Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60 }
61
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
63 {
64 struct drm_i915_private *dev_priv = ring->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
69 {
70 struct intel_ringbuffer *ringbuf = ring->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_ring_stopped(ring))
73 return;
74 ring->write_tail(ring, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81 {
82 struct intel_engine_cs *ring = req->ring;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(ring, cmd);
98 intel_ring_emit(ring, MI_NOOP);
99 intel_ring_advance(ring);
100
101 return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108 {
109 struct intel_engine_cs *ring = req->ring;
110 struct drm_device *dev = ring->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(ring, cmd);
157 intel_ring_emit(ring, MI_NOOP);
158 intel_ring_advance(ring);
159
160 return 0;
161 }
162
163 /**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 struct intel_engine_cs *ring = req->ring;
204 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(ring, 0); /* low dword */
216 intel_ring_emit(ring, 0); /* high dword */
217 intel_ring_emit(ring, MI_NOOP);
218 intel_ring_advance(ring);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(ring, 0);
228 intel_ring_emit(ring, 0);
229 intel_ring_emit(ring, MI_NOOP);
230 intel_ring_advance(ring);
231
232 return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238 {
239 struct intel_engine_cs *ring = req->ring;
240 u32 flags = 0;
241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(ring, flags);
281 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(ring, 0);
283 intel_ring_advance(ring);
284
285 return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 struct intel_engine_cs *ring = req->ring;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(ring, 0);
302 intel_ring_emit(ring, 0);
303 intel_ring_advance(ring);
304
305 return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311 {
312 struct intel_engine_cs *ring = req->ring;
313 u32 flags = 0;
314 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 }
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 /*
346 * TLB invalidate requires a post-sync write.
347 */
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
357 }
358
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
362
363 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(ring, flags);
365 intel_ring_emit(ring, scratch_addr);
366 intel_ring_emit(ring, 0);
367 intel_ring_advance(ring);
368
369 return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
375 {
376 struct intel_engine_cs *ring = req->ring;
377 int ret;
378
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
382
383 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(ring, flags);
385 intel_ring_emit(ring, scratch_addr);
386 intel_ring_emit(ring, 0);
387 intel_ring_emit(ring, 0);
388 intel_ring_emit(ring, 0);
389 intel_ring_advance(ring);
390
391 return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
397 {
398 u32 flags = 0;
399 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
401
402 flags |= PIPE_CONTROL_CS_STALL;
403
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 }
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 0);
425 if (ret)
426 return ret;
427 }
428
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *ring,
433 u32 value)
434 {
435 struct drm_i915_private *dev_priv = ring->dev->dev_private;
436 I915_WRITE_TAIL(ring, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440 {
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 u64 acthd;
443
444 if (INTEL_INFO(ring->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446 RING_ACTHD_UDW(ring->mmio_base));
447 else if (INTEL_INFO(ring->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
451
452 return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456 {
457 struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 u32 addr;
459
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(ring->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467 {
468 struct drm_device *dev = ring->dev;
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 i915_reg_t mmio;
471
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
474 */
475 if (IS_GEN7(dev)) {
476 switch (ring->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
483 /*
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
486 */
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
494 }
495 } else if (IS_GEN6(ring->dev)) {
496 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(ring->mmio_base);
500 }
501
502 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503 POSTING_READ(mmio);
504
505 /*
506 * Flush the TLB for this page
507 *
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
511 */
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 ring->name);
525 }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *ring)
529 {
530 struct drm_i915_private *dev_priv = to_i915(ring->dev);
531
532 if (!IS_GEN2(ring->dev)) {
533 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536 /* Sometimes we observe that the idle flag is not
537 * set even though the ring is empty. So double
538 * check before giving up.
539 */
540 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541 return false;
542 }
543 }
544
545 I915_WRITE_CTL(ring, 0);
546 I915_WRITE_HEAD(ring, 0);
547 ring->write_tail(ring, 0);
548
549 if (!IS_GEN2(ring->dev)) {
550 (void)I915_READ_CTL(ring);
551 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552 }
553
554 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555 }
556
557 static int init_ring_common(struct intel_engine_cs *ring)
558 {
559 struct drm_device *dev = ring->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct intel_ringbuffer *ringbuf = ring->buffer;
562 struct drm_i915_gem_object *obj = ringbuf->obj;
563 int ret = 0;
564
565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567 if (!stop_ring(ring)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
571 ring->name,
572 I915_READ_CTL(ring),
573 I915_READ_HEAD(ring),
574 I915_READ_TAIL(ring),
575 I915_READ_START(ring));
576
577 if (!stop_ring(ring)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
580 ring->name,
581 I915_READ_CTL(ring),
582 I915_READ_HEAD(ring),
583 I915_READ_TAIL(ring),
584 I915_READ_START(ring));
585 ret = -EIO;
586 goto out;
587 }
588 }
589
590 if (I915_NEED_GFX_HWS(dev))
591 intel_ring_setup_status_page(ring);
592 else
593 ring_setup_phys_status_page(ring);
594
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(ring);
597
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(ring))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 ring->name, I915_READ_HEAD(ring));
608 I915_WRITE_HEAD(ring, 0);
609 (void)I915_READ_HEAD(ring);
610
611 I915_WRITE_CTL(ring,
612 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 | RING_VALID);
614
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 ring->name,
622 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625 ret = -EIO;
626 goto out;
627 }
628
629 ringbuf->last_retired_head = -1;
630 ringbuf->head = I915_READ_HEAD(ring);
631 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632 intel_ring_update_space(ringbuf);
633
634 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
636 out:
637 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638
639 return ret;
640 }
641
642 void
643 intel_fini_pipe_control(struct intel_engine_cs *ring)
644 {
645 struct drm_device *dev = ring->dev;
646
647 if (ring->scratch.obj == NULL)
648 return;
649
650 if (INTEL_INFO(dev)->gen >= 5) {
651 kunmap(sg_page(ring->scratch.obj->pages->sgl));
652 i915_gem_object_ggtt_unpin(ring->scratch.obj);
653 }
654
655 drm_gem_object_unreference(&ring->scratch.obj->base);
656 ring->scratch.obj = NULL;
657 }
658
659 int
660 intel_init_pipe_control(struct intel_engine_cs *ring)
661 {
662 int ret;
663
664 WARN_ON(ring->scratch.obj);
665
666 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667 if (ring->scratch.obj == NULL) {
668 DRM_ERROR("Failed to allocate seqno page\n");
669 ret = -ENOMEM;
670 goto err;
671 }
672
673 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674 if (ret)
675 goto err_unref;
676
677 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678 if (ret)
679 goto err_unref;
680
681 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683 if (ring->scratch.cpu_page == NULL) {
684 ret = -ENOMEM;
685 goto err_unpin;
686 }
687
688 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689 ring->name, ring->scratch.gtt_offset);
690 return 0;
691
692 err_unpin:
693 i915_gem_object_ggtt_unpin(ring->scratch.obj);
694 err_unref:
695 drm_gem_object_unreference(&ring->scratch.obj->base);
696 err:
697 return ret;
698 }
699
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701 {
702 int ret, i;
703 struct intel_engine_cs *ring = req->ring;
704 struct drm_device *dev = ring->dev;
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 struct i915_workarounds *w = &dev_priv->workarounds;
707
708 if (w->count == 0)
709 return 0;
710
711 ring->gpu_caches_dirty = true;
712 ret = intel_ring_flush_all_caches(req);
713 if (ret)
714 return ret;
715
716 ret = intel_ring_begin(req, (w->count * 2 + 2));
717 if (ret)
718 return ret;
719
720 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721 for (i = 0; i < w->count; i++) {
722 intel_ring_emit_reg(ring, w->reg[i].addr);
723 intel_ring_emit(ring, w->reg[i].value);
724 }
725 intel_ring_emit(ring, MI_NOOP);
726
727 intel_ring_advance(ring);
728
729 ring->gpu_caches_dirty = true;
730 ret = intel_ring_flush_all_caches(req);
731 if (ret)
732 return ret;
733
734 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
736 return 0;
737 }
738
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740 {
741 int ret;
742
743 ret = intel_ring_workarounds_emit(req);
744 if (ret != 0)
745 return ret;
746
747 ret = i915_gem_render_state_init(req);
748 if (ret)
749 return ret;
750
751 return 0;
752 }
753
754 static int wa_add(struct drm_i915_private *dev_priv,
755 i915_reg_t addr,
756 const u32 mask, const u32 val)
757 {
758 const u32 idx = dev_priv->workarounds.count;
759
760 if (WARN_ON(idx >= I915_MAX_WA_REGS))
761 return -ENOSPC;
762
763 dev_priv->workarounds.reg[idx].addr = addr;
764 dev_priv->workarounds.reg[idx].value = val;
765 dev_priv->workarounds.reg[idx].mask = mask;
766
767 dev_priv->workarounds.count++;
768
769 return 0;
770 }
771
772 #define WA_REG(addr, mask, val) do { \
773 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774 if (r) \
775 return r; \
776 } while (0)
777
778 #define WA_SET_BIT_MASKED(addr, mask) \
779 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
792 static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
793 {
794 struct drm_i915_private *dev_priv = ring->dev->dev_private;
795 struct i915_workarounds *wa = &dev_priv->workarounds;
796 const uint32_t index = wa->hw_whitelist_count[ring->id];
797
798 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
799 return -EINVAL;
800
801 WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
802 i915_mmio_reg_offset(reg));
803 wa->hw_whitelist_count[ring->id]++;
804
805 return 0;
806 }
807
808 static int gen8_init_workarounds(struct intel_engine_cs *ring)
809 {
810 struct drm_device *dev = ring->dev;
811 struct drm_i915_private *dev_priv = dev->dev_private;
812
813 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
814
815 /* WaDisableAsyncFlipPerfMode:bdw,chv */
816 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
817
818 /* WaDisablePartialInstShootdown:bdw,chv */
819 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
820 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
821
822 /* Use Force Non-Coherent whenever executing a 3D context. This is a
823 * workaround for for a possible hang in the unlikely event a TLB
824 * invalidation occurs during a PSD flush.
