drm/vc4: Add support for YUV planes.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135 return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp *intel_dp)
140 {
141 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143 switch (max_link_bw) {
144 case DP_LINK_BW_1_62:
145 case DP_LINK_BW_2_7:
146 case DP_LINK_BW_5_4:
147 break;
148 default:
149 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150 max_link_bw);
151 max_link_bw = DP_LINK_BW_1_62;
152 break;
153 }
154 return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160 u8 source_max, sink_max;
161
162 source_max = intel_dig_port->max_lanes;
163 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
164
165 return min(source_max, sink_max);
166 }
167
168 /*
169 * The units on the numbers in the next two are... bizarre. Examples will
170 * make it clearer; this one parallels an example in the eDP spec.
171 *
172 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
173 *
174 * 270000 * 1 * 8 / 10 == 216000
175 *
176 * The actual data capacity of that configuration is 2.16Gbit/s, so the
177 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
178 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
179 * 119000. At 18bpp that's 2142000 kilobits per second.
180 *
181 * Thus the strange-looking division by 10 in intel_dp_link_required, to
182 * get the result in decakilobits instead of kilobits.
183 */
184
185 static int
186 intel_dp_link_required(int pixel_clock, int bpp)
187 {
188 return (pixel_clock * bpp + 9) / 10;
189 }
190
191 static int
192 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
193 {
194 return (max_link_clock * max_lanes * 8) / 10;
195 }
196
197 static enum drm_mode_status
198 intel_dp_mode_valid(struct drm_connector *connector,
199 struct drm_display_mode *mode)
200 {
201 struct intel_dp *intel_dp = intel_attached_dp(connector);
202 struct intel_connector *intel_connector = to_intel_connector(connector);
203 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
204 int target_clock = mode->clock;
205 int max_rate, mode_rate, max_lanes, max_link_clock;
206
207 if (is_edp(intel_dp) && fixed_mode) {
208 if (mode->hdisplay > fixed_mode->hdisplay)
209 return MODE_PANEL;
210
211 if (mode->vdisplay > fixed_mode->vdisplay)
212 return MODE_PANEL;
213
214 target_clock = fixed_mode->clock;
215 }
216
217 max_link_clock = intel_dp_max_link_rate(intel_dp);
218 max_lanes = intel_dp_max_lane_count(intel_dp);
219
220 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
221 mode_rate = intel_dp_link_required(target_clock, 18);
222
223 if (mode_rate > max_rate)
224 return MODE_CLOCK_HIGH;
225
226 if (mode->clock < 10000)
227 return MODE_CLOCK_LOW;
228
229 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
230 return MODE_H_ILLEGAL;
231
232 return MODE_OK;
233 }
234
235 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
236 {
237 int i;
238 uint32_t v = 0;
239
240 if (src_bytes > 4)
241 src_bytes = 4;
242 for (i = 0; i < src_bytes; i++)
243 v |= ((uint32_t) src[i]) << ((3-i) * 8);
244 return v;
245 }
246
247 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
248 {
249 int i;
250 if (dst_bytes > 4)
251 dst_bytes = 4;
252 for (i = 0; i < dst_bytes; i++)
253 dst[i] = src >> ((3-i) * 8);
254 }
255
256 static void
257 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
258 struct intel_dp *intel_dp);
259 static void
260 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
261 struct intel_dp *intel_dp);
262
263 static void pps_lock(struct intel_dp *intel_dp)
264 {
265 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
266 struct intel_encoder *encoder = &intel_dig_port->base;
267 struct drm_device *dev = encoder->base.dev;
268 struct drm_i915_private *dev_priv = dev->dev_private;
269 enum intel_display_power_domain power_domain;
270
271 /*
272 * See vlv_power_sequencer_reset() why we need
273 * a power domain reference here.
274 */
275 power_domain = intel_display_port_aux_power_domain(encoder);
276 intel_display_power_get(dev_priv, power_domain);
277
278 mutex_lock(&dev_priv->pps_mutex);
279 }
280
281 static void pps_unlock(struct intel_dp *intel_dp)
282 {
283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
284 struct intel_encoder *encoder = &intel_dig_port->base;
285 struct drm_device *dev = encoder->base.dev;
286 struct drm_i915_private *dev_priv = dev->dev_private;
287 enum intel_display_power_domain power_domain;
288
289 mutex_unlock(&dev_priv->pps_mutex);
290
291 power_domain = intel_display_port_aux_power_domain(encoder);
292 intel_display_power_put(dev_priv, power_domain);
293 }
294
295 static void
296 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
297 {
298 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
299 struct drm_device *dev = intel_dig_port->base.base.dev;
300 struct drm_i915_private *dev_priv = dev->dev_private;
301 enum pipe pipe = intel_dp->pps_pipe;
302 bool pll_enabled, release_cl_override = false;
303 enum dpio_phy phy = DPIO_PHY(pipe);
304 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
305 uint32_t DP;
306
307 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
308 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
309 pipe_name(pipe), port_name(intel_dig_port->port)))
310 return;
311
312 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
313 pipe_name(pipe), port_name(intel_dig_port->port));
314
315 /* Preserve the BIOS-computed detected bit. This is
316 * supposed to be read-only.
317 */
318 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
319 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
320 DP |= DP_PORT_WIDTH(1);
321 DP |= DP_LINK_TRAIN_PAT_1;
322
323 if (IS_CHERRYVIEW(dev))
324 DP |= DP_PIPE_SELECT_CHV(pipe);
325 else if (pipe == PIPE_B)
326 DP |= DP_PIPEB_SELECT;
327
328 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
329
330 /*
331 * The DPLL for the pipe must be enabled for this to work.
332 * So enable temporarily it if it's not already enabled.
333 */
334 if (!pll_enabled) {
335 release_cl_override = IS_CHERRYVIEW(dev) &&
336 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
337
338 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
339 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
340 DRM_ERROR("Failed to force on pll for pipe %c!\n",
341 pipe_name(pipe));
342 return;
343 }
344 }
345
346 /*
347 * Similar magic as in intel_dp_enable_port().
348 * We _must_ do this port enable + disable trick
349 * to make this power seqeuencer lock onto the port.
350 * Otherwise even VDD force bit won't work.
351 */
352 I915_WRITE(intel_dp->output_reg, DP);
353 POSTING_READ(intel_dp->output_reg);
354
355 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
356 POSTING_READ(intel_dp->output_reg);
357
358 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
359 POSTING_READ(intel_dp->output_reg);
360
361 if (!pll_enabled) {
362 vlv_force_pll_off(dev, pipe);
363
364 if (release_cl_override)
365 chv_phy_powergate_ch(dev_priv, phy, ch, false);
366 }
367 }
368
369 static enum pipe
370 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
371 {
372 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
373 struct drm_device *dev = intel_dig_port->base.base.dev;
374 struct drm_i915_private *dev_priv = dev->dev_private;
375 struct intel_encoder *encoder;
376 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
377 enum pipe pipe;
378
379 lockdep_assert_held(&dev_priv->pps_mutex);
380
381 /* We should never land here with regular DP ports */
382 WARN_ON(!is_edp(intel_dp));
383
384 if (intel_dp->pps_pipe != INVALID_PIPE)
385 return intel_dp->pps_pipe;
386
387 /*
388 * We don't have power sequencer currently.
389 * Pick one that's not used by other ports.
390 */
391 for_each_intel_encoder(dev, encoder) {
392 struct intel_dp *tmp;
393
394 if (encoder->type != INTEL_OUTPUT_EDP)
395 continue;
396
397 tmp = enc_to_intel_dp(&encoder->base);
398
399 if (tmp->pps_pipe != INVALID_PIPE)
400 pipes &= ~(1 << tmp->pps_pipe);
401 }
402
403 /*
404 * Didn't find one. This should not happen since there
405 * are two power sequencers and up to two eDP ports.
406 */
407 if (WARN_ON(pipes == 0))
408 pipe = PIPE_A;
409 else
410 pipe = ffs(pipes) - 1;
411
412 vlv_steal_power_sequencer(dev, pipe);
413 intel_dp->pps_pipe = pipe;
414
415 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
416 pipe_name(intel_dp->pps_pipe),
417 port_name(intel_dig_port->port));
418
419 /* init power sequencer on this pipe and port */
420 intel_dp_init_panel_power_sequencer(dev, intel_dp);
421 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
422
423 /*
424 * Even vdd force doesn't work until we've made
425 * the power sequencer lock in on the port.
426 */
427 vlv_power_sequencer_kick(intel_dp);
428
429 return intel_dp->pps_pipe;
430 }
431
432 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
433 enum pipe pipe);
434
435 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
436 enum pipe pipe)
437 {
438 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
439 }
440
441 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
442 enum pipe pipe)
443 {
444 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
445 }
446
447 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
448 enum pipe pipe)
449 {
450 return true;
451 }
452
453 static enum pipe
454 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
455 enum port port,
456 vlv_pipe_check pipe_check)
457 {
458 enum pipe pipe;
459
460 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
461 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
462 PANEL_PORT_SELECT_MASK;
463
464 if (port_sel != PANEL_PORT_SELECT_VLV(port))
465 continue;
466
467 if (!pipe_check(dev_priv, pipe))
468 continue;
469
470 return pipe;
471 }
472
473 return INVALID_PIPE;
474 }
475
476 static void
477 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
478 {
479 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
480 struct drm_device *dev = intel_dig_port->base.base.dev;
481 struct drm_i915_private *dev_priv = dev->dev_private;
482 enum port port = intel_dig_port->port;
483
484 lockdep_assert_held(&dev_priv->pps_mutex);
485
486 /* try to find a pipe with this port selected */
487 /* first pick one where the panel is on */
488 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
489 vlv_pipe_has_pp_on);
490 /* didn't find one? pick one where vdd is on */
491 if (intel_dp->pps_pipe == INVALID_PIPE)
492 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
493 vlv_pipe_has_vdd_on);
494 /* didn't find one? pick one with just the correct port */
495 if (intel_dp->pps_pipe == INVALID_PIPE)
496 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
497 vlv_pipe_any);
498
499 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
500 if (intel_dp->pps_pipe == INVALID_PIPE) {
501 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
502 port_name(port));
503 return;
504 }
505
506 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
507 port_name(port), pipe_name(intel_dp->pps_pipe));
508
509 intel_dp_init_panel_power_sequencer(dev, intel_dp);
510 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
511 }
512
513 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
514 {
515 struct drm_device *dev = dev_priv->dev;
516 struct intel_encoder *encoder;
517
518 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
519 return;
520
521 /*
522 * We can't grab pps_mutex here due to deadlock with power_domain
523 * mutex when power_domain functions are called while holding pps_mutex.
524 * That also means that in order to use pps_pipe the code needs to
525 * hold both a power domain reference and pps_mutex, and the power domain
526 * reference get/put must be done while _not_ holding pps_mutex.
527 * pps_{lock,unlock}() do these steps in the correct order, so one
528 * should use them always.
529 */
530
531 for_each_intel_encoder(dev, encoder) {
532 struct intel_dp *intel_dp;
533
534 if (encoder->type != INTEL_OUTPUT_EDP)
535 continue;
536
537 intel_dp = enc_to_intel_dp(&encoder->base);
538 intel_dp->pps_pipe = INVALID_PIPE;
539 }
540 }
541
542 static i915_reg_t
543 _pp_ctrl_reg(struct intel_dp *intel_dp)
544 {
545 struct drm_device *dev = intel_dp_to_dev(intel_dp);
546
547 if (IS_BROXTON(dev))
548 return BXT_PP_CONTROL(0);
549 else if (HAS_PCH_SPLIT(dev))
550 return PCH_PP_CONTROL;
551 else
552 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
553 }
554
555 static i915_reg_t
556 _pp_stat_reg(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559
560 if (IS_BROXTON(dev))
561 return BXT_PP_STATUS(0);
562 else if (HAS_PCH_SPLIT(dev))
563 return PCH_PP_STATUS;
564 else
565 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
569 This function only applicable when panel PM state is not to be tracked */
570 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
571 void *unused)
572 {
573 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
574 edp_notifier);
575 struct drm_device *dev = intel_dp_to_dev(intel_dp);
576 struct drm_i915_private *dev_priv = dev->dev_private;
577
578 if (!is_edp(intel_dp) || code != SYS_RESTART)
579 return 0;
580
581 pps_lock(intel_dp);
582
583 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
584 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
585 i915_reg_t pp_ctrl_reg, pp_div_reg;
586 u32 pp_div;
587
588 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
589 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
590 pp_div = I915_READ(pp_div_reg);
591 pp_div &= PP_REFERENCE_DIVIDER_MASK;
592
593 /* 0x1F write to PP_DIV_REG sets max cycle delay */
594 I915_WRITE(pp_div_reg, pp_div | 0x1F);
595 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
596 msleep(intel_dp->panel_power_cycle_delay);
597 }
598
599 pps_unlock(intel_dp);
600
601 return 0;
602 }
603
604 static bool edp_have_panel_power(struct intel_dp *intel_dp)
605 {
606 struct drm_device *dev = intel_dp_to_dev(intel_dp);
607 struct drm_i915_private *dev_priv = dev->dev_private;
608
609 lockdep_assert_held(&dev_priv->pps_mutex);
610
611 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
612 intel_dp->pps_pipe == INVALID_PIPE)
613 return false;
614
615 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616 }
617
618 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619 {
620 struct drm_device *dev = intel_dp_to_dev(intel_dp);
621 struct drm_i915_private *dev_priv = dev->dev_private;
622
623 lockdep_assert_held(&dev_priv->pps_mutex);
624
625 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
626 intel_dp->pps_pipe == INVALID_PIPE)
627 return false;
628
629 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630 }
631
632 static void
633 intel_dp_check_edp(struct intel_dp *intel_dp)
634 {
635 struct drm_device *dev = intel_dp_to_dev(intel_dp);
636 struct drm_i915_private *dev_priv = dev->dev_private;
637
638 if (!is_edp(intel_dp))
639 return;
640
641 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642 WARN(1, "eDP powered off while attempting aux channel communication.\n");
643 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644 I915_READ(_pp_stat_reg(intel_dp)),
645 I915_READ(_pp_ctrl_reg(intel_dp)));
646 }
647 }
648
649 static uint32_t
650 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
651 {
652 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
653 struct drm_device *dev = intel_dig_port->base.base.dev;
654 struct drm_i915_private *dev_priv = dev->dev_private;
655 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656 uint32_t status;
657 bool done;
658
659 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660 if (has_aux_irq)
661 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662 msecs_to_jiffies_timeout(10));
663 else
664 done = wait_for_atomic(C, 10) == 0;
665 if (!done)
666 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
667 has_aux_irq);
668 #undef C
669
670 return status;
671 }
672
673 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674 {
675 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
676 struct drm_device *dev = intel_dig_port->base.base.dev;
677
678 /*
679 * The clock divider is based off the hrawclk, and would like to run at
680 * 2MHz. So, take the hrawclk value and divide by 2 and use that
681 */
682 return index ? 0 : DIV_ROUND_CLOSEST(intel_hrawclk(dev), 2);
683 }
684
685 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688 struct drm_device *dev = intel_dig_port->base.base.dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690
691 if (index)
692 return 0;
693
694 if (intel_dig_port->port == PORT_A) {
695 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
696
697 } else {
698 return DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
699 }
700 }
701
702 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
703 {
704 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705 struct drm_device *dev = intel_dig_port->base.base.dev;
706 struct drm_i915_private *dev_priv = dev->dev_private;
707
708 if (intel_dig_port->port == PORT_A) {
709 if (index)
710 return 0;
711 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712 } else if (HAS_PCH_LPT_H(dev_priv)) {
713 /* Workaround for non-ULT HSW */
714 switch (index) {
715 case 0: return 63;
716 case 1: return 72;
717 default: return 0;
718 }
719 } else {
720 return index ? 0 : DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
721 }
722 }
723
724 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726 return index ? 0 : 100;
727 }
728
729 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
730 {
731 /*
732 * SKL doesn't need us to program the AUX clock divider (Hardware will
733 * derive the clock from CDCLK automatically). We still implement the
734 * get_aux_clock_divider vfunc to plug-in into the existing code.
735 */
736 return index ? 0 : 1;
737 }
738
739 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
740 bool has_aux_irq,
741 int send_bytes,
742 uint32_t aux_clock_divider)
743 {
744 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
745 struct drm_device *dev = intel_dig_port->base.base.dev;
746 uint32_t precharge, timeout;
747
748 if (IS_GEN6(dev))
749 precharge = 3;
750 else
751 precharge = 5;
752
753 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
754 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
755 else
756 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
757
758 return DP_AUX_CH_CTL_SEND_BUSY |
759 DP_AUX_CH_CTL_DONE |
760 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761 DP_AUX_CH_CTL_TIME_OUT_ERROR |
762 timeout |
763 DP_AUX_CH_CTL_RECEIVE_ERROR |
764 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
765 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767 }
768
769 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
770 bool has_aux_irq,
771 int send_bytes,
772 uint32_t unused)
773 {
774 return DP_AUX_CH_CTL_SEND_BUSY |
775 DP_AUX_CH_CTL_DONE |
776 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
777 DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_TIME_OUT_1600us |
779 DP_AUX_CH_CTL_RECEIVE_ERROR |
780 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
781 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
782 }
783
784 static int
785 intel_dp_aux_ch(struct intel_dp *intel_dp,
786 const uint8_t *send, int send_bytes,
787 uint8_t *recv, int recv_size)
788 {
789 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
790 struct drm_device *dev = intel_dig_port->base.base.dev;
791 struct drm_i915_private *dev_priv = dev->dev_private;
792 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793 uint32_t aux_clock_divider;
794 int i, ret, recv_bytes;
795 uint32_t status;
796 int try, clock = 0;
797 bool has_aux_irq = HAS_AUX_IRQ(dev);
798 bool vdd;
799
800 pps_lock(intel_dp);
801
802 /*
803 * We will be called with VDD already enabled for dpcd/edid/oui reads.
804 * In such cases we want to leave VDD enabled and it's up to upper layers
805 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
806 * ourselves.
807 */
808 vdd = edp_panel_vdd_on(intel_dp);
809
810 /* dp aux is extremely sensitive to irq latency, hence request the
811 * lowest possible wakeup latency and so prevent the cpu from going into
812 * deep sleep states.
813 */
814 pm_qos_update_request(&dev_priv->pm_qos, 0);
815
816 intel_dp_check_edp(intel_dp);
817
818 /* Try to wait for any previous AUX channel activity */
819 for (try = 0; try < 3; try++) {
820 status = I915_READ_NOTRACE(ch_ctl);
821 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
822 break;
823 msleep(1);
824 }
825
826 if (try == 3) {
827 static u32 last_status = -1;
828 const u32 status = I915_READ(ch_ctl);
829
830 if (status != last_status) {
831 WARN(1, "dp_aux_ch not started status 0x%08x\n",
832 status);
833 last_status = status;
834 }
835
836 ret = -EBUSY;
837 goto out;
838 }
839
840 /* Only 5 data registers! */
841 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
842 ret = -E2BIG;
843 goto out;
844 }
845
846 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
847 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
848 has_aux_irq,
849 send_bytes,
850 aux_clock_divider);
851
852 /* Must try at least 3 times according to DP spec */
853 for (try = 0; try < 5; try++) {
854 /* Load the send data into the aux channel data registers */
855 for (i = 0; i < send_bytes; i += 4)
856 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
857 intel_dp_pack_aux(send + i,
858 send_bytes - i));
859
860 /* Send the command and wait for it to complete */
861 I915_WRITE(ch_ctl, send_ctl);
862
863 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
864
865 /* Clear done status and any errors */
866 I915_WRITE(ch_ctl,
867 status |
868 DP_AUX_CH_CTL_DONE |
869 DP_AUX_CH_CTL_TIME_OUT_ERROR |
870 DP_AUX_CH_CTL_RECEIVE_ERROR);
871
872 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
873 continue;
874
875 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
876 * 400us delay required for errors and timeouts
877 * Timeout errors from the HW already meet this
878 * requirement so skip to next iteration
879 */
880 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
881 usleep_range(400, 500);
882 continue;
883 }
884 if (status & DP_AUX_CH_CTL_DONE)
885 goto done;
886 }
887 }
888
889 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
890 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
891 ret = -EBUSY;
892 goto out;
893 }
894
895 done:
896 /* Check for timeout or receive error.
897 * Timeouts occur when the sink is not connected
898 */
899 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
900 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
901 ret = -EIO;
902 goto out;
903 }
904
905 /* Timeouts occur when the device isn't connected, so they're
906 * "normal" -- don't fill the kernel log with these */
907 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
908 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
909 ret = -ETIMEDOUT;
910 goto out;
911 }
912
913 /* Unload any bytes sent back from the other side */
914 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
915 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
916
917 /*
918 * By BSpec: "Message sizes of 0 or >20 are not allowed."
