void quirk_pipea_force(struct drm_device *dev)
15063 {
15064 struct drm_i915_private *dev_priv = dev->dev_private;
15065
15066 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15067 DRM_INFO("applying pipe a force quirk\n");
15068 }
15069
15070 static void quirk_pipeb_force(struct drm_device *dev)
15071 {
15072 struct drm_i915_private *dev_priv = dev->dev_private;
15073
15074 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15075 DRM_INFO("applying pipe b force quirk\n");
15076 }
15077
15078 /*
15079 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15080 */
15081 static void quirk_ssc_force_disable(struct drm_device *dev)
15082 {
15083 struct drm_i915_private *dev_priv = dev->dev_private;
15084 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15085 DRM_INFO("applying lvds SSC disable quirk\n");
15086 }
15087
15088 /*
15089 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15090 * brightness value
15091 */
15092 static void quirk_invert_brightness(struct drm_device *dev)
15093 {
15094 struct drm_i915_private *dev_priv = dev->dev_private;
15095 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15096 DRM_INFO("applying inverted panel brightness quirk\n");
15097 }
15098
15099 /* Some VBT's incorrectly indicate no backlight is present */
15100 static void quirk_backlight_present(struct drm_device *dev)
15101 {
15102 struct drm_i915_private *dev_priv = dev->dev_private;
15103 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15104 DRM_INFO("applying backlight present quirk\n");
15105 }
15106
15107 struct intel_quirk {
15108 int device;
15109 int subsystem_vendor;
15110 int subsystem_device;
15111 void (*hook)(struct drm_device *dev);
15112 };
15113
15114 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15115 struct intel_dmi_quirk {
15116 void (*hook)(struct drm_device *dev);
15117 const struct dmi_system_id (*dmi_id_list)[];
15118 };
15119
15120 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15121 {
15122 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15123 return 1;
15124 }
15125
15126 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15127 {
15128 .dmi_id_list = &(const struct dmi_system_id[]) {
15129 {
15130 .callback = intel_dmi_reverse_brightness,
15131 .ident = "NCR Corporation",
15132 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15133 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15134 },
15135 },
15136 { } /* terminating entry */
15137 },
15138 .hook = quirk_invert_brightness,
15139 },
15140 };
15141
15142 static struct intel_quirk intel_quirks[] = {
15143 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15144 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15145
15146 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15147 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15148
15149 /* 830 needs to leave pipe A & dpll A up */
15150 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15151
15152 /* 830 needs to leave pipe B & dpll B up */
15153 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15154
15155 /* Lenovo U160 cannot use SSC on LVDS */
15156 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15157
15158 /* Sony Vaio Y cannot use SSC on LVDS */
15159 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15160
15161 /* Acer Aspire 5734Z must invert backlight brightness */
15162 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15163
15164 /* Acer/eMachines G725 */
15165 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15166
15167 /* Acer/eMachines e725 */
15168 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15169
15170 /* Acer/Packard Bell NCL20 */
15171 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15172
15173 /* Acer Aspire 4736Z */
15174 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15175
15176 /* Acer Aspire 5336 */
15177 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15178
15179 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15180 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15181
15182 /* Acer C720 Chromebook (Core i3 4005U) */
15183 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15184
15185 /* Apple Macbook 2,1 (Core 2 T7400) */
15186 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15187
15188 /* Apple Macbook 4,1 */
15189 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15190
15191 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15192 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15193
15194 /* HP Chromebook 14 (Celeron 2955U) */
15195 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15196
15197 /* Dell Chromebook 11 */
15198 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15199
15200 /* Dell Chromebook 11 (2015 version) */
15201 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15202 };
15203
15204 static void intel_init_quirks(struct drm_device *dev)
15205 {
15206 struct pci_dev *d = dev->pdev;
15207 int i;
15208
15209 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15210 struct intel_quirk *q = &intel_quirks[i];
15211
15212 if (d->device == q->device &&
15213 (d->subsystem_vendor == q->subsystem_vendor ||
15214 q->subsystem_vendor == PCI_ANY_ID) &&
15215 (d->subsystem_device == q->subsystem_device ||
15216 q->subsystem_device == PCI_ANY_ID))
15217 q->hook(dev);
15218 }
15219 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15220 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15221 intel_dmi_quirks[i].hook(dev);
15222 }
15223 }
15224
15225 /* Disable the VGA plane that we never use */
15226 static void i915_disable_vga(struct drm_device *dev)
15227 {
15228 struct drm_i915_private *dev_priv = dev->dev_private;
15229 u8 sr1;
15230 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15231
15232 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15233 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15234 outb(SR01, VGA_SR_INDEX);
15235 sr1 = inb(VGA_SR_DATA);
15236 outb(sr1 | 1<<5, VGA_SR_DATA);
15237 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15238 udelay(300);
15239
15240 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15241 POSTING_READ(vga_reg);
15242 }
15243
15244 void intel_modeset_init_hw(struct drm_device *dev)
15245 {
15246 struct drm_i915_private *dev_priv = dev->dev_private;
15247
15248 intel_update_cdclk(dev);
15249
15250 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15251
15252 intel_init_clock_gating(dev);
15253 intel_enable_gt_powersave(dev);
15254 }
15255
15256 /*
15257 * Calculate what we think the watermarks should be for the state we've read
15258 * out of the hardware and then immediately program those watermarks so that
15259 * we ensure the hardware settings match our internal state.
