Merge branches 'x86/amd', 'x86/vt-d', 'arm/exynos', 'arm/mediatek' and 'arm/renesas...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 switch (domain) {
75 case POWER_DOMAIN_PIPE_A:
76 return "PIPE_A";
77 case POWER_DOMAIN_PIPE_B:
78 return "PIPE_B";
79 case POWER_DOMAIN_PIPE_C:
80 return "PIPE_C";
81 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 return "PIPE_A_PANEL_FITTER";
83 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 return "PIPE_B_PANEL_FITTER";
85 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 return "PIPE_C_PANEL_FITTER";
87 case POWER_DOMAIN_TRANSCODER_A:
88 return "TRANSCODER_A";
89 case POWER_DOMAIN_TRANSCODER_B:
90 return "TRANSCODER_B";
91 case POWER_DOMAIN_TRANSCODER_C:
92 return "TRANSCODER_C";
93 case POWER_DOMAIN_TRANSCODER_EDP:
94 return "TRANSCODER_EDP";
95 case POWER_DOMAIN_TRANSCODER_DSI_A:
96 return "TRANSCODER_DSI_A";
97 case POWER_DOMAIN_TRANSCODER_DSI_C:
98 return "TRANSCODER_DSI_C";
99 case POWER_DOMAIN_PORT_DDI_A_LANES:
100 return "PORT_DDI_A_LANES";
101 case POWER_DOMAIN_PORT_DDI_B_LANES:
102 return "PORT_DDI_B_LANES";
103 case POWER_DOMAIN_PORT_DDI_C_LANES:
104 return "PORT_DDI_C_LANES";
105 case POWER_DOMAIN_PORT_DDI_D_LANES:
106 return "PORT_DDI_D_LANES";
107 case POWER_DOMAIN_PORT_DDI_E_LANES:
108 return "PORT_DDI_E_LANES";
109 case POWER_DOMAIN_PORT_DSI:
110 return "PORT_DSI";
111 case POWER_DOMAIN_PORT_CRT:
112 return "PORT_CRT";
113 case POWER_DOMAIN_PORT_OTHER:
114 return "PORT_OTHER";
115 case POWER_DOMAIN_VGA:
116 return "VGA";
117 case POWER_DOMAIN_AUDIO:
118 return "AUDIO";
119 case POWER_DOMAIN_PLLS:
120 return "PLLS";
121 case POWER_DOMAIN_AUX_A:
122 return "AUX_A";
123 case POWER_DOMAIN_AUX_B:
124 return "AUX_B";
125 case POWER_DOMAIN_AUX_C:
126 return "AUX_C";
127 case POWER_DOMAIN_AUX_D:
128 return "AUX_D";
129 case POWER_DOMAIN_GMBUS:
130 return "GMBUS";
131 case POWER_DOMAIN_INIT:
132 return "INIT";
133 case POWER_DOMAIN_MODESET:
134 return "MODESET";
135 default:
136 MISSING_CASE(domain);
137 return "?";
138 }
139 }
140
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 struct i915_power_well *power_well)
143 {
144 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 power_well->ops->enable(dev_priv, power_well);
146 power_well->hw_enabled = true;
147 }
148
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 struct i915_power_well *power_well)
151 {
152 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 power_well->hw_enabled = false;
154 power_well->ops->disable(dev_priv, power_well);
155 }
156
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 struct i915_power_well *power_well)
159 {
160 if (!power_well->count++)
161 intel_power_well_enable(dev_priv, power_well);
162 }
163
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 struct i915_power_well *power_well)
166 {
167 WARN(!power_well->count, "Use count on power well %s is already zero",
168 power_well->name);
169
170 if (!--power_well->count)
171 intel_power_well_disable(dev_priv, power_well);
172 }
173
174 /*
175 * We should only use the power well if we explicitly asked the hardware to
176 * enable it, so check if it's enabled and also check if we've requested it to
177 * be enabled.
178 */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 struct i915_power_well *power_well)
181 {
182 return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185
186 /**
187 * __intel_display_power_is_enabled - unlocked check for a power domain
188 * @dev_priv: i915 device instance
189 * @domain: power domain to check
190 *
191 * This is the unlocked version of intel_display_power_is_enabled() and should
192 * only be used from error capture and recovery code where deadlocks are
193 * possible.
194 *
195 * Returns:
196 * True when the power domain is enabled, false otherwise.
197 */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 enum intel_display_power_domain domain)
200 {
201 struct i915_power_domains *power_domains;
202 struct i915_power_well *power_well;
203 bool is_enabled;
204 int i;
205
206 if (dev_priv->pm.suspended)
207 return false;
208
209 power_domains = &dev_priv->power_domains;
210
211 is_enabled = true;
212
213 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 if (power_well->always_on)
215 continue;
216
217 if (!power_well->hw_enabled) {
218 is_enabled = false;
219 break;
220 }
221 }
222
223 return is_enabled;
224 }
225
226 /**
227 * intel_display_power_is_enabled - check for a power domain
228 * @dev_priv: i915 device instance
229 * @domain: power domain to check
230 *
231 * This function can be used to check the hw power domain state. It is mostly
232 * used in hardware state readout functions. Everywhere else code should rely
233 * upon explicit power domain reference counting to ensure that the hardware
234 * block is powered up before accessing it.
235 *
236 * Callers must hold the relevant modesetting locks to ensure that concurrent
237 * threads can't disable the power well while the caller tries to read a few
238 * registers.
239 *
240 * Returns:
241 * True when the power domain is enabled, false otherwise.
242 */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 enum intel_display_power_domain domain)
245 {
246 struct i915_power_domains *power_domains;
247 bool ret;
248
249 power_domains = &dev_priv->power_domains;
250
251 mutex_lock(&power_domains->lock);
252 ret = __intel_display_power_is_enabled(dev_priv, domain);
253 mutex_unlock(&power_domains->lock);
254
255 return ret;
256 }
257
258 /**
259 * intel_display_set_init_power - set the initial power domain state
260 * @dev_priv: i915 device instance
261 * @enable: whether to enable or disable the initial power domain state
262 *
263 * For simplicity our driver load/unload and system suspend/resume code assumes
264 * that all power domains are always enabled. This functions controls the state
265 * of this little hack. While the initial power domain state is enabled runtime
266 * pm is effectively disabled.
267 */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 bool enable)
270 {
271 if (dev_priv->power_domains.init_power_on == enable)
272 return;
273
274 if (enable)
275 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 else
277 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278
279 dev_priv->power_domains.init_power_on = enable;
280 }
281
282 /*
283 * Starting with Haswell, we have a "Power Down Well" that can be turned off
284 * when not needed anymore. We have 4 registers that can request the power well
285 * to be enabled, and it will only be disabled if none of the registers is
286 * requesting it to be enabled.
287 */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 struct drm_device *dev = &dev_priv->drm;
291
292 /*
293 * After we re-enable the power well, if we touch VGA register 0x3d5
294 * we'll get unclaimed register interrupts. This stops after we write
295 * anything to the VGA MSR register. The vgacon module uses this
296 * register all the time, so if we unbind our driver and, as a
297 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 * console_unlock(). So make here we touch the VGA MSR register, making
299 * sure vgacon can keep working normally without triggering interrupts
300 * and error messages.
301 */
302 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
303 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
304 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
305
306 if (IS_BROADWELL(dev))
307 gen8_irq_power_well_post_enable(dev_priv,
308 1 << PIPE_C | 1 << PIPE_B);
309 }
310
311 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
312 {
313 if (IS_BROADWELL(dev_priv))
314 gen8_irq_power_well_pre_disable(dev_priv,
315 1 << PIPE_C | 1 << PIPE_B);
316 }
317
318 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
319 struct i915_power_well *power_well)
320 {
321 struct drm_device *dev = &dev_priv->drm;
322
323 /*
324 * After we re-enable the power well, if we touch VGA register 0x3d5
325 * we'll get unclaimed register interrupts. This stops after we write
326 * anything to the VGA MSR register. The vgacon module uses this
327 * register all the time, so if we unbind our driver and, as a
328 * consequence, bind vgacon, we'll get stuck in an infinite loop at
329 * console_unlock(). So make here we touch the VGA MSR register, making
330 * sure vgacon can keep working normally without triggering interrupts
331 * and error messages.