919 * We have no idea of what happened so we return -EBUSY so
920 * drm layer takes care for the necessary retries.
921 */
922 if (recv_bytes == 0 || recv_bytes > 20) {
923 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
924 recv_bytes);
925 /*
926 * FIXME: This patch was created on top of a series that
927 * organize the retries at drm level. There EBUSY should
928 * also take care for 1ms wait before retrying.
929 * That aux retries re-org is still needed and after that is
930 * merged we remove this sleep from here.
931 */
932 usleep_range(1000, 1500);
933 ret = -EBUSY;
934 goto out;
935 }
936
937 if (recv_bytes > recv_size)
938 recv_bytes = recv_size;
939
940 for (i = 0; i < recv_bytes; i += 4)
941 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
942 recv + i, recv_bytes - i);
943
944 ret = recv_bytes;
945 out:
946 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
947
948 if (vdd)
949 edp_panel_vdd_off(intel_dp, false);
950
951 pps_unlock(intel_dp);
952
953 return ret;
954 }
955
956 #define BARE_ADDRESS_SIZE 3
957 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
958 static ssize_t
959 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
960 {
961 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
962 uint8_t txbuf[20], rxbuf[20];
963 size_t txsize, rxsize;
964 int ret;
965
966 txbuf[0] = (msg->request << 4) |
967 ((msg->address >> 16) & 0xf);
968 txbuf[1] = (msg->address >> 8) & 0xff;
969 txbuf[2] = msg->address & 0xff;
970 txbuf[3] = msg->size - 1;
971
972 switch (msg->request & ~DP_AUX_I2C_MOT) {
973 case DP_AUX_NATIVE_WRITE:
974 case DP_AUX_I2C_WRITE:
975 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
976 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
977 rxsize = 2; /* 0 or 1 data bytes */
978
979 if (WARN_ON(txsize > 20))
980 return -E2BIG;
981
982 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
983
984 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
985 if (ret > 0) {
986 msg->reply = rxbuf[0] >> 4;
987
988 if (ret > 1) {
989 /* Number of bytes written in a short write. */
990 ret = clamp_t(int, rxbuf[1], 0, msg->size);
991 } else {
992 /* Return payload size. */
993 ret = msg->size;
994 }
995 }
996 break;
997
998 case DP_AUX_NATIVE_READ:
999 case DP_AUX_I2C_READ:
1000 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1001 rxsize = msg->size + 1;
1002
1003 if (WARN_ON(rxsize > 20))
1004 return -E2BIG;
1005
1006 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1007 if (ret > 0) {
1008 msg->reply = rxbuf[0] >> 4;
1009 /*
1010 * Assume happy day, and copy the data. The caller is
1011 * expected to check msg->reply before touching it.
1012 *
1013 * Return payload size.
1014 */
1015 ret--;
1016 memcpy(msg->buffer, rxbuf + 1, ret);
1017 }
1018 break;
1019
1020 default:
1021 ret = -EINVAL;
1022 break;
1023 }
1024
1025 return ret;
1026 }
1027
1028 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1029 enum port port)
1030 {
1031 switch (port) {
1032 case PORT_B:
1033 case PORT_C:
1034 case PORT_D:
1035 return DP_AUX_CH_CTL(port);
1036 default:
1037 MISSING_CASE(port);
1038 return DP_AUX_CH_CTL(PORT_B);
1039 }
1040 }
1041
1042 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1043 enum port port, int index)
1044 {
1045 switch (port) {
1046 case PORT_B:
1047 case PORT_C:
1048 case PORT_D:
1049 return DP_AUX_CH_DATA(port, index);
1050 default:
1051 MISSING_CASE(port);
1052 return DP_AUX_CH_DATA(PORT_B, index);
1053 }
1054 }
1055
1056 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1057 enum port port)
1058 {
1059 switch (port) {
1060 case PORT_A:
1061 return DP_AUX_CH_CTL(port);
1062 case PORT_B:
1063 case PORT_C:
1064 case PORT_D:
1065 return PCH_DP_AUX_CH_CTL(port);
1066 default:
1067 MISSING_CASE(port);
1068 return DP_AUX_CH_CTL(PORT_A);
1069 }
1070 }
1071
1072 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1073 enum port port, int index)
1074 {
1075 switch (port) {
1076 case PORT_A:
1077 return DP_AUX_CH_DATA(port, index);
1078 case PORT_B:
1079 case PORT_C:
1080 case PORT_D:
1081 return PCH_DP_AUX_CH_DATA(port, index);
1082 default:
1083 MISSING_CASE(port);
1084 return DP_AUX_CH_DATA(PORT_A, index);
1085 }
1086 }
1087
1088 /*
1089 * On SKL we don't have Aux for port E so we rely
1090 * on VBT to set a proper alternate aux channel.
1091 */
1092 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1093 {
1094 const struct ddi_vbt_port_info *info =
1095 &dev_priv->vbt.ddi_port_info[PORT_E];
1096
1097 switch (info->alternate_aux_channel) {
1098 case DP_AUX_A:
1099 return PORT_A;
1100 case DP_AUX_B:
1101 return PORT_B;
1102 case DP_AUX_C:
1103 return PORT_C;
1104 case DP_AUX_D:
1105 return PORT_D;
1106 default:
1107 MISSING_CASE(info->alternate_aux_channel);
1108 return PORT_A;
1109 }
1110 }
1111
1112 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1113 enum port port)
1114 {
1115 if (port == PORT_E)
1116 port = skl_porte_aux_port(dev_priv);
1117
1118 switch (port) {
1119 case PORT_A:
1120 case PORT_B:
1121 case PORT_C:
1122 case PORT_D:
1123 return DP_AUX_CH_CTL(port);
1124 default:
1125 MISSING_CASE(port);
1126 return DP_AUX_CH_CTL(PORT_A);
1127 }
1128 }
1129
1130 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1131 enum port port, int index)
1132 {
1133 if (port == PORT_E)
1134 port = skl_porte_aux_port(dev_priv);
1135
1136 switch (port) {
1137 case PORT_A:
1138 case PORT_B:
1139 case PORT_C:
1140 case PORT_D:
1141 return DP_AUX_CH_DATA(port, index);
1142 default:
1143 MISSING_CASE(port);
1144 return DP_AUX_CH_DATA(PORT_A, index);
1145 }
1146 }
1147
1148 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1149 enum port port)
1150 {
1151 if (INTEL_INFO(dev_priv)->gen >= 9)
1152 return skl_aux_ctl_reg(dev_priv, port);
1153 else if (HAS_PCH_SPLIT(dev_priv))
1154 return ilk_aux_ctl_reg(dev_priv, port);
1155 else
1156 return g4x_aux_ctl_reg(dev_priv, port);
1157 }
1158
1159 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1160 enum port port, int index)
1161 {
1162 if (INTEL_INFO(dev_priv)->gen >= 9)
1163 return skl_aux_data_reg(dev_priv, port, index);
1164 else if (HAS_PCH_SPLIT(dev_priv))
1165 return ilk_aux_data_reg(dev_priv, port, index);
1166 else
1167 return g4x_aux_data_reg(dev_priv, port, index);
1168 }
1169
1170 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1171 {
1172 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1173 enum port port = dp_to_dig_port(intel_dp)->port;
1174 int i;
1175
1176 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1177 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1178 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1179 }
1180
1181 static void
1182 intel_dp_aux_fini(struct intel_dp *intel_dp)
1183 {
1184 drm_dp_aux_unregister(&intel_dp->aux);
1185 kfree(intel_dp->aux.name);
1186 }
1187
1188 static int
1189 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1190 {
1191 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1192 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1193 enum port port = intel_dig_port->port;
1194 int ret;
1195
1196 intel_aux_reg_init(intel_dp);
1197
1198 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1199 if (!intel_dp->aux.name)
1200 return -ENOMEM;
1201
1202 intel_dp->aux.dev = dev->dev;
1203 intel_dp->aux.transfer = intel_dp_aux_transfer;
1204
1205 DRM_DEBUG_KMS("registering %s bus for %s\n",
1206 intel_dp->aux.name,
1207 connector->base.kdev->kobj.name);
1208
1209 ret = drm_dp_aux_register(&intel_dp->aux);
1210 if (ret < 0) {
1211 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1212 intel_dp->aux.name, ret);
1213 kfree(intel_dp->aux.name);
1214 return ret;
1215 }
1216
1217 ret = sysfs_create_link(&connector->base.kdev->kobj,
1218 &intel_dp->aux.ddc.dev.kobj,
1219 intel_dp->aux.ddc.dev.kobj.name);
1220 if (ret < 0) {
1221 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n",
1222 intel_dp->aux.name, ret);
1223 intel_dp_aux_fini(intel_dp);
1224 return ret;
1225 }
1226
1227 return 0;
1228 }
1229
1230 static void
1231 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1232 {
1233 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1234
1235 if (!intel_connector->mst_port)
1236 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1237 intel_dp->aux.ddc.dev.kobj.name);
1238 intel_connector_unregister(intel_connector);
1239 }
1240
1241 static void
1242 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1243 {
1244 u32 ctrl1;
1245
1246 memset(&pipe_config->dpll_hw_state, 0,
1247 sizeof(pipe_config->dpll_hw_state));
1248
1249 pipe_config->ddi_pll_sel = SKL_DPLL0;
1250 pipe_config->dpll_hw_state.cfgcr1 = 0;
1251 pipe_config->dpll_hw_state.cfgcr2 = 0;
1252
1253 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1254 switch (pipe_config->port_clock / 2) {
1255 case 81000:
1256 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1257 SKL_DPLL0);
1258 break;
1259 case 135000:
1260 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1261 SKL_DPLL0);
1262 break;
1263 case 270000:
1264 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1265 SKL_DPLL0);
1266 break;
1267 case 162000:
1268 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1269 SKL_DPLL0);
1270 break;
1271 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1272 results in CDCLK change. Need to handle the change of CDCLK by
1273 disabling pipes and re-enabling them */
1274 case 108000:
1275 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1276 SKL_DPLL0);
1277 break;
1278 case 216000:
1279 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1280 SKL_DPLL0);
1281 break;
1282
1283 }
1284 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1285 }
1286
1287 void
1288 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1289 {
1290 memset(&pipe_config->dpll_hw_state, 0,
1291 sizeof(pipe_config->dpll_hw_state));
1292
1293 switch (pipe_config->port_clock / 2) {
1294 case 81000:
1295 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1296 break;
1297 case 135000:
1298 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1299 break;
1300 case 270000:
1301 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1302 break;
1303 }
1304 }
1305
1306 static int
1307 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1308 {
1309 if (intel_dp->num_sink_rates) {
1310 *sink_rates = intel_dp->sink_rates;
1311 return intel_dp->num_sink_rates;
1312 }
1313
1314 *sink_rates = default_rates;
1315
1316 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1317 }
1318
1319 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1320 {
1321 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1322 struct drm_device *dev = dig_port->base.base.dev;
1323
1324 /* WaDisableHBR2:skl */
1325 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1326 return false;
1327
1328 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1329 (INTEL_INFO(dev)->gen >= 9))
1330 return true;
1331 else
1332 return false;
1333 }
1334
1335 static int
1336 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1337 {
1338 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1339 struct drm_device *dev = dig_port->base.base.dev;
1340 int size;
1341
1342 if (IS_BROXTON(dev)) {
1343 *source_rates = bxt_rates;
1344 size = ARRAY_SIZE(bxt_rates);
1345 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1346 *source_rates = skl_rates;
1347 size = ARRAY_SIZE(skl_rates);
1348 } else {
1349 *source_rates = default_rates;
1350 size = ARRAY_SIZE(default_rates);
1351 }
1352
1353 /* This depends on the fact that 5.4 is last value in the array */
1354 if (!intel_dp_source_supports_hbr2(intel_dp))
1355 size--;
1356
1357 return size;
1358 }
1359
1360 static void
1361 intel_dp_set_clock(struct intel_encoder *encoder,
1362 struct intel_crtc_state *pipe_config)
1363 {
1364 struct drm_device *dev = encoder->base.dev;
1365 const struct dp_link_dpll *divisor = NULL;
1366 int i, count = 0;
1367
1368 if (IS_G4X(dev)) {
1369 divisor = gen4_dpll;
1370 count = ARRAY_SIZE(gen4_dpll);
1371 } else if (HAS_PCH_SPLIT(dev)) {
1372 divisor = pch_dpll;
1373 count = ARRAY_SIZE(pch_dpll);
1374 } else if (IS_CHERRYVIEW(dev)) {
1375 divisor = chv_dpll;
1376 count = ARRAY_SIZE(chv_dpll);
1377 } else if (IS_VALLEYVIEW(dev)) {
1378 divisor = vlv_dpll;
1379 count = ARRAY_SIZE(vlv_dpll);
1380 }
1381
1382 if (divisor && count) {
1383 for (i = 0; i < count; i++) {
1384 if (pipe_config->port_clock == divisor[i].clock) {
1385 pipe_config->dpll = divisor[i].dpll;
1386 pipe_config->clock_set = true;
1387 break;
1388 }
1389 }
1390 }
1391 }
1392
1393 static int intersect_rates(const int *source_rates, int source_len,
1394 const int *sink_rates, int sink_len,
1395 int *common_rates)
1396 {
1397 int i = 0, j = 0, k = 0;
1398
1399 while (i < source_len && j < sink_len) {
1400 if (source_rates[i] == sink_rates[j]) {
1401 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1402 return k;
1403 common_rates[k] = source_rates[i];
1404 ++k;
1405 ++i;
1406 ++j;
1407 } else if (source_rates[i] < sink_rates[j]) {
1408 ++i;
1409 } else {
1410 ++j;
1411 }
1412 }
1413 return k;
1414 }
1415
1416 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1417 int *common_rates)
1418 {
1419 const int *source_rates, *sink_rates;
1420 int source_len, sink_len;
1421
1422 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1423 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1424
1425 return intersect_rates(source_rates, source_len,
1426 sink_rates, sink_len,
1427 common_rates);
1428 }
1429
1430 static void snprintf_int_array(char *str, size_t len,
1431 const int *array, int nelem)
1432 {
1433 int i;
1434
1435 str[0] = '\0';
1436
1437 for (i = 0; i < nelem; i++) {
1438 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1439 if (r >= len)
1440 return;
1441 str += r;
1442 len -= r;
1443 }
1444 }
1445
1446 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1447 {
1448 const int *source_rates, *sink_rates;
1449 int source_len, sink_len, common_len;
1450 int common_rates[DP_MAX_SUPPORTED_RATES];
1451 char str[128]; /* FIXME: too big for stack? */
1452
1453 if ((drm_debug & DRM_UT_KMS) == 0)
1454 return;
1455
1456 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1457 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1458 DRM_DEBUG_KMS("source rates: %s\n", str);
1459
1460 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1461 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1462 DRM_DEBUG_KMS("sink rates: %s\n", str);
1463
1464 common_len = intel_dp_common_rates(intel_dp, common_rates);
1465 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1466 DRM_DEBUG_KMS("common rates: %s\n", str);
1467 }
1468
1469 static int rate_to_index(int find, const int *rates)
1470 {
1471 int i = 0;
1472
1473 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1474 if (find == rates[i])
1475 break;
1476
1477 return i;
1478 }
1479
1480 int
1481 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1482 {
1483 int rates[DP_MAX_SUPPORTED_RATES] = {};
1484 int len;
1485
1486 len = intel_dp_common_rates(intel_dp, rates);
1487 if (WARN_ON(len <= 0))
1488 return 162000;
1489
1490 return rates[rate_to_index(0, rates) - 1];
1491 }
1492
1493 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1494 {
1495 return rate_to_index(rate, intel_dp->sink_rates);
1496 }
1497
1498 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1499 uint8_t *link_bw, uint8_t *rate_select)
1500 {
1501 if (intel_dp->num_sink_rates) {
1502 *link_bw = 0;
1503 *rate_select =
1504 intel_dp_rate_select(intel_dp, port_clock);
1505 } else {
1506 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1507 *rate_select = 0;
1508 }
1509 }
1510
1511 bool
1512 intel_dp_compute_config(struct intel_encoder *encoder,
1513 struct intel_crtc_state *pipe_config)
1514 {
1515 struct drm_device *dev = encoder->base.dev;
1516 struct drm_i915_private *dev_priv = dev->dev_private;
1517 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1518 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1519 enum port port = dp_to_dig_port(intel_dp)->port;
1520 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1521 struct intel_connector *intel_connector = intel_dp->attached_connector;
1522 int lane_count, clock;
1523 int min_lane_count = 1;
1524 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1525 /* Conveniently, the link BW constants become indices with a shift...*/
1526 int min_clock = 0;
1527 int max_clock;
1528 int bpp, mode_rate;
1529 int link_avail, link_clock;
1530 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1531 int common_len;
1532 uint8_t link_bw, rate_select;
1533
1534 common_len = intel_dp_common_rates(intel_dp, common_rates);
1535
1536 /* No common link rates between source and sink */
1537 WARN_ON(common_len <= 0);
1538
1539 max_clock = common_len - 1;
1540
1541 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1542 pipe_config->has_pch_encoder = true;
1543
1544 pipe_config->has_dp_encoder = true;
1545 pipe_config->has_drrs = false;
1546 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1547
1548 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1549 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1550 adjusted_mode);
1551
1552 if (INTEL_INFO(dev)->gen >= 9) {
1553 int ret;
1554 ret = skl_update_scaler_crtc(pipe_config);
1555 if (ret)
1556 return ret;
1557 }
1558
1559 if (HAS_GMCH_DISPLAY(dev))
1560 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1561 intel_connector->panel.fitting_mode);
1562 else
1563 intel_pch_panel_fitting(intel_crtc, pipe_config,
1564 intel_connector->panel.fitting_mode);
1565 }
1566
1567 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1568 return false;
1569
1570 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1571 "max bw %d pixel clock %iKHz\n",
1572 max_lane_count, common_rates[max_clock],
1573 adjusted_mode->crtc_clock);
1574
1575 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1576 * bpc in between. */
1577 bpp = pipe_config->pipe_bpp;
1578 if (is_edp(intel_dp)) {
1579
1580 /* Get bpp from vbt only for panels that dont have bpp in edid */
1581 if (intel_connector->base.display_info.bpc == 0 &&
1582 (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1583 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1584 dev_priv->vbt.edp_bpp);
1585 bpp = dev_priv->vbt.edp_bpp;
1586 }
1587
1588 /*
1589 * Use the maximum clock and number of lanes the eDP panel
1590 * advertizes being capable of. The panels are generally
1591 * designed to support only a single clock and lane
1592 * configuration, and typically these values correspond to the
1593 * native resolution of the panel.
1594 */
1595 min_lane_count = max_lane_count;
1596 min_clock = max_clock;
1597 }
1598
1599 for (; bpp >= 6*3; bpp -= 2*3) {
1600 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1601 bpp);
1602
1603 for (clock = min_clock; clock <= max_clock; clock++) {
1604 for (lane_count = min_lane_count;
1605 lane_count <= max_lane_count;
1606 lane_count <<= 1) {
1607
1608 link_clock = common_rates[clock];
1609 link_avail = intel_dp_max_data_rate(link_clock,
1610 lane_count);
1611
1612 if (mode_rate <= link_avail) {
1613 goto found;
1614 }
1615 }
1616 }
1617 }
1618
1619 return false;
1620
1621 found:
1622 if (intel_dp->color_range_auto) {
1623 /*
1624 * See:
1625 * CEA-861-E - 5.1 Default Encoding Parameters
1626 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1627 */
1628 pipe_config->limited_color_range =
1629 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1630 } else {
1631 pipe_config->limited_color_range =
1632 intel_dp->limited_color_range;
1633 }
1634
1635 pipe_config->lane_count = lane_count;
1636
1637 pipe_config->pipe_bpp = bpp;
1638 pipe_config->port_clock = common_rates[clock];
1639
1640 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1641 &link_bw, &rate_select);
1642
1643 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1644 link_bw, rate_select, pipe_config->lane_count,
1645 pipe_config->port_clock, bpp);
1646 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1647 mode_rate, link_avail);
1648
1649 intel_link_compute_m_n(bpp, lane_count,
1650 adjusted_mode->crtc_clock,
1651 pipe_config->port_clock,
1652 &pipe_config->dp_m_n);
1653
1654 if (intel_connector->panel.downclock_mode != NULL &&
1655 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1656 pipe_config->has_drrs = true;
1657 intel_link_compute_m_n(bpp, lane_count,
1658 intel_connector->panel.downclock_mode->clock,
1659 pipe_config->port_clock,
1660 &pipe_config->dp_m2_n2);
1661 }
1662
1663 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && is_edp(intel_dp))
1664 skl_edp_set_pll_config(pipe_config);
1665 else if (IS_BROXTON(dev))
1666 /* handled in ddi */;
1667 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1668 hsw_dp_set_ddi_pll_sel(pipe_config);
1669 else
1670 intel_dp_set_clock(encoder, pipe_config);
1671
1672 return true;
1673 }
1674
1675 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1676 const struct intel_crtc_state *pipe_config)
1677 {
1678 intel_dp->link_rate = pipe_config->port_clock;
1679 intel_dp->lane_count = pipe_config->lane_count;
1680 }
1681
1682 static void intel_dp_prepare(struct intel_encoder *encoder)
1683 {
1684 struct drm_device *dev = encoder->base.dev;
1685 struct drm_i915_private *dev_priv = dev->dev_private;
1686 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1687 enum port port = dp_to_dig_port(intel_dp)->port;
1688 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1689 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1690
1691 intel_dp_set_link_params(intel_dp, crtc->config);
1692
1693 /*
1694 * There are four kinds of DP registers:
1695 *
1696 * IBX PCH
1697 * SNB CPU
1698 * IVB CPU
1699 * CPT PCH
1700 *
1701 * IBX PCH and CPU are the same for almost everything,
1702 * except that the CPU DP PLL is configured in this
1703 * register
1704 *
1705 * CPT PCH is quite different, having many bits moved
1706 * to the TRANS_DP_CTL register instead. That
1707 * configuration happens (oddly) in ironlake_pch_enable
1708 */
1709
1710 /* Preserve the BIOS-computed detected bit. This is
1711 * supposed to be read-only.