15260 *
15261 * We can calculate what we think WM's should be by creating a duplicate of the
15262 * current state (which was constructed during hardware readout) and running it
15263 * through the atomic check code to calculate new watermark values in the
15264 * state object.
15265 */
15266 static void sanitize_watermarks(struct drm_device *dev)
15267 {
15268 struct drm_i915_private *dev_priv = to_i915(dev);
15269 struct drm_atomic_state *state;
15270 struct drm_crtc *crtc;
15271 struct drm_crtc_state *cstate;
15272 struct drm_modeset_acquire_ctx ctx;
15273 int ret;
15274 int i;
15275
15276 /* Only supported on platforms that use atomic watermark design */
15277 if (!dev_priv->display.program_watermarks)
15278 return;
15279
15280 /*
15281 * We need to hold connection_mutex before calling duplicate_state so
15282 * that the connector loop is protected.
15283 */
15284 drm_modeset_acquire_init(&ctx, 0);
15285 retry:
15286 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15287 if (ret == -EDEADLK) {
15288 drm_modeset_backoff(&ctx);
15289 goto retry;
15290 } else if (WARN_ON(ret)) {
15291 goto fail;
15292 }
15293
15294 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15295 if (WARN_ON(IS_ERR(state)))
15296 goto fail;
15297
15298 ret = intel_atomic_check(dev, state);
15299 if (ret) {
15300 /*
15301 * If we fail here, it means that the hardware appears to be
15302 * programmed in a way that shouldn't be possible, given our
15303 * understanding of watermark requirements. This might mean a
15304 * mistake in the hardware readout code or a mistake in the
15305 * watermark calculations for a given platform. Raise a WARN
15306 * so that this is noticeable.
15307 *
15308 * If this actually happens, we'll have to just leave the
15309 * BIOS-programmed watermarks untouched and hope for the best.
15310 */
15311 WARN(true, "Could not determine valid watermarks for inherited state\n");
15312 goto fail;
15313 }
15314
15315 /* Write calculated watermark values back */
15316 to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15317 for_each_crtc_in_state(state, crtc, cstate, i) {
15318 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15319
15320 dev_priv->display.program_watermarks(cs);
15321 }
15322
15323 drm_atomic_state_free(state);
15324 fail:
15325 drm_modeset_drop_locks(&ctx);
15326 drm_modeset_acquire_fini(&ctx);
15327 }
15328
15329 void intel_modeset_init(struct drm_device *dev)
15330 {
15331 struct drm_i915_private *dev_priv = dev->dev_private;
15332 int sprite, ret;
15333 enum pipe pipe;
15334 struct intel_crtc *crtc;
15335
15336 drm_mode_config_init(dev);
15337
15338 dev->mode_config.min_width = 0;
15339 dev->mode_config.min_height = 0;
15340
15341 dev->mode_config.preferred_depth = 24;
15342 dev->mode_config.prefer_shadow = 1;
15343
15344 dev->mode_config.allow_fb_modifiers = true;
15345
15346 dev->mode_config.funcs = &intel_mode_funcs;
15347
15348 intel_init_quirks(dev);
15349
15350 intel_init_pm(dev);
15351
15352 if (INTEL_INFO(dev)->num_pipes == 0)
15353 return;
15354
15355 /*
15356 * There may be no VBT; and if the BIOS enabled SSC we can
15357 * just keep using it to avoid unnecessary flicker. Whereas if the
15358 * BIOS isn't using it, don't assume it will work even if the VBT
15359 * indicates as much.
