Merge remote-tracking branches 'regulator/topic/tps65218' and 'regulator/topic/tps800...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225 struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227 struct intel_engine_cs *engine);
228
229 /**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231 * @dev_priv: i915 device private
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 return 1;
246
247 if (INTEL_GEN(dev_priv) >= 9)
248 return 1;
249
250 if (enable_execlists == 0)
251 return 0;
252
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
256 return 1;
257
258 return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264 struct drm_i915_private *dev_priv = engine->i915;
265
266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267 engine->idle_lite_restore_wa = ~0;
268
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271 (engine->id == VCS || engine->id == VCS2);
272
273 engine->ctx_desc_template = GEN8_CTX_VALID;
274 if (IS_GEN8(dev_priv))
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
291 *
292 * @ctx: Context to work on
293 * @engine: Engine the descriptor will be used with
294 *
295 * The context descriptor encodes various attributes of a context,
296 * including its GTT address and some flags. Because it's fairly
297 * expensive to calculate, we'll just do it once and cache the result,
298 * which remains valid until the context is unpinned.
299 *
300 * This is what a descriptor looks like, from LSB to MSB:
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
306 */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309 struct intel_engine_cs *engine)
310 {
311 struct intel_context *ce = &ctx->engine[engine->id];
312 u64 desc;
313
314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
321
322 ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326 struct intel_engine_cs *engine)
327 {
328 return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
333 {
334
335 struct intel_engine_cs *engine = rq0->engine;
336 struct drm_i915_private *dev_priv = rq0->i915;
337 uint64_t desc[2];
338
339 if (rq1) {
340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
345
346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347 rq0->elsp_submitted++;
348
349 /* You must always write both descriptors in the order below. */
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354 /* The context is automatically loaded after the following */
355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357 /* ELSP is a wo register, use another nearby reg for posting */
358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372 struct intel_engine_cs *engine = rq->engine;
373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376 reg_state[CTX_RING_TAIL+1] = rq->tail;
377
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
389 {
390 struct drm_i915_private *dev_priv = rq0->i915;
391 unsigned int fw_domains = rq0->engine->fw_domains;
392
393 execlists_update_context(rq0);
394
395 if (rq1)
396 execlists_update_context(rq1);
397
398 spin_lock_irq(&dev_priv->uncore.lock);
399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401 execlists_elsp_write(rq0, rq1);
402
403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404 spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410 {
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_context_unqueue(struct intel_engine_cs *engine)
422 {
423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424 struct drm_i915_gem_request *cursor, *tmp;
425
426 assert_spin_locked(&engine->execlist_lock);
427
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
432 WARN_ON(!intel_irqs_enabled(engine->i915));
433
434 /* Try to read in pairs */
435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
439 } else if (req0->ctx == cursor->ctx) {
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
442 cursor->elsp_submitted = req0->elsp_submitted;
443 list_del(&req0->execlist_link);
444 i915_gem_request_unreference(req0);
445 req0 = cursor;
446 } else {
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
461 req1 = cursor;
462 WARN_ON(req1->elsp_submitted);
463 break;
464 }
465 }
466
467 if (unlikely(!req0))
468 return;
469
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477 /*
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
484 */
485 struct intel_ringbuffer *ringbuf;
486
487 ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 req0->tail += 8;
489 req0->tail &= ringbuf->size - 1;
490 }
491
492 execlists_submit_requests(req0, req1);
493 }
494
495 static unsigned int
496 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497 {
498 struct drm_i915_gem_request *head_req;
499
500 assert_spin_locked(&engine->execlist_lock);
501
502 head_req = list_first_entry_or_null(&engine->execlist_queue,
503 struct drm_i915_gem_request,
504 execlist_link);
505
506 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507 return 0;
508
509 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511 if (--head_req->elsp_submitted > 0)
512 return 0;
513
514 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
516 list_del(&head_req->execlist_link);
517 i915_gem_request_unreference(head_req);
518
519 return 1;
520 }
521
522 static u32
523 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524 u32 *context_id)
525 {
526 struct drm_i915_private *dev_priv = engine->i915;
527 u32 status;
528
529 read_pointer %= GEN8_CSB_ENTRIES;
530
531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
535
536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 read_pointer));
538
539 return status;
540 }
541
542 /**
543 * intel_lrc_irq_handler() - handle Context Switch interrupts
544 * @data: tasklet handler passed in unsigned long
545 *
546 * Check the unread Context Status Buffers and manage the submission of new
547 * contexts to the ELSP accordingly.
548 */
549 static void intel_lrc_irq_handler(unsigned long data)
550 {
551 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552 struct drm_i915_private *dev_priv = engine->i915;
553 u32 status_pointer;
554 unsigned int read_pointer, write_pointer;
555 u32 csb[GEN8_CSB_ENTRIES][2];
556 unsigned int csb_read = 0, i;
557 unsigned int submit_contexts = 0;
558
559 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560
561 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562
563 read_pointer = engine->next_context_status_buffer;
564 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565 if (read_pointer > write_pointer)
566 write_pointer += GEN8_CSB_ENTRIES;
567
568 while (read_pointer < write_pointer) {
569 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570 break;
571 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572 &csb[csb_read][1]);
573 csb_read++;
574 }
575
576 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577
578 /* Update the read pointer to the old write pointer. Manual ringbuffer
579 * management ftw </sarcasm> */
580 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582 engine->next_context_status_buffer << 8));
583
584 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585
586 spin_lock(&engine->execlist_lock);
587
588 for (i = 0; i < csb_read; i++) {
589 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591 if (execlists_check_remove_request(engine, csb[i][1]))
592 WARN(1, "Lite Restored request removed from queue\n");
593 } else
594 WARN(1, "Preemption without Lite Restore\n");
595 }
596
597 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598 GEN8_CTX_STATUS_ELEMENT_SWITCH))
599 submit_contexts +=
600 execlists_check_remove_request(engine, csb[i][1]);
601 }
602
603 if (submit_contexts) {
604 if (!engine->disable_lite_restore_wa ||
605 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606 execlists_context_unqueue(engine);
607 }
608
609 spin_unlock(&engine->execlist_lock);
610
611 if (unlikely(submit_contexts > 2))
612 DRM_ERROR("More than two context complete events?\n");
613 }
614
615 static void execlists_context_queue(struct drm_i915_gem_request *request)
616 {
617 struct intel_engine_cs *engine = request->engine;
618 struct drm_i915_gem_request *cursor;
619 int num_elements = 0;
620
621 spin_lock_bh(&engine->execlist_lock);
622
623 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624 if (++num_elements > 2)
625 break;
626
627 if (num_elements > 2) {
628 struct drm_i915_gem_request *tail_req;
629
630 tail_req = list_last_entry(&engine->execlist_queue,
631 struct drm_i915_gem_request,
632 execlist_link);
633
634 if (request->ctx == tail_req->ctx) {
635 WARN(tail_req->elsp_submitted != 0,
636 "More than 2 already-submitted reqs queued\n");
637 list_del(&tail_req->execlist_link);
638 i915_gem_request_unreference(tail_req);
639 }
640 }
641
642 i915_gem_request_reference(request);
643 list_add_tail(&request->execlist_link, &engine->execlist_queue);
644 request->ctx_hw_id = request->ctx->hw_id;
645 if (num_elements == 0)
646 execlists_context_unqueue(engine);
647
648 spin_unlock_bh(&engine->execlist_lock);
649 }
650
651 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652 {
653 struct intel_engine_cs *engine = req->engine;
654 uint32_t flush_domains;
655 int ret;
656
657 flush_domains = 0;
658 if (engine->gpu_caches_dirty)
659 flush_domains = I915_GEM_GPU_DOMAINS;
660
661 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662 if (ret)
663 return ret;
664
665 engine->gpu_caches_dirty = false;
666 return 0;
667 }
668
669 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670 struct list_head *vmas)
671 {
672 const unsigned other_rings = ~intel_engine_flag(req->engine);
673 struct i915_vma *vma;
674 uint32_t flush_domains = 0;
675 bool flush_chipset = false;
676 int ret;
677
678 list_for_each_entry(vma, vmas, exec_list) {
679 struct drm_i915_gem_object *obj = vma->obj;
680
681 if (obj->active & other_rings) {
682 ret = i915_gem_object_sync(obj, req->engine, &req);
683 if (ret)
684 return ret;
685 }
686
687 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 flush_chipset |= i915_gem_clflush_object(obj, false);
689
690 flush_domains |= obj->base.write_domain;
691 }
692
693 if (flush_domains & I915_GEM_DOMAIN_GTT)
694 wmb();
695
696 /* Unconditionally invalidate gpu caches and ensure that we do flush
697 * any residual writes from the previous batch.