1712 */
1713 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1714
1715 /* Handle DP bits in common between all three register formats */
1716 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1717 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1718
1719 /* Split out the IBX/CPU vs CPT settings */
1720
1721 if (IS_GEN7(dev) && port == PORT_A) {
1722 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1723 intel_dp->DP |= DP_SYNC_HS_HIGH;
1724 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1725 intel_dp->DP |= DP_SYNC_VS_HIGH;
1726 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1727
1728 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1729 intel_dp->DP |= DP_ENHANCED_FRAMING;
1730
1731 intel_dp->DP |= crtc->pipe << 29;
1732 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1733 u32 trans_dp;
1734
1735 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1736
1737 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1738 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1739 trans_dp |= TRANS_DP_ENH_FRAMING;
1740 else
1741 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1742 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1743 } else {
1744 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1745 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1746 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1747
1748 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1749 intel_dp->DP |= DP_SYNC_HS_HIGH;
1750 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1751 intel_dp->DP |= DP_SYNC_VS_HIGH;
1752 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1753
1754 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1755 intel_dp->DP |= DP_ENHANCED_FRAMING;
1756
1757 if (IS_CHERRYVIEW(dev))
1758 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1759 else if (crtc->pipe == PIPE_B)
1760 intel_dp->DP |= DP_PIPEB_SELECT;
1761 }
1762 }
1763
1764 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1765 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1766
1767 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1768 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1769
1770 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1771 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1772
1773 static void wait_panel_status(struct intel_dp *intel_dp,
1774 u32 mask,
1775 u32 value)
1776 {
1777 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1780
1781 lockdep_assert_held(&dev_priv->pps_mutex);
1782
1783 pp_stat_reg = _pp_stat_reg(intel_dp);
1784 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1785
1786 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1787 mask, value,
1788 I915_READ(pp_stat_reg),
1789 I915_READ(pp_ctrl_reg));
1790
1791 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1792 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1793 I915_READ(pp_stat_reg),
1794 I915_READ(pp_ctrl_reg));
1795 }
1796
1797 DRM_DEBUG_KMS("Wait complete\n");
1798 }
1799
1800 static void wait_panel_on(struct intel_dp *intel_dp)
1801 {
1802 DRM_DEBUG_KMS("Wait for panel power on\n");
1803 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1804 }
1805
1806 static void wait_panel_off(struct intel_dp *intel_dp)
1807 {
1808 DRM_DEBUG_KMS("Wait for panel power off time\n");
1809 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1810 }
1811
1812 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1813 {
1814 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1815
1816 /* When we disable the VDD override bit last we have to do the manual
1817 * wait. */
1818 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1819 intel_dp->panel_power_cycle_delay);
1820
1821 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1822 }
1823
1824 static void wait_backlight_on(struct intel_dp *intel_dp)
1825 {
1826 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1827 intel_dp->backlight_on_delay);
1828 }
1829
1830 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1831 {
1832 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1833 intel_dp->backlight_off_delay);
1834 }
1835
1836 /* Read the current pp_control value, unlocking the register if it
1837 * is locked
1838 */
1839
1840 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1841 {
1842 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844 u32 control;
1845
1846 lockdep_assert_held(&dev_priv->pps_mutex);
1847
1848 control = I915_READ(_pp_ctrl_reg(intel_dp));
1849 if (!IS_BROXTON(dev)) {
1850 control &= ~PANEL_UNLOCK_MASK;
1851 control |= PANEL_UNLOCK_REGS;
1852 }
1853 return control;
1854 }
1855
1856 /*
1857 * Must be paired with edp_panel_vdd_off().
1858 * Must hold pps_mutex around the whole on/off sequence.
1859 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1860 */
1861 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1862 {
1863 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1864 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1865 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 enum intel_display_power_domain power_domain;
1868 u32 pp;
1869 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1870 bool need_to_disable = !intel_dp->want_panel_vdd;
1871
1872 lockdep_assert_held(&dev_priv->pps_mutex);
1873
1874 if (!is_edp(intel_dp))
1875 return false;
1876
1877 cancel_delayed_work(&intel_dp->panel_vdd_work);
1878 intel_dp->want_panel_vdd = true;
1879
1880 if (edp_have_panel_vdd(intel_dp))
1881 return need_to_disable;
1882
1883 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1884 intel_display_power_get(dev_priv, power_domain);
1885
1886 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1887 port_name(intel_dig_port->port));
1888
1889 if (!edp_have_panel_power(intel_dp))
1890 wait_panel_power_cycle(intel_dp);
1891
1892 pp = ironlake_get_pp_control(intel_dp);
1893 pp |= EDP_FORCE_VDD;
1894
1895 pp_stat_reg = _pp_stat_reg(intel_dp);
1896 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1897
1898 I915_WRITE(pp_ctrl_reg, pp);
1899 POSTING_READ(pp_ctrl_reg);
1900 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1901 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1902 /*
1903 * If the panel wasn't on, delay before accessing aux channel
1904 */
1905 if (!edp_have_panel_power(intel_dp)) {
1906 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1907 port_name(intel_dig_port->port));
1908 msleep(intel_dp->panel_power_up_delay);
1909 }
1910
1911 return need_to_disable;
1912 }
1913
1914 /*
1915 * Must be paired with intel_edp_panel_vdd_off() or
1916 * intel_edp_panel_off().
1917 * Nested calls to these functions are not allowed since
1918 * we drop the lock. Caller must use some higher level
1919 * locking to prevent nested calls from other threads.
1920 */
1921 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1922 {
1923 bool vdd;
1924
1925 if (!is_edp(intel_dp))
1926 return;
1927
1928 pps_lock(intel_dp);
1929 vdd = edp_panel_vdd_on(intel_dp);
1930 pps_unlock(intel_dp);
1931
1932 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1933 port_name(dp_to_dig_port(intel_dp)->port));
1934 }
1935
1936 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1937 {
1938 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1939 struct drm_i915_private *dev_priv = dev->dev_private;
1940 struct intel_digital_port *intel_dig_port =
1941 dp_to_dig_port(intel_dp);
1942 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1943 enum intel_display_power_domain power_domain;
1944 u32 pp;
1945 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1946
1947 lockdep_assert_held(&dev_priv->pps_mutex);
1948
1949 WARN_ON(intel_dp->want_panel_vdd);
1950
1951 if (!edp_have_panel_vdd(intel_dp))
1952 return;
1953
1954 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1955 port_name(intel_dig_port->port));
1956
1957 pp = ironlake_get_pp_control(intel_dp);
1958 pp &= ~EDP_FORCE_VDD;
1959
1960 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1961 pp_stat_reg = _pp_stat_reg(intel_dp);
1962
1963 I915_WRITE(pp_ctrl_reg, pp);
1964 POSTING_READ(pp_ctrl_reg);
1965
1966 /* Make sure sequencer is idle before allowing subsequent activity */
1967 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1968 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1969
1970 if ((pp & POWER_TARGET_ON) == 0)
1971 intel_dp->last_power_cycle = jiffies;
1972
1973 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1974 intel_display_power_put(dev_priv, power_domain);
1975 }
1976
1977 static void edp_panel_vdd_work(struct work_struct *__work)
1978 {
1979 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1980 struct intel_dp, panel_vdd_work);
1981
1982 pps_lock(intel_dp);
1983 if (!intel_dp->want_panel_vdd)
1984 edp_panel_vdd_off_sync(intel_dp);
1985 pps_unlock(intel_dp);
1986 }
1987
1988 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1989 {
1990 unsigned long delay;
1991
1992 /*
1993 * Queue the timer to fire a long time from now (relative to the power
1994 * down delay) to keep the panel power up across a sequence of
1995 * operations.
1996 */
1997 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1998 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1999 }
2000
2001 /*
2002 * Must be paired with edp_panel_vdd_on().
2003 * Must hold pps_mutex around the whole on/off sequence.
2004 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2005 */
2006 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2007 {
2008 struct drm_i915_private *dev_priv =
2009 intel_dp_to_dev(intel_dp)->dev_private;
2010
2011 lockdep_assert_held(&dev_priv->pps_mutex);
2012
2013 if (!is_edp(intel_dp))
2014 return;
2015
2016 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2017 port_name(dp_to_dig_port(intel_dp)->port));
2018
2019 intel_dp->want_panel_vdd = false;
2020
2021 if (sync)
2022 edp_panel_vdd_off_sync(intel_dp);
2023 else
2024 edp_panel_vdd_schedule_off(intel_dp);
2025 }
2026
2027 static void edp_panel_on(struct intel_dp *intel_dp)
2028 {
2029 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 u32 pp;
2032 i915_reg_t pp_ctrl_reg;
2033
2034 lockdep_assert_held(&dev_priv->pps_mutex);
2035
2036 if (!is_edp(intel_dp))
2037 return;
2038
2039 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2040 port_name(dp_to_dig_port(intel_dp)->port));
2041
2042 if (WARN(edp_have_panel_power(intel_dp),
2043 "eDP port %c panel power already on\n",
2044 port_name(dp_to_dig_port(intel_dp)->port)))
2045 return;
2046
2047 wait_panel_power_cycle(intel_dp);
2048
2049 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2050 pp = ironlake_get_pp_control(intel_dp);
2051 if (IS_GEN5(dev)) {
2052 /* ILK workaround: disable reset around power sequence */
2053 pp &= ~PANEL_POWER_RESET;
2054 I915_WRITE(pp_ctrl_reg, pp);
2055 POSTING_READ(pp_ctrl_reg);
2056 }
2057
2058 pp |= POWER_TARGET_ON;
2059 if (!IS_GEN5(dev))
2060 pp |= PANEL_POWER_RESET;
2061
2062 I915_WRITE(pp_ctrl_reg, pp);
2063 POSTING_READ(pp_ctrl_reg);
2064
2065 wait_panel_on(intel_dp);
2066 intel_dp->last_power_on = jiffies;
2067
2068 if (IS_GEN5(dev)) {
2069 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2070 I915_WRITE(pp_ctrl_reg, pp);
2071 POSTING_READ(pp_ctrl_reg);
2072 }
2073 }
2074
2075 void intel_edp_panel_on(struct intel_dp *intel_dp)
2076 {
2077 if (!is_edp(intel_dp))
2078 return;
2079
2080 pps_lock(intel_dp);
2081 edp_panel_on(intel_dp);
2082 pps_unlock(intel_dp);
2083 }
2084
2085
2086 static void edp_panel_off(struct intel_dp *intel_dp)
2087 {
2088 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2089 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2090 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2091 struct drm_i915_private *dev_priv = dev->dev_private;
2092 enum intel_display_power_domain power_domain;
2093 u32 pp;
2094 i915_reg_t pp_ctrl_reg;
2095
2096 lockdep_assert_held(&dev_priv->pps_mutex);
2097
2098 if (!is_edp(intel_dp))
2099 return;
2100
2101 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2102 port_name(dp_to_dig_port(intel_dp)->port));
2103
2104 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2105 port_name(dp_to_dig_port(intel_dp)->port));
2106
2107 pp = ironlake_get_pp_control(intel_dp);
2108 /* We need to switch off panel power _and_ force vdd, for otherwise some
2109 * panels get very unhappy and cease to work. */
2110 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2111 EDP_BLC_ENABLE);
2112
2113 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2114
2115 intel_dp->want_panel_vdd = false;
2116
2117 I915_WRITE(pp_ctrl_reg, pp);
2118 POSTING_READ(pp_ctrl_reg);
2119
2120 intel_dp->last_power_cycle = jiffies;
2121 wait_panel_off(intel_dp);
2122
2123 /* We got a reference when we enabled the VDD. */
2124 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2125 intel_display_power_put(dev_priv, power_domain);
2126 }
2127
2128 void intel_edp_panel_off(struct intel_dp *intel_dp)
2129 {
2130 if (!is_edp(intel_dp))
2131 return;
2132
2133 pps_lock(intel_dp);
2134 edp_panel_off(intel_dp);
2135 pps_unlock(intel_dp);
2136 }
2137
2138 /* Enable backlight in the panel power control. */
2139 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2140 {
2141 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2142 struct drm_device *dev = intel_dig_port->base.base.dev;
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144 u32 pp;
2145 i915_reg_t pp_ctrl_reg;
2146
2147 /*
2148 * If we enable the backlight right away following a panel power
2149 * on, we may see slight flicker as the panel syncs with the eDP
2150 * link. So delay a bit to make sure the image is solid before
2151 * allowing it to appear.
2152 */
2153 wait_backlight_on(intel_dp);
2154
2155 pps_lock(intel_dp);
2156
2157 pp = ironlake_get_pp_control(intel_dp);
2158 pp |= EDP_BLC_ENABLE;
2159
2160 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2161
2162 I915_WRITE(pp_ctrl_reg, pp);
2163 POSTING_READ(pp_ctrl_reg);
2164
2165 pps_unlock(intel_dp);
2166 }
2167
2168 /* Enable backlight PWM and backlight PP control. */
2169 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2170 {
2171 if (!is_edp(intel_dp))
2172 return;
2173
2174 DRM_DEBUG_KMS("\n");
2175
2176 intel_panel_enable_backlight(intel_dp->attached_connector);
2177 _intel_edp_backlight_on(intel_dp);
2178 }
2179
2180 /* Disable backlight in the panel power control. */
2181 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2182 {
2183 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2184 struct drm_i915_private *dev_priv = dev->dev_private;
2185 u32 pp;
2186 i915_reg_t pp_ctrl_reg;
2187
2188 if (!is_edp(intel_dp))
2189 return;
2190
2191 pps_lock(intel_dp);
2192
2193 pp = ironlake_get_pp_control(intel_dp);
2194 pp &= ~EDP_BLC_ENABLE;
2195
2196 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2197
2198 I915_WRITE(pp_ctrl_reg, pp);
2199 POSTING_READ(pp_ctrl_reg);
2200
2201 pps_unlock(intel_dp);
2202
2203 intel_dp->last_backlight_off = jiffies;
2204 edp_wait_backlight_off(intel_dp);
2205 }
2206
2207 /* Disable backlight PP control and backlight PWM. */
2208 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2209 {
2210 if (!is_edp(intel_dp))
2211 return;
2212
2213 DRM_DEBUG_KMS("\n");
2214
2215 _intel_edp_backlight_off(intel_dp);
2216 intel_panel_disable_backlight(intel_dp->attached_connector);
2217 }
2218
2219 /*
2220 * Hook for controlling the panel power control backlight through the bl_power
2221 * sysfs attribute. Take care to handle multiple calls.
2222 */
2223 static void intel_edp_backlight_power(struct intel_connector *connector,
2224 bool enable)
2225 {
2226 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2227 bool is_enabled;
2228
2229 pps_lock(intel_dp);
2230 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2231 pps_unlock(intel_dp);
2232
2233 if (is_enabled == enable)
2234 return;
2235
2236 DRM_DEBUG_KMS("panel power control backlight %s\n",
2237 enable ? "enable" : "disable");
2238
2239 if (enable)
2240 _intel_edp_backlight_on(intel_dp);
2241 else
2242 _intel_edp_backlight_off(intel_dp);
2243 }
2244
2245 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2246 {
2247 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2248 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2249 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2250
2251 I915_STATE_WARN(cur_state != state,
2252 "DP port %c state assertion failure (expected %s, current %s)\n",
2253 port_name(dig_port->port),
2254 onoff(state), onoff(cur_state));
2255 }
2256 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2257
2258 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2259 {
2260 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2261
2262 I915_STATE_WARN(cur_state != state,
2263 "eDP PLL state assertion failure (expected %s, current %s)\n",
2264 onoff(state), onoff(cur_state));
2265 }
2266 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2267 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2268
2269 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2270 {
2271 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2272 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2273 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2274
2275 assert_pipe_disabled(dev_priv, crtc->pipe);
2276 assert_dp_port_disabled(intel_dp);
2277 assert_edp_pll_disabled(dev_priv);
2278
2279 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2280 crtc->config->port_clock);
2281
2282 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2283
2284 if (crtc->config->port_clock == 162000)
2285 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2286 else
2287 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2288
2289 I915_WRITE(DP_A, intel_dp->DP);
2290 POSTING_READ(DP_A);
2291 udelay(500);
2292
2293 intel_dp->DP |= DP_PLL_ENABLE;
2294
2295 I915_WRITE(DP_A, intel_dp->DP);
2296 POSTING_READ(DP_A);
2297 udelay(200);
2298 }
2299
2300 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2301 {
2302 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2303 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2304 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2305
2306 assert_pipe_disabled(dev_priv, crtc->pipe);
2307 assert_dp_port_disabled(intel_dp);
2308 assert_edp_pll_enabled(dev_priv);
2309
2310 DRM_DEBUG_KMS("disabling eDP PLL\n");
2311
2312 intel_dp->DP &= ~DP_PLL_ENABLE;
2313
2314 I915_WRITE(DP_A, intel_dp->DP);
2315 POSTING_READ(DP_A);
2316 udelay(200);
2317 }
2318
2319 /* If the sink supports it, try to set the power state appropriately */
2320 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2321 {
2322 int ret, i;
2323
2324 /* Should have a valid DPCD by this point */
2325 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2326 return;
2327
2328 if (mode != DRM_MODE_DPMS_ON) {
2329 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2330 DP_SET_POWER_D3);
2331 } else {
2332 /*
2333 * When turning on, we need to retry for 1ms to give the sink
2334 * time to wake up.
2335 */
2336 for (i = 0; i < 3; i++) {
2337 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2338 DP_SET_POWER_D0);
2339 if (ret == 1)
2340 break;
2341 msleep(1);
2342 }
2343 }
2344
2345 if (ret != 1)
2346 DRM_DEBUG_KMS("failed to %s sink power state\n",
2347 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2348 }
2349
2350 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2351 enum pipe *pipe)
2352 {
2353 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2354 enum port port = dp_to_dig_port(intel_dp)->port;
2355 struct drm_device *dev = encoder->base.dev;
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357 enum intel_display_power_domain power_domain;
2358 u32 tmp;
2359
2360 power_domain = intel_display_port_power_domain(encoder);
2361 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2362 return false;
2363
2364 tmp = I915_READ(intel_dp->output_reg);
2365
2366 if (!(tmp & DP_PORT_EN))
2367 return false;
2368
2369 if (IS_GEN7(dev) && port == PORT_A) {
2370 *pipe = PORT_TO_PIPE_CPT(tmp);
2371 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2372 enum pipe p;
2373
2374 for_each_pipe(dev_priv, p) {
2375 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2376 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2377 *pipe = p;
2378 return true;
2379 }
2380 }
2381
2382 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2383 i915_mmio_reg_offset(intel_dp->output_reg));
2384 } else if (IS_CHERRYVIEW(dev)) {
2385 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2386 } else {
2387 *pipe = PORT_TO_PIPE(tmp);
2388 }
2389
2390 return true;
2391 }
2392
2393 static void intel_dp_get_config(struct intel_encoder *encoder,
2394 struct intel_crtc_state *pipe_config)
2395 {
2396 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2397 u32 tmp, flags = 0;
2398 struct drm_device *dev = encoder->base.dev;
2399 struct drm_i915_private *dev_priv = dev->dev_private;
2400 enum port port = dp_to_dig_port(intel_dp)->port;
2401 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2402 int dotclock;
2403
2404 tmp = I915_READ(intel_dp->output_reg);
2405
2406 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2407
2408 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2409 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2410
2411 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2412 flags |= DRM_MODE_FLAG_PHSYNC;
2413 else
2414 flags |= DRM_MODE_FLAG_NHSYNC;
2415
2416 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2417 flags |= DRM_MODE_FLAG_PVSYNC;
2418 else
2419 flags |= DRM_MODE_FLAG_NVSYNC;
2420 } else {
2421 if (tmp & DP_SYNC_HS_HIGH)
2422 flags |= DRM_MODE_FLAG_PHSYNC;
2423 else
2424 flags |= DRM_MODE_FLAG_NHSYNC;
2425
2426 if (tmp & DP_SYNC_VS_HIGH)
2427 flags |= DRM_MODE_FLAG_PVSYNC;
2428 else
2429 flags |= DRM_MODE_FLAG_NVSYNC;
2430 }
2431
2432 pipe_config->base.adjusted_mode.flags |= flags;
2433
2434 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2435 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2436 pipe_config->limited_color_range = true;
2437
2438 pipe_config->has_dp_encoder = true;
2439
2440 pipe_config->lane_count =
2441 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2442
2443 intel_dp_get_m_n(crtc, pipe_config);
2444
2445 if (port == PORT_A) {
2446 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2447 pipe_config->port_clock = 162000;
2448 else
2449 pipe_config->port_clock = 270000;
2450 }
2451
2452 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2453 &pipe_config->dp_m_n);
2454
2455 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2456 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2457
2458 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2459
2460 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2461 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2462 /*
2463 * This is a big fat ugly hack.
