Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
230 struct intel_engine_cs *engine);
231 static int intel_lr_context_pin(struct i915_gem_context *ctx,
232 struct intel_engine_cs *engine);
233
234 /**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236 * @dev_priv: i915 device private
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
244 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
245 {
246 /* On platforms with execlist available, vGPU will only
247 * support execlist mode, no ring buffer mode.
248 */
249 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
250 return 1;
251
252 if (INTEL_GEN(dev_priv) >= 9)
253 return 1;
254
255 if (enable_execlists == 0)
256 return 0;
257
258 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
259 USES_PPGTT(dev_priv) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_i915_private *dev_priv = engine->i915;
270
271 engine->disable_lite_restore_wa =
272 (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
273 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
274 (engine->id == VCS || engine->id == VCS2);
275
276 engine->ctx_desc_template = GEN8_CTX_VALID;
277 if (IS_GEN8(dev_priv))
278 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
279 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
280
281 /* TODO: WaDisableLiteRestore when we start using semaphore
282 * signalling between Command Streamers */
283 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
284
285 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
286 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
287 if (engine->disable_lite_restore_wa)
288 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
289 }
290
291 /**
292 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
293 * descriptor for a pinned context
294 * @ctx: Context to work on
295 * @engine: Engine the descriptor will be used with
296 *
297 * The context descriptor encodes various attributes of a context,
298 * including its GTT address and some flags. Because it's fairly
299 * expensive to calculate, we'll just do it once and cache the result,
300 * which remains valid until the context is unpinned.
301 *
302 * This is what a descriptor looks like, from LSB to MSB::
303 *
304 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
305 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
306 * bits 32-52: ctx ID, a globally unique tag
307 * bits 53-54: mbz, reserved for use by hardware
308 * bits 55-63: group ID, currently unused and set to 0
309 */
310 static void
311 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
312 struct intel_engine_cs *engine)
313 {
314 struct intel_context *ce = &ctx->engine[engine->id];
315 u64 desc;
316
317 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
318
319 desc = ctx->desc_template; /* bits 3-4 */
320 desc |= engine->ctx_desc_template; /* bits 0-11 */
321 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
322 /* bits 12-31 */
323 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
324
325 ce->lrc_desc = desc;
326 }
327
328 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
329 struct intel_engine_cs *engine)
330 {
331 return ctx->engine[engine->id].lrc_desc;
332 }
333
334 static inline void
335 execlists_context_status_change(struct drm_i915_gem_request *rq,
336 unsigned long status)
337 {
338 /*
339 * Only used when GVT-g is enabled now. When GVT-g is disabled,
340 * The compiler should eliminate this function as dead-code.
341 */
342 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
343 return;
344
345 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
346 }
347
348 static void
349 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
350 {
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 u32 *reg_state = ce->lrc_reg_state;
362
363 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
364
365 /* True 32b PPGTT with dynamic page allocation: update PDP
366 * registers and point the unallocated PDPs to scratch page.
367 * PML4 is allocated during ppgtt init, so this is not needed
368 * in 48-bit mode.
369 */
370 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
371 execlists_update_context_pdps(ppgtt, reg_state);
372
373 return ce->lrc_desc;
374 }
375
376 static void execlists_submit_ports(struct intel_engine_cs *engine)
377 {
378 struct drm_i915_private *dev_priv = engine->i915;
379 struct execlist_port *port = engine->execlist_port;
380 u32 __iomem *elsp =
381 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
382 u64 desc[2];
383
384 if (!port[0].count)
385 execlists_context_status_change(port[0].request,
386 INTEL_CONTEXT_SCHEDULE_IN);
387 desc[0] = execlists_update_context(port[0].request);
388 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
389
390 if (port[1].request) {
391 GEM_BUG_ON(port[1].count);
392 execlists_context_status_change(port[1].request,
393 INTEL_CONTEXT_SCHEDULE_IN);
394 desc[1] = execlists_update_context(port[1].request);
395 port[1].count = 1;
396 } else {
397 desc[1] = 0;
398 }
399 GEM_BUG_ON(desc[0] == desc[1]);
400
401 /* You must always write both descriptors in the order below. */
402 writel(upper_32_bits(desc[1]), elsp);
403 writel(lower_32_bits(desc[1]), elsp);
404
405 writel(upper_32_bits(desc[0]), elsp);
406 /* The context is automatically loaded after the following */
407 writel(lower_32_bits(desc[0]), elsp);
408 }
409
410 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
411 {
412 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
413 ctx->execlists_force_single_submission);
414 }
415
416 static bool can_merge_ctx(const struct i915_gem_context *prev,
417 const struct i915_gem_context *next)
418 {
419 if (prev != next)
420 return false;
421
422 if (ctx_single_port_submission(prev))
423 return false;
424
425 return true;
426 }
427
428 static void execlists_dequeue(struct intel_engine_cs *engine)
429 {
430 struct drm_i915_gem_request *cursor, *last;
431 struct execlist_port *port = engine->execlist_port;
432 bool submit = false;
433
434 last = port->request;
435 if (last)
436 /* WaIdleLiteRestore:bdw,skl
437 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
438 * as we resubmit the request. See gen8_emit_request()
439 * for where we prepare the padding after the end of the
440 * request.
441 */
442 last->tail = last->wa_tail;
443
444 GEM_BUG_ON(port[1].request);
445
446 /* Hardware submission is through 2 ports. Conceptually each port
447 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
448 * static for a context, and unique to each, so we only execute
449 * requests belonging to a single context from each ring. RING_HEAD
450 * is maintained by the CS in the context image, it marks the place
451 * where it got up to last time, and through RING_TAIL we tell the CS
452 * where we want to execute up to this time.
453 *
454 * In this list the requests are in order of execution. Consecutive
455 * requests from the same context are adjacent in the ringbuffer. We
456 * can combine these requests into a single RING_TAIL update:
457 *
458 * RING_HEAD...req1...req2
459 * ^- RING_TAIL
460 * since to execute req2 the CS must first execute req1.
461 *
462 * Our goal then is to point each port to the end of a consecutive
463 * sequence of requests as being the most optimal (fewest wake ups
464 * and context switches) submission.
465 */
466
467 spin_lock(&engine->execlist_lock);
468 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
469 /* Can we combine this request with the current port? It has to
470 * be the same context/ringbuffer and not have any exceptions
471 * (e.g. GVT saying never to combine contexts).
472 *
473 * If we can combine the requests, we can execute both by
474 * updating the RING_TAIL to point to the end of the second
475 * request, and so we never need to tell the hardware about
476 * the first.
477 */
478 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
479 /* If we are on the second port and cannot combine
480 * this request with the last, then we are done.