332 */
333 if (power_well->data == SKL_DISP_PW_2) {
334 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
335 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
336 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
337
338 gen8_irq_power_well_post_enable(dev_priv,
339 1 << PIPE_C | 1 << PIPE_B);
340 }
341 }
342
343 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
344 struct i915_power_well *power_well)
345 {
346 if (power_well->data == SKL_DISP_PW_2)
347 gen8_irq_power_well_pre_disable(dev_priv,
348 1 << PIPE_C | 1 << PIPE_B);
349 }
350
351 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
352 struct i915_power_well *power_well, bool enable)
353 {
354 bool is_enabled, enable_requested;
355 uint32_t tmp;
356
357 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
358 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
359 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
360
361 if (enable) {
362 if (!enable_requested)
363 I915_WRITE(HSW_PWR_WELL_DRIVER,
364 HSW_PWR_WELL_ENABLE_REQUEST);
365
366 if (!is_enabled) {
367 DRM_DEBUG_KMS("Enabling power well\n");
368 if (intel_wait_for_register(dev_priv,
369 HSW_PWR_WELL_DRIVER,
370 HSW_PWR_WELL_STATE_ENABLED,
371 HSW_PWR_WELL_STATE_ENABLED,
372 20))
373 DRM_ERROR("Timeout enabling power well\n");
374 hsw_power_well_post_enable(dev_priv);
375 }
376
377 } else {
378 if (enable_requested) {
379 hsw_power_well_pre_disable(dev_priv);
380 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
381 POSTING_READ(HSW_PWR_WELL_DRIVER);
382 DRM_DEBUG_KMS("Requesting to disable the power well\n");
383 }
384 }
385 }
386
387 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
388 BIT(POWER_DOMAIN_TRANSCODER_A) | \
389 BIT(POWER_DOMAIN_PIPE_B) | \
390 BIT(POWER_DOMAIN_TRANSCODER_B) | \
391 BIT(POWER_DOMAIN_PIPE_C) | \
392 BIT(POWER_DOMAIN_TRANSCODER_C) | \
393 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
394 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
395 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
396 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
397 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
398 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
399 BIT(POWER_DOMAIN_AUX_B) | \
400 BIT(POWER_DOMAIN_AUX_C) | \
401 BIT(POWER_DOMAIN_AUX_D) | \
402 BIT(POWER_DOMAIN_AUDIO) | \
403 BIT(POWER_DOMAIN_VGA) | \
404 BIT(POWER_DOMAIN_INIT))
405 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
406 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
407 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
408 BIT(POWER_DOMAIN_INIT))
409 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
410 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
411 BIT(POWER_DOMAIN_INIT))
412 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
413 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
414 BIT(POWER_DOMAIN_INIT))
415 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
416 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
417 BIT(POWER_DOMAIN_INIT))
418 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
419 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
420 BIT(POWER_DOMAIN_MODESET) | \
421 BIT(POWER_DOMAIN_AUX_A) | \
422 BIT(POWER_DOMAIN_INIT))
423
424 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
425 BIT(POWER_DOMAIN_TRANSCODER_A) | \
426 BIT(POWER_DOMAIN_PIPE_B) | \
427 BIT(POWER_DOMAIN_TRANSCODER_B) | \
428 BIT(POWER_DOMAIN_PIPE_C) | \
429 BIT(POWER_DOMAIN_TRANSCODER_C) | \
430 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
431 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
432 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
433 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
434 BIT(POWER_DOMAIN_AUX_B) | \
435 BIT(POWER_DOMAIN_AUX_C) | \
436 BIT(POWER_DOMAIN_AUDIO) | \
437 BIT(POWER_DOMAIN_VGA) | \
438 BIT(POWER_DOMAIN_GMBUS) | \
439 BIT(POWER_DOMAIN_INIT))
440 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
441 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
442 BIT(POWER_DOMAIN_MODESET) | \
443 BIT(POWER_DOMAIN_AUX_A) | \
444 BIT(POWER_DOMAIN_INIT))
445 #define BXT_DPIO_CMN_A_POWER_DOMAINS ( \
446 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
447 BIT(POWER_DOMAIN_AUX_A) | \
448 BIT(POWER_DOMAIN_INIT))
449 #define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \
450 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
451 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
452 BIT(POWER_DOMAIN_AUX_B) | \
453 BIT(POWER_DOMAIN_AUX_C) | \
454 BIT(POWER_DOMAIN_INIT))
455
456 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
457 {
458 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
459 "DC9 already programmed to be enabled.\n");
460 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
461 "DC5 still not disabled to enable DC9.\n");
462 WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
463 WARN_ONCE(intel_irqs_enabled(dev_priv),
464 "Interrupts not disabled yet.\n");
465
466 /*
467 * TODO: check for the following to verify the conditions to enter DC9
468 * state are satisfied:
469 * 1] Check relevant display engine registers to verify if mode set
470 * disable sequence was followed.
471 * 2] Check if display uninitialize sequence is initialized.
472 */
473 }
474
475 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
476 {
477 WARN_ONCE(intel_irqs_enabled(dev_priv),
478 "Interrupts not disabled yet.\n");
479 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
480 "DC5 still not disabled.\n");
481
482 /*
483 * TODO: check for the following to verify DC9 state was indeed
484 * entered before programming to disable it:
485 * 1] Check relevant display engine registers to verify if mode
486 * set disable sequence was followed.
487 * 2] Check if display uninitialize sequence is initialized.
488 */
489 }
490
491 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
492 u32 state)
493 {
494 int rewrites = 0;
495 int rereads = 0;
496 u32 v;
497
498 I915_WRITE(DC_STATE_EN, state);
499
500 /* It has been observed that disabling the dc6 state sometimes
501 * doesn't stick and dmc keeps returning old value. Make sure
502 * the write really sticks enough times and also force rewrite until
503 * we are confident that state is exactly what we want.
504 */
505 do {
506 v = I915_READ(DC_STATE_EN);
507
508 if (v != state) {
509 I915_WRITE(DC_STATE_EN, state);
510 rewrites++;
511 rereads = 0;
512 } else if (rereads++ > 5) {
513 break;
514 }
515
516 } while (rewrites < 100);
517
518 if (v != state)
519 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
520 state, v);
521
522 /* Most of the times we need one retry, avoid spam */
523 if (rewrites > 1)
524 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
525 state, rewrites);
526 }
527
528 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
529 {
530 u32 mask;
531
532 mask = DC_STATE_EN_UPTO_DC5;
533 if (IS_BROXTON(dev_priv))
534 mask |= DC_STATE_EN_DC9;
535 else
536 mask |= DC_STATE_EN_UPTO_DC6;
537
538 return mask;
539 }
540
541 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
542 {
543 u32 val;
544
545 val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
546
547 DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
548 dev_priv->csr.dc_state, val);
549 dev_priv->csr.dc_state = val;
550 }
551
552 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
553 {
554 uint32_t val;
555 uint32_t mask;
556
557 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
558 state &= dev_priv->csr.allowed_dc_mask;
559
560 val = I915_READ(DC_STATE_EN);
561 mask = gen9_dc_mask(dev_priv);
562 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
563 val & mask, state);
564
565 /* Check if DMC is ignoring our DC state requests */
566 if ((val & mask) != dev_priv->csr.dc_state)
567 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
568 dev_priv->csr.dc_state, val & mask);
569
570 val &= ~mask;
571 val |= state;
572
573 gen9_write_dc_state(dev_priv, val);
574
575 dev_priv->csr.dc_state = val & mask;
576 }
577
578 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
579 {
580 assert_can_enable_dc9(dev_priv);
581
582 DRM_DEBUG_KMS("Enabling DC9\n");
583
584 intel_power_sequencer_reset(dev_priv);
585 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
586 }
587
588 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
589 {
590 assert_can_disable_dc9(dev_priv);
591
592 DRM_DEBUG_KMS("Disabling DC9\n");
593
594 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
595 }
596
597 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
598 {
599 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
600 "CSR program storage start is NULL\n");
601 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
602 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
603 }
604
605 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
606 {
607 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
608 SKL_DISP_PW_2);
609
610 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
611
612 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
613 "DC5 already programmed to be enabled.\n");
614 assert_rpm_wakelock_held(dev_priv);
615
616 assert_csr_loaded(dev_priv);
617 }
618
619 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
620 {
621 assert_can_enable_dc5(dev_priv);
622
623 DRM_DEBUG_KMS("Enabling DC5\n");
624
625 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
626 }
627
628 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
629 {
630 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
631 "Backlight is not disabled.\n");
632 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
633 "DC6 already programmed to be enabled.\n");
634
635 assert_csr_loaded(dev_priv);
636 }
637
638 void skl_enable_dc6(struct drm_i915_private *dev_priv)
639 {
640 assert_can_enable_dc6(dev_priv);
641
642 DRM_DEBUG_KMS("Enabling DC6\n");
643
644 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
645
646 }
647
648 void skl_disable_dc6(struct drm_i915_private *dev_priv)
649 {
650 DRM_DEBUG_KMS("Disabling DC6\n");
651
652 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
653 }
654
655 static void
656 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
657 struct i915_power_well *power_well)
658 {
659 enum skl_disp_power_wells power_well_id = power_well->data;
660 u32 val;
661 u32 mask;
662
663 mask = SKL_POWER_WELL_REQ(power_well_id);
664
665 val = I915_READ(HSW_PWR_WELL_KVMR);
666 if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
667 power_well->name))
668 I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
669
670 val = I915_READ(HSW_PWR_WELL_BIOS);
671 val |= I915_READ(HSW_PWR_WELL_DEBUG);
672
673 if (!(val & mask))
674 return;
675
676 /*
677 * DMC is known to force on the request bits for power well 1 on SKL
678 * and BXT and the misc IO power well on SKL but we don't expect any
679 * other request bits to be set, so WARN for those.