2464 *
2465 * Some machines in UEFI boot mode provide us a VBT that has 18
2466 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2467 * unknown we fail to light up. Yet the same BIOS boots up with
2468 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2469 * max, not what it tells us to use.
2470 *
2471 * Note: This will still be broken if the eDP panel is not lit
2472 * up by the BIOS, and thus we can't get the mode at module
2473 * load.
2474 */
2475 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2476 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2477 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2478 }
2479 }
2480
2481 static void intel_disable_dp(struct intel_encoder *encoder)
2482 {
2483 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2484 struct drm_device *dev = encoder->base.dev;
2485 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2486
2487 if (crtc->config->has_audio)
2488 intel_audio_codec_disable(encoder);
2489
2490 if (HAS_PSR(dev) && !HAS_DDI(dev))
2491 intel_psr_disable(intel_dp);
2492
2493 /* Make sure the panel is off before trying to change the mode. But also
2494 * ensure that we have vdd while we switch off the panel. */
2495 intel_edp_panel_vdd_on(intel_dp);
2496 intel_edp_backlight_off(intel_dp);
2497 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2498 intel_edp_panel_off(intel_dp);
2499
2500 /* disable the port before the pipe on g4x */
2501 if (INTEL_INFO(dev)->gen < 5)
2502 intel_dp_link_down(intel_dp);
2503 }
2504
2505 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2506 {
2507 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2508 enum port port = dp_to_dig_port(intel_dp)->port;
2509
2510 intel_dp_link_down(intel_dp);
2511
2512 /* Only ilk+ has port A */
2513 if (port == PORT_A)
2514 ironlake_edp_pll_off(intel_dp);
2515 }
2516
2517 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2518 {
2519 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2520
2521 intel_dp_link_down(intel_dp);
2522 }
2523
2524 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2525 bool reset)
2526 {
2527 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2528 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2529 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2530 enum pipe pipe = crtc->pipe;
2531 uint32_t val;
2532
2533 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2534 if (reset)
2535 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2536 else
2537 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2538 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2539
2540 if (crtc->config->lane_count > 2) {
2541 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2542 if (reset)
2543 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2544 else
2545 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2546 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2547 }
2548
2549 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2550 val |= CHV_PCS_REQ_SOFTRESET_EN;
2551 if (reset)
2552 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2553 else
2554 val |= DPIO_PCS_CLK_SOFT_RESET;
2555 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2556
2557 if (crtc->config->lane_count > 2) {
2558 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2559 val |= CHV_PCS_REQ_SOFTRESET_EN;
2560 if (reset)
2561 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2562 else
2563 val |= DPIO_PCS_CLK_SOFT_RESET;
2564 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2565 }
2566 }
2567
2568 static void chv_post_disable_dp(struct intel_encoder *encoder)
2569 {
2570 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2571 struct drm_device *dev = encoder->base.dev;
2572 struct drm_i915_private *dev_priv = dev->dev_private;
2573
2574 intel_dp_link_down(intel_dp);
2575
2576 mutex_lock(&dev_priv->sb_lock);
2577
2578 /* Assert data lane reset */
2579 chv_data_lane_soft_reset(encoder, true);
2580
2581 mutex_unlock(&dev_priv->sb_lock);
2582 }
2583
2584 static void
2585 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2586 uint32_t *DP,
2587 uint8_t dp_train_pat)
2588 {
2589 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2590 struct drm_device *dev = intel_dig_port->base.base.dev;
2591 struct drm_i915_private *dev_priv = dev->dev_private;
2592 enum port port = intel_dig_port->port;
2593
2594 if (HAS_DDI(dev)) {
2595 uint32_t temp = I915_READ(DP_TP_CTL(port));
2596
2597 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2598 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2599 else
2600 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2601
2602 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2603 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2604 case DP_TRAINING_PATTERN_DISABLE:
2605 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2606
2607 break;
2608 case DP_TRAINING_PATTERN_1:
2609 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2610 break;
2611 case DP_TRAINING_PATTERN_2:
2612 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2613 break;
2614 case DP_TRAINING_PATTERN_3:
2615 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2616 break;
2617 }
2618 I915_WRITE(DP_TP_CTL(port), temp);
2619
2620 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2621 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2622 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2623
2624 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2625 case DP_TRAINING_PATTERN_DISABLE:
2626 *DP |= DP_LINK_TRAIN_OFF_CPT;
2627 break;
2628 case DP_TRAINING_PATTERN_1:
2629 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2630 break;
2631 case DP_TRAINING_PATTERN_2:
2632 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2633 break;
2634 case DP_TRAINING_PATTERN_3:
2635 DRM_ERROR("DP training pattern 3 not supported\n");
2636 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2637 break;
2638 }
2639
2640 } else {
2641 if (IS_CHERRYVIEW(dev))
2642 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2643 else
2644 *DP &= ~DP_LINK_TRAIN_MASK;
2645
2646 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2647 case DP_TRAINING_PATTERN_DISABLE:
2648 *DP |= DP_LINK_TRAIN_OFF;
2649 break;
2650 case DP_TRAINING_PATTERN_1:
2651 *DP |= DP_LINK_TRAIN_PAT_1;
2652 break;
2653 case DP_TRAINING_PATTERN_2:
2654 *DP |= DP_LINK_TRAIN_PAT_2;
2655 break;
2656 case DP_TRAINING_PATTERN_3:
2657 if (IS_CHERRYVIEW(dev)) {
2658 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2659 } else {
2660 DRM_ERROR("DP training pattern 3 not supported\n");
2661 *DP |= DP_LINK_TRAIN_PAT_2;
2662 }
2663 break;
2664 }
2665 }
2666 }
2667
2668 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2669 {
2670 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_crtc *crtc =
2673 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2674
2675 /* enable with pattern 1 (as per spec) */
2676 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2677 DP_TRAINING_PATTERN_1);
2678
2679 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2680 POSTING_READ(intel_dp->output_reg);
2681
2682 /*
2683 * Magic for VLV/CHV. We _must_ first set up the register
2684 * without actually enabling the port, and then do another
2685 * write to enable the port. Otherwise link training will
2686 * fail when the power sequencer is freshly used for this port.
2687 */
2688 intel_dp->DP |= DP_PORT_EN;
2689 if (crtc->config->has_audio)
2690 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2691
2692 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2693 POSTING_READ(intel_dp->output_reg);
2694 }
2695
2696 static void intel_enable_dp(struct intel_encoder *encoder)
2697 {
2698 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2699 struct drm_device *dev = encoder->base.dev;
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2702 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2703 enum port port = dp_to_dig_port(intel_dp)->port;
2704 enum pipe pipe = crtc->pipe;
2705
2706 if (WARN_ON(dp_reg & DP_PORT_EN))
2707 return;
2708
2709 pps_lock(intel_dp);
2710
2711 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2712 vlv_init_panel_power_sequencer(intel_dp);
2713
2714 /*
2715 * We get an occasional spurious underrun between the port
2716 * enable and vdd enable, when enabling port A eDP.
2717 *
2718 * FIXME: Not sure if this applies to (PCH) port D eDP as well
2719 */
2720 if (port == PORT_A)
2721 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
2722
2723 intel_dp_enable_port(intel_dp);
2724
2725 if (port == PORT_A && IS_GEN5(dev_priv)) {
2726 /*
2727 * Underrun reporting for the other pipe was disabled in
2728 * g4x_pre_enable_dp(). The eDP PLL and port have now been
2729 * enabled, so it's now safe to re-enable underrun reporting.
2730 */
2731 intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
2732 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
2733 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
2734 }
2735
2736 edp_panel_vdd_on(intel_dp);
2737 edp_panel_on(intel_dp);
2738 edp_panel_vdd_off(intel_dp, true);
2739
2740 if (port == PORT_A)
2741 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
2742
2743 pps_unlock(intel_dp);
2744
2745 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2746 unsigned int lane_mask = 0x0;
2747
2748 if (IS_CHERRYVIEW(dev))
2749 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2750
2751 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2752 lane_mask);
2753 }
2754
2755 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2756 intel_dp_start_link_train(intel_dp);
2757 intel_dp_stop_link_train(intel_dp);
2758
2759 if (crtc->config->has_audio) {
2760 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2761 pipe_name(pipe));
2762 intel_audio_codec_enable(encoder);
2763 }
2764 }
2765
2766 static void g4x_enable_dp(struct intel_encoder *encoder)
2767 {
2768 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2769
2770 intel_enable_dp(encoder);
2771 intel_edp_backlight_on(intel_dp);
2772 }
2773
2774 static void vlv_enable_dp(struct intel_encoder *encoder)
2775 {
2776 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2777
2778 intel_edp_backlight_on(intel_dp);
2779 intel_psr_enable(intel_dp);
2780 }
2781
2782 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2783 {
2784 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2785 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2786 enum port port = dp_to_dig_port(intel_dp)->port;
2787 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2788
2789 intel_dp_prepare(encoder);
2790
2791 if (port == PORT_A && IS_GEN5(dev_priv)) {
2792 /*
2793 * We get FIFO underruns on the other pipe when
2794 * enabling the CPU eDP PLL, and when enabling CPU
2795 * eDP port. We could potentially avoid the PLL
2796 * underrun with a vblank wait just prior to enabling
2797 * the PLL, but that doesn't appear to help the port
2798 * enable case. Just sweep it all under the rug.
2799 */
2800 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
2801 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
2802 }
2803
2804 /* Only ilk+ has port A */
2805 if (port == PORT_A)
2806 ironlake_edp_pll_on(intel_dp);
2807 }
2808
2809 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2810 {
2811 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2812 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2813 enum pipe pipe = intel_dp->pps_pipe;
2814 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2815
2816 edp_panel_vdd_off_sync(intel_dp);
2817
2818 /*
2819 * VLV seems to get confused when multiple power seqeuencers
2820 * have the same port selected (even if only one has power/vdd
2821 * enabled). The failure manifests as vlv_wait_port_ready() failing
2822 * CHV on the other hand doesn't seem to mind having the same port
2823 * selected in multiple power seqeuencers, but let's clear the
2824 * port select always when logically disconnecting a power sequencer
2825 * from a port.
2826 */
2827 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2828 pipe_name(pipe), port_name(intel_dig_port->port));
2829 I915_WRITE(pp_on_reg, 0);
2830 POSTING_READ(pp_on_reg);
2831
2832 intel_dp->pps_pipe = INVALID_PIPE;
2833 }
2834
2835 static void vlv_steal_power_sequencer(struct drm_device *dev,
2836 enum pipe pipe)
2837 {
2838 struct drm_i915_private *dev_priv = dev->dev_private;
2839 struct intel_encoder *encoder;
2840
2841 lockdep_assert_held(&dev_priv->pps_mutex);
2842
2843 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2844 return;
2845
2846 for_each_intel_encoder(dev, encoder) {
2847 struct intel_dp *intel_dp;
2848 enum port port;
2849
2850 if (encoder->type != INTEL_OUTPUT_EDP)
2851 continue;
2852
2853 intel_dp = enc_to_intel_dp(&encoder->base);
2854 port = dp_to_dig_port(intel_dp)->port;
2855
2856 if (intel_dp->pps_pipe != pipe)
2857 continue;
2858
2859 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2860 pipe_name(pipe), port_name(port));
2861
2862 WARN(encoder->base.crtc,
2863 "stealing pipe %c power sequencer from active eDP port %c\n",
2864 pipe_name(pipe), port_name(port));
2865
2866 /* make sure vdd is off before we steal it */
2867 vlv_detach_power_sequencer(intel_dp);
2868 }
2869 }
2870
2871 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2872 {
2873 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2874 struct intel_encoder *encoder = &intel_dig_port->base;
2875 struct drm_device *dev = encoder->base.dev;
2876 struct drm_i915_private *dev_priv = dev->dev_private;
2877 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2878
2879 lockdep_assert_held(&dev_priv->pps_mutex);
2880
2881 if (!is_edp(intel_dp))
2882 return;
2883
2884 if (intel_dp->pps_pipe == crtc->pipe)
2885 return;
2886
2887 /*
2888 * If another power sequencer was being used on this
2889 * port previously make sure to turn off vdd there while
2890 * we still have control of it.
2891 */
2892 if (intel_dp->pps_pipe != INVALID_PIPE)
2893 vlv_detach_power_sequencer(intel_dp);
2894
2895 /*
2896 * We may be stealing the power
2897 * sequencer from another port.
2898 */
2899 vlv_steal_power_sequencer(dev, crtc->pipe);
2900
2901 /* now it's all ours */
2902 intel_dp->pps_pipe = crtc->pipe;
2903
2904 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2905 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2906
2907 /* init power sequencer on this pipe and port */
2908 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2909 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2910 }
2911
2912 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2913 {
2914 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2915 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2916 struct drm_device *dev = encoder->base.dev;
2917 struct drm_i915_private *dev_priv = dev->dev_private;
2918 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2919 enum dpio_channel port = vlv_dport_to_channel(dport);
2920 int pipe = intel_crtc->pipe;
2921 u32 val;
2922
2923 mutex_lock(&dev_priv->sb_lock);
2924
2925 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2926 val = 0;
2927 if (pipe)
2928 val |= (1<<21);
2929 else
2930 val &= ~(1<<21);
2931 val |= 0x001000c4;
2932 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2933 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2934 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2935
2936 mutex_unlock(&dev_priv->sb_lock);
2937
2938 intel_enable_dp(encoder);
2939 }
2940
2941 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2942 {
2943 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2944 struct drm_device *dev = encoder->base.dev;
2945 struct drm_i915_private *dev_priv = dev->dev_private;
2946 struct intel_crtc *intel_crtc =
2947 to_intel_crtc(encoder->base.crtc);
2948 enum dpio_channel port = vlv_dport_to_channel(dport);
2949 int pipe = intel_crtc->pipe;
2950
2951 intel_dp_prepare(encoder);
2952
2953 /* Program Tx lane resets to default */
2954 mutex_lock(&dev_priv->sb_lock);
2955 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2956 DPIO_PCS_TX_LANE2_RESET |
2957 DPIO_PCS_TX_LANE1_RESET);
2958 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2959 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2960 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2961 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2962 DPIO_PCS_CLK_SOFT_RESET);
2963
2964 /* Fix up inter-pair skew failure */
2965 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2966 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2967 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2968 mutex_unlock(&dev_priv->sb_lock);
2969 }
2970
2971 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2972 {
2973 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2974 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2975 struct drm_device *dev = encoder->base.dev;
2976 struct drm_i915_private *dev_priv = dev->dev_private;
2977 struct intel_crtc *intel_crtc =
2978 to_intel_crtc(encoder->base.crtc);
2979 enum dpio_channel ch = vlv_dport_to_channel(dport);
2980 int pipe = intel_crtc->pipe;
2981 int data, i, stagger;
2982 u32 val;
2983
2984 mutex_lock(&dev_priv->sb_lock);
2985
2986 /* allow hardware to manage TX FIFO reset source */
2987 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2988 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2989 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2990
2991 if (intel_crtc->config->lane_count > 2) {
2992 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2993 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2994 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2995 }
2996
2997 /* Program Tx lane latency optimal setting*/
2998 for (i = 0; i < intel_crtc->config->lane_count; i++) {
2999 /* Set the upar bit */
3000 if (intel_crtc->config->lane_count == 1)
3001 data = 0x0;
3002 else
3003 data = (i == 1) ? 0x0 : 0x1;
3004 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
3005 data << DPIO_UPAR_SHIFT);
3006 }
3007
3008 /* Data lane stagger programming */
3009 if (intel_crtc->config->port_clock > 270000)
3010 stagger = 0x18;
3011 else if (intel_crtc->config->port_clock > 135000)
3012 stagger = 0xd;
3013 else if (intel_crtc->config->port_clock > 67500)
3014 stagger = 0x7;
3015 else if (intel_crtc->config->port_clock > 33750)
3016 stagger = 0x4;
3017 else
3018 stagger = 0x2;
3019
3020 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
3021 val |= DPIO_TX2_STAGGER_MASK(0x1f);
3022 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
3023
3024 if (intel_crtc->config->lane_count > 2) {
3025 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
3026 val |= DPIO_TX2_STAGGER_MASK(0x1f);
3027 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
3028 }
3029
3030 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
3031 DPIO_LANESTAGGER_STRAP(stagger) |
3032 DPIO_LANESTAGGER_STRAP_OVRD |
3033 DPIO_TX1_STAGGER_MASK(0x1f) |
3034 DPIO_TX1_STAGGER_MULT(6) |
3035 DPIO_TX2_STAGGER_MULT(0));
3036
3037 if (intel_crtc->config->lane_count > 2) {
3038 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
3039 DPIO_LANESTAGGER_STRAP(stagger) |
3040 DPIO_LANESTAGGER_STRAP_OVRD |
3041 DPIO_TX1_STAGGER_MASK(0x1f) |
3042 DPIO_TX1_STAGGER_MULT(7) |
3043 DPIO_TX2_STAGGER_MULT(5));
3044 }
3045
3046 /* Deassert data lane reset */
3047 chv_data_lane_soft_reset(encoder, false);
3048
3049 mutex_unlock(&dev_priv->sb_lock);
3050
3051 intel_enable_dp(encoder);
3052
3053 /* Second common lane will stay alive on its own now */
3054 if (dport->release_cl2_override) {
3055 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
3056 dport->release_cl2_override = false;
3057 }
3058 }
3059
3060 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
3061 {
3062 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
3063 struct drm_device *dev = encoder->base.dev;
3064 struct drm_i915_private *dev_priv = dev->dev_private;
3065 struct intel_crtc *intel_crtc =
3066 to_intel_crtc(encoder->base.crtc);
3067 enum dpio_channel ch = vlv_dport_to_channel(dport);
3068 enum pipe pipe = intel_crtc->pipe;
3069 unsigned int lane_mask =
3070 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
3071 u32 val;
3072
3073 intel_dp_prepare(encoder);
3074
3075 /*
3076 * Must trick the second common lane into life.
3077 * Otherwise we can't even access the PLL.
3078 */
3079 if (ch == DPIO_CH0 && pipe == PIPE_B)
3080 dport->release_cl2_override =
3081 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
3082
3083 chv_phy_powergate_lanes(encoder, true, lane_mask);
3084
3085 mutex_lock(&dev_priv->sb_lock);
3086
3087 /* Assert data lane reset */
3088 chv_data_lane_soft_reset(encoder, true);
3089
3090 /* program left/right clock distribution */
3091 if (pipe != PIPE_B) {
3092 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3093 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3094 if (ch == DPIO_CH0)
3095 val |= CHV_BUFLEFTENA1_FORCE;
3096 if (ch == DPIO_CH1)
3097 val |= CHV_BUFRIGHTENA1_FORCE;
3098 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3099 } else {
3100 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3101 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3102 if (ch == DPIO_CH0)
3103 val |= CHV_BUFLEFTENA2_FORCE;
3104 if (ch == DPIO_CH1)
3105 val |= CHV_BUFRIGHTENA2_FORCE;
3106 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3107 }
3108
3109 /* program clock channel usage */
3110 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3111 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3112 if (pipe != PIPE_B)
3113 val &= ~CHV_PCS_USEDCLKCHANNEL;
3114 else
3115 val |= CHV_PCS_USEDCLKCHANNEL;
3116 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3117
3118 if (intel_crtc->config->lane_count > 2) {
3119 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3120 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3121 if (pipe != PIPE_B)
3122 val &= ~CHV_PCS_USEDCLKCHANNEL;
3123 else
3124 val |= CHV_PCS_USEDCLKCHANNEL;
3125 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3126 }
3127
3128 /*
3129 * This a a bit weird since generally CL
3130 * matches the pipe, but here we need to
3131 * pick the CL based on the port.