481 */
482 if (port != engine->execlist_port)
483 break;
484
485 /* If GVT overrides us we only ever submit port[0],
486 * leaving port[1] empty. Note that we also have
487 * to be careful that we don't queue the same
488 * context (even though a different request) to
489 * the second port.
490 */
491 if (ctx_single_port_submission(cursor->ctx))
492 break;
493
494 GEM_BUG_ON(last->ctx == cursor->ctx);
495
496 i915_gem_request_assign(&port->request, last);
497 port++;
498 }
499 last = cursor;
500 submit = true;
501 }
502 if (submit) {
503 /* Decouple all the requests submitted from the queue */
504 engine->execlist_queue.next = &cursor->execlist_link;
505 cursor->execlist_link.prev = &engine->execlist_queue;
506
507 i915_gem_request_assign(&port->request, last);
508 }
509 spin_unlock(&engine->execlist_lock);
510
511 if (submit)
512 execlists_submit_ports(engine);
513 }
514
515 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
516 {
517 return !engine->execlist_port[0].request;
518 }
519
520 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
521 {
522 int port;
523
524 port = 1; /* wait for a free slot */
525 if (engine->disable_lite_restore_wa || engine->preempt_wa)
526 port = 0; /* wait for GPU to be idle before continuing */
527
528 return !engine->execlist_port[port].request;
529 }
530
531 /*
532 * Check the unread Context Status Buffers and manage the submission of new
533 * contexts to the ELSP accordingly.
534 */
535 static void intel_lrc_irq_handler(unsigned long data)
536 {
537 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
538 struct execlist_port *port = engine->execlist_port;
539 struct drm_i915_private *dev_priv = engine->i915;
540
541 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542
543 if (!execlists_elsp_idle(engine)) {
544 u32 __iomem *csb_mmio =
545 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
546 u32 __iomem *buf =
547 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
548 unsigned int csb, head, tail;
549
550 csb = readl(csb_mmio);
551 head = GEN8_CSB_READ_PTR(csb);
552 tail = GEN8_CSB_WRITE_PTR(csb);
553 if (tail < head)
554 tail += GEN8_CSB_ENTRIES;
555 while (head < tail) {
556 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
557 unsigned int status = readl(buf + 2 * idx);
558
559 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
560 continue;
561
562 GEM_BUG_ON(port[0].count == 0);
563 if (--port[0].count == 0) {
564 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
565 execlists_context_status_change(port[0].request,
566 INTEL_CONTEXT_SCHEDULE_OUT);
567
568 i915_gem_request_put(port[0].request);
569 port[0] = port[1];
570 memset(&port[1], 0, sizeof(port[1]));
571
572 engine->preempt_wa = false;
573 }
574
575 GEM_BUG_ON(port[0].count == 0 &&
576 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
577 }
578
579 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
580 GEN8_CSB_WRITE_PTR(csb) << 8),
581 csb_mmio);
582 }
583
584 if (execlists_elsp_ready(engine))
585 execlists_dequeue(engine);
586
587 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
588 }
589
590 static void execlists_submit_request(struct drm_i915_gem_request *request)
591 {
592 struct intel_engine_cs *engine = request->engine;
593 unsigned long flags;
594
595 spin_lock_irqsave(&engine->execlist_lock, flags);
596
597 list_add_tail(&request->execlist_link, &engine->execlist_queue);
598 if (execlists_elsp_idle(engine))
599 tasklet_hi_schedule(&engine->irq_tasklet);
600
601 spin_unlock_irqrestore(&engine->execlist_lock, flags);
602 }
603
604 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
605 {
606 struct intel_engine_cs *engine = request->engine;
607 struct intel_context *ce = &request->ctx->engine[engine->id];
608 int ret;
609
610 /* Flush enough space to reduce the likelihood of waiting after
611 * we start building the request - in which case we will just
612 * have to repeat work.
613 */
614 request->reserved_space += EXECLISTS_REQUEST_SIZE;
615
616 if (!ce->state) {
617 ret = execlists_context_deferred_alloc(request->ctx, engine);
618 if (ret)
619 return ret;
620 }
621
622 request->ring = ce->ring;
623
624 if (i915.enable_guc_submission) {
625 /*
626 * Check that the GuC has space for the request before
627 * going any further, as the i915_add_request() call
628 * later on mustn't fail ...
629 */
630 ret = i915_guc_wq_check_space(request);
631 if (ret)
632 return ret;
633 }
634
635 ret = intel_lr_context_pin(request->ctx, engine);
636 if (ret)
637 return ret;
638
639 ret = intel_ring_begin(request, 0);
640 if (ret)
641 goto err_unpin;
642
643 if (!ce->initialised) {
644 ret = engine->init_context(request);
645 if (ret)
646 goto err_unpin;
647
648 ce->initialised = true;
649 }
650
651 /* Note that after this point, we have committed to using
652 * this request as it is being used to both track the
653 * state of engine initialisation and liveness of the
654 * golden renderstate above. Think twice before you try
655 * to cancel/unwind this request now.
656 */
657
658 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
659 return 0;
660
661 err_unpin:
662 intel_lr_context_unpin(request->ctx, engine);
663 return ret;
664 }
665
666 /*
667 * intel_logical_ring_advance() - advance the tail and prepare for submission
668 * @request: Request to advance the logical ringbuffer of.
669 *
670 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
671 * really happens during submission is that the context and current tail will be placed
672 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
673 * point, the tail *inside* the context is updated and the ELSP written to.
674 */
675 static int
676 intel_logical_ring_advance(struct drm_i915_gem_request *request)
677 {
678 struct intel_ring *ring = request->ring;
679 struct intel_engine_cs *engine = request->engine;
680
681 intel_ring_advance(ring);
682 request->tail = ring->tail;
683
684 /*
685 * Here we add two extra NOOPs as padding to avoid
686 * lite restore of a context with HEAD==TAIL.
687 *
688 * Caller must reserve WA_TAIL_DWORDS for us!
689 */
690 intel_ring_emit(ring, MI_NOOP);
691 intel_ring_emit(ring, MI_NOOP);
692 intel_ring_advance(ring);
693 request->wa_tail = ring->tail;
694
695 /* We keep the previous context alive until we retire the following
696 * request. This ensures that any the context object is still pinned
697 * for any residual writes the HW makes into it on the context switch
698 * into the next object following the breadcrumb. Otherwise, we may
699 * retire the context too early.
