vfio/pci: Fix typos in comments
[deliverable/linux.git] / drivers / gpu / drm / rockchip / rockchip_drm_vop.c
1 /*
2 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
3 * Author:Mark Yao <mark.yao@rock-chips.com>
4 *
5 * This software is licensed under the terms of the GNU General Public
6 * License version 2, as published by the Free Software Foundation, and
7 * may be copied, distributed, and modified under those terms.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <drm/drm.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_plane_helper.h>
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/component.h>
30
31 #include <linux/reset.h>
32 #include <linux/delay.h>
33
34 #include "rockchip_drm_drv.h"
35 #include "rockchip_drm_gem.h"
36 #include "rockchip_drm_fb.h"
37 #include "rockchip_drm_vop.h"
38
39 #define __REG_SET_RELAXED(x, off, mask, shift, v) \
40 vop_mask_write_relaxed(x, off, (mask) << shift, (v) << shift)
41 #define __REG_SET_NORMAL(x, off, mask, shift, v) \
42 vop_mask_write(x, off, (mask) << shift, (v) << shift)
43
44 #define REG_SET(x, base, reg, v, mode) \
45 __REG_SET_##mode(x, base + reg.offset, reg.mask, reg.shift, v)
46 #define REG_SET_MASK(x, base, reg, mask, v, mode) \
47 __REG_SET_##mode(x, base + reg.offset, mask, reg.shift, v)
48
49 #define VOP_WIN_SET(x, win, name, v) \
50 REG_SET(x, win->base, win->phy->name, v, RELAXED)
51 #define VOP_SCL_SET(x, win, name, v) \
52 REG_SET(x, win->base, win->phy->scl->name, v, RELAXED)
53 #define VOP_SCL_SET_EXT(x, win, name, v) \
54 REG_SET(x, win->base, win->phy->scl->ext->name, v, RELAXED)
55 #define VOP_CTRL_SET(x, name, v) \
56 REG_SET(x, 0, (x)->data->ctrl->name, v, NORMAL)
57
58 #define VOP_INTR_GET(vop, name) \
59 vop_read_reg(vop, 0, &vop->data->ctrl->name)
60
61 #define VOP_INTR_SET(vop, name, mask, v) \
62 REG_SET_MASK(vop, 0, vop->data->intr->name, mask, v, NORMAL)
63 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
64 do { \
65 int i, reg = 0, mask = 0; \
66 for (i = 0; i < vop->data->intr->nintrs; i++) { \
67 if (vop->data->intr->intrs[i] & type) { \
68 reg |= (v) << i; \
69 mask |= 1 << i; \
70 } \
71 } \
72 VOP_INTR_SET(vop, name, mask, reg); \
73 } while (0)
74 #define VOP_INTR_GET_TYPE(vop, name, type) \
75 vop_get_intr_type(vop, &vop->data->intr->name, type)
76
77 #define VOP_WIN_GET(x, win, name) \
78 vop_read_reg(x, win->base, &win->phy->name)
79
80 #define VOP_WIN_GET_YRGBADDR(vop, win) \
81 vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
82
83 #define to_vop(x) container_of(x, struct vop, crtc)
84 #define to_vop_win(x) container_of(x, struct vop_win, base)
85 #define to_vop_plane_state(x) container_of(x, struct vop_plane_state, base)
86
87 struct vop_plane_state {
88 struct drm_plane_state base;
89 int format;
90 struct drm_rect src;
91 struct drm_rect dest;
92 dma_addr_t yrgb_mst;
93 bool enable;
94 };
95
96 struct vop_win {
97 struct drm_plane base;
98 const struct vop_win_data *data;
99 struct vop *vop;
100
101 /* protected by dev->event_lock */
102 bool enable;
103 dma_addr_t yrgb_mst;
104 };
105
106 struct vop {
107 struct drm_crtc crtc;
108 struct device *dev;
109 struct drm_device *drm_dev;
110 bool is_enabled;
111
112 /* mutex vsync_ work */
113 struct mutex vsync_mutex;
114 bool vsync_work_pending;
115 struct completion dsp_hold_completion;
116 struct completion wait_update_complete;
117
118 /* protected by dev->event_lock */
119 struct drm_pending_vblank_event *event;
120
121 const struct vop_data *data;
122
123 uint32_t *regsbak;
124 void __iomem *regs;
125
126 /* physical map length of vop register */
127 uint32_t len;
128
129 /* one time only one process allowed to config the register */
130 spinlock_t reg_lock;
131 /* lock vop irq reg */
132 spinlock_t irq_lock;
133
134 unsigned int irq;
135
136 /* vop AHP clk */
137 struct clk *hclk;
138 /* vop dclk */
139 struct clk *dclk;
140 /* vop share memory frequency */
141 struct clk *aclk;
142
143 /* vop dclk reset */
144 struct reset_control *dclk_rst;
145
146 struct vop_win win[];
147 };
148
149 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
150 {
151 writel(v, vop->regs + offset);
152 vop->regsbak[offset >> 2] = v;
153 }
154
155 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
156 {
157 return readl(vop->regs + offset);
158 }
159
160 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
161 const struct vop_reg *reg)
