Merge remote-tracking branches 'regulator/topic/tps65218' and 'regulator/topic/tps800...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195 struct drm_display_mode *mode)
196 {
197 struct intel_dp *intel_dp = intel_attached_dp(connector);
198 struct intel_connector *intel_connector = to_intel_connector(connector);
199 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200 int target_clock = mode->clock;
201 int max_rate, mode_rate, max_lanes, max_link_clock;
202 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204 if (is_edp(intel_dp) && fixed_mode) {
205 if (mode->hdisplay > fixed_mode->hdisplay)
206 return MODE_PANEL;
207
208 if (mode->vdisplay > fixed_mode->vdisplay)
209 return MODE_PANEL;
210
211 target_clock = fixed_mode->clock;
212 }
213
214 max_link_clock = intel_dp_max_link_rate(intel_dp);
215 max_lanes = intel_dp_max_lane_count(intel_dp);
216
217 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218 mode_rate = intel_dp_link_required(target_clock, 18);
219
220 if (mode_rate > max_rate || target_clock > max_dotclk)
221 return MODE_CLOCK_HIGH;
222
223 if (mode->clock < 10000)
224 return MODE_CLOCK_LOW;
225
226 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227 return MODE_H_ILLEGAL;
228
229 return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234 int i;
235 uint32_t v = 0;
236
237 if (src_bytes > 4)
238 src_bytes = 4;
239 for (i = 0; i < src_bytes; i++)
240 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241 return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246 int i;
247 if (dst_bytes > 4)
248 dst_bytes = 4;
249 for (i = 0; i < dst_bytes; i++)
250 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255 struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258 struct intel_dp *intel_dp);
259
260 static void pps_lock(struct intel_dp *intel_dp)
261 {
262 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
263 struct intel_encoder *encoder = &intel_dig_port->base;
264 struct drm_device *dev = encoder->base.dev;
265 struct drm_i915_private *dev_priv = to_i915(dev);
266 enum intel_display_power_domain power_domain;
267
268 /*
269 * See vlv_power_sequencer_reset() why we need
270 * a power domain reference here.
271 */
272 power_domain = intel_display_port_aux_power_domain(encoder);
273 intel_display_power_get(dev_priv, power_domain);
274
275 mutex_lock(&dev_priv->pps_mutex);
276 }
277
278 static void pps_unlock(struct intel_dp *intel_dp)
279 {
280 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
281 struct intel_encoder *encoder = &intel_dig_port->base;
282 struct drm_device *dev = encoder->base.dev;
283 struct drm_i915_private *dev_priv = to_i915(dev);
284 enum intel_display_power_domain power_domain;
285
286 mutex_unlock(&dev_priv->pps_mutex);
287
288 power_domain = intel_display_port_aux_power_domain(encoder);
289 intel_display_power_put(dev_priv, power_domain);
290 }
291
292 static void
293 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct drm_device *dev = intel_dig_port->base.base.dev;
297 struct drm_i915_private *dev_priv = to_i915(dev);
298 enum pipe pipe = intel_dp->pps_pipe;
299 bool pll_enabled, release_cl_override = false;
300 enum dpio_phy phy = DPIO_PHY(pipe);
301 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
302 uint32_t DP;
303
304 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
305 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
306 pipe_name(pipe), port_name(intel_dig_port->port)))
307 return;
308
309 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
310 pipe_name(pipe), port_name(intel_dig_port->port));
311
312 /* Preserve the BIOS-computed detected bit. This is
313 * supposed to be read-only.
314 */
315 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
316 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
317 DP |= DP_PORT_WIDTH(1);
318 DP |= DP_LINK_TRAIN_PAT_1;
319
320 if (IS_CHERRYVIEW(dev))
321 DP |= DP_PIPE_SELECT_CHV(pipe);
322 else if (pipe == PIPE_B)
323 DP |= DP_PIPEB_SELECT;
324
325 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
326
327 /*
328 * The DPLL for the pipe must be enabled for this to work.
329 * So enable temporarily it if it's not already enabled.
330 */
331 if (!pll_enabled) {
332 release_cl_override = IS_CHERRYVIEW(dev) &&
333 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
334
335 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
336 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
337 DRM_ERROR("Failed to force on pll for pipe %c!\n",
338 pipe_name(pipe));
339 return;
340 }
341 }
342
343 /*
344 * Similar magic as in intel_dp_enable_port().
345 * We _must_ do this port enable + disable trick
346 * to make this power seqeuencer lock onto the port.
347 * Otherwise even VDD force bit won't work.
348 */
349 I915_WRITE(intel_dp->output_reg, DP);
350 POSTING_READ(intel_dp->output_reg);
351
352 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
353 POSTING_READ(intel_dp->output_reg);
354
355 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
356 POSTING_READ(intel_dp->output_reg);
357
358 if (!pll_enabled) {
359 vlv_force_pll_off(dev, pipe);
360
361 if (release_cl_override)
362 chv_phy_powergate_ch(dev_priv, phy, ch, false);
363 }
364 }
365
366 static enum pipe
367 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
368 {
369 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
370 struct drm_device *dev = intel_dig_port->base.base.dev;
371 struct drm_i915_private *dev_priv = to_i915(dev);
372 struct intel_encoder *encoder;
373 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
374 enum pipe pipe;
375
376 lockdep_assert_held(&dev_priv->pps_mutex);
377
378 /* We should never land here with regular DP ports */
379 WARN_ON(!is_edp(intel_dp));
380
381 if (intel_dp->pps_pipe != INVALID_PIPE)
382 return intel_dp->pps_pipe;
383
384 /*
385 * We don't have power sequencer currently.
386 * Pick one that's not used by other ports.
387 */
388 for_each_intel_encoder(dev, encoder) {
389 struct intel_dp *tmp;
390
391 if (encoder->type != INTEL_OUTPUT_EDP)
392 continue;
393
394 tmp = enc_to_intel_dp(&encoder->base);
395
396 if (tmp->pps_pipe != INVALID_PIPE)
397 pipes &= ~(1 << tmp->pps_pipe);
398 }
399
400 /*
401 * Didn't find one. This should not happen since there
402 * are two power sequencers and up to two eDP ports.
403 */
404 if (WARN_ON(pipes == 0))
405 pipe = PIPE_A;
406 else
407 pipe = ffs(pipes) - 1;
408
409 vlv_steal_power_sequencer(dev, pipe);
410 intel_dp->pps_pipe = pipe;
411
412 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
413 pipe_name(intel_dp->pps_pipe),
414 port_name(intel_dig_port->port));
415
416 /* init power sequencer on this pipe and port */
417 intel_dp_init_panel_power_sequencer(dev, intel_dp);
418 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
419
420 /*
421 * Even vdd force doesn't work until we've made
422 * the power sequencer lock in on the port.
423 */
424 vlv_power_sequencer_kick(intel_dp);
425
426 return intel_dp->pps_pipe;
427 }
428
429 static int
430 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
431 {
432 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
433 struct drm_device *dev = intel_dig_port->base.base.dev;
434 struct drm_i915_private *dev_priv = to_i915(dev);
435
436 lockdep_assert_held(&dev_priv->pps_mutex);
437
438 /* We should never land here with regular DP ports */
439 WARN_ON(!is_edp(intel_dp));
440
441 /*
442 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
443 * mapping needs to be retrieved from VBT, for now just hard-code to
444 * use instance #0 always.
445 */
446 if (!intel_dp->pps_reset)
447 return 0;
448
449 intel_dp->pps_reset = false;
450
451 /*
452 * Only the HW needs to be reprogrammed, the SW state is fixed and
453 * has been setup during connector init.
454 */
455 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
456
457 return 0;
458 }
459
460 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
461 enum pipe pipe);
462
463 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
464 enum pipe pipe)
465 {
466 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
467 }
468
469 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
470 enum pipe pipe)
471 {
472 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
473 }
474
475 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
476 enum pipe pipe)
477 {
478 return true;
479 }
480
481 static enum pipe
482 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
483 enum port port,
484 vlv_pipe_check pipe_check)
485 {
486 enum pipe pipe;
487
488 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
489 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
490 PANEL_PORT_SELECT_MASK;
491
492 if (port_sel != PANEL_PORT_SELECT_VLV(port))
493 continue;
494
495 if (!pipe_check(dev_priv, pipe))
496 continue;
497
498 return pipe;
499 }
500
501 return INVALID_PIPE;
502 }
503
504 static void
505 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
506 {
507 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
508 struct drm_device *dev = intel_dig_port->base.base.dev;
509 struct drm_i915_private *dev_priv = to_i915(dev);
510 enum port port = intel_dig_port->port;
511
512 lockdep_assert_held(&dev_priv->pps_mutex);
513
514 /* try to find a pipe with this port selected */
515 /* first pick one where the panel is on */
516 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517 vlv_pipe_has_pp_on);
518 /* didn't find one? pick one where vdd is on */
519 if (intel_dp->pps_pipe == INVALID_PIPE)
520 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521 vlv_pipe_has_vdd_on);
522 /* didn't find one? pick one with just the correct port */
523 if (intel_dp->pps_pipe == INVALID_PIPE)
524 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
525 vlv_pipe_any);
526
527 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
528 if (intel_dp->pps_pipe == INVALID_PIPE) {
529 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
530 port_name(port));
531 return;
532 }
533
534 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
535 port_name(port), pipe_name(intel_dp->pps_pipe));
536
537 intel_dp_init_panel_power_sequencer(dev, intel_dp);
538 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
539 }
540
541 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
542 {
543 struct drm_device *dev = &dev_priv->drm;
544 struct intel_encoder *encoder;
545
546 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
547 !IS_BROXTON(dev)))
548 return;
549
550 /*
551 * We can't grab pps_mutex here due to deadlock with power_domain
552 * mutex when power_domain functions are called while holding pps_mutex.
553 * That also means that in order to use pps_pipe the code needs to
554 * hold both a power domain reference and pps_mutex, and the power domain
555 * reference get/put must be done while _not_ holding pps_mutex.
556 * pps_{lock,unlock}() do these steps in the correct order, so one
557 * should use them always.
558 */
559
560 for_each_intel_encoder(dev, encoder) {
561 struct intel_dp *intel_dp;
562
563 if (encoder->type != INTEL_OUTPUT_EDP)
564 continue;
565
566 intel_dp = enc_to_intel_dp(&encoder->base);
567 if (IS_BROXTON(dev))
568 intel_dp->pps_reset = true;
569 else
570 intel_dp->pps_pipe = INVALID_PIPE;
571 }
572 }
573
574 struct pps_registers {
575 i915_reg_t pp_ctrl;
576 i915_reg_t pp_stat;
577 i915_reg_t pp_on;
578 i915_reg_t pp_off;
579 i915_reg_t pp_div;
580 };
581
582 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
583 struct intel_dp *intel_dp,
584 struct pps_registers *regs)
585 {
586 memset(regs, 0, sizeof(*regs));
587
588 if (IS_BROXTON(dev_priv)) {
589 int idx = bxt_power_sequencer_idx(intel_dp);
590
591 regs->pp_ctrl = BXT_PP_CONTROL(idx);
592 regs->pp_stat = BXT_PP_STATUS(idx);
593 regs->pp_on = BXT_PP_ON_DELAYS(idx);
594 regs->pp_off = BXT_PP_OFF_DELAYS(idx);
595 } else if (HAS_PCH_SPLIT(dev_priv)) {
596 regs->pp_ctrl = PCH_PP_CONTROL;
597 regs->pp_stat = PCH_PP_STATUS;
598 regs->pp_on = PCH_PP_ON_DELAYS;
599 regs->pp_off = PCH_PP_OFF_DELAYS;
600 regs->pp_div = PCH_PP_DIVISOR;
601 } else {
602 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604 regs->pp_ctrl = VLV_PIPE_PP_CONTROL(pipe);
605 regs->pp_stat = VLV_PIPE_PP_STATUS(pipe);
606 regs->pp_on = VLV_PIPE_PP_ON_DELAYS(pipe);
607 regs->pp_off = VLV_PIPE_PP_OFF_DELAYS(pipe);
608 regs->pp_div = VLV_PIPE_PP_DIVISOR(pipe);
609 }
610 }
611
612 static i915_reg_t
613 _pp_ctrl_reg(struct intel_dp *intel_dp)
614 {
615 struct pps_registers regs;
616
617 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
618 &regs);
619
620 return regs.pp_ctrl;
621 }
622
623 static i915_reg_t
624 _pp_stat_reg(struct intel_dp *intel_dp)
625 {
626 struct pps_registers regs;
627
628 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
629 &regs);
630
631 return regs.pp_stat;
632 }
633
634 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
635 This function only applicable when panel PM state is not to be tracked */
636 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
637 void *unused)
638 {
639 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
640 edp_notifier);
641 struct drm_device *dev = intel_dp_to_dev(intel_dp);
642 struct drm_i915_private *dev_priv = to_i915(dev);
643
644 if (!is_edp(intel_dp) || code != SYS_RESTART)
645 return 0;
646
647 pps_lock(intel_dp);
648
649 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
650 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
651 i915_reg_t pp_ctrl_reg, pp_div_reg;
652 u32 pp_div;
653
654 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
655 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
656 pp_div = I915_READ(pp_div_reg);
657 pp_div &= PP_REFERENCE_DIVIDER_MASK;
658
659 /* 0x1F write to PP_DIV_REG sets max cycle delay */
660 I915_WRITE(pp_div_reg, pp_div | 0x1F);
661 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
662 msleep(intel_dp->panel_power_cycle_delay);
663 }
664
665 pps_unlock(intel_dp);
666
667 return 0;
668 }
669
670 static bool edp_have_panel_power(struct intel_dp *intel_dp)
671 {
672 struct drm_device *dev = intel_dp_to_dev(intel_dp);
673 struct drm_i915_private *dev_priv = to_i915(dev);
674
675 lockdep_assert_held(&dev_priv->pps_mutex);
676
677 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
678 intel_dp->pps_pipe == INVALID_PIPE)
679 return false;
680
681 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
682 }
683
684 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
685 {
686 struct drm_device *dev = intel_dp_to_dev(intel_dp);
687 struct drm_i915_private *dev_priv = to_i915(dev);
688
689 lockdep_assert_held(&dev_priv->pps_mutex);
690
691 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
692 intel_dp->pps_pipe == INVALID_PIPE)
693 return false;
694
695 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
696 }
697
698 static void
699 intel_dp_check_edp(struct intel_dp *intel_dp)
700 {
701 struct drm_device *dev = intel_dp_to_dev(intel_dp);
702 struct drm_i915_private *dev_priv = to_i915(dev);
703
704 if (!is_edp(intel_dp))
705 return;
706
707 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
708 WARN(1, "eDP powered off while attempting aux channel communication.\n");
709 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
710 I915_READ(_pp_stat_reg(intel_dp)),
711 I915_READ(_pp_ctrl_reg(intel_dp)));
712 }
713 }
714
715 static uint32_t
716 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
717 {
718 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
719 struct drm_device *dev = intel_dig_port->base.base.dev;
720 struct drm_i915_private *dev_priv = to_i915(dev);
721 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
722 uint32_t status;
723 bool done;
724
725 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
726 if (has_aux_irq)
727 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
728 msecs_to_jiffies_timeout(10));
729 else
730 done = wait_for(C, 10) == 0;
731 if (!done)
732 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
733 has_aux_irq);
734 #undef C
735
736 return status;
737 }
738
739 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
743
744 if (index)
745 return 0;
746
747 /*
748 * The clock divider is based off the hrawclk, and would like to run at
749 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
750 */
751 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
752 }
753
754 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
755 {
756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
758
759 if (index)
760 return 0;
761
762 /*
763 * The clock divider is based off the cdclk or PCH rawclk, and would
764 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
765 * divide by 2000 and use that
766 */
767 if (intel_dig_port->port == PORT_A)
768 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
769 else
770 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
771 }
772
773 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
774 {
775 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
776 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
777
778 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
779 /* Workaround for non-ULT HSW */
780 switch (index) {
781 case 0: return 63;
782 case 1: return 72;
783 default: return 0;
784 }
785 }
786
787 return ilk_get_aux_clock_divider(intel_dp, index);
788 }
789
790 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
791 {
792 /*
793 * SKL doesn't need us to program the AUX clock divider (Hardware will
794 * derive the clock from CDCLK automatically). We still implement the
795 * get_aux_clock_divider vfunc to plug-in into the existing code.
796 */
797 return index ? 0 : 1;
798 }
799
800 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
801 bool has_aux_irq,
802 int send_bytes,
803 uint32_t aux_clock_divider)
804 {
805 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
806 struct drm_device *dev = intel_dig_port->base.base.dev;
807 uint32_t precharge, timeout;
808
809 if (IS_GEN6(dev))
810 precharge = 3;
811 else
812 precharge = 5;
813
814 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
815 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
816 else
817 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
818
819 return DP_AUX_CH_CTL_SEND_BUSY |
820 DP_AUX_CH_CTL_DONE |
821 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
822 DP_AUX_CH_CTL_TIME_OUT_ERROR |
823 timeout |
824 DP_AUX_CH_CTL_RECEIVE_ERROR |
825 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
826 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
827 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
828 }
829
830 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
831 bool has_aux_irq,
832 int send_bytes,
833 uint32_t unused)
834 {
835 return DP_AUX_CH_CTL_SEND_BUSY |
836 DP_AUX_CH_CTL_DONE |
837 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
838 DP_AUX_CH_CTL_TIME_OUT_ERROR |
839 DP_AUX_CH_CTL_TIME_OUT_1600us |
840 DP_AUX_CH_CTL_RECEIVE_ERROR |
841 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
842 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
843 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
844 }
845
846 static int
847 intel_dp_aux_ch(struct intel_dp *intel_dp,
848 const uint8_t *send, int send_bytes,
849 uint8_t *recv, int recv_size)
850 {
851 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
852 struct drm_device *dev = intel_dig_port->base.base.dev;
853 struct drm_i915_private *dev_priv = to_i915(dev);
854 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
855 uint32_t aux_clock_divider;
856 int i, ret, recv_bytes;
857 uint32_t status;
858 int try, clock = 0;
859 bool has_aux_irq = HAS_AUX_IRQ(dev);
860 bool vdd;
861
862 pps_lock(intel_dp);
863
864 /*
865 * We will be called with VDD already enabled for dpcd/edid/oui reads.
866 * In such cases we want to leave VDD enabled and it's up to upper layers
867 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
868 * ourselves.
869 */
870 vdd = edp_panel_vdd_on(intel_dp);
871
872 /* dp aux is extremely sensitive to irq latency, hence request the
873 * lowest possible wakeup latency and so prevent the cpu from going into
874 * deep sleep states.