700 */
701 request->previous_context = engine->last_context;
702 engine->last_context = request->ctx;
703 return 0;
704 }
705
706 static int intel_lr_context_pin(struct i915_gem_context *ctx,
707 struct intel_engine_cs *engine)
708 {
709 struct intel_context *ce = &ctx->engine[engine->id];
710 void *vaddr;
711 u32 *lrc_reg_state;
712 int ret;
713
714 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
715
716 if (ce->pin_count++)
717 return 0;
718
719 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
720 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
721 if (ret)
722 goto err;
723
724 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
725 if (IS_ERR(vaddr)) {
726 ret = PTR_ERR(vaddr);
727 goto unpin_vma;
728 }
729
730 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
731
732 ret = intel_ring_pin(ce->ring);
733 if (ret)
734 goto unpin_map;
735
736 intel_lr_context_descriptor_update(ctx, engine);
737
738 lrc_reg_state[CTX_RING_BUFFER_START+1] =
739 i915_ggtt_offset(ce->ring->vma);
740 ce->lrc_reg_state = lrc_reg_state;
741 ce->state->obj->dirty = true;
742
743 /* Invalidate GuC TLB. */
744 if (i915.enable_guc_submission) {
745 struct drm_i915_private *dev_priv = ctx->i915;
746 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
747 }
748
749 i915_gem_context_get(ctx);
750 return 0;
751
752 unpin_map:
753 i915_gem_object_unpin_map(ce->state->obj);
754 unpin_vma:
755 __i915_vma_unpin(ce->state);
756 err:
757 ce->pin_count = 0;
758 return ret;
759 }
760
761 void intel_lr_context_unpin(struct i915_gem_context *ctx,
762 struct intel_engine_cs *engine)
763 {
764 struct intel_context *ce = &ctx->engine[engine->id];
765
766 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
767 GEM_BUG_ON(ce->pin_count == 0);
768
769 if (--ce->pin_count)
770 return;
771
772 intel_ring_unpin(ce->ring);
773
774 i915_gem_object_unpin_map(ce->state->obj);
775 i915_vma_unpin(ce->state);
776
777 i915_gem_context_put(ctx);
778 }
779
780 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
781 {
782 int ret, i;
783 struct intel_ring *ring = req->ring;
784 struct i915_workarounds *w = &req->i915->workarounds;
785
786 if (w->count == 0)
787 return 0;
788
789 ret = req->engine->emit_flush(req, EMIT_BARRIER);
790 if (ret)
791 return ret;
792
793 ret = intel_ring_begin(req, w->count * 2 + 2);
794 if (ret)
795 return ret;
796
797 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
798 for (i = 0; i < w->count; i++) {
799 intel_ring_emit_reg(ring, w->reg[i].addr);
800 intel_ring_emit(ring, w->reg[i].value);
801 }
802 intel_ring_emit(ring, MI_NOOP);
803
804 intel_ring_advance(ring);
805
806 ret = req->engine->emit_flush(req, EMIT_BARRIER);
807 if (ret)
808 return ret;
809
810 return 0;
811 }
812
813 #define wa_ctx_emit(batch, index, cmd) \
814 do { \
815 int __index = (index)++; \
816 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
817 return -ENOSPC; \
818 } \
819 batch[__index] = (cmd); \
820 } while (0)
821
822 #define wa_ctx_emit_reg(batch, index, reg) \
823 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
824
825 /*
826 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
827 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
828 * but there is a slight complication as this is applied in WA batch where the
829 * values are only initialized once so we cannot take register value at the
830 * beginning and reuse it further; hence we save its value to memory, upload a
831 * constant value with bit21 set and then we restore it back with the saved value.
832 * To simplify the WA, a constant value is formed by using the default value
833 * of this register. This shouldn't be a problem because we are only modifying
834 * it for a short period and this batch in non-premptible. We can ofcourse
835 * use additional instructions that read the actual value of the register
836 * at that time and set our bit of interest but it makes the WA complicated.
837 *
838 * This WA is also required for Gen9 so extracting as a function avoids
839 * code duplication.
840 */
841 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
842 uint32_t *batch,
843 uint32_t index)
844 {
845 struct drm_i915_private *dev_priv = engine->i915;
846 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
847
848 /*
849 * WaDisableLSQCROPERFforOCL:skl,kbl
850 * This WA is implemented in skl_init_clock_gating() but since
851 * this batch updates GEN8_L3SQCREG4 with default value we need to
852 * set this bit here to retain the WA during flush.
853 */
854 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
855 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
856 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
857
858 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
859 MI_SRM_LRM_GLOBAL_GTT));
860 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
861 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
862 wa_ctx_emit(batch, index, 0);
863
864 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
865 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
866 wa_ctx_emit(batch, index, l3sqc4_flush);
867
868 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
869 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
870 PIPE_CONTROL_DC_FLUSH_ENABLE));
871 wa_ctx_emit(batch, index, 0);
872 wa_ctx_emit(batch, index, 0);
873 wa_ctx_emit(batch, index, 0);
874 wa_ctx_emit(batch, index, 0);
875
876 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
877 MI_SRM_LRM_GLOBAL_GTT));
878 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
879 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
880 wa_ctx_emit(batch, index, 0);
881
882 return index;
883 }
884
885 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
886 uint32_t offset,
887 uint32_t start_alignment)
888 {
889 return wa_ctx->offset = ALIGN(offset, start_alignment);
890 }
891
892 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
893 uint32_t offset,
894 uint32_t size_alignment)
895 {
896 wa_ctx->size = offset - wa_ctx->offset;
897
898 WARN(wa_ctx->size % size_alignment,
899 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
900 wa_ctx->size, size_alignment);
901 return 0;
902 }
903
904 /*
905 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
906 * initialized at the beginning and shared across all contexts but this field
907 * helps us to have multiple batches at different offsets and select them based
908 * on a criteria. At the moment this batch always start at the beginning of the page
909 * and at this point we don't have multiple wa_ctx batch buffers.
910 *
911 * The number of WA applied are not known at the beginning; we use this field
912 * to return the no of DWORDS written.
913 *
914 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
915 * so it adds NOOPs as padding to make it cacheline aligned.
916 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
917 * makes a complete batch buffer.
918 */
919 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
920 struct i915_wa_ctx_bb *wa_ctx,
921 uint32_t *batch,
922 uint32_t *offset)
923 {
924 uint32_t scratch_addr;
925 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
926
927 /* WaDisableCtxRestoreArbitration:bdw,chv */
928 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
929
930 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
931 if (IS_BROADWELL(engine->i915)) {
932 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
933 if (rc < 0)
934 return rc;
935 index = rc;
936 }
937
938 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
939 /* Actual scratch location is at 128 bytes offset */
940 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
941
942 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
943 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
944 PIPE_CONTROL_GLOBAL_GTT_IVB |
945 PIPE_CONTROL_CS_STALL |
946 PIPE_CONTROL_QW_WRITE));
947 wa_ctx_emit(batch, index, scratch_addr);
948 wa_ctx_emit(batch, index, 0);
949 wa_ctx_emit(batch, index, 0);
950 wa_ctx_emit(batch, index, 0);
951
952 /* Pad to end of cacheline */
953 while (index % CACHELINE_DWORDS)
954 wa_ctx_emit(batch, index, MI_NOOP);
955
956 /*
957 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
958 * execution depends on the length specified in terms of cache lines
959 * in the register CTX_RCS_INDIRECT_CTX
960 */
961
962 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
963 }
964
965 /*
966 * This batch is started immediately after indirect_ctx batch. Since we ensure
967 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
968 *
969 * The number of DWORDS written are returned using this field.