3132 */
3133 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3134 if (pipe != PIPE_B)
3135 val &= ~CHV_CMN_USEDCLKCHANNEL;
3136 else
3137 val |= CHV_CMN_USEDCLKCHANNEL;
3138 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3139
3140 mutex_unlock(&dev_priv->sb_lock);
3141 }
3142
3143 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3144 {
3145 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3146 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3147 u32 val;
3148
3149 mutex_lock(&dev_priv->sb_lock);
3150
3151 /* disable left/right clock distribution */
3152 if (pipe != PIPE_B) {
3153 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3154 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3155 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3156 } else {
3157 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3158 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3159 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3160 }
3161
3162 mutex_unlock(&dev_priv->sb_lock);
3163
3164 /*
3165 * Leave the power down bit cleared for at least one
3166 * lane so that chv_powergate_phy_ch() will power
3167 * on something when the channel is otherwise unused.
3168 * When the port is off and the override is removed
3169 * the lanes power down anyway, so otherwise it doesn't
3170 * really matter what the state of power down bits is
3171 * after this.
3172 */
3173 chv_phy_powergate_lanes(encoder, false, 0x0);
3174 }
3175
3176 /*
3177 * Native read with retry for link status and receiver capability reads for
3178 * cases where the sink may still be asleep.
3179 *
3180 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3181 * supposed to retry 3 times per the spec.
3182 */
3183 static ssize_t
3184 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3185 void *buffer, size_t size)
3186 {
3187 ssize_t ret;
3188 int i;
3189
3190 /*
3191 * Sometime we just get the same incorrect byte repeated
3192 * over the entire buffer. Doing just one throw away read
3193 * initially seems to "solve" it.
3194 */
3195 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3196
3197 for (i = 0; i < 3; i++) {
3198 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3199 if (ret == size)
3200 return ret;
3201 msleep(1);
3202 }
3203
3204 return ret;
3205 }
3206
3207 /*
3208 * Fetch AUX CH registers 0x202 - 0x207 which contain
3209 * link status information
3210 */
3211 bool
3212 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3213 {
3214 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3215 DP_LANE0_1_STATUS,
3216 link_status,
3217 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3218 }
3219
3220 /* These are source-specific values. */
3221 uint8_t
3222 intel_dp_voltage_max(struct intel_dp *intel_dp)
3223 {
3224 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3225 struct drm_i915_private *dev_priv = dev->dev_private;
3226 enum port port = dp_to_dig_port(intel_dp)->port;
3227
3228 if (IS_BROXTON(dev))
3229 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3230 else if (INTEL_INFO(dev)->gen >= 9) {
3231 if (dev_priv->edp_low_vswing && port == PORT_A)
3232 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3233 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3234 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3235 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3236 else if (IS_GEN7(dev) && port == PORT_A)
3237 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3238 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3239 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3240 else
3241 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3242 }
3243
3244 uint8_t
3245 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3246 {
3247 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3248 enum port port = dp_to_dig_port(intel_dp)->port;
3249
3250 if (INTEL_INFO(dev)->gen >= 9) {
3251 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3252 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3253 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3254 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3255 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3256 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3257 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3258 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3259 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3260 default:
3261 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3262 }
3263 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3264 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3265 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3266 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3267 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3268 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3269 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3270 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3272 default:
3273 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3274 }
3275 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3276 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3277 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3278 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3279 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3280 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3281 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3282 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3283 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3284 default:
3285 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3286 }
3287 } else if (IS_GEN7(dev) && port == PORT_A) {
3288 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3289 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3290 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3291 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3292 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3293 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3294 default:
3295 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3296 }
3297 } else {
3298 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3299 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3300 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3302 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3303 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3304 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3305 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3306 default:
3307 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3308 }
3309 }
3310 }
3311
3312 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3313 {
3314 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3315 struct drm_i915_private *dev_priv = dev->dev_private;
3316 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3317 struct intel_crtc *intel_crtc =
3318 to_intel_crtc(dport->base.base.crtc);
3319 unsigned long demph_reg_value, preemph_reg_value,
3320 uniqtranscale_reg_value;
3321 uint8_t train_set = intel_dp->train_set[0];
3322 enum dpio_channel port = vlv_dport_to_channel(dport);
3323 int pipe = intel_crtc->pipe;
3324
3325 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3326 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3327 preemph_reg_value = 0x0004000;
3328 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3329 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3330 demph_reg_value = 0x2B405555;
3331 uniqtranscale_reg_value = 0x552AB83A;
3332 break;
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3334 demph_reg_value = 0x2B404040;
3335 uniqtranscale_reg_value = 0x5548B83A;
3336 break;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3338 demph_reg_value = 0x2B245555;
3339 uniqtranscale_reg_value = 0x5560B83A;
3340 break;
3341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3342 demph_reg_value = 0x2B405555;
3343 uniqtranscale_reg_value = 0x5598DA3A;
3344 break;
3345 default:
3346 return 0;
3347 }
3348 break;
3349 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3350 preemph_reg_value = 0x0002000;
3351 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3352 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3353 demph_reg_value = 0x2B404040;
3354 uniqtranscale_reg_value = 0x5552B83A;
3355 break;
3356 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3357 demph_reg_value = 0x2B404848;
3358 uniqtranscale_reg_value = 0x5580B83A;
3359 break;
3360 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3361 demph_reg_value = 0x2B404040;
3362 uniqtranscale_reg_value = 0x55ADDA3A;
3363 break;
3364 default:
3365 return 0;
3366 }
3367 break;
3368 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3369 preemph_reg_value = 0x0000000;
3370 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3371 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3372 demph_reg_value = 0x2B305555;
3373 uniqtranscale_reg_value = 0x5570B83A;
3374 break;
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3376 demph_reg_value = 0x2B2B4040;
3377 uniqtranscale_reg_value = 0x55ADDA3A;
3378 break;
3379 default:
3380 return 0;
3381 }
3382 break;
3383 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3384 preemph_reg_value = 0x0006000;
3385 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3386 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3387 demph_reg_value = 0x1B405555;
3388 uniqtranscale_reg_value = 0x55ADDA3A;
3389 break;
3390 default:
3391 return 0;
3392 }
3393 break;
3394 default:
3395 return 0;
3396 }
3397
3398 mutex_lock(&dev_priv->sb_lock);
3399 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3400 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3401 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3402 uniqtranscale_reg_value);
3403 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3404 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3405 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3406 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3407 mutex_unlock(&dev_priv->sb_lock);
3408
3409 return 0;
3410 }
3411
3412 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3413 {
3414 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3415 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3416 }
3417
3418 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3419 {
3420 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3423 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3424 u32 deemph_reg_value, margin_reg_value, val;
3425 uint8_t train_set = intel_dp->train_set[0];
3426 enum dpio_channel ch = vlv_dport_to_channel(dport);
3427 enum pipe pipe = intel_crtc->pipe;
3428 int i;
3429
3430 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3431 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3432 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3433 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3434 deemph_reg_value = 128;
3435 margin_reg_value = 52;
3436 break;
3437 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3438 deemph_reg_value = 128;
3439 margin_reg_value = 77;
3440 break;
3441 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3442 deemph_reg_value = 128;
3443 margin_reg_value = 102;
3444 break;
3445 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3446 deemph_reg_value = 128;
3447 margin_reg_value = 154;
3448 /* FIXME extra to set for 1200 */
3449 break;
3450 default:
3451 return 0;
3452 }
3453 break;
3454 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3455 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3457 deemph_reg_value = 85;
3458 margin_reg_value = 78;
3459 break;
3460 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3461 deemph_reg_value = 85;
3462 margin_reg_value = 116;
3463 break;
3464 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3465 deemph_reg_value = 85;
3466 margin_reg_value = 154;
3467 break;
3468 default:
3469 return 0;
3470 }
3471 break;
3472 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3473 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3474 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3475 deemph_reg_value = 64;
3476 margin_reg_value = 104;
3477 break;
3478 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3479 deemph_reg_value = 64;
3480 margin_reg_value = 154;
3481 break;
3482 default:
3483 return 0;
3484 }
3485 break;
3486 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3487 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3488 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3489 deemph_reg_value = 43;
3490 margin_reg_value = 154;
3491 break;
3492 default:
3493 return 0;
3494 }
3495 break;
3496 default:
3497 return 0;
3498 }
3499
3500 mutex_lock(&dev_priv->sb_lock);
3501
3502 /* Clear calc init */
3503 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3504 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3505 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3506 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3507 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3508
3509 if (intel_crtc->config->lane_count > 2) {
3510 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3511 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3512 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3513 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3514 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3515 }
3516
3517 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3518 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3519 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3520 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3521
3522 if (intel_crtc->config->lane_count > 2) {
3523 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3524 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3525 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3526 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3527 }
3528
3529 /* Program swing deemph */
3530 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3531 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3532 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3533 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3534 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3535 }
3536
3537 /* Program swing margin */
3538 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3539 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3540
3541 val &= ~DPIO_SWING_MARGIN000_MASK;
3542 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3543
3544 /*
3545 * Supposedly this value shouldn't matter when unique transition
3546 * scale is disabled, but in fact it does matter. Let's just
3547 * always program the same value and hope it's OK.
3548 */
3549 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3550 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3551
3552 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3553 }
3554
3555 /*
3556 * The document said it needs to set bit 27 for ch0 and bit 26
3557 * for ch1. Might be a typo in the doc.
3558 * For now, for this unique transition scale selection, set bit
3559 * 27 for ch0 and ch1.
3560 */
3561 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3562 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3563 if (chv_need_uniq_trans_scale(train_set))
3564 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3565 else
3566 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3567 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3568 }
3569
3570 /* Start swing calculation */
3571 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3572 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3573 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3574
3575 if (intel_crtc->config->lane_count > 2) {
3576 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3577 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3578 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3579 }
3580
3581 mutex_unlock(&dev_priv->sb_lock);
3582
3583 return 0;
3584 }
3585
3586 static uint32_t
3587 gen4_signal_levels(uint8_t train_set)
3588 {
3589 uint32_t signal_levels = 0;
3590
3591 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3592 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3593 default:
3594 signal_levels |= DP_VOLTAGE_0_4;
3595 break;
3596 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3597 signal_levels |= DP_VOLTAGE_0_6;
3598 break;
3599 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3600 signal_levels |= DP_VOLTAGE_0_8;
3601 break;
3602 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3603 signal_levels |= DP_VOLTAGE_1_2;
3604 break;
3605 }
3606 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3607 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3608 default:
3609 signal_levels |= DP_PRE_EMPHASIS_0;
3610 break;
3611 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3612 signal_levels |= DP_PRE_EMPHASIS_3_5;
3613 break;
3614 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3615 signal_levels |= DP_PRE_EMPHASIS_6;
3616 break;
3617 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3618 signal_levels |= DP_PRE_EMPHASIS_9_5;
3619 break;
3620 }
3621 return signal_levels;
3622 }
3623
3624 /* Gen6's DP voltage swing and pre-emphasis control */
3625 static uint32_t
3626 gen6_edp_signal_levels(uint8_t train_set)
3627 {
3628 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3629 DP_TRAIN_PRE_EMPHASIS_MASK);
3630 switch (signal_levels) {
3631 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3632 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3633 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3634 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3635 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3636 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3637 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3638 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3639 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3640 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3641 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3642 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3643 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3644 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3645 default:
3646 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3647 "0x%x\n", signal_levels);
3648 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3649 }
3650 }
3651
3652 /* Gen7's DP voltage swing and pre-emphasis control */
3653 static uint32_t
3654 gen7_edp_signal_levels(uint8_t train_set)
3655 {
3656 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3657 DP_TRAIN_PRE_EMPHASIS_MASK);
3658 switch (signal_levels) {
3659 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3660 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3661 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3662 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3663 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3664 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3665
3666 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3667 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3668 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3669 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3670
3671 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3672 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3673 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3674 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3675
3676 default:
3677 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3678 "0x%x\n", signal_levels);
3679 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3680 }
3681 }
3682
3683 void
3684 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3685 {
3686 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3687 enum port port = intel_dig_port->port;
3688 struct drm_device *dev = intel_dig_port->base.base.dev;
3689 struct drm_i915_private *dev_priv = to_i915(dev);
3690 uint32_t signal_levels, mask = 0;
3691 uint8_t train_set = intel_dp->train_set[0];
3692
3693 if (HAS_DDI(dev)) {
3694 signal_levels = ddi_signal_levels(intel_dp);
3695
3696 if (IS_BROXTON(dev))
3697 signal_levels = 0;
3698 else
3699 mask = DDI_BUF_EMP_MASK;
3700 } else if (IS_CHERRYVIEW(dev)) {
3701 signal_levels = chv_signal_levels(intel_dp);
3702 } else if (IS_VALLEYVIEW(dev)) {
3703 signal_levels = vlv_signal_levels(intel_dp);
3704 } else if (IS_GEN7(dev) && port == PORT_A) {
3705 signal_levels = gen7_edp_signal_levels(train_set);
3706 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3707 } else if (IS_GEN6(dev) && port == PORT_A) {
3708 signal_levels = gen6_edp_signal_levels(train_set);
3709 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3710 } else {
3711 signal_levels = gen4_signal_levels(train_set);
3712 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3713 }
3714
3715 if (mask)
3716 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3717
3718 DRM_DEBUG_KMS("Using vswing level %d\n",
3719 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3720 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3721 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3722 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3723
3724 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3725
3726 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3727 POSTING_READ(intel_dp->output_reg);
3728 }
3729
3730 void
3731 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3732 uint8_t dp_train_pat)
3733 {
3734 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3735 struct drm_i915_private *dev_priv =
3736 to_i915(intel_dig_port->base.base.dev);
3737
3738 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3739
3740 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3741 POSTING_READ(intel_dp->output_reg);
3742 }
3743
3744 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3745 {
3746 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3747 struct drm_device *dev = intel_dig_port->base.base.dev;
3748 struct drm_i915_private *dev_priv = dev->dev_private;
3749 enum port port = intel_dig_port->port;
3750 uint32_t val;
3751
3752 if (!HAS_DDI(dev))
3753 return;
3754
3755 val = I915_READ(DP_TP_CTL(port));
3756 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3757 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3758 I915_WRITE(DP_TP_CTL(port), val);
3759
3760 /*
3761 * On PORT_A we can have only eDP in SST mode. There the only reason
3762 * we need to set idle transmission mode is to work around a HW issue
3763 * where we enable the pipe while not in idle link-training mode.
3764 * In this case there is requirement to wait for a minimum number of
3765 * idle patterns to be sent.
3766 */
3767 if (port == PORT_A)
3768 return;
3769
3770 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3771 1))
3772 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3773 }
3774
3775 static void
3776 intel_dp_link_down(struct intel_dp *intel_dp)
3777 {
3778 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3779 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3780 enum port port = intel_dig_port->port;
3781 struct drm_device *dev = intel_dig_port->base.base.dev;
3782 struct drm_i915_private *dev_priv = dev->dev_private;
3783 uint32_t DP = intel_dp->DP;
3784
3785 if (WARN_ON(HAS_DDI(dev)))
3786 return;
3787
3788 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3789 return;
3790
3791 DRM_DEBUG_KMS("\n");
3792
3793 if ((IS_GEN7(dev) && port == PORT_A) ||
3794 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3795 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3796 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3797 } else {
3798 if (IS_CHERRYVIEW(dev))
3799 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3800 else
3801 DP &= ~DP_LINK_TRAIN_MASK;
3802 DP |= DP_LINK_TRAIN_PAT_IDLE;
3803 }
3804 I915_WRITE(intel_dp->output_reg, DP);
3805 POSTING_READ(intel_dp->output_reg);
3806
3807 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3808 I915_WRITE(intel_dp->output_reg, DP);
3809 POSTING_READ(intel_dp->output_reg);
3810
3811 /*
3812 * HW workaround for IBX, we need to move the port
3813 * to transcoder A after disabling it to allow the
3814 * matching HDMI port to be enabled on transcoder A.
3815 */
3816 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3817 /*
3818 * We get CPU/PCH FIFO underruns on the other pipe when
3819 * doing the workaround. Sweep them under the rug.