698 */
699 return logical_ring_invalidate_all_caches(req);
700 }
701
702 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703 {
704 struct intel_engine_cs *engine = request->engine;
705 struct intel_context *ce = &request->ctx->engine[engine->id];
706 int ret;
707
708 /* Flush enough space to reduce the likelihood of waiting after
709 * we start building the request - in which case we will just
710 * have to repeat work.
711 */
712 request->reserved_space += EXECLISTS_REQUEST_SIZE;
713
714 if (!ce->state) {
715 ret = execlists_context_deferred_alloc(request->ctx, engine);
716 if (ret)
717 return ret;
718 }
719
720 request->ringbuf = ce->ringbuf;
721
722 if (i915.enable_guc_submission) {
723 /*
724 * Check that the GuC has space for the request before
725 * going any further, as the i915_add_request() call
726 * later on mustn't fail ...
727 */
728 ret = i915_guc_wq_check_space(request);
729 if (ret)
730 return ret;
731 }
732
733 ret = intel_lr_context_pin(request->ctx, engine);
734 if (ret)
735 return ret;
736
737 ret = intel_ring_begin(request, 0);
738 if (ret)
739 goto err_unpin;
740
741 if (!ce->initialised) {
742 ret = engine->init_context(request);
743 if (ret)
744 goto err_unpin;
745
746 ce->initialised = true;
747 }
748
749 /* Note that after this point, we have committed to using
750 * this request as it is being used to both track the
751 * state of engine initialisation and liveness of the
752 * golden renderstate above. Think twice before you try
753 * to cancel/unwind this request now.
754 */
755
756 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757 return 0;
758
759 err_unpin:
760 intel_lr_context_unpin(request->ctx, engine);
761 return ret;
762 }
763
764 /*
765 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766 * @request: Request to advance the logical ringbuffer of.
767 *
768 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769 * really happens during submission is that the context and current tail will be placed
770 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771 * point, the tail *inside* the context is updated and the ELSP written to.
772 */
773 static int
774 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775 {
776 struct intel_ringbuffer *ringbuf = request->ringbuf;
777 struct intel_engine_cs *engine = request->engine;
778
779 intel_logical_ring_advance(ringbuf);
780 request->tail = ringbuf->tail;
781
782 /*
783 * Here we add two extra NOOPs as padding to avoid
784 * lite restore of a context with HEAD==TAIL.
785 *
786 * Caller must reserve WA_TAIL_DWORDS for us!
787 */
788 intel_logical_ring_emit(ringbuf, MI_NOOP);
789 intel_logical_ring_emit(ringbuf, MI_NOOP);
790 intel_logical_ring_advance(ringbuf);
791
792 /* We keep the previous context alive until we retire the following
793 * request. This ensures that any the context object is still pinned
794 * for any residual writes the HW makes into it on the context switch
795 * into the next object following the breadcrumb. Otherwise, we may
796 * retire the context too early.
797 */
798 request->previous_context = engine->last_context;
799 engine->last_context = request->ctx;
800
801 if (i915.enable_guc_submission)
802 i915_guc_submit(request);
803 else
804 execlists_context_queue(request);
805
806 return 0;
807 }
808
809 /**
810 * execlists_submission() - submit a batchbuffer for execution, Execlists style
811 * @params: execbuffer call parameters.
812 * @args: execbuffer call arguments.
813 * @vmas: list of vmas.
814 *
815 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
816 * away the submission details of the execbuffer ioctl call.
817 *
818 * Return: non-zero if the submission fails.
819 */
820 int intel_execlists_submission(struct i915_execbuffer_params *params,
821 struct drm_i915_gem_execbuffer2 *args,
822 struct list_head *vmas)
823 {
824 struct drm_device *dev = params->dev;
825 struct intel_engine_cs *engine = params->engine;
826 struct drm_i915_private *dev_priv = to_i915(dev);
827 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
828 u64 exec_start;
829 int instp_mode;
830 u32 instp_mask;
831 int ret;
832
833 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
834 instp_mask = I915_EXEC_CONSTANTS_MASK;
835 switch (instp_mode) {
836 case I915_EXEC_CONSTANTS_REL_GENERAL:
837 case I915_EXEC_CONSTANTS_ABSOLUTE:
838 case I915_EXEC_CONSTANTS_REL_SURFACE:
839 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
840 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
841 return -EINVAL;
842 }
843
844 if (instp_mode != dev_priv->relative_constants_mode) {
845 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
846 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
847 return -EINVAL;
848 }
849
850 /* The HW changed the meaning on this bit on gen6 */
851 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
852 }
853 break;
854 default:
855 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
856 return -EINVAL;
857 }
858
859 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
860 DRM_DEBUG("sol reset is gen7 only\n");
861 return -EINVAL;
862 }
863
864 ret = execlists_move_to_gpu(params->request, vmas);
865 if (ret)
866 return ret;
867
868 if (engine == &dev_priv->engine[RCS] &&
869 instp_mode != dev_priv->relative_constants_mode) {
870 ret = intel_ring_begin(params->request, 4);
871 if (ret)
872 return ret;
873
874 intel_logical_ring_emit(ringbuf, MI_NOOP);
875 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
876 intel_logical_ring_emit_reg(ringbuf, INSTPM);
877 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
878 intel_logical_ring_advance(ringbuf);
879
880 dev_priv->relative_constants_mode = instp_mode;
881 }
882
883 exec_start = params->batch_obj_vm_offset +
884 args->batch_start_offset;
885
886 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
887 if (ret)
888 return ret;
889
890 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
891
892 i915_gem_execbuffer_move_to_active(vmas, params->request);
893
894 return 0;
895 }
896
897 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
898 {
899 struct drm_i915_gem_request *req, *tmp;
900 LIST_HEAD(cancel_list);
901
902 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
903
904 spin_lock_bh(&engine->execlist_lock);
905 list_replace_init(&engine->execlist_queue, &cancel_list);
906 spin_unlock_bh(&engine->execlist_lock);
907
908 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
909 list_del(&req->execlist_link);
910 i915_gem_request_unreference(req);
911 }
912 }
913
914 void intel_logical_ring_stop(struct intel_engine_cs *engine)
915 {
916 struct drm_i915_private *dev_priv = engine->i915;
917 int ret;
918
919 if (!intel_engine_initialized(engine))
920 return;
921
922 ret = intel_engine_idle(engine);
923 if (ret)
924 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
925 engine->name, ret);
926
927 /* TODO: Is this correct with Execlists enabled? */
928 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
929 if (intel_wait_for_register(dev_priv,
930 RING_MI_MODE(engine->mmio_base),
931 MODE_IDLE, MODE_IDLE,
932 1000)) {
933 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
934 return;
935 }
936 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
937 }
938
939 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
940 {
941 struct intel_engine_cs *engine = req->engine;
942 int ret;
943
944 if (!engine->gpu_caches_dirty)
945 return 0;
946
947 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
948 if (ret)
949 return ret;
950
951 engine->gpu_caches_dirty = false;
952 return 0;
953 }
954
955 static int intel_lr_context_pin(struct i915_gem_context *ctx,
956 struct intel_engine_cs *engine)
957 {
958 struct drm_i915_private *dev_priv = ctx->i915;
959 struct intel_context *ce = &ctx->engine[engine->id];
960 void *vaddr;
961 u32 *lrc_reg_state;
962 int ret;
963
964 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
965
966 if (ce->pin_count++)
967 return 0;
968
969 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
970 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
971 if (ret)
972 goto err;
973
974 vaddr = i915_gem_object_pin_map(ce->state);
975 if (IS_ERR(vaddr)) {
976 ret = PTR_ERR(vaddr);
977 goto unpin_ctx_obj;
978 }
979
980 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
981
982 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
983 if (ret)
984 goto unpin_map;
985
986 i915_gem_context_reference(ctx);
987 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
988 intel_lr_context_descriptor_update(ctx, engine);
989
990 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