825 */
826 /* WaForceEnableNonCoherent:bdw,chv */
827 /* WaHdcDisableFetchWhenMasked:bdw,chv */
828 WA_SET_BIT_MASKED(HDC_CHICKEN0,
829 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
830 HDC_FORCE_NON_COHERENT);
831
832 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834 * polygons in the same 8x4 pixel/sample area to be processed without
835 * stalling waiting for the earlier ones to write to Hierarchical Z
836 * buffer."
837 *
838 * This optimization is off by default for BDW and CHV; turn it on.
839 */
840 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
841
842 /* Wa4x4STCOptimizationDisable:bdw,chv */
843 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
844
845 /*
846 * BSpec recommends 8x4 when MSAA is used,
847 * however in practice 16x4 seems fastest.
848 *
849 * Note that PS/WM thread counts depend on the WIZ hashing
850 * disable bit, which we don't touch here, but it's good
851 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
852 */
853 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
854 GEN6_WIZ_HASHING_MASK,
855 GEN6_WIZ_HASHING_16x4);
856
857 return 0;
858 }
859
860 static int bdw_init_workarounds(struct intel_engine_cs *ring)
861 {
862 int ret;
863 struct drm_device *dev = ring->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865
866 ret = gen8_init_workarounds(ring);
867 if (ret)
868 return ret;
869
870 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
871 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
872
873 /* WaDisableDopClockGating:bdw */
874 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
875 DOP_CLOCK_GATING_DISABLE);
876
877 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
878 GEN8_SAMPLER_POWER_BYPASS_DIS);
879
880 WA_SET_BIT_MASKED(HDC_CHICKEN0,
881 /* WaForceContextSaveRestoreNonCoherent:bdw */
882 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
883 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
884 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
885
886 return 0;
887 }
888
889 static int chv_init_workarounds(struct intel_engine_cs *ring)
890 {
891 int ret;
892 struct drm_device *dev = ring->dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894
895 ret = gen8_init_workarounds(ring);
896 if (ret)
897 return ret;
898
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905 return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *ring)
909 {
910 struct drm_device *dev = ring->dev;
911 struct drm_i915_private *dev_priv = dev->dev_private;
912 uint32_t tmp;
913 int ret;
914
915 /* WaEnableLbsSlaRetryTimerDecrement:skl */
916 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
917 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
918
919 /* WaDisableKillLogic:bxt,skl */
920 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
921 ECOCHK_DIS_TLB);
922
923 /* WaDisablePartialInstShootdown:skl,bxt */
924 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
925 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
926
927 /* Syncing dependencies between camera and graphics:skl,bxt */
928 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
929 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
930
931 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
932 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
933 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
934 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
935 GEN9_DG_MIRROR_FIX_ENABLE);
936
937 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
939 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
940 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941 GEN9_RHWO_OPTIMIZATION_DISABLE);
942 /*
943 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944 * but we do that in per ctx batchbuffer as there is an issue
945 * with this register not getting restored on ctx restore
946 */
947 }
948
949 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
951 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
952 GEN9_ENABLE_YV12_BUGFIX);
953
954 /* Wa4x4STCOptimizationDisable:skl,bxt */
955 /* WaDisablePartialResolveInVc:skl,bxt */
956 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
957 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
958
959 /* WaCcsTlbPrefetchDisable:skl,bxt */
960 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
961 GEN9_CCS_TLB_PREFETCH_ENABLE);
962
963 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
964 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
965 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
966 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
967 PIXEL_MASK_CAMMING_DISABLE);
968
969 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
971 if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
972 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
973 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
974 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
975
976 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
978 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
979 GEN8_SAMPLER_POWER_BYPASS_DIS);
980
981 /* WaDisableSTUnitPowerOptimization:skl,bxt */
982 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
983
984 /* WaOCLCoherentLineFlush:skl,bxt */
985 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
986 GEN8_LQSC_FLUSH_COHERENT_LINES));
987
988 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
989 ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
990 if (ret)
991 return ret;
992
993 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
994 ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
995 if (ret)
996 return ret;
997
998 return 0;
999 }
1000
1001 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1002 {
1003 struct drm_device *dev = ring->dev;
1004 struct drm_i915_private *dev_priv = dev->dev_private;
1005 u8 vals[3] = { 0, 0, 0 };
1006 unsigned int i;
1007
1008 for (i = 0; i < 3; i++) {
1009 u8 ss;
1010
1011 /*
1012 * Only consider slices where one, and only one, subslice has 7
1013 * EUs
1014 */
1015 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1016 continue;
1017
1018 /*
1019 * subslice_7eu[i] != 0 (because of the check above) and
1020 * ss_max == 4 (maximum number of subslices possible per slice)
1021 *
1022 * -> 0 <= ss <= 3;
1023 */
1024 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1025 vals[i] = 3 - ss;
1026 }
1027
1028 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1029 return 0;
1030
1031 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1032 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1033 GEN9_IZ_HASHING_MASK(2) |
1034 GEN9_IZ_HASHING_MASK(1) |
1035 GEN9_IZ_HASHING_MASK(0),
1036 GEN9_IZ_HASHING(2, vals[2]) |
1037 GEN9_IZ_HASHING(1, vals[1]) |
1038 GEN9_IZ_HASHING(0, vals[0]));
1039
1040 return 0;
1041 }
1042
1043 static int skl_init_workarounds(struct intel_engine_cs *ring)
1044 {
1045 int ret;
1046 struct drm_device *dev = ring->dev;
1047 struct drm_i915_private *dev_priv = dev->dev_private;
1048
1049 ret = gen9_init_workarounds(ring);
1050 if (ret)
1051 return ret;
1052
1053 /*
1054 * Actual WA is to disable percontext preemption granularity control
1055 * until D0 which is the default case so this is equivalent to
1056 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1057 */
1058 if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1059 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1060 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1061 }
1062
1063 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1064 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1066 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1067 }
1068
1069 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070 * involving this register should also be added to WA batch as required.
1071 */
1072 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1073 /* WaDisableLSQCROPERFforOCL:skl */
1074 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1075 GEN8_LQSC_RO_PERF_DIS);
1076
1077 /* WaEnableGapsTsvCreditFix:skl */
1078 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1079 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1080 GEN9_GAPS_TSV_CREDIT_DISABLE));
1081 }
1082
1083 /* WaDisablePowerCompilerClockGating:skl */
1084 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1085 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1086 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1087
1088 /* This is tied to WaForceContextSaveRestoreNonCoherent */
1089 if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1090 /*
1091 *Use Force Non-Coherent whenever executing a 3D context. This
1092 * is a workaround for a possible hang in the unlikely event
1093 * a TLB invalidation occurs during a PSD flush.
1094 */
1095 /* WaForceEnableNonCoherent:skl */
1096 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1097 HDC_FORCE_NON_COHERENT);
1098
1099 /* WaDisableHDCInvalidation:skl */
1100 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1101 BDW_DISABLE_HDC_INVALIDATION);
1102 }
1103
1104 /* WaBarrierPerformanceFixDisable:skl */
1105 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1106 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1107 HDC_FENCE_DEST_SLM_DISABLE |
1108 HDC_BARRIER_PERFORMANCE_DISABLE);
1109
1110 /* WaDisableSbeCacheDispatchPortSharing:skl */
1111 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1112 WA_SET_BIT_MASKED(
1113 GEN7_HALF_SLICE_CHICKEN1,
1114 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1115
1116 /* WaDisableLSQCROPERFforOCL:skl */
1117 ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1118 if (ret)
1119 return ret;
1120
1121 return skl_tune_iz_hashing(ring);
1122 }
1123
1124 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1125 {
1126 int ret;
1127 struct drm_device *dev = ring->dev;
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130 ret = gen9_init_workarounds(ring);
1131 if (ret)
1132 return ret;
1133
1134 /* WaStoreMultiplePTEenable:bxt */
1135 /* This is a requirement according to Hardware specification */
1136 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1137 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1138
1139 /* WaSetClckGatingDisableMedia:bxt */
1140 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1141 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1142 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1143 }
1144
1145 /* WaDisableThreadStallDopClockGating:bxt */
1146 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1147 STALL_DOP_GATING_DISABLE);
1148
1149 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1150 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1151 WA_SET_BIT_MASKED(
1152 GEN7_HALF_SLICE_CHICKEN1,
1153 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1154 }
1155
1156 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1157 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1158 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1159 /* WaDisableLSQCROPERFforOCL:bxt */
1160 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1161 ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
1162 if (ret)
1163 return ret;
1164
1165 ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1166 if (ret)
1167 return ret;
1168 }
1169
1170 return 0;
1171 }
1172
1173 int init_workarounds_ring(struct intel_engine_cs *ring)
1174 {
1175 struct drm_device *dev = ring->dev;
1176 struct drm_i915_private *dev_priv = dev->dev_private;
1177
1178 WARN_ON(ring->id != RCS);
1179
1180 dev_priv->workarounds.count = 0;
1181 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1182
1183 if (IS_BROADWELL(dev))
1184 return bdw_init_workarounds(ring);
1185
1186 if (IS_CHERRYVIEW(dev))
1187 return chv_init_workarounds(ring);
1188
1189 if (IS_SKYLAKE(dev))
1190 return skl_init_workarounds(ring);
1191
1192 if (IS_BROXTON(dev))
1193 return bxt_init_workarounds(ring);
1194
1195 return 0;
1196 }
1197
1198 static int init_render_ring(struct intel_engine_cs *ring)
1199 {
1200 struct drm_device *dev = ring->dev;
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202 int ret = init_ring_common(ring);
1203 if (ret)
1204 return ret;
1205
1206 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1207 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1208 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1209
1210 /* We need to disable the AsyncFlip performance optimisations in order
1211 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212 * programmed to '1' on all products.