15360 */
15361 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15362 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15363 DREF_SSC1_ENABLE);
15364
15365 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15366 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15367 bios_lvds_use_ssc ? "en" : "dis",
15368 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15369 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15370 }
15371 }
15372
15373 intel_init_display(dev);
15374 intel_init_audio(dev);
15375
15376 if (IS_GEN2(dev)) {
15377 dev->mode_config.max_width = 2048;
15378 dev->mode_config.max_height = 2048;
15379 } else if (IS_GEN3(dev)) {
15380 dev->mode_config.max_width = 4096;
15381 dev->mode_config.max_height = 4096;
15382 } else {
15383 dev->mode_config.max_width = 8192;
15384 dev->mode_config.max_height = 8192;
15385 }
15386
15387 if (IS_845G(dev) || IS_I865G(dev)) {
15388 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15389 dev->mode_config.cursor_height = 1023;
15390 } else if (IS_GEN2(dev)) {
15391 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15392 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15393 } else {
15394 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15395 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15396 }
15397
15398 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15399
15400 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15401 INTEL_INFO(dev)->num_pipes,
15402 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15403
15404 for_each_pipe(dev_priv, pipe) {
15405 intel_crtc_init(dev, pipe);
15406 for_each_sprite(dev_priv, pipe, sprite) {
15407 ret = intel_plane_init(dev, pipe, sprite);
15408 if (ret)
15409 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15410 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15411 }
15412 }
15413
15414 intel_update_czclk(dev_priv);
15415 intel_update_cdclk(dev);
15416
15417 intel_shared_dpll_init(dev);
15418
15419 /* Just disable it once at startup */
15420 i915_disable_vga(dev);
15421 intel_setup_outputs(dev);
15422
15423 drm_modeset_lock_all(dev);
15424 intel_modeset_setup_hw_state(dev);
15425 drm_modeset_unlock_all(dev);
15426
15427 for_each_intel_crtc(dev, crtc) {
15428 struct intel_initial_plane_config plane_config = {};
15429
15430 if (!crtc->active)
15431 continue;
15432
15433 /*
15434 * Note that reserving the BIOS fb up front prevents us
15435 * from stuffing other stolen allocations like the ring
15436 * on top. This prevents some ugliness at boot time, and
15437 * can even allow for smooth boot transitions if the BIOS
15438 * fb is large enough for the active pipe configuration.
15439 */
15440 dev_priv->display.get_initial_plane_config(crtc,
15441 &plane_config);
15442
15443 /*
15444 * If the fb is shared between multiple heads, we'll
15445 * just get the first one.
15446 */
15447 intel_find_initial_plane_obj(crtc, &plane_config);
15448 }
15449
15450 /*
15451 * Make sure hardware watermarks really match the state we read out.
15452 * Note that we need to do this after reconstructing the BIOS fb's
15453 * since the watermark calculation done here will use pstate->fb.
15454 */
15455 sanitize_watermarks(dev);
15456 }
15457
15458 static void intel_enable_pipe_a(struct drm_device *dev)
15459 {
15460 struct intel_connector *connector;
15461 struct drm_connector *crt = NULL;
15462 struct intel_load_detect_pipe load_detect_temp;
15463 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15464
15465 /* We can't just switch on the pipe A, we need to set things up with a
15466 * proper mode and output configuration. As a gross hack, enable pipe A
15467 * by enabling the load detect pipe once. */
15468 for_each_intel_connector(dev, connector) {
15469 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15470 crt = &connector->base;
15471 break;
15472 }
15473 }
15474
15475 if (!crt)
15476 return;
15477
15478 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15479 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15480 }
15481
15482 static bool
15483 intel_check_plane_mapping(struct intel_crtc *crtc)
15484 {
15485 struct drm_device *dev = crtc->base.dev;
15486 struct drm_i915_private *dev_priv = dev->dev_private;
15487 u32 val;
15488
15489 if (INTEL_INFO(dev)->num_pipes == 1)
15490 return true;
15491
15492 val = I915_READ(DSPCNTR(!crtc->plane));
15493
15494 if ((val & DISPLAY_PLANE_ENABLE) &&
15495 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15496 return false;
15497
15498 return true;
15499 }
15500
15501 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15502 {
15503 struct drm_device *dev = crtc->base.dev;
15504 struct intel_encoder *encoder;
15505
15506 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15507 return true;
15508
15509 return false;
15510 }
15511
15512 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15513 {
15514 struct drm_device *dev = encoder->base.dev;
15515 struct intel_connector *connector;
15516
15517 for_each_connector_on_encoder(dev, &encoder->base, connector)
15518 return true;
15519
15520 return false;
15521 }
15522
15523 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15524 {
15525 struct drm_device *dev = crtc->base.dev;
15526 struct drm_i915_private *dev_priv = dev->dev_private;
15527 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15528
15529 /* Clear any frame start delays used for debugging left by the BIOS */
15530 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15531
15532 /* restore vblank interrupts to correct state */
15533 drm_crtc_vblank_reset(&crtc->base);
15534 if (crtc->active) {
15535 struct intel_plane *plane;
15536
15537 drm_crtc_vblank_on(&crtc->base);
15538
15539 /* Disable everything but the primary plane */
15540 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15541 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15542 continue;
15543
15544 plane->disable_plane(&plane->base, &crtc->base);
15545 }
15546 }
15547
15548 /* We need to sanitize the plane -> pipe mapping first because this will
15549 * disable the crtc (and hence change the state) if it is wrong. Note
15550 * that gen4+ has a fixed plane -> pipe mapping. */
15551 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15552 bool plane;
15553
15554 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15555 crtc->base.base.id);
15556
15557 /* Pipe has the wrong plane attached and the plane is active.