991 ce->lrc_reg_state = lrc_reg_state;
992 ce->state->dirty = true;
993
994 /* Invalidate GuC TLB. */
995 if (i915.enable_guc_submission)
996 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
997
998 return 0;
999
1000 unpin_map:
1001 i915_gem_object_unpin_map(ce->state);
1002 unpin_ctx_obj:
1003 i915_gem_object_ggtt_unpin(ce->state);
1004 err:
1005 ce->pin_count = 0;
1006 return ret;
1007 }
1008
1009 void intel_lr_context_unpin(struct i915_gem_context *ctx,
1010 struct intel_engine_cs *engine)
1011 {
1012 struct intel_context *ce = &ctx->engine[engine->id];
1013
1014 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1015 GEM_BUG_ON(ce->pin_count == 0);
1016
1017 if (--ce->pin_count)
1018 return;
1019
1020 intel_unpin_ringbuffer_obj(ce->ringbuf);
1021
1022 i915_gem_object_unpin_map(ce->state);
1023 i915_gem_object_ggtt_unpin(ce->state);
1024
1025 ce->lrc_vma = NULL;
1026 ce->lrc_desc = 0;
1027 ce->lrc_reg_state = NULL;
1028
1029 i915_gem_context_unreference(ctx);
1030 }
1031
1032 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1033 {
1034 int ret, i;
1035 struct intel_engine_cs *engine = req->engine;
1036 struct intel_ringbuffer *ringbuf = req->ringbuf;
1037 struct i915_workarounds *w = &req->i915->workarounds;
1038
1039 if (w->count == 0)
1040 return 0;
1041
1042 engine->gpu_caches_dirty = true;
1043 ret = logical_ring_flush_all_caches(req);
1044 if (ret)
1045 return ret;
1046
1047 ret = intel_ring_begin(req, w->count * 2 + 2);
1048 if (ret)
1049 return ret;
1050
1051 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1052 for (i = 0; i < w->count; i++) {
1053 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1054 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1055 }
1056 intel_logical_ring_emit(ringbuf, MI_NOOP);
1057
1058 intel_logical_ring_advance(ringbuf);
1059
1060 engine->gpu_caches_dirty = true;
1061 ret = logical_ring_flush_all_caches(req);
1062 if (ret)
1063 return ret;
1064
1065 return 0;
1066 }
1067
1068 #define wa_ctx_emit(batch, index, cmd) \
1069 do { \
1070 int __index = (index)++; \
1071 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1072 return -ENOSPC; \
1073 } \
1074 batch[__index] = (cmd); \
1075 } while (0)
1076
1077 #define wa_ctx_emit_reg(batch, index, reg) \
1078 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1079
1080 /*
1081 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1082 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1083 * but there is a slight complication as this is applied in WA batch where the
1084 * values are only initialized once so we cannot take register value at the
1085 * beginning and reuse it further; hence we save its value to memory, upload a
1086 * constant value with bit21 set and then we restore it back with the saved value.
1087 * To simplify the WA, a constant value is formed by using the default value
1088 * of this register. This shouldn't be a problem because we are only modifying
1089 * it for a short period and this batch in non-premptible. We can ofcourse
1090 * use additional instructions that read the actual value of the register
1091 * at that time and set our bit of interest but it makes the WA complicated.
1092 *
1093 * This WA is also required for Gen9 so extracting as a function avoids
1094 * code duplication.
1095 */
1096 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1097 uint32_t *const batch,
1098 uint32_t index)
1099 {
1100 struct drm_i915_private *dev_priv = engine->i915;
1101 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1102
1103 /*
1104 * WaDisableLSQCROPERFforOCL:skl,kbl
1105 * This WA is implemented in skl_init_clock_gating() but since
1106 * this batch updates GEN8_L3SQCREG4 with default value we need to
1107 * set this bit here to retain the WA during flush.
1108 */
1109 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
1110 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1111 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1112
1113 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1114 MI_SRM_LRM_GLOBAL_GTT));
1115 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1116 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1117 wa_ctx_emit(batch, index, 0);
1118
1119 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1120 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1121 wa_ctx_emit(batch, index, l3sqc4_flush);
1122
1123 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1124 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1125 PIPE_CONTROL_DC_FLUSH_ENABLE));
1126 wa_ctx_emit(batch, index, 0);
1127 wa_ctx_emit(batch, index, 0);
1128 wa_ctx_emit(batch, index, 0);
1129 wa_ctx_emit(batch, index, 0);
1130
1131 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1132 MI_SRM_LRM_GLOBAL_GTT));
1133 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1134 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1135 wa_ctx_emit(batch, index, 0);
1136
1137 return index;
1138 }
1139
1140 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1141 uint32_t offset,
1142 uint32_t start_alignment)
1143 {
1144 return wa_ctx->offset = ALIGN(offset, start_alignment);
1145 }
1146
1147 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1148 uint32_t offset,
1149 uint32_t size_alignment)
1150 {
1151 wa_ctx->size = offset - wa_ctx->offset;
1152
1153 WARN(wa_ctx->size % size_alignment,
1154 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1155 wa_ctx->size, size_alignment);
1156 return 0;
1157 }
1158
1159 /**
1160 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1161 *
1162 * @engine: only applicable for RCS
1163 * @wa_ctx: structure representing wa_ctx
1164 * offset: specifies start of the batch, should be cache-aligned. This is updated
1165 * with the offset value received as input.
1166 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1167 * @batch: page in which WA are loaded
1168 * @offset: This field specifies the start of the batch, it should be
1169 * cache-aligned otherwise it is adjusted accordingly.
1170 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1171 * initialized at the beginning and shared across all contexts but this field
1172 * helps us to have multiple batches at different offsets and select them based
1173 * on a criteria. At the moment this batch always start at the beginning of the page
1174 * and at this point we don't have multiple wa_ctx batch buffers.
1175 *
1176 * The number of WA applied are not known at the beginning; we use this field
1177 * to return the no of DWORDS written.
1178 *
1179 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1180 * so it adds NOOPs as padding to make it cacheline aligned.
1181 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1182 * makes a complete batch buffer.
1183 *
1184 * Return: non-zero if we exceed the PAGE_SIZE limit.
1185 */
1186
1187 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1188 struct i915_wa_ctx_bb *wa_ctx,
1189 uint32_t *const batch,
1190 uint32_t *offset)
1191 {
1192 uint32_t scratch_addr;
1193 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1194
1195 /* WaDisableCtxRestoreArbitration:bdw,chv */
1196 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1197
1198 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1199 if (IS_BROADWELL(engine->i915)) {
1200 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1201 if (rc < 0)
1202 return rc;
1203 index = rc;
1204 }
1205
1206 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1207 /* Actual scratch location is at 128 bytes offset */
1208 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1209
1210 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1211 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1212 PIPE_CONTROL_GLOBAL_GTT_IVB |
1213 PIPE_CONTROL_CS_STALL |
1214 PIPE_CONTROL_QW_WRITE));
1215 wa_ctx_emit(batch, index, scratch_addr);
1216 wa_ctx_emit(batch, index, 0);
1217 wa_ctx_emit(batch, index, 0);
1218 wa_ctx_emit(batch, index, 0);
1219
1220 /* Pad to end of cacheline */
1221 while (index % CACHELINE_DWORDS)
1222 wa_ctx_emit(batch, index, MI_NOOP);
1223
1224 /*
1225 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1226 * execution depends on the length specified in terms of cache lines
1227 * in the register CTX_RCS_INDIRECT_CTX
1228 */
1229
1230 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1231 }
1232
1233 /**
1234 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1235 *
1236 * @engine: only applicable for RCS
1237 * @wa_ctx: structure representing wa_ctx
1238 * offset: specifies start of the batch, should be cache-aligned.