1213 *
1214 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1215 */
1216 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1217 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1218
1219 /* Required for the hardware to program scanline values for waiting */
1220 /* WaEnableFlushTlbInvalidationMode:snb */
1221 if (INTEL_INFO(dev)->gen == 6)
1222 I915_WRITE(GFX_MODE,
1223 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1224
1225 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1226 if (IS_GEN7(dev))
1227 I915_WRITE(GFX_MODE_GEN7,
1228 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1229 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1230
1231 if (IS_GEN6(dev)) {
1232 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1233 * "If this bit is set, STCunit will have LRA as replacement
1234 * policy. [...] This bit must be reset. LRA replacement
1235 * policy is not supported."
1236 */
1237 I915_WRITE(CACHE_MODE_0,
1238 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1239 }
1240
1241 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1242 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1243
1244 if (HAS_L3_DPF(dev))
1245 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1246
1247 return init_workarounds_ring(ring);
1248 }
1249
1250 static void render_ring_cleanup(struct intel_engine_cs *ring)
1251 {
1252 struct drm_device *dev = ring->dev;
1253 struct drm_i915_private *dev_priv = dev->dev_private;
1254
1255 if (dev_priv->semaphore_obj) {
1256 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1257 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1258 dev_priv->semaphore_obj = NULL;
1259 }
1260
1261 intel_fini_pipe_control(ring);
1262 }
1263
1264 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1265 unsigned int num_dwords)
1266 {
1267 #define MBOX_UPDATE_DWORDS 8
1268 struct intel_engine_cs *signaller = signaller_req->ring;
1269 struct drm_device *dev = signaller->dev;
1270 struct drm_i915_private *dev_priv = dev->dev_private;
1271 struct intel_engine_cs *waiter;
1272 int i, ret, num_rings;
1273
1274 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1275 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1276 #undef MBOX_UPDATE_DWORDS
1277
1278 ret = intel_ring_begin(signaller_req, num_dwords);
1279 if (ret)
1280 return ret;
1281
1282 for_each_ring(waiter, dev_priv, i) {
1283 u32 seqno;
1284 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1285 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1286 continue;
1287
1288 seqno = i915_gem_request_get_seqno(signaller_req);
1289 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1290 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1291 PIPE_CONTROL_QW_WRITE |
1292 PIPE_CONTROL_FLUSH_ENABLE);
1293 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1294 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1295 intel_ring_emit(signaller, seqno);
1296 intel_ring_emit(signaller, 0);
1297 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298 MI_SEMAPHORE_TARGET(waiter->id));
1299 intel_ring_emit(signaller, 0);
1300 }
1301
1302 return 0;
1303 }
1304
1305 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1306 unsigned int num_dwords)
1307 {
1308 #define MBOX_UPDATE_DWORDS 6
1309 struct intel_engine_cs *signaller = signaller_req->ring;
1310 struct drm_device *dev = signaller->dev;
1311 struct drm_i915_private *dev_priv = dev->dev_private;
1312 struct intel_engine_cs *waiter;
1313 int i, ret, num_rings;
1314
1315 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1317 #undef MBOX_UPDATE_DWORDS
1318
1319 ret = intel_ring_begin(signaller_req, num_dwords);
1320 if (ret)
1321 return ret;
1322
1323 for_each_ring(waiter, dev_priv, i) {
1324 u32 seqno;
1325 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1326 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1327 continue;
1328
1329 seqno = i915_gem_request_get_seqno(signaller_req);
1330 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1331 MI_FLUSH_DW_OP_STOREDW);
1332 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1333 MI_FLUSH_DW_USE_GTT);
1334 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1335 intel_ring_emit(signaller, seqno);
1336 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1337 MI_SEMAPHORE_TARGET(waiter->id));
1338 intel_ring_emit(signaller, 0);
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1345 unsigned int num_dwords)
1346 {
1347 struct intel_engine_cs *signaller = signaller_req->ring;
1348 struct drm_device *dev = signaller->dev;
1349 struct drm_i915_private *dev_priv = dev->dev_private;
1350 struct intel_engine_cs *useless;
1351 int i, ret, num_rings;
1352
1353 #define MBOX_UPDATE_DWORDS 3
1354 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1355 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1356 #undef MBOX_UPDATE_DWORDS
1357
1358 ret = intel_ring_begin(signaller_req, num_dwords);
1359 if (ret)
1360 return ret;
1361
1362 for_each_ring(useless, dev_priv, i) {
1363 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1364
1365 if (i915_mmio_reg_valid(mbox_reg)) {
1366 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1367
1368 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1369 intel_ring_emit_reg(signaller, mbox_reg);
1370 intel_ring_emit(signaller, seqno);
1371 }
1372 }
1373
1374 /* If num_dwords was rounded, make sure the tail pointer is correct */
1375 if (num_rings % 2 == 0)
1376 intel_ring_emit(signaller, MI_NOOP);
1377
1378 return 0;
1379 }
1380
1381 /**
1382 * gen6_add_request - Update the semaphore mailbox registers
1383 *
1384 * @request - request to write to the ring
1385 *
1386 * Update the mailbox registers in the *other* rings with the current seqno.
1387 * This acts like a signal in the canonical semaphore.
1388 */
1389 static int
1390 gen6_add_request(struct drm_i915_gem_request *req)
1391 {
1392 struct intel_engine_cs *ring = req->ring;
1393 int ret;
1394
1395 if (ring->semaphore.signal)
1396 ret = ring->semaphore.signal(req, 4);
1397 else
1398 ret = intel_ring_begin(req, 4);
1399
1400 if (ret)
1401 return ret;
1402
1403 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1404 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1405 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1406 intel_ring_emit(ring, MI_USER_INTERRUPT);
1407 __intel_ring_advance(ring);
1408
1409 return 0;
1410 }
1411
1412 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1413 u32 seqno)
1414 {
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 return dev_priv->last_seqno < seqno;
1417 }
1418
1419 /**
1420 * intel_ring_sync - sync the waiter to the signaller on seqno
1421 *
1422 * @waiter - ring that is waiting
1423 * @signaller - ring which has, or will signal
1424 * @seqno - seqno which the waiter will block on
1425 */
1426
1427 static int
1428 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1429 struct intel_engine_cs *signaller,
1430 u32 seqno)
1431 {
1432 struct intel_engine_cs *waiter = waiter_req->ring;
1433 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1434 int ret;
1435
1436 ret = intel_ring_begin(waiter_req, 4);
1437 if (ret)
1438 return ret;
1439
1440 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1441 MI_SEMAPHORE_GLOBAL_GTT |
1442 MI_SEMAPHORE_POLL |
1443 MI_SEMAPHORE_SAD_GTE_SDD);
1444 intel_ring_emit(waiter, seqno);
1445 intel_ring_emit(waiter,
1446 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1447 intel_ring_emit(waiter,
1448 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1449 intel_ring_advance(waiter);
1450 return 0;
1451 }
1452
1453 static int
1454 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1455 struct intel_engine_cs *signaller,
1456 u32 seqno)
1457 {
1458 struct intel_engine_cs *waiter = waiter_req->ring;
1459 u32 dw1 = MI_SEMAPHORE_MBOX |
1460 MI_SEMAPHORE_COMPARE |
1461 MI_SEMAPHORE_REGISTER;
1462 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1463 int ret;
1464
1465 /* Throughout all of the GEM code, seqno passed implies our current
1466 * seqno is >= the last seqno executed. However for hardware the
1467 * comparison is strictly greater than.
1468 */
1469 seqno -= 1;
1470
1471 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1472
1473 ret = intel_ring_begin(waiter_req, 4);
1474 if (ret)
1475 return ret;
1476
1477 /* If seqno wrap happened, omit the wait with no-ops */
1478 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1479 intel_ring_emit(waiter, dw1 | wait_mbox);
1480 intel_ring_emit(waiter, seqno);
1481 intel_ring_emit(waiter, 0);
1482 intel_ring_emit(waiter, MI_NOOP);
1483 } else {
1484 intel_ring_emit(waiter, MI_NOOP);
1485 intel_ring_emit(waiter, MI_NOOP);
1486 intel_ring_emit(waiter, MI_NOOP);
1487 intel_ring_emit(waiter, MI_NOOP);
1488 }
1489 intel_ring_advance(waiter);
1490
1491 return 0;
1492 }
1493
1494 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1495 do { \
1496 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1497 PIPE_CONTROL_DEPTH_STALL); \
1498 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1499 intel_ring_emit(ring__, 0); \
1500 intel_ring_emit(ring__, 0); \
1501 } while (0)
1502
1503 static int
1504 pc_render_add_request(struct drm_i915_gem_request *req)
1505 {
1506 struct intel_engine_cs *ring = req->ring;
1507 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1508 int ret;
1509
1510 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1511 * incoherent with writes to memory, i.e. completely fubar,
1512 * so we need to use PIPE_NOTIFY instead.
1513 *
1514 * However, we also need to workaround the qword write
1515 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1516 * memory before requesting an interrupt.