15558 * Temporarily change the plane mapping and disable everything
15559 * ... */
15560 plane = crtc->plane;
15561 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15562 crtc->plane = !plane;
15563 intel_crtc_disable_noatomic(&crtc->base);
15564 crtc->plane = plane;
15565 }
15566
15567 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15568 crtc->pipe == PIPE_A && !crtc->active) {
15569 /* BIOS forgot to enable pipe A, this mostly happens after
15570 * resume. Force-enable the pipe to fix this, the update_dpms
15571 * call below we restore the pipe to the right state, but leave
15572 * the required bits on. */
15573 intel_enable_pipe_a(dev);
15574 }
15575
15576 /* Adjust the state of the output pipe according to whether we
15577 * have active connectors/encoders. */
15578 if (!intel_crtc_has_encoders(crtc))
15579 intel_crtc_disable_noatomic(&crtc->base);
15580
15581 if (crtc->active != crtc->base.state->active) {
15582 struct intel_encoder *encoder;
15583
15584 /* This can happen either due to bugs in the get_hw_state
15585 * functions or because of calls to intel_crtc_disable_noatomic,
15586 * or because the pipe is force-enabled due to the
15587 * pipe A quirk. */
15588 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15589 crtc->base.base.id,
15590 crtc->base.state->enable ? "enabled" : "disabled",
15591 crtc->active ? "enabled" : "disabled");
15592
15593 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15594 crtc->base.state->active = crtc->active;
15595 crtc->base.enabled = crtc->active;
15596 crtc->base.state->connector_mask = 0;
15597 crtc->base.state->encoder_mask = 0;
15598
15599 /* Because we only establish the connector -> encoder ->
15600 * crtc links if something is active, this means the
15601 * crtc is now deactivated. Break the links. connector
15602 * -> encoder links are only establish when things are
15603 * actually up, hence no need to break them. */
15604 WARN_ON(crtc->active);
15605
15606 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15607 encoder->base.crtc = NULL;
15608 }
15609
15610 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15611 /*
15612 * We start out with underrun reporting disabled to avoid races.
15613 * For correct bookkeeping mark this on active crtcs.
15614 *
15615 * Also on gmch platforms we dont have any hardware bits to
15616 * disable the underrun reporting. Which means we need to start
15617 * out with underrun reporting disabled also on inactive pipes,
15618 * since otherwise we'll complain about the garbage we read when
15619 * e.g. coming up after runtime pm.
15620 *
15621 * No protection against concurrent access is required - at
15622 * worst a fifo underrun happens which also sets this to false.
15623 */
15624 crtc->cpu_fifo_underrun_disabled = true;
15625 crtc->pch_fifo_underrun_disabled = true;
15626 }
15627 }
15628
15629 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15630 {
15631 struct intel_connector *connector;
15632 struct drm_device *dev = encoder->base.dev;
15633
15634 /* We need to check both for a crtc link (meaning that the
15635 * encoder is active and trying to read from a pipe) and the
15636 * pipe itself being active. */
15637 bool has_active_crtc = encoder->base.crtc &&
15638 to_intel_crtc(encoder->base.crtc)->active;
15639
15640 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15641 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15642 encoder->base.base.id,
15643 encoder->base.name);
15644
15645 /* Connector is active, but has no active pipe. This is
15646 * fallout from our resume register restoring. Disable
15647 * the encoder manually again. */
15648 if (encoder->base.crtc) {
15649 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15650 encoder->base.base.id,
15651 encoder->base.name);
15652 encoder->disable(encoder);
15653 if (encoder->post_disable)
15654 encoder->post_disable(encoder);
15655 }
15656 encoder->base.crtc = NULL;
15657
15658 /* Inconsistent output/port/pipe state happens presumably due to
15659 * a bug in one of the get_hw_state functions. Or someplace else
15660 * in our code, like the register restore mess on resume. Clamp
15661 * things to off as a safer default. */
15662 for_each_intel_connector(dev, connector) {
15663 if (connector->encoder != encoder)
15664 continue;
15665 connector->base.dpms = DRM_MODE_DPMS_OFF;
15666 connector->base.encoder = NULL;
15667 }
15668 }
15669 /* Enabled encoders without active connectors will be fixed in
15670 * the crtc fixup. */
15671 }
15672
15673 void i915_redisable_vga_power_on(struct drm_device *dev)
15674 {
15675 struct drm_i915_private *dev_priv = dev->dev_private;
15676 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15677
15678 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15679 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15680 i915_disable_vga(dev);
15681 }
15682 }
15683