1239 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1240 * @batch: page in which WA are loaded
1241 * @offset: This field specifies the start of this batch.
1242 * This batch is started immediately after indirect_ctx batch. Since we ensure
1243 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1244 *
1245 * The number of DWORDS written are returned using this field.
1246 *
1247 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1248 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1249 */
1250 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1251 struct i915_wa_ctx_bb *wa_ctx,
1252 uint32_t *const batch,
1253 uint32_t *offset)
1254 {
1255 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1256
1257 /* WaDisableCtxRestoreArbitration:bdw,chv */
1258 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1259
1260 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1261
1262 return wa_ctx_end(wa_ctx, *offset = index, 1);
1263 }
1264
1265 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1266 struct i915_wa_ctx_bb *wa_ctx,
1267 uint32_t *const batch,
1268 uint32_t *offset)
1269 {
1270 int ret;
1271 struct drm_i915_private *dev_priv = engine->i915;
1272 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1273
1274 /* WaDisableCtxRestoreArbitration:skl,bxt */
1275 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1276 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1277 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1278
1279 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1280 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1281 if (ret < 0)
1282 return ret;
1283 index = ret;
1284
1285 /* WaClearSlmSpaceAtContextSwitch:kbl */
1286 /* Actual scratch location is at 128 bytes offset */
1287 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1288 uint32_t scratch_addr
1289 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1290
1291 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1292 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1293 PIPE_CONTROL_GLOBAL_GTT_IVB |
1294 PIPE_CONTROL_CS_STALL |
1295 PIPE_CONTROL_QW_WRITE));
1296 wa_ctx_emit(batch, index, scratch_addr);
1297 wa_ctx_emit(batch, index, 0);
1298 wa_ctx_emit(batch, index, 0);
1299 wa_ctx_emit(batch, index, 0);
1300 }
1301
1302 /* WaMediaPoolStateCmdInWABB:bxt */
1303 if (HAS_POOLED_EU(engine->i915)) {
1304 /*
1305 * EU pool configuration is setup along with golden context
1306 * during context initialization. This value depends on
1307 * device type (2x6 or 3x6) and needs to be updated based
1308 * on which subslice is disabled especially for 2x6
1309 * devices, however it is safe to load default
1310 * configuration of 3x6 device instead of masking off
1311 * corresponding bits because HW ignores bits of a disabled
1312 * subslice and drops down to appropriate config. Please
1313 * see render_state_setup() in i915_gem_render_state.c for
1314 * possible configurations, to avoid duplication they are
1315 * not shown here again.
1316 */
1317 u32 eu_pool_config = 0x00777000;
1318 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1319 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1320 wa_ctx_emit(batch, index, eu_pool_config);
1321 wa_ctx_emit(batch, index, 0);
1322 wa_ctx_emit(batch, index, 0);
1323 wa_ctx_emit(batch, index, 0);
1324 }
1325
1326 /* Pad to end of cacheline */
1327 while (index % CACHELINE_DWORDS)
1328 wa_ctx_emit(batch, index, MI_NOOP);
1329
1330 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1331 }
1332
1333 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1334 struct i915_wa_ctx_bb *wa_ctx,
1335 uint32_t *const batch,
1336 uint32_t *offset)
1337 {
1338 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1339
1340 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1341 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1342 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1343 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1344 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1345 wa_ctx_emit(batch, index,
1346 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1347 wa_ctx_emit(batch, index, MI_NOOP);
1348 }
1349
1350 /* WaClearTdlStateAckDirtyBits:bxt */
1351 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1352 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1353
1354 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1355 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1356
1357 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1358 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1359
1360 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1361 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1362
1363 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1364 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1365 wa_ctx_emit(batch, index, 0x0);
1366 wa_ctx_emit(batch, index, MI_NOOP);
1367 }
1368
1369 /* WaDisableCtxRestoreArbitration:skl,bxt */
1370 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1371 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1372 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1373
1374 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1375
1376 return wa_ctx_end(wa_ctx, *offset = index, 1);
1377 }
1378
1379 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1380 {
1381 int ret;
1382
1383 engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1384 PAGE_ALIGN(size));
1385 if (IS_ERR(engine->wa_ctx.obj)) {
1386 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1387 ret = PTR_ERR(engine->wa_ctx.obj);
1388 engine->wa_ctx.obj = NULL;
1389 return ret;
1390 }
1391
1392 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1393 if (ret) {
1394 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1395 ret);
1396 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1397 return ret;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1404 {
1405 if (engine->wa_ctx.obj) {
1406 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1407 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1408 engine->wa_ctx.obj = NULL;
1409 }
1410 }
1411
1412 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1413 {
1414 int ret;
1415 uint32_t *batch;
1416 uint32_t offset;
1417 struct page *page;
1418 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1419
1420 WARN_ON(engine->id != RCS);
1421
1422 /* update this when WA for higher Gen are added */
1423 if (INTEL_GEN(engine->i915) > 9) {
1424 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1425 INTEL_GEN(engine->i915));
1426 return 0;
1427 }
1428
1429 /* some WA perform writes to scratch page, ensure it is valid */
1430 if (engine->scratch.obj == NULL) {
1431 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1432 return -EINVAL;
1433 }
1434
1435 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1436 if (ret) {
1437 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1438 return ret;
1439 }
1440
1441 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1442 batch = kmap_atomic(page);
1443 offset = 0;
1444
1445 if (IS_GEN8(engine->i915)) {
1446 ret = gen8_init_indirectctx_bb(engine,
1447 &wa_ctx->indirect_ctx,
1448 batch,
1449 &offset);
1450 if (ret)
1451 goto out;
1452
1453 ret = gen8_init_perctx_bb(engine,
1454 &wa_ctx->per_ctx,
1455 batch,
1456 &offset);
1457 if (ret)
1458 goto out;
1459 } else if (IS_GEN9(engine->i915)) {
1460 ret = gen9_init_indirectctx_bb(engine,
1461 &wa_ctx->indirect_ctx,
1462 batch,
1463 &offset);
1464 if (ret)
1465 goto out;
1466
1467 ret = gen9_init_perctx_bb(engine,
1468 &wa_ctx->per_ctx,
1469 batch,
1470 &offset);
1471 if (ret)
1472 goto out;
1473 }
1474
1475 out:
1476 kunmap_atomic(batch);
1477 if (ret)
1478 lrc_destroy_wa_ctx_obj(engine);
1479
1480 return ret;
1481 }
1482
1483 static void lrc_init_hws(struct intel_engine_cs *engine)
1484 {
1485 struct drm_i915_private *dev_priv = engine->i915;
1486
1487 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1488 (u32)engine->status_page.gfx_addr);
1489 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1490 }
1491
1492 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1493 {
1494 struct drm_i915_private *dev_priv = engine->i915;
1495 unsigned int next_context_status_buffer_hw;
1496
1497 lrc_init_hws(engine);
1498
1499 I915_WRITE_IMR(engine,
1500 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1501 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1502
1503 I915_WRITE(RING_MODE_GEN7(engine),
1504 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1505 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1506 POSTING_READ(RING_MODE_GEN7(engine));
1507
1508 /*
1509 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1510 * zero, we need to read the write pointer from hardware and use its
1511 * value because "this register is power context save restored".