162 {
163 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
164 }
165
166 static inline void vop_mask_write(struct vop *vop, uint32_t offset,
167 uint32_t mask, uint32_t v)
168 {
169 if (mask) {
170 uint32_t cached_val = vop->regsbak[offset >> 2];
171
172 cached_val = (cached_val & ~mask) | v;
173 writel(cached_val, vop->regs + offset);
174 vop->regsbak[offset >> 2] = cached_val;
175 }
176 }
177
178 static inline void vop_mask_write_relaxed(struct vop *vop, uint32_t offset,
179 uint32_t mask, uint32_t v)
180 {
181 if (mask) {
182 uint32_t cached_val = vop->regsbak[offset >> 2];
183
184 cached_val = (cached_val & ~mask) | v;
185 writel_relaxed(cached_val, vop->regs + offset);
186 vop->regsbak[offset >> 2] = cached_val;
187 }
188 }
189
190 static inline uint32_t vop_get_intr_type(struct vop *vop,
191 const struct vop_reg *reg, int type)
192 {
193 uint32_t i, ret = 0;
194 uint32_t regs = vop_read_reg(vop, 0, reg);
195
196 for (i = 0; i < vop->data->intr->nintrs; i++) {
197 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
198 ret |= vop->data->intr->intrs[i];
199 }
200
201 return ret;
202 }
203
204 static inline void vop_cfg_done(struct vop *vop)
205 {
206 VOP_CTRL_SET(vop, cfg_done, 1);
207 }
208
209 static bool has_rb_swapped(uint32_t format)
210 {
211 switch (format) {
212 case DRM_FORMAT_XBGR8888:
213 case DRM_FORMAT_ABGR8888:
214 case DRM_FORMAT_BGR888:
215 case DRM_FORMAT_BGR565:
216 return true;
217 default:
218 return false;
219 }
220 }
221
222 static enum vop_data_format vop_convert_format(uint32_t format)
223 {
224 switch (format) {
225 case DRM_FORMAT_XRGB8888:
226 case DRM_FORMAT_ARGB8888:
227 case DRM_FORMAT_XBGR8888:
228 case DRM_FORMAT_ABGR8888:
229 return VOP_FMT_ARGB8888;
230 case DRM_FORMAT_RGB888:
231 case DRM_FORMAT_BGR888:
232 return VOP_FMT_RGB888;
233 case DRM_FORMAT_RGB565:
234 case DRM_FORMAT_BGR565:
235 return VOP_FMT_RGB565;
236 case DRM_FORMAT_NV12:
237 return VOP_FMT_YUV420SP;
238 case DRM_FORMAT_NV16:
239 return VOP_FMT_YUV422SP;
240 case DRM_FORMAT_NV24:
241 return VOP_FMT_YUV444SP;
242 default:
243 DRM_ERROR("unsupport format[%08x]\n", format);
244 return -EINVAL;
245 }
246 }
247
248 static bool is_yuv_support(uint32_t format)
249 {
250 switch (format) {
251 case DRM_FORMAT_NV12:
252 case DRM_FORMAT_NV16:
253 case DRM_FORMAT_NV24:
254 return true;
255 default:
256 return false;
257 }
258 }
259
260 static bool is_alpha_support(uint32_t format)
261 {
262 switch (format) {
263 case DRM_FORMAT_ARGB8888:
264 case DRM_FORMAT_ABGR8888:
265 return true;
266 default:
267 return false;
268 }
269 }
270
271 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
272 uint32_t dst, bool is_horizontal,
273 int vsu_mode, int *vskiplines)
274 {
275 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
276
277 if (is_horizontal) {
278 if (mode == SCALE_UP)
279 val = GET_SCL_FT_BIC(src, dst);
280 else if (mode == SCALE_DOWN)
281 val = GET_SCL_FT_BILI_DN(src, dst);
282 } else {
283 if (mode == SCALE_UP) {
284 if (vsu_mode == SCALE_UP_BIL)
285 val = GET_SCL_FT_BILI_UP(src, dst);
286 else
287 val = GET_SCL_FT_BIC(src, dst);
288 } else if (mode == SCALE_DOWN) {
289 if (vskiplines) {
290 *vskiplines = scl_get_vskiplines(src, dst);
291 val = scl_get_bili_dn_vskip(src, dst,
292 *vskiplines);
293 } else {
294 val = GET_SCL_FT_BILI_DN(src, dst);
295 }
296 }
297 }
298
299 return val;
300 }
301
302 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
303 uint32_t src_w, uint32_t src_h, uint32_t dst_w,
304 uint32_t dst_h, uint32_t pixel_format)
305 {
306 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
307 uint16_t cbcr_hor_scl_mode = SCALE_NONE;
308 uint16_t cbcr_ver_scl_mode = SCALE_NONE;
309 int hsub = drm_format_horz_chroma_subsampling(pixel_format);
310 int vsub = drm_format_vert_chroma_subsampling(pixel_format);
311 bool is_yuv = is_yuv_support(pixel_format);
312 uint16_t cbcr_src_w = src_w / hsub;
313 uint16_t cbcr_src_h = src_h / vsub;
314 uint16_t vsu_mode;
315 uint16_t lb_mode;
316 uint32_t val;
317 int vskiplines = 0;
318
319 if (dst_w > 3840) {
320 DRM_ERROR("Maximum destination width (3840) exceeded\n");
321 return;
322 }
323
324 if (!win->phy->scl->ext) {
325 VOP_SCL_SET(vop, win, scale_yrgb_x,
326 scl_cal_scale2(src_w, dst_w));
327 VOP_SCL_SET(vop, win, scale_yrgb_y,
328 scl_cal_scale2(src_h, dst_h));
329 if (is_yuv) {
330 VOP_SCL_SET(vop, win, scale_cbcr_x,