1517 */
1518 ret = intel_ring_begin(req, 32);
1519 if (ret)
1520 return ret;
1521
1522 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1523 PIPE_CONTROL_WRITE_FLUSH |
1524 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1525 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1526 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1527 intel_ring_emit(ring, 0);
1528 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1529 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1530 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1531 scratch_addr += 2 * CACHELINE_BYTES;
1532 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1533 scratch_addr += 2 * CACHELINE_BYTES;
1534 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1535 scratch_addr += 2 * CACHELINE_BYTES;
1536 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1537 scratch_addr += 2 * CACHELINE_BYTES;
1538 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1539
1540 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1541 PIPE_CONTROL_WRITE_FLUSH |
1542 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1543 PIPE_CONTROL_NOTIFY);
1544 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1545 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1546 intel_ring_emit(ring, 0);
1547 __intel_ring_advance(ring);
1548
1549 return 0;
1550 }
1551
1552 static u32
1553 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1554 {
1555 /* Workaround to force correct ordering between irq and seqno writes on
1556 * ivb (and maybe also on snb) by reading from a CS register (like
1557 * ACTHD) before reading the status page. */
1558 if (!lazy_coherency) {
1559 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1560 POSTING_READ(RING_ACTHD(ring->mmio_base));
1561 }
1562
1563 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1564 }
1565
1566 static u32
1567 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1568 {
1569 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1570 }
1571
1572 static void
1573 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1574 {
1575 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1576 }
1577
1578 static u32
1579 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1580 {
1581 return ring->scratch.cpu_page[0];
1582 }
1583
1584 static void
1585 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1586 {
1587 ring->scratch.cpu_page[0] = seqno;
1588 }
1589
1590 static bool
1591 gen5_ring_get_irq(struct intel_engine_cs *ring)
1592 {
1593 struct drm_device *dev = ring->dev;
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595 unsigned long flags;
1596
1597 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1598 return false;
1599
1600 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601 if (ring->irq_refcount++ == 0)
1602 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1603 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1604
1605 return true;
1606 }
1607
1608 static void
1609 gen5_ring_put_irq(struct intel_engine_cs *ring)
1610 {
1611 struct drm_device *dev = ring->dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1616 if (--ring->irq_refcount == 0)
1617 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1618 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1619 }
1620
1621 static bool
1622 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1623 {
1624 struct drm_device *dev = ring->dev;
1625 struct drm_i915_private *dev_priv = dev->dev_private;
1626 unsigned long flags;
1627
1628 if (!intel_irqs_enabled(dev_priv))
1629 return false;
1630
1631 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1632 if (ring->irq_refcount++ == 0) {
1633 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1634 I915_WRITE(IMR, dev_priv->irq_mask);
1635 POSTING_READ(IMR);
1636 }
1637 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1638
1639 return true;
1640 }
1641
1642 static void
1643 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1644 {
1645 struct drm_device *dev = ring->dev;
1646 struct drm_i915_private *dev_priv = dev->dev_private;
1647 unsigned long flags;
1648
1649 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1650 if (--ring->irq_refcount == 0) {
1651 dev_priv->irq_mask |= ring->irq_enable_mask;
1652 I915_WRITE(IMR, dev_priv->irq_mask);
1653 POSTING_READ(IMR);
1654 }
1655 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1656 }
1657
1658 static bool
1659 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1660 {
1661 struct drm_device *dev = ring->dev;
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663 unsigned long flags;
1664
1665 if (!intel_irqs_enabled(dev_priv))
1666 return false;
1667
1668 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1669 if (ring->irq_refcount++ == 0) {
1670 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1671 I915_WRITE16(IMR, dev_priv->irq_mask);
1672 POSTING_READ16(IMR);
1673 }
1674 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1675
1676 return true;
1677 }
1678
1679 static void
1680 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1681 {
1682 struct drm_device *dev = ring->dev;
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684 unsigned long flags;
1685
1686 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1687 if (--ring->irq_refcount == 0) {
1688 dev_priv->irq_mask |= ring->irq_enable_mask;
1689 I915_WRITE16(IMR, dev_priv->irq_mask);
1690 POSTING_READ16(IMR);
1691 }
1692 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1693 }
1694
1695 static int
1696 bsd_ring_flush(struct drm_i915_gem_request *req,
1697 u32 invalidate_domains,
1698 u32 flush_domains)
1699 {
1700 struct intel_engine_cs *ring = req->ring;
1701 int ret;
1702
1703 ret = intel_ring_begin(req, 2);
1704 if (ret)
1705 return ret;
1706
1707 intel_ring_emit(ring, MI_FLUSH);
1708 intel_ring_emit(ring, MI_NOOP);
1709 intel_ring_advance(ring);
1710 return 0;
1711 }
1712
1713 static int
1714 i9xx_add_request(struct drm_i915_gem_request *req)
1715 {
1716 struct intel_engine_cs *ring = req->ring;
1717 int ret;
1718
1719 ret = intel_ring_begin(req, 4);
1720 if (ret)
1721 return ret;
1722
1723 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1724 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1725 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1726 intel_ring_emit(ring, MI_USER_INTERRUPT);
1727 __intel_ring_advance(ring);
1728
1729 return 0;
1730 }
1731
1732 static bool
1733 gen6_ring_get_irq(struct intel_engine_cs *ring)
1734 {
1735 struct drm_device *dev = ring->dev;
1736 struct drm_i915_private *dev_priv = dev->dev_private;
1737 unsigned long flags;
1738
1739 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1740 return false;
1741
1742 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1743 if (ring->irq_refcount++ == 0) {
1744 if (HAS_L3_DPF(dev) && ring->id == RCS)
1745 I915_WRITE_IMR(ring,
1746 ~(ring->irq_enable_mask |
1747 GT_PARITY_ERROR(dev)));
1748 else
1749 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1750 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1751 }
1752 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753
1754 return true;
1755 }
1756
1757 static void
1758 gen6_ring_put_irq(struct intel_engine_cs *ring)
1759 {
1760 struct drm_device *dev = ring->dev;
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 unsigned long flags;
1763
1764 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1765 if (--ring->irq_refcount == 0) {
1766 if (HAS_L3_DPF(dev) && ring->id == RCS)
1767 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1768 else
1769 I915_WRITE_IMR(ring, ~0);
1770 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1771 }
1772 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1773 }
1774
1775 static bool
1776 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1777 {
1778 struct drm_device *dev = ring->dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 unsigned long flags;
1781
1782 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1783 return false;
1784
1785 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1786 if (ring->irq_refcount++ == 0) {
1787 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1788 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1789 }
1790 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
1792 return true;
1793 }
1794
1795 static void
1796 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1797 {
1798 struct drm_device *dev = ring->dev;
1799 struct drm_i915_private *dev_priv = dev->dev_private;
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803 if (--ring->irq_refcount == 0) {
1804 I915_WRITE_IMR(ring, ~0);
1805 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1806 }
1807 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1808 }
1809
1810 static bool
1811 gen8_ring_get_irq(struct intel_engine_cs *ring)
1812 {
1813 struct drm_device *dev = ring->dev;
1814 struct drm_i915_private *dev_priv = dev->dev_private;
1815 unsigned long flags;
1816
1817 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1818 return false;
1819
1820 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1821 if (ring->irq_refcount++ == 0) {
1822 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1823 I915_WRITE_IMR(ring,
1824 ~(ring->irq_enable_mask |
1825 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1826 } else {
1827 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1828 }
1829 POSTING_READ(RING_IMR(ring->mmio_base));
1830 }
1831 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1832
1833 return true;
1834 }
1835
1836 static void
1837 gen8_ring_put_irq(struct intel_engine_cs *ring)
1838 {
1839 struct drm_device *dev = ring->dev;
1840 struct drm_i915_private *dev_priv = dev->dev_private;
1841 unsigned long flags;
1842
1843 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1844 if (--ring->irq_refcount == 0) {
1845 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1846 I915_WRITE_IMR(ring,
1847 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1848 } else {
1849 I915_WRITE_IMR(ring, ~0);
1850 }
1851 POSTING_READ(RING_IMR(ring->mmio_base));
1852 }
1853 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1854 }
1855
1856 static int
1857 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1858 u64 offset, u32 length,
1859 unsigned dispatch_flags)
1860 {
1861 struct intel_engine_cs *ring = req->ring;
1862 int ret;
1863
1864 ret = intel_ring_begin(req, 2);
1865 if (ret)
1866 return ret;
1867
1868 intel_ring_emit(ring,
1869 MI_BATCH_BUFFER_START |
1870 MI_BATCH_GTT |
1871 (dispatch_flags & I915_DISPATCH_SECURE ?
1872 0 : MI_BATCH_NON_SECURE_I965));
1873 intel_ring_emit(ring, offset);
1874 intel_ring_advance(ring);
1875
1876 return 0;
1877 }
1878
1879 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1880 #define I830_BATCH_LIMIT (256*1024)
1881 #define I830_TLB_ENTRIES (2)
1882 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1883 static int
1884 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1885 u64 offset, u32 len,
1886 unsigned dispatch_flags)
1887 {
1888 struct intel_engine_cs *ring = req->ring;
1889 u32 cs_offset = ring->scratch.gtt_offset;
1890 int ret;
1891
1892 ret = intel_ring_begin(req, 6);
1893 if (ret)
1894 return ret;
1895
1896 /* Evict the invalid PTE TLBs */
1897 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1898 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1899 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1900 intel_ring_emit(ring, cs_offset);
1901 intel_ring_emit(ring, 0xdeadbeef);
1902 intel_ring_emit(ring, MI_NOOP);
1903 intel_ring_advance(ring);
1904
1905 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1906 if (len > I830_BATCH_LIMIT)
1907 return -ENOSPC;
1908
1909 ret = intel_ring_begin(req, 6 + 2);
1910 if (ret)
1911 return ret;
1912
1913 /* Blit the batch (which has now all relocs applied) to the
1914 * stable batch scratch bo area (so that the CS never
1915 * stumbles over its tlb invalidation bug) ...