1512 * Effectively, these states have been observed:
1513 *
1514 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1515 * BDW | CSB regs not reset | CSB regs reset |
1516 * CHT | CSB regs not reset | CSB regs not reset |
1517 * SKL | ? | ? |
1518 * BXT | ? | ? |
1519 */
1520 next_context_status_buffer_hw =
1521 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1522
1523 /*
1524 * When the CSB registers are reset (also after power-up / gpu reset),
1525 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1526 * this special case, so the first element read is CSB[0].
1527 */
1528 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1529 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1530
1531 engine->next_context_status_buffer = next_context_status_buffer_hw;
1532 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1533
1534 intel_engine_init_hangcheck(engine);
1535
1536 return intel_mocs_init_engine(engine);
1537 }
1538
1539 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1540 {
1541 struct drm_i915_private *dev_priv = engine->i915;
1542 int ret;
1543
1544 ret = gen8_init_common_ring(engine);
1545 if (ret)
1546 return ret;
1547
1548 /* We need to disable the AsyncFlip performance optimisations in order
1549 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1550 * programmed to '1' on all products.
1551 *
1552 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1553 */
1554 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1555
1556 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1557
1558 return init_workarounds_ring(engine);
1559 }
1560
1561 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1562 {
1563 int ret;
1564
1565 ret = gen8_init_common_ring(engine);
1566 if (ret)
1567 return ret;
1568
1569 return init_workarounds_ring(engine);
1570 }
1571
1572 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1573 {
1574 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1575 struct intel_engine_cs *engine = req->engine;
1576 struct intel_ringbuffer *ringbuf = req->ringbuf;
1577 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1578 int i, ret;
1579
1580 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1581 if (ret)
1582 return ret;
1583
1584 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1585 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1586 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1587
1588 intel_logical_ring_emit_reg(ringbuf,
1589 GEN8_RING_PDP_UDW(engine, i));
1590 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1591 intel_logical_ring_emit_reg(ringbuf,
1592 GEN8_RING_PDP_LDW(engine, i));
1593 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1594 }
1595
1596 intel_logical_ring_emit(ringbuf, MI_NOOP);
1597 intel_logical_ring_advance(ringbuf);
1598
1599 return 0;
1600 }
1601
1602 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1603 u64 offset, unsigned dispatch_flags)
1604 {
1605 struct intel_ringbuffer *ringbuf = req->ringbuf;
1606 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1607 int ret;
1608
1609 /* Don't rely in hw updating PDPs, specially in lite-restore.
1610 * Ideally, we should set Force PD Restore in ctx descriptor,
1611 * but we can't. Force Restore would be a second option, but
1612 * it is unsafe in case of lite-restore (because the ctx is
1613 * not idle). PML4 is allocated during ppgtt init so this is
1614 * not needed in 48-bit.*/
1615 if (req->ctx->ppgtt &&
1616 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1617 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1618 !intel_vgpu_active(req->i915)) {
1619 ret = intel_logical_ring_emit_pdps(req);
1620 if (ret)
1621 return ret;
1622 }
1623
1624 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1625 }
1626
1627 ret = intel_ring_begin(req, 4);
1628 if (ret)
1629 return ret;
1630
1631 /* FIXME(BDW): Address space and security selectors. */
1632 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1633 (ppgtt<<8) |
1634 (dispatch_flags & I915_DISPATCH_RS ?
1635 MI_BATCH_RESOURCE_STREAMER : 0));
1636 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1637 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1638 intel_logical_ring_emit(ringbuf, MI_NOOP);
1639 intel_logical_ring_advance(ringbuf);
1640
1641 return 0;
1642 }
1643
1644 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1645 {
1646 struct drm_i915_private *dev_priv = engine->i915;
1647 I915_WRITE_IMR(engine,
1648 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1649 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1650 }
1651
1652 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1653 {
1654 struct drm_i915_private *dev_priv = engine->i915;
1655 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1656 }
1657
1658 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1659 u32 invalidate_domains,
1660 u32 unused)
1661 {
1662 struct intel_ringbuffer *ringbuf = request->ringbuf;
1663 struct intel_engine_cs *engine = ringbuf->engine;
1664 struct drm_i915_private *dev_priv = request->i915;
1665 uint32_t cmd;
1666 int ret;
1667
1668 ret = intel_ring_begin(request, 4);
1669 if (ret)
1670 return ret;
1671
1672 cmd = MI_FLUSH_DW + 1;
1673
1674 /* We always require a command barrier so that subsequent
1675 * commands, such as breadcrumb interrupts, are strictly ordered
1676 * wrt the contents of the write cache being flushed to memory
1677 * (and thus being coherent from the CPU).
1678 */
1679 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1680
1681 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1682 cmd |= MI_INVALIDATE_TLB;
1683 if (engine == &dev_priv->engine[VCS])
1684 cmd |= MI_INVALIDATE_BSD;
1685 }
1686
1687 intel_logical_ring_emit(ringbuf, cmd);
1688 intel_logical_ring_emit(ringbuf,
1689 I915_GEM_HWS_SCRATCH_ADDR |
1690 MI_FLUSH_DW_USE_GTT);
1691 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1692 intel_logical_ring_emit(ringbuf, 0); /* value */
1693 intel_logical_ring_advance(ringbuf);
1694
1695 return 0;
1696 }
1697
1698 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1699 u32 invalidate_domains,
1700 u32 flush_domains)
1701 {
1702 struct intel_ringbuffer *ringbuf = request->ringbuf;
1703 struct intel_engine_cs *engine = ringbuf->engine;
1704 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1705 bool vf_flush_wa = false, dc_flush_wa = false;
1706 u32 flags = 0;
1707 int ret;
1708 int len;
1709
1710 flags |= PIPE_CONTROL_CS_STALL;
1711
1712 if (flush_domains) {
1713 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1714 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1715 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1716 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1717 }
1718
1719 if (invalidate_domains) {
1720 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1721 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1722 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1723 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1724 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1725 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1726 flags |= PIPE_CONTROL_QW_WRITE;
1727 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1728
1729 /*
1730 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1731 * pipe control.
1732 */
1733 if (IS_GEN9(request->i915))
1734 vf_flush_wa = true;
1735
1736 /* WaForGAMHang:kbl */
1737 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1738 dc_flush_wa = true;
1739 }
1740
1741 len = 6;
1742
1743 if (vf_flush_wa)
1744 len += 6;
1745
1746 if (dc_flush_wa)
1747 len += 12;
1748
1749 ret = intel_ring_begin(request, len);
1750 if (ret)
1751 return ret;
1752
1753 if (vf_flush_wa) {
1754 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1755 intel_logical_ring_emit(ringbuf, 0);
1756 intel_logical_ring_emit(ringbuf, 0);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 intel_logical_ring_emit(ringbuf, 0);
1759 intel_logical_ring_emit(ringbuf, 0);
1760 }
1761
1762 if (dc_flush_wa) {
1763 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1764 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1765 intel_logical_ring_emit(ringbuf, 0);
1766 intel_logical_ring_emit(ringbuf, 0);
1767 intel_logical_ring_emit(ringbuf, 0);
1768 intel_logical_ring_emit(ringbuf, 0);
1769 }
1770
1771 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1772 intel_logical_ring_emit(ringbuf, flags);
1773 intel_logical_ring_emit(ringbuf, scratch_addr);
1774 intel_logical_ring_emit(ringbuf, 0);
1775 intel_logical_ring_emit(ringbuf, 0);
1776 intel_logical_ring_emit(ringbuf, 0);
1777
1778 if (dc_flush_wa) {
1779 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1780 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1781 intel_logical_ring_emit(ringbuf, 0);
1782 intel_logical_ring_emit(ringbuf, 0);
1783 intel_logical_ring_emit(ringbuf, 0);
1784 intel_logical_ring_emit(ringbuf, 0);
1785 }
1786
1787 intel_logical_ring_advance(ringbuf);
1788
1789 return 0;
1790 }
1791
1792 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1793 {
1794 /*
1795 * On BXT A steppings there is a HW coherency issue whereby the
1796 * MI_STORE_DATA_IMM storing the completed request's seqno
1797 * occasionally doesn't invalidate the CPU cache. Work around this by
1798 * clflushing the corresponding cacheline whenever the caller wants
1799 * the coherency to be guaranteed. Note that this cacheline is known
1800 * to be clean at this point, since we only write it in
1801 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1802 * this clflush in practice becomes an invalidate operation.