875 */
876 pm_qos_update_request(&dev_priv->pm_qos, 0);
877
878 intel_dp_check_edp(intel_dp);
879
880 /* Try to wait for any previous AUX channel activity */
881 for (try = 0; try < 3; try++) {
882 status = I915_READ_NOTRACE(ch_ctl);
883 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
884 break;
885 msleep(1);
886 }
887
888 if (try == 3) {
889 static u32 last_status = -1;
890 const u32 status = I915_READ(ch_ctl);
891
892 if (status != last_status) {
893 WARN(1, "dp_aux_ch not started status 0x%08x\n",
894 status);
895 last_status = status;
896 }
897
898 ret = -EBUSY;
899 goto out;
900 }
901
902 /* Only 5 data registers! */
903 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
904 ret = -E2BIG;
905 goto out;
906 }
907
908 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
909 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
910 has_aux_irq,
911 send_bytes,
912 aux_clock_divider);
913
914 /* Must try at least 3 times according to DP spec */
915 for (try = 0; try < 5; try++) {
916 /* Load the send data into the aux channel data registers */
917 for (i = 0; i < send_bytes; i += 4)
918 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
919 intel_dp_pack_aux(send + i,
920 send_bytes - i));
921
922 /* Send the command and wait for it to complete */
923 I915_WRITE(ch_ctl, send_ctl);
924
925 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
926
927 /* Clear done status and any errors */
928 I915_WRITE(ch_ctl,
929 status |
930 DP_AUX_CH_CTL_DONE |
931 DP_AUX_CH_CTL_TIME_OUT_ERROR |
932 DP_AUX_CH_CTL_RECEIVE_ERROR);
933
934 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
935 continue;
936
937 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
938 * 400us delay required for errors and timeouts
939 * Timeout errors from the HW already meet this
940 * requirement so skip to next iteration
941 */
942 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
943 usleep_range(400, 500);
944 continue;
945 }
946 if (status & DP_AUX_CH_CTL_DONE)
947 goto done;
948 }
949 }
950
951 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
952 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
953 ret = -EBUSY;
954 goto out;
955 }
956
957 done:
958 /* Check for timeout or receive error.
959 * Timeouts occur when the sink is not connected
960 */
961 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
963 ret = -EIO;
964 goto out;
965 }
966
967 /* Timeouts occur when the device isn't connected, so they're
968 * "normal" -- don't fill the kernel log with these */
969 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
970 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
971 ret = -ETIMEDOUT;
972 goto out;
973 }
974
975 /* Unload any bytes sent back from the other side */
976 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
977 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
978
979 /*
980 * By BSpec: "Message sizes of 0 or >20 are not allowed."
981 * We have no idea of what happened so we return -EBUSY so
982 * drm layer takes care for the necessary retries.
983 */
984 if (recv_bytes == 0 || recv_bytes > 20) {
985 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
986 recv_bytes);
987 /*
988 * FIXME: This patch was created on top of a series that
989 * organize the retries at drm level. There EBUSY should
990 * also take care for 1ms wait before retrying.
991 * That aux retries re-org is still needed and after that is
992 * merged we remove this sleep from here.
993 */
994 usleep_range(1000, 1500);
995 ret = -EBUSY;
996 goto out;
997 }
998
999 if (recv_bytes > recv_size)
1000 recv_bytes = recv_size;
1001
1002 for (i = 0; i < recv_bytes; i += 4)
1003 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1004 recv + i, recv_bytes - i);
1005
1006 ret = recv_bytes;
1007 out:
1008 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1009
1010 if (vdd)
1011 edp_panel_vdd_off(intel_dp, false);
1012
1013 pps_unlock(intel_dp);
1014
1015 return ret;
1016 }
1017
1018 #define BARE_ADDRESS_SIZE 3
1019 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1020 static ssize_t
1021 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1022 {
1023 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1024 uint8_t txbuf[20], rxbuf[20];
1025 size_t txsize, rxsize;
1026 int ret;
1027
1028 txbuf[0] = (msg->request << 4) |
1029 ((msg->address >> 16) & 0xf);
1030 txbuf[1] = (msg->address >> 8) & 0xff;
1031 txbuf[2] = msg->address & 0xff;
1032 txbuf[3] = msg->size - 1;
1033
1034 switch (msg->request & ~DP_AUX_I2C_MOT) {
1035 case DP_AUX_NATIVE_WRITE:
1036 case DP_AUX_I2C_WRITE:
1037 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1038 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1039 rxsize = 2; /* 0 or 1 data bytes */
1040
1041 if (WARN_ON(txsize > 20))
1042 return -E2BIG;
1043
1044 if (msg->buffer)
1045 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1046 else
1047 WARN_ON(msg->size);
1048
1049 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1050 if (ret > 0) {
1051 msg->reply = rxbuf[0] >> 4;
1052
1053 if (ret > 1) {
1054 /* Number of bytes written in a short write. */
1055 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1056 } else {
1057 /* Return payload size. */
1058 ret = msg->size;
1059 }
1060 }
1061 break;
1062
1063 case DP_AUX_NATIVE_READ:
1064 case DP_AUX_I2C_READ:
1065 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1066 rxsize = msg->size + 1;
1067
1068 if (WARN_ON(rxsize > 20))
1069 return -E2BIG;
1070
1071 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1072 if (ret > 0) {
1073 msg->reply = rxbuf[0] >> 4;
1074 /*
1075 * Assume happy day, and copy the data. The caller is
1076 * expected to check msg->reply before touching it.
1077 *
1078 * Return payload size.
1079 */
1080 ret--;
1081 memcpy(msg->buffer, rxbuf + 1, ret);
1082 }
1083 break;
1084
1085 default:
1086 ret = -EINVAL;
1087 break;
1088 }
1089
1090 return ret;
1091 }
1092
1093 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1094 enum port port)
1095 {
1096 switch (port) {
1097 case PORT_B:
1098 case PORT_C:
1099 case PORT_D:
1100 return DP_AUX_CH_CTL(port);
1101 default:
1102 MISSING_CASE(port);
1103 return DP_AUX_CH_CTL(PORT_B);
1104 }
1105 }
1106
1107 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1108 enum port port, int index)
1109 {
1110 switch (port) {
1111 case PORT_B:
1112 case PORT_C:
1113 case PORT_D:
1114 return DP_AUX_CH_DATA(port, index);
1115 default:
1116 MISSING_CASE(port);
1117 return DP_AUX_CH_DATA(PORT_B, index);
1118 }
1119 }
1120
1121 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1122 enum port port)
1123 {
1124 switch (port) {
1125 case PORT_A:
1126 return DP_AUX_CH_CTL(port);
1127 case PORT_B:
1128 case PORT_C:
1129 case PORT_D:
1130 return PCH_DP_AUX_CH_CTL(port);
1131 default:
1132 MISSING_CASE(port);
1133 return DP_AUX_CH_CTL(PORT_A);
1134 }
1135 }
1136
1137 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1138 enum port port, int index)
1139 {
1140 switch (port) {
1141 case PORT_A:
1142 return DP_AUX_CH_DATA(port, index);
1143 case PORT_B:
1144 case PORT_C:
1145 case PORT_D:
1146 return PCH_DP_AUX_CH_DATA(port, index);
1147 default:
1148 MISSING_CASE(port);
1149 return DP_AUX_CH_DATA(PORT_A, index);
1150 }
1151 }
1152
1153 /*
1154 * On SKL we don't have Aux for port E so we rely
1155 * on VBT to set a proper alternate aux channel.
1156 */
1157 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1158 {
1159 const struct ddi_vbt_port_info *info =
1160 &dev_priv->vbt.ddi_port_info[PORT_E];
1161
1162 switch (info->alternate_aux_channel) {
1163 case DP_AUX_A:
1164 return PORT_A;
1165 case DP_AUX_B:
1166 return PORT_B;
1167 case DP_AUX_C:
1168 return PORT_C;
1169 case DP_AUX_D:
1170 return PORT_D;
1171 default:
1172 MISSING_CASE(info->alternate_aux_channel);
1173 return PORT_A;
1174 }
1175 }
1176
1177 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1178 enum port port)
1179 {
1180 if (port == PORT_E)
1181 port = skl_porte_aux_port(dev_priv);
1182
1183 switch (port) {
1184 case PORT_A:
1185 case PORT_B:
1186 case PORT_C:
1187 case PORT_D:
1188 return DP_AUX_CH_CTL(port);
1189 default:
1190 MISSING_CASE(port);
1191 return DP_AUX_CH_CTL(PORT_A);
1192 }
1193 }
1194
1195 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1196 enum port port, int index)
1197 {
1198 if (port == PORT_E)
1199 port = skl_porte_aux_port(dev_priv);
1200
1201 switch (port) {
1202 case PORT_A:
1203 case PORT_B:
1204 case PORT_C:
1205 case PORT_D:
1206 return DP_AUX_CH_DATA(port, index);
1207 default:
1208 MISSING_CASE(port);
1209 return DP_AUX_CH_DATA(PORT_A, index);
1210 }
1211 }
1212
1213 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1214 enum port port)
1215 {
1216 if (INTEL_INFO(dev_priv)->gen >= 9)
1217 return skl_aux_ctl_reg(dev_priv, port);
1218 else if (HAS_PCH_SPLIT(dev_priv))
1219 return ilk_aux_ctl_reg(dev_priv, port);
1220 else
1221 return g4x_aux_ctl_reg(dev_priv, port);
1222 }
1223
1224 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1225 enum port port, int index)
1226 {
1227 if (INTEL_INFO(dev_priv)->gen >= 9)
1228 return skl_aux_data_reg(dev_priv, port, index);
1229 else if (HAS_PCH_SPLIT(dev_priv))
1230 return ilk_aux_data_reg(dev_priv, port, index);
1231 else
1232 return g4x_aux_data_reg(dev_priv, port, index);
1233 }
1234
1235 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1236 {
1237 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1238 enum port port = dp_to_dig_port(intel_dp)->port;
1239 int i;
1240
1241 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1242 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1243 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1244 }
1245
1246 static void
1247 intel_dp_aux_fini(struct intel_dp *intel_dp)
1248 {
1249 kfree(intel_dp->aux.name);
1250 }
1251
1252 static void
1253 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1254 {
1255 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1256 enum port port = intel_dig_port->port;
1257
1258 intel_aux_reg_init(intel_dp);
1259 drm_dp_aux_init(&intel_dp->aux);
1260
1261 /* Failure to allocate our preferred name is not critical */
1262 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1263 intel_dp->aux.transfer = intel_dp_aux_transfer;
1264 }
1265
1266 static int
1267 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1268 {
1269 if (intel_dp->num_sink_rates) {
1270 *sink_rates = intel_dp->sink_rates;
1271 return intel_dp->num_sink_rates;
1272 }
1273
1274 *sink_rates = default_rates;
1275
1276 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1277 }
1278
1279 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1280 {
1281 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1282 struct drm_device *dev = dig_port->base.base.dev;
1283
1284 /* WaDisableHBR2:skl */
1285 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1286 return false;
1287
1288 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1289 (INTEL_INFO(dev)->gen >= 9))
1290 return true;
1291 else
1292 return false;
1293 }
1294
1295 static int
1296 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1297 {
1298 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1299 struct drm_device *dev = dig_port->base.base.dev;
1300 int size;
1301
1302 if (IS_BROXTON(dev)) {
1303 *source_rates = bxt_rates;
1304 size = ARRAY_SIZE(bxt_rates);
1305 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1306 *source_rates = skl_rates;
1307 size = ARRAY_SIZE(skl_rates);
1308 } else {
1309 *source_rates = default_rates;
1310 size = ARRAY_SIZE(default_rates);
1311 }
1312
1313 /* This depends on the fact that 5.4 is last value in the array */
1314 if (!intel_dp_source_supports_hbr2(intel_dp))
1315 size--;
1316
1317 return size;
1318 }
1319
1320 static void
1321 intel_dp_set_clock(struct intel_encoder *encoder,
1322 struct intel_crtc_state *pipe_config)
1323 {
1324 struct drm_device *dev = encoder->base.dev;
1325 const struct dp_link_dpll *divisor = NULL;
1326 int i, count = 0;
1327
1328 if (IS_G4X(dev)) {
1329 divisor = gen4_dpll;
1330 count = ARRAY_SIZE(gen4_dpll);
1331 } else if (HAS_PCH_SPLIT(dev)) {
1332 divisor = pch_dpll;
1333 count = ARRAY_SIZE(pch_dpll);
1334 } else if (IS_CHERRYVIEW(dev)) {
1335 divisor = chv_dpll;
1336 count = ARRAY_SIZE(chv_dpll);
1337 } else if (IS_VALLEYVIEW(dev)) {
1338 divisor = vlv_dpll;
1339 count = ARRAY_SIZE(vlv_dpll);
1340 }
1341
1342 if (divisor && count) {
1343 for (i = 0; i < count; i++) {
1344 if (pipe_config->port_clock == divisor[i].clock) {
1345 pipe_config->dpll = divisor[i].dpll;
1346 pipe_config->clock_set = true;
1347 break;
1348 }
1349 }
1350 }
1351 }
1352
1353 static int intersect_rates(const int *source_rates, int source_len,
1354 const int *sink_rates, int sink_len,
1355 int *common_rates)
1356 {
1357 int i = 0, j = 0, k = 0;
1358
1359 while (i < source_len && j < sink_len) {
1360 if (source_rates[i] == sink_rates[j]) {
1361 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1362 return k;
1363 common_rates[k] = source_rates[i];
1364 ++k;
1365 ++i;
1366 ++j;
1367 } else if (source_rates[i] < sink_rates[j]) {
1368 ++i;
1369 } else {
1370 ++j;
1371 }
1372 }
1373 return k;
1374 }
1375
1376 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1377 int *common_rates)
1378 {
1379 const int *source_rates, *sink_rates;
1380 int source_len, sink_len;
1381
1382 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1384
1385 return intersect_rates(source_rates, source_len,
1386 sink_rates, sink_len,
1387 common_rates);
1388 }
1389
1390 static void snprintf_int_array(char *str, size_t len,
1391 const int *array, int nelem)
1392 {
1393 int i;
1394
1395 str[0] = '\0';
1396
1397 for (i = 0; i < nelem; i++) {
1398 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1399 if (r >= len)
1400 return;
1401 str += r;
1402 len -= r;
1403 }
1404 }
1405
1406 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1407 {
1408 const int *source_rates, *sink_rates;
1409 int source_len, sink_len, common_len;
1410 int common_rates[DP_MAX_SUPPORTED_RATES];
1411 char str[128]; /* FIXME: too big for stack? */
1412
1413 if ((drm_debug & DRM_UT_KMS) == 0)
1414 return;
1415
1416 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1417 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1418 DRM_DEBUG_KMS("source rates: %s\n", str);
1419
1420 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1421 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1422 DRM_DEBUG_KMS("sink rates: %s\n", str);
1423
1424 common_len = intel_dp_common_rates(intel_dp, common_rates);
1425 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1426 DRM_DEBUG_KMS("common rates: %s\n", str);
1427 }
1428
1429 static int rate_to_index(int find, const int *rates)
1430 {
1431 int i = 0;
1432
1433 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1434 if (find == rates[i])
1435 break;
1436
1437 return i;
1438 }
1439
1440 int
1441 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1442 {
1443 int rates[DP_MAX_SUPPORTED_RATES] = {};
1444 int len;
1445
1446 len = intel_dp_common_rates(intel_dp, rates);
1447 if (WARN_ON(len <= 0))
1448 return 162000;
1449
1450 return rates[rate_to_index(0, rates) - 1];
1451 }
1452
1453 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1454 {
1455 return rate_to_index(rate, intel_dp->sink_rates);
1456 }
1457
1458 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1459 uint8_t *link_bw, uint8_t *rate_select)
1460 {
1461 if (intel_dp->num_sink_rates) {
1462 *link_bw = 0;
1463 *rate_select =
1464 intel_dp_rate_select(intel_dp, port_clock);
1465 } else {
1466 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1467 *rate_select = 0;
1468 }
1469 }
1470
1471 bool
1472 intel_dp_compute_config(struct intel_encoder *encoder,
1473 struct intel_crtc_state *pipe_config)
1474 {
1475 struct drm_device *dev = encoder->base.dev;
1476 struct drm_i915_private *dev_priv = to_i915(dev);
1477 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1478 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1479 enum port port = dp_to_dig_port(intel_dp)->port;
1480 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1481 struct intel_connector *intel_connector = intel_dp->attached_connector;
1482 int lane_count, clock;
1483 int min_lane_count = 1;
1484 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1485 /* Conveniently, the link BW constants become indices with a shift...*/
1486 int min_clock = 0;
1487 int max_clock;
1488 int bpp, mode_rate;
1489 int link_avail, link_clock;
1490 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1491 int common_len;
1492 uint8_t link_bw, rate_select;
1493
1494 common_len = intel_dp_common_rates(intel_dp, common_rates);
1495
1496 /* No common link rates between source and sink */
1497 WARN_ON(common_len <= 0);
1498
1499 max_clock = common_len - 1;
1500
1501 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1502 pipe_config->has_pch_encoder = true;
1503
1504 pipe_config->has_drrs = false;
1505 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1506
1507 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1508 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1509 adjusted_mode);
1510
1511 if (INTEL_INFO(dev)->gen >= 9) {
1512 int ret;
1513 ret = skl_update_scaler_crtc(pipe_config);
1514 if (ret)
1515 return ret;
1516 }
1517
1518 if (HAS_GMCH_DISPLAY(dev))
1519 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1520 intel_connector->panel.fitting_mode);
1521 else
1522 intel_pch_panel_fitting(intel_crtc, pipe_config,
1523 intel_connector->panel.fitting_mode);
1524 }
1525
1526 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1527 return false;
1528
1529 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1530 "max bw %d pixel clock %iKHz\n",
1531 max_lane_count, common_rates[max_clock],
1532 adjusted_mode->crtc_clock);
1533
1534 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1535 * bpc in between. */
1536 bpp = pipe_config->pipe_bpp;
1537 if (is_edp(intel_dp)) {
1538
1539 /* Get bpp from vbt only for panels that dont have bpp in edid */
1540 if (intel_connector->base.display_info.bpc == 0 &&
1541 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1542 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1543 dev_priv->vbt.edp.bpp);
1544 bpp = dev_priv->vbt.edp.bpp;
1545 }
1546
1547 /*
1548 * Use the maximum clock and number of lanes the eDP panel
1549 * advertizes being capable of. The panels are generally
1550 * designed to support only a single clock and lane
1551 * configuration, and typically these values correspond to the
1552 * native resolution of the panel.
1553 */
1554 min_lane_count = max_lane_count;
1555 min_clock = max_clock;
1556 }
1557
1558 for (; bpp >= 6*3; bpp -= 2*3) {
1559 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1560 bpp);
1561
1562 for (clock = min_clock; clock <= max_clock; clock++) {
1563 for (lane_count = min_lane_count;
1564 lane_count <= max_lane_count;
1565 lane_count <<= 1) {
1566
1567 link_clock = common_rates[clock];
1568 link_avail = intel_dp_max_data_rate(link_clock,
1569 lane_count);
1570
1571 if (mode_rate <= link_avail) {
1572 goto found;
1573 }
1574 }
1575 }
1576 }
1577
1578 return false;
1579
1580 found:
1581 if (intel_dp->color_range_auto) {
1582 /*
1583 * See:
1584 * CEA-861-E - 5.1 Default Encoding Parameters
1585 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1586 */
1587 pipe_config->limited_color_range =
1588 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1589 } else {
1590 pipe_config->limited_color_range =
1591 intel_dp->limited_color_range;
1592 }
1593
1594 pipe_config->lane_count = lane_count;
1595
1596 pipe_config->pipe_bpp = bpp;
1597 pipe_config->port_clock = common_rates[clock];
1598
1599 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1600 &link_bw, &rate_select);
1601
1602 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1603 link_bw, rate_select, pipe_config->lane_count,
1604 pipe_config->port_clock, bpp);
1605 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1606 mode_rate, link_avail);
1607
1608 intel_link_compute_m_n(bpp, lane_count,
1609 adjusted_mode->crtc_clock,
1610 pipe_config->port_clock,
1611 &pipe_config->dp_m_n);
1612
1613 if (intel_connector->panel.downclock_mode != NULL &&
1614 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1615 pipe_config->has_drrs = true;
1616 intel_link_compute_m_n(bpp, lane_count,
1617 intel_connector->panel.downclock_mode->clock,
1618 pipe_config->port_clock,
1619 &pipe_config->dp_m2_n2);
1620 }
1621
1622 /*
1623 * DPLL0 VCO may need to be adjusted to get the correct
1624 * clock for eDP. This will affect cdclk as well.