680 */
681 if (power_well_id == SKL_DISP_PW_1 ||
682 ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
683 power_well_id == SKL_DISP_PW_MISC_IO))
684 DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
685 "by DMC\n", power_well->name);
686 else
687 WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
688 power_well->name);
689
690 I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
691 I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
692 }
693
694 static void skl_set_power_well(struct drm_i915_private *dev_priv,
695 struct i915_power_well *power_well, bool enable)
696 {
697 uint32_t tmp, fuse_status;
698 uint32_t req_mask, state_mask;
699 bool is_enabled, enable_requested, check_fuse_status = false;
700
701 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
702 fuse_status = I915_READ(SKL_FUSE_STATUS);
703
704 switch (power_well->data) {
705 case SKL_DISP_PW_1:
706 if (intel_wait_for_register(dev_priv,
707 SKL_FUSE_STATUS,
708 SKL_FUSE_PG0_DIST_STATUS,
709 SKL_FUSE_PG0_DIST_STATUS,
710 1)) {
711 DRM_ERROR("PG0 not enabled\n");
712 return;
713 }
714 break;
715 case SKL_DISP_PW_2:
716 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
717 DRM_ERROR("PG1 in disabled state\n");
718 return;
719 }
720 break;
721 case SKL_DISP_PW_DDI_A_E:
722 case SKL_DISP_PW_DDI_B:
723 case SKL_DISP_PW_DDI_C:
724 case SKL_DISP_PW_DDI_D:
725 case SKL_DISP_PW_MISC_IO:
726 break;
727 default:
728 WARN(1, "Unknown power well %lu\n", power_well->data);
729 return;
730 }
731
732 req_mask = SKL_POWER_WELL_REQ(power_well->data);
733 enable_requested = tmp & req_mask;
734 state_mask = SKL_POWER_WELL_STATE(power_well->data);
735 is_enabled = tmp & state_mask;
736
737 if (!enable && enable_requested)
738 skl_power_well_pre_disable(dev_priv, power_well);
739
740 if (enable) {
741 if (!enable_requested) {
742 WARN((tmp & state_mask) &&
743 !I915_READ(HSW_PWR_WELL_BIOS),
744 "Invalid for power well status to be enabled, unless done by the BIOS, \
745 when request is to disable!\n");
746 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
747 }
748
749 if (!is_enabled) {
750 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
751 check_fuse_status = true;
752 }
753 } else {
754 if (enable_requested) {
755 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
756 POSTING_READ(HSW_PWR_WELL_DRIVER);
757 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
758 }
759
760 if (IS_GEN9(dev_priv))
761 gen9_sanitize_power_well_requests(dev_priv, power_well);
762 }
763
764 if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
765 1))
766 DRM_ERROR("%s %s timeout\n",
767 power_well->name, enable ? "enable" : "disable");
768
769 if (check_fuse_status) {
770 if (power_well->data == SKL_DISP_PW_1) {
771 if (intel_wait_for_register(dev_priv,
772 SKL_FUSE_STATUS,
773 SKL_FUSE_PG1_DIST_STATUS,
774 SKL_FUSE_PG1_DIST_STATUS,
775 1))
776 DRM_ERROR("PG1 distributing status timeout\n");
777 } else if (power_well->data == SKL_DISP_PW_2) {
778 if (intel_wait_for_register(dev_priv,
779 SKL_FUSE_STATUS,
780 SKL_FUSE_PG2_DIST_STATUS,
781 SKL_FUSE_PG2_DIST_STATUS,
782 1))
783 DRM_ERROR("PG2 distributing status timeout\n");
784 }
785 }
786
787 if (enable && !is_enabled)
788 skl_power_well_post_enable(dev_priv, power_well);
789 }
790
791 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
792 struct i915_power_well *power_well)
793 {
794 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
795
796 /*
797 * We're taking over the BIOS, so clear any requests made by it since
798 * the driver is in charge now.
799 */
800 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
801 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
802 }
803
804 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
805 struct i915_power_well *power_well)
806 {
807 hsw_set_power_well(dev_priv, power_well, true);
808 }
809
810 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
811 struct i915_power_well *power_well)
812 {
813 hsw_set_power_well(dev_priv, power_well, false);
814 }
815
816 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
817 struct i915_power_well *power_well)
818 {
819 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
820 SKL_POWER_WELL_STATE(power_well->data);
821
822 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
823 }
824
825 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
826 struct i915_power_well *power_well)
827 {
828 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
829
830 /* Clear any request made by BIOS as driver is taking over */
831 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
832 }
833
834 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
835 struct i915_power_well *power_well)
836 {
837 skl_set_power_well(dev_priv, power_well, true);
838 }
839
840 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
841 struct i915_power_well *power_well)
842 {
843 skl_set_power_well(dev_priv, power_well, false);
844 }
845
846 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
847 {
848 enum skl_disp_power_wells power_well_id = power_well->data;
849
850 return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
851 }
852
853 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
854 struct i915_power_well *power_well)
855 {
856 enum skl_disp_power_wells power_well_id = power_well->data;
857 struct i915_power_well *cmn_a_well;
858
859 if (power_well_id == BXT_DPIO_CMN_BC) {
860 /*
861 * We need to copy the GRC calibration value from the eDP PHY,
862 * so make sure it's powered up.
863 */
864 cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
865 intel_power_well_get(dev_priv, cmn_a_well);
866 }
867
868 bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
869
870 if (power_well_id == BXT_DPIO_CMN_BC)
871 intel_power_well_put(dev_priv, cmn_a_well);
872 }
873
874 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
875 struct i915_power_well *power_well)
876 {
877 bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
878 }
879
880 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
881 struct i915_power_well *power_well)
882 {
883 return bxt_ddi_phy_is_enabled(dev_priv,
884 bxt_power_well_to_phy(power_well));
885 }
886
887 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
888 struct i915_power_well *power_well)
889 {
890 if (power_well->count > 0)
891 bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
892 else
893 bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
894 }
895
896
897 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
898 {
899 struct i915_power_well *power_well;
900
901 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
902 if (power_well->count > 0)
903 bxt_ddi_phy_verify_state(dev_priv,
904 bxt_power_well_to_phy(power_well));
905
906 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
907 if (power_well->count > 0)
908 bxt_ddi_phy_verify_state(dev_priv,
909 bxt_power_well_to_phy(power_well));
910 }
911
912 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
913 struct i915_power_well *power_well)
914 {
915 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
916 }
917
918 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
919 {
920 u32 tmp = I915_READ(DBUF_CTL);
921
922 WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
923 (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
924 "Unexpected DBuf power power state (0x%08x)\n", tmp);
925 }
926
927 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
928 struct i915_power_well *power_well)
929 {
930 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
931
932 WARN_ON(dev_priv->cdclk_freq !=
933 dev_priv->display.get_display_clock_speed(&dev_priv->drm));
934
935 gen9_assert_dbuf_enabled(dev_priv);
936
937 if (IS_BROXTON(dev_priv))
938 bxt_verify_ddi_phy_power_wells(dev_priv);
939 }
940
941 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
942 struct i915_power_well *power_well)
943 {
944 if (!dev_priv->csr.dmc_payload)
945 return;
946
947 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
948 skl_enable_dc6(dev_priv);
949 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
950 gen9_enable_dc5(dev_priv);
951 }
952
953 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
954 struct i915_power_well *power_well)
955 {
956 if (power_well->count > 0)
957 gen9_dc_off_power_well_enable(dev_priv, power_well);
958 else
959 gen9_dc_off_power_well_disable(dev_priv, power_well);
960 }
961
962 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
963 struct i915_power_well *power_well)
964 {
965 }
966
967 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
968 struct i915_power_well *power_well)
969 {
970 return true;
971 }
972
973 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
974 struct i915_power_well *power_well, bool enable)
975 {
976 enum punit_power_well power_well_id = power_well->data;
977 u32 mask;
978 u32 state;
979 u32 ctrl;
980
981 mask = PUNIT_PWRGT_MASK(power_well_id);
982 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
983 PUNIT_PWRGT_PWR_GATE(power_well_id);
984
985 mutex_lock(&dev_priv->rps.hw_lock);
986
987 #define COND \
988 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
989
990 if (COND)
991 goto out;
992
993 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
994 ctrl &= ~mask;
995 ctrl |= state;
996 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
997
998 if (wait_for(COND, 100))
999 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1000 state,
1001 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1002
1003 #undef COND
1004
1005 out:
1006 mutex_unlock(&dev_priv->rps.hw_lock);
1007 }
1008
1009 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1010 struct i915_power_well *power_well)
1011 {
1012 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1013 }
1014
1015 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1016 struct i915_power_well *power_well)
1017 {
1018 vlv_set_power_well(dev_priv, power_well, true);
1019 }
1020
1021 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1022 struct i915_power_well *power_well)
1023 {
1024 vlv_set_power_well(dev_priv, power_well, false);
1025 }
1026
1027 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1028 struct i915_power_well *power_well)
1029 {
1030 int power_well_id = power_well->data;
1031 bool enabled = false;
1032 u32 mask;
1033 u32 state;
1034 u32 ctrl;
1035
1036 mask = PUNIT_PWRGT_MASK(power_well_id);
1037 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1038
1039 mutex_lock(&dev_priv->rps.hw_lock);
1040
1041 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1042 /*
1043 * We only ever set the power-on and power-gate states, anything
1044 * else is unexpected.
1045 */
1046 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1047 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1048 if (state == ctrl)
1049 enabled = true;
1050
1051 /*
1052 * A transient state at this point would mean some unexpected party
1053 * is poking at the power controls too.
1054 */
1055 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1056 WARN_ON(ctrl != state);
1057
1058 mutex_unlock(&dev_priv->rps.hw_lock);
1059
1060 return enabled;
1061 }
1062
1063 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1064 {
1065 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
1066
1067 /*
1068 * Disable trickle feed and enable pnd deadline calculation
1069 */
1070 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1071 I915_WRITE(CBR1_VLV, 0);
1072
1073 WARN_ON(dev_priv->rawclk_freq == 0);
1074
1075 I915_WRITE(RAWCLK_FREQ_VLV,
1076 DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1077 }
1078
1079 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1080 {
1081 struct intel_encoder *encoder;
1082 enum pipe pipe;
1083
1084 /*
1085 * Enable the CRI clock source so we can get at the
1086 * display and the reference clock for VGA
1087 * hotplug / manual detection. Supposedly DSI also
1088 * needs the ref clock up and running.
1089 *
1090 * CHV DPLL B/C have some issues if VGA mode is enabled.