970 *
971 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
972 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
973 */
974 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
975 struct i915_wa_ctx_bb *wa_ctx,
976 uint32_t *batch,
977 uint32_t *offset)
978 {
979 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
980
981 /* WaDisableCtxRestoreArbitration:bdw,chv */
982 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
983
984 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
985
986 return wa_ctx_end(wa_ctx, *offset = index, 1);
987 }
988
989 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
990 struct i915_wa_ctx_bb *wa_ctx,
991 uint32_t *batch,
992 uint32_t *offset)
993 {
994 int ret;
995 struct drm_i915_private *dev_priv = engine->i915;
996 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
997
998 /* WaDisableCtxRestoreArbitration:skl,bxt */
999 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1000 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1001 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1002
1003 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1004 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1005 if (ret < 0)
1006 return ret;
1007 index = ret;
1008
1009 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1010 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1011 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1012 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1013 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1014 wa_ctx_emit(batch, index, MI_NOOP);
1015
1016 /* WaClearSlmSpaceAtContextSwitch:kbl */
1017 /* Actual scratch location is at 128 bytes offset */
1018 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1019 u32 scratch_addr =
1020 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1021
1022 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1023 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1024 PIPE_CONTROL_GLOBAL_GTT_IVB |
1025 PIPE_CONTROL_CS_STALL |
1026 PIPE_CONTROL_QW_WRITE));
1027 wa_ctx_emit(batch, index, scratch_addr);
1028 wa_ctx_emit(batch, index, 0);
1029 wa_ctx_emit(batch, index, 0);
1030 wa_ctx_emit(batch, index, 0);
1031 }
1032
1033 /* WaMediaPoolStateCmdInWABB:bxt */
1034 if (HAS_POOLED_EU(engine->i915)) {
1035 /*
1036 * EU pool configuration is setup along with golden context
1037 * during context initialization. This value depends on
1038 * device type (2x6 or 3x6) and needs to be updated based
1039 * on which subslice is disabled especially for 2x6
1040 * devices, however it is safe to load default
1041 * configuration of 3x6 device instead of masking off
1042 * corresponding bits because HW ignores bits of a disabled
1043 * subslice and drops down to appropriate config. Please
1044 * see render_state_setup() in i915_gem_render_state.c for
1045 * possible configurations, to avoid duplication they are
1046 * not shown here again.
1047 */
1048 u32 eu_pool_config = 0x00777000;
1049 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1050 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1051 wa_ctx_emit(batch, index, eu_pool_config);
1052 wa_ctx_emit(batch, index, 0);
1053 wa_ctx_emit(batch, index, 0);
1054 wa_ctx_emit(batch, index, 0);
1055 }
1056
1057 /* Pad to end of cacheline */
1058 while (index % CACHELINE_DWORDS)
1059 wa_ctx_emit(batch, index, MI_NOOP);
1060
1061 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1062 }
1063
1064 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1065 struct i915_wa_ctx_bb *wa_ctx,
1066 uint32_t *batch,
1067 uint32_t *offset)
1068 {
1069 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1070
1071 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1072 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1073 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1074 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1075 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1076 wa_ctx_emit(batch, index,
1077 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1078 wa_ctx_emit(batch, index, MI_NOOP);
1079 }
1080
1081 /* WaClearTdlStateAckDirtyBits:bxt */
1082 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1083 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1084
1085 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1086 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1087
1088 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1089 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1090
1091 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1092 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1093
1094 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1095 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1096 wa_ctx_emit(batch, index, 0x0);
1097 wa_ctx_emit(batch, index, MI_NOOP);
1098 }
1099
1100 /* WaDisableCtxRestoreArbitration:skl,bxt */
1101 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1102 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1103 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1104
1105 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1106
1107 return wa_ctx_end(wa_ctx, *offset = index, 1);
1108 }
1109
1110 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1111 {
1112 struct drm_i915_gem_object *obj;
1113 struct i915_vma *vma;
1114 int err;
1115
1116 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1117 if (IS_ERR(obj))
1118 return PTR_ERR(obj);
1119
1120 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1121 if (IS_ERR(vma)) {
1122 err = PTR_ERR(vma);
1123 goto err;
1124 }
1125
1126 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1127 if (err)
1128 goto err;
1129
1130 engine->wa_ctx.vma = vma;
1131 return 0;
1132
1133 err:
1134 i915_gem_object_put(obj);
1135 return err;
1136 }
1137
1138 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1139 {
1140 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1141 }
1142
1143 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1144 {
1145 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1146 uint32_t *batch;
1147 uint32_t offset;
1148 struct page *page;
1149 int ret;
1150
1151 WARN_ON(engine->id != RCS);
1152
1153 /* update this when WA for higher Gen are added */
1154 if (INTEL_GEN(engine->i915) > 9) {
1155 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1156 INTEL_GEN(engine->i915));
1157 return 0;
1158 }
1159
1160 /* some WA perform writes to scratch page, ensure it is valid */
1161 if (!engine->scratch) {
1162 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1163 return -EINVAL;
1164 }
1165
1166 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1167 if (ret) {
1168 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1169 return ret;
1170 }
1171
1172 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1173 batch = kmap_atomic(page);
1174 offset = 0;
1175
1176 if (IS_GEN8(engine->i915)) {
1177 ret = gen8_init_indirectctx_bb(engine,
1178 &wa_ctx->indirect_ctx,
1179 batch,
1180 &offset);
1181 if (ret)
1182 goto out;
1183
1184 ret = gen8_init_perctx_bb(engine,
1185 &wa_ctx->per_ctx,
1186 batch,
1187 &offset);
1188 if (ret)
1189 goto out;
1190 } else if (IS_GEN9(engine->i915)) {
1191 ret = gen9_init_indirectctx_bb(engine,
1192 &wa_ctx->indirect_ctx,
1193 batch,
1194 &offset);
1195 if (ret)
1196 goto out;
1197
1198 ret = gen9_init_perctx_bb(engine,
1199 &wa_ctx->per_ctx,
1200 batch,
1201 &offset);
1202 if (ret)
1203 goto out;
1204 }
1205
1206 out:
1207 kunmap_atomic(batch);
1208 if (ret)
1209 lrc_destroy_wa_ctx_obj(engine);
1210
1211 return ret;
1212 }
1213
1214 static void lrc_init_hws(struct intel_engine_cs *engine)
1215 {
1216 struct drm_i915_private *dev_priv = engine->i915;
1217
1218 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1219 engine->status_page.ggtt_offset);
1220 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1221 }
1222
1223 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1224 {
1225 struct drm_i915_private *dev_priv = engine->i915;
1226 int ret;
1227
1228 ret = intel_mocs_init_engine(engine);
1229 if (ret)
1230 return ret;
1231
1232 lrc_init_hws(engine);
1233
1234 intel_engine_reset_irq(engine);
1235
1236 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1237
1238 I915_WRITE(RING_MODE_GEN7(engine),
1239 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1240 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1241
1242 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1243
1244 intel_engine_init_hangcheck(engine);
1245
1246 if (!execlists_elsp_idle(engine))
1247 execlists_submit_ports(engine);
1248
1249 return 0;
1250 }
1251
1252 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1253 {
1254 struct drm_i915_private *dev_priv = engine->i915;
1255 int ret;
1256
1257 ret = gen8_init_common_ring(engine);
1258 if (ret)
1259 return ret;
1260
1261 /* We need to disable the AsyncFlip performance optimisations in order
1262 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1263 * programmed to '1' on all products.