1625 */
1626 if (is_edp(intel_dp) &&
1627 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1628 int vco;
1629
1630 switch (pipe_config->port_clock / 2) {
1631 case 108000:
1632 case 216000:
1633 vco = 8640000;
1634 break;
1635 default:
1636 vco = 8100000;
1637 break;
1638 }
1639
1640 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1641 }
1642
1643 if (!HAS_DDI(dev))
1644 intel_dp_set_clock(encoder, pipe_config);
1645
1646 return true;
1647 }
1648
1649 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1650 const struct intel_crtc_state *pipe_config)
1651 {
1652 intel_dp->link_rate = pipe_config->port_clock;
1653 intel_dp->lane_count = pipe_config->lane_count;
1654 }
1655
1656 static void intel_dp_prepare(struct intel_encoder *encoder)
1657 {
1658 struct drm_device *dev = encoder->base.dev;
1659 struct drm_i915_private *dev_priv = to_i915(dev);
1660 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1661 enum port port = dp_to_dig_port(intel_dp)->port;
1662 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1663 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1664
1665 intel_dp_set_link_params(intel_dp, crtc->config);
1666
1667 /*
1668 * There are four kinds of DP registers:
1669 *
1670 * IBX PCH
1671 * SNB CPU
1672 * IVB CPU
1673 * CPT PCH
1674 *
1675 * IBX PCH and CPU are the same for almost everything,
1676 * except that the CPU DP PLL is configured in this
1677 * register
1678 *
1679 * CPT PCH is quite different, having many bits moved
1680 * to the TRANS_DP_CTL register instead. That
1681 * configuration happens (oddly) in ironlake_pch_enable
1682 */
1683
1684 /* Preserve the BIOS-computed detected bit. This is
1685 * supposed to be read-only.
1686 */
1687 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1688
1689 /* Handle DP bits in common between all three register formats */
1690 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1691 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1692
1693 /* Split out the IBX/CPU vs CPT settings */
1694
1695 if (IS_GEN7(dev) && port == PORT_A) {
1696 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1697 intel_dp->DP |= DP_SYNC_HS_HIGH;
1698 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1699 intel_dp->DP |= DP_SYNC_VS_HIGH;
1700 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1701
1702 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1703 intel_dp->DP |= DP_ENHANCED_FRAMING;
1704
1705 intel_dp->DP |= crtc->pipe << 29;
1706 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1707 u32 trans_dp;
1708
1709 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1710
1711 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1712 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1713 trans_dp |= TRANS_DP_ENH_FRAMING;
1714 else
1715 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1716 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1717 } else {
1718 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1719 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1720 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1721
1722 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1723 intel_dp->DP |= DP_SYNC_HS_HIGH;
1724 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1725 intel_dp->DP |= DP_SYNC_VS_HIGH;
1726 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1727
1728 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1729 intel_dp->DP |= DP_ENHANCED_FRAMING;
1730
1731 if (IS_CHERRYVIEW(dev))
1732 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1733 else if (crtc->pipe == PIPE_B)
1734 intel_dp->DP |= DP_PIPEB_SELECT;
1735 }
1736 }
1737
1738 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1739 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1740
1741 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1742 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1743
1744 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1745 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1746
1747 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1748 struct intel_dp *intel_dp);
1749
1750 static void wait_panel_status(struct intel_dp *intel_dp,
1751 u32 mask,
1752 u32 value)
1753 {
1754 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1755 struct drm_i915_private *dev_priv = to_i915(dev);
1756 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1757
1758 lockdep_assert_held(&dev_priv->pps_mutex);
1759
1760 intel_pps_verify_state(dev_priv, intel_dp);
1761
1762 pp_stat_reg = _pp_stat_reg(intel_dp);
1763 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1764
1765 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1766 mask, value,
1767 I915_READ(pp_stat_reg),
1768 I915_READ(pp_ctrl_reg));
1769
1770 if (intel_wait_for_register(dev_priv,
1771 pp_stat_reg, mask, value,
1772 5000))
1773 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1774 I915_READ(pp_stat_reg),
1775 I915_READ(pp_ctrl_reg));
1776
1777 DRM_DEBUG_KMS("Wait complete\n");
1778 }
1779
1780 static void wait_panel_on(struct intel_dp *intel_dp)
1781 {
1782 DRM_DEBUG_KMS("Wait for panel power on\n");
1783 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1784 }
1785
1786 static void wait_panel_off(struct intel_dp *intel_dp)
1787 {
1788 DRM_DEBUG_KMS("Wait for panel power off time\n");
1789 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1790 }
1791
1792 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1793 {
1794 ktime_t panel_power_on_time;
1795 s64 panel_power_off_duration;
1796
1797 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1798
1799 /* take the difference of currrent time and panel power off time
1800 * and then make panel wait for t11_t12 if needed. */
1801 panel_power_on_time = ktime_get_boottime();
1802 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1803
1804 /* When we disable the VDD override bit last we have to do the manual
1805 * wait. */
1806 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1807 wait_remaining_ms_from_jiffies(jiffies,
1808 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1809
1810 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1811 }
1812
1813 static void wait_backlight_on(struct intel_dp *intel_dp)
1814 {
1815 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1816 intel_dp->backlight_on_delay);
1817 }
1818
1819 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1820 {
1821 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1822 intel_dp->backlight_off_delay);
1823 }
1824
1825 /* Read the current pp_control value, unlocking the register if it
1826 * is locked
1827 */
1828
1829 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1830 {
1831 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1832 struct drm_i915_private *dev_priv = to_i915(dev);
1833 u32 control;
1834
1835 lockdep_assert_held(&dev_priv->pps_mutex);
1836
1837 control = I915_READ(_pp_ctrl_reg(intel_dp));
1838 if (!IS_BROXTON(dev)) {
1839 control &= ~PANEL_UNLOCK_MASK;
1840 control |= PANEL_UNLOCK_REGS;
1841 }
1842 return control;
1843 }
1844
1845 /*
1846 * Must be paired with edp_panel_vdd_off().
1847 * Must hold pps_mutex around the whole on/off sequence.
1848 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1849 */
1850 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1851 {
1852 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1853 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1854 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1855 struct drm_i915_private *dev_priv = to_i915(dev);
1856 enum intel_display_power_domain power_domain;
1857 u32 pp;
1858 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1859 bool need_to_disable = !intel_dp->want_panel_vdd;
1860
1861 lockdep_assert_held(&dev_priv->pps_mutex);
1862
1863 if (!is_edp(intel_dp))
1864 return false;
1865
1866 cancel_delayed_work(&intel_dp->panel_vdd_work);
1867 intel_dp->want_panel_vdd = true;
1868
1869 if (edp_have_panel_vdd(intel_dp))
1870 return need_to_disable;
1871
1872 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1873 intel_display_power_get(dev_priv, power_domain);
1874
1875 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1876 port_name(intel_dig_port->port));
1877
1878 if (!edp_have_panel_power(intel_dp))
1879 wait_panel_power_cycle(intel_dp);
1880
1881 pp = ironlake_get_pp_control(intel_dp);
1882 pp |= EDP_FORCE_VDD;
1883
1884 pp_stat_reg = _pp_stat_reg(intel_dp);
1885 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1886
1887 I915_WRITE(pp_ctrl_reg, pp);
1888 POSTING_READ(pp_ctrl_reg);
1889 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1890 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1891 /*
1892 * If the panel wasn't on, delay before accessing aux channel
1893 */
1894 if (!edp_have_panel_power(intel_dp)) {
1895 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1896 port_name(intel_dig_port->port));
1897 msleep(intel_dp->panel_power_up_delay);
1898 }
1899
1900 return need_to_disable;
1901 }
1902
1903 /*
1904 * Must be paired with intel_edp_panel_vdd_off() or
1905 * intel_edp_panel_off().
1906 * Nested calls to these functions are not allowed since
1907 * we drop the lock. Caller must use some higher level
1908 * locking to prevent nested calls from other threads.
1909 */
1910 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1911 {
1912 bool vdd;
1913
1914 if (!is_edp(intel_dp))
1915 return;
1916
1917 pps_lock(intel_dp);
1918 vdd = edp_panel_vdd_on(intel_dp);
1919 pps_unlock(intel_dp);
1920
1921 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1922 port_name(dp_to_dig_port(intel_dp)->port));
1923 }
1924
1925 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1926 {
1927 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1928 struct drm_i915_private *dev_priv = to_i915(dev);
1929 struct intel_digital_port *intel_dig_port =
1930 dp_to_dig_port(intel_dp);
1931 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1932 enum intel_display_power_domain power_domain;
1933 u32 pp;
1934 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1935
1936 lockdep_assert_held(&dev_priv->pps_mutex);
1937
1938 WARN_ON(intel_dp->want_panel_vdd);
1939
1940 if (!edp_have_panel_vdd(intel_dp))
1941 return;
1942
1943 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1944 port_name(intel_dig_port->port));
1945
1946 pp = ironlake_get_pp_control(intel_dp);
1947 pp &= ~EDP_FORCE_VDD;
1948
1949 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1950 pp_stat_reg = _pp_stat_reg(intel_dp);
1951
1952 I915_WRITE(pp_ctrl_reg, pp);
1953 POSTING_READ(pp_ctrl_reg);
1954
1955 /* Make sure sequencer is idle before allowing subsequent activity */
1956 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1957 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1958
1959 if ((pp & POWER_TARGET_ON) == 0)
1960 intel_dp->panel_power_off_time = ktime_get_boottime();
1961
1962 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1963 intel_display_power_put(dev_priv, power_domain);
1964 }
1965
1966 static void edp_panel_vdd_work(struct work_struct *__work)
1967 {
1968 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1969 struct intel_dp, panel_vdd_work);
1970
1971 pps_lock(intel_dp);
1972 if (!intel_dp->want_panel_vdd)
1973 edp_panel_vdd_off_sync(intel_dp);
1974 pps_unlock(intel_dp);
1975 }
1976
1977 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1978 {
1979 unsigned long delay;
1980
1981 /*
1982 * Queue the timer to fire a long time from now (relative to the power
1983 * down delay) to keep the panel power up across a sequence of
1984 * operations.
1985 */
1986 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1987 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1988 }
1989
1990 /*
1991 * Must be paired with edp_panel_vdd_on().
1992 * Must hold pps_mutex around the whole on/off sequence.
1993 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1994 */
1995 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1996 {
1997 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1998
1999 lockdep_assert_held(&dev_priv->pps_mutex);
2000
2001 if (!is_edp(intel_dp))
2002 return;
2003
2004 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2005 port_name(dp_to_dig_port(intel_dp)->port));
2006
2007 intel_dp->want_panel_vdd = false;
2008
2009 if (sync)
2010 edp_panel_vdd_off_sync(intel_dp);
2011 else
2012 edp_panel_vdd_schedule_off(intel_dp);
2013 }
2014
2015 static void edp_panel_on(struct intel_dp *intel_dp)
2016 {
2017 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2018 struct drm_i915_private *dev_priv = to_i915(dev);
2019 u32 pp;
2020 i915_reg_t pp_ctrl_reg;
2021
2022 lockdep_assert_held(&dev_priv->pps_mutex);
2023
2024 if (!is_edp(intel_dp))
2025 return;
2026
2027 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2028 port_name(dp_to_dig_port(intel_dp)->port));
2029
2030 if (WARN(edp_have_panel_power(intel_dp),
2031 "eDP port %c panel power already on\n",
2032 port_name(dp_to_dig_port(intel_dp)->port)))
2033 return;
2034
2035 wait_panel_power_cycle(intel_dp);
2036
2037 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2038 pp = ironlake_get_pp_control(intel_dp);
2039 if (IS_GEN5(dev)) {
2040 /* ILK workaround: disable reset around power sequence */
2041 pp &= ~PANEL_POWER_RESET;
2042 I915_WRITE(pp_ctrl_reg, pp);
2043 POSTING_READ(pp_ctrl_reg);
2044 }
2045
2046 pp |= POWER_TARGET_ON;
2047 if (!IS_GEN5(dev))
2048 pp |= PANEL_POWER_RESET;
2049
2050 I915_WRITE(pp_ctrl_reg, pp);
2051 POSTING_READ(pp_ctrl_reg);
2052
2053 wait_panel_on(intel_dp);
2054 intel_dp->last_power_on = jiffies;
2055
2056 if (IS_GEN5(dev)) {
2057 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2058 I915_WRITE(pp_ctrl_reg, pp);
2059 POSTING_READ(pp_ctrl_reg);
2060 }
2061 }
2062
2063 void intel_edp_panel_on(struct intel_dp *intel_dp)
2064 {
2065 if (!is_edp(intel_dp))
2066 return;
2067
2068 pps_lock(intel_dp);
2069 edp_panel_on(intel_dp);
2070 pps_unlock(intel_dp);
2071 }
2072
2073
2074 static void edp_panel_off(struct intel_dp *intel_dp)
2075 {
2076 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2077 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2078 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2079 struct drm_i915_private *dev_priv = to_i915(dev);
2080 enum intel_display_power_domain power_domain;
2081 u32 pp;
2082 i915_reg_t pp_ctrl_reg;
2083
2084 lockdep_assert_held(&dev_priv->pps_mutex);
2085
2086 if (!is_edp(intel_dp))
2087 return;
2088
2089 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2090 port_name(dp_to_dig_port(intel_dp)->port));
2091
2092 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2093 port_name(dp_to_dig_port(intel_dp)->port));
2094
2095 pp = ironlake_get_pp_control(intel_dp);
2096 /* We need to switch off panel power _and_ force vdd, for otherwise some
2097 * panels get very unhappy and cease to work. */
2098 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2099 EDP_BLC_ENABLE);
2100
2101 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2102
2103 intel_dp->want_panel_vdd = false;
2104
2105 I915_WRITE(pp_ctrl_reg, pp);
2106 POSTING_READ(pp_ctrl_reg);
2107
2108 intel_dp->panel_power_off_time = ktime_get_boottime();
2109 wait_panel_off(intel_dp);
2110
2111 /* We got a reference when we enabled the VDD. */
2112 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2113 intel_display_power_put(dev_priv, power_domain);
2114 }
2115
2116 void intel_edp_panel_off(struct intel_dp *intel_dp)
2117 {
2118 if (!is_edp(intel_dp))
2119 return;
2120
2121 pps_lock(intel_dp);
2122 edp_panel_off(intel_dp);
2123 pps_unlock(intel_dp);
2124 }
2125
2126 /* Enable backlight in the panel power control. */
2127 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2128 {
2129 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2130 struct drm_device *dev = intel_dig_port->base.base.dev;
2131 struct drm_i915_private *dev_priv = to_i915(dev);
2132 u32 pp;
2133 i915_reg_t pp_ctrl_reg;
2134
2135 /*
2136 * If we enable the backlight right away following a panel power
2137 * on, we may see slight flicker as the panel syncs with the eDP
2138 * link. So delay a bit to make sure the image is solid before
2139 * allowing it to appear.
2140 */
2141 wait_backlight_on(intel_dp);
2142
2143 pps_lock(intel_dp);
2144
2145 pp = ironlake_get_pp_control(intel_dp);
2146 pp |= EDP_BLC_ENABLE;
2147
2148 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2149
2150 I915_WRITE(pp_ctrl_reg, pp);
2151 POSTING_READ(pp_ctrl_reg);
2152
2153 pps_unlock(intel_dp);
2154 }
2155
2156 /* Enable backlight PWM and backlight PP control. */
2157 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2158 {
2159 if (!is_edp(intel_dp))
2160 return;
2161
2162 DRM_DEBUG_KMS("\n");
2163
2164 intel_panel_enable_backlight(intel_dp->attached_connector);
2165 _intel_edp_backlight_on(intel_dp);
2166 }
2167
2168 /* Disable backlight in the panel power control. */
2169 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2170 {
2171 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2172 struct drm_i915_private *dev_priv = to_i915(dev);
2173 u32 pp;
2174 i915_reg_t pp_ctrl_reg;
2175
2176 if (!is_edp(intel_dp))
2177 return;
2178
2179 pps_lock(intel_dp);
2180
2181 pp = ironlake_get_pp_control(intel_dp);
2182 pp &= ~EDP_BLC_ENABLE;
2183
2184 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2185
2186 I915_WRITE(pp_ctrl_reg, pp);
2187 POSTING_READ(pp_ctrl_reg);
2188
2189 pps_unlock(intel_dp);
2190
2191 intel_dp->last_backlight_off = jiffies;
2192 edp_wait_backlight_off(intel_dp);
2193 }
2194
2195 /* Disable backlight PP control and backlight PWM. */
2196 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2197 {
2198 if (!is_edp(intel_dp))
2199 return;
2200
2201 DRM_DEBUG_KMS("\n");
2202
2203 _intel_edp_backlight_off(intel_dp);
2204 intel_panel_disable_backlight(intel_dp->attached_connector);
2205 }
2206
2207 /*
2208 * Hook for controlling the panel power control backlight through the bl_power
2209 * sysfs attribute. Take care to handle multiple calls.
2210 */
2211 static void intel_edp_backlight_power(struct intel_connector *connector,
2212 bool enable)
2213 {
2214 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2215 bool is_enabled;
2216
2217 pps_lock(intel_dp);
2218 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2219 pps_unlock(intel_dp);
2220
2221 if (is_enabled == enable)
2222 return;
2223
2224 DRM_DEBUG_KMS("panel power control backlight %s\n",
2225 enable ? "enable" : "disable");
2226
2227 if (enable)
2228 _intel_edp_backlight_on(intel_dp);
2229 else
2230 _intel_edp_backlight_off(intel_dp);
2231 }
2232
2233 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2234 {
2235 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2236 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2237 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2238
2239 I915_STATE_WARN(cur_state != state,
2240 "DP port %c state assertion failure (expected %s, current %s)\n",
2241 port_name(dig_port->port),
2242 onoff(state), onoff(cur_state));
2243 }
2244 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2245
2246 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2247 {
2248 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2249
2250 I915_STATE_WARN(cur_state != state,
2251 "eDP PLL state assertion failure (expected %s, current %s)\n",
2252 onoff(state), onoff(cur_state));
2253 }
2254 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2255 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2256
2257 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2258 {
2259 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2260 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2261 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2262
2263 assert_pipe_disabled(dev_priv, crtc->pipe);
2264 assert_dp_port_disabled(intel_dp);
2265 assert_edp_pll_disabled(dev_priv);
2266
2267 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2268 crtc->config->port_clock);
2269
2270 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2271
2272 if (crtc->config->port_clock == 162000)
2273 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2274 else
2275 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2276
2277 I915_WRITE(DP_A, intel_dp->DP);
2278 POSTING_READ(DP_A);
2279 udelay(500);
2280
2281 /*
2282 * [DevILK] Work around required when enabling DP PLL
2283 * while a pipe is enabled going to FDI:
2284 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2285 * 2. Program DP PLL enable
2286 */
2287 if (IS_GEN5(dev_priv))
2288 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2289
2290 intel_dp->DP |= DP_PLL_ENABLE;
2291
2292 I915_WRITE(DP_A, intel_dp->DP);
2293 POSTING_READ(DP_A);
2294 udelay(200);
2295 }
2296
2297 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2298 {
2299 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2300 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2301 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2302
2303 assert_pipe_disabled(dev_priv, crtc->pipe);
2304 assert_dp_port_disabled(intel_dp);
2305 assert_edp_pll_enabled(dev_priv);
2306
2307 DRM_DEBUG_KMS("disabling eDP PLL\n");
2308
2309 intel_dp->DP &= ~DP_PLL_ENABLE;
2310
2311 I915_WRITE(DP_A, intel_dp->DP);
2312 POSTING_READ(DP_A);
2313 udelay(200);
2314 }
2315
2316 /* If the sink supports it, try to set the power state appropriately */
2317 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2318 {
2319 int ret, i;
2320
2321 /* Should have a valid DPCD by this point */
2322 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2323 return;
2324
2325 if (mode != DRM_MODE_DPMS_ON) {
2326 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2327 DP_SET_POWER_D3);
2328 } else {
2329 /*
2330 * When turning on, we need to retry for 1ms to give the sink
2331 * time to wake up.