1916 */
1917 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1918 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1919 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1920 intel_ring_emit(ring, cs_offset);
1921 intel_ring_emit(ring, 4096);
1922 intel_ring_emit(ring, offset);
1923
1924 intel_ring_emit(ring, MI_FLUSH);
1925 intel_ring_emit(ring, MI_NOOP);
1926 intel_ring_advance(ring);
1927
1928 /* ... and execute it. */
1929 offset = cs_offset;
1930 }
1931
1932 ret = intel_ring_begin(req, 2);
1933 if (ret)
1934 return ret;
1935
1936 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1937 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1938 0 : MI_BATCH_NON_SECURE));
1939 intel_ring_advance(ring);
1940
1941 return 0;
1942 }
1943
1944 static int
1945 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1946 u64 offset, u32 len,
1947 unsigned dispatch_flags)
1948 {
1949 struct intel_engine_cs *ring = req->ring;
1950 int ret;
1951
1952 ret = intel_ring_begin(req, 2);
1953 if (ret)
1954 return ret;
1955
1956 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1957 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1958 0 : MI_BATCH_NON_SECURE));
1959 intel_ring_advance(ring);
1960
1961 return 0;
1962 }
1963
1964 static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1965 {
1966 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1967
1968 if (!dev_priv->status_page_dmah)
1969 return;
1970
1971 drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1972 ring->status_page.page_addr = NULL;
1973 }
1974
1975 static void cleanup_status_page(struct intel_engine_cs *ring)
1976 {
1977 struct drm_i915_gem_object *obj;
1978
1979 obj = ring->status_page.obj;
1980 if (obj == NULL)
1981 return;
1982
1983 kunmap(sg_page(obj->pages->sgl));
1984 i915_gem_object_ggtt_unpin(obj);
1985 drm_gem_object_unreference(&obj->base);
1986 ring->status_page.obj = NULL;
1987 }
1988
1989 static int init_status_page(struct intel_engine_cs *ring)
1990 {
1991 struct drm_i915_gem_object *obj = ring->status_page.obj;
1992
1993 if (obj == NULL) {
1994 unsigned flags;
1995 int ret;
1996
1997 obj = i915_gem_alloc_object(ring->dev, 4096);
1998 if (obj == NULL) {
1999 DRM_ERROR("Failed to allocate status page\n");
2000 return -ENOMEM;
2001 }
2002
2003 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2004 if (ret)
2005 goto err_unref;
2006
2007 flags = 0;
2008 if (!HAS_LLC(ring->dev))
2009 /* On g33, we cannot place HWS above 256MiB, so
2010 * restrict its pinning to the low mappable arena.
2011 * Though this restriction is not documented for
2012 * gen4, gen5, or byt, they also behave similarly
2013 * and hang if the HWS is placed at the top of the
2014 * GTT. To generalise, it appears that all !llc
2015 * platforms have issues with us placing the HWS
2016 * above the mappable region (even though we never
2017 * actualy map it).
2018 */
2019 flags |= PIN_MAPPABLE;
2020 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2021 if (ret) {
2022 err_unref:
2023 drm_gem_object_unreference(&obj->base);
2024 return ret;
2025 }
2026
2027 ring->status_page.obj = obj;
2028 }
2029
2030 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2031 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2032 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2033
2034 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2035 ring->name, ring->status_page.gfx_addr);
2036
2037 return 0;
2038 }
2039
2040 static int init_phys_status_page(struct intel_engine_cs *ring)
2041 {
2042 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2043
2044 if (!dev_priv->status_page_dmah) {
2045 dev_priv->status_page_dmah =
2046 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2047 if (!dev_priv->status_page_dmah)
2048 return -ENOMEM;
2049 }
2050
2051 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2052 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2053
2054 return 0;
2055 }
2056
2057 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2058 {
2059 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2060 vunmap(ringbuf->virtual_start);
2061 else
2062 iounmap(ringbuf->virtual_start);
2063 ringbuf->virtual_start = NULL;
2064 ringbuf->vma = NULL;
2065 i915_gem_object_ggtt_unpin(ringbuf->obj);
2066 }
2067
2068 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2069 {
2070 struct sg_page_iter sg_iter;
2071 struct page **pages;
2072 void *addr;
2073 int i;
2074
2075 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2076 if (pages == NULL)
2077 return NULL;
2078
2079 i = 0;
2080 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2081 pages[i++] = sg_page_iter_page(&sg_iter);
2082
2083 addr = vmap(pages, i, 0, PAGE_KERNEL);
2084 drm_free_large(pages);
2085
2086 return addr;
2087 }
2088
2089 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2090 struct intel_ringbuffer *ringbuf)
2091 {
2092 struct drm_i915_private *dev_priv = to_i915(dev);
2093 struct drm_i915_gem_object *obj = ringbuf->obj;
2094 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2095 unsigned flags = PIN_OFFSET_BIAS | 4096;
2096 int ret;
2097
2098 if (HAS_LLC(dev_priv) && !obj->stolen) {
2099 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2100 if (ret)
2101 return ret;
2102
2103 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2104 if (ret) {
2105 i915_gem_object_ggtt_unpin(obj);
2106 return ret;
2107 }
2108
2109 ringbuf->virtual_start = vmap_obj(obj);
2110 if (ringbuf->virtual_start == NULL) {
2111 i915_gem_object_ggtt_unpin(obj);
2112 return -ENOMEM;
2113 }
2114 } else {
2115 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2116 flags | PIN_MAPPABLE);
2117 if (ret)
2118 return ret;
2119
2120 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2121 if (ret) {
2122 i915_gem_object_ggtt_unpin(obj);
2123 return ret;
2124 }
2125
2126 /* Access through the GTT requires the device to be awake. */
2127 assert_rpm_wakelock_held(dev_priv);
2128
2129 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2130 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2131 if (ringbuf->virtual_start == NULL) {
2132 i915_gem_object_ggtt_unpin(obj);
2133 return -EINVAL;
2134 }
2135 }
2136
2137 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2138
2139 return 0;
2140 }
2141
2142 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2143 {
2144 drm_gem_object_unreference(&ringbuf->obj->base);
2145 ringbuf->obj = NULL;
2146 }
2147
2148 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2149 struct intel_ringbuffer *ringbuf)
2150 {
2151 struct drm_i915_gem_object *obj;
2152
2153 obj = NULL;
2154 if (!HAS_LLC(dev))
2155 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2156 if (obj == NULL)
2157 obj = i915_gem_alloc_object(dev, ringbuf->size);
2158 if (obj == NULL)
2159 return -ENOMEM;
2160
2161 /* mark ring buffers as read-only from GPU side by default */
2162 obj->gt_ro = 1;
2163
2164 ringbuf->obj = obj;
2165
2166 return 0;
2167 }
2168
2169 struct intel_ringbuffer *
2170 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2171 {
2172 struct intel_ringbuffer *ring;
2173 int ret;
2174
2175 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2176 if (ring == NULL) {
2177 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2178 engine->name);
2179 return ERR_PTR(-ENOMEM);
2180 }
2181
2182 ring->ring = engine;
2183 list_add(&ring->link, &engine->buffers);
2184
2185 ring->size = size;
2186 /* Workaround an erratum on the i830 which causes a hang if
2187 * the TAIL pointer points to within the last 2 cachelines
2188 * of the buffer.