1264 *
1265 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1266 */
1267 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1268
1269 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1270
1271 return init_workarounds_ring(engine);
1272 }
1273
1274 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1275 {
1276 int ret;
1277
1278 ret = gen8_init_common_ring(engine);
1279 if (ret)
1280 return ret;
1281
1282 return init_workarounds_ring(engine);
1283 }
1284
1285 static void reset_common_ring(struct intel_engine_cs *engine,
1286 struct drm_i915_gem_request *request)
1287 {
1288 struct drm_i915_private *dev_priv = engine->i915;
1289 struct execlist_port *port = engine->execlist_port;
1290 struct intel_context *ce = &request->ctx->engine[engine->id];
1291
1292 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1293 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1294 request->ring->head = request->postfix;
1295 request->ring->last_retired_head = -1;
1296 intel_ring_update_space(request->ring);
1297
1298 if (i915.enable_guc_submission)
1299 return;
1300
1301 /* Catch up with any missed context-switch interrupts */
1302 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1303 if (request->ctx != port[0].request->ctx) {
1304 i915_gem_request_put(port[0].request);
1305 port[0] = port[1];
1306 memset(&port[1], 0, sizeof(port[1]));
1307 }
1308
1309 /* CS is stopped, and we will resubmit both ports on resume */
1310 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1311 port[0].count = 0;
1312 port[1].count = 0;
1313 }
1314
1315 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1316 {
1317 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1318 struct intel_ring *ring = req->ring;
1319 struct intel_engine_cs *engine = req->engine;
1320 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1321 int i, ret;
1322
1323 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1324 if (ret)
1325 return ret;
1326
1327 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1328 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1329 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1330
1331 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1332 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1333 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1334 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1335 }
1336
1337 intel_ring_emit(ring, MI_NOOP);
1338 intel_ring_advance(ring);
1339
1340 return 0;
1341 }
1342
1343 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1344 u64 offset, u32 len,
1345 unsigned int dispatch_flags)
1346 {
1347 struct intel_ring *ring = req->ring;
1348 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1349 int ret;
1350
1351 /* Don't rely in hw updating PDPs, specially in lite-restore.
1352 * Ideally, we should set Force PD Restore in ctx descriptor,
1353 * but we can't. Force Restore would be a second option, but
1354 * it is unsafe in case of lite-restore (because the ctx is
1355 * not idle). PML4 is allocated during ppgtt init so this is
1356 * not needed in 48-bit.*/
1357 if (req->ctx->ppgtt &&
1358 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1359 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1360 !intel_vgpu_active(req->i915)) {
1361 ret = intel_logical_ring_emit_pdps(req);
1362 if (ret)
1363 return ret;
1364 }
1365
1366 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1367 }
1368
1369 ret = intel_ring_begin(req, 4);
1370 if (ret)
1371 return ret;
1372
1373 /* FIXME(BDW): Address space and security selectors. */
1374 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1375 (ppgtt<<8) |
1376 (dispatch_flags & I915_DISPATCH_RS ?
1377 MI_BATCH_RESOURCE_STREAMER : 0));
1378 intel_ring_emit(ring, lower_32_bits(offset));
1379 intel_ring_emit(ring, upper_32_bits(offset));
1380 intel_ring_emit(ring, MI_NOOP);
1381 intel_ring_advance(ring);
1382
1383 return 0;
1384 }
1385
1386 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1387 {
1388 struct drm_i915_private *dev_priv = engine->i915;
1389 I915_WRITE_IMR(engine,
1390 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1391 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1392 }
1393
1394 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1395 {
1396 struct drm_i915_private *dev_priv = engine->i915;
1397 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1398 }
1399
1400 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1401 {
1402 struct intel_ring *ring = request->ring;
1403 u32 cmd;
1404 int ret;
1405
1406 ret = intel_ring_begin(request, 4);
1407 if (ret)
1408 return ret;
1409
1410 cmd = MI_FLUSH_DW + 1;
1411
1412 /* We always require a command barrier so that subsequent
1413 * commands, such as breadcrumb interrupts, are strictly ordered
1414 * wrt the contents of the write cache being flushed to memory
1415 * (and thus being coherent from the CPU).
1416 */
1417 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1418
1419 if (mode & EMIT_INVALIDATE) {
1420 cmd |= MI_INVALIDATE_TLB;
1421 if (request->engine->id == VCS)
1422 cmd |= MI_INVALIDATE_BSD;
1423 }
1424
1425 intel_ring_emit(ring, cmd);
1426 intel_ring_emit(ring,
1427 I915_GEM_HWS_SCRATCH_ADDR |
1428 MI_FLUSH_DW_USE_GTT);
1429 intel_ring_emit(ring, 0); /* upper addr */
1430 intel_ring_emit(ring, 0); /* value */
1431 intel_ring_advance(ring);
1432
1433 return 0;
1434 }
1435
1436 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1437 u32 mode)
1438 {
1439 struct intel_ring *ring = request->ring;
1440 struct intel_engine_cs *engine = request->engine;
1441 u32 scratch_addr =
1442 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1443 bool vf_flush_wa = false, dc_flush_wa = false;
1444 u32 flags = 0;
1445 int ret;
1446 int len;
1447
1448 flags |= PIPE_CONTROL_CS_STALL;
1449
1450 if (mode & EMIT_FLUSH) {
1451 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1452 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1453 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1454 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1455 }
1456
1457 if (mode & EMIT_INVALIDATE) {
1458 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1459 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1460 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1461 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1462 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1463 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1464 flags |= PIPE_CONTROL_QW_WRITE;
1465 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1466
1467 /*
1468 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1469 * pipe control.