2332 */
2333 for (i = 0; i < 3; i++) {
2334 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2335 DP_SET_POWER_D0);
2336 if (ret == 1)
2337 break;
2338 msleep(1);
2339 }
2340 }
2341
2342 if (ret != 1)
2343 DRM_DEBUG_KMS("failed to %s sink power state\n",
2344 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2345 }
2346
2347 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2348 enum pipe *pipe)
2349 {
2350 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2351 enum port port = dp_to_dig_port(intel_dp)->port;
2352 struct drm_device *dev = encoder->base.dev;
2353 struct drm_i915_private *dev_priv = to_i915(dev);
2354 enum intel_display_power_domain power_domain;
2355 u32 tmp;
2356 bool ret;
2357
2358 power_domain = intel_display_port_power_domain(encoder);
2359 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2360 return false;
2361
2362 ret = false;
2363
2364 tmp = I915_READ(intel_dp->output_reg);
2365
2366 if (!(tmp & DP_PORT_EN))
2367 goto out;
2368
2369 if (IS_GEN7(dev) && port == PORT_A) {
2370 *pipe = PORT_TO_PIPE_CPT(tmp);
2371 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2372 enum pipe p;
2373
2374 for_each_pipe(dev_priv, p) {
2375 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2376 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2377 *pipe = p;
2378 ret = true;
2379
2380 goto out;
2381 }
2382 }
2383
2384 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2385 i915_mmio_reg_offset(intel_dp->output_reg));
2386 } else if (IS_CHERRYVIEW(dev)) {
2387 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2388 } else {
2389 *pipe = PORT_TO_PIPE(tmp);
2390 }
2391
2392 ret = true;
2393
2394 out:
2395 intel_display_power_put(dev_priv, power_domain);
2396
2397 return ret;
2398 }
2399
2400 static void intel_dp_get_config(struct intel_encoder *encoder,
2401 struct intel_crtc_state *pipe_config)
2402 {
2403 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2404 u32 tmp, flags = 0;
2405 struct drm_device *dev = encoder->base.dev;
2406 struct drm_i915_private *dev_priv = to_i915(dev);
2407 enum port port = dp_to_dig_port(intel_dp)->port;
2408 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2409
2410 tmp = I915_READ(intel_dp->output_reg);
2411
2412 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2413
2414 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2415 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2416
2417 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2418 flags |= DRM_MODE_FLAG_PHSYNC;
2419 else
2420 flags |= DRM_MODE_FLAG_NHSYNC;
2421
2422 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2423 flags |= DRM_MODE_FLAG_PVSYNC;
2424 else
2425 flags |= DRM_MODE_FLAG_NVSYNC;
2426 } else {
2427 if (tmp & DP_SYNC_HS_HIGH)
2428 flags |= DRM_MODE_FLAG_PHSYNC;
2429 else
2430 flags |= DRM_MODE_FLAG_NHSYNC;
2431
2432 if (tmp & DP_SYNC_VS_HIGH)
2433 flags |= DRM_MODE_FLAG_PVSYNC;
2434 else
2435 flags |= DRM_MODE_FLAG_NVSYNC;
2436 }
2437
2438 pipe_config->base.adjusted_mode.flags |= flags;
2439
2440 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2441 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2442 pipe_config->limited_color_range = true;
2443
2444 pipe_config->lane_count =
2445 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2446
2447 intel_dp_get_m_n(crtc, pipe_config);
2448
2449 if (port == PORT_A) {
2450 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2451 pipe_config->port_clock = 162000;
2452 else
2453 pipe_config->port_clock = 270000;
2454 }
2455
2456 pipe_config->base.adjusted_mode.crtc_clock =
2457 intel_dotclock_calculate(pipe_config->port_clock,
2458 &pipe_config->dp_m_n);
2459
2460 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2461 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2462 /*
2463 * This is a big fat ugly hack.
2464 *
2465 * Some machines in UEFI boot mode provide us a VBT that has 18
2466 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2467 * unknown we fail to light up. Yet the same BIOS boots up with
2468 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2469 * max, not what it tells us to use.
2470 *
2471 * Note: This will still be broken if the eDP panel is not lit
2472 * up by the BIOS, and thus we can't get the mode at module
2473 * load.
2474 */
2475 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2476 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2477 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2478 }
2479 }
2480
2481 static void intel_disable_dp(struct intel_encoder *encoder)
2482 {
2483 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2484 struct drm_device *dev = encoder->base.dev;
2485 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2486
2487 if (crtc->config->has_audio)
2488 intel_audio_codec_disable(encoder);
2489
2490 if (HAS_PSR(dev) && !HAS_DDI(dev))
2491 intel_psr_disable(intel_dp);
2492
2493 /* Make sure the panel is off before trying to change the mode. But also
2494 * ensure that we have vdd while we switch off the panel. */
2495 intel_edp_panel_vdd_on(intel_dp);
2496 intel_edp_backlight_off(intel_dp);
2497 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2498 intel_edp_panel_off(intel_dp);
2499
2500 /* disable the port before the pipe on g4x */
2501 if (INTEL_INFO(dev)->gen < 5)
2502 intel_dp_link_down(intel_dp);
2503 }
2504
2505 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2506 {
2507 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2508 enum port port = dp_to_dig_port(intel_dp)->port;
2509
2510 intel_dp_link_down(intel_dp);
2511
2512 /* Only ilk+ has port A */
2513 if (port == PORT_A)
2514 ironlake_edp_pll_off(intel_dp);
2515 }
2516
2517 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2518 {
2519 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2520
2521 intel_dp_link_down(intel_dp);
2522 }
2523
2524 static void chv_post_disable_dp(struct intel_encoder *encoder)
2525 {
2526 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2527 struct drm_device *dev = encoder->base.dev;
2528 struct drm_i915_private *dev_priv = to_i915(dev);
2529
2530 intel_dp_link_down(intel_dp);
2531
2532 mutex_lock(&dev_priv->sb_lock);
2533
2534 /* Assert data lane reset */
2535 chv_data_lane_soft_reset(encoder, true);
2536
2537 mutex_unlock(&dev_priv->sb_lock);
2538 }
2539
2540 static void
2541 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2542 uint32_t *DP,
2543 uint8_t dp_train_pat)
2544 {
2545 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2546 struct drm_device *dev = intel_dig_port->base.base.dev;
2547 struct drm_i915_private *dev_priv = to_i915(dev);
2548 enum port port = intel_dig_port->port;
2549
2550 if (HAS_DDI(dev)) {
2551 uint32_t temp = I915_READ(DP_TP_CTL(port));
2552
2553 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2554 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2555 else
2556 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2557
2558 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2559 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2560 case DP_TRAINING_PATTERN_DISABLE:
2561 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2562
2563 break;
2564 case DP_TRAINING_PATTERN_1:
2565 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2566 break;
2567 case DP_TRAINING_PATTERN_2:
2568 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2569 break;
2570 case DP_TRAINING_PATTERN_3:
2571 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2572 break;
2573 }
2574 I915_WRITE(DP_TP_CTL(port), temp);
2575
2576 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2577 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2578 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2579
2580 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2581 case DP_TRAINING_PATTERN_DISABLE:
2582 *DP |= DP_LINK_TRAIN_OFF_CPT;
2583 break;
2584 case DP_TRAINING_PATTERN_1:
2585 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2586 break;
2587 case DP_TRAINING_PATTERN_2:
2588 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2589 break;
2590 case DP_TRAINING_PATTERN_3:
2591 DRM_ERROR("DP training pattern 3 not supported\n");
2592 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2593 break;
2594 }
2595
2596 } else {
2597 if (IS_CHERRYVIEW(dev))
2598 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2599 else
2600 *DP &= ~DP_LINK_TRAIN_MASK;
2601
2602 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2603 case DP_TRAINING_PATTERN_DISABLE:
2604 *DP |= DP_LINK_TRAIN_OFF;
2605 break;
2606 case DP_TRAINING_PATTERN_1:
2607 *DP |= DP_LINK_TRAIN_PAT_1;
2608 break;
2609 case DP_TRAINING_PATTERN_2:
2610 *DP |= DP_LINK_TRAIN_PAT_2;
2611 break;
2612 case DP_TRAINING_PATTERN_3:
2613 if (IS_CHERRYVIEW(dev)) {
2614 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2615 } else {
2616 DRM_ERROR("DP training pattern 3 not supported\n");
2617 *DP |= DP_LINK_TRAIN_PAT_2;
2618 }
2619 break;
2620 }
2621 }
2622 }
2623
2624 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2625 {
2626 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2627 struct drm_i915_private *dev_priv = to_i915(dev);
2628 struct intel_crtc *crtc =
2629 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2630
2631 /* enable with pattern 1 (as per spec) */
2632 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2633 DP_TRAINING_PATTERN_1);
2634
2635 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2636 POSTING_READ(intel_dp->output_reg);
2637
2638 /*
2639 * Magic for VLV/CHV. We _must_ first set up the register
2640 * without actually enabling the port, and then do another
2641 * write to enable the port. Otherwise link training will
2642 * fail when the power sequencer is freshly used for this port.
2643 */
2644 intel_dp->DP |= DP_PORT_EN;
2645 if (crtc->config->has_audio)
2646 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2647
2648 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2649 POSTING_READ(intel_dp->output_reg);
2650 }
2651
2652 static void intel_enable_dp(struct intel_encoder *encoder)
2653 {
2654 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2655 struct drm_device *dev = encoder->base.dev;
2656 struct drm_i915_private *dev_priv = to_i915(dev);
2657 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2658 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2659 enum pipe pipe = crtc->pipe;
2660
2661 if (WARN_ON(dp_reg & DP_PORT_EN))
2662 return;
2663
2664 pps_lock(intel_dp);
2665
2666 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2667 vlv_init_panel_power_sequencer(intel_dp);
2668
2669 intel_dp_enable_port(intel_dp);
2670
2671 edp_panel_vdd_on(intel_dp);
2672 edp_panel_on(intel_dp);
2673 edp_panel_vdd_off(intel_dp, true);
2674
2675 pps_unlock(intel_dp);
2676
2677 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2678 unsigned int lane_mask = 0x0;
2679
2680 if (IS_CHERRYVIEW(dev))
2681 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2682
2683 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2684 lane_mask);
2685 }
2686
2687 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2688 intel_dp_start_link_train(intel_dp);
2689 intel_dp_stop_link_train(intel_dp);
2690
2691 if (crtc->config->has_audio) {
2692 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2693 pipe_name(pipe));
2694 intel_audio_codec_enable(encoder);
2695 }
2696 }
2697
2698 static void g4x_enable_dp(struct intel_encoder *encoder)
2699 {
2700 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2701
2702 intel_enable_dp(encoder);
2703 intel_edp_backlight_on(intel_dp);
2704 }
2705
2706 static void vlv_enable_dp(struct intel_encoder *encoder)
2707 {
2708 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2709
2710 intel_edp_backlight_on(intel_dp);
2711 intel_psr_enable(intel_dp);
2712 }
2713
2714 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2715 {
2716 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2717 enum port port = dp_to_dig_port(intel_dp)->port;
2718
2719 intel_dp_prepare(encoder);
2720
2721 /* Only ilk+ has port A */
2722 if (port == PORT_A)
2723 ironlake_edp_pll_on(intel_dp);
2724 }
2725
2726 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2727 {
2728 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2729 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2730 enum pipe pipe = intel_dp->pps_pipe;
2731 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2732
2733 edp_panel_vdd_off_sync(intel_dp);
2734
2735 /*
2736 * VLV seems to get confused when multiple power seqeuencers
2737 * have the same port selected (even if only one has power/vdd
2738 * enabled). The failure manifests as vlv_wait_port_ready() failing
2739 * CHV on the other hand doesn't seem to mind having the same port
2740 * selected in multiple power seqeuencers, but let's clear the
2741 * port select always when logically disconnecting a power sequencer
2742 * from a port.
2743 */
2744 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2745 pipe_name(pipe), port_name(intel_dig_port->port));
2746 I915_WRITE(pp_on_reg, 0);
2747 POSTING_READ(pp_on_reg);
2748
2749 intel_dp->pps_pipe = INVALID_PIPE;
2750 }
2751
2752 static void vlv_steal_power_sequencer(struct drm_device *dev,
2753 enum pipe pipe)
2754 {
2755 struct drm_i915_private *dev_priv = to_i915(dev);
2756 struct intel_encoder *encoder;
2757
2758 lockdep_assert_held(&dev_priv->pps_mutex);
2759
2760 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2761 return;
2762
2763 for_each_intel_encoder(dev, encoder) {
2764 struct intel_dp *intel_dp;
2765 enum port port;
2766
2767 if (encoder->type != INTEL_OUTPUT_EDP)
2768 continue;
2769
2770 intel_dp = enc_to_intel_dp(&encoder->base);
2771 port = dp_to_dig_port(intel_dp)->port;
2772
2773 if (intel_dp->pps_pipe != pipe)
2774 continue;
2775
2776 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2777 pipe_name(pipe), port_name(port));
2778
2779 WARN(encoder->base.crtc,
2780 "stealing pipe %c power sequencer from active eDP port %c\n",
2781 pipe_name(pipe), port_name(port));
2782
2783 /* make sure vdd is off before we steal it */
2784 vlv_detach_power_sequencer(intel_dp);
2785 }
2786 }
2787
2788 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2789 {
2790 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2791 struct intel_encoder *encoder = &intel_dig_port->base;
2792 struct drm_device *dev = encoder->base.dev;
2793 struct drm_i915_private *dev_priv = to_i915(dev);
2794 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2795
2796 lockdep_assert_held(&dev_priv->pps_mutex);
2797
2798 if (!is_edp(intel_dp))
2799 return;
2800
2801 if (intel_dp->pps_pipe == crtc->pipe)
2802 return;
2803
2804 /*
2805 * If another power sequencer was being used on this
2806 * port previously make sure to turn off vdd there while
2807 * we still have control of it.
2808 */
2809 if (intel_dp->pps_pipe != INVALID_PIPE)
2810 vlv_detach_power_sequencer(intel_dp);
2811
2812 /*
2813 * We may be stealing the power
2814 * sequencer from another port.