15684 void i915_redisable_vga(struct drm_device *dev)
15685 {
15686 struct drm_i915_private *dev_priv = dev->dev_private;
15687
15688 /* This function can be called both from intel_modeset_setup_hw_state or
15689 * at a very early point in our resume sequence, where the power well
15690 * structures are not yet restored. Since this function is at a very
15691 * paranoid "someone might have enabled VGA while we were not looking"
15692 * level, just check if the power well is enabled instead of trying to
15693 * follow the "don't touch the power well if we don't need it" policy
15694 * the rest of the driver uses. */
15695 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15696 return;
15697
15698 i915_redisable_vga_power_on(dev);
15699
15700 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15701 }
15702
15703 static bool primary_get_hw_state(struct intel_plane *plane)
15704 {
15705 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15706
15707 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15708 }
15709
15710 /* FIXME read out full plane state for all planes */
15711 static void readout_plane_state(struct intel_crtc *crtc)
15712 {
15713 struct drm_plane *primary = crtc->base.primary;
15714 struct intel_plane_state *plane_state =
15715 to_intel_plane_state(primary->state);
15716
15717 plane_state->visible = crtc->active &&
15718 primary_get_hw_state(to_intel_plane(primary));
15719
15720 if (plane_state->visible)
15721 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15722 }
15723
15724 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15725 {
15726 struct drm_i915_private *dev_priv = dev->dev_private;
15727 enum pipe pipe;
15728 struct intel_crtc *crtc;
15729 struct intel_encoder *encoder;
15730 struct intel_connector *connector;
15731 int i;
15732
15733 dev_priv->active_crtcs = 0;
15734
15735 for_each_intel_crtc(dev, crtc) {
15736 struct intel_crtc_state *crtc_state = crtc->config;
15737 int pixclk = 0;
15738
15739 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15740 memset(crtc_state, 0, sizeof(*crtc_state));
15741 crtc_state->base.crtc = &crtc->base;
15742
15743 crtc_state->base.active = crtc_state->base.enable =
15744 dev_priv->display.get_pipe_config(crtc, crtc_state);
15745
15746 crtc->base.enabled = crtc_state->base.enable;
15747 crtc->active = crtc_state->base.active;
15748
15749 if (crtc_state->base.active) {
15750 dev_priv->active_crtcs |= 1 << crtc->pipe;
15751
15752 if (IS_BROADWELL(dev_priv)) {
15753 pixclk = ilk_pipe_pixel_rate(crtc_state);
15754
15755 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15756 if (crtc_state->ips_enabled)
15757 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15758 } else if (IS_VALLEYVIEW(dev_priv) ||
15759 IS_CHERRYVIEW(dev_priv) ||
15760 IS_BROXTON(dev_priv))
15761 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15762 else
15763 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15764 }
15765
15766 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15767
15768 readout_plane_state(crtc);
15769
15770 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15771 crtc->base.base.id,
15772 crtc->active ? "enabled" : "disabled");
15773 }
15774
15775 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15776 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15777
15778 pll->on = pll->get_hw_state(dev_priv, pll,
15779 &pll->config.hw_state);
15780 pll->active = 0;
15781 pll->config.crtc_mask = 0;
15782 for_each_intel_crtc(dev, crtc) {
15783 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15784 pll->active++;
15785 pll->config.crtc_mask |= 1 << crtc->pipe;
15786 }
15787 }
15788
15789 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15790 pll->name, pll->config.crtc_mask, pll->on);
15791
15792 if (pll->config.crtc_mask)
15793 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15794 }
15795
15796 for_each_intel_encoder(dev, encoder) {
15797 pipe = 0;
15798
15799 if (encoder->get_hw_state(encoder, &pipe)) {
15800 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15801 encoder->base.crtc = &crtc->base;
15802 encoder->get_config(encoder, crtc->config);
15803 } else {
15804 encoder->base.crtc = NULL;
15805 }
15806
15807 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15808 encoder->base.base.id,
15809 encoder->base.name,
15810 encoder->base.crtc ? "enabled" : "disabled",
15811 pipe_name(pipe));
15812 }
15813
15814 for_each_intel_connector(dev, connector) {
15815 if (connector->get_hw_state(connector)) {
15816 connector->base.dpms = DRM_MODE_DPMS_ON;
15817
15818 encoder = connector->encoder;
15819 connector->base.encoder = &encoder->base;
15820
15821 if (encoder->base.crtc &&
15822 encoder->base.crtc->state->active) {
15823 /*
15824 * This has to be done during hardware readout
15825 * because anything calling .crtc_disable may
15826 * rely on the connector_mask being accurate.