1091 */
1092 for_each_pipe(&dev_priv->drm, pipe) {
1093 u32 val = I915_READ(DPLL(pipe));
1094
1095 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1096 if (pipe != PIPE_A)
1097 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1098
1099 I915_WRITE(DPLL(pipe), val);
1100 }
1101
1102 vlv_init_display_clock_gating(dev_priv);
1103
1104 spin_lock_irq(&dev_priv->irq_lock);
1105 valleyview_enable_display_irqs(dev_priv);
1106 spin_unlock_irq(&dev_priv->irq_lock);
1107
1108 /*
1109 * During driver initialization/resume we can avoid restoring the
1110 * part of the HW/SW state that will be inited anyway explicitly.
1111 */
1112 if (dev_priv->power_domains.initializing)
1113 return;
1114
1115 intel_hpd_init(dev_priv);
1116
1117 /* Re-enable the ADPA, if we have one */
1118 for_each_intel_encoder(&dev_priv->drm, encoder) {
1119 if (encoder->type == INTEL_OUTPUT_ANALOG)
1120 intel_crt_reset(&encoder->base);
1121 }
1122
1123 i915_redisable_vga_power_on(&dev_priv->drm);
1124 }
1125
1126 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1127 {
1128 spin_lock_irq(&dev_priv->irq_lock);
1129 valleyview_disable_display_irqs(dev_priv);
1130 spin_unlock_irq(&dev_priv->irq_lock);
1131
1132 /* make sure we're done processing display irqs */
1133 synchronize_irq(dev_priv->drm.irq);
1134
1135 intel_power_sequencer_reset(dev_priv);
1136
1137 intel_hpd_poll_init(dev_priv);
1138 }
1139
1140 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1141 struct i915_power_well *power_well)
1142 {
1143 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1144
1145 vlv_set_power_well(dev_priv, power_well, true);
1146
1147 vlv_display_power_well_init(dev_priv);
1148 }
1149
1150 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1151 struct i915_power_well *power_well)
1152 {
1153 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1154
1155 vlv_display_power_well_deinit(dev_priv);
1156
1157 vlv_set_power_well(dev_priv, power_well, false);
1158 }
1159
1160 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1161 struct i915_power_well *power_well)
1162 {
1163 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1164
1165 /* since ref/cri clock was enabled */
1166 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1167
1168 vlv_set_power_well(dev_priv, power_well, true);
1169
1170 /*
1171 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1172 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1173 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1174 * b. The other bits such as sfr settings / modesel may all
1175 * be set to 0.
1176 *
1177 * This should only be done on init and resume from S3 with
1178 * both PLLs disabled, or we risk losing DPIO and PLL
1179 * synchronization.
1180 */
1181 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1182 }
1183
1184 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1185 struct i915_power_well *power_well)
1186 {
1187 enum pipe pipe;
1188
1189 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1190
1191 for_each_pipe(dev_priv, pipe)
1192 assert_pll_disabled(dev_priv, pipe);
1193
1194 /* Assert common reset */
1195 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1196
1197 vlv_set_power_well(dev_priv, power_well, false);
1198 }
1199
1200 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1201
1202 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1203 int power_well_id)
1204 {
1205 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1206 int i;
1207
1208 for (i = 0; i < power_domains->power_well_count; i++) {
1209 struct i915_power_well *power_well;
1210
1211 power_well = &power_domains->power_wells[i];
1212 if (power_well->data == power_well_id)
1213 return power_well;
1214 }
1215
1216 return NULL;
1217 }
1218
1219 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1220
1221 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1222 {
1223 struct i915_power_well *cmn_bc =
1224 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1225 struct i915_power_well *cmn_d =
1226 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1227 u32 phy_control = dev_priv->chv_phy_control;
1228 u32 phy_status = 0;
1229 u32 phy_status_mask = 0xffffffff;
1230
1231 /*
1232 * The BIOS can leave the PHY is some weird state
1233 * where it doesn't fully power down some parts.
1234 * Disable the asserts until the PHY has been fully
1235 * reset (ie. the power well has been disabled at
1236 * least once).
1237 */
1238 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1239 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1240 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1241 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1242 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1243 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1244 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1245
1246 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1247 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1248 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1249 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1250
1251 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1252 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1253
1254 /* this assumes override is only used to enable lanes */
1255 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1256 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1257
1258 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1259 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1260
1261 /* CL1 is on whenever anything is on in either channel */
1262 if (BITS_SET(phy_control,
1263 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1264 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1265 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1266
1267 /*
1268 * The DPLLB check accounts for the pipe B + port A usage
1269 * with CL2 powered up but all the lanes in the second channel
1270 * powered down.
1271 */
1272 if (BITS_SET(phy_control,
1273 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1274 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1275 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1276
1277 if (BITS_SET(phy_control,
1278 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1279 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1280 if (BITS_SET(phy_control,
1281 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1282 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1283
1284 if (BITS_SET(phy_control,
1285 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1286 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1287 if (BITS_SET(phy_control,
1288 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1289 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1290 }
1291
1292 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1293 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1294
1295 /* this assumes override is only used to enable lanes */
1296 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1297 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1298
1299 if (BITS_SET(phy_control,
1300 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1301 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1302
1303 if (BITS_SET(phy_control,
1304 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1305 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1306 if (BITS_SET(phy_control,
1307 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1308 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1309 }
1310
1311 phy_status &= phy_status_mask;
1312
1313 /*
1314 * The PHY may be busy with some initial calibration and whatnot,
1315 * so the power state can take a while to actually change.
1316 */
1317 if (intel_wait_for_register(dev_priv,
1318 DISPLAY_PHY_STATUS,
1319 phy_status_mask,
1320 phy_status,
1321 10))
1322 DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1323 I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1324 phy_status, dev_priv->chv_phy_control);
1325 }
1326
1327 #undef BITS_SET
1328
1329 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1330 struct i915_power_well *power_well)
1331 {
1332 enum dpio_phy phy;
1333 enum pipe pipe;
1334 uint32_t tmp;
1335
1336 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1337 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1338
1339 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1340 pipe = PIPE_A;
1341 phy = DPIO_PHY0;
1342 } else {
1343 pipe = PIPE_C;
1344 phy = DPIO_PHY1;
1345 }
1346
1347 /* since ref/cri clock was enabled */
1348 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1349 vlv_set_power_well(dev_priv, power_well, true);
1350
1351 /* Poll for phypwrgood signal */
1352 if (intel_wait_for_register(dev_priv,
1353 DISPLAY_PHY_STATUS,
1354 PHY_POWERGOOD(phy),
1355 PHY_POWERGOOD(phy),
1356 1))
1357 DRM_ERROR("Display PHY %d is not power up\n", phy);
1358
1359 mutex_lock(&dev_priv->sb_lock);
1360
1361 /* Enable dynamic power down */
1362 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1363 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1364 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1365 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1366
1367 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1368 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1369 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1370 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1371 } else {
1372 /*
1373 * Force the non-existing CL2 off. BXT does this
1374 * too, so maybe it saves some power even though
1375 * CL2 doesn't exist?
1376 */
1377 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1378 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1379 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1380 }
1381
1382 mutex_unlock(&dev_priv->sb_lock);
1383
1384 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1385 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1386
1387 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1388 phy, dev_priv->chv_phy_control);
1389
1390 assert_chv_phy_status(dev_priv);
1391 }
1392
1393 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1394 struct i915_power_well *power_well)
1395 {
1396 enum dpio_phy phy;
1397
1398 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1399 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1400
1401 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1402 phy = DPIO_PHY0;
1403 assert_pll_disabled(dev_priv, PIPE_A);
1404 assert_pll_disabled(dev_priv, PIPE_B);
1405 } else {
1406 phy = DPIO_PHY1;
1407 assert_pll_disabled(dev_priv, PIPE_C);
1408 }
1409
1410 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1411 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1412
1413 vlv_set_power_well(dev_priv, power_well, false);
1414
1415 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1416 phy, dev_priv->chv_phy_control);
1417
1418 /* PHY is fully reset now, so we can enable the PHY state asserts */
1419 dev_priv->chv_phy_assert[phy] = true;
1420
1421 assert_chv_phy_status(dev_priv);
1422 }
1423
1424 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1425 enum dpio_channel ch, bool override, unsigned int mask)
1426 {
1427 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1428 u32 reg, val, expected, actual;
1429
1430 /*
1431 * The BIOS can leave the PHY is some weird state
1432 * where it doesn't fully power down some parts.
1433 * Disable the asserts until the PHY has been fully
1434 * reset (ie. the power well has been disabled at
1435 * least once).
1436 */
1437 if (!dev_priv->chv_phy_assert[phy])
1438 return;
1439
1440 if (ch == DPIO_CH0)
1441 reg = _CHV_CMN_DW0_CH0;
1442 else
1443 reg = _CHV_CMN_DW6_CH1;
1444
1445 mutex_lock(&dev_priv->sb_lock);
1446 val = vlv_dpio_read(dev_priv, pipe, reg);
1447 mutex_unlock(&dev_priv->sb_lock);
1448
1449 /*
1450 * This assumes !override is only used when the port is disabled.
1451 * All lanes should power down even without the override when
1452 * the port is disabled.
1453 */
1454 if (!override || mask == 0xf) {
1455 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1456 /*
1457 * If CH1 common lane is not active anymore
1458 * (eg. for pipe B DPLL) the entire channel will
1459 * shut down, which causes the common lane registers
1460 * to read as 0. That means we can't actually check
1461 * the lane power down status bits, but as the entire
1462 * register reads as 0 it's a good indication that the
1463 * channel is indeed entirely powered down.