2815 */
2816 vlv_steal_power_sequencer(dev, crtc->pipe);
2817
2818 /* now it's all ours */
2819 intel_dp->pps_pipe = crtc->pipe;
2820
2821 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2822 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2823
2824 /* init power sequencer on this pipe and port */
2825 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2826 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2827 }
2828
2829 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2830 {
2831 vlv_phy_pre_encoder_enable(encoder);
2832
2833 intel_enable_dp(encoder);
2834 }
2835
2836 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2837 {
2838 intel_dp_prepare(encoder);
2839
2840 vlv_phy_pre_pll_enable(encoder);
2841 }
2842
2843 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2844 {
2845 chv_phy_pre_encoder_enable(encoder);
2846
2847 intel_enable_dp(encoder);
2848
2849 /* Second common lane will stay alive on its own now */
2850 chv_phy_release_cl2_override(encoder);
2851 }
2852
2853 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2854 {
2855 intel_dp_prepare(encoder);
2856
2857 chv_phy_pre_pll_enable(encoder);
2858 }
2859
2860 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2861 {
2862 chv_phy_post_pll_disable(encoder);
2863 }
2864
2865 /*
2866 * Fetch AUX CH registers 0x202 - 0x207 which contain
2867 * link status information
2868 */
2869 bool
2870 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2871 {
2872 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2873 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2874 }
2875
2876 /* These are source-specific values. */
2877 uint8_t
2878 intel_dp_voltage_max(struct intel_dp *intel_dp)
2879 {
2880 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2881 struct drm_i915_private *dev_priv = to_i915(dev);
2882 enum port port = dp_to_dig_port(intel_dp)->port;
2883
2884 if (IS_BROXTON(dev))
2885 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2886 else if (INTEL_INFO(dev)->gen >= 9) {
2887 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2888 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2889 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2890 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2891 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2892 else if (IS_GEN7(dev) && port == PORT_A)
2893 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2894 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2895 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2896 else
2897 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2898 }
2899
2900 uint8_t
2901 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2902 {
2903 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2904 enum port port = dp_to_dig_port(intel_dp)->port;
2905
2906 if (INTEL_INFO(dev)->gen >= 9) {
2907 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2908 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2909 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2910 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2911 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2912 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2913 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2914 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2915 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2916 default:
2917 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2918 }
2919 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2920 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2921 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2922 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2923 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2924 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2926 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2928 default:
2929 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2930 }
2931 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2932 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2934 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2935 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2936 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2938 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2939 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2940 default:
2941 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2942 }
2943 } else if (IS_GEN7(dev) && port == PORT_A) {
2944 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2945 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2946 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2948 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2949 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2950 default:
2951 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2952 }
2953 } else {
2954 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2956 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2957 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2958 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2960 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2961 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2962 default:
2963 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2964 }
2965 }
2966 }
2967
2968 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2969 {
2970 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2971 unsigned long demph_reg_value, preemph_reg_value,
2972 uniqtranscale_reg_value;
2973 uint8_t train_set = intel_dp->train_set[0];
2974
2975 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2976 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2977 preemph_reg_value = 0x0004000;
2978 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2979 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2980 demph_reg_value = 0x2B405555;
2981 uniqtranscale_reg_value = 0x552AB83A;
2982 break;
2983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2984 demph_reg_value = 0x2B404040;
2985 uniqtranscale_reg_value = 0x5548B83A;
2986 break;
2987 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2988 demph_reg_value = 0x2B245555;
2989 uniqtranscale_reg_value = 0x5560B83A;
2990 break;
2991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2992 demph_reg_value = 0x2B405555;
2993 uniqtranscale_reg_value = 0x5598DA3A;
2994 break;
2995 default:
2996 return 0;
2997 }
2998 break;
2999 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3000 preemph_reg_value = 0x0002000;
3001 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3002 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3003 demph_reg_value = 0x2B404040;
3004 uniqtranscale_reg_value = 0x5552B83A;
3005 break;
3006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3007 demph_reg_value = 0x2B404848;
3008 uniqtranscale_reg_value = 0x5580B83A;
3009 break;
3010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3011 demph_reg_value = 0x2B404040;
3012 uniqtranscale_reg_value = 0x55ADDA3A;
3013 break;
3014 default:
3015 return 0;
3016 }
3017 break;
3018 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3019 preemph_reg_value = 0x0000000;
3020 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3022 demph_reg_value = 0x2B305555;
3023 uniqtranscale_reg_value = 0x5570B83A;
3024 break;
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3026 demph_reg_value = 0x2B2B4040;
3027 uniqtranscale_reg_value = 0x55ADDA3A;
3028 break;
3029 default:
3030 return 0;
3031 }
3032 break;
3033 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3034 preemph_reg_value = 0x0006000;
3035 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3036 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3037 demph_reg_value = 0x1B405555;
3038 uniqtranscale_reg_value = 0x55ADDA3A;
3039 break;
3040 default:
3041 return 0;
3042 }
3043 break;
3044 default:
3045 return 0;
3046 }
3047
3048 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3049 uniqtranscale_reg_value, 0);
3050
3051 return 0;
3052 }
3053
3054 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3055 {
3056 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3057 u32 deemph_reg_value, margin_reg_value;
3058 bool uniq_trans_scale = false;
3059 uint8_t train_set = intel_dp->train_set[0];
3060
3061 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3062 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3063 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3065 deemph_reg_value = 128;
3066 margin_reg_value = 52;
3067 break;
3068 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3069 deemph_reg_value = 128;
3070 margin_reg_value = 77;
3071 break;
3072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3073 deemph_reg_value = 128;
3074 margin_reg_value = 102;
3075 break;
3076 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3077 deemph_reg_value = 128;
3078 margin_reg_value = 154;
3079 uniq_trans_scale = true;
3080 break;
3081 default:
3082 return 0;
3083 }
3084 break;
3085 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3086 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3088 deemph_reg_value = 85;
3089 margin_reg_value = 78;
3090 break;
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3092 deemph_reg_value = 85;
3093 margin_reg_value = 116;
3094 break;
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3096 deemph_reg_value = 85;
3097 margin_reg_value = 154;
3098 break;
3099 default:
3100 return 0;
3101 }
3102 break;
3103 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3104 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3105 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3106 deemph_reg_value = 64;
3107 margin_reg_value = 104;
3108 break;
3109 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3110 deemph_reg_value = 64;
3111 margin_reg_value = 154;
3112 break;
3113 default:
3114 return 0;
3115 }
3116 break;
3117 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3118 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3119 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3120 deemph_reg_value = 43;
3121 margin_reg_value = 154;
3122 break;
3123 default:
3124 return 0;
3125 }
3126 break;
3127 default:
3128 return 0;
3129 }
3130
3131 chv_set_phy_signal_level(encoder, deemph_reg_value,
3132 margin_reg_value, uniq_trans_scale);
3133
3134 return 0;
3135 }
3136
3137 static uint32_t
3138 gen4_signal_levels(uint8_t train_set)
3139 {
3140 uint32_t signal_levels = 0;
3141
3142 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3143 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3144 default:
3145 signal_levels |= DP_VOLTAGE_0_4;
3146 break;
3147 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3148 signal_levels |= DP_VOLTAGE_0_6;
3149 break;
3150 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3151 signal_levels |= DP_VOLTAGE_0_8;
3152 break;
3153 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3154 signal_levels |= DP_VOLTAGE_1_2;
3155 break;
3156 }
3157 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3158 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3159 default:
3160 signal_levels |= DP_PRE_EMPHASIS_0;
3161 break;
3162 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3163 signal_levels |= DP_PRE_EMPHASIS_3_5;
3164 break;
3165 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3166 signal_levels |= DP_PRE_EMPHASIS_6;
3167 break;
3168 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3169 signal_levels |= DP_PRE_EMPHASIS_9_5;
3170 break;
3171 }
3172 return signal_levels;
3173 }
3174
3175 /* Gen6's DP voltage swing and pre-emphasis control */
3176 static uint32_t
3177 gen6_edp_signal_levels(uint8_t train_set)
3178 {
3179 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3180 DP_TRAIN_PRE_EMPHASIS_MASK);
3181 switch (signal_levels) {
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3183 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3184 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3185 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3186 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3187 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3189 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3190 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3192 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3193 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3195 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3196 default:
3197 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3198 "0x%x\n", signal_levels);
3199 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3200 }
3201 }
3202
3203 /* Gen7's DP voltage swing and pre-emphasis control */
3204 static uint32_t
3205 gen7_edp_signal_levels(uint8_t train_set)
3206 {
3207 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3208 DP_TRAIN_PRE_EMPHASIS_MASK);
3209 switch (signal_levels) {
3210 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3211 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3212 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3213 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3214 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3215 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3216
3217 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3218 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3220 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3221
3222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3223 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3224 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3225 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3226
3227 default:
3228 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3229 "0x%x\n", signal_levels);
3230 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3231 }
3232 }
3233
3234 void
3235 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3236 {
3237 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3238 enum port port = intel_dig_port->port;
3239 struct drm_device *dev = intel_dig_port->base.base.dev;
3240 struct drm_i915_private *dev_priv = to_i915(dev);
3241 uint32_t signal_levels, mask = 0;
3242 uint8_t train_set = intel_dp->train_set[0];
3243
3244 if (HAS_DDI(dev)) {
3245 signal_levels = ddi_signal_levels(intel_dp);
3246
3247 if (IS_BROXTON(dev))
3248 signal_levels = 0;
3249 else
3250 mask = DDI_BUF_EMP_MASK;
3251 } else if (IS_CHERRYVIEW(dev)) {
3252 signal_levels = chv_signal_levels(intel_dp);
3253 } else if (IS_VALLEYVIEW(dev)) {
3254 signal_levels = vlv_signal_levels(intel_dp);
3255 } else if (IS_GEN7(dev) && port == PORT_A) {
3256 signal_levels = gen7_edp_signal_levels(train_set);
3257 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3258 } else if (IS_GEN6(dev) && port == PORT_A) {
3259 signal_levels = gen6_edp_signal_levels(train_set);
3260 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3261 } else {
3262 signal_levels = gen4_signal_levels(train_set);
3263 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3264 }
3265
3266 if (mask)
3267 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3268
3269 DRM_DEBUG_KMS("Using vswing level %d\n",
3270 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3271 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3272 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3273 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3274
3275 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3276
3277 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3278 POSTING_READ(intel_dp->output_reg);
3279 }
3280
3281 void
3282 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3283 uint8_t dp_train_pat)
3284 {
3285 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3286 struct drm_i915_private *dev_priv =
3287 to_i915(intel_dig_port->base.base.dev);
3288
3289 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3290
3291 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3292 POSTING_READ(intel_dp->output_reg);
3293 }
3294
3295 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3296 {
3297 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3298 struct drm_device *dev = intel_dig_port->base.base.dev;
3299 struct drm_i915_private *dev_priv = to_i915(dev);
3300 enum port port = intel_dig_port->port;
3301 uint32_t val;
3302
3303 if (!HAS_DDI(dev))
3304 return;
3305
3306 val = I915_READ(DP_TP_CTL(port));
3307 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3308 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3309 I915_WRITE(DP_TP_CTL(port), val);
3310
3311 /*
3312 * On PORT_A we can have only eDP in SST mode. There the only reason
3313 * we need to set idle transmission mode is to work around a HW issue
3314 * where we enable the pipe while not in idle link-training mode.
3315 * In this case there is requirement to wait for a minimum number of
3316 * idle patterns to be sent.
3317 */
3318 if (port == PORT_A)
3319 return;
3320
3321 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3322 DP_TP_STATUS_IDLE_DONE,
3323 DP_TP_STATUS_IDLE_DONE,
3324 1))
3325 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3326 }
3327
3328 static void
3329 intel_dp_link_down(struct intel_dp *intel_dp)
3330 {
3331 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3332 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3333 enum port port = intel_dig_port->port;
3334 struct drm_device *dev = intel_dig_port->base.base.dev;
3335 struct drm_i915_private *dev_priv = to_i915(dev);
3336 uint32_t DP = intel_dp->DP;
3337
3338 if (WARN_ON(HAS_DDI(dev)))
3339 return;
3340
3341 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3342 return;
3343
3344 DRM_DEBUG_KMS("\n");
3345
3346 if ((IS_GEN7(dev) && port == PORT_A) ||
3347 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3348 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3349 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3350 } else {
3351 if (IS_CHERRYVIEW(dev))
3352 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3353 else
3354 DP &= ~DP_LINK_TRAIN_MASK;
3355 DP |= DP_LINK_TRAIN_PAT_IDLE;
3356 }
3357 I915_WRITE(intel_dp->output_reg, DP);
3358 POSTING_READ(intel_dp->output_reg);
3359
3360 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3361 I915_WRITE(intel_dp->output_reg, DP);
3362 POSTING_READ(intel_dp->output_reg);
3363
3364 /*
3365 * HW workaround for IBX, we need to move the port
3366 * to transcoder A after disabling it to allow the
3367 * matching HDMI port to be enabled on transcoder A.
3368 */
3369 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3370 /*
3371 * We get CPU/PCH FIFO underruns on the other pipe when
3372 * doing the workaround. Sweep them under the rug.
3373 */
3374 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3375 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3376
3377 /* always enable with pattern 1 (as per spec) */
3378 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3379 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3380 I915_WRITE(intel_dp->output_reg, DP);
3381 POSTING_READ(intel_dp->output_reg);
3382
3383 DP &= ~DP_PORT_EN;
3384 I915_WRITE(intel_dp->output_reg, DP);
3385 POSTING_READ(intel_dp->output_reg);
3386
3387 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3388 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3389 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3390 }
3391
3392 msleep(intel_dp->panel_power_down_delay);
3393
3394 intel_dp->DP = DP;
3395 }
3396
3397 static bool
3398 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3399 {
3400 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3401 struct drm_device *dev = dig_port->base.base.dev;
3402 struct drm_i915_private *dev_priv = to_i915(dev);
3403
3404 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3405 sizeof(intel_dp->dpcd)) < 0)
3406 return false; /* aux transfer failed */
3407
3408 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3409
3410 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3411 return false; /* DPCD not present */
3412
3413 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3414 &intel_dp->sink_count, 1) < 0)
3415 return false;
3416
3417 /*
3418 * Sink count can change between short pulse hpd hence
3419 * a member variable in intel_dp will track any changes
3420 * between short pulse interrupts.
3421 */
3422 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3423
3424 /*
3425 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3426 * a dongle is present but no display. Unless we require to know
3427 * if a dongle is present or not, we don't need to update
3428 * downstream port information. So, an early return here saves
3429 * time from performing other operations which are not required.
3430 */
3431 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3432 return false;
3433
3434 /* Check if the panel supports PSR */
3435 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3436 if (is_edp(intel_dp)) {
3437 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3438 intel_dp->psr_dpcd,
3439 sizeof(intel_dp->psr_dpcd));
3440 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3441 dev_priv->psr.sink_support = true;
3442 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3443 }
3444
3445 if (INTEL_INFO(dev)->gen >= 9 &&
3446 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3447 uint8_t frame_sync_cap;
3448
3449 dev_priv->psr.sink_support = true;
3450 drm_dp_dpcd_read(&intel_dp->aux,
3451 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3452 &frame_sync_cap, 1);
3453 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3454 /* PSR2 needs frame sync as well */
3455 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3456 DRM_DEBUG_KMS("PSR2 %s on sink",
3457 dev_priv->psr.psr2_support ? "supported" : "not supported");
3458 }
3459
3460 /* Read the eDP Display control capabilities registers */
3461 memset(intel_dp->edp_dpcd, 0, sizeof(intel_dp->edp_dpcd));
3462 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3463 (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3464 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3465 sizeof(intel_dp->edp_dpcd)))
3466 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3467 intel_dp->edp_dpcd);
3468 }
3469
3470 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3471 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3472 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3473
3474 /* Intermediate frequency support */
3475 if (is_edp(intel_dp) && (intel_dp->edp_dpcd[0] >= 0x03)) { /* eDp v1.4 or higher */
3476 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3477 int i;
3478
3479 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3480 sink_rates, sizeof(sink_rates));
3481
3482 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3483 int val = le16_to_cpu(sink_rates[i]);
3484
3485 if (val == 0)
3486 break;
3487
3488 /* Value read is in kHz while drm clock is saved in deca-kHz */
3489 intel_dp->sink_rates[i] = (val * 200) / 10;
3490 }
3491 intel_dp->num_sink_rates = i;
3492 }
3493
3494 intel_dp_print_rates(intel_dp);
3495
3496 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3497 DP_DWN_STRM_PORT_PRESENT))
3498 return true; /* native DP sink */
3499
3500 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3501 return true; /* no per-port downstream info */
3502
3503 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3504 intel_dp->downstream_ports,
3505 DP_MAX_DOWNSTREAM_PORTS) < 0)
3506 return false; /* downstream port status fetch failed */
3507
3508 return true;
3509 }
3510
3511 static void
3512 intel_dp_probe_oui(struct intel_dp *intel_dp)
3513 {
3514 u8 buf[3];
3515
3516 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3517 return;
3518
3519 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3520 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3521 buf[0], buf[1], buf[2]);
3522
3523 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3524 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3525 buf[0], buf[1], buf[2]);
3526 }
3527
3528 static bool
3529 intel_dp_probe_mst(struct intel_dp *intel_dp)
3530 {
3531 u8 buf[1];
3532
3533 if (!i915.enable_dp_mst)
3534 return false;
3535
3536 if (!intel_dp->can_mst)
3537 return false;
3538
3539 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3540 return false;
3541
3542 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3543 if (buf[0] & DP_MST_CAP) {
3544 DRM_DEBUG_KMS("Sink is MST capable\n");
3545 intel_dp->is_mst = true;
3546 } else {
3547 DRM_DEBUG_KMS("Sink is not MST capable\n");
3548 intel_dp->is_mst = false;
3549 }
3550 }
3551
3552 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3553 return intel_dp->is_mst;
3554 }
3555
3556 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3557 {
3558 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3559 struct drm_device *dev = dig_port->base.base.dev;
3560 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3561 u8 buf;
3562 int ret = 0;
3563 int count = 0;
3564 int attempts = 10;
3565
3566 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3567 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3568 ret = -EIO;
3569 goto out;
3570 }
3571
3572 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3573 buf & ~DP_TEST_SINK_START) < 0) {
3574 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3575 ret = -EIO;
3576 goto out;
3577 }
3578
3579 do {
3580 intel_wait_for_vblank(dev, intel_crtc->pipe);
3581
3582 if (drm_dp_dpcd_readb(&intel_dp->aux,
3583 DP_TEST_SINK_MISC, &buf) < 0) {
3584 ret = -EIO;
3585 goto out;
3586 }
3587 count = buf & DP_TEST_COUNT_MASK;
3588 } while (--attempts && count);
3589
3590 if (attempts == 0) {
3591 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3592 ret = -ETIMEDOUT;
3593 }
3594
3595 out:
3596 hsw_enable_ips(intel_crtc);
3597 return ret;
3598 }
3599
3600 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3601 {
3602 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3603 struct drm_device *dev = dig_port->base.base.dev;
3604 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3605 u8 buf;
3606 int ret;
3607
3608 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3609 return -EIO;
3610
3611 if (!(buf & DP_TEST_CRC_SUPPORTED))
3612 return -ENOTTY;
3613
3614 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3615 return -EIO;
3616
3617 if (buf & DP_TEST_SINK_START) {
3618 ret = intel_dp_sink_crc_stop(intel_dp);
3619 if (ret)
3620 return ret;
3621 }
3622
3623 hsw_disable_ips(intel_crtc);
3624
3625 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3626 buf | DP_TEST_SINK_START) < 0) {
3627 hsw_enable_ips(intel_crtc);
3628 return -EIO;
3629 }
3630
3631 intel_wait_for_vblank(dev, intel_crtc->pipe);
3632 return 0;
3633 }
3634
3635 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3636 {
3637 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3638 struct drm_device *dev = dig_port->base.base.dev;
3639 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3640 u8 buf;
3641 int count, ret;
3642 int attempts = 6;
3643
3644 ret = intel_dp_sink_crc_start(intel_dp);
3645 if (ret)
3646 return ret;
3647
3648 do {
3649 intel_wait_for_vblank(dev, intel_crtc->pipe);
3650
3651 if (drm_dp_dpcd_readb(&intel_dp->aux,
3652 DP_TEST_SINK_MISC, &buf) < 0) {
3653 ret = -EIO;
3654 goto stop;
3655 }
3656 count = buf & DP_TEST_COUNT_MASK;
3657
3658 } while (--attempts && count == 0);
3659
3660 if (attempts == 0) {
3661 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3662 ret = -ETIMEDOUT;
3663 goto stop;
3664 }
3665
3666 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3667 ret = -EIO;
3668 goto stop;
3669 }
3670
3671 stop:
3672 intel_dp_sink_crc_stop(intel_dp);
3673 return ret;
3674 }
3675
3676 static bool
3677 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3678 {
3679 return drm_dp_dpcd_read(&intel_dp->aux,
3680 DP_DEVICE_SERVICE_IRQ_VECTOR,
3681 sink_irq_vector, 1) == 1;
3682 }
3683
3684 static bool
3685 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3686 {
3687 int ret;
3688
3689 ret = drm_dp_dpcd_read(&intel_dp->aux,
3690 DP_SINK_COUNT_ESI,
3691 sink_irq_vector, 14);
3692 if (ret != 14)
3693 return false;
3694
3695 return true;
3696 }
3697
3698 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3699 {
3700 uint8_t test_result = DP_TEST_ACK;
3701 return test_result;
3702 }
3703
3704 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3705 {
3706 uint8_t test_result = DP_TEST_NAK;
3707 return test_result;
3708 }
3709
3710 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3711 {
3712 uint8_t test_result = DP_TEST_NAK;
3713 struct intel_connector *intel_connector = intel_dp->attached_connector;
3714 struct drm_connector *connector = &intel_connector->base;
3715
3716 if (intel_connector->detect_edid == NULL ||
3717 connector->edid_corrupt ||
3718 intel_dp->aux.i2c_defer_count > 6) {
3719 /* Check EDID read for NACKs, DEFERs and corruption
3720 * (DP CTS 1.2 Core r1.1)
3721 * 4.2.2.4 : Failed EDID read, I2C_NAK
3722 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3723 * 4.2.2.6 : EDID corruption detected
3724 * Use failsafe mode for all cases
3725 */
3726 if (intel_dp->aux.i2c_nack_count > 0 ||
3727 intel_dp->aux.i2c_defer_count > 0)
3728 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3729 intel_dp->aux.i2c_nack_count,
3730 intel_dp->aux.i2c_defer_count);
3731 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3732 } else {
3733 struct edid *block = intel_connector->detect_edid;
3734
3735 /* We have to write the checksum
3736 * of the last block read
3737 */
3738 block += intel_connector->detect_edid->extensions;
3739
3740 if (!drm_dp_dpcd_write(&intel_dp->aux,
3741 DP_TEST_EDID_CHECKSUM,
3742 &block->checksum,
3743 1))
3744 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3745
3746 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3747 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3748 }
3749
3750 /* Set test active flag here so userspace doesn't interrupt things */
3751 intel_dp->compliance_test_active = 1;
3752
3753 return test_result;
3754 }
3755
3756 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3757 {
3758 uint8_t test_result = DP_TEST_NAK;
3759 return test_result;
3760 }
3761
3762 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3763 {
3764 uint8_t response = DP_TEST_NAK;
3765 uint8_t rxdata = 0;
3766 int status = 0;
3767
3768 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3769 if (status <= 0) {
3770 DRM_DEBUG_KMS("Could not read test request from sink\n");
3771 goto update_status;
3772 }
3773
3774 switch (rxdata) {
3775 case DP_TEST_LINK_TRAINING:
3776 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3777 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3778 response = intel_dp_autotest_link_training(intel_dp);
3779 break;
3780 case DP_TEST_LINK_VIDEO_PATTERN:
3781 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3782 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3783 response = intel_dp_autotest_video_pattern(intel_dp);
3784 break;
3785 case DP_TEST_LINK_EDID_READ:
3786 DRM_DEBUG_KMS("EDID test requested\n");
3787 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3788 response = intel_dp_autotest_edid(intel_dp);
3789 break;
3790 case DP_TEST_LINK_PHY_TEST_PATTERN:
3791 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3792 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3793 response = intel_dp_autotest_phy_pattern(intel_dp);
3794 break;
3795 default:
3796 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3797 break;
3798 }
3799
3800 update_status:
3801 status = drm_dp_dpcd_write(&intel_dp->aux,
3802 DP_TEST_RESPONSE,
3803 &response, 1);
3804 if (status <= 0)
3805 DRM_DEBUG_KMS("Could not write test response to sink\n");
3806 }
3807
3808 static int
3809 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3810 {
3811 bool bret;
3812
3813 if (intel_dp->is_mst) {
3814 u8 esi[16] = { 0 };
3815 int ret = 0;
3816 int retry;
3817 bool handled;
3818 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3819 go_again:
3820 if (bret == true) {
3821
3822 /* check link status - esi[10] = 0x200c */
3823 if (intel_dp->active_mst_links &&
3824 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3825 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3826 intel_dp_start_link_train(intel_dp);
3827 intel_dp_stop_link_train(intel_dp);
3828 }
3829
3830 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3831 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3832
3833 if (handled) {
3834 for (retry = 0; retry < 3; retry++) {
3835 int wret;
3836 wret = drm_dp_dpcd_write(&intel_dp->aux,
3837 DP_SINK_COUNT_ESI+1,
3838 &esi[1], 3);
3839 if (wret == 3) {
3840 break;
3841 }
3842 }
3843
3844 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3845 if (bret == true) {
3846 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3847 goto go_again;
3848 }
3849 } else
3850 ret = 0;
3851
3852 return ret;
3853 } else {
3854 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3855 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3856 intel_dp->is_mst = false;
3857 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3858 /* send a hotplug event */
3859 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3860 }
3861 }
3862 return -EINVAL;
3863 }
3864
3865 static void
3866 intel_dp_check_link_status(struct intel_dp *intel_dp)
3867 {
3868 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3869 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3870 u8 link_status[DP_LINK_STATUS_SIZE];
3871
3872 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3873
3874 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3875 DRM_ERROR("Failed to get link status\n");
3876 return;
3877 }
3878
3879 if (!intel_encoder->base.crtc)
3880 return;
3881
3882 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3883 return;
3884
3885 /* if link training is requested we should perform it always */
3886 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3887 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3888 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3889 intel_encoder->base.name);
3890 intel_dp_start_link_train(intel_dp);
3891 intel_dp_stop_link_train(intel_dp);
3892 }
3893 }
3894
3895 /*
3896 * According to DP spec
3897 * 5.1.2:
3898 * 1. Read DPCD
3899 * 2. Configure link according to Receiver Capabilities
3900 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3901 * 4. Check link status on receipt of hot-plug interrupt
3902 *
3903 * intel_dp_short_pulse - handles short pulse interrupts
3904 * when full detection is not required.