15827 */
15828 encoder->base.crtc->state->connector_mask |=
15829 1 << drm_connector_index(&connector->base);
15830 encoder->base.crtc->state->encoder_mask |=
15831 1 << drm_encoder_index(&encoder->base);
15832 }
15833
15834 } else {
15835 connector->base.dpms = DRM_MODE_DPMS_OFF;
15836 connector->base.encoder = NULL;
15837 }
15838 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15839 connector->base.base.id,
15840 connector->base.name,
15841 connector->base.encoder ? "enabled" : "disabled");
15842 }
15843
15844 for_each_intel_crtc(dev, crtc) {
15845 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15846
15847 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15848 if (crtc->base.state->active) {
15849 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15850 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15851 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15852
15853 /*
15854 * The initial mode needs to be set in order to keep
15855 * the atomic core happy. It wants a valid mode if the
15856 * crtc's enabled, so we do the above call.
15857 *
15858 * At this point some state updated by the connectors
15859 * in their ->detect() callback has not run yet, so
15860 * no recalculation can be done yet.
15861 *
15862 * Even if we could do a recalculation and modeset
15863 * right now it would cause a double modeset if
15864 * fbdev or userspace chooses a different initial mode.
15865 *
15866 * If that happens, someone indicated they wanted a
15867 * mode change, which means it's safe to do a full
15868 * recalculation.
15869 */
15870 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15871
15872 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15873 update_scanline_offset(crtc);
15874 }
15875 }
15876 }
15877
15878 /* Scan out the current hw modeset state,
15879 * and sanitizes it to the current state
15880 */
15881 static void
15882 intel_modeset_setup_hw_state(struct drm_device *dev)
15883 {
15884 struct drm_i915_private *dev_priv = dev->dev_private;
15885 enum pipe pipe;
15886 struct intel_crtc *crtc;
15887 struct intel_encoder *encoder;
15888 int i;
15889
15890 intel_modeset_readout_hw_state(dev);
15891
15892 /* HW state is read out, now we need to sanitize this mess. */
15893 for_each_intel_encoder(dev, encoder) {
15894 intel_sanitize_encoder(encoder);
15895 }
15896
15897 for_each_pipe(dev_priv, pipe) {
15898 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15899 intel_sanitize_crtc(crtc);
15900 intel_dump_pipe_config(crtc, crtc->config,
15901 "[setup_hw_state]");
15902 }
15903
15904 intel_modeset_update_connector_atomic_state(dev);
15905
15906 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15907 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15908
15909 if (!pll->on || pll->active)
15910 continue;
15911
15912 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15913
15914 pll->disable(dev_priv, pll);
15915 pll->on = false;
15916 }
15917
15918 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15919 vlv_wm_get_hw_state(dev);
15920 else if (IS_GEN9(dev))
15921 skl_wm_get_hw_state(dev);
15922 else if (HAS_PCH_SPLIT(dev))
15923 ilk_wm_get_hw_state(dev);
15924
15925 for_each_intel_crtc(dev, crtc) {
15926 unsigned long put_domains;
15927
15928 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15929 if (WARN_ON(put_domains))
15930 modeset_put_power_domains(dev_priv, put_domains);
15931 }
15932 intel_display_set_init_power(dev_priv, false);
15933
15934 intel_fbc_init_pipe_state(dev_priv);
15935 }
15936
15937 void intel_display_resume(struct drm_device *dev)
15938 {
15939 struct drm_i915_private *dev_priv = to_i915(dev);
15940 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15941 struct drm_modeset_acquire_ctx ctx;
15942 int ret;
15943 bool setup = false;
15944
15945 dev_priv->modeset_restore_state = NULL;
15946
15947 /*
15948 * This is a cludge because with real atomic modeset mode_config.mutex
15949 * won't be taken. Unfortunately some probed state like
15950 * audio_codec_enable is still protected by mode_config.mutex, so lock
15951 * it here for now.
15952 */
15953 mutex_lock(&dev->mode_config.mutex);
15954 drm_modeset_acquire_init(&ctx, 0);
15955
15956 retry:
15957 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15958
15959 if (ret == 0 && !setup) {
15960 setup = true;
15961
15962 intel_modeset_setup_hw_state(dev);
15963 i915_redisable_vga(dev);
15964 }
15965
15966 if (ret == 0 && state) {
15967 struct drm_crtc_state *crtc_state;
15968 struct drm_crtc *crtc;
15969 int i;
15970
15971 state->acquire_ctx = &ctx;
15972
15973 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15974 /*
15975 * Force recalculation even if we restore
15976 * current state. With fast modeset this may not result
15977 * in a modeset when the state is compatible.