1464 */
1465 if (ch == DPIO_CH1 && val == 0)
1466 expected = 0;
1467 } else if (mask != 0x0) {
1468 expected = DPIO_ANYDL_POWERDOWN;
1469 } else {
1470 expected = 0;
1471 }
1472
1473 if (ch == DPIO_CH0)
1474 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1475 else
1476 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1477 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1478
1479 WARN(actual != expected,
1480 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1481 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1482 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1483 reg, val);
1484 }
1485
1486 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1487 enum dpio_channel ch, bool override)
1488 {
1489 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1490 bool was_override;
1491
1492 mutex_lock(&power_domains->lock);
1493
1494 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1495
1496 if (override == was_override)
1497 goto out;
1498
1499 if (override)
1500 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1501 else
1502 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1503
1504 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1505
1506 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1507 phy, ch, dev_priv->chv_phy_control);
1508
1509 assert_chv_phy_status(dev_priv);
1510
1511 out:
1512 mutex_unlock(&power_domains->lock);
1513
1514 return was_override;
1515 }
1516
1517 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1518 bool override, unsigned int mask)
1519 {
1520 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1521 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1522 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1523 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1524
1525 mutex_lock(&power_domains->lock);
1526
1527 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1528 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1529
1530 if (override)
1531 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1532 else
1533 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1534
1535 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1536
1537 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1538 phy, ch, mask, dev_priv->chv_phy_control);
1539
1540 assert_chv_phy_status(dev_priv);
1541
1542 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1543
1544 mutex_unlock(&power_domains->lock);
1545 }
1546
1547 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1548 struct i915_power_well *power_well)
1549 {
1550 enum pipe pipe = power_well->data;
1551 bool enabled;
1552 u32 state, ctrl;
1553
1554 mutex_lock(&dev_priv->rps.hw_lock);
1555
1556 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1557 /*
1558 * We only ever set the power-on and power-gate states, anything
1559 * else is unexpected.
1560 */
1561 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1562 enabled = state == DP_SSS_PWR_ON(pipe);
1563
1564 /*
1565 * A transient state at this point would mean some unexpected party
1566 * is poking at the power controls too.
1567 */
1568 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1569 WARN_ON(ctrl << 16 != state);
1570
1571 mutex_unlock(&dev_priv->rps.hw_lock);
1572
1573 return enabled;
1574 }
1575
1576 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1577 struct i915_power_well *power_well,
1578 bool enable)
1579 {
1580 enum pipe pipe = power_well->data;
1581 u32 state;
1582 u32 ctrl;
1583
1584 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1585
1586 mutex_lock(&dev_priv->rps.hw_lock);
1587
1588 #define COND \
1589 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1590
1591 if (COND)
1592 goto out;
1593
1594 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1595 ctrl &= ~DP_SSC_MASK(pipe);
1596 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1597 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1598
1599 if (wait_for(COND, 100))
1600 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1601 state,
1602 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1603
1604 #undef COND
1605
1606 out:
1607 mutex_unlock(&dev_priv->rps.hw_lock);
1608 }
1609
1610 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1611 struct i915_power_well *power_well)
1612 {
1613 WARN_ON_ONCE(power_well->data != PIPE_A);
1614
1615 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1616 }
1617
1618 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1619 struct i915_power_well *power_well)
1620 {
1621 WARN_ON_ONCE(power_well->data != PIPE_A);
1622
1623 chv_set_pipe_power_well(dev_priv, power_well, true);
1624
1625 vlv_display_power_well_init(dev_priv);
1626 }
1627
1628 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1629 struct i915_power_well *power_well)
1630 {
1631 WARN_ON_ONCE(power_well->data != PIPE_A);
1632
1633 vlv_display_power_well_deinit(dev_priv);
1634
1635 chv_set_pipe_power_well(dev_priv, power_well, false);
1636 }
1637
1638 static void
1639 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1640 enum intel_display_power_domain domain)
1641 {
1642 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1643 struct i915_power_well *power_well;
1644 int i;
1645
1646 for_each_power_well(i, power_well, BIT(domain), power_domains)
1647 intel_power_well_get(dev_priv, power_well);
1648
1649 power_domains->domain_use_count[domain]++;
1650 }
1651
1652 /**
1653 * intel_display_power_get - grab a power domain reference
1654 * @dev_priv: i915 device instance
1655 * @domain: power domain to reference
1656 *
1657 * This function grabs a power domain reference for @domain and ensures that the
1658 * power domain and all its parents are powered up. Therefore users should only
1659 * grab a reference to the innermost power domain they need.
1660 *
1661 * Any power domain reference obtained by this function must have a symmetric
1662 * call to intel_display_power_put() to release the reference again.
1663 */
1664 void intel_display_power_get(struct drm_i915_private *dev_priv,
1665 enum intel_display_power_domain domain)
1666 {
1667 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1668
1669 intel_runtime_pm_get(dev_priv);
1670
1671 mutex_lock(&power_domains->lock);
1672
1673 __intel_display_power_get_domain(dev_priv, domain);
1674
1675 mutex_unlock(&power_domains->lock);
1676 }
1677
1678 /**
1679 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1680 * @dev_priv: i915 device instance
1681 * @domain: power domain to reference
1682 *
1683 * This function grabs a power domain reference for @domain and ensures that the
1684 * power domain and all its parents are powered up. Therefore users should only
1685 * grab a reference to the innermost power domain they need.
1686 *
1687 * Any power domain reference obtained by this function must have a symmetric
1688 * call to intel_display_power_put() to release the reference again.
1689 */
1690 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1691 enum intel_display_power_domain domain)
1692 {
1693 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1694 bool is_enabled;
1695
1696 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1697 return false;
1698
1699 mutex_lock(&power_domains->lock);
1700
1701 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1702 __intel_display_power_get_domain(dev_priv, domain);
1703 is_enabled = true;
1704 } else {
1705 is_enabled = false;
1706 }
1707
1708 mutex_unlock(&power_domains->lock);
1709
1710 if (!is_enabled)
1711 intel_runtime_pm_put(dev_priv);
1712
1713 return is_enabled;
1714 }
1715
1716 /**
1717 * intel_display_power_put - release a power domain reference
1718 * @dev_priv: i915 device instance
1719 * @domain: power domain to reference
1720 *
1721 * This function drops the power domain reference obtained by
1722 * intel_display_power_get() and might power down the corresponding hardware
1723 * block right away if this is the last reference.
1724 */
1725 void intel_display_power_put(struct drm_i915_private *dev_priv,
1726 enum intel_display_power_domain domain)
1727 {
1728 struct i915_power_domains *power_domains;
1729 struct i915_power_well *power_well;
1730 int i;
1731
1732 power_domains = &dev_priv->power_domains;
1733
1734 mutex_lock(&power_domains->lock);
1735
1736 WARN(!power_domains->domain_use_count[domain],
1737 "Use count on domain %s is already zero\n",
1738 intel_display_power_domain_str(domain));
1739 power_domains->domain_use_count[domain]--;
1740
1741 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1742 intel_power_well_put(dev_priv, power_well);
1743
1744 mutex_unlock(&power_domains->lock);
1745
1746 intel_runtime_pm_put(dev_priv);
1747 }
1748
1749 #define HSW_DISPLAY_POWER_DOMAINS ( \
1750 BIT(POWER_DOMAIN_PIPE_B) | \
1751 BIT(POWER_DOMAIN_PIPE_C) | \
1752 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1753 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1754 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1755 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1756 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1757 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1758 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1759 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1760 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1761 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1762 BIT(POWER_DOMAIN_VGA) | \
1763 BIT(POWER_DOMAIN_AUDIO) | \
1764 BIT(POWER_DOMAIN_INIT))
1765
1766 #define BDW_DISPLAY_POWER_DOMAINS ( \
1767 BIT(POWER_DOMAIN_PIPE_B) | \
1768 BIT(POWER_DOMAIN_PIPE_C) | \
1769 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1770 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1771 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1772 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1773 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1774 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1775 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1776 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1777 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1778 BIT(POWER_DOMAIN_VGA) | \
1779 BIT(POWER_DOMAIN_AUDIO) | \
1780 BIT(POWER_DOMAIN_INIT))
1781
1782 #define VLV_DISPLAY_POWER_DOMAINS ( \
1783 BIT(POWER_DOMAIN_PIPE_A) | \
1784 BIT(POWER_DOMAIN_PIPE_B) | \
1785 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1786 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1787 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1788 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1789 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1790 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1791 BIT(POWER_DOMAIN_PORT_DSI) | \
1792 BIT(POWER_DOMAIN_PORT_CRT) | \
1793 BIT(POWER_DOMAIN_VGA) | \
1794 BIT(POWER_DOMAIN_AUDIO) | \
1795 BIT(POWER_DOMAIN_AUX_B) | \
1796 BIT(POWER_DOMAIN_AUX_C) | \
1797 BIT(POWER_DOMAIN_GMBUS) | \
1798 BIT(POWER_DOMAIN_INIT))
1799
1800 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1801 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1802 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1803 BIT(POWER_DOMAIN_PORT_CRT) | \
1804 BIT(POWER_DOMAIN_AUX_B) | \
1805 BIT(POWER_DOMAIN_AUX_C) | \
1806 BIT(POWER_DOMAIN_INIT))
1807
1808 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1809 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1810 BIT(POWER_DOMAIN_AUX_B) | \
1811 BIT(POWER_DOMAIN_INIT))
1812
1813 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1814 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1815 BIT(POWER_DOMAIN_AUX_B) | \
1816 BIT(POWER_DOMAIN_INIT))
1817
1818 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1819 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1820 BIT(POWER_DOMAIN_AUX_C) | \