2189 */
2190 ring->effective_size = size;
2191 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2192 ring->effective_size -= 2 * CACHELINE_BYTES;
2193
2194 ring->last_retired_head = -1;
2195 intel_ring_update_space(ring);
2196
2197 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2198 if (ret) {
2199 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2200 engine->name, ret);
2201 list_del(&ring->link);
2202 kfree(ring);
2203 return ERR_PTR(ret);
2204 }
2205
2206 return ring;
2207 }
2208
2209 void
2210 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2211 {
2212 intel_destroy_ringbuffer_obj(ring);
2213 list_del(&ring->link);
2214 kfree(ring);
2215 }
2216
2217 static int intel_init_ring_buffer(struct drm_device *dev,
2218 struct intel_engine_cs *ring)
2219 {
2220 struct intel_ringbuffer *ringbuf;
2221 int ret;
2222
2223 WARN_ON(ring->buffer);
2224
2225 ring->dev = dev;
2226 INIT_LIST_HEAD(&ring->active_list);
2227 INIT_LIST_HEAD(&ring->request_list);
2228 INIT_LIST_HEAD(&ring->execlist_queue);
2229 INIT_LIST_HEAD(&ring->buffers);
2230 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2231 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2232
2233 init_waitqueue_head(&ring->irq_queue);
2234
2235 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2236 if (IS_ERR(ringbuf)) {
2237 ret = PTR_ERR(ringbuf);
2238 goto error;
2239 }
2240 ring->buffer = ringbuf;
2241
2242 if (I915_NEED_GFX_HWS(dev)) {
2243 ret = init_status_page(ring);
2244 if (ret)
2245 goto error;
2246 } else {
2247 WARN_ON(ring->id != RCS);
2248 ret = init_phys_status_page(ring);
2249 if (ret)
2250 goto error;
2251 }
2252
2253 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2254 if (ret) {
2255 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2256 ring->name, ret);
2257 intel_destroy_ringbuffer_obj(ringbuf);
2258 goto error;
2259 }
2260
2261 ret = i915_cmd_parser_init_ring(ring);
2262 if (ret)
2263 goto error;
2264
2265 return 0;
2266
2267 error:
2268 intel_cleanup_ring_buffer(ring);
2269 return ret;
2270 }
2271
2272 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2273 {
2274 struct drm_i915_private *dev_priv;
2275
2276 if (!intel_ring_initialized(ring))
2277 return;
2278
2279 dev_priv = to_i915(ring->dev);
2280
2281 if (ring->buffer) {
2282 intel_stop_ring_buffer(ring);
2283 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2284
2285 intel_unpin_ringbuffer_obj(ring->buffer);
2286 intel_ringbuffer_free(ring->buffer);
2287 ring->buffer = NULL;
2288 }
2289
2290 if (ring->cleanup)
2291 ring->cleanup(ring);
2292
2293 if (I915_NEED_GFX_HWS(ring->dev)) {
2294 cleanup_status_page(ring);
2295 } else {
2296 WARN_ON(ring->id != RCS);
2297 cleanup_phys_status_page(ring);
2298 }
2299
2300 i915_cmd_parser_fini_ring(ring);
2301 i915_gem_batch_pool_fini(&ring->batch_pool);
2302 ring->dev = NULL;
2303 }
2304
2305 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2306 {
2307 struct intel_ringbuffer *ringbuf = ring->buffer;
2308 struct drm_i915_gem_request *request;
2309 unsigned space;
2310 int ret;
2311
2312 if (intel_ring_space(ringbuf) >= n)
2313 return 0;
2314
2315 /* The whole point of reserving space is to not wait! */
2316 WARN_ON(ringbuf->reserved_in_use);
2317
2318 list_for_each_entry(request, &ring->request_list, list) {
2319 space = __intel_ring_space(request->postfix, ringbuf->tail,
2320 ringbuf->size);
2321 if (space >= n)
2322 break;
2323 }
2324
2325 if (WARN_ON(&request->list == &ring->request_list))
2326 return -ENOSPC;
2327
2328 ret = i915_wait_request(request);
2329 if (ret)
2330 return ret;
2331
2332 ringbuf->space = space;
2333 return 0;
2334 }
2335
2336 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2337 {
2338 uint32_t __iomem *virt;
2339 int rem = ringbuf->size - ringbuf->tail;
2340
2341 virt = ringbuf->virtual_start + ringbuf->tail;
2342 rem /= 4;
2343 while (rem--)
2344 iowrite32(MI_NOOP, virt++);
2345
2346 ringbuf->tail = 0;
2347 intel_ring_update_space(ringbuf);
2348 }
2349
2350 int intel_ring_idle(struct intel_engine_cs *ring)
2351 {
2352 struct drm_i915_gem_request *req;
2353
2354 /* Wait upon the last request to be completed */
2355 if (list_empty(&ring->request_list))
2356 return 0;
2357
2358 req = list_entry(ring->request_list.prev,
2359 struct drm_i915_gem_request,
2360 list);
2361
2362 /* Make sure we do not trigger any retires */
2363 return __i915_wait_request(req,
2364 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2365 to_i915(ring->dev)->mm.interruptible,
2366 NULL, NULL);
2367 }
2368
2369 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2370 {
2371 request->ringbuf = request->ring->buffer;
2372 return 0;
2373 }
2374
2375 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2376 {
2377 /*
2378 * The first call merely notes the reserve request and is common for
2379 * all back ends. The subsequent localised _begin() call actually
2380 * ensures that the reservation is available. Without the begin, if
2381 * the request creator immediately submitted the request without
2382 * adding any commands to it then there might not actually be
2383 * sufficient room for the submission commands.
2384 */
2385 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2386
2387 return intel_ring_begin(request, 0);
2388 }
2389
2390 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2391 {
2392 WARN_ON(ringbuf->reserved_size);
2393 WARN_ON(ringbuf->reserved_in_use);
2394
2395 ringbuf->reserved_size = size;
2396 }
2397
2398 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2399 {
2400 WARN_ON(ringbuf->reserved_in_use);
2401
2402 ringbuf->reserved_size = 0;
2403 ringbuf->reserved_in_use = false;
2404 }
2405
2406 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2407 {
2408 WARN_ON(ringbuf->reserved_in_use);
2409
2410 ringbuf->reserved_in_use = true;
2411 ringbuf->reserved_tail = ringbuf->tail;
2412 }
2413
2414 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2415 {
2416 WARN_ON(!ringbuf->reserved_in_use);
2417 if (ringbuf->tail > ringbuf->reserved_tail) {
2418 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2419 "request reserved size too small: %d vs %d!\n",
2420 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2421 } else {
2422 /*
2423 * The ring was wrapped while the reserved space was in use.
2424 * That means that some unknown amount of the ring tail was
2425 * no-op filled and skipped. Thus simply adding the ring size
2426 * to the tail and doing the above space check will not work.
2427 * Rather than attempt to track how much tail was skipped,
2428 * it is much simpler to say that also skipping the sanity
2429 * check every once in a while is not a big issue.
2430 */
2431 }
2432
2433 ringbuf->reserved_size = 0;
2434 ringbuf->reserved_in_use = false;
2435 }
2436
2437 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2438 {
2439 struct intel_ringbuffer *ringbuf = ring->buffer;
2440 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2441 int remain_actual = ringbuf->size - ringbuf->tail;
2442 int ret, total_bytes, wait_bytes = 0;
2443 bool need_wrap = false;
2444
2445 if (ringbuf->reserved_in_use)
2446 total_bytes = bytes;
2447 else
2448 total_bytes = bytes + ringbuf->reserved_size;
2449
2450 if (unlikely(bytes > remain_usable)) {
2451 /*
2452 * Not enough space for the basic request. So need to flush
2453 * out the remainder and then wait for base + reserved.
2454 */
2455 wait_bytes = remain_actual + total_bytes;
2456 need_wrap = true;
2457 } else {
2458 if (unlikely(total_bytes > remain_usable)) {
2459 /*
2460 * The base request will fit but the reserved space
2461 * falls off the end. So don't need an immediate wrap
2462 * and only need to effectively wait for the reserved
2463 * size space from the start of ringbuffer.
2464 */
2465 wait_bytes = remain_actual + ringbuf->reserved_size;
2466 } else if (total_bytes > ringbuf->space) {
2467 /* No wrapping required, just waiting. */
2468 wait_bytes = total_bytes;
2469 }
2470 }
2471
2472 if (wait_bytes) {
2473 ret = ring_wait_for_space(ring, wait_bytes);
2474 if (unlikely(ret))
2475 return ret;
2476
2477 if (need_wrap)
2478 __wrap_ring_buffer(ringbuf);
2479 }
2480
2481 return 0;
2482 }
2483
2484 int intel_ring_begin(struct drm_i915_gem_request *req,
2485 int num_dwords)
2486 {
2487 struct intel_engine_cs *ring;
2488 struct drm_i915_private *dev_priv;
2489 int ret;
2490
2491 WARN_ON(req == NULL);
2492 ring = req->ring;
2493 dev_priv = ring->dev->dev_private;
2494
2495 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2496 dev_priv->mm.interruptible);
2497 if (ret)
2498 return ret;
2499
2500 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2501 if (ret)
2502 return ret;
2503
2504 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2505 return 0;
2506 }
2507
2508 /* Align the ring tail to a cacheline boundary */
2509 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2510 {
2511 struct intel_engine_cs *ring = req->ring;
2512 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2513 int ret;
2514
2515 if (num_dwords == 0)
2516 return 0;
2517
2518 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2519 ret = intel_ring_begin(req, num_dwords);
2520 if (ret)
2521 return ret;
2522
2523 while (num_dwords--)
2524 intel_ring_emit(ring, MI_NOOP);
2525
2526 intel_ring_advance(ring);
2527
2528 return 0;
2529 }
2530
2531 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2532 {
2533 struct drm_device *dev = ring->dev;
2534 struct drm_i915_private *dev_priv = dev->dev_private;
2535
2536 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2537 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2538 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2539 if (HAS_VEBOX(dev))
2540 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2541 }
2542
2543 ring->set_seqno(ring, seqno);
2544 ring->hangcheck.seqno = seqno;
2545 }
2546
2547 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2548 u32 value)
2549 {
2550 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2551
2552 /* Every tail move must follow the sequence below */
2553
2554 /* Disable notification that the ring is IDLE. The GT
2555 * will then assume that it is busy and bring it out of rc6.
2556 */
2557 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2558 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2559
2560 /* Clear the context id. Here be magic! */
2561 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2562
2563 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2564 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2565 GEN6_BSD_SLEEP_INDICATOR) == 0,
2566 50))
2567 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2568
2569 /* Now that the ring is fully powered up, update the tail */
2570 I915_WRITE_TAIL(ring, value);
2571 POSTING_READ(RING_TAIL(ring->mmio_base));
2572
2573 /* Let the ring send IDLE messages to the GT again,
2574 * and so let it sleep to conserve power when idle.
2575 */
2576 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2577 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2578 }
2579
2580 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2581 u32 invalidate, u32 flush)
2582 {
2583 struct intel_engine_cs *ring = req->ring;
2584 uint32_t cmd;
2585 int ret;
2586
2587 ret = intel_ring_begin(req, 4);
2588 if (ret)
2589 return ret;
2590
2591 cmd = MI_FLUSH_DW;
2592 if (INTEL_INFO(ring->dev)->gen >= 8)
2593 cmd += 1;
2594
2595 /* We always require a command barrier so that subsequent
2596 * commands, such as breadcrumb interrupts, are strictly ordered
2597 * wrt the contents of the write cache being flushed to memory
2598 * (and thus being coherent from the CPU).