15978 */
15979 crtc_state->mode_changed = true;
15980 }
15981
15982 ret = drm_atomic_commit(state);
15983 }
15984
15985 if (ret == -EDEADLK) {
15986 drm_modeset_backoff(&ctx);
15987 goto retry;
15988 }
15989
15990 drm_modeset_drop_locks(&ctx);
15991 drm_modeset_acquire_fini(&ctx);
15992 mutex_unlock(&dev->mode_config.mutex);
15993
15994 if (ret) {
15995 DRM_ERROR("Restoring old state failed with %i\n", ret);
15996 drm_atomic_state_free(state);
15997 }
15998 }
15999
16000 void intel_modeset_gem_init(struct drm_device *dev)
16001 {
16002 struct drm_crtc *c;
16003 struct drm_i915_gem_object *obj;
16004 int ret;
16005
16006 intel_init_gt_powersave(dev);
16007
16008 intel_modeset_init_hw(dev);
16009
16010 intel_setup_overlay(dev);
16011
16012 /*
16013 * Make sure any fbs we allocated at startup are properly
16014 * pinned & fenced. When we do the allocation it's too early
16015 * for this.
16016 */
16017 for_each_crtc(dev, c) {
16018 obj = intel_fb_obj(c->primary->fb);
16019 if (obj == NULL)
16020 continue;
16021
16022 mutex_lock(&dev->struct_mutex);
16023 ret = intel_pin_and_fence_fb_obj(c->primary,
16024 c->primary->fb,
16025 c->primary->state);
16026 mutex_unlock(&dev->struct_mutex);
16027 if (ret) {
16028 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16029 to_intel_crtc(c)->pipe);
16030 drm_framebuffer_unreference(c->primary->fb);
16031 c->primary->fb = NULL;
16032 c->primary->crtc = c->primary->state->crtc = NULL;
16033 update_state_fb(c->primary);
16034 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16035 }
16036 }
16037
16038 intel_backlight_register(dev);
16039 }
16040
16041 void intel_connector_unregister(struct intel_connector *intel_connector)
16042 {
16043 struct drm_connector *connector = &intel_connector->base;
16044
16045 intel_panel_destroy_backlight(connector);
16046 drm_connector_unregister(connector);
16047 }
16048
16049 void intel_modeset_cleanup(struct drm_device *dev)
16050 {
16051 struct drm_i915_private *dev_priv = dev->dev_private;
16052 struct intel_connector *connector;
16053
16054 intel_disable_gt_powersave(dev);
16055
16056 intel_backlight_unregister(dev);
16057
16058 /*
16059 * Interrupts and polling as the first thing to avoid creating havoc.
16060 * Too much stuff here (turning of connectors, ...) would
16061 * experience fancy races otherwise.
16062 */
16063 intel_irq_uninstall(dev_priv);
16064
16065 /*
16066 * Due to the hpd irq storm handling the hotplug work can re-arm the
16067 * poll handlers. Hence disable polling after hpd handling is shut down.
16068 */
16069 drm_kms_helper_poll_fini(dev);
16070
16071 intel_unregister_dsm_handler();
16072
16073 intel_fbc_global_disable(dev_priv);
16074
16075 /* flush any delayed tasks or pending work */
16076 flush_scheduled_work();
16077
16078 /* destroy the backlight and sysfs files before encoders/connectors */
16079 for_each_intel_connector(dev, connector)
16080 connector->unregister(connector);
16081
16082 drm_mode_config_cleanup(dev);
16083
16084 intel_cleanup_overlay(dev);
16085
16086 intel_cleanup_gt_powersave(dev);
16087
16088 intel_teardown_gmbus(dev);
16089 }
16090
16091 /*
16092 * Return which encoder is currently attached for connector.