1821 BIT(POWER_DOMAIN_INIT))
1822
1823 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1824 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1825 BIT(POWER_DOMAIN_AUX_C) | \
1826 BIT(POWER_DOMAIN_INIT))
1827
1828 #define CHV_DISPLAY_POWER_DOMAINS ( \
1829 BIT(POWER_DOMAIN_PIPE_A) | \
1830 BIT(POWER_DOMAIN_PIPE_B) | \
1831 BIT(POWER_DOMAIN_PIPE_C) | \
1832 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1833 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1834 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1835 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1836 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1837 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1838 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1839 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1840 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1841 BIT(POWER_DOMAIN_PORT_DSI) | \
1842 BIT(POWER_DOMAIN_VGA) | \
1843 BIT(POWER_DOMAIN_AUDIO) | \
1844 BIT(POWER_DOMAIN_AUX_B) | \
1845 BIT(POWER_DOMAIN_AUX_C) | \
1846 BIT(POWER_DOMAIN_AUX_D) | \
1847 BIT(POWER_DOMAIN_GMBUS) | \
1848 BIT(POWER_DOMAIN_INIT))
1849
1850 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1851 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1852 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1853 BIT(POWER_DOMAIN_AUX_B) | \
1854 BIT(POWER_DOMAIN_AUX_C) | \
1855 BIT(POWER_DOMAIN_INIT))
1856
1857 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1858 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1859 BIT(POWER_DOMAIN_AUX_D) | \
1860 BIT(POWER_DOMAIN_INIT))
1861
1862 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1863 .sync_hw = i9xx_always_on_power_well_noop,
1864 .enable = i9xx_always_on_power_well_noop,
1865 .disable = i9xx_always_on_power_well_noop,
1866 .is_enabled = i9xx_always_on_power_well_enabled,
1867 };
1868
1869 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1870 .sync_hw = chv_pipe_power_well_sync_hw,
1871 .enable = chv_pipe_power_well_enable,
1872 .disable = chv_pipe_power_well_disable,
1873 .is_enabled = chv_pipe_power_well_enabled,
1874 };
1875
1876 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1877 .sync_hw = vlv_power_well_sync_hw,
1878 .enable = chv_dpio_cmn_power_well_enable,
1879 .disable = chv_dpio_cmn_power_well_disable,
1880 .is_enabled = vlv_power_well_enabled,
1881 };
1882
1883 static struct i915_power_well i9xx_always_on_power_well[] = {
1884 {
1885 .name = "always-on",
1886 .always_on = 1,
1887 .domains = POWER_DOMAIN_MASK,
1888 .ops = &i9xx_always_on_power_well_ops,
1889 },
1890 };
1891
1892 static const struct i915_power_well_ops hsw_power_well_ops = {
1893 .sync_hw = hsw_power_well_sync_hw,
1894 .enable = hsw_power_well_enable,
1895 .disable = hsw_power_well_disable,
1896 .is_enabled = hsw_power_well_enabled,
1897 };
1898
1899 static const struct i915_power_well_ops skl_power_well_ops = {
1900 .sync_hw = skl_power_well_sync_hw,
1901 .enable = skl_power_well_enable,
1902 .disable = skl_power_well_disable,
1903 .is_enabled = skl_power_well_enabled,
1904 };
1905
1906 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1907 .sync_hw = gen9_dc_off_power_well_sync_hw,
1908 .enable = gen9_dc_off_power_well_enable,
1909 .disable = gen9_dc_off_power_well_disable,
1910 .is_enabled = gen9_dc_off_power_well_enabled,
1911 };
1912
1913 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1914 .sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1915 .enable = bxt_dpio_cmn_power_well_enable,
1916 .disable = bxt_dpio_cmn_power_well_disable,
1917 .is_enabled = bxt_dpio_cmn_power_well_enabled,
1918 };
1919
1920 static struct i915_power_well hsw_power_wells[] = {
1921 {
1922 .name = "always-on",
1923 .always_on = 1,
1924 .domains = POWER_DOMAIN_MASK,
1925 .ops = &i9xx_always_on_power_well_ops,
1926 },
1927 {
1928 .name = "display",
1929 .domains = HSW_DISPLAY_POWER_DOMAINS,
1930 .ops = &hsw_power_well_ops,
1931 },
1932 };
1933
1934 static struct i915_power_well bdw_power_wells[] = {
1935 {
1936 .name = "always-on",
1937 .always_on = 1,
1938 .domains = POWER_DOMAIN_MASK,
1939 .ops = &i9xx_always_on_power_well_ops,
1940 },
1941 {
1942 .name = "display",
1943 .domains = BDW_DISPLAY_POWER_DOMAINS,
1944 .ops = &hsw_power_well_ops,
1945 },
1946 };
1947
1948 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1949 .sync_hw = vlv_power_well_sync_hw,
1950 .enable = vlv_display_power_well_enable,
1951 .disable = vlv_display_power_well_disable,
1952 .is_enabled = vlv_power_well_enabled,
1953 };
1954
1955 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1956 .sync_hw = vlv_power_well_sync_hw,
1957 .enable = vlv_dpio_cmn_power_well_enable,
1958 .disable = vlv_dpio_cmn_power_well_disable,
1959 .is_enabled = vlv_power_well_enabled,
1960 };
1961
1962 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1963 .sync_hw = vlv_power_well_sync_hw,
1964 .enable = vlv_power_well_enable,
1965 .disable = vlv_power_well_disable,
1966 .is_enabled = vlv_power_well_enabled,
1967 };
1968
1969 static struct i915_power_well vlv_power_wells[] = {
1970 {
1971 .name = "always-on",
1972 .always_on = 1,
1973 .domains = POWER_DOMAIN_MASK,
1974 .ops = &i9xx_always_on_power_well_ops,
1975 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1976 },
1977 {
1978 .name = "display",
1979 .domains = VLV_DISPLAY_POWER_DOMAINS,
1980 .data = PUNIT_POWER_WELL_DISP2D,
1981 .ops = &vlv_display_power_well_ops,
1982 },
1983 {
1984 .name = "dpio-tx-b-01",
1985 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1986 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1987 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1988 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1989 .ops = &vlv_dpio_power_well_ops,
1990 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1991 },
1992 {
1993 .name = "dpio-tx-b-23",
1994 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1995 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1996 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1997 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1998 .ops = &vlv_dpio_power_well_ops,
1999 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2000 },
2001 {
2002 .name = "dpio-tx-c-01",
2003 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2004 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2005 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2006 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2007 .ops = &vlv_dpio_power_well_ops,
2008 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2009 },
2010 {
2011 .name = "dpio-tx-c-23",
2012 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2013 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2014 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2015 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2016 .ops = &vlv_dpio_power_well_ops,
2017 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2018 },
2019 {
2020 .name = "dpio-common",
2021 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2022 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2023 .ops = &vlv_dpio_cmn_power_well_ops,
2024 },
2025 };
2026
2027 static struct i915_power_well chv_power_wells[] = {
2028 {
2029 .name = "always-on",
2030 .always_on = 1,
2031 .domains = POWER_DOMAIN_MASK,
2032 .ops = &i9xx_always_on_power_well_ops,
2033 },
2034 {
2035 .name = "display",
2036 /*
2037 * Pipe A power well is the new disp2d well. Pipe B and C
2038 * power wells don't actually exist. Pipe A power well is
2039 * required for any pipe to work.
2040 */
2041 .domains = CHV_DISPLAY_POWER_DOMAINS,
2042 .data = PIPE_A,
2043 .ops = &chv_pipe_power_well_ops,
2044 },
2045 {
2046 .name = "dpio-common-bc",
2047 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2048 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2049 .ops = &chv_dpio_cmn_power_well_ops,
2050 },
2051 {
2052 .name = "dpio-common-d",
2053 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2054 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
2055 .ops = &chv_dpio_cmn_power_well_ops,
2056 },
2057 };
2058
2059 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2060 int power_well_id)
2061 {
2062 struct i915_power_well *power_well;
2063 bool ret;
2064
2065 power_well = lookup_power_well(dev_priv, power_well_id);
2066 ret = power_well->ops->is_enabled(dev_priv, power_well);
2067
2068 return ret;
2069 }
2070
2071 static struct i915_power_well skl_power_wells[] = {
2072 {
2073 .name = "always-on",
2074 .always_on = 1,
2075 .domains = POWER_DOMAIN_MASK,
2076 .ops = &i9xx_always_on_power_well_ops,
2077 .data = SKL_DISP_PW_ALWAYS_ON,
2078 },
2079 {
2080 .name = "power well 1",
2081 /* Handled by the DMC firmware */
2082 .domains = 0,
2083 .ops = &skl_power_well_ops,
2084 .data = SKL_DISP_PW_1,
2085 },
2086 {
2087 .name = "MISC IO power well",
2088 /* Handled by the DMC firmware */
2089 .domains = 0,
2090 .ops = &skl_power_well_ops,
2091 .data = SKL_DISP_PW_MISC_IO,
2092 },
2093 {
2094 .name = "DC off",
2095 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2096 .ops = &gen9_dc_off_power_well_ops,
2097 .data = SKL_DISP_PW_DC_OFF,
2098 },
2099 {
2100 .name = "power well 2",
2101 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2102 .ops = &skl_power_well_ops,
2103 .data = SKL_DISP_PW_2,
2104 },
2105 {
2106 .name = "DDI A/E power well",
2107 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2108 .ops = &skl_power_well_ops,
2109 .data = SKL_DISP_PW_DDI_A_E,
2110 },
2111 {
2112 .name = "DDI B power well",
2113 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2114 .ops = &skl_power_well_ops,
2115 .data = SKL_DISP_PW_DDI_B,
2116 },
2117 {
2118 .name = "DDI C power well",
2119 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2120 .ops = &skl_power_well_ops,
2121 .data = SKL_DISP_PW_DDI_C,
2122 },
2123 {
2124 .name = "DDI D power well",
2125 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2126 .ops = &skl_power_well_ops,
2127 .data = SKL_DISP_PW_DDI_D,
2128 },
2129 };
2130
2131 static struct i915_power_well bxt_power_wells[] = {
2132 {
2133 .name = "always-on",
2134 .always_on = 1,
2135 .domains = POWER_DOMAIN_MASK,
2136 .ops = &i9xx_always_on_power_well_ops,
2137 },
2138 {
2139 .name = "power well 1",
2140 .domains = 0,
2141 .ops = &skl_power_well_ops,
2142 .data = SKL_DISP_PW_1,
2143 },
2144 {
2145 .name = "DC off",
2146 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2147 .ops = &gen9_dc_off_power_well_ops,
2148 .data = SKL_DISP_PW_DC_OFF,
2149 },
2150 {
2151 .name = "power well 2",
2152 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2153 .ops = &skl_power_well_ops,
2154 .data = SKL_DISP_PW_2,
2155 },
2156 {
2157 .name = "dpio-common-a",
2158 .domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2159 .ops = &bxt_dpio_cmn_power_well_ops,
2160 .data = BXT_DPIO_CMN_A,
2161 },
2162 {
2163 .name = "dpio-common-bc",
2164 .domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2165 .ops = &bxt_dpio_cmn_power_well_ops,
2166 .data = BXT_DPIO_CMN_BC,
2167 },
2168 };
2169
2170 static int
2171 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2172 int disable_power_well)
2173 {
2174 if (disable_power_well >= 0)
2175 return !!disable_power_well;
2176
2177 return 1;
2178 }
2179
2180 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2181 int enable_dc)
2182 {
2183 uint32_t mask;
2184 int requested_dc;
2185 int max_dc;
2186
2187 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2188 max_dc = 2;
2189 mask = 0;
2190 } else if (IS_BROXTON(dev_priv)) {
2191 max_dc = 1;
2192 /*
2193 * DC9 has a separate HW flow from the rest of the DC states,
2194 * not depending on the DMC firmware. It's needed by system
2195 * suspend/resume, so allow it unconditionally.