1803 */
1804 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1805 }
1806
1807 /*
1808 * Reserve space for 2 NOOPs at the end of each request to be
1809 * used as a workaround for not being allowed to do lite
1810 * restore with HEAD==TAIL (WaIdleLiteRestore).
1811 */
1812 #define WA_TAIL_DWORDS 2
1813
1814 static int gen8_emit_request(struct drm_i915_gem_request *request)
1815 {
1816 struct intel_ringbuffer *ringbuf = request->ringbuf;
1817 int ret;
1818
1819 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1820 if (ret)
1821 return ret;
1822
1823 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1824 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1825
1826 intel_logical_ring_emit(ringbuf,
1827 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1828 intel_logical_ring_emit(ringbuf,
1829 intel_hws_seqno_address(request->engine) |
1830 MI_FLUSH_DW_USE_GTT);
1831 intel_logical_ring_emit(ringbuf, 0);
1832 intel_logical_ring_emit(ringbuf, request->seqno);
1833 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1834 intel_logical_ring_emit(ringbuf, MI_NOOP);
1835 return intel_logical_ring_advance_and_submit(request);
1836 }
1837
1838 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1839 {
1840 struct intel_ringbuffer *ringbuf = request->ringbuf;
1841 int ret;
1842
1843 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1844 if (ret)
1845 return ret;
1846
1847 /* We're using qword write, seqno should be aligned to 8 bytes. */
1848 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1849
1850 /* w/a for post sync ops following a GPGPU operation we
1851 * need a prior CS_STALL, which is emitted by the flush
1852 * following the batch.
1853 */
1854 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1855 intel_logical_ring_emit(ringbuf,
1856 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1857 PIPE_CONTROL_CS_STALL |
1858 PIPE_CONTROL_QW_WRITE));
1859 intel_logical_ring_emit(ringbuf,
1860 intel_hws_seqno_address(request->engine));
1861 intel_logical_ring_emit(ringbuf, 0);
1862 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1863 /* We're thrashing one dword of HWS. */
1864 intel_logical_ring_emit(ringbuf, 0);
1865 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1866 intel_logical_ring_emit(ringbuf, MI_NOOP);
1867 return intel_logical_ring_advance_and_submit(request);
1868 }
1869
1870 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1871 {
1872 struct render_state so;
1873 int ret;
1874
1875 ret = i915_gem_render_state_prepare(req->engine, &so);
1876 if (ret)
1877 return ret;
1878
1879 if (so.rodata == NULL)
1880 return 0;
1881
1882 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1883 I915_DISPATCH_SECURE);
1884 if (ret)
1885 goto out;
1886
1887 ret = req->engine->emit_bb_start(req,
1888 (so.ggtt_offset + so.aux_batch_offset),
1889 I915_DISPATCH_SECURE);
1890 if (ret)
1891 goto out;
1892
1893 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1894
1895 out:
1896 i915_gem_render_state_fini(&so);
1897 return ret;
1898 }
1899
1900 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1901 {
1902 int ret;
1903
1904 ret = intel_logical_ring_workarounds_emit(req);
1905 if (ret)
1906 return ret;
1907
1908 ret = intel_rcs_context_init_mocs(req);
1909 /*
1910 * Failing to program the MOCS is non-fatal.The system will not
1911 * run at peak performance. So generate an error and carry on.
1912 */
1913 if (ret)
1914 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1915
1916 return intel_lr_context_render_state_init(req);
1917 }
1918
1919 /**
1920 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1921 *
1922 * @engine: Engine Command Streamer.
1923 *
1924 */
1925 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1926 {
1927 struct drm_i915_private *dev_priv;
1928
1929 if (!intel_engine_initialized(engine))
1930 return;
1931
1932 /*
1933 * Tasklet cannot be active at this point due intel_mark_active/idle
1934 * so this is just for documentation.
1935 */
1936 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1937 tasklet_kill(&engine->irq_tasklet);
1938
1939 dev_priv = engine->i915;
1940
1941 if (engine->buffer) {
1942 intel_logical_ring_stop(engine);
1943 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1944 }
1945
1946 if (engine->cleanup)
1947 engine->cleanup(engine);
1948
1949 i915_cmd_parser_fini_ring(engine);
1950 i915_gem_batch_pool_fini(&engine->batch_pool);
1951
1952 intel_engine_fini_breadcrumbs(engine);
1953
1954 if (engine->status_page.obj) {
1955 i915_gem_object_unpin_map(engine->status_page.obj);
1956 engine->status_page.obj = NULL;
1957 }
1958 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1959
1960 engine->idle_lite_restore_wa = 0;
1961 engine->disable_lite_restore_wa = false;
1962 engine->ctx_desc_template = 0;
1963
1964 lrc_destroy_wa_ctx_obj(engine);
1965 engine->i915 = NULL;
1966 }
1967
1968 static void
1969 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1970 {
1971 /* Default vfuncs which can be overriden by each engine. */
1972 engine->init_hw = gen8_init_common_ring;
1973 engine->emit_request = gen8_emit_request;
1974 engine->emit_flush = gen8_emit_flush;
1975 engine->irq_enable = gen8_logical_ring_enable_irq;
1976 engine->irq_disable = gen8_logical_ring_disable_irq;
1977 engine->emit_bb_start = gen8_emit_bb_start;
1978 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1979 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1980 }
1981
1982 static inline void
1983 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1984 {
1985 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1986 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1987 }
1988
1989 static int
1990 lrc_setup_hws(struct intel_engine_cs *engine,
1991 struct drm_i915_gem_object *dctx_obj)
1992 {
1993 void *hws;
1994
1995 /* The HWSP is part of the default context object in LRC mode. */
1996 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1997 LRC_PPHWSP_PN * PAGE_SIZE;
1998 hws = i915_gem_object_pin_map(dctx_obj);
1999 if (IS_ERR(hws))
2000 return PTR_ERR(hws);
2001 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2002 engine->status_page.obj = dctx_obj;
2003
2004 return 0;
2005 }
2006
2007 static int
2008 logical_ring_init(struct intel_engine_cs *engine)
2009 {
2010 struct i915_gem_context *dctx = engine->i915->kernel_context;
2011 int ret;
2012
2013 ret = intel_engine_init_breadcrumbs(engine);
2014 if (ret)
2015 goto error;
2016
2017 ret = i915_cmd_parser_init_ring(engine);
2018 if (ret)
2019 goto error;
2020
2021 ret = execlists_context_deferred_alloc(dctx, engine);
2022 if (ret)
2023 goto error;
2024
2025 /* As this is the default context, always pin it */
2026 ret = intel_lr_context_pin(dctx, engine);