3820 */
3821 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3822 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3823
3824 /* always enable with pattern 1 (as per spec) */
3825 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3826 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3827 I915_WRITE(intel_dp->output_reg, DP);
3828 POSTING_READ(intel_dp->output_reg);
3829
3830 DP &= ~DP_PORT_EN;
3831 I915_WRITE(intel_dp->output_reg, DP);
3832 POSTING_READ(intel_dp->output_reg);
3833
3834 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3835 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3836 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3837 }
3838
3839 msleep(intel_dp->panel_power_down_delay);
3840
3841 intel_dp->DP = DP;
3842 }
3843
3844 static bool
3845 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3846 {
3847 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3848 struct drm_device *dev = dig_port->base.base.dev;
3849 struct drm_i915_private *dev_priv = dev->dev_private;
3850 uint8_t rev;
3851
3852 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3853 sizeof(intel_dp->dpcd)) < 0)
3854 return false; /* aux transfer failed */
3855
3856 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3857
3858 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3859 return false; /* DPCD not present */
3860
3861 /* Check if the panel supports PSR */
3862 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3863 if (is_edp(intel_dp)) {
3864 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3865 intel_dp->psr_dpcd,
3866 sizeof(intel_dp->psr_dpcd));
3867 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3868 dev_priv->psr.sink_support = true;
3869 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3870 }
3871
3872 if (INTEL_INFO(dev)->gen >= 9 &&
3873 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3874 uint8_t frame_sync_cap;
3875
3876 dev_priv->psr.sink_support = true;
3877 intel_dp_dpcd_read_wake(&intel_dp->aux,
3878 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3879 &frame_sync_cap, 1);
3880 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3881 /* PSR2 needs frame sync as well */
3882 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3883 DRM_DEBUG_KMS("PSR2 %s on sink",
3884 dev_priv->psr.psr2_support ? "supported" : "not supported");
3885 }
3886 }
3887
3888 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3889 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3890 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3891
3892 /* Intermediate frequency support */
3893 if (is_edp(intel_dp) &&
3894 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3895 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3896 (rev >= 0x03)) { /* eDp v1.4 or higher */
3897 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3898 int i;
3899
3900 intel_dp_dpcd_read_wake(&intel_dp->aux,
3901 DP_SUPPORTED_LINK_RATES,
3902 sink_rates,
3903 sizeof(sink_rates));
3904
3905 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3906 int val = le16_to_cpu(sink_rates[i]);
3907
3908 if (val == 0)
3909 break;
3910
3911 /* Value read is in kHz while drm clock is saved in deca-kHz */
3912 intel_dp->sink_rates[i] = (val * 200) / 10;
3913 }
3914 intel_dp->num_sink_rates = i;
3915 }
3916
3917 intel_dp_print_rates(intel_dp);
3918
3919 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3920 DP_DWN_STRM_PORT_PRESENT))
3921 return true; /* native DP sink */
3922
3923 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3924 return true; /* no per-port downstream info */
3925
3926 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3927 intel_dp->downstream_ports,
3928 DP_MAX_DOWNSTREAM_PORTS) < 0)
3929 return false; /* downstream port status fetch failed */
3930
3931 return true;
3932 }
3933
3934 static void
3935 intel_dp_probe_oui(struct intel_dp *intel_dp)
3936 {
3937 u8 buf[3];
3938
3939 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3940 return;
3941
3942 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3943 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3944 buf[0], buf[1], buf[2]);
3945
3946 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3947 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3948 buf[0], buf[1], buf[2]);
3949 }
3950
3951 static bool
3952 intel_dp_probe_mst(struct intel_dp *intel_dp)
3953 {
3954 u8 buf[1];
3955
3956 if (!intel_dp->can_mst)
3957 return false;
3958
3959 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3960 return false;
3961
3962 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3963 if (buf[0] & DP_MST_CAP) {
3964 DRM_DEBUG_KMS("Sink is MST capable\n");
3965 intel_dp->is_mst = true;
3966 } else {
3967 DRM_DEBUG_KMS("Sink is not MST capable\n");
3968 intel_dp->is_mst = false;
3969 }
3970 }
3971
3972 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3973 return intel_dp->is_mst;
3974 }
3975
3976 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3977 {
3978 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3979 struct drm_device *dev = dig_port->base.base.dev;
3980 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3981 u8 buf;
3982 int ret = 0;
3983 int count = 0;
3984 int attempts = 10;
3985
3986 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3987 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3988 ret = -EIO;
3989 goto out;
3990 }
3991
3992 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3993 buf & ~DP_TEST_SINK_START) < 0) {
3994 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3995 ret = -EIO;
3996 goto out;
3997 }
3998
3999 do {
4000 intel_wait_for_vblank(dev, intel_crtc->pipe);
4001
4002 if (drm_dp_dpcd_readb(&intel_dp->aux,
4003 DP_TEST_SINK_MISC, &buf) < 0) {
4004 ret = -EIO;
4005 goto out;
4006 }
4007 count = buf & DP_TEST_COUNT_MASK;
4008 } while (--attempts && count);
4009
4010 if (attempts == 0) {
4011 DRM_ERROR("TIMEOUT: Sink CRC counter is not zeroed\n");
4012 ret = -ETIMEDOUT;
4013 }
4014
4015 out:
4016 hsw_enable_ips(intel_crtc);
4017 return ret;
4018 }
4019
4020 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4021 {
4022 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4023 struct drm_device *dev = dig_port->base.base.dev;
4024 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4025 u8 buf;
4026 int ret;
4027
4028 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4029 return -EIO;
4030
4031 if (!(buf & DP_TEST_CRC_SUPPORTED))
4032 return -ENOTTY;
4033
4034 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4035 return -EIO;
4036
4037 if (buf & DP_TEST_SINK_START) {
4038 ret = intel_dp_sink_crc_stop(intel_dp);
4039 if (ret)
4040 return ret;
4041 }
4042
4043 hsw_disable_ips(intel_crtc);
4044
4045 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4046 buf | DP_TEST_SINK_START) < 0) {
4047 hsw_enable_ips(intel_crtc);
4048 return -EIO;
4049 }
4050
4051 intel_wait_for_vblank(dev, intel_crtc->pipe);
4052 return 0;
4053 }
4054
4055 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4056 {
4057 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4058 struct drm_device *dev = dig_port->base.base.dev;
4059 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4060 u8 buf;
4061 int count, ret;
4062 int attempts = 6;
4063
4064 ret = intel_dp_sink_crc_start(intel_dp);
4065 if (ret)
4066 return ret;
4067
4068 do {
4069 intel_wait_for_vblank(dev, intel_crtc->pipe);
4070
4071 if (drm_dp_dpcd_readb(&intel_dp->aux,
4072 DP_TEST_SINK_MISC, &buf) < 0) {
4073 ret = -EIO;
4074 goto stop;
4075 }
4076 count = buf & DP_TEST_COUNT_MASK;
4077
4078 } while (--attempts && count == 0);
4079
4080 if (attempts == 0) {
4081 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4082 ret = -ETIMEDOUT;
4083 goto stop;
4084 }
4085
4086 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4087 ret = -EIO;
4088 goto stop;
4089 }
4090
4091 stop:
4092 intel_dp_sink_crc_stop(intel_dp);
4093 return ret;
4094 }
4095
4096 static bool
4097 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4098 {
4099 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4100 DP_DEVICE_SERVICE_IRQ_VECTOR,
4101 sink_irq_vector, 1) == 1;
4102 }
4103
4104 static bool
4105 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4106 {
4107 int ret;
4108
4109 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4110 DP_SINK_COUNT_ESI,
4111 sink_irq_vector, 14);
4112 if (ret != 14)
4113 return false;
4114
4115 return true;
4116 }
4117
4118 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4119 {
4120 uint8_t test_result = DP_TEST_ACK;
4121 return test_result;
4122 }
4123
4124 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4125 {
4126 uint8_t test_result = DP_TEST_NAK;
4127 return test_result;
4128 }
4129
4130 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4131 {
4132 uint8_t test_result = DP_TEST_NAK;
4133 struct intel_connector *intel_connector = intel_dp->attached_connector;
4134 struct drm_connector *connector = &intel_connector->base;
4135
4136 if (intel_connector->detect_edid == NULL ||
4137 connector->edid_corrupt ||
4138 intel_dp->aux.i2c_defer_count > 6) {
4139 /* Check EDID read for NACKs, DEFERs and corruption
4140 * (DP CTS 1.2 Core r1.1)
4141 * 4.2.2.4 : Failed EDID read, I2C_NAK
4142 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4143 * 4.2.2.6 : EDID corruption detected
4144 * Use failsafe mode for all cases
4145 */
4146 if (intel_dp->aux.i2c_nack_count > 0 ||
4147 intel_dp->aux.i2c_defer_count > 0)
4148 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4149 intel_dp->aux.i2c_nack_count,
4150 intel_dp->aux.i2c_defer_count);
4151 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4152 } else {
4153 struct edid *block = intel_connector->detect_edid;
4154
4155 /* We have to write the checksum
4156 * of the last block read
4157 */
4158 block += intel_connector->detect_edid->extensions;
4159
4160 if (!drm_dp_dpcd_write(&intel_dp->aux,
4161 DP_TEST_EDID_CHECKSUM,
4162 &block->checksum,
4163 1))
4164 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4165
4166 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4167 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4168 }
4169
4170 /* Set test active flag here so userspace doesn't interrupt things */
4171 intel_dp->compliance_test_active = 1;
4172
4173 return test_result;
4174 }
4175
4176 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4177 {
4178 uint8_t test_result = DP_TEST_NAK;
4179 return test_result;
4180 }
4181
4182 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4183 {
4184 uint8_t response = DP_TEST_NAK;
4185 uint8_t rxdata = 0;
4186 int status = 0;
4187
4188 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4189 if (status <= 0) {
4190 DRM_DEBUG_KMS("Could not read test request from sink\n");
4191 goto update_status;
4192 }
4193
4194 switch (rxdata) {
4195 case DP_TEST_LINK_TRAINING:
4196 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4197 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4198 response = intel_dp_autotest_link_training(intel_dp);
4199 break;
4200 case DP_TEST_LINK_VIDEO_PATTERN:
4201 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4202 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4203 response = intel_dp_autotest_video_pattern(intel_dp);
4204 break;
4205 case DP_TEST_LINK_EDID_READ:
4206 DRM_DEBUG_KMS("EDID test requested\n");
4207 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4208 response = intel_dp_autotest_edid(intel_dp);
4209 break;
4210 case DP_TEST_LINK_PHY_TEST_PATTERN:
4211 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4212 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4213 response = intel_dp_autotest_phy_pattern(intel_dp);
4214 break;
4215 default:
4216 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4217 break;
4218 }
4219
4220 update_status:
4221 status = drm_dp_dpcd_write(&intel_dp->aux,
4222 DP_TEST_RESPONSE,
4223 &response, 1);
4224 if (status <= 0)
4225 DRM_DEBUG_KMS("Could not write test response to sink\n");
4226 }
4227
4228 static int
4229 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4230 {
4231 bool bret;
4232
4233 if (intel_dp->is_mst) {
4234 u8 esi[16] = { 0 };
4235 int ret = 0;
4236 int retry;
4237 bool handled;
4238 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4239 go_again:
4240 if (bret == true) {
4241
4242 /* check link status - esi[10] = 0x200c */
4243 if (intel_dp->active_mst_links &&
4244 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4245 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4246 intel_dp_start_link_train(intel_dp);
4247 intel_dp_stop_link_train(intel_dp);
4248 }
4249
4250 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4251 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4252
4253 if (handled) {
4254 for (retry = 0; retry < 3; retry++) {
4255 int wret;
4256 wret = drm_dp_dpcd_write(&intel_dp->aux,
4257 DP_SINK_COUNT_ESI+1,
4258 &esi[1], 3);
4259 if (wret == 3) {
4260 break;
4261 }
4262 }
4263
4264 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4265 if (bret == true) {
4266 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4267 goto go_again;
4268 }
4269 } else
4270 ret = 0;
4271
4272 return ret;
4273 } else {
4274 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4275 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4276 intel_dp->is_mst = false;
4277 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4278 /* send a hotplug event */
4279 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4280 }
4281 }
4282 return -EINVAL;
4283 }
4284
4285 /*
4286 * According to DP spec
4287 * 5.1.2:
4288 * 1. Read DPCD
4289 * 2. Configure link according to Receiver Capabilities
4290 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4291 * 4. Check link status on receipt of hot-plug interrupt
4292 */
4293 static void
4294 intel_dp_check_link_status(struct intel_dp *intel_dp)
4295 {
4296 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4297 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4298 u8 sink_irq_vector;
4299 u8 link_status[DP_LINK_STATUS_SIZE];
4300
4301 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4302
4303 /*
4304 * Clearing compliance test variables to allow capturing
4305 * of values for next automated test request.
4306 */
4307 intel_dp->compliance_test_active = 0;
4308 intel_dp->compliance_test_type = 0;
4309 intel_dp->compliance_test_data = 0;
4310
4311 if (!intel_encoder->base.crtc)
4312 return;
4313
4314 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4315 return;
4316
4317 /* Try to read receiver status if the link appears to be up */
4318 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4319 return;
4320 }
4321
4322 /* Now read the DPCD to see if it's actually running */
4323 if (!intel_dp_get_dpcd(intel_dp)) {
4324 return;
4325 }
4326
4327 /* Try to read the source of the interrupt */
4328 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4329 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4330 /* Clear interrupt source */
4331 drm_dp_dpcd_writeb(&intel_dp->aux,
4332 DP_DEVICE_SERVICE_IRQ_VECTOR,
4333 sink_irq_vector);
4334
4335 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4336 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4337 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4338 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4339 }
4340
4341 /* if link training is requested we should perform it always */
4342 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4343 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4344 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4345 intel_encoder->base.name);
4346 intel_dp_start_link_train(intel_dp);
4347 intel_dp_stop_link_train(intel_dp);
4348 }
4349 }
4350
4351 /* XXX this is probably wrong for multiple downstream ports */
4352 static enum drm_connector_status
4353 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4354 {
4355 uint8_t *dpcd = intel_dp->dpcd;
4356 uint8_t type;
4357
4358 if (!intel_dp_get_dpcd(intel_dp))
4359 return connector_status_disconnected;
4360
4361 /* if there's no downstream port, we're done */
4362 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4363 return connector_status_connected;
4364
4365 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4366 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4367 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4368 uint8_t reg;
4369
4370 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4371 &reg, 1) < 0)
4372 return connector_status_unknown;
4373
4374 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4375 : connector_status_disconnected;
4376 }
4377
4378 /* If no HPD, poke DDC gently */
4379 if (drm_probe_ddc(&intel_dp->aux.ddc))
4380 return connector_status_connected;
4381
4382 /* Well we tried, say unknown for unreliable port types */
4383 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4384 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4385 if (type == DP_DS_PORT_TYPE_VGA ||
4386 type == DP_DS_PORT_TYPE_NON_EDID)
4387 return connector_status_unknown;
4388 } else {
4389 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4390 DP_DWN_STRM_PORT_TYPE_MASK;
4391 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4392 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4393 return connector_status_unknown;
4394 }
4395
4396 /* Anything else is out of spec, warn and ignore */
4397 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4398 return connector_status_disconnected;
4399 }
4400
4401 static enum drm_connector_status
4402 edp_detect(struct intel_dp *intel_dp)
4403 {
4404 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4405 enum drm_connector_status status;
4406
4407 status = intel_panel_detect(dev);
4408 if (status == connector_status_unknown)
4409 status = connector_status_connected;
4410
4411 return status;
4412 }
4413
4414 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4415 struct intel_digital_port *port)
4416 {
4417 u32 bit;
4418
4419 switch (port->port) {
4420 case PORT_A:
4421 return true;
4422 case PORT_B:
4423 bit = SDE_PORTB_HOTPLUG;
4424 break;
4425 case PORT_C:
4426 bit = SDE_PORTC_HOTPLUG;
4427 break;
4428 case PORT_D:
4429 bit = SDE_PORTD_HOTPLUG;
4430 break;
4431 default:
4432 MISSING_CASE(port->port);
4433 return false;
4434 }
4435
4436 return I915_READ(SDEISR) & bit;
4437 }
4438
4439 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4440 struct intel_digital_port *port)
4441 {
4442 u32 bit;
4443
4444 switch (port->port) {
4445 case PORT_A:
4446 return true;
4447 case PORT_B:
4448 bit = SDE_PORTB_HOTPLUG_CPT;
4449 break;
4450 case PORT_C:
4451 bit = SDE_PORTC_HOTPLUG_CPT;
4452 break;
4453 case PORT_D:
4454 bit = SDE_PORTD_HOTPLUG_CPT;
4455 break;
4456 case PORT_E:
4457 bit = SDE_PORTE_HOTPLUG_SPT;
4458 break;
4459 default:
4460 MISSING_CASE(port->port);
4461 return false;
4462 }
4463
4464 return I915_READ(SDEISR) & bit;
4465 }
4466
4467 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4468 struct intel_digital_port *port)
4469 {
4470 u32 bit;
4471
4472 switch (port->port) {
4473 case PORT_B:
4474 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4475 break;
4476 case PORT_C:
4477 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4478 break;
4479 case PORT_D:
4480 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4481 break;
4482 default:
4483 MISSING_CASE(port->port);
4484 return false;
4485 }
4486
4487 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4488 }
4489
4490 static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4491 struct intel_digital_port *port)
4492 {
4493 u32 bit;
4494
4495 switch (port->port) {
4496 case PORT_B:
4497 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4498 break;
4499 case PORT_C:
4500 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4501 break;
4502 case PORT_D:
4503 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4504 break;
4505 default:
4506 MISSING_CASE(port->port);
4507 return false;
4508 }
4509
4510 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4511 }
4512
4513 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4514 struct intel_digital_port *intel_dig_port)
4515 {
4516 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4517 enum port port;
4518 u32 bit;
4519
4520 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4521 switch (port) {
4522 case PORT_A:
4523 bit = BXT_DE_PORT_HP_DDIA;
4524 break;
4525 case PORT_B:
4526 bit = BXT_DE_PORT_HP_DDIB;
4527 break;
4528 case PORT_C:
4529 bit = BXT_DE_PORT_HP_DDIC;
4530 break;
4531 default:
4532 MISSING_CASE(port);
4533 return false;
4534 }
4535
4536 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4537 }
4538
4539 /*
4540 * intel_digital_port_connected - is the specified port connected?
4541 * @dev_priv: i915 private structure
4542 * @port: the port to test
4543 *
4544 * Return %true if @port is connected, %false otherwise.
4545 */
4546 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4547 struct intel_digital_port *port)
4548 {
4549 if (HAS_PCH_IBX(dev_priv))
4550 return ibx_digital_port_connected(dev_priv, port);
4551 if (HAS_PCH_SPLIT(dev_priv))
4552 return cpt_digital_port_connected(dev_priv, port);
4553 else if (IS_BROXTON(dev_priv))
4554 return bxt_digital_port_connected(dev_priv, port);
4555 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4556 return vlv_digital_port_connected(dev_priv, port);
4557 else
4558 return g4x_digital_port_connected(dev_priv, port);
4559 }
4560
4561 static struct edid *
4562 intel_dp_get_edid(struct intel_dp *intel_dp)
4563 {
4564 struct intel_connector *intel_connector = intel_dp->attached_connector;
4565
4566 /* use cached edid if we have one */
4567 if (intel_connector->edid) {
4568 /* invalid edid */
4569 if (IS_ERR(intel_connector->edid))
4570 return NULL;
4571
4572 return drm_edid_duplicate(intel_connector->edid);
4573 } else
4574 return drm_get_edid(&intel_connector->base,
4575 &intel_dp->aux.ddc);
4576 }
4577
4578 static void
4579 intel_dp_set_edid(struct intel_dp *intel_dp)
4580 {
4581 struct intel_connector *intel_connector = intel_dp->attached_connector;
4582 struct edid *edid;
4583
4584 edid = intel_dp_get_edid(intel_dp);
4585 intel_connector->detect_edid = edid;
4586
4587 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4588 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4589 else
4590 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4591 }
4592
4593 static void
4594 intel_dp_unset_edid(struct intel_dp *intel_dp)
4595 {
4596 struct intel_connector *intel_connector = intel_dp->attached_connector;
4597
4598 kfree(intel_connector->detect_edid);
4599 intel_connector->detect_edid = NULL;
4600
4601 intel_dp->has_audio = false;
4602 }
4603
4604 static enum drm_connector_status
4605 intel_dp_detect(struct drm_connector *connector, bool force)
4606 {
4607 struct intel_dp *intel_dp = intel_attached_dp(connector);
4608 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4609 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4610 struct drm_device *dev = connector->dev;
4611 enum drm_connector_status status;
4612 enum intel_display_power_domain power_domain;
4613 bool ret;
4614 u8 sink_irq_vector;
4615
4616 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4617 connector->base.id, connector->name);
4618 intel_dp_unset_edid(intel_dp);
4619
4620 if (intel_dp->is_mst) {
4621 /* MST devices are disconnected from a monitor POV */
4622 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4623 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4624 return connector_status_disconnected;
4625 }
4626
4627 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4628 intel_display_power_get(to_i915(dev), power_domain);
4629
4630 /* Can't disconnect eDP, but you can close the lid... */
4631 if (is_edp(intel_dp))
4632 status = edp_detect(intel_dp);
4633 else if (intel_digital_port_connected(to_i915(dev),
4634 dp_to_dig_port(intel_dp)))
4635 status = intel_dp_detect_dpcd(intel_dp);
4636 else
4637 status = connector_status_disconnected;
4638
4639 if (status != connector_status_connected) {
4640 intel_dp->compliance_test_active = 0;
4641 intel_dp->compliance_test_type = 0;
4642 intel_dp->compliance_test_data = 0;
4643
4644 goto out;
4645 }
4646
4647 intel_dp_probe_oui(intel_dp);
4648
4649 ret = intel_dp_probe_mst(intel_dp);
4650 if (ret) {
4651 /* if we are in MST mode then this connector
4652 won't appear connected or have anything with EDID on it */
4653 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4654 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4655 status = connector_status_disconnected;
4656 goto out;
4657 }
4658
4659 /*
4660 * Clearing NACK and defer counts to get their exact values
4661 * while reading EDID which are required by Compliance tests
4662 * 4.2.2.4 and 4.2.2.5
4663 */
4664 intel_dp->aux.i2c_nack_count = 0;
4665 intel_dp->aux.i2c_defer_count = 0;
4666
4667 intel_dp_set_edid(intel_dp);
4668
4669 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4670 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4671 status = connector_status_connected;
4672
4673 /* Try to read the source of the interrupt */
4674 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4675 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4676 /* Clear interrupt source */
4677 drm_dp_dpcd_writeb(&intel_dp->aux,
4678 DP_DEVICE_SERVICE_IRQ_VECTOR,
4679 sink_irq_vector);
4680
4681 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4682 intel_dp_handle_test_request(intel_dp);
4683 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4684 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4685 }
4686
4687 out:
4688 intel_display_power_put(to_i915(dev), power_domain);
4689 return status;
4690 }
4691
4692 static void
4693 intel_dp_force(struct drm_connector *connector)
4694 {
4695 struct intel_dp *intel_dp = intel_attached_dp(connector);
4696 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4697 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4698 enum intel_display_power_domain power_domain;
4699
4700 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4701 connector->base.id, connector->name);
4702 intel_dp_unset_edid(intel_dp);
4703
4704 if (connector->status != connector_status_connected)
4705 return;
4706
4707 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4708 intel_display_power_get(dev_priv, power_domain);
4709
4710 intel_dp_set_edid(intel_dp);
4711
4712 intel_display_power_put(dev_priv, power_domain);
4713
4714 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4715 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4716 }
4717
4718 static int intel_dp_get_modes(struct drm_connector *connector)
4719 {
4720 struct intel_connector *intel_connector = to_intel_connector(connector);
4721 struct edid *edid;
4722
4723 edid = intel_connector->detect_edid;
4724 if (edid) {
4725 int ret = intel_connector_update_modes(connector, edid);
4726 if (ret)
4727 return ret;
4728 }
4729
4730 /* if eDP has no EDID, fall back to fixed mode */
4731 if (is_edp(intel_attached_dp(connector)) &&
4732 intel_connector->panel.fixed_mode) {
4733 struct drm_display_mode *mode;
4734
4735 mode = drm_mode_duplicate(connector->dev,
4736 intel_connector->panel.fixed_mode);
4737 if (mode) {
4738 drm_mode_probed_add(connector, mode);
4739 return 1;
4740 }
4741 }
4742
4743 return 0;
4744 }
4745
4746 static bool
4747 intel_dp_detect_audio(struct drm_connector *connector)
4748 {
4749 bool has_audio = false;
4750 struct edid *edid;
4751
4752 edid = to_intel_connector(connector)->detect_edid;
4753 if (edid)
4754 has_audio = drm_detect_monitor_audio(edid);
4755
4756 return has_audio;
4757 }
4758
4759 static int
4760 intel_dp_set_property(struct drm_connector *connector,
4761 struct drm_property *property,
4762 uint64_t val)
4763 {
4764 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4765 struct intel_connector *intel_connector = to_intel_connector(connector);
4766 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4767 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4768 int ret;
4769
4770 ret = drm_object_property_set_value(&connector->base, property, val);
4771 if (ret)
4772 return ret;
4773
4774 if (property == dev_priv->force_audio_property) {
4775 int i = val;
4776 bool has_audio;
4777
4778 if (i == intel_dp->force_audio)
4779 return 0;
4780
4781 intel_dp->force_audio = i;
4782
4783 if (i == HDMI_AUDIO_AUTO)
4784 has_audio = intel_dp_detect_audio(connector);
4785 else
4786 has_audio = (i == HDMI_AUDIO_ON);
4787
4788 if (has_audio == intel_dp->has_audio)
4789 return 0;
4790
4791 intel_dp->has_audio = has_audio;
4792 goto done;
4793 }
4794
4795 if (property == dev_priv->broadcast_rgb_property) {
4796 bool old_auto = intel_dp->color_range_auto;
4797 bool old_range = intel_dp->limited_color_range;
4798
4799 switch (val) {
4800 case INTEL_BROADCAST_RGB_AUTO:
4801 intel_dp->color_range_auto = true;
4802 break;
4803 case INTEL_BROADCAST_RGB_FULL:
4804 intel_dp->color_range_auto = false;
4805 intel_dp->limited_color_range = false;
4806 break;
4807 case INTEL_BROADCAST_RGB_LIMITED:
4808 intel_dp->color_range_auto = false;
4809 intel_dp->limited_color_range = true;
4810 break;
4811 default:
4812 return -EINVAL;
4813 }
4814
4815 if (old_auto == intel_dp->color_range_auto &&
4816 old_range == intel_dp->limited_color_range)
4817 return 0;
4818
4819 goto done;
4820 }
4821
4822 if (is_edp(intel_dp) &&
4823 property == connector->dev->mode_config.scaling_mode_property) {
4824 if (val == DRM_MODE_SCALE_NONE) {
4825 DRM_DEBUG_KMS("no scaling not supported\n");
4826 return -EINVAL;
4827 }
4828
4829 if (intel_connector->panel.fitting_mode == val) {
4830 /* the eDP scaling property is not changed */
4831 return 0;
4832 }
4833 intel_connector->panel.fitting_mode = val;
4834
4835 goto done;
4836 }
4837
4838 return -EINVAL;
4839
4840 done:
4841 if (intel_encoder->base.crtc)
4842 intel_crtc_restore_mode(intel_encoder->base.crtc);
4843
4844 return 0;
4845 }
4846
4847 static void
4848 intel_dp_connector_destroy(struct drm_connector *connector)
4849 {
4850 struct intel_connector *intel_connector = to_intel_connector(connector);
4851
4852 kfree(intel_connector->detect_edid);
4853
4854 if (!IS_ERR_OR_NULL(intel_connector->edid))
4855 kfree(intel_connector->edid);
4856
4857 /* Can't call is_edp() since the encoder may have been destroyed
4858 * already. */
4859 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4860 intel_panel_fini(&intel_connector->panel);
4861
4862 drm_connector_cleanup(connector);
4863 kfree(connector);
4864 }
4865
4866 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4867 {
4868 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4869 struct intel_dp *intel_dp = &intel_dig_port->dp;
4870
4871 intel_dp_aux_fini(intel_dp);
4872 intel_dp_mst_encoder_cleanup(intel_dig_port);
4873 if (is_edp(intel_dp)) {
4874 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4875 /*
4876 * vdd might still be enabled do to the delayed vdd off.