1470 */
1471 if (IS_GEN9(request->i915))
1472 vf_flush_wa = true;
1473
1474 /* WaForGAMHang:kbl */
1475 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1476 dc_flush_wa = true;
1477 }
1478
1479 len = 6;
1480
1481 if (vf_flush_wa)
1482 len += 6;
1483
1484 if (dc_flush_wa)
1485 len += 12;
1486
1487 ret = intel_ring_begin(request, len);
1488 if (ret)
1489 return ret;
1490
1491 if (vf_flush_wa) {
1492 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1493 intel_ring_emit(ring, 0);
1494 intel_ring_emit(ring, 0);
1495 intel_ring_emit(ring, 0);
1496 intel_ring_emit(ring, 0);
1497 intel_ring_emit(ring, 0);
1498 }
1499
1500 if (dc_flush_wa) {
1501 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1502 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1503 intel_ring_emit(ring, 0);
1504 intel_ring_emit(ring, 0);
1505 intel_ring_emit(ring, 0);
1506 intel_ring_emit(ring, 0);
1507 }
1508
1509 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1510 intel_ring_emit(ring, flags);
1511 intel_ring_emit(ring, scratch_addr);
1512 intel_ring_emit(ring, 0);
1513 intel_ring_emit(ring, 0);
1514 intel_ring_emit(ring, 0);
1515
1516 if (dc_flush_wa) {
1517 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1518 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1519 intel_ring_emit(ring, 0);
1520 intel_ring_emit(ring, 0);
1521 intel_ring_emit(ring, 0);
1522 intel_ring_emit(ring, 0);
1523 }
1524
1525 intel_ring_advance(ring);
1526
1527 return 0;
1528 }
1529
1530 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1531 {
1532 /*
1533 * On BXT A steppings there is a HW coherency issue whereby the
1534 * MI_STORE_DATA_IMM storing the completed request's seqno
1535 * occasionally doesn't invalidate the CPU cache. Work around this by
1536 * clflushing the corresponding cacheline whenever the caller wants
1537 * the coherency to be guaranteed. Note that this cacheline is known
1538 * to be clean at this point, since we only write it in
1539 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1540 * this clflush in practice becomes an invalidate operation.
1541 */
1542 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1543 }
1544
1545 /*
1546 * Reserve space for 2 NOOPs at the end of each request to be
1547 * used as a workaround for not being allowed to do lite
1548 * restore with HEAD==TAIL (WaIdleLiteRestore).
1549 */
1550 #define WA_TAIL_DWORDS 2
1551
1552 static int gen8_emit_request(struct drm_i915_gem_request *request)
1553 {
1554 struct intel_ring *ring = request->ring;
1555 int ret;
1556
1557 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1558 if (ret)
1559 return ret;
1560
1561 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1562 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1563
1564 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1565 intel_ring_emit(ring,
1566 intel_hws_seqno_address(request->engine) |
1567 MI_FLUSH_DW_USE_GTT);
1568 intel_ring_emit(ring, 0);
1569 intel_ring_emit(ring, request->fence.seqno);
1570 intel_ring_emit(ring, MI_USER_INTERRUPT);
1571 intel_ring_emit(ring, MI_NOOP);
1572 return intel_logical_ring_advance(request);
1573 }
1574
1575 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1576 {
1577 struct intel_ring *ring = request->ring;
1578 int ret;
1579
1580 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1581 if (ret)
1582 return ret;
1583
1584 /* We're using qword write, seqno should be aligned to 8 bytes. */
1585 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1586
1587 /* w/a for post sync ops following a GPGPU operation we
1588 * need a prior CS_STALL, which is emitted by the flush
1589 * following the batch.
1590 */
1591 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1592 intel_ring_emit(ring,
1593 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1594 PIPE_CONTROL_CS_STALL |
1595 PIPE_CONTROL_QW_WRITE));
1596 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1597 intel_ring_emit(ring, 0);
1598 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1599 /* We're thrashing one dword of HWS. */
1600 intel_ring_emit(ring, 0);
1601 intel_ring_emit(ring, MI_USER_INTERRUPT);
1602 intel_ring_emit(ring, MI_NOOP);
1603 return intel_logical_ring_advance(request);
1604 }
1605
1606 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1607 {
1608 int ret;
1609
1610 ret = intel_logical_ring_workarounds_emit(req);
1611 if (ret)
1612 return ret;
1613
1614 ret = intel_rcs_context_init_mocs(req);
1615 /*
1616 * Failing to program the MOCS is non-fatal.The system will not
1617 * run at peak performance. So generate an error and carry on.
1618 */
1619 if (ret)
1620 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1621
1622 return i915_gem_render_state_init(req);
1623 }
1624
1625 /**
1626 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1627 * @engine: Engine Command Streamer.
1628 */
1629 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1630 {
1631 struct drm_i915_private *dev_priv;
1632
1633 if (!intel_engine_initialized(engine))
1634 return;
1635
1636 /*
1637 * Tasklet cannot be active at this point due intel_mark_active/idle
1638 * so this is just for documentation.