2599 */
2600 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2601
2602 /*
2603 * Bspec vol 1c.5 - video engine command streamer:
2604 * "If ENABLED, all TLBs will be invalidated once the flush
2605 * operation is complete. This bit is only valid when the
2606 * Post-Sync Operation field is a value of 1h or 3h."
2607 */
2608 if (invalidate & I915_GEM_GPU_DOMAINS)
2609 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2610
2611 intel_ring_emit(ring, cmd);
2612 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2613 if (INTEL_INFO(ring->dev)->gen >= 8) {
2614 intel_ring_emit(ring, 0); /* upper addr */
2615 intel_ring_emit(ring, 0); /* value */
2616 } else {
2617 intel_ring_emit(ring, 0);
2618 intel_ring_emit(ring, MI_NOOP);
2619 }
2620 intel_ring_advance(ring);
2621 return 0;
2622 }
2623
2624 static int
2625 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2626 u64 offset, u32 len,
2627 unsigned dispatch_flags)
2628 {
2629 struct intel_engine_cs *ring = req->ring;
2630 bool ppgtt = USES_PPGTT(ring->dev) &&
2631 !(dispatch_flags & I915_DISPATCH_SECURE);
2632 int ret;
2633
2634 ret = intel_ring_begin(req, 4);
2635 if (ret)
2636 return ret;
2637
2638 /* FIXME(BDW): Address space and security selectors. */
2639 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2640 (dispatch_flags & I915_DISPATCH_RS ?
2641 MI_BATCH_RESOURCE_STREAMER : 0));
2642 intel_ring_emit(ring, lower_32_bits(offset));
2643 intel_ring_emit(ring, upper_32_bits(offset));
2644 intel_ring_emit(ring, MI_NOOP);
2645 intel_ring_advance(ring);
2646
2647 return 0;
2648 }
2649
2650 static int
2651 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2652 u64 offset, u32 len,
2653 unsigned dispatch_flags)
2654 {
2655 struct intel_engine_cs *ring = req->ring;
2656 int ret;
2657
2658 ret = intel_ring_begin(req, 2);
2659 if (ret)
2660 return ret;
2661
2662 intel_ring_emit(ring,
2663 MI_BATCH_BUFFER_START |
2664 (dispatch_flags & I915_DISPATCH_SECURE ?
2665 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2666 (dispatch_flags & I915_DISPATCH_RS ?
2667 MI_BATCH_RESOURCE_STREAMER : 0));
2668 /* bit0-7 is the length on GEN6+ */
2669 intel_ring_emit(ring, offset);
2670 intel_ring_advance(ring);
2671
2672 return 0;
2673 }
2674
2675 static int
2676 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2677 u64 offset, u32 len,
2678 unsigned dispatch_flags)
2679 {
2680 struct intel_engine_cs *ring = req->ring;
2681 int ret;
2682
2683 ret = intel_ring_begin(req, 2);
2684 if (ret)
2685 return ret;
2686
2687 intel_ring_emit(ring,
2688 MI_BATCH_BUFFER_START |
2689 (dispatch_flags & I915_DISPATCH_SECURE ?
2690 0 : MI_BATCH_NON_SECURE_I965));
2691 /* bit0-7 is the length on GEN6+ */
2692 intel_ring_emit(ring, offset);
2693 intel_ring_advance(ring);
2694
2695 return 0;
2696 }
2697
2698 /* Blitter support (SandyBridge+) */
2699
2700 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2701 u32 invalidate, u32 flush)
2702 {
2703 struct intel_engine_cs *ring = req->ring;
2704 struct drm_device *dev = ring->dev;
2705 uint32_t cmd;
2706 int ret;
2707
2708 ret = intel_ring_begin(req, 4);
2709 if (ret)
2710 return ret;
2711
2712 cmd = MI_FLUSH_DW;
2713 if (INTEL_INFO(dev)->gen >= 8)
2714 cmd += 1;
2715
2716 /* We always require a command barrier so that subsequent
2717 * commands, such as breadcrumb interrupts, are strictly ordered
2718 * wrt the contents of the write cache being flushed to memory
2719 * (and thus being coherent from the CPU).
2720 */
2721 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2722
2723 /*
2724 * Bspec vol 1c.3 - blitter engine command streamer:
2725 * "If ENABLED, all TLBs will be invalidated once the flush
2726 * operation is complete. This bit is only valid when the
2727 * Post-Sync Operation field is a value of 1h or 3h."
2728 */
2729 if (invalidate & I915_GEM_DOMAIN_RENDER)
2730 cmd |= MI_INVALIDATE_TLB;
2731 intel_ring_emit(ring, cmd);
2732 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2733 if (INTEL_INFO(dev)->gen >= 8) {
2734 intel_ring_emit(ring, 0); /* upper addr */
2735 intel_ring_emit(ring, 0); /* value */
2736 } else {
2737 intel_ring_emit(ring, 0);
2738 intel_ring_emit(ring, MI_NOOP);
2739 }
2740 intel_ring_advance(ring);
2741
2742 return 0;
2743 }
2744
2745 int intel_init_render_ring_buffer(struct drm_device *dev)
2746 {
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2749 struct drm_i915_gem_object *obj;
2750 int ret;
2751
2752 ring->name = "render ring";
2753 ring->id = RCS;
2754 ring->exec_id = I915_EXEC_RENDER;
2755 ring->mmio_base = RENDER_RING_BASE;
2756
2757 if (INTEL_INFO(dev)->gen >= 8) {
2758 if (i915_semaphore_is_enabled(dev)) {
2759 obj = i915_gem_alloc_object(dev, 4096);
2760 if (obj == NULL) {
2761 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2762 i915.semaphores = 0;
2763 } else {
2764 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2765 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2766 if (ret != 0) {
2767 drm_gem_object_unreference(&obj->base);
2768 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2769 i915.semaphores = 0;
2770 } else
2771 dev_priv->semaphore_obj = obj;
2772 }
2773 }
2774
2775 ring->init_context = intel_rcs_ctx_init;
2776 ring->add_request = gen6_add_request;
2777 ring->flush = gen8_render_ring_flush;
2778 ring->irq_get = gen8_ring_get_irq;
2779 ring->irq_put = gen8_ring_put_irq;
2780 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2781 ring->get_seqno = gen6_ring_get_seqno;
2782 ring->set_seqno = ring_set_seqno;
2783 if (i915_semaphore_is_enabled(dev)) {
2784 WARN_ON(!dev_priv->semaphore_obj);
2785 ring->semaphore.sync_to = gen8_ring_sync;
2786 ring->semaphore.signal = gen8_rcs_signal;
2787 GEN8_RING_SEMAPHORE_INIT;
2788 }
2789 } else if (INTEL_INFO(dev)->gen >= 6) {
2790 ring->init_context = intel_rcs_ctx_init;
2791 ring->add_request = gen6_add_request;
2792 ring->flush = gen7_render_ring_flush;
2793 if (INTEL_INFO(dev)->gen == 6)
2794 ring->flush = gen6_render_ring_flush;
2795 ring->irq_get = gen6_ring_get_irq;
2796 ring->irq_put = gen6_ring_put_irq;
2797 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2798 ring->get_seqno = gen6_ring_get_seqno;
2799 ring->set_seqno = ring_set_seqno;
2800 if (i915_semaphore_is_enabled(dev)) {
2801 ring->semaphore.sync_to = gen6_ring_sync;
2802 ring->semaphore.signal = gen6_signal;
2803 /*
2804 * The current semaphore is only applied on pre-gen8
2805 * platform. And there is no VCS2 ring on the pre-gen8
2806 * platform. So the semaphore between RCS and VCS2 is
2807 * initialized as INVALID. Gen8 will initialize the
2808 * sema between VCS2 and RCS later.