2196 */
2197 mask = DC_STATE_EN_DC9;
2198 } else {
2199 max_dc = 0;
2200 mask = 0;
2201 }
2202
2203 if (!i915.disable_power_well)
2204 max_dc = 0;
2205
2206 if (enable_dc >= 0 && enable_dc <= max_dc) {
2207 requested_dc = enable_dc;
2208 } else if (enable_dc == -1) {
2209 requested_dc = max_dc;
2210 } else if (enable_dc > max_dc && enable_dc <= 2) {
2211 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2212 enable_dc, max_dc);
2213 requested_dc = max_dc;
2214 } else {
2215 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2216 requested_dc = max_dc;
2217 }
2218
2219 if (requested_dc > 1)
2220 mask |= DC_STATE_EN_UPTO_DC6;
2221 if (requested_dc > 0)
2222 mask |= DC_STATE_EN_UPTO_DC5;
2223
2224 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2225
2226 return mask;
2227 }
2228
2229 #define set_power_wells(power_domains, __power_wells) ({ \
2230 (power_domains)->power_wells = (__power_wells); \
2231 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2232 })
2233
2234 /**
2235 * intel_power_domains_init - initializes the power domain structures
2236 * @dev_priv: i915 device instance
2237 *
2238 * Initializes the power domain structures for @dev_priv depending upon the
2239 * supported platform.
2240 */
2241 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2242 {
2243 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2244
2245 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2246 i915.disable_power_well);
2247 dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2248 i915.enable_dc);
2249
2250 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2251
2252 mutex_init(&power_domains->lock);
2253
2254 /*
2255 * The enabling order will be from lower to higher indexed wells,
2256 * the disabling order is reversed.
2257 */
2258 if (IS_HASWELL(dev_priv)) {
2259 set_power_wells(power_domains, hsw_power_wells);
2260 } else if (IS_BROADWELL(dev_priv)) {
2261 set_power_wells(power_domains, bdw_power_wells);
2262 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2263 set_power_wells(power_domains, skl_power_wells);
2264 } else if (IS_BROXTON(dev_priv)) {
2265 set_power_wells(power_domains, bxt_power_wells);
2266 } else if (IS_CHERRYVIEW(dev_priv)) {
2267 set_power_wells(power_domains, chv_power_wells);
2268 } else if (IS_VALLEYVIEW(dev_priv)) {
2269 set_power_wells(power_domains, vlv_power_wells);
2270 } else {
2271 set_power_wells(power_domains, i9xx_always_on_power_well);
2272 }
2273
2274 return 0;
2275 }
2276
2277 /**
2278 * intel_power_domains_fini - finalizes the power domain structures
2279 * @dev_priv: i915 device instance
2280 *
2281 * Finalizes the power domain structures for @dev_priv depending upon the
2282 * supported platform. This function also disables runtime pm and ensures that
2283 * the device stays powered up so that the driver can be reloaded.
2284 */
2285 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2286 {
2287 struct device *device = &dev_priv->drm.pdev->dev;
2288
2289 /*
2290 * The i915.ko module is still not prepared to be loaded when
2291 * the power well is not enabled, so just enable it in case
2292 * we're going to unload/reload.
2293 * The following also reacquires the RPM reference the core passed
2294 * to the driver during loading, which is dropped in
2295 * intel_runtime_pm_enable(). We have to hand back the control of the
2296 * device to the core with this reference held.
2297 */
2298 intel_display_set_init_power(dev_priv, true);
2299
2300 /* Remove the refcount we took to keep power well support disabled. */
2301 if (!i915.disable_power_well)
2302 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2303
2304 /*
2305 * Remove the refcount we took in intel_runtime_pm_enable() in case
2306 * the platform doesn't support runtime PM.
2307 */
2308 if (!HAS_RUNTIME_PM(dev_priv))
2309 pm_runtime_put(device);
2310 }
2311
2312 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2313 {
2314 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2315 struct i915_power_well *power_well;
2316 int i;
2317
2318 mutex_lock(&power_domains->lock);
2319 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2320 power_well->ops->sync_hw(dev_priv, power_well);
2321 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2322 power_well);
2323 }
2324 mutex_unlock(&power_domains->lock);
2325 }
2326
2327 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2328 {
2329 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2330 POSTING_READ(DBUF_CTL);
2331
2332 udelay(10);
2333
2334 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2335 DRM_ERROR("DBuf power enable timeout\n");
2336 }
2337
2338 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2339 {
2340 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2341 POSTING_READ(DBUF_CTL);
2342
2343 udelay(10);
2344
2345 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2346 DRM_ERROR("DBuf power disable timeout!\n");
2347 }
2348
2349 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2350 bool resume)
2351 {
2352 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2353 struct i915_power_well *well;
2354 uint32_t val;
2355
2356 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2357
2358 /* enable PCH reset handshake */
2359 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2360 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2361
2362 /* enable PG1 and Misc I/O */
2363 mutex_lock(&power_domains->lock);
2364
2365 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2366 intel_power_well_enable(dev_priv, well);
2367
2368 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2369 intel_power_well_enable(dev_priv, well);
2370
2371 mutex_unlock(&power_domains->lock);
2372
2373 skl_init_cdclk(dev_priv);
2374
2375 gen9_dbuf_enable(dev_priv);
2376
2377 if (resume && dev_priv->csr.dmc_payload)
2378 intel_csr_load_program(dev_priv);
2379 }
2380
2381 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2382 {
2383 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2384 struct i915_power_well *well;
2385
2386 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2387
2388 gen9_dbuf_disable(dev_priv);
2389
2390 skl_uninit_cdclk(dev_priv);
2391
2392 /* The spec doesn't call for removing the reset handshake flag */
2393 /* disable PG1 and Misc I/O */
2394
2395 mutex_lock(&power_domains->lock);
2396
2397 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2398 intel_power_well_disable(dev_priv, well);
2399
2400 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2401 intel_power_well_disable(dev_priv, well);
2402
2403 mutex_unlock(&power_domains->lock);
2404 }
2405
2406 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2407 bool resume)
2408 {
2409 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2410 struct i915_power_well *well;
2411 uint32_t val;
2412
2413 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2414
2415 /*
2416 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2417 * or else the reset will hang because there is no PCH to respond.
2418 * Move the handshake programming to initialization sequence.
2419 * Previously was left up to BIOS.
2420 */
2421 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2422 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2423 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2424
2425 /* Enable PG1 */
2426 mutex_lock(&power_domains->lock);
2427
2428 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2429 intel_power_well_enable(dev_priv, well);
2430
2431 mutex_unlock(&power_domains->lock);
2432
2433 bxt_init_cdclk(dev_priv);
2434
2435 gen9_dbuf_enable(dev_priv);
2436
2437 if (resume && dev_priv->csr.dmc_payload)
2438 intel_csr_load_program(dev_priv);
2439 }
2440
2441 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2442 {
2443 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2444 struct i915_power_well *well;
2445
2446 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2447
2448 gen9_dbuf_disable(dev_priv);
2449
2450 bxt_uninit_cdclk(dev_priv);
2451
2452 /* The spec doesn't call for removing the reset handshake flag */
2453
2454 /* Disable PG1 */
2455 mutex_lock(&power_domains->lock);
2456
2457 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2458 intel_power_well_disable(dev_priv, well);
2459
2460 mutex_unlock(&power_domains->lock);
2461 }
2462
2463 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2464 {
2465 struct i915_power_well *cmn_bc =
2466 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2467 struct i915_power_well *cmn_d =
2468 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2469
2470 /*
2471 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2472 * workaround never ever read DISPLAY_PHY_CONTROL, and
2473 * instead maintain a shadow copy ourselves. Use the actual
2474 * power well state and lane status to reconstruct the
2475 * expected initial value.