2027 if (ret) {
2028 DRM_ERROR("Failed to pin context for %s: %d\n",
2029 engine->name, ret);
2030 goto error;
2031 }
2032
2033 /* And setup the hardware status page. */
2034 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2035 if (ret) {
2036 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2037 goto error;
2038 }
2039
2040 return 0;
2041
2042 error:
2043 intel_logical_ring_cleanup(engine);
2044 return ret;
2045 }
2046
2047 static int logical_render_ring_init(struct intel_engine_cs *engine)
2048 {
2049 struct drm_i915_private *dev_priv = engine->i915;
2050 int ret;
2051
2052 if (HAS_L3_DPF(dev_priv))
2053 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2054
2055 /* Override some for render ring. */
2056 if (INTEL_GEN(dev_priv) >= 9)
2057 engine->init_hw = gen9_init_render_ring;
2058 else
2059 engine->init_hw = gen8_init_render_ring;
2060 engine->init_context = gen8_init_rcs_context;
2061 engine->cleanup = intel_fini_pipe_control;
2062 engine->emit_flush = gen8_emit_flush_render;
2063 engine->emit_request = gen8_emit_request_render;
2064
2065 ret = intel_init_pipe_control(engine, 4096);
2066 if (ret)
2067 return ret;
2068
2069 ret = intel_init_workaround_bb(engine);
2070 if (ret) {
2071 /*
2072 * We continue even if we fail to initialize WA batch
2073 * because we only expect rare glitches but nothing
2074 * critical to prevent us from using GPU
2075 */
2076 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2077 ret);
2078 }
2079
2080 ret = logical_ring_init(engine);
2081 if (ret) {
2082 lrc_destroy_wa_ctx_obj(engine);
2083 }
2084
2085 return ret;
2086 }
2087
2088 static const struct logical_ring_info {
2089 const char *name;
2090 unsigned exec_id;
2091 unsigned guc_id;
2092 u32 mmio_base;
2093 unsigned irq_shift;
2094 int (*init)(struct intel_engine_cs *engine);
2095 } logical_rings[] = {
2096 [RCS] = {
2097 .name = "render ring",
2098 .exec_id = I915_EXEC_RENDER,
2099 .guc_id = GUC_RENDER_ENGINE,
2100 .mmio_base = RENDER_RING_BASE,
2101 .irq_shift = GEN8_RCS_IRQ_SHIFT,
2102 .init = logical_render_ring_init,
2103 },
2104 [BCS] = {
2105 .name = "blitter ring",
2106 .exec_id = I915_EXEC_BLT,
2107 .guc_id = GUC_BLITTER_ENGINE,
2108 .mmio_base = BLT_RING_BASE,
2109 .irq_shift = GEN8_BCS_IRQ_SHIFT,
2110 .init = logical_ring_init,
2111 },
2112 [VCS] = {
2113 .name = "bsd ring",
2114 .exec_id = I915_EXEC_BSD,
2115 .guc_id = GUC_VIDEO_ENGINE,
2116 .mmio_base = GEN6_BSD_RING_BASE,
2117 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
2118 .init = logical_ring_init,
2119 },
2120 [VCS2] = {
2121 .name = "bsd2 ring",
2122 .exec_id = I915_EXEC_BSD,
2123 .guc_id = GUC_VIDEO_ENGINE2,
2124 .mmio_base = GEN8_BSD2_RING_BASE,
2125 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
2126 .init = logical_ring_init,
2127 },
2128 [VECS] = {
2129 .name = "video enhancement ring",
2130 .exec_id = I915_EXEC_VEBOX,
2131 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2132 .mmio_base = VEBOX_RING_BASE,
2133 .irq_shift = GEN8_VECS_IRQ_SHIFT,
2134 .init = logical_ring_init,
2135 },
2136 };
2137
2138 static struct intel_engine_cs *
2139 logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
2140 {
2141 const struct logical_ring_info *info = &logical_rings[id];
2142 struct intel_engine_cs *engine = &dev_priv->engine[id];
2143 enum forcewake_domains fw_domains;
2144
2145 engine->id = id;
2146 engine->name = info->name;
2147 engine->exec_id = info->exec_id;
2148 engine->guc_id = info->guc_id;
2149 engine->mmio_base = info->mmio_base;
2150
2151 engine->i915 = dev_priv;
2152
2153 /* Intentionally left blank. */
2154 engine->buffer = NULL;
2155
2156 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2157 RING_ELSP(engine),
2158 FW_REG_WRITE);
2159
2160 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2161 RING_CONTEXT_STATUS_PTR(engine),
2162 FW_REG_READ | FW_REG_WRITE);
2163
2164 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2165 RING_CONTEXT_STATUS_BUF_BASE(engine),
2166 FW_REG_READ);
2167
2168 engine->fw_domains = fw_domains;
2169
2170 INIT_LIST_HEAD(&engine->active_list);
2171 INIT_LIST_HEAD(&engine->request_list);
2172 INIT_LIST_HEAD(&engine->buffers);
2173 INIT_LIST_HEAD(&engine->execlist_queue);
2174 spin_lock_init(&engine->execlist_lock);
2175
2176 tasklet_init(&engine->irq_tasklet,
2177 intel_lrc_irq_handler, (unsigned long)engine);
2178
2179 logical_ring_init_platform_invariants(engine);
2180 logical_ring_default_vfuncs(engine);
2181 logical_ring_default_irqs(engine, info->irq_shift);
2182
2183 intel_engine_init_hangcheck(engine);
2184 i915_gem_batch_pool_init(&dev_priv->drm, &engine->batch_pool);
2185
2186 return engine;
2187 }
2188
2189 /**
2190 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2191 * @dev: DRM device.
2192 *
2193 * This function inits the engines for an Execlists submission style (the
2194 * equivalent in the legacy ringbuffer submission world would be
2195 * i915_gem_init_engines). It does it only for those engines that are present in
2196 * the hardware.
2197 *
2198 * Return: non-zero if the initialization failed.
2199 */
2200 int intel_logical_rings_init(struct drm_device *dev)
2201 {
2202 struct drm_i915_private *dev_priv = to_i915(dev);
2203 unsigned int mask = 0;
2204 unsigned int i;
2205 int ret;
2206
2207 WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
2208 GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
2209
2210 for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
2211 if (!HAS_ENGINE(dev_priv, i))
2212 continue;
2213
2214 if (!logical_rings[i].init)
2215 continue;
2216
2217 ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
2218 if (ret)
2219 goto cleanup;
2220
2221 mask |= ENGINE_MASK(i);
2222 }
2223
2224 /*
2225 * Catch failures to update logical_rings table when the new engines
2226 * are added to the driver by a warning and disabling the forgotten
2227 * engines.
2228 */
2229 if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
2230 struct intel_device_info *info =
2231 (struct intel_device_info *)&dev_priv->info;
2232 info->ring_mask = mask;
2233 }
2234
2235 return 0;
2236
2237 cleanup:
2238 for (i = 0; i < I915_NUM_ENGINES; i++)
2239 intel_logical_ring_cleanup(&dev_priv->engine[i]);
2240
2241 return ret;
2242 }
2243
2244 static u32
2245 make_rpcs(struct drm_i915_private *dev_priv)
2246 {
2247 u32 rpcs = 0;
2248
2249 /*
2250 * No explicit RPCS request is needed to ensure full
2251 * slice/subslice/EU enablement prior to Gen9.
2252 */
2253 if (INTEL_GEN(dev_priv) < 9)
2254 return 0;
2255
2256 /*
2257 * Starting in Gen9, render power gating can leave
2258 * slice/subslice/EU in a partially enabled state. We
2259 * must make an explicit request through RPCS for full
2260 * enablement.