4877 * Make sure vdd is actually turned off here.
4878 */
4879 pps_lock(intel_dp);
4880 edp_panel_vdd_off_sync(intel_dp);
4881 pps_unlock(intel_dp);
4882
4883 if (intel_dp->edp_notifier.notifier_call) {
4884 unregister_reboot_notifier(&intel_dp->edp_notifier);
4885 intel_dp->edp_notifier.notifier_call = NULL;
4886 }
4887 }
4888 drm_encoder_cleanup(encoder);
4889 kfree(intel_dig_port);
4890 }
4891
4892 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4893 {
4894 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4895
4896 if (!is_edp(intel_dp))
4897 return;
4898
4899 /*
4900 * vdd might still be enabled do to the delayed vdd off.
4901 * Make sure vdd is actually turned off here.
4902 */
4903 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4904 pps_lock(intel_dp);
4905 edp_panel_vdd_off_sync(intel_dp);
4906 pps_unlock(intel_dp);
4907 }
4908
4909 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4910 {
4911 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4912 struct drm_device *dev = intel_dig_port->base.base.dev;
4913 struct drm_i915_private *dev_priv = dev->dev_private;
4914 enum intel_display_power_domain power_domain;
4915
4916 lockdep_assert_held(&dev_priv->pps_mutex);
4917
4918 if (!edp_have_panel_vdd(intel_dp))
4919 return;
4920
4921 /*
4922 * The VDD bit needs a power domain reference, so if the bit is
4923 * already enabled when we boot or resume, grab this reference and
4924 * schedule a vdd off, so we don't hold on to the reference
4925 * indefinitely.
4926 */
4927 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4928 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4929 intel_display_power_get(dev_priv, power_domain);
4930
4931 edp_panel_vdd_schedule_off(intel_dp);
4932 }
4933
4934 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4935 {
4936 struct intel_dp *intel_dp;
4937
4938 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4939 return;
4940
4941 intel_dp = enc_to_intel_dp(encoder);
4942
4943 pps_lock(intel_dp);
4944
4945 /*
4946 * Read out the current power sequencer assignment,
4947 * in case the BIOS did something with it.
4948 */
4949 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4950 vlv_initial_power_sequencer_setup(intel_dp);
4951
4952 intel_edp_panel_vdd_sanitize(intel_dp);
4953
4954 pps_unlock(intel_dp);
4955 }
4956
4957 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4958 .dpms = drm_atomic_helper_connector_dpms,
4959 .detect = intel_dp_detect,
4960 .force = intel_dp_force,
4961 .fill_modes = drm_helper_probe_single_connector_modes,
4962 .set_property = intel_dp_set_property,
4963 .atomic_get_property = intel_connector_atomic_get_property,
4964 .destroy = intel_dp_connector_destroy,
4965 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4966 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4967 };
4968
4969 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4970 .get_modes = intel_dp_get_modes,
4971 .mode_valid = intel_dp_mode_valid,
4972 .best_encoder = intel_best_encoder,
4973 };
4974
4975 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4976 .reset = intel_dp_encoder_reset,
4977 .destroy = intel_dp_encoder_destroy,
4978 };
4979
4980 enum irqreturn
4981 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4982 {
4983 struct intel_dp *intel_dp = &intel_dig_port->dp;
4984 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4985 struct drm_device *dev = intel_dig_port->base.base.dev;
4986 struct drm_i915_private *dev_priv = dev->dev_private;
4987 enum intel_display_power_domain power_domain;
4988 enum irqreturn ret = IRQ_NONE;
4989
4990 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4991 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4992 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4993
4994 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4995 /*
4996 * vdd off can generate a long pulse on eDP which
4997 * would require vdd on to handle it, and thus we
4998 * would end up in an endless cycle of
4999 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5000 */
5001 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5002 port_name(intel_dig_port->port));
5003 return IRQ_HANDLED;
5004 }
5005
5006 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5007 port_name(intel_dig_port->port),
5008 long_hpd ? "long" : "short");
5009
5010 power_domain = intel_display_port_aux_power_domain(intel_encoder);
5011 intel_display_power_get(dev_priv, power_domain);
5012
5013 if (long_hpd) {
5014 /* indicate that we need to restart link training */
5015 intel_dp->train_set_valid = false;
5016
5017 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
5018 goto mst_fail;
5019
5020 if (!intel_dp_get_dpcd(intel_dp)) {
5021 goto mst_fail;
5022 }
5023
5024 intel_dp_probe_oui(intel_dp);
5025
5026 if (!intel_dp_probe_mst(intel_dp)) {
5027 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5028 intel_dp_check_link_status(intel_dp);
5029 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5030 goto mst_fail;
5031 }
5032 } else {
5033 if (intel_dp->is_mst) {
5034 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5035 goto mst_fail;
5036 }
5037
5038 if (!intel_dp->is_mst) {
5039 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5040 intel_dp_check_link_status(intel_dp);
5041 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5042 }
5043 }
5044
5045 ret = IRQ_HANDLED;
5046
5047 goto put_power;
5048 mst_fail:
5049 /* if we were in MST mode, and device is not there get out of MST mode */
5050 if (intel_dp->is_mst) {
5051 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5052 intel_dp->is_mst = false;
5053 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5054 }
5055 put_power:
5056 intel_display_power_put(dev_priv, power_domain);
5057
5058 return ret;
5059 }
5060
5061 /* check the VBT to see whether the eDP is on another port */
5062 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5063 {
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065 union child_device_config *p_child;
5066 int i;
5067 static const short port_mapping[] = {
5068 [PORT_B] = DVO_PORT_DPB,
5069 [PORT_C] = DVO_PORT_DPC,
5070 [PORT_D] = DVO_PORT_DPD,
5071 [PORT_E] = DVO_PORT_DPE,
5072 };
5073
5074 /*
5075 * eDP not supported on g4x. so bail out early just
5076 * for a bit extra safety in case the VBT is bonkers.
5077 */
5078 if (INTEL_INFO(dev)->gen < 5)
5079 return false;
5080
5081 if (port == PORT_A)
5082 return true;
5083
5084 if (!dev_priv->vbt.child_dev_num)
5085 return false;
5086
5087 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5088 p_child = dev_priv->vbt.child_dev + i;
5089
5090 if (p_child->common.dvo_port == port_mapping[port] &&
5091 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5092 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5093 return true;
5094 }
5095 return false;
5096 }
5097
5098 void
5099 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5100 {
5101 struct intel_connector *intel_connector = to_intel_connector(connector);
5102
5103 intel_attach_force_audio_property(connector);
5104 intel_attach_broadcast_rgb_property(connector);
5105 intel_dp->color_range_auto = true;
5106
5107 if (is_edp(intel_dp)) {
5108 drm_mode_create_scaling_mode_property(connector->dev);
5109 drm_object_attach_property(
5110 &connector->base,
5111 connector->dev->mode_config.scaling_mode_property,
5112 DRM_MODE_SCALE_ASPECT);
5113 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5114 }
5115 }
5116
5117 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5118 {
5119 intel_dp->last_power_cycle = jiffies;
5120 intel_dp->last_power_on = jiffies;
5121 intel_dp->last_backlight_off = jiffies;
5122 }
5123
5124 static void
5125 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5126 struct intel_dp *intel_dp)
5127 {
5128 struct drm_i915_private *dev_priv = dev->dev_private;
5129 struct edp_power_seq cur, vbt, spec,
5130 *final = &intel_dp->pps_delays;
5131 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5132 i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5133
5134 lockdep_assert_held(&dev_priv->pps_mutex);
5135
5136 /* already initialized? */
5137 if (final->t11_t12 != 0)
5138 return;
5139
5140 if (IS_BROXTON(dev)) {
5141 /*
5142 * TODO: BXT has 2 sets of PPS registers.
5143 * Correct Register for Broxton need to be identified
5144 * using VBT. hardcoding for now
5145 */
5146 pp_ctrl_reg = BXT_PP_CONTROL(0);
5147 pp_on_reg = BXT_PP_ON_DELAYS(0);
5148 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5149 } else if (HAS_PCH_SPLIT(dev)) {
5150 pp_ctrl_reg = PCH_PP_CONTROL;
5151 pp_on_reg = PCH_PP_ON_DELAYS;
5152 pp_off_reg = PCH_PP_OFF_DELAYS;
5153 pp_div_reg = PCH_PP_DIVISOR;
5154 } else {
5155 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5156
5157 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5158 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5159 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5160 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5161 }
5162
5163 /* Workaround: Need to write PP_CONTROL with the unlock key as
5164 * the very first thing. */
5165 pp_ctl = ironlake_get_pp_control(intel_dp);
5166
5167 pp_on = I915_READ(pp_on_reg);
5168 pp_off = I915_READ(pp_off_reg);
5169 if (!IS_BROXTON(dev)) {
5170 I915_WRITE(pp_ctrl_reg, pp_ctl);
5171 pp_div = I915_READ(pp_div_reg);
5172 }
5173
5174 /* Pull timing values out of registers */
5175 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5176 PANEL_POWER_UP_DELAY_SHIFT;
5177
5178 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5179 PANEL_LIGHT_ON_DELAY_SHIFT;
5180
5181 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5182 PANEL_LIGHT_OFF_DELAY_SHIFT;
5183
5184 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5185 PANEL_POWER_DOWN_DELAY_SHIFT;
5186
5187 if (IS_BROXTON(dev)) {
5188 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5189 BXT_POWER_CYCLE_DELAY_SHIFT;
5190 if (tmp > 0)
5191 cur.t11_t12 = (tmp - 1) * 1000;
5192 else
5193 cur.t11_t12 = 0;
5194 } else {
5195 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5196 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5197 }
5198
5199 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5200 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5201
5202 vbt = dev_priv->vbt.edp_pps;
5203
5204 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5205 * our hw here, which are all in 100usec. */
5206 spec.t1_t3 = 210 * 10;
5207 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5208 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5209 spec.t10 = 500 * 10;
5210 /* This one is special and actually in units of 100ms, but zero
5211 * based in the hw (so we need to add 100 ms). But the sw vbt
5212 * table multiplies it with 1000 to make it in units of 100usec,
5213 * too. */
5214 spec.t11_t12 = (510 + 100) * 10;
5215
5216 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5217 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5218
5219 /* Use the max of the register settings and vbt. If both are
5220 * unset, fall back to the spec limits. */
5221 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5222 spec.field : \
5223 max(cur.field, vbt.field))
5224 assign_final(t1_t3);
5225 assign_final(t8);
5226 assign_final(t9);
5227 assign_final(t10);
5228 assign_final(t11_t12);
5229 #undef assign_final
5230
5231 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5232 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5233 intel_dp->backlight_on_delay = get_delay(t8);
5234 intel_dp->backlight_off_delay = get_delay(t9);
5235 intel_dp->panel_power_down_delay = get_delay(t10);
5236 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5237 #undef get_delay
5238
5239 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5240 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5241 intel_dp->panel_power_cycle_delay);
5242
5243 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5244 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5245 }
5246
5247 static void
5248 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5249 struct intel_dp *intel_dp)
5250 {
5251 struct drm_i915_private *dev_priv = dev->dev_private;
5252 u32 pp_on, pp_off, pp_div, port_sel = 0;
5253 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5254 i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5255 enum port port = dp_to_dig_port(intel_dp)->port;
5256 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5257
5258 lockdep_assert_held(&dev_priv->pps_mutex);
5259
5260 if (IS_BROXTON(dev)) {
5261 /*
5262 * TODO: BXT has 2 sets of PPS registers.
5263 * Correct Register for Broxton need to be identified
5264 * using VBT. hardcoding for now
5265 */
5266 pp_ctrl_reg = BXT_PP_CONTROL(0);
5267 pp_on_reg = BXT_PP_ON_DELAYS(0);
5268 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5269
5270 } else if (HAS_PCH_SPLIT(dev)) {
5271 pp_on_reg = PCH_PP_ON_DELAYS;
5272 pp_off_reg = PCH_PP_OFF_DELAYS;
5273 pp_div_reg = PCH_PP_DIVISOR;
5274 } else {
5275 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5276
5277 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5278 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5279 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5280 }
5281
5282 /*
5283 * And finally store the new values in the power sequencer. The
5284 * backlight delays are set to 1 because we do manual waits on them. For
5285 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5286 * we'll end up waiting for the backlight off delay twice: once when we
5287 * do the manual sleep, and once when we disable the panel and wait for
5288 * the PP_STATUS bit to become zero.
5289 */
5290 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5291 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5292 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5293 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5294 /* Compute the divisor for the pp clock, simply match the Bspec
5295 * formula. */
5296 if (IS_BROXTON(dev)) {
5297 pp_div = I915_READ(pp_ctrl_reg);
5298 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5299 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5300 << BXT_POWER_CYCLE_DELAY_SHIFT);
5301 } else {
5302 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5303 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5304 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5305 }
5306
5307 /* Haswell doesn't have any port selection bits for the panel
5308 * power sequencer any more. */
5309 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5310 port_sel = PANEL_PORT_SELECT_VLV(port);
5311 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5312 if (port == PORT_A)
5313 port_sel = PANEL_PORT_SELECT_DPA;
5314 else
5315 port_sel = PANEL_PORT_SELECT_DPD;
5316 }
5317
5318 pp_on |= port_sel;
5319
5320 I915_WRITE(pp_on_reg, pp_on);
5321 I915_WRITE(pp_off_reg, pp_off);
5322 if (IS_BROXTON(dev))
5323 I915_WRITE(pp_ctrl_reg, pp_div);
5324 else
5325 I915_WRITE(pp_div_reg, pp_div);
5326
5327 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5328 I915_READ(pp_on_reg),
5329 I915_READ(pp_off_reg),
5330 IS_BROXTON(dev) ?
5331 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5332 I915_READ(pp_div_reg));
5333 }
5334
5335 /**
5336 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5337 * @dev: DRM device
5338 * @refresh_rate: RR to be programmed
5339 *
5340 * This function gets called when refresh rate (RR) has to be changed from
5341 * one frequency to another. Switches can be between high and low RR
5342 * supported by the panel or to any other RR based on media playback (in
5343 * this case, RR value needs to be passed from user space).
5344 *
5345 * The caller of this function needs to take a lock on dev_priv->drrs.
5346 */
5347 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5348 {
5349 struct drm_i915_private *dev_priv = dev->dev_private;
5350 struct intel_encoder *encoder;
5351 struct intel_digital_port *dig_port = NULL;
5352 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5353 struct intel_crtc_state *config = NULL;
5354 struct intel_crtc *intel_crtc = NULL;
5355 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5356
5357 if (refresh_rate <= 0) {
5358 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5359 return;
5360 }
5361
5362 if (intel_dp == NULL) {
5363 DRM_DEBUG_KMS("DRRS not supported.\n");
5364 return;
5365 }
5366
5367 /*
5368 * FIXME: This needs proper synchronization with psr state for some
5369 * platforms that cannot have PSR and DRRS enabled at the same time.
5370 */
5371
5372 dig_port = dp_to_dig_port(intel_dp);
5373 encoder = &dig_port->base;
5374 intel_crtc = to_intel_crtc(encoder->base.crtc);
5375
5376 if (!intel_crtc) {
5377 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5378 return;
5379 }
5380
5381 config = intel_crtc->config;
5382
5383 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5384 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5385 return;
5386 }
5387
5388 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5389 refresh_rate)
5390 index = DRRS_LOW_RR;
5391
5392 if (index == dev_priv->drrs.refresh_rate_type) {
5393 DRM_DEBUG_KMS(
5394 "DRRS requested for previously set RR...ignoring\n");
5395 return;
5396 }
5397
5398 if (!intel_crtc->active) {
5399 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5400 return;
5401 }
5402
5403 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5404 switch (index) {
5405 case DRRS_HIGH_RR:
5406 intel_dp_set_m_n(intel_crtc, M1_N1);
5407 break;
5408 case DRRS_LOW_RR:
5409 intel_dp_set_m_n(intel_crtc, M2_N2);
5410 break;
5411 case DRRS_MAX_RR:
5412 default:
5413 DRM_ERROR("Unsupported refreshrate type\n");
5414 }
5415 } else if (INTEL_INFO(dev)->gen > 6) {
5416 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5417 u32 val;
5418
5419 val = I915_READ(reg);
5420 if (index > DRRS_HIGH_RR) {
5421 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5422 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5423 else
5424 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5425 } else {
5426 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5427 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5428 else
5429 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5430 }
5431 I915_WRITE(reg, val);
5432 }
5433
5434 dev_priv->drrs.refresh_rate_type = index;
5435
5436 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5437 }
5438
5439 /**
5440 * intel_edp_drrs_enable - init drrs struct if supported
5441 * @intel_dp: DP struct
5442 *
5443 * Initializes frontbuffer_bits and drrs.dp
5444 */
5445 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5446 {
5447 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5448 struct drm_i915_private *dev_priv = dev->dev_private;
5449 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5450 struct drm_crtc *crtc = dig_port->base.base.crtc;
5451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5452
5453 if (!intel_crtc->config->has_drrs) {
5454 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5455 return;
5456 }
5457
5458 mutex_lock(&dev_priv->drrs.mutex);
5459 if (WARN_ON(dev_priv->drrs.dp)) {
5460 DRM_ERROR("DRRS already enabled\n");
5461 goto unlock;
5462 }
5463
5464 dev_priv->drrs.busy_frontbuffer_bits = 0;
5465
5466 dev_priv->drrs.dp = intel_dp;
5467
5468 unlock:
5469 mutex_unlock(&dev_priv->drrs.mutex);
5470 }
5471
5472 /**
5473 * intel_edp_drrs_disable - Disable DRRS
5474 * @intel_dp: DP struct
5475 *
5476 */
5477 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5478 {
5479 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5480 struct drm_i915_private *dev_priv = dev->dev_private;
5481 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5482 struct drm_crtc *crtc = dig_port->base.base.crtc;
5483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5484
5485 if (!intel_crtc->config->has_drrs)
5486 return;
5487
5488 mutex_lock(&dev_priv->drrs.mutex);
5489 if (!dev_priv->drrs.dp) {
5490 mutex_unlock(&dev_priv->drrs.mutex);
5491 return;
5492 }
5493
5494 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5495 intel_dp_set_drrs_state(dev_priv->dev,
5496 intel_dp->attached_connector->panel.