3905 * Returns %true if short pulse is handled and full detection
3906 * is NOT required and %false otherwise.
3907 */
3908 static bool
3909 intel_dp_short_pulse(struct intel_dp *intel_dp)
3910 {
3911 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3912 u8 sink_irq_vector;
3913 u8 old_sink_count = intel_dp->sink_count;
3914 bool ret;
3915
3916 /*
3917 * Clearing compliance test variables to allow capturing
3918 * of values for next automated test request.
3919 */
3920 intel_dp->compliance_test_active = 0;
3921 intel_dp->compliance_test_type = 0;
3922 intel_dp->compliance_test_data = 0;
3923
3924 /*
3925 * Now read the DPCD to see if it's actually running
3926 * If the current value of sink count doesn't match with
3927 * the value that was stored earlier or dpcd read failed
3928 * we need to do full detection
3929 */
3930 ret = intel_dp_get_dpcd(intel_dp);
3931
3932 if ((old_sink_count != intel_dp->sink_count) || !ret) {
3933 /* No need to proceed if we are going to do full detect */
3934 return false;
3935 }
3936
3937 /* Try to read the source of the interrupt */
3938 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3939 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3940 /* Clear interrupt source */
3941 drm_dp_dpcd_writeb(&intel_dp->aux,
3942 DP_DEVICE_SERVICE_IRQ_VECTOR,
3943 sink_irq_vector);
3944
3945 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3946 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3947 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3948 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3949 }
3950
3951 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3952 intel_dp_check_link_status(intel_dp);
3953 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3954
3955 return true;
3956 }
3957
3958 /* XXX this is probably wrong for multiple downstream ports */
3959 static enum drm_connector_status
3960 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3961 {
3962 uint8_t *dpcd = intel_dp->dpcd;
3963 uint8_t type;
3964
3965 if (!intel_dp_get_dpcd(intel_dp))
3966 return connector_status_disconnected;
3967
3968 if (is_edp(intel_dp))
3969 return connector_status_connected;
3970
3971 /* if there's no downstream port, we're done */
3972 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3973 return connector_status_connected;
3974
3975 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3976 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3977 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3978
3979 return intel_dp->sink_count ?
3980 connector_status_connected : connector_status_disconnected;
3981 }
3982
3983 /* If no HPD, poke DDC gently */
3984 if (drm_probe_ddc(&intel_dp->aux.ddc))
3985 return connector_status_connected;
3986
3987 /* Well we tried, say unknown for unreliable port types */
3988 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3989 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3990 if (type == DP_DS_PORT_TYPE_VGA ||
3991 type == DP_DS_PORT_TYPE_NON_EDID)
3992 return connector_status_unknown;
3993 } else {
3994 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3995 DP_DWN_STRM_PORT_TYPE_MASK;
3996 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3997 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3998 return connector_status_unknown;
3999 }
4000
4001 /* Anything else is out of spec, warn and ignore */
4002 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4003 return connector_status_disconnected;
4004 }
4005
4006 static enum drm_connector_status
4007 edp_detect(struct intel_dp *intel_dp)
4008 {
4009 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4010 enum drm_connector_status status;
4011
4012 status = intel_panel_detect(dev);
4013 if (status == connector_status_unknown)
4014 status = connector_status_connected;
4015
4016 return status;
4017 }
4018
4019 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4020 struct intel_digital_port *port)
4021 {
4022 u32 bit;
4023
4024 switch (port->port) {
4025 case PORT_A:
4026 return true;
4027 case PORT_B:
4028 bit = SDE_PORTB_HOTPLUG;
4029 break;
4030 case PORT_C:
4031 bit = SDE_PORTC_HOTPLUG;
4032 break;
4033 case PORT_D:
4034 bit = SDE_PORTD_HOTPLUG;
4035 break;
4036 default:
4037 MISSING_CASE(port->port);
4038 return false;
4039 }
4040
4041 return I915_READ(SDEISR) & bit;
4042 }
4043
4044 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4045 struct intel_digital_port *port)
4046 {
4047 u32 bit;
4048
4049 switch (port->port) {
4050 case PORT_A:
4051 return true;
4052 case PORT_B:
4053 bit = SDE_PORTB_HOTPLUG_CPT;
4054 break;
4055 case PORT_C:
4056 bit = SDE_PORTC_HOTPLUG_CPT;
4057 break;
4058 case PORT_D:
4059 bit = SDE_PORTD_HOTPLUG_CPT;
4060 break;
4061 case PORT_E:
4062 bit = SDE_PORTE_HOTPLUG_SPT;
4063 break;
4064 default:
4065 MISSING_CASE(port->port);
4066 return false;
4067 }
4068
4069 return I915_READ(SDEISR) & bit;
4070 }
4071
4072 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4073 struct intel_digital_port *port)
4074 {
4075 u32 bit;
4076
4077 switch (port->port) {
4078 case PORT_B:
4079 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4080 break;
4081 case PORT_C:
4082 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4083 break;
4084 case PORT_D:
4085 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4086 break;
4087 default:
4088 MISSING_CASE(port->port);
4089 return false;
4090 }
4091
4092 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4093 }
4094
4095 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4096 struct intel_digital_port *port)
4097 {
4098 u32 bit;
4099
4100 switch (port->port) {
4101 case PORT_B:
4102 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4103 break;
4104 case PORT_C:
4105 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4106 break;
4107 case PORT_D:
4108 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4109 break;
4110 default:
4111 MISSING_CASE(port->port);
4112 return false;
4113 }
4114
4115 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4116 }
4117
4118 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4119 struct intel_digital_port *intel_dig_port)
4120 {
4121 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4122 enum port port;
4123 u32 bit;
4124
4125 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4126 switch (port) {
4127 case PORT_A:
4128 bit = BXT_DE_PORT_HP_DDIA;
4129 break;
4130 case PORT_B:
4131 bit = BXT_DE_PORT_HP_DDIB;
4132 break;
4133 case PORT_C:
4134 bit = BXT_DE_PORT_HP_DDIC;
4135 break;
4136 default:
4137 MISSING_CASE(port);
4138 return false;
4139 }
4140
4141 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4142 }
4143
4144 /*
4145 * intel_digital_port_connected - is the specified port connected?
4146 * @dev_priv: i915 private structure
4147 * @port: the port to test
4148 *
4149 * Return %true if @port is connected, %false otherwise.
4150 */
4151 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4152 struct intel_digital_port *port)
4153 {
4154 if (HAS_PCH_IBX(dev_priv))
4155 return ibx_digital_port_connected(dev_priv, port);
4156 else if (HAS_PCH_SPLIT(dev_priv))
4157 return cpt_digital_port_connected(dev_priv, port);
4158 else if (IS_BROXTON(dev_priv))
4159 return bxt_digital_port_connected(dev_priv, port);
4160 else if (IS_GM45(dev_priv))
4161 return gm45_digital_port_connected(dev_priv, port);
4162 else
4163 return g4x_digital_port_connected(dev_priv, port);
4164 }
4165
4166 static struct edid *
4167 intel_dp_get_edid(struct intel_dp *intel_dp)
4168 {
4169 struct intel_connector *intel_connector = intel_dp->attached_connector;
4170
4171 /* use cached edid if we have one */
4172 if (intel_connector->edid) {
4173 /* invalid edid */
4174 if (IS_ERR(intel_connector->edid))
4175 return NULL;
4176
4177 return drm_edid_duplicate(intel_connector->edid);
4178 } else
4179 return drm_get_edid(&intel_connector->base,
4180 &intel_dp->aux.ddc);
4181 }
4182
4183 static void
4184 intel_dp_set_edid(struct intel_dp *intel_dp)
4185 {
4186 struct intel_connector *intel_connector = intel_dp->attached_connector;
4187 struct edid *edid;
4188
4189 intel_dp_unset_edid(intel_dp);
4190 edid = intel_dp_get_edid(intel_dp);
4191 intel_connector->detect_edid = edid;
4192
4193 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4194 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4195 else
4196 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4197 }
4198
4199 static void
4200 intel_dp_unset_edid(struct intel_dp *intel_dp)
4201 {
4202 struct intel_connector *intel_connector = intel_dp->attached_connector;
4203
4204 kfree(intel_connector->detect_edid);
4205 intel_connector->detect_edid = NULL;
4206
4207 intel_dp->has_audio = false;
4208 }
4209
4210 static void
4211 intel_dp_long_pulse(struct intel_connector *intel_connector)
4212 {
4213 struct drm_connector *connector = &intel_connector->base;
4214 struct intel_dp *intel_dp = intel_attached_dp(connector);
4215 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4216 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4217 struct drm_device *dev = connector->dev;
4218 enum drm_connector_status status;
4219 enum intel_display_power_domain power_domain;
4220 bool ret;
4221 u8 sink_irq_vector;
4222
4223 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4224 intel_display_power_get(to_i915(dev), power_domain);
4225
4226 /* Can't disconnect eDP, but you can close the lid... */
4227 if (is_edp(intel_dp))
4228 status = edp_detect(intel_dp);
4229 else if (intel_digital_port_connected(to_i915(dev),
4230 dp_to_dig_port(intel_dp)))
4231 status = intel_dp_detect_dpcd(intel_dp);
4232 else
4233 status = connector_status_disconnected;
4234
4235 if (status != connector_status_connected) {
4236 intel_dp->compliance_test_active = 0;
4237 intel_dp->compliance_test_type = 0;
4238 intel_dp->compliance_test_data = 0;
4239
4240 if (intel_dp->is_mst) {
4241 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4242 intel_dp->is_mst,
4243 intel_dp->mst_mgr.mst_state);
4244 intel_dp->is_mst = false;
4245 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4246 intel_dp->is_mst);
4247 }
4248
4249 goto out;
4250 }
4251
4252 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4253 intel_encoder->type = INTEL_OUTPUT_DP;
4254
4255 intel_dp_probe_oui(intel_dp);
4256
4257 ret = intel_dp_probe_mst(intel_dp);
4258 if (ret) {
4259 /*
4260 * If we are in MST mode then this connector
4261 * won't appear connected or have anything
4262 * with EDID on it
4263 */
4264 status = connector_status_disconnected;
4265 goto out;
4266 } else if (connector->status == connector_status_connected) {
4267 /*
4268 * If display was connected already and is still connected
4269 * check links status, there has been known issues of
4270 * link loss triggerring long pulse!!!!
4271 */
4272 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4273 intel_dp_check_link_status(intel_dp);
4274 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4275 goto out;
4276 }
4277
4278 /*
4279 * Clearing NACK and defer counts to get their exact values
4280 * while reading EDID which are required by Compliance tests
4281 * 4.2.2.4 and 4.2.2.5
4282 */
4283 intel_dp->aux.i2c_nack_count = 0;
4284 intel_dp->aux.i2c_defer_count = 0;
4285
4286 intel_dp_set_edid(intel_dp);
4287
4288 status = connector_status_connected;
4289 intel_dp->detect_done = true;
4290
4291 /* Try to read the source of the interrupt */
4292 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4293 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4294 /* Clear interrupt source */
4295 drm_dp_dpcd_writeb(&intel_dp->aux,
4296 DP_DEVICE_SERVICE_IRQ_VECTOR,
4297 sink_irq_vector);
4298
4299 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4300 intel_dp_handle_test_request(intel_dp);
4301 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4302 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4303 }
4304
4305 out:
4306 if ((status != connector_status_connected) &&
4307 (intel_dp->is_mst == false))
4308 intel_dp_unset_edid(intel_dp);
4309
4310 intel_display_power_put(to_i915(dev), power_domain);
4311 return;
4312 }
4313
4314 static enum drm_connector_status
4315 intel_dp_detect(struct drm_connector *connector, bool force)
4316 {
4317 struct intel_dp *intel_dp = intel_attached_dp(connector);
4318 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4319 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4320 struct intel_connector *intel_connector = to_intel_connector(connector);
4321
4322 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4323 connector->base.id, connector->name);
4324
4325 if (intel_dp->is_mst) {
4326 /* MST devices are disconnected from a monitor POV */
4327 intel_dp_unset_edid(intel_dp);
4328 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4329 intel_encoder->type = INTEL_OUTPUT_DP;
4330 return connector_status_disconnected;
4331 }
4332
4333 /* If full detect is not performed yet, do a full detect */
4334 if (!intel_dp->detect_done)
4335 intel_dp_long_pulse(intel_dp->attached_connector);
4336
4337 intel_dp->detect_done = false;
4338
4339 if (is_edp(intel_dp) || intel_connector->detect_edid)
4340 return connector_status_connected;
4341 else
4342 return connector_status_disconnected;
4343 }
4344
4345 static void
4346 intel_dp_force(struct drm_connector *connector)
4347 {
4348 struct intel_dp *intel_dp = intel_attached_dp(connector);
4349 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4350 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4351 enum intel_display_power_domain power_domain;
4352
4353 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4354 connector->base.id, connector->name);
4355 intel_dp_unset_edid(intel_dp);
4356
4357 if (connector->status != connector_status_connected)
4358 return;
4359
4360 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4361 intel_display_power_get(dev_priv, power_domain);
4362
4363 intel_dp_set_edid(intel_dp);
4364
4365 intel_display_power_put(dev_priv, power_domain);
4366
4367 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4368 intel_encoder->type = INTEL_OUTPUT_DP;
4369 }
4370
4371 static int intel_dp_get_modes(struct drm_connector *connector)
4372 {
4373 struct intel_connector *intel_connector = to_intel_connector(connector);
4374 struct edid *edid;
4375
4376 edid = intel_connector->detect_edid;
4377 if (edid) {
4378 int ret = intel_connector_update_modes(connector, edid);
4379 if (ret)
4380 return ret;
4381 }
4382
4383 /* if eDP has no EDID, fall back to fixed mode */
4384 if (is_edp(intel_attached_dp(connector)) &&
4385 intel_connector->panel.fixed_mode) {
4386 struct drm_display_mode *mode;
4387
4388 mode = drm_mode_duplicate(connector->dev,
4389 intel_connector->panel.fixed_mode);
4390 if (mode) {
4391 drm_mode_probed_add(connector, mode);
4392 return 1;
4393 }
4394 }
4395
4396 return 0;
4397 }
4398
4399 static bool
4400 intel_dp_detect_audio(struct drm_connector *connector)
4401 {
4402 bool has_audio = false;
4403 struct edid *edid;
4404
4405 edid = to_intel_connector(connector)->detect_edid;
4406 if (edid)
4407 has_audio = drm_detect_monitor_audio(edid);
4408
4409 return has_audio;
4410 }
4411
4412 static int
4413 intel_dp_set_property(struct drm_connector *connector,
4414 struct drm_property *property,
4415 uint64_t val)
4416 {
4417 struct drm_i915_private *dev_priv = to_i915(connector->dev);
4418 struct intel_connector *intel_connector = to_intel_connector(connector);
4419 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4420 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4421 int ret;
4422
4423 ret = drm_object_property_set_value(&connector->base, property, val);
4424 if (ret)
4425 return ret;
4426
4427 if (property == dev_priv->force_audio_property) {
4428 int i = val;
4429 bool has_audio;
4430
4431 if (i == intel_dp->force_audio)
4432 return 0;
4433
4434 intel_dp->force_audio = i;
4435
4436 if (i == HDMI_AUDIO_AUTO)
4437 has_audio = intel_dp_detect_audio(connector);
4438 else
4439 has_audio = (i == HDMI_AUDIO_ON);
4440
4441 if (has_audio == intel_dp->has_audio)
4442 return 0;
4443
4444 intel_dp->has_audio = has_audio;
4445 goto done;
4446 }
4447
4448 if (property == dev_priv->broadcast_rgb_property) {
4449 bool old_auto = intel_dp->color_range_auto;
4450 bool old_range = intel_dp->limited_color_range;
4451
4452 switch (val) {
4453 case INTEL_BROADCAST_RGB_AUTO:
4454 intel_dp->color_range_auto = true;
4455 break;
4456 case INTEL_BROADCAST_RGB_FULL:
4457 intel_dp->color_range_auto = false;
4458 intel_dp->limited_color_range = false;
4459 break;
4460 case INTEL_BROADCAST_RGB_LIMITED:
4461 intel_dp->color_range_auto = false;
4462 intel_dp->limited_color_range = true;
4463 break;
4464 default:
4465 return -EINVAL;
4466 }
4467
4468 if (old_auto == intel_dp->color_range_auto &&
4469 old_range == intel_dp->limited_color_range)
4470 return 0;
4471
4472 goto done;
4473 }
4474
4475 if (is_edp(intel_dp) &&
4476 property == connector->dev->mode_config.scaling_mode_property) {
4477 if (val == DRM_MODE_SCALE_NONE) {
4478 DRM_DEBUG_KMS("no scaling not supported\n");
4479 return -EINVAL;
4480 }
4481 if (HAS_GMCH_DISPLAY(dev_priv) &&
4482 val == DRM_MODE_SCALE_CENTER) {
4483 DRM_DEBUG_KMS("centering not supported\n");
4484 return -EINVAL;
4485 }
4486
4487 if (intel_connector->panel.fitting_mode == val) {
4488 /* the eDP scaling property is not changed */
4489 return 0;
4490 }
4491 intel_connector->panel.fitting_mode = val;
4492
4493 goto done;
4494 }
4495
4496 return -EINVAL;
4497
4498 done:
4499 if (intel_encoder->base.crtc)
4500 intel_crtc_restore_mode(intel_encoder->base.crtc);
4501
4502 return 0;
4503 }
4504
4505 static int
4506 intel_dp_connector_register(struct drm_connector *connector)
4507 {
4508 struct intel_dp *intel_dp = intel_attached_dp(connector);
4509 int ret;
4510
4511 ret = intel_connector_register(connector);
4512 if (ret)
4513 return ret;
4514
4515 i915_debugfs_connector_add(connector);
4516
4517 DRM_DEBUG_KMS("registering %s bus for %s\n",
4518 intel_dp->aux.name, connector->kdev->kobj.name);
4519
4520 intel_dp->aux.dev = connector->kdev;
4521 return drm_dp_aux_register(&intel_dp->aux);
4522 }
4523
4524 static void
4525 intel_dp_connector_unregister(struct drm_connector *connector)
4526 {
4527 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4528 intel_connector_unregister(connector);
4529 }
4530
4531 static void
4532 intel_dp_connector_destroy(struct drm_connector *connector)
4533 {
4534 struct intel_connector *intel_connector = to_intel_connector(connector);
4535
4536 kfree(intel_connector->detect_edid);
4537
4538 if (!IS_ERR_OR_NULL(intel_connector->edid))
4539 kfree(intel_connector->edid);
4540
4541 /* Can't call is_edp() since the encoder may have been destroyed
4542 * already. */
4543 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4544 intel_panel_fini(&intel_connector->panel);
4545
4546 drm_connector_cleanup(connector);
4547 kfree(connector);
4548 }
4549
4550 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4551 {
4552 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4553 struct intel_dp *intel_dp = &intel_dig_port->dp;
4554
4555 intel_dp_mst_encoder_cleanup(intel_dig_port);
4556 if (is_edp(intel_dp)) {
4557 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4558 /*
4559 * vdd might still be enabled do to the delayed vdd off.