1639 */
1640 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1641 tasklet_kill(&engine->irq_tasklet);
1642
1643 dev_priv = engine->i915;
1644
1645 if (engine->buffer) {
1646 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1647 }
1648
1649 if (engine->cleanup)
1650 engine->cleanup(engine);
1651
1652 intel_engine_cleanup_common(engine);
1653
1654 if (engine->status_page.vma) {
1655 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1656 engine->status_page.vma = NULL;
1657 }
1658 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1659
1660 lrc_destroy_wa_ctx_obj(engine);
1661 engine->i915 = NULL;
1662 }
1663
1664 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1665 {
1666 struct intel_engine_cs *engine;
1667
1668 for_each_engine(engine, dev_priv)
1669 engine->submit_request = execlists_submit_request;
1670 }
1671
1672 static void
1673 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1674 {
1675 /* Default vfuncs which can be overriden by each engine. */
1676 engine->init_hw = gen8_init_common_ring;
1677 engine->reset_hw = reset_common_ring;
1678 engine->emit_flush = gen8_emit_flush;
1679 engine->emit_request = gen8_emit_request;
1680 engine->submit_request = execlists_submit_request;
1681
1682 engine->irq_enable = gen8_logical_ring_enable_irq;
1683 engine->irq_disable = gen8_logical_ring_disable_irq;
1684 engine->emit_bb_start = gen8_emit_bb_start;
1685 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1686 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1687 }
1688
1689 static inline void
1690 logical_ring_default_irqs(struct intel_engine_cs *engine)
1691 {
1692 unsigned shift = engine->irq_shift;
1693 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1694 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1695 }
1696
1697 static int
1698 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1699 {
1700 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1701 void *hws;
1702
1703 /* The HWSP is part of the default context object in LRC mode. */
1704 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1705 if (IS_ERR(hws))
1706 return PTR_ERR(hws);
1707
1708 engine->status_page.page_addr = hws + hws_offset;
1709 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1710 engine->status_page.vma = vma;
1711
1712 return 0;
1713 }
1714
1715 static void
1716 logical_ring_setup(struct intel_engine_cs *engine)
1717 {
1718 struct drm_i915_private *dev_priv = engine->i915;
1719 enum forcewake_domains fw_domains;
1720
1721 intel_engine_setup_common(engine);
1722
1723 /* Intentionally left blank. */
1724 engine->buffer = NULL;
1725
1726 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1727 RING_ELSP(engine),
1728 FW_REG_WRITE);
1729
1730 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1731 RING_CONTEXT_STATUS_PTR(engine),
1732 FW_REG_READ | FW_REG_WRITE);
1733
1734 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1735 RING_CONTEXT_STATUS_BUF_BASE(engine),
1736 FW_REG_READ);
1737
1738 engine->fw_domains = fw_domains;
1739
1740 tasklet_init(&engine->irq_tasklet,
1741 intel_lrc_irq_handler, (unsigned long)engine);
1742
1743 logical_ring_init_platform_invariants(engine);
1744 logical_ring_default_vfuncs(engine);
1745 logical_ring_default_irqs(engine);
1746 }
1747
1748 static int
1749 logical_ring_init(struct intel_engine_cs *engine)
1750 {
1751 struct i915_gem_context *dctx = engine->i915->kernel_context;
1752 int ret;
1753
1754 ret = intel_engine_init_common(engine);
1755 if (ret)
1756 goto error;
1757
1758 ret = execlists_context_deferred_alloc(dctx, engine);
1759 if (ret)
1760 goto error;
1761
1762 /* As this is the default context, always pin it */
1763 ret = intel_lr_context_pin(dctx, engine);
1764 if (ret) {
1765 DRM_ERROR("Failed to pin context for %s: %d\n",
1766 engine->name, ret);
1767 goto error;
1768 }
1769
1770 /* And setup the hardware status page. */
1771 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1772 if (ret) {
1773 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1774 goto error;
1775 }
1776
1777 return 0;
1778
1779 error:
1780 intel_logical_ring_cleanup(engine);
1781 return ret;
1782 }
1783
1784 int logical_render_ring_init(struct intel_engine_cs *engine)
1785 {
1786 struct drm_i915_private *dev_priv = engine->i915;
1787 int ret;
1788
1789 logical_ring_setup(engine);
1790
1791 if (HAS_L3_DPF(dev_priv))
1792 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1793
1794 /* Override some for render ring. */
1795 if (INTEL_GEN(dev_priv) >= 9)
1796 engine->init_hw = gen9_init_render_ring;
1797 else
1798 engine->init_hw = gen8_init_render_ring;
1799 engine->init_context = gen8_init_rcs_context;
1800 engine->emit_flush = gen8_emit_flush_render;
1801 engine->emit_request = gen8_emit_request_render;
1802
1803 ret = intel_engine_create_scratch(engine, 4096);
1804 if (ret)
1805 return ret;
1806
1807 ret = intel_init_workaround_bb(engine);
1808 if (ret) {
1809 /*
1810 * We continue even if we fail to initialize WA batch
1811 * because we only expect rare glitches but nothing
1812 * critical to prevent us from using GPU
1813 */
1814 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1815 ret);
1816 }
1817
1818 ret = logical_ring_init(engine);
1819 if (ret) {
1820 lrc_destroy_wa_ctx_obj(engine);
1821 }
1822
1823 return ret;
1824 }
1825
1826 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1827 {
1828 logical_ring_setup(engine);
1829
1830 return logical_ring_init(engine);
1831 }
1832
1833 static u32
1834 make_rpcs(struct drm_i915_private *dev_priv)
1835 {
1836 u32 rpcs = 0;
1837
1838 /*
1839 * No explicit RPCS request is needed to ensure full
1840 * slice/subslice/EU enablement prior to Gen9.
1841 */
1842 if (INTEL_GEN(dev_priv) < 9)
1843 return 0;
1844
1845 /*
1846 * Starting in Gen9, render power gating can leave
1847 * slice/subslice/EU in a partially enabled state. We
1848 * must make an explicit request through RPCS for full
1849 * enablement.
1850 */
1851 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1852 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1853 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1854 GEN8_RPCS_S_CNT_SHIFT;
1855 rpcs |= GEN8_RPCS_ENABLE;
1856 }
1857
1858 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1859 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1860 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1861 GEN8_RPCS_SS_CNT_SHIFT;
1862 rpcs |= GEN8_RPCS_ENABLE;
1863 }
1864
1865 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1866 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1867 GEN8_RPCS_EU_MIN_SHIFT;
1868 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1869 GEN8_RPCS_EU_MAX_SHIFT;
1870 rpcs |= GEN8_RPCS_ENABLE;
1871 }
1872
1873 return rpcs;
1874 }
1875
1876 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1877 {
1878 u32 indirect_ctx_offset;
1879
1880 switch (INTEL_GEN(engine->i915)) {
1881 default:
1882 MISSING_CASE(INTEL_GEN(engine->i915));
1883 /* fall through */
1884 case 9:
1885 indirect_ctx_offset =
1886 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1887 break;
1888 case 8:
1889 indirect_ctx_offset =
1890 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1891 break;
1892 }
1893
1894 return indirect_ctx_offset;
1895 }
1896
1897 static int
1898 populate_lr_context(struct i915_gem_context *ctx,
1899 struct drm_i915_gem_object *ctx_obj,
1900 struct intel_engine_cs *engine,
1901 struct intel_ring *ring)
1902 {
1903 struct drm_i915_private *dev_priv = ctx->i915;
1904 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1905 void *vaddr;
1906 u32 *reg_state;
1907 int ret;
1908
1909 if (!ppgtt)
1910 ppgtt = dev_priv->mm.aliasing_ppgtt;
1911
1912 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1913 if (ret) {
1914 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1915 return ret;
1916 }
1917
1918 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1919 if (IS_ERR(vaddr)) {
1920 ret = PTR_ERR(vaddr);
1921 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1922 return ret;
1923 }
1924 ctx_obj->dirty = true;
1925
1926 /* The second page of the context object contains some fields which must
1927 * be set up prior to the first execution. */
1928 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1929
1930 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1931 * commands followed by (reg, value) pairs. The values we are setting here are
1932 * only for the first context restore: on a subsequent save, the GPU will
1933 * recreate this batchbuffer with new values (including all the missing
1934 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1935 reg_state[CTX_LRI_HEADER_0] =
1936 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1937 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1938 RING_CONTEXT_CONTROL(engine),
1939 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1940 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1941 (HAS_RESOURCE_STREAMER(dev_priv) ?