5497 fixed_mode->vrefresh);
5498
5499 dev_priv->drrs.dp = NULL;
5500 mutex_unlock(&dev_priv->drrs.mutex);
5501
5502 cancel_delayed_work_sync(&dev_priv->drrs.work);
5503 }
5504
5505 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5506 {
5507 struct drm_i915_private *dev_priv =
5508 container_of(work, typeof(*dev_priv), drrs.work.work);
5509 struct intel_dp *intel_dp;
5510
5511 mutex_lock(&dev_priv->drrs.mutex);
5512
5513 intel_dp = dev_priv->drrs.dp;
5514
5515 if (!intel_dp)
5516 goto unlock;
5517
5518 /*
5519 * The delayed work can race with an invalidate hence we need to
5520 * recheck.
5521 */
5522
5523 if (dev_priv->drrs.busy_frontbuffer_bits)
5524 goto unlock;
5525
5526 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5527 intel_dp_set_drrs_state(dev_priv->dev,
5528 intel_dp->attached_connector->panel.
5529 downclock_mode->vrefresh);
5530
5531 unlock:
5532 mutex_unlock(&dev_priv->drrs.mutex);
5533 }
5534
5535 /**
5536 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5537 * @dev: DRM device
5538 * @frontbuffer_bits: frontbuffer plane tracking bits
5539 *
5540 * This function gets called everytime rendering on the given planes start.
5541 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5542 *
5543 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5544 */
5545 void intel_edp_drrs_invalidate(struct drm_device *dev,
5546 unsigned frontbuffer_bits)
5547 {
5548 struct drm_i915_private *dev_priv = dev->dev_private;
5549 struct drm_crtc *crtc;
5550 enum pipe pipe;
5551
5552 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5553 return;
5554
5555 cancel_delayed_work(&dev_priv->drrs.work);
5556
5557 mutex_lock(&dev_priv->drrs.mutex);
5558 if (!dev_priv->drrs.dp) {
5559 mutex_unlock(&dev_priv->drrs.mutex);
5560 return;
5561 }
5562
5563 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5564 pipe = to_intel_crtc(crtc)->pipe;
5565
5566 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5567 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5568
5569 /* invalidate means busy screen hence upclock */
5570 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5571 intel_dp_set_drrs_state(dev_priv->dev,
5572 dev_priv->drrs.dp->attached_connector->panel.
5573 fixed_mode->vrefresh);
5574
5575 mutex_unlock(&dev_priv->drrs.mutex);
5576 }
5577
5578 /**
5579 * intel_edp_drrs_flush - Restart Idleness DRRS
5580 * @dev: DRM device
5581 * @frontbuffer_bits: frontbuffer plane tracking bits
5582 *
5583 * This function gets called every time rendering on the given planes has
5584 * completed or flip on a crtc is completed. So DRRS should be upclocked
5585 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5586 * if no other planes are dirty.
5587 *
5588 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5589 */
5590 void intel_edp_drrs_flush(struct drm_device *dev,
5591 unsigned frontbuffer_bits)
5592 {
5593 struct drm_i915_private *dev_priv = dev->dev_private;
5594 struct drm_crtc *crtc;
5595 enum pipe pipe;
5596
5597 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5598 return;
5599
5600 cancel_delayed_work(&dev_priv->drrs.work);
5601
5602 mutex_lock(&dev_priv->drrs.mutex);
5603 if (!dev_priv->drrs.dp) {
5604 mutex_unlock(&dev_priv->drrs.mutex);
5605 return;
5606 }
5607
5608 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5609 pipe = to_intel_crtc(crtc)->pipe;
5610
5611 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5612 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5613
5614 /* flush means busy screen hence upclock */
5615 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5616 intel_dp_set_drrs_state(dev_priv->dev,
5617 dev_priv->drrs.dp->attached_connector->panel.
5618 fixed_mode->vrefresh);
5619
5620 /*
5621 * flush also means no more activity hence schedule downclock, if all
5622 * other fbs are quiescent too
5623 */
5624 if (!dev_priv->drrs.busy_frontbuffer_bits)
5625 schedule_delayed_work(&dev_priv->drrs.work,
5626 msecs_to_jiffies(1000));
5627 mutex_unlock(&dev_priv->drrs.mutex);
5628 }
5629
5630 /**
5631 * DOC: Display Refresh Rate Switching (DRRS)
5632 *
5633 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5634 * which enables swtching between low and high refresh rates,
5635 * dynamically, based on the usage scenario. This feature is applicable
5636 * for internal panels.
5637 *
5638 * Indication that the panel supports DRRS is given by the panel EDID, which
5639 * would list multiple refresh rates for one resolution.
5640 *
5641 * DRRS is of 2 types - static and seamless.
5642 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5643 * (may appear as a blink on screen) and is used in dock-undock scenario.
5644 * Seamless DRRS involves changing RR without any visual effect to the user
5645 * and can be used during normal system usage. This is done by programming
5646 * certain registers.
5647 *
5648 * Support for static/seamless DRRS may be indicated in the VBT based on
5649 * inputs from the panel spec.
5650 *
5651 * DRRS saves power by switching to low RR based on usage scenarios.
5652 *
5653 * eDP DRRS:-
5654 * The implementation is based on frontbuffer tracking implementation.
5655 * When there is a disturbance on the screen triggered by user activity or a
5656 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5657 * When there is no movement on screen, after a timeout of 1 second, a switch
5658 * to low RR is made.
5659 * For integration with frontbuffer tracking code,
5660 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5661 *
5662 * DRRS can be further extended to support other internal panels and also
5663 * the scenario of video playback wherein RR is set based on the rate
5664 * requested by userspace.
5665 */
5666
5667 /**
5668 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5669 * @intel_connector: eDP connector
5670 * @fixed_mode: preferred mode of panel
5671 *
5672 * This function is called only once at driver load to initialize basic
5673 * DRRS stuff.
5674 *
5675 * Returns:
5676 * Downclock mode if panel supports it, else return NULL.
5677 * DRRS support is determined by the presence of downclock mode (apart
5678 * from VBT setting).
5679 */
5680 static struct drm_display_mode *
5681 intel_dp_drrs_init(struct intel_connector *intel_connector,
5682 struct drm_display_mode *fixed_mode)
5683 {
5684 struct drm_connector *connector = &intel_connector->base;
5685 struct drm_device *dev = connector->dev;
5686 struct drm_i915_private *dev_priv = dev->dev_private;
5687 struct drm_display_mode *downclock_mode = NULL;
5688
5689 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5690 mutex_init(&dev_priv->drrs.mutex);
5691
5692 if (INTEL_INFO(dev)->gen <= 6) {
5693 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5694 return NULL;
5695 }
5696
5697 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5698 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5699 return NULL;
5700 }
5701
5702 downclock_mode = intel_find_panel_downclock
5703 (dev, fixed_mode, connector);
5704
5705 if (!downclock_mode) {
5706 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5707 return NULL;
5708 }
5709
5710 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5711
5712 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5713 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5714 return downclock_mode;
5715 }
5716
5717 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5718 struct intel_connector *intel_connector)
5719 {
5720 struct drm_connector *connector = &intel_connector->base;
5721 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5722 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5723 struct drm_device *dev = intel_encoder->base.dev;
5724 struct drm_i915_private *dev_priv = dev->dev_private;
5725 struct drm_display_mode *fixed_mode = NULL;
5726 struct drm_display_mode *downclock_mode = NULL;
5727 bool has_dpcd;
5728 struct drm_display_mode *scan;
5729 struct edid *edid;
5730 enum pipe pipe = INVALID_PIPE;
5731
5732 if (!is_edp(intel_dp))
5733 return true;
5734
5735 pps_lock(intel_dp);
5736 intel_edp_panel_vdd_sanitize(intel_dp);
5737 pps_unlock(intel_dp);
5738
5739 /* Cache DPCD and EDID for edp. */
5740 has_dpcd = intel_dp_get_dpcd(intel_dp);
5741
5742 if (has_dpcd) {
5743 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5744 dev_priv->no_aux_handshake =
5745 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5746 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5747 } else {
5748 /* if this fails, presume the device is a ghost */
5749 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5750 return false;
5751 }
5752
5753 /* We now know it's not a ghost, init power sequence regs. */
5754 pps_lock(intel_dp);
5755 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5756 pps_unlock(intel_dp);
5757
5758 mutex_lock(&dev->mode_config.mutex);
5759 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5760 if (edid) {
5761 if (drm_add_edid_modes(connector, edid)) {
5762 drm_mode_connector_update_edid_property(connector,
5763 edid);
5764 drm_edid_to_eld(connector, edid);
5765 } else {
5766 kfree(edid);
5767 edid = ERR_PTR(-EINVAL);
5768 }
5769 } else {
5770 edid = ERR_PTR(-ENOENT);
5771 }
5772 intel_connector->edid = edid;
5773
5774 /* prefer fixed mode from EDID if available */
5775 list_for_each_entry(scan, &connector->probed_modes, head) {
5776 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5777 fixed_mode = drm_mode_duplicate(dev, scan);
5778 downclock_mode = intel_dp_drrs_init(
5779 intel_connector, fixed_mode);
5780 break;
5781 }
5782 }
5783
5784 /* fallback to VBT if available for eDP */
5785 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5786 fixed_mode = drm_mode_duplicate(dev,
5787 dev_priv->vbt.lfp_lvds_vbt_mode);
5788 if (fixed_mode)
5789 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5790 }
5791 mutex_unlock(&dev->mode_config.mutex);
5792
5793 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5794 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5795 register_reboot_notifier(&intel_dp->edp_notifier);
5796
5797 /*
5798 * Figure out the current pipe for the initial backlight setup.
5799 * If the current pipe isn't valid, try the PPS pipe, and if that
5800 * fails just assume pipe A.
5801 */
5802 if (IS_CHERRYVIEW(dev))
5803 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5804 else
5805 pipe = PORT_TO_PIPE(intel_dp->DP);
5806
5807 if (pipe != PIPE_A && pipe != PIPE_B)
5808 pipe = intel_dp->pps_pipe;
5809
5810 if (pipe != PIPE_A && pipe != PIPE_B)
5811 pipe = PIPE_A;
5812
5813 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5814 pipe_name(pipe));
5815 }
5816
5817 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5818 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5819 intel_panel_setup_backlight(connector, pipe);
5820
5821 return true;
5822 }
5823
5824 bool
5825 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5826 struct intel_connector *intel_connector)
5827 {
5828 struct drm_connector *connector = &intel_connector->base;
5829 struct intel_dp *intel_dp = &intel_dig_port->dp;
5830 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5831 struct drm_device *dev = intel_encoder->base.dev;
5832 struct drm_i915_private *dev_priv = dev->dev_private;
5833 enum port port = intel_dig_port->port;
5834 int type, ret;
5835
5836 if (WARN(intel_dig_port->max_lanes < 1,
5837 "Not enough lanes (%d) for DP on port %c\n",
5838 intel_dig_port->max_lanes, port_name(port)))
5839 return false;
5840
5841 intel_dp->pps_pipe = INVALID_PIPE;
5842
5843 /* intel_dp vfuncs */
5844 if (INTEL_INFO(dev)->gen >= 9)
5845 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5846 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5847 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5848 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5849 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5850 else if (HAS_PCH_SPLIT(dev))
5851 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5852 else
5853 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5854
5855 if (INTEL_INFO(dev)->gen >= 9)
5856 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5857 else
5858 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5859
5860 if (HAS_DDI(dev))
5861 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5862
5863 /* Preserve the current hw state. */
5864 intel_dp->DP = I915_READ(intel_dp->output_reg);
5865 intel_dp->attached_connector = intel_connector;
5866
5867 if (intel_dp_is_edp(dev, port))
5868 type = DRM_MODE_CONNECTOR_eDP;
5869 else
5870 type = DRM_MODE_CONNECTOR_DisplayPort;
5871
5872 /*
5873 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5874 * for DP the encoder type can be set by the caller to
5875 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5876 */
5877 if (type == DRM_MODE_CONNECTOR_eDP)
5878 intel_encoder->type = INTEL_OUTPUT_EDP;
5879
5880 /* eDP only on port B and/or C on vlv/chv */
5881 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5882 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5883 return false;
5884
5885 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5886 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5887 port_name(port));
5888
5889 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5890 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5891
5892 connector->interlace_allowed = true;
5893 connector->doublescan_allowed = 0;
5894
5895 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5896 edp_panel_vdd_work);
5897
5898 intel_connector_attach_encoder(intel_connector, intel_encoder);
5899 drm_connector_register(connector);
5900
5901 if (HAS_DDI(dev))
5902 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5903 else
5904 intel_connector->get_hw_state = intel_connector_get_hw_state;
5905 intel_connector->unregister = intel_dp_connector_unregister;
5906
5907 /* Set up the hotplug pin. */
5908 switch (port) {
5909 case PORT_A:
5910 intel_encoder->hpd_pin = HPD_PORT_A;
5911 break;
5912 case PORT_B:
5913 intel_encoder->hpd_pin = HPD_PORT_B;
5914 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5915 intel_encoder->hpd_pin = HPD_PORT_A;
5916 break;
5917 case PORT_C:
5918 intel_encoder->hpd_pin = HPD_PORT_C;
5919 break;
5920 case PORT_D:
5921 intel_encoder->hpd_pin = HPD_PORT_D;
5922 break;
5923 case PORT_E:
5924 intel_encoder->hpd_pin = HPD_PORT_E;
5925 break;
5926 default:
5927 BUG();
5928 }
5929
5930 if (is_edp(intel_dp)) {
5931 pps_lock(intel_dp);
5932 intel_dp_init_panel_power_timestamps(intel_dp);
5933 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5934 vlv_initial_power_sequencer_setup(intel_dp);
5935 else
5936 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5937 pps_unlock(intel_dp);
5938 }
5939
5940 ret = intel_dp_aux_init(intel_dp, intel_connector);
5941 if (ret)
5942 goto fail;
5943
5944 /* init MST on ports that can support it */
5945 if (HAS_DP_MST(dev) &&
5946 (port == PORT_B || port == PORT_C || port == PORT_D))
5947 intel_dp_mst_encoder_init(intel_dig_port,
5948 intel_connector->base.base.id);
5949
5950 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5951 intel_dp_aux_fini(intel_dp);
5952 intel_dp_mst_encoder_cleanup(intel_dig_port);
5953 goto fail;
5954 }
5955
5956 intel_dp_add_properties(intel_dp, connector);
5957
5958 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5959 * 0xd. Failure to do so will result in spurious interrupts being
5960 * generated on the port when a cable is not attached.
5961 */
5962 if (IS_G4X(dev) && !IS_GM45(dev)) {
5963 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5964 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5965 }
5966
5967 i915_debugfs_connector_add(connector);
5968
5969 return true;
5970
5971 fail:
5972 if (is_edp(intel_dp)) {
5973 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5974 /*
5975 * vdd might still be enabled do to the delayed vdd off.
5976 * Make sure vdd is actually turned off here.
5977 */
5978 pps_lock(intel_dp);
5979 edp_panel_vdd_off_sync(intel_dp);
5980 pps_unlock(intel_dp);
5981 }
5982 drm_connector_unregister(connector);
5983 drm_connector_cleanup(connector);
5984
5985 return false;
5986 }
5987
5988 void
5989 intel_dp_init(struct drm_device *dev,
5990 i915_reg_t output_reg, enum port port)
5991 {
5992 struct drm_i915_private *dev_priv = dev->dev_private;
5993 struct intel_digital_port *intel_dig_port;
5994 struct intel_encoder *intel_encoder;
5995 struct drm_encoder *encoder;
5996 struct intel_connector *intel_connector;
5997
5998 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5999 if (!intel_dig_port)
6000 return;
6001
6002 intel_connector = intel_connector_alloc();
6003 if (!intel_connector)
6004 goto err_connector_alloc;
6005
6006 intel_encoder = &intel_dig_port->base;
6007 encoder = &intel_encoder->base;
6008
6009 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
6010 DRM_MODE_ENCODER_TMDS, NULL))
6011 goto err_encoder_init;
6012
6013 intel_encoder->compute_config = intel_dp_compute_config;
6014 intel_encoder->disable = intel_disable_dp;
6015 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6016 intel_encoder->get_config = intel_dp_get_config;
6017 intel_encoder->suspend = intel_dp_encoder_suspend;
6018 if (IS_CHERRYVIEW(dev)) {
6019 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6020 intel_encoder->pre_enable = chv_pre_enable_dp;
6021 intel_encoder->enable = vlv_enable_dp;
6022 intel_encoder->post_disable = chv_post_disable_dp;
6023 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6024 } else if (IS_VALLEYVIEW(dev)) {
6025 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6026 intel_encoder->pre_enable = vlv_pre_enable_dp;
6027 intel_encoder->enable = vlv_enable_dp;
6028 intel_encoder->post_disable = vlv_post_disable_dp;
6029 } else {
6030 intel_encoder->pre_enable = g4x_pre_enable_dp;
6031 intel_encoder->enable = g4x_enable_dp;
6032 if (INTEL_INFO(dev)->gen >= 5)
6033 intel_encoder->post_disable = ilk_post_disable_dp;
6034 }
6035
6036 intel_dig_port->port = port;
6037 dev_priv->dig_port_map[port] = intel_encoder;
6038 intel_dig_port->dp.output_reg = output_reg;
6039 intel_dig_port->max_lanes = 4;
6040
6041 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6042 if (IS_CHERRYVIEW(dev)) {
6043 if (port == PORT_D)
6044 intel_encoder->crtc_mask = 1 << 2;
6045 else
6046 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6047 } else {
6048 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6049 }
6050 intel_encoder->cloneable = 0;
6051
6052 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6053 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6054
6055 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6056 goto err_init_connector;
6057
6058 return;
6059
6060 err_init_connector:
6061 drm_encoder_cleanup(encoder);
6062 err_encoder_init:
6063 kfree(intel_connector);
6064 err_connector_alloc:
6065 kfree(intel_dig_port);
6066
6067 return;
6068 }
6069
6070 void intel_dp_mst_suspend(struct drm_device *dev)
6071 {
6072 struct drm_i915_private *dev_priv = dev->dev_private;
6073 int i;
6074
6075 /* disable MST */
6076 for (i = 0; i < I915_MAX_PORTS; i++) {
6077 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6078 if (!intel_dig_port)
6079 continue;
6080
6081 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6082 if (!intel_dig_port->dp.can_mst)
6083 continue;
6084 if (intel_dig_port->dp.is_mst)
6085 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6086 }
6087 }
6088 }
6089
6090 void intel_dp_mst_resume(struct drm_device *dev)
6091 {
6092 struct drm_i915_private *dev_priv = dev->dev_private;
6093 int i;
6094
6095 for (i = 0; i < I915_MAX_PORTS; i++) {
6096 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6097 if (!intel_dig_port)
6098 continue;
6099 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6100 int ret;
6101
6102 if (!intel_dig_port->dp.can_mst)
6103 continue;
6104
6105 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6106 if (ret != 0) {
6107 intel_dp_check_mst_status(&intel_dig_port->dp);
6108 }
6109 }
6110 }
6111 }
This page took 0.159889 seconds and 5 git commands to generate.