4560 * Make sure vdd is actually turned off here.
4561 */
4562 pps_lock(intel_dp);
4563 edp_panel_vdd_off_sync(intel_dp);
4564 pps_unlock(intel_dp);
4565
4566 if (intel_dp->edp_notifier.notifier_call) {
4567 unregister_reboot_notifier(&intel_dp->edp_notifier);
4568 intel_dp->edp_notifier.notifier_call = NULL;
4569 }
4570 }
4571
4572 intel_dp_aux_fini(intel_dp);
4573
4574 drm_encoder_cleanup(encoder);
4575 kfree(intel_dig_port);
4576 }
4577
4578 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4579 {
4580 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4581
4582 if (!is_edp(intel_dp))
4583 return;
4584
4585 /*
4586 * vdd might still be enabled do to the delayed vdd off.
4587 * Make sure vdd is actually turned off here.
4588 */
4589 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4590 pps_lock(intel_dp);
4591 edp_panel_vdd_off_sync(intel_dp);
4592 pps_unlock(intel_dp);
4593 }
4594
4595 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4596 {
4597 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4598 struct drm_device *dev = intel_dig_port->base.base.dev;
4599 struct drm_i915_private *dev_priv = to_i915(dev);
4600 enum intel_display_power_domain power_domain;
4601
4602 lockdep_assert_held(&dev_priv->pps_mutex);
4603
4604 if (!edp_have_panel_vdd(intel_dp))
4605 return;
4606
4607 /*
4608 * The VDD bit needs a power domain reference, so if the bit is
4609 * already enabled when we boot or resume, grab this reference and
4610 * schedule a vdd off, so we don't hold on to the reference
4611 * indefinitely.
4612 */
4613 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4614 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4615 intel_display_power_get(dev_priv, power_domain);
4616
4617 edp_panel_vdd_schedule_off(intel_dp);
4618 }
4619
4620 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4621 {
4622 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4623 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4624
4625 if (!HAS_DDI(dev_priv))
4626 intel_dp->DP = I915_READ(intel_dp->output_reg);
4627
4628 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4629 return;
4630
4631 pps_lock(intel_dp);
4632
4633 /*
4634 * Read out the current power sequencer assignment,
4635 * in case the BIOS did something with it.
4636 */
4637 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4638 vlv_initial_power_sequencer_setup(intel_dp);
4639
4640 intel_edp_panel_vdd_sanitize(intel_dp);
4641
4642 pps_unlock(intel_dp);
4643 }
4644
4645 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4646 .dpms = drm_atomic_helper_connector_dpms,
4647 .detect = intel_dp_detect,
4648 .force = intel_dp_force,
4649 .fill_modes = drm_helper_probe_single_connector_modes,
4650 .set_property = intel_dp_set_property,
4651 .atomic_get_property = intel_connector_atomic_get_property,
4652 .late_register = intel_dp_connector_register,
4653 .early_unregister = intel_dp_connector_unregister,
4654 .destroy = intel_dp_connector_destroy,
4655 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4656 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4657 };
4658
4659 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4660 .get_modes = intel_dp_get_modes,
4661 .mode_valid = intel_dp_mode_valid,
4662 };
4663
4664 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4665 .reset = intel_dp_encoder_reset,
4666 .destroy = intel_dp_encoder_destroy,
4667 };
4668
4669 enum irqreturn
4670 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4671 {
4672 struct intel_dp *intel_dp = &intel_dig_port->dp;
4673 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4674 struct drm_device *dev = intel_dig_port->base.base.dev;
4675 struct drm_i915_private *dev_priv = to_i915(dev);
4676 enum intel_display_power_domain power_domain;
4677 enum irqreturn ret = IRQ_NONE;
4678
4679 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4680 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4681 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4682
4683 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4684 /*
4685 * vdd off can generate a long pulse on eDP which
4686 * would require vdd on to handle it, and thus we
4687 * would end up in an endless cycle of
4688 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4689 */
4690 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4691 port_name(intel_dig_port->port));
4692 return IRQ_HANDLED;
4693 }
4694
4695 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4696 port_name(intel_dig_port->port),
4697 long_hpd ? "long" : "short");
4698
4699 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4700 intel_display_power_get(dev_priv, power_domain);
4701
4702 if (long_hpd) {
4703 intel_dp_long_pulse(intel_dp->attached_connector);
4704 if (intel_dp->is_mst)
4705 ret = IRQ_HANDLED;
4706 goto put_power;
4707
4708 } else {
4709 if (intel_dp->is_mst) {
4710 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4711 /*
4712 * If we were in MST mode, and device is not
4713 * there, get out of MST mode
4714 */
4715 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4716 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4717 intel_dp->is_mst = false;
4718 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4719 intel_dp->is_mst);
4720 goto put_power;
4721 }
4722 }
4723
4724 if (!intel_dp->is_mst) {
4725 if (!intel_dp_short_pulse(intel_dp)) {
4726 intel_dp_long_pulse(intel_dp->attached_connector);
4727 goto put_power;
4728 }
4729 }
4730 }
4731
4732 ret = IRQ_HANDLED;
4733
4734 put_power:
4735 intel_display_power_put(dev_priv, power_domain);
4736
4737 return ret;
4738 }
4739
4740 /* check the VBT to see whether the eDP is on another port */
4741 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4742 {
4743 struct drm_i915_private *dev_priv = to_i915(dev);
4744
4745 /*
4746 * eDP not supported on g4x. so bail out early just
4747 * for a bit extra safety in case the VBT is bonkers.
4748 */
4749 if (INTEL_INFO(dev)->gen < 5)
4750 return false;
4751
4752 if (port == PORT_A)
4753 return true;
4754
4755 return intel_bios_is_port_edp(dev_priv, port);
4756 }
4757
4758 void
4759 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4760 {
4761 struct intel_connector *intel_connector = to_intel_connector(connector);
4762
4763 intel_attach_force_audio_property(connector);
4764 intel_attach_broadcast_rgb_property(connector);
4765 intel_dp->color_range_auto = true;
4766
4767 if (is_edp(intel_dp)) {
4768 drm_mode_create_scaling_mode_property(connector->dev);
4769 drm_object_attach_property(
4770 &connector->base,
4771 connector->dev->mode_config.scaling_mode_property,
4772 DRM_MODE_SCALE_ASPECT);
4773 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4774 }
4775 }
4776
4777 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4778 {
4779 intel_dp->panel_power_off_time = ktime_get_boottime();
4780 intel_dp->last_power_on = jiffies;
4781 intel_dp->last_backlight_off = jiffies;
4782 }
4783
4784 static void
4785 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4786 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4787 {
4788 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4789 struct pps_registers regs;
4790
4791 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4792
4793 /* Workaround: Need to write PP_CONTROL with the unlock key as
4794 * the very first thing. */
4795 pp_ctl = ironlake_get_pp_control(intel_dp);
4796
4797 pp_on = I915_READ(regs.pp_on);
4798 pp_off = I915_READ(regs.pp_off);
4799 if (!IS_BROXTON(dev_priv)) {
4800 I915_WRITE(regs.pp_ctrl, pp_ctl);
4801 pp_div = I915_READ(regs.pp_div);
4802 }
4803
4804 /* Pull timing values out of registers */
4805 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4806 PANEL_POWER_UP_DELAY_SHIFT;
4807
4808 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4809 PANEL_LIGHT_ON_DELAY_SHIFT;
4810
4811 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4812 PANEL_LIGHT_OFF_DELAY_SHIFT;
4813
4814 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4815 PANEL_POWER_DOWN_DELAY_SHIFT;
4816
4817 if (IS_BROXTON(dev_priv)) {
4818 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4819 BXT_POWER_CYCLE_DELAY_SHIFT;
4820 if (tmp > 0)
4821 seq->t11_t12 = (tmp - 1) * 1000;
4822 else
4823 seq->t11_t12 = 0;
4824 } else {
4825 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4826 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4827 }
4828 }
4829
4830 static void
4831 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4832 {
4833 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4834 state_name,
4835 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4836 }
4837
4838 static void
4839 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4840 struct intel_dp *intel_dp)
4841 {
4842 struct edp_power_seq hw;
4843 struct edp_power_seq *sw = &intel_dp->pps_delays;
4844
4845 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4846
4847 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4848 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4849 DRM_ERROR("PPS state mismatch\n");
4850 intel_pps_dump_state("sw", sw);
4851 intel_pps_dump_state("hw", &hw);
4852 }
4853 }
4854
4855 static void
4856 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4857 struct intel_dp *intel_dp)
4858 {
4859 struct drm_i915_private *dev_priv = to_i915(dev);
4860 struct edp_power_seq cur, vbt, spec,
4861 *final = &intel_dp->pps_delays;
4862
4863 lockdep_assert_held(&dev_priv->pps_mutex);
4864
4865 /* already initialized? */
4866 if (final->t11_t12 != 0)
4867 return;
4868
4869 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4870
4871 intel_pps_dump_state("cur", &cur);
4872
4873 vbt = dev_priv->vbt.edp.pps;
4874
4875 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4876 * our hw here, which are all in 100usec. */
4877 spec.t1_t3 = 210 * 10;
4878 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4879 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4880 spec.t10 = 500 * 10;
4881 /* This one is special and actually in units of 100ms, but zero
4882 * based in the hw (so we need to add 100 ms). But the sw vbt
4883 * table multiplies it with 1000 to make it in units of 100usec,
4884 * too. */
4885 spec.t11_t12 = (510 + 100) * 10;
4886
4887 intel_pps_dump_state("vbt", &vbt);
4888
4889 /* Use the max of the register settings and vbt. If both are
4890 * unset, fall back to the spec limits. */
4891 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4892 spec.field : \
4893 max(cur.field, vbt.field))
4894 assign_final(t1_t3);
4895 assign_final(t8);
4896 assign_final(t9);
4897 assign_final(t10);
4898 assign_final(t11_t12);
4899 #undef assign_final
4900
4901 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4902 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4903 intel_dp->backlight_on_delay = get_delay(t8);
4904 intel_dp->backlight_off_delay = get_delay(t9);
4905 intel_dp->panel_power_down_delay = get_delay(t10);
4906 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4907 #undef get_delay
4908
4909 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4910 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4911 intel_dp->panel_power_cycle_delay);
4912
4913 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4914 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4915
4916 /*
4917 * We override the HW backlight delays to 1 because we do manual waits
4918 * on them. For T8, even BSpec recommends doing it. For T9, if we
4919 * don't do this, we'll end up waiting for the backlight off delay
4920 * twice: once when we do the manual sleep, and once when we disable
4921 * the panel and wait for the PP_STATUS bit to become zero.
4922 */
4923 final->t8 = 1;
4924 final->t9 = 1;
4925 }
4926
4927 static void
4928 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4929 struct intel_dp *intel_dp)
4930 {
4931 struct drm_i915_private *dev_priv = to_i915(dev);
4932 u32 pp_on, pp_off, pp_div, port_sel = 0;
4933 int div = dev_priv->rawclk_freq / 1000;
4934 struct pps_registers regs;
4935 enum port port = dp_to_dig_port(intel_dp)->port;
4936 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4937
4938 lockdep_assert_held(&dev_priv->pps_mutex);
4939
4940 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4941
4942 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4943 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
4944 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4945 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4946 /* Compute the divisor for the pp clock, simply match the Bspec
4947 * formula. */
4948 if (IS_BROXTON(dev)) {
4949 pp_div = I915_READ(regs.pp_ctrl);
4950 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
4951 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
4952 << BXT_POWER_CYCLE_DELAY_SHIFT);
4953 } else {
4954 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4955 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4956 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4957 }
4958
4959 /* Haswell doesn't have any port selection bits for the panel
4960 * power sequencer any more. */
4961 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4962 port_sel = PANEL_PORT_SELECT_VLV(port);
4963 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4964 if (port == PORT_A)
4965 port_sel = PANEL_PORT_SELECT_DPA;
4966 else
4967 port_sel = PANEL_PORT_SELECT_DPD;
4968 }
4969
4970 pp_on |= port_sel;
4971
4972 I915_WRITE(regs.pp_on, pp_on);
4973 I915_WRITE(regs.pp_off, pp_off);
4974 if (IS_BROXTON(dev))
4975 I915_WRITE(regs.pp_ctrl, pp_div);
4976 else
4977 I915_WRITE(regs.pp_div, pp_div);
4978
4979 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4980 I915_READ(regs.pp_on),
4981 I915_READ(regs.pp_off),
4982 IS_BROXTON(dev) ?
4983 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
4984 I915_READ(regs.pp_div));
4985 }
4986
4987 /**
4988 * intel_dp_set_drrs_state - program registers for RR switch to take effect
4989 * @dev: DRM device
4990 * @refresh_rate: RR to be programmed
4991 *
4992 * This function gets called when refresh rate (RR) has to be changed from
4993 * one frequency to another. Switches can be between high and low RR
4994 * supported by the panel or to any other RR based on media playback (in
4995 * this case, RR value needs to be passed from user space).
4996 *
4997 * The caller of this function needs to take a lock on dev_priv->drrs.
4998 */
4999 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5000 {
5001 struct drm_i915_private *dev_priv = to_i915(dev);
5002 struct intel_encoder *encoder;
5003 struct intel_digital_port *dig_port = NULL;
5004 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5005 struct intel_crtc_state *config = NULL;
5006 struct intel_crtc *intel_crtc = NULL;
5007 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5008
5009 if (refresh_rate <= 0) {
5010 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5011 return;
5012 }
5013
5014 if (intel_dp == NULL) {
5015 DRM_DEBUG_KMS("DRRS not supported.\n");
5016 return;
5017 }
5018
5019 /*
5020 * FIXME: This needs proper synchronization with psr state for some
5021 * platforms that cannot have PSR and DRRS enabled at the same time.
5022 */
5023
5024 dig_port = dp_to_dig_port(intel_dp);
5025 encoder = &dig_port->base;
5026 intel_crtc = to_intel_crtc(encoder->base.crtc);
5027
5028 if (!intel_crtc) {
5029 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5030 return;
5031 }
5032
5033 config = intel_crtc->config;
5034
5035 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5036 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5037 return;
5038 }
5039
5040 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5041 refresh_rate)
5042 index = DRRS_LOW_RR;
5043
5044 if (index == dev_priv->drrs.refresh_rate_type) {
5045 DRM_DEBUG_KMS(
5046 "DRRS requested for previously set RR...ignoring\n");
5047 return;
5048 }
5049
5050 if (!intel_crtc->active) {
5051 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5052 return;
5053 }
5054
5055 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5056 switch (index) {
5057 case DRRS_HIGH_RR:
5058 intel_dp_set_m_n(intel_crtc, M1_N1);
5059 break;
5060 case DRRS_LOW_RR:
5061 intel_dp_set_m_n(intel_crtc, M2_N2);
5062 break;
5063 case DRRS_MAX_RR:
5064 default:
5065 DRM_ERROR("Unsupported refreshrate type\n");
5066 }
5067 } else if (INTEL_INFO(dev)->gen > 6) {
5068 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5069 u32 val;
5070
5071 val = I915_READ(reg);
5072 if (index > DRRS_HIGH_RR) {
5073 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5074 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5075 else
5076 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5077 } else {
5078 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5079 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5080 else
5081 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5082 }
5083 I915_WRITE(reg, val);
5084 }
5085
5086 dev_priv->drrs.refresh_rate_type = index;
5087
5088 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5089 }
5090
5091 /**
5092 * intel_edp_drrs_enable - init drrs struct if supported
5093 * @intel_dp: DP struct
5094 *
5095 * Initializes frontbuffer_bits and drrs.dp
5096 */
5097 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5098 {
5099 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5100 struct drm_i915_private *dev_priv = to_i915(dev);
5101 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5102 struct drm_crtc *crtc = dig_port->base.base.crtc;
5103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5104
5105 if (!intel_crtc->config->has_drrs) {
5106 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5107 return;
5108 }
5109
5110 mutex_lock(&dev_priv->drrs.mutex);
5111 if (WARN_ON(dev_priv->drrs.dp)) {
5112 DRM_ERROR("DRRS already enabled\n");
5113 goto unlock;
5114 }
5115
5116 dev_priv->drrs.busy_frontbuffer_bits = 0;
5117
5118 dev_priv->drrs.dp = intel_dp;
5119
5120 unlock:
5121 mutex_unlock(&dev_priv->drrs.mutex);
5122 }
5123
5124 /**
5125 * intel_edp_drrs_disable - Disable DRRS
5126 * @intel_dp: DP struct
5127 *
5128 */
5129 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5130 {
5131 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5132 struct drm_i915_private *dev_priv = to_i915(dev);
5133 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5134 struct drm_crtc *crtc = dig_port->base.base.crtc;
5135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5136
5137 if (!intel_crtc->config->has_drrs)
5138 return;
5139
5140 mutex_lock(&dev_priv->drrs.mutex);
5141 if (!dev_priv->drrs.dp) {
5142 mutex_unlock(&dev_priv->drrs.mutex);
5143 return;
5144 }
5145
5146 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5147 intel_dp_set_drrs_state(&dev_priv->drm,
5148 intel_dp->attached_connector->panel.