1942 CTX_CTRL_RS_CTX_ENABLE : 0)));
1943 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1944 0);
1945 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1946 0);
1947 /* Ring buffer start address is not known until the buffer is pinned.
1948 * It is written to the context image in execlists_update_context()
1949 */
1950 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1951 RING_START(engine->mmio_base), 0);
1952 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1953 RING_CTL(engine->mmio_base),
1954 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1955 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1956 RING_BBADDR_UDW(engine->mmio_base), 0);
1957 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1958 RING_BBADDR(engine->mmio_base), 0);
1959 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1960 RING_BBSTATE(engine->mmio_base),
1961 RING_BB_PPGTT);
1962 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1963 RING_SBBADDR_UDW(engine->mmio_base), 0);
1964 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1965 RING_SBBADDR(engine->mmio_base), 0);
1966 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1967 RING_SBBSTATE(engine->mmio_base), 0);
1968 if (engine->id == RCS) {
1969 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1970 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1971 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1972 RING_INDIRECT_CTX(engine->mmio_base), 0);
1973 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1974 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1975 if (engine->wa_ctx.vma) {
1976 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1977 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1978
1979 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1980 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1981 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1982
1983 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1984 intel_lr_indirect_ctx_offset(engine) << 6;
1985
1986 reg_state[CTX_BB_PER_CTX_PTR+1] =
1987 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1988 0x01;
1989 }
1990 }
1991 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1992 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1993 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1994 /* PDP values well be assigned later if needed */
1995 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1996 0);
1997 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1998 0);
1999 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2000 0);
2001 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2002 0);
2003 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2004 0);
2005 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2006 0);
2007 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2008 0);
2009 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2010 0);
2011
2012 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2013 /* 64b PPGTT (48bit canonical)
2014 * PDP0_DESCRIPTOR contains the base address to PML4 and
2015 * other PDP Descriptors are ignored.
2016 */
2017 ASSIGN_CTX_PML4(ppgtt, reg_state);
2018 } else {
2019 /* 32b PPGTT
2020 * PDP*_DESCRIPTOR contains the base address of space supported.
2021 * With dynamic page allocation, PDPs may not be allocated at
2022 * this point. Point the unallocated PDPs to the scratch page
2023 */
2024 execlists_update_context_pdps(ppgtt, reg_state);
2025 }
2026
2027 if (engine->id == RCS) {
2028 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2029 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2030 make_rpcs(dev_priv));
2031 }
2032
2033 i915_gem_object_unpin_map(ctx_obj);
2034
2035 return 0;
2036 }
2037
2038 /**
2039 * intel_lr_context_size() - return the size of the context for an engine
2040 * @engine: which engine to find the context size for
2041 *
2042 * Each engine may require a different amount of space for a context image,
2043 * so when allocating (or copying) an image, this function can be used to
2044 * find the right size for the specific engine.
2045 *
2046 * Return: size (in bytes) of an engine-specific context image
2047 *
2048 * Note: this size includes the HWSP, which is part of the context image
2049 * in LRC mode, but does not include the "shared data page" used with
2050 * GuC submission. The caller should account for this if using the GuC.
2051 */
2052 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2053 {
2054 int ret = 0;
2055
2056 WARN_ON(INTEL_GEN(engine->i915) < 8);
2057
2058 switch (engine->id) {
2059 case RCS:
2060 if (INTEL_GEN(engine->i915) >= 9)
2061 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2062 else
2063 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2064 break;
2065 case VCS:
2066 case BCS:
2067 case VECS:
2068 case VCS2:
2069 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2070 break;
2071 }
2072
2073 return ret;
2074 }
2075
2076 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2077 struct intel_engine_cs *engine)
2078 {
2079 struct drm_i915_gem_object *ctx_obj;
2080 struct intel_context *ce = &ctx->engine[engine->id];
2081 struct i915_vma *vma;
2082 uint32_t context_size;
2083 struct intel_ring *ring;
2084 int ret;
2085
2086 WARN_ON(ce->state);
2087
2088 context_size = round_up(intel_lr_context_size(engine), 4096);
2089
2090 /* One extra page as the sharing data between driver and GuC */
2091 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2092
2093 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2094 if (IS_ERR(ctx_obj)) {
2095 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2096 return PTR_ERR(ctx_obj);
2097 }
2098
2099 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2100 if (IS_ERR(vma)) {
2101 ret = PTR_ERR(vma);
2102 goto error_deref_obj;
2103 }
2104
2105 ring = intel_engine_create_ring(engine, ctx->ring_size);
2106 if (IS_ERR(ring)) {
2107 ret = PTR_ERR(ring);
2108 goto error_deref_obj;
2109 }
2110
2111 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2112 if (ret) {
2113 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2114 goto error_ring_free;
2115 }
2116
2117 ce->ring = ring;
2118 ce->state = vma;
2119 ce->initialised = engine->init_context == NULL;
2120
2121 return 0;
2122
2123 error_ring_free:
2124 intel_ring_free(ring);
2125 error_deref_obj:
2126 i915_gem_object_put(ctx_obj);
2127 return ret;
2128 }
2129
2130 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2131 {
2132 struct i915_gem_context *ctx = dev_priv->kernel_context;
2133 struct intel_engine_cs *engine;
2134
2135 for_each_engine(engine, dev_priv) {
2136 struct intel_context *ce = &ctx->engine[engine->id];
2137 void *vaddr;
2138 uint32_t *reg_state;
2139
2140 if (!ce->state)
2141 continue;
2142
2143 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2144 if (WARN_ON(IS_ERR(vaddr)))
2145 continue;
2146
2147 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2148
2149 reg_state[CTX_RING_HEAD+1] = 0;
2150 reg_state[CTX_RING_TAIL+1] = 0;
2151
2152 ce->state->obj->dirty = true;
2153 i915_gem_object_unpin_map(ce->state->obj);
2154
2155 ce->ring->head = 0;
2156 ce->ring->tail = 0;
2157 }
2158 }
This page took 0.121635 seconds and 5 git commands to generate.