16093 */
16094 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16095 {
16096 return &intel_attached_encoder(connector)->base;
16097 }
16098
16099 void intel_connector_attach_encoder(struct intel_connector *connector,
16100 struct intel_encoder *encoder)
16101 {
16102 connector->encoder = encoder;
16103 drm_mode_connector_attach_encoder(&connector->base,
16104 &encoder->base);
16105 }
16106
16107 /*
16108 * set vga decode state - true == enable VGA decode
16109 */
16110 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16111 {
16112 struct drm_i915_private *dev_priv = dev->dev_private;
16113 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16114 u16 gmch_ctrl;
16115
16116 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16117 DRM_ERROR("failed to read control word\n");
16118 return -EIO;
16119 }
16120
16121 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16122 return 0;
16123
16124 if (state)
16125 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16126 else
16127 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16128
16129 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16130 DRM_ERROR("failed to write control word\n");
16131 return -EIO;
16132 }
16133
16134 return 0;
16135 }
16136
16137 struct intel_display_error_state {
16138
16139 u32 power_well_driver;
16140
16141 int num_transcoders;
16142
16143 struct intel_cursor_error_state {
16144 u32 control;
16145 u32 position;
16146 u32 base;
16147 u32 size;
16148 } cursor[I915_MAX_PIPES];
16149
16150 struct intel_pipe_error_state {
16151 bool power_domain_on;
16152 u32 source;
16153 u32 stat;
16154 } pipe[I915_MAX_PIPES];
16155
16156 struct intel_plane_error_state {
16157 u32 control;
16158 u32 stride;
16159 u32 size;
16160 u32 pos;
16161 u32 addr;
16162 u32 surface;
16163 u32 tile_offset;
16164 } plane[I915_MAX_PIPES];
16165
16166 struct intel_transcoder_error_state {
16167 bool power_domain_on;
16168 enum transcoder cpu_transcoder;
16169
16170 u32 conf;
16171
16172 u32 htotal;
16173 u32 hblank;
16174 u32 hsync;
16175 u32 vtotal;
16176 u32 vblank;
16177 u32 vsync;
16178 } transcoder[4];
16179 };
16180
16181 struct intel_display_error_state *
16182 intel_display_capture_error_state(struct drm_device *dev)
16183 {
16184 struct drm_i915_private *dev_priv = dev->dev_private;
16185 struct intel_display_error_state *error;
16186 int transcoders[] = {
16187 TRANSCODER_A,
16188 TRANSCODER_B,
16189 TRANSCODER_C,
16190 TRANSCODER_EDP,
16191 };
16192 int i;
16193
16194 if (INTEL_INFO(dev)->num_pipes == 0)
16195 return NULL;
16196
16197 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16198 if (error == NULL)
16199 return NULL;
16200
16201 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16202 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16203
16204 for_each_pipe(dev_priv, i) {
16205 error->pipe[i].power_domain_on =
16206 __intel_display_power_is_enabled(dev_priv,
16207 POWER_DOMAIN_PIPE(i));
16208 if (!error->pipe[i].power_domain_on)
16209 continue;
16210
16211 error->cursor[i].control = I915_READ(CURCNTR(i));
16212 error->cursor[i].position = I915_READ(CURPOS(i));
16213 error->cursor[i].base = I915_READ(CURBASE(i));
16214
16215 error->plane[i].control = I915_READ(DSPCNTR(i));
16216 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16217 if (INTEL_INFO(dev)->gen <= 3) {
16218 error->plane[i].size = I915_READ(DSPSIZE(i));
16219 error->plane[i].pos = I915_READ(DSPPOS(i));
16220 }
16221 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16222 error->plane[i].addr = I915_READ(DSPADDR(i));
16223 if (INTEL_INFO(dev)->gen >= 4) {
16224 error->plane[i].surface = I915_READ(DSPSURF(i));
16225 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16226 }
16227
16228 error->pipe[i].source = I915_READ(PIPESRC(i));
16229
16230 if (HAS_GMCH_DISPLAY(dev))
16231 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16232 }
16233
16234 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16235 if (HAS_DDI(dev_priv->dev))
16236 error->num_transcoders++; /* Account for eDP. */
16237
16238 for (i = 0; i < error->num_transcoders; i++) {
16239 enum transcoder cpu_transcoder = transcoders[i];
16240
16241 error->transcoder[i].power_domain_on =
16242 __intel_display_power_is_enabled(dev_priv,
16243 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16244 if (!error->transcoder[i].power_domain_on)
16245 continue;
16246
16247 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16248
16249 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16250 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16251 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16252 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16253 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16254 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16255 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16256 }
16257
16258 return error;
16259 }
16260
16261 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16262
16263 void
16264 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16265 struct drm_device *dev,
16266 struct intel_display_error_state *error)
16267 {
16268 struct drm_i915_private *dev_priv = dev->dev_private;
16269 int i;
16270
16271 if (!error)
16272 return;
16273
16274 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16275 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16276 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16277 error->power_well_driver);
16278 for_each_pipe(dev_priv, i) {
16279 err_printf(m, "Pipe [%d]:\n", i);
16280 err_printf(m, " Power: %s\n",
16281 onoff(error->pipe[i].power_domain_on));
16282 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
16283 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
16284
16285 err_printf(m, "Plane [%d]:\n", i);
16286 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16287 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16288 if (INTEL_INFO(dev)->gen <= 3) {
16289 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16290 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16291 }
16292 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16293 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16294 if (INTEL_INFO(dev)->gen >= 4) {
16295 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16296 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16297 }
16298
16299 err_printf(m, "Cursor [%d]:\n", i);
16300 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16301 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16302 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16303 }
16304
16305 for (i = 0; i < error->num_transcoders; i++) {
16306 err_printf(m, "CPU transcoder: %c\n",
16307 transcoder_name(error->transcoder[i].cpu_transcoder));
16308 err_printf(m, " Power: %s\n",
16309 onoff(error->transcoder[i].power_domain_on));
16310 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16311 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16312 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16313 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16314 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16315 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16316 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16317 }
16318 }
This page took 0.350111 seconds and 6 git commands to generate.