2809 */
2810 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2811 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2812 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2813 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2814 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2815 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2816 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2817 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2818 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2819 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2820 }
2821 } else if (IS_GEN5(dev)) {
2822 ring->add_request = pc_render_add_request;
2823 ring->flush = gen4_render_ring_flush;
2824 ring->get_seqno = pc_render_get_seqno;
2825 ring->set_seqno = pc_render_set_seqno;
2826 ring->irq_get = gen5_ring_get_irq;
2827 ring->irq_put = gen5_ring_put_irq;
2828 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2829 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2830 } else {
2831 ring->add_request = i9xx_add_request;
2832 if (INTEL_INFO(dev)->gen < 4)
2833 ring->flush = gen2_render_ring_flush;
2834 else
2835 ring->flush = gen4_render_ring_flush;
2836 ring->get_seqno = ring_get_seqno;
2837 ring->set_seqno = ring_set_seqno;
2838 if (IS_GEN2(dev)) {
2839 ring->irq_get = i8xx_ring_get_irq;
2840 ring->irq_put = i8xx_ring_put_irq;
2841 } else {
2842 ring->irq_get = i9xx_ring_get_irq;
2843 ring->irq_put = i9xx_ring_put_irq;
2844 }
2845 ring->irq_enable_mask = I915_USER_INTERRUPT;
2846 }
2847 ring->write_tail = ring_write_tail;
2848
2849 if (IS_HASWELL(dev))
2850 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2851 else if (IS_GEN8(dev))
2852 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2853 else if (INTEL_INFO(dev)->gen >= 6)
2854 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2855 else if (INTEL_INFO(dev)->gen >= 4)
2856 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2857 else if (IS_I830(dev) || IS_845G(dev))
2858 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2859 else
2860 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2861 ring->init_hw = init_render_ring;
2862 ring->cleanup = render_ring_cleanup;
2863
2864 /* Workaround batchbuffer to combat CS tlb bug. */
2865 if (HAS_BROKEN_CS_TLB(dev)) {
2866 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2867 if (obj == NULL) {
2868 DRM_ERROR("Failed to allocate batch bo\n");
2869 return -ENOMEM;
2870 }
2871
2872 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2873 if (ret != 0) {
2874 drm_gem_object_unreference(&obj->base);
2875 DRM_ERROR("Failed to ping batch bo\n");
2876 return ret;
2877 }
2878
2879 ring->scratch.obj = obj;
2880 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2881 }
2882
2883 ret = intel_init_ring_buffer(dev, ring);
2884 if (ret)
2885 return ret;
2886
2887 if (INTEL_INFO(dev)->gen >= 5) {
2888 ret = intel_init_pipe_control(ring);
2889 if (ret)
2890 return ret;
2891 }
2892
2893 return 0;
2894 }
2895
2896 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2897 {
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2900
2901 ring->name = "bsd ring";
2902 ring->id = VCS;
2903 ring->exec_id = I915_EXEC_BSD;
2904
2905 ring->write_tail = ring_write_tail;
2906 if (INTEL_INFO(dev)->gen >= 6) {
2907 ring->mmio_base = GEN6_BSD_RING_BASE;
2908 /* gen6 bsd needs a special wa for tail updates */
2909 if (IS_GEN6(dev))
2910 ring->write_tail = gen6_bsd_ring_write_tail;
2911 ring->flush = gen6_bsd_ring_flush;
2912 ring->add_request = gen6_add_request;
2913 ring->get_seqno = gen6_ring_get_seqno;
2914 ring->set_seqno = ring_set_seqno;
2915 if (INTEL_INFO(dev)->gen >= 8) {
2916 ring->irq_enable_mask =
2917 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2918 ring->irq_get = gen8_ring_get_irq;
2919 ring->irq_put = gen8_ring_put_irq;
2920 ring->dispatch_execbuffer =
2921 gen8_ring_dispatch_execbuffer;
2922 if (i915_semaphore_is_enabled(dev)) {
2923 ring->semaphore.sync_to = gen8_ring_sync;
2924 ring->semaphore.signal = gen8_xcs_signal;
2925 GEN8_RING_SEMAPHORE_INIT;
2926 }
2927 } else {
2928 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2929 ring->irq_get = gen6_ring_get_irq;
2930 ring->irq_put = gen6_ring_put_irq;
2931 ring->dispatch_execbuffer =
2932 gen6_ring_dispatch_execbuffer;
2933 if (i915_semaphore_is_enabled(dev)) {
2934 ring->semaphore.sync_to = gen6_ring_sync;
2935 ring->semaphore.signal = gen6_signal;
2936 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2937 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2938 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2939 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2940 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2941 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2942 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2943 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2944 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2945 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2946 }
2947 }
2948 } else {
2949 ring->mmio_base = BSD_RING_BASE;
2950 ring->flush = bsd_ring_flush;
2951 ring->add_request = i9xx_add_request;
2952 ring->get_seqno = ring_get_seqno;
2953 ring->set_seqno = ring_set_seqno;
2954 if (IS_GEN5(dev)) {
2955 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2956 ring->irq_get = gen5_ring_get_irq;
2957 ring->irq_put = gen5_ring_put_irq;
2958 } else {
2959 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2960 ring->irq_get = i9xx_ring_get_irq;
2961 ring->irq_put = i9xx_ring_put_irq;
2962 }
2963 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2964 }
2965 ring->init_hw = init_ring_common;
2966
2967 return intel_init_ring_buffer(dev, ring);
2968 }
2969
2970 /**
2971 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2972 */
2973 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2974 {
2975 struct drm_i915_private *dev_priv = dev->dev_private;
2976 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2977
2978 ring->name = "bsd2 ring";
2979 ring->id = VCS2;
2980 ring->exec_id = I915_EXEC_BSD;
2981
2982 ring->write_tail = ring_write_tail;
2983 ring->mmio_base = GEN8_BSD2_RING_BASE;
2984 ring->flush = gen6_bsd_ring_flush;
2985 ring->add_request = gen6_add_request;
2986 ring->get_seqno = gen6_ring_get_seqno;
2987 ring->set_seqno = ring_set_seqno;
2988 ring->irq_enable_mask =
2989 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2990 ring->irq_get = gen8_ring_get_irq;
2991 ring->irq_put = gen8_ring_put_irq;
2992 ring->dispatch_execbuffer =
2993 gen8_ring_dispatch_execbuffer;
2994 if (i915_semaphore_is_enabled(dev)) {
2995 ring->semaphore.sync_to = gen8_ring_sync;
2996 ring->semaphore.signal = gen8_xcs_signal;
2997 GEN8_RING_SEMAPHORE_INIT;
2998 }
2999 ring->init_hw = init_ring_common;
3000
3001 return intel_init_ring_buffer(dev, ring);
3002 }
3003
3004 int intel_init_blt_ring_buffer(struct drm_device *dev)
3005 {
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
3008
3009 ring->name = "blitter ring";
3010 ring->id = BCS;
3011 ring->exec_id = I915_EXEC_BLT;
3012
3013 ring->mmio_base = BLT_RING_BASE;
3014 ring->write_tail = ring_write_tail;
3015 ring->flush = gen6_ring_flush;
3016 ring->add_request = gen6_add_request;
3017 ring->get_seqno = gen6_ring_get_seqno;
3018 ring->set_seqno = ring_set_seqno;
3019 if (INTEL_INFO(dev)->gen >= 8) {
3020 ring->irq_enable_mask =
3021 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3022 ring->irq_get = gen8_ring_get_irq;
3023 ring->irq_put = gen8_ring_put_irq;
3024 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3025 if (i915_semaphore_is_enabled(dev)) {
3026 ring->semaphore.sync_to = gen8_ring_sync;
3027 ring->semaphore.signal = gen8_xcs_signal;
3028 GEN8_RING_SEMAPHORE_INIT;
3029 }
3030 } else {
3031 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3032 ring->irq_get = gen6_ring_get_irq;
3033 ring->irq_put = gen6_ring_put_irq;
3034 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3035 if (i915_semaphore_is_enabled(dev)) {
3036 ring->semaphore.signal = gen6_signal;
3037 ring->semaphore.sync_to = gen6_ring_sync;
3038 /*
3039 * The current semaphore is only applied on pre-gen8
3040 * platform. And there is no VCS2 ring on the pre-gen8
3041 * platform. So the semaphore between BCS and VCS2 is
3042 * initialized as INVALID. Gen8 will initialize the
3043 * sema between BCS and VCS2 later.
3044 */
3045 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3046 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3047 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3048 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3049 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3050 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3051 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3052 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3053 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3054 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3055 }
3056 }
3057 ring->init_hw = init_ring_common;
3058
3059 return intel_init_ring_buffer(dev, ring);
3060 }
3061
3062 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3063 {
3064 struct drm_i915_private *dev_priv = dev->dev_private;
3065 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3066
3067 ring->name = "video enhancement ring";
3068 ring->id = VECS;
3069 ring->exec_id = I915_EXEC_VEBOX;
3070
3071 ring->mmio_base = VEBOX_RING_BASE;
3072 ring->write_tail = ring_write_tail;
3073 ring->flush = gen6_ring_flush;
3074 ring->add_request = gen6_add_request;
3075 ring->get_seqno = gen6_ring_get_seqno;
3076 ring->set_seqno = ring_set_seqno;
3077
3078 if (INTEL_INFO(dev)->gen >= 8) {
3079 ring->irq_enable_mask =
3080 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3081 ring->irq_get = gen8_ring_get_irq;
3082 ring->irq_put = gen8_ring_put_irq;
3083 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3084 if (i915_semaphore_is_enabled(dev)) {
3085 ring->semaphore.sync_to = gen8_ring_sync;
3086 ring->semaphore.signal = gen8_xcs_signal;
3087 GEN8_RING_SEMAPHORE_INIT;
3088 }
3089 } else {
3090 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3091 ring->irq_get = hsw_vebox_get_irq;
3092 ring->irq_put = hsw_vebox_put_irq;
3093 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3094 if (i915_semaphore_is_enabled(dev)) {
3095 ring->semaphore.sync_to = gen6_ring_sync;
3096 ring->semaphore.signal = gen6_signal;
3097 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3098 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3099 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3100 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3101 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3102 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3103 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3104 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3105 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3106 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3107 }
3108 }
3109 ring->init_hw = init_ring_common;
3110
3111 return intel_init_ring_buffer(dev, ring);
3112 }
3113
3114 int
3115 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3116 {
3117 struct intel_engine_cs *ring = req->ring;
3118 int ret;
3119
3120 if (!ring->gpu_caches_dirty)
3121 return 0;
3122
3123 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3124 if (ret)
3125 return ret;
3126
3127 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3128
3129 ring->gpu_caches_dirty = false;
3130 return 0;
3131 }
3132
3133 int
3134 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3135 {
3136 struct intel_engine_cs *ring = req->ring;
3137 uint32_t flush_domains;
3138 int ret;
3139
3140 flush_domains = 0;
3141 if (ring->gpu_caches_dirty)
3142 flush_domains = I915_GEM_GPU_DOMAINS;
3143
3144 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3145 if (ret)
3146 return ret;
3147
3148 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3149
3150 ring->gpu_caches_dirty = false;
3151 return 0;
3152 }
3153
3154 void
3155 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3156 {
3157 int ret;
3158
3159 if (!intel_ring_initialized(ring))
3160 return;
3161
3162 ret = intel_ring_idle(ring);
3163 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3164 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3165 ring->name, ret);
3166
3167 stop_ring(ring);
3168 }
This page took 0.110562 seconds and 6 git commands to generate.