2476 */
2477 dev_priv->chv_phy_control =
2478 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2479 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2480 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2481 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2482 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2483
2484 /*
2485 * If all lanes are disabled we leave the override disabled
2486 * with all power down bits cleared to match the state we
2487 * would use after disabling the port. Otherwise enable the
2488 * override and set the lane powerdown bits accding to the
2489 * current lane status.
2490 */
2491 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2492 uint32_t status = I915_READ(DPLL(PIPE_A));
2493 unsigned int mask;
2494
2495 mask = status & DPLL_PORTB_READY_MASK;
2496 if (mask == 0xf)
2497 mask = 0x0;
2498 else
2499 dev_priv->chv_phy_control |=
2500 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2501
2502 dev_priv->chv_phy_control |=
2503 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2504
2505 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2506 if (mask == 0xf)
2507 mask = 0x0;
2508 else
2509 dev_priv->chv_phy_control |=
2510 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2511
2512 dev_priv->chv_phy_control |=
2513 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2514
2515 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2516
2517 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2518 } else {
2519 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2520 }
2521
2522 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2523 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2524 unsigned int mask;
2525
2526 mask = status & DPLL_PORTD_READY_MASK;
2527
2528 if (mask == 0xf)
2529 mask = 0x0;
2530 else
2531 dev_priv->chv_phy_control |=
2532 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2533
2534 dev_priv->chv_phy_control |=
2535 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2536
2537 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2538
2539 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2540 } else {
2541 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2542 }
2543
2544 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2545
2546 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2547 dev_priv->chv_phy_control);
2548 }
2549
2550 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2551 {
2552 struct i915_power_well *cmn =
2553 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2554 struct i915_power_well *disp2d =
2555 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2556
2557 /* If the display might be already active skip this */
2558 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2559 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2560 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2561 return;
2562
2563 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2564
2565 /* cmnlane needs DPLL registers */
2566 disp2d->ops->enable(dev_priv, disp2d);
2567
2568 /*
2569 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2570 * Need to assert and de-assert PHY SB reset by gating the
2571 * common lane power, then un-gating it.
2572 * Simply ungating isn't enough to reset the PHY enough to get
2573 * ports and lanes running.
2574 */
2575 cmn->ops->disable(dev_priv, cmn);
2576 }
2577
2578 /**
2579 * intel_power_domains_init_hw - initialize hardware power domain state
2580 * @dev_priv: i915 device instance
2581 * @resume: Called from resume code paths or not
2582 *
2583 * This function initializes the hardware power domain state and enables all
2584 * power domains using intel_display_set_init_power().
2585 */
2586 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2587 {
2588 struct drm_device *dev = &dev_priv->drm;
2589 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2590
2591 power_domains->initializing = true;
2592
2593 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2594 skl_display_core_init(dev_priv, resume);
2595 } else if (IS_BROXTON(dev)) {
2596 bxt_display_core_init(dev_priv, resume);
2597 } else if (IS_CHERRYVIEW(dev)) {
2598 mutex_lock(&power_domains->lock);
2599 chv_phy_control_init(dev_priv);
2600 mutex_unlock(&power_domains->lock);
2601 } else if (IS_VALLEYVIEW(dev)) {
2602 mutex_lock(&power_domains->lock);
2603 vlv_cmnlane_wa(dev_priv);
2604 mutex_unlock(&power_domains->lock);
2605 }
2606
2607 /* For now, we need the power well to be always enabled. */
2608 intel_display_set_init_power(dev_priv, true);
2609 /* Disable power support if the user asked so. */
2610 if (!i915.disable_power_well)
2611 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2612 intel_power_domains_sync_hw(dev_priv);
2613 power_domains->initializing = false;
2614 }
2615
2616 /**
2617 * intel_power_domains_suspend - suspend power domain state
2618 * @dev_priv: i915 device instance
2619 *
2620 * This function prepares the hardware power domain state before entering
2621 * system suspend. It must be paired with intel_power_domains_init_hw().
2622 */
2623 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2624 {
2625 /*
2626 * Even if power well support was disabled we still want to disable
2627 * power wells while we are system suspended.
2628 */
2629 if (!i915.disable_power_well)
2630 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2631
2632 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2633 skl_display_core_uninit(dev_priv);
2634 else if (IS_BROXTON(dev_priv))
2635 bxt_display_core_uninit(dev_priv);
2636 }
2637
2638 /**
2639 * intel_runtime_pm_get - grab a runtime pm reference
2640 * @dev_priv: i915 device instance
2641 *
2642 * This function grabs a device-level runtime pm reference (mostly used for GEM
2643 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2644 *
2645 * Any runtime pm reference obtained by this function must have a symmetric
2646 * call to intel_runtime_pm_put() to release the reference again.
2647 */
2648 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2649 {
2650 struct drm_device *dev = &dev_priv->drm;
2651 struct device *device = &dev->pdev->dev;
2652
2653 pm_runtime_get_sync(device);
2654
2655 atomic_inc(&dev_priv->pm.wakeref_count);
2656 assert_rpm_wakelock_held(dev_priv);
2657 }
2658
2659 /**
2660 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2661 * @dev_priv: i915 device instance
2662 *
2663 * This function grabs a device-level runtime pm reference if the device is
2664 * already in use and ensures that it is powered up.
2665 *
2666 * Any runtime pm reference obtained by this function must have a symmetric
2667 * call to intel_runtime_pm_put() to release the reference again.
2668 */
2669 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2670 {
2671 struct drm_device *dev = &dev_priv->drm;
2672 struct device *device = &dev->pdev->dev;
2673
2674 if (IS_ENABLED(CONFIG_PM)) {
2675 int ret = pm_runtime_get_if_in_use(device);
2676
2677 /*
2678 * In cases runtime PM is disabled by the RPM core and we get
2679 * an -EINVAL return value we are not supposed to call this
2680 * function, since the power state is undefined. This applies
2681 * atm to the late/early system suspend/resume handlers.
2682 */
2683 WARN_ON_ONCE(ret < 0);
2684 if (ret <= 0)
2685 return false;
2686 }
2687
2688 atomic_inc(&dev_priv->pm.wakeref_count);
2689 assert_rpm_wakelock_held(dev_priv);
2690
2691 return true;
2692 }
2693
2694 /**
2695 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2696 * @dev_priv: i915 device instance
2697 *
2698 * This function grabs a device-level runtime pm reference (mostly used for GEM
2699 * code to ensure the GTT or GT is on).
2700 *
2701 * It will _not_ power up the device but instead only check that it's powered
2702 * on. Therefore it is only valid to call this functions from contexts where
2703 * the device is known to be powered up and where trying to power it up would
2704 * result in hilarity and deadlocks. That pretty much means only the system
2705 * suspend/resume code where this is used to grab runtime pm references for
2706 * delayed setup down in work items.
2707 *
2708 * Any runtime pm reference obtained by this function must have a symmetric
2709 * call to intel_runtime_pm_put() to release the reference again.
2710 */
2711 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2712 {
2713 struct drm_device *dev = &dev_priv->drm;
2714 struct device *device = &dev->pdev->dev;
2715
2716 assert_rpm_wakelock_held(dev_priv);
2717 pm_runtime_get_noresume(device);
2718
2719 atomic_inc(&dev_priv->pm.wakeref_count);
2720 }
2721
2722 /**
2723 * intel_runtime_pm_put - release a runtime pm reference
2724 * @dev_priv: i915 device instance
2725 *
2726 * This function drops the device-level runtime pm reference obtained by
2727 * intel_runtime_pm_get() and might power down the corresponding
2728 * hardware block right away if this is the last reference.
2729 */
2730 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2731 {
2732 struct drm_device *dev = &dev_priv->drm;
2733 struct device *device = &dev->pdev->dev;
2734
2735 assert_rpm_wakelock_held(dev_priv);
2736 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2737 atomic_inc(&dev_priv->pm.atomic_seq);
2738
2739 pm_runtime_mark_last_busy(device);
2740 pm_runtime_put_autosuspend(device);
2741 }
2742
2743 /**
2744 * intel_runtime_pm_enable - enable runtime pm
2745 * @dev_priv: i915 device instance
2746 *
2747 * This function enables runtime pm at the end of the driver load sequence.
2748 *
2749 * Note that this function does currently not enable runtime pm for the
2750 * subordinate display power domains. That is only done on the first modeset
2751 * using intel_display_set_init_power().
2752 */
2753 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2754 {
2755 struct drm_device *dev = &dev_priv->drm;
2756 struct device *device = &dev->pdev->dev;
2757
2758 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2759 pm_runtime_mark_last_busy(device);
2760
2761 /*
2762 * Take a permanent reference to disable the RPM functionality and drop
2763 * it only when unloading the driver. Use the low level get/put helpers,
2764 * so the driver's own RPM reference tracking asserts also work on
2765 * platforms without RPM support.
2766 */
2767 if (!HAS_RUNTIME_PM(dev)) {
2768 pm_runtime_dont_use_autosuspend(device);
2769 pm_runtime_get_sync(device);
2770 } else {
2771 pm_runtime_use_autosuspend(device);
2772 }
2773
2774 /*
2775 * The core calls the driver load handler with an RPM reference held.
2776 * We drop that here and will reacquire it during unloading in
2777 * intel_power_domains_fini().
2778 */
2779 pm_runtime_put_autosuspend(device);
2780 }
2781
This page took 0.130061 seconds and 5 git commands to generate.