5149 fixed_mode->vrefresh);
5150
5151 dev_priv->drrs.dp = NULL;
5152 mutex_unlock(&dev_priv->drrs.mutex);
5153
5154 cancel_delayed_work_sync(&dev_priv->drrs.work);
5155 }
5156
5157 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5158 {
5159 struct drm_i915_private *dev_priv =
5160 container_of(work, typeof(*dev_priv), drrs.work.work);
5161 struct intel_dp *intel_dp;
5162
5163 mutex_lock(&dev_priv->drrs.mutex);
5164
5165 intel_dp = dev_priv->drrs.dp;
5166
5167 if (!intel_dp)
5168 goto unlock;
5169
5170 /*
5171 * The delayed work can race with an invalidate hence we need to
5172 * recheck.
5173 */
5174
5175 if (dev_priv->drrs.busy_frontbuffer_bits)
5176 goto unlock;
5177
5178 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5179 intel_dp_set_drrs_state(&dev_priv->drm,
5180 intel_dp->attached_connector->panel.
5181 downclock_mode->vrefresh);
5182
5183 unlock:
5184 mutex_unlock(&dev_priv->drrs.mutex);
5185 }
5186
5187 /**
5188 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5189 * @dev: DRM device
5190 * @frontbuffer_bits: frontbuffer plane tracking bits
5191 *
5192 * This function gets called everytime rendering on the given planes start.
5193 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5194 *
5195 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5196 */
5197 void intel_edp_drrs_invalidate(struct drm_device *dev,
5198 unsigned frontbuffer_bits)
5199 {
5200 struct drm_i915_private *dev_priv = to_i915(dev);
5201 struct drm_crtc *crtc;
5202 enum pipe pipe;
5203
5204 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5205 return;
5206
5207 cancel_delayed_work(&dev_priv->drrs.work);
5208
5209 mutex_lock(&dev_priv->drrs.mutex);
5210 if (!dev_priv->drrs.dp) {
5211 mutex_unlock(&dev_priv->drrs.mutex);
5212 return;
5213 }
5214
5215 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5216 pipe = to_intel_crtc(crtc)->pipe;
5217
5218 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5219 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5220
5221 /* invalidate means busy screen hence upclock */
5222 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5223 intel_dp_set_drrs_state(&dev_priv->drm,
5224 dev_priv->drrs.dp->attached_connector->panel.
5225 fixed_mode->vrefresh);
5226
5227 mutex_unlock(&dev_priv->drrs.mutex);
5228 }
5229
5230 /**
5231 * intel_edp_drrs_flush - Restart Idleness DRRS
5232 * @dev: DRM device
5233 * @frontbuffer_bits: frontbuffer plane tracking bits
5234 *
5235 * This function gets called every time rendering on the given planes has
5236 * completed or flip on a crtc is completed. So DRRS should be upclocked
5237 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5238 * if no other planes are dirty.
5239 *
5240 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5241 */
5242 void intel_edp_drrs_flush(struct drm_device *dev,
5243 unsigned frontbuffer_bits)
5244 {
5245 struct drm_i915_private *dev_priv = to_i915(dev);
5246 struct drm_crtc *crtc;
5247 enum pipe pipe;
5248
5249 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5250 return;
5251
5252 cancel_delayed_work(&dev_priv->drrs.work);
5253
5254 mutex_lock(&dev_priv->drrs.mutex);
5255 if (!dev_priv->drrs.dp) {
5256 mutex_unlock(&dev_priv->drrs.mutex);
5257 return;
5258 }
5259
5260 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5261 pipe = to_intel_crtc(crtc)->pipe;
5262
5263 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5264 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5265
5266 /* flush means busy screen hence upclock */
5267 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5268 intel_dp_set_drrs_state(&dev_priv->drm,
5269 dev_priv->drrs.dp->attached_connector->panel.
5270 fixed_mode->vrefresh);
5271
5272 /*
5273 * flush also means no more activity hence schedule downclock, if all
5274 * other fbs are quiescent too
5275 */
5276 if (!dev_priv->drrs.busy_frontbuffer_bits)
5277 schedule_delayed_work(&dev_priv->drrs.work,
5278 msecs_to_jiffies(1000));
5279 mutex_unlock(&dev_priv->drrs.mutex);
5280 }
5281
5282 /**
5283 * DOC: Display Refresh Rate Switching (DRRS)
5284 *
5285 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5286 * which enables swtching between low and high refresh rates,
5287 * dynamically, based on the usage scenario. This feature is applicable
5288 * for internal panels.
5289 *
5290 * Indication that the panel supports DRRS is given by the panel EDID, which
5291 * would list multiple refresh rates for one resolution.
5292 *
5293 * DRRS is of 2 types - static and seamless.
5294 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5295 * (may appear as a blink on screen) and is used in dock-undock scenario.
5296 * Seamless DRRS involves changing RR without any visual effect to the user
5297 * and can be used during normal system usage. This is done by programming
5298 * certain registers.
5299 *
5300 * Support for static/seamless DRRS may be indicated in the VBT based on
5301 * inputs from the panel spec.
5302 *
5303 * DRRS saves power by switching to low RR based on usage scenarios.
5304 *
5305 * The implementation is based on frontbuffer tracking implementation. When
5306 * there is a disturbance on the screen triggered by user activity or a periodic
5307 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5308 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5309 * made.
5310 *
5311 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5312 * and intel_edp_drrs_flush() are called.
5313 *
5314 * DRRS can be further extended to support other internal panels and also
5315 * the scenario of video playback wherein RR is set based on the rate
5316 * requested by userspace.
5317 */
5318
5319 /**
5320 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5321 * @intel_connector: eDP connector
5322 * @fixed_mode: preferred mode of panel
5323 *
5324 * This function is called only once at driver load to initialize basic
5325 * DRRS stuff.
5326 *
5327 * Returns:
5328 * Downclock mode if panel supports it, else return NULL.
5329 * DRRS support is determined by the presence of downclock mode (apart
5330 * from VBT setting).
5331 */
5332 static struct drm_display_mode *
5333 intel_dp_drrs_init(struct intel_connector *intel_connector,
5334 struct drm_display_mode *fixed_mode)
5335 {
5336 struct drm_connector *connector = &intel_connector->base;
5337 struct drm_device *dev = connector->dev;
5338 struct drm_i915_private *dev_priv = to_i915(dev);
5339 struct drm_display_mode *downclock_mode = NULL;
5340
5341 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5342 mutex_init(&dev_priv->drrs.mutex);
5343
5344 if (INTEL_INFO(dev)->gen <= 6) {
5345 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5346 return NULL;
5347 }
5348
5349 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5350 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5351 return NULL;
5352 }
5353
5354 downclock_mode = intel_find_panel_downclock
5355 (dev, fixed_mode, connector);
5356
5357 if (!downclock_mode) {
5358 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5359 return NULL;
5360 }
5361
5362 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5363
5364 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5365 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5366 return downclock_mode;
5367 }
5368
5369 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5370 struct intel_connector *intel_connector)
5371 {
5372 struct drm_connector *connector = &intel_connector->base;
5373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5374 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5375 struct drm_device *dev = intel_encoder->base.dev;
5376 struct drm_i915_private *dev_priv = to_i915(dev);
5377 struct drm_display_mode *fixed_mode = NULL;
5378 struct drm_display_mode *downclock_mode = NULL;
5379 bool has_dpcd;
5380 struct drm_display_mode *scan;
5381 struct edid *edid;
5382 enum pipe pipe = INVALID_PIPE;
5383
5384 if (!is_edp(intel_dp))
5385 return true;
5386
5387 /*
5388 * On IBX/CPT we may get here with LVDS already registered. Since the
5389 * driver uses the only internal power sequencer available for both
5390 * eDP and LVDS bail out early in this case to prevent interfering
5391 * with an already powered-on LVDS power sequencer.
5392 */
5393 if (intel_get_lvds_encoder(dev)) {
5394 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5395 DRM_INFO("LVDS was detected, not registering eDP\n");
5396
5397 return false;
5398 }
5399
5400 pps_lock(intel_dp);
5401
5402 intel_dp_init_panel_power_timestamps(intel_dp);
5403
5404 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5405 vlv_initial_power_sequencer_setup(intel_dp);
5406 } else {
5407 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5408 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5409 }
5410
5411 intel_edp_panel_vdd_sanitize(intel_dp);
5412
5413 pps_unlock(intel_dp);
5414
5415 /* Cache DPCD and EDID for edp. */
5416 has_dpcd = intel_dp_get_dpcd(intel_dp);
5417
5418 if (has_dpcd) {
5419 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5420 dev_priv->no_aux_handshake =
5421 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5422 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5423 } else {
5424 /* if this fails, presume the device is a ghost */
5425 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5426 goto out_vdd_off;
5427 }
5428
5429 mutex_lock(&dev->mode_config.mutex);
5430 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5431 if (edid) {
5432 if (drm_add_edid_modes(connector, edid)) {
5433 drm_mode_connector_update_edid_property(connector,
5434 edid);
5435 drm_edid_to_eld(connector, edid);
5436 } else {
5437 kfree(edid);
5438 edid = ERR_PTR(-EINVAL);
5439 }
5440 } else {
5441 edid = ERR_PTR(-ENOENT);
5442 }
5443 intel_connector->edid = edid;
5444
5445 /* prefer fixed mode from EDID if available */
5446 list_for_each_entry(scan, &connector->probed_modes, head) {
5447 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5448 fixed_mode = drm_mode_duplicate(dev, scan);
5449 downclock_mode = intel_dp_drrs_init(
5450 intel_connector, fixed_mode);
5451 break;
5452 }
5453 }
5454
5455 /* fallback to VBT if available for eDP */
5456 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5457 fixed_mode = drm_mode_duplicate(dev,
5458 dev_priv->vbt.lfp_lvds_vbt_mode);
5459 if (fixed_mode) {
5460 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5461 connector->display_info.width_mm = fixed_mode->width_mm;
5462 connector->display_info.height_mm = fixed_mode->height_mm;
5463 }
5464 }
5465 mutex_unlock(&dev->mode_config.mutex);
5466
5467 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5468 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5469 register_reboot_notifier(&intel_dp->edp_notifier);
5470
5471 /*
5472 * Figure out the current pipe for the initial backlight setup.
5473 * If the current pipe isn't valid, try the PPS pipe, and if that
5474 * fails just assume pipe A.
5475 */
5476 if (IS_CHERRYVIEW(dev))
5477 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5478 else
5479 pipe = PORT_TO_PIPE(intel_dp->DP);
5480
5481 if (pipe != PIPE_A && pipe != PIPE_B)
5482 pipe = intel_dp->pps_pipe;
5483
5484 if (pipe != PIPE_A && pipe != PIPE_B)
5485 pipe = PIPE_A;
5486
5487 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5488 pipe_name(pipe));
5489 }
5490
5491 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5492 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5493 intel_panel_setup_backlight(connector, pipe);
5494
5495 return true;
5496
5497 out_vdd_off:
5498 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5499 /*
5500 * vdd might still be enabled do to the delayed vdd off.
5501 * Make sure vdd is actually turned off here.
5502 */
5503 pps_lock(intel_dp);
5504 edp_panel_vdd_off_sync(intel_dp);
5505 pps_unlock(intel_dp);
5506
5507 return false;
5508 }
5509
5510 bool
5511 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5512 struct intel_connector *intel_connector)
5513 {
5514 struct drm_connector *connector = &intel_connector->base;
5515 struct intel_dp *intel_dp = &intel_dig_port->dp;
5516 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5517 struct drm_device *dev = intel_encoder->base.dev;
5518 struct drm_i915_private *dev_priv = to_i915(dev);
5519 enum port port = intel_dig_port->port;
5520 int type;
5521
5522 if (WARN(intel_dig_port->max_lanes < 1,
5523 "Not enough lanes (%d) for DP on port %c\n",
5524 intel_dig_port->max_lanes, port_name(port)))
5525 return false;
5526
5527 intel_dp->pps_pipe = INVALID_PIPE;
5528
5529 /* intel_dp vfuncs */
5530 if (INTEL_INFO(dev)->gen >= 9)
5531 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5532 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5533 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5534 else if (HAS_PCH_SPLIT(dev))
5535 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5536 else
5537 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5538
5539 if (INTEL_INFO(dev)->gen >= 9)
5540 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5541 else
5542 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5543
5544 if (HAS_DDI(dev))
5545 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5546
5547 /* Preserve the current hw state. */
5548 intel_dp->DP = I915_READ(intel_dp->output_reg);
5549 intel_dp->attached_connector = intel_connector;
5550
5551 if (intel_dp_is_edp(dev, port))
5552 type = DRM_MODE_CONNECTOR_eDP;
5553 else
5554 type = DRM_MODE_CONNECTOR_DisplayPort;
5555
5556 /*
5557 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5558 * for DP the encoder type can be set by the caller to
5559 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5560 */
5561 if (type == DRM_MODE_CONNECTOR_eDP)
5562 intel_encoder->type = INTEL_OUTPUT_EDP;
5563
5564 /* eDP only on port B and/or C on vlv/chv */
5565 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5566 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5567 return false;
5568
5569 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5570 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5571 port_name(port));
5572
5573 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5574 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5575
5576 connector->interlace_allowed = true;
5577 connector->doublescan_allowed = 0;
5578
5579 intel_dp_aux_init(intel_dp, intel_connector);
5580
5581 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5582 edp_panel_vdd_work);
5583
5584 intel_connector_attach_encoder(intel_connector, intel_encoder);
5585
5586 if (HAS_DDI(dev))
5587 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5588 else
5589 intel_connector->get_hw_state = intel_connector_get_hw_state;
5590
5591 /* Set up the hotplug pin. */
5592 switch (port) {
5593 case PORT_A:
5594 intel_encoder->hpd_pin = HPD_PORT_A;
5595 break;
5596 case PORT_B:
5597 intel_encoder->hpd_pin = HPD_PORT_B;
5598 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5599 intel_encoder->hpd_pin = HPD_PORT_A;
5600 break;
5601 case PORT_C:
5602 intel_encoder->hpd_pin = HPD_PORT_C;
5603 break;
5604 case PORT_D:
5605 intel_encoder->hpd_pin = HPD_PORT_D;
5606 break;
5607 case PORT_E:
5608 intel_encoder->hpd_pin = HPD_PORT_E;
5609 break;
5610 default:
5611 BUG();
5612 }
5613
5614 /* init MST on ports that can support it */
5615 if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5616 (port == PORT_B || port == PORT_C || port == PORT_D))
5617 intel_dp_mst_encoder_init(intel_dig_port,
5618 intel_connector->base.base.id);
5619
5620 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5621 intel_dp_aux_fini(intel_dp);
5622 intel_dp_mst_encoder_cleanup(intel_dig_port);
5623 goto fail;
5624 }
5625
5626 intel_dp_add_properties(intel_dp, connector);
5627
5628 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5629 * 0xd. Failure to do so will result in spurious interrupts being
5630 * generated on the port when a cable is not attached.
5631 */
5632 if (IS_G4X(dev) && !IS_GM45(dev)) {
5633 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5634 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5635 }
5636
5637 return true;
5638
5639 fail:
5640 drm_connector_cleanup(connector);
5641
5642 return false;
5643 }
5644
5645 bool intel_dp_init(struct drm_device *dev,
5646 i915_reg_t output_reg,
5647 enum port port)
5648 {
5649 struct drm_i915_private *dev_priv = to_i915(dev);
5650 struct intel_digital_port *intel_dig_port;
5651 struct intel_encoder *intel_encoder;
5652 struct drm_encoder *encoder;
5653 struct intel_connector *intel_connector;
5654
5655 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5656 if (!intel_dig_port)
5657 return false;
5658
5659 intel_connector = intel_connector_alloc();
5660 if (!intel_connector)
5661 goto err_connector_alloc;
5662
5663 intel_encoder = &intel_dig_port->base;
5664 encoder = &intel_encoder->base;
5665
5666 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5667 DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5668 goto err_encoder_init;
5669
5670 intel_encoder->compute_config = intel_dp_compute_config;
5671 intel_encoder->disable = intel_disable_dp;
5672 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5673 intel_encoder->get_config = intel_dp_get_config;
5674 intel_encoder->suspend = intel_dp_encoder_suspend;
5675 if (IS_CHERRYVIEW(dev)) {
5676 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5677 intel_encoder->pre_enable = chv_pre_enable_dp;
5678 intel_encoder->enable = vlv_enable_dp;
5679 intel_encoder->post_disable = chv_post_disable_dp;
5680 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5681 } else if (IS_VALLEYVIEW(dev)) {
5682 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5683 intel_encoder->pre_enable = vlv_pre_enable_dp;
5684 intel_encoder->enable = vlv_enable_dp;
5685 intel_encoder->post_disable = vlv_post_disable_dp;
5686 } else {
5687 intel_encoder->pre_enable = g4x_pre_enable_dp;
5688 intel_encoder->enable = g4x_enable_dp;
5689 if (INTEL_INFO(dev)->gen >= 5)
5690 intel_encoder->post_disable = ilk_post_disable_dp;
5691 }
5692
5693 intel_dig_port->port = port;
5694 intel_dig_port->dp.output_reg = output_reg;
5695 intel_dig_port->max_lanes = 4;
5696
5697 intel_encoder->type = INTEL_OUTPUT_DP;
5698 if (IS_CHERRYVIEW(dev)) {
5699 if (port == PORT_D)
5700 intel_encoder->crtc_mask = 1 << 2;
5701 else
5702 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5703 } else {
5704 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5705 }
5706 intel_encoder->cloneable = 0;
5707
5708 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5709 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5710
5711 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5712 goto err_init_connector;
5713
5714 return true;
5715
5716 err_init_connector:
5717 drm_encoder_cleanup(encoder);
5718 err_encoder_init:
5719 kfree(intel_connector);
5720 err_connector_alloc:
5721 kfree(intel_dig_port);
5722 return false;
5723 }
5724
5725 void intel_dp_mst_suspend(struct drm_device *dev)
5726 {
5727 struct drm_i915_private *dev_priv = to_i915(dev);
5728 int i;
5729
5730 /* disable MST */
5731 for (i = 0; i < I915_MAX_PORTS; i++) {
5732 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5733
5734 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5735 continue;
5736
5737 if (intel_dig_port->dp.is_mst)
5738 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5739 }
5740 }
5741
5742 void intel_dp_mst_resume(struct drm_device *dev)
5743 {
5744 struct drm_i915_private *dev_priv = to_i915(dev);
5745 int i;
5746
5747 for (i = 0; i < I915_MAX_PORTS; i++) {
5748 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5749 int ret;
5750
5751 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5752 continue;
5753
5754 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5755 if (ret)
5756 intel_dp_check_mst_status(&intel_dig_port->dp);
5757 }
5758 }
This page took 0.288581 seconds and 5 git commands to generate.