2261 */
2262 if (INTEL_INFO(dev_priv)->has_slice_pg) {
2263 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2264 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2265 GEN8_RPCS_S_CNT_SHIFT;
2266 rpcs |= GEN8_RPCS_ENABLE;
2267 }
2268
2269 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2270 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2271 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2272 GEN8_RPCS_SS_CNT_SHIFT;
2273 rpcs |= GEN8_RPCS_ENABLE;
2274 }
2275
2276 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2277 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2278 GEN8_RPCS_EU_MIN_SHIFT;
2279 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2280 GEN8_RPCS_EU_MAX_SHIFT;
2281 rpcs |= GEN8_RPCS_ENABLE;
2282 }
2283
2284 return rpcs;
2285 }
2286
2287 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2288 {
2289 u32 indirect_ctx_offset;
2290
2291 switch (INTEL_GEN(engine->i915)) {
2292 default:
2293 MISSING_CASE(INTEL_GEN(engine->i915));
2294 /* fall through */
2295 case 9:
2296 indirect_ctx_offset =
2297 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2298 break;
2299 case 8:
2300 indirect_ctx_offset =
2301 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2302 break;
2303 }
2304
2305 return indirect_ctx_offset;
2306 }
2307
2308 static int
2309 populate_lr_context(struct i915_gem_context *ctx,
2310 struct drm_i915_gem_object *ctx_obj,
2311 struct intel_engine_cs *engine,
2312 struct intel_ringbuffer *ringbuf)
2313 {
2314 struct drm_i915_private *dev_priv = ctx->i915;
2315 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2316 void *vaddr;
2317 u32 *reg_state;
2318 int ret;
2319
2320 if (!ppgtt)
2321 ppgtt = dev_priv->mm.aliasing_ppgtt;
2322
2323 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2324 if (ret) {
2325 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2326 return ret;
2327 }
2328
2329 vaddr = i915_gem_object_pin_map(ctx_obj);
2330 if (IS_ERR(vaddr)) {
2331 ret = PTR_ERR(vaddr);
2332 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2333 return ret;
2334 }
2335 ctx_obj->dirty = true;
2336
2337 /* The second page of the context object contains some fields which must
2338 * be set up prior to the first execution. */
2339 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2340
2341 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2342 * commands followed by (reg, value) pairs. The values we are setting here are
2343 * only for the first context restore: on a subsequent save, the GPU will
2344 * recreate this batchbuffer with new values (including all the missing
2345 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2346 reg_state[CTX_LRI_HEADER_0] =
2347 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2348 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2349 RING_CONTEXT_CONTROL(engine),
2350 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2351 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2352 (HAS_RESOURCE_STREAMER(dev_priv) ?
2353 CTX_CTRL_RS_CTX_ENABLE : 0)));
2354 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2355 0);
2356 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2357 0);
2358 /* Ring buffer start address is not known until the buffer is pinned.
2359 * It is written to the context image in execlists_update_context()
2360 */
2361 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2362 RING_START(engine->mmio_base), 0);
2363 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2364 RING_CTL(engine->mmio_base),
2365 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2366 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2367 RING_BBADDR_UDW(engine->mmio_base), 0);
2368 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2369 RING_BBADDR(engine->mmio_base), 0);
2370 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2371 RING_BBSTATE(engine->mmio_base),
2372 RING_BB_PPGTT);
2373 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2374 RING_SBBADDR_UDW(engine->mmio_base), 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2376 RING_SBBADDR(engine->mmio_base), 0);
2377 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2378 RING_SBBSTATE(engine->mmio_base), 0);
2379 if (engine->id == RCS) {
2380 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2381 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2382 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2383 RING_INDIRECT_CTX(engine->mmio_base), 0);
2384 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2385 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2386 if (engine->wa_ctx.obj) {
2387 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2388 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2389
2390 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2391 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2392 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2393
2394 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2395 intel_lr_indirect_ctx_offset(engine) << 6;
2396
2397 reg_state[CTX_BB_PER_CTX_PTR+1] =
2398 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2399 0x01;
2400 }
2401 }
2402 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2403 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2404 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2405 /* PDP values well be assigned later if needed */
2406 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2407 0);
2408 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2409 0);
2410 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2411 0);
2412 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2413 0);
2414 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2415 0);
2416 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2417 0);
2418 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2419 0);
2420 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2421 0);
2422
2423 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2424 /* 64b PPGTT (48bit canonical)
2425 * PDP0_DESCRIPTOR contains the base address to PML4 and
2426 * other PDP Descriptors are ignored.
2427 */
2428 ASSIGN_CTX_PML4(ppgtt, reg_state);
2429 } else {
2430 /* 32b PPGTT
2431 * PDP*_DESCRIPTOR contains the base address of space supported.
2432 * With dynamic page allocation, PDPs may not be allocated at
2433 * this point. Point the unallocated PDPs to the scratch page
2434 */
2435 execlists_update_context_pdps(ppgtt, reg_state);
2436 }
2437
2438 if (engine->id == RCS) {
2439 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2440 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2441 make_rpcs(dev_priv));
2442 }
2443
2444 i915_gem_object_unpin_map(ctx_obj);
2445
2446 return 0;
2447 }
2448
2449 /**
2450 * intel_lr_context_size() - return the size of the context for an engine
2451 * @engine: which engine to find the context size for
2452 *
2453 * Each engine may require a different amount of space for a context image,
2454 * so when allocating (or copying) an image, this function can be used to
2455 * find the right size for the specific engine.
2456 *
2457 * Return: size (in bytes) of an engine-specific context image
2458 *
2459 * Note: this size includes the HWSP, which is part of the context image
2460 * in LRC mode, but does not include the "shared data page" used with
2461 * GuC submission. The caller should account for this if using the GuC.
2462 */
2463 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2464 {
2465 int ret = 0;
2466
2467 WARN_ON(INTEL_GEN(engine->i915) < 8);
2468
2469 switch (engine->id) {
2470 case RCS:
2471 if (INTEL_GEN(engine->i915) >= 9)
2472 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2473 else
2474 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2475 break;
2476 case VCS:
2477 case BCS:
2478 case VECS:
2479 case VCS2:
2480 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2481 break;
2482 }
2483
2484 return ret;
2485 }
2486
2487 /**
2488 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2489 * @ctx: LR context to create.
2490 * @engine: engine to be used with the context.
2491 *
2492 * This function can be called more than once, with different engines, if we plan
2493 * to use the context with them. The context backing objects and the ringbuffers
2494 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2495 * the creation is a deferred call: it's better to make sure first that we need to use
2496 * a given ring with the context.
2497 *
2498 * Return: non-zero on error.
2499 */
2500 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2501 struct intel_engine_cs *engine)
2502 {
2503 struct drm_i915_gem_object *ctx_obj;
2504 struct intel_context *ce = &ctx->engine[engine->id];
2505 uint32_t context_size;
2506 struct intel_ringbuffer *ringbuf;
2507 int ret;
2508
2509 WARN_ON(ce->state);
2510
2511 context_size = round_up(intel_lr_context_size(engine), 4096);
2512
2513 /* One extra page as the sharing data between driver and GuC */
2514 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2515
2516 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2517 if (IS_ERR(ctx_obj)) {
2518 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2519 return PTR_ERR(ctx_obj);
2520 }
2521
2522 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2523 if (IS_ERR(ringbuf)) {
2524 ret = PTR_ERR(ringbuf);
2525 goto error_deref_obj;
2526 }
2527
2528 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2529 if (ret) {
2530 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2531 goto error_ringbuf;
2532 }
2533
2534 ce->ringbuf = ringbuf;
2535 ce->state = ctx_obj;
2536 ce->initialised = engine->init_context == NULL;
2537
2538 return 0;
2539
2540 error_ringbuf:
2541 intel_ringbuffer_free(ringbuf);
2542 error_deref_obj:
2543 drm_gem_object_unreference(&ctx_obj->base);
2544 ce->ringbuf = NULL;
2545 ce->state = NULL;
2546 return ret;
2547 }
2548
2549 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2550 struct i915_gem_context *ctx)
2551 {
2552 struct intel_engine_cs *engine;
2553
2554 for_each_engine(engine, dev_priv) {
2555 struct intel_context *ce = &ctx->engine[engine->id];
2556 struct drm_i915_gem_object *ctx_obj = ce->state;
2557 void *vaddr;
2558 uint32_t *reg_state;
2559
2560 if (!ctx_obj)
2561 continue;
2562
2563 vaddr = i915_gem_object_pin_map(ctx_obj);
2564 if (WARN_ON(IS_ERR(vaddr)))
2565 continue;
2566
2567 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2568 ctx_obj->dirty = true;
2569
2570 reg_state[CTX_RING_HEAD+1] = 0;
2571 reg_state[CTX_RING_TAIL+1] = 0;
2572
2573 i915_gem_object_unpin_map(ctx_obj);
2574
2575 ce->ringbuf->head = 0;
2576 ce->ringbuf->tail = 0;
2577 }
2578 }
This page took 0.124024 seconds and 5 git commands to generate.