331 scl_cal_scale2(cbcr_src_w, dst_w));
332 VOP_SCL_SET(vop, win, scale_cbcr_y,
333 scl_cal_scale2(cbcr_src_h, dst_h));
334 }
335 return;
336 }
337
338 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
339 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
340
341 if (is_yuv) {
342 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
343 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
344 if (cbcr_hor_scl_mode == SCALE_DOWN)
345 lb_mode = scl_vop_cal_lb_mode(dst_w, true);
346 else
347 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
348 } else {
349 if (yrgb_hor_scl_mode == SCALE_DOWN)
350 lb_mode = scl_vop_cal_lb_mode(dst_w, false);
351 else
352 lb_mode = scl_vop_cal_lb_mode(src_w, false);
353 }
354
355 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
356 if (lb_mode == LB_RGB_3840X2) {
357 if (yrgb_ver_scl_mode != SCALE_NONE) {
358 DRM_ERROR("ERROR : not allow yrgb ver scale\n");
359 return;
360 }
361 if (cbcr_ver_scl_mode != SCALE_NONE) {
362 DRM_ERROR("ERROR : not allow cbcr ver scale\n");
363 return;
364 }
365 vsu_mode = SCALE_UP_BIL;
366 } else if (lb_mode == LB_RGB_2560X4) {
367 vsu_mode = SCALE_UP_BIL;
368 } else {
369 vsu_mode = SCALE_UP_BIC;
370 }
371
372 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
373 true, 0, NULL);
374 VOP_SCL_SET(vop, win, scale_yrgb_x, val);
375 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
376 false, vsu_mode, &vskiplines);
377 VOP_SCL_SET(vop, win, scale_yrgb_y, val);
378
379 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
380 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
381
382 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
383 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
384 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
385 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
386 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
387 if (is_yuv) {
388 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
389 dst_w, true, 0, NULL);
390 VOP_SCL_SET(vop, win, scale_cbcr_x, val);
391 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
392 dst_h, false, vsu_mode, &vskiplines);
393 VOP_SCL_SET(vop, win, scale_cbcr_y, val);
394
395 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
396 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
397 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
398 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
399 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
400 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
401 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
402 }
403 }
404
405 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
406 {
407 unsigned long flags;
408
409 if (WARN_ON(!vop->is_enabled))
410 return;
411
412 spin_lock_irqsave(&vop->irq_lock, flags);
413
414 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
415
416 spin_unlock_irqrestore(&vop->irq_lock, flags);
417 }
418
419 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
420 {
421 unsigned long flags;
422
423 if (WARN_ON(!vop->is_enabled))
424 return;
425
426 spin_lock_irqsave(&vop->irq_lock, flags);
427
428 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
429
430 spin_unlock_irqrestore(&vop->irq_lock, flags);
431 }
432
433 static void vop_enable(struct drm_crtc *crtc)
434 {
435 struct vop *vop = to_vop(crtc);
436 int ret;
437
438 ret = pm_runtime_get_sync(vop->dev);
439 if (ret < 0) {
440 dev_err(vop->dev, "failed to get pm runtime: %d\n", ret);
441 return;
442 }
443
444 ret = clk_enable(vop->hclk);
445 if (ret < 0) {
446 dev_err(vop->dev, "failed to enable hclk - %d\n", ret);
447 return;
448 }
449
450 ret = clk_enable(vop->dclk);
451 if (ret < 0) {
452 dev_err(vop->dev, "failed to enable dclk - %d\n", ret);
453 goto err_disable_hclk;
454 }
455
456 ret = clk_enable(vop->aclk);
457 if (ret < 0) {
458 dev_err(vop->dev, "failed to enable aclk - %d\n", ret);
459 goto err_disable_dclk;
460 }
461
462 /*
463 * Slave iommu shares power, irq and clock with vop. It was associated
464 * automatically with this master device via common driver code.
465 * Now that we have enabled the clock we attach it to the shared drm
466 * mapping.
467 */
468 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
469 if (ret) {
470 dev_err(vop->dev, "failed to attach dma mapping, %d\n", ret);
471 goto err_disable_aclk;
472 }
473
474 memcpy(vop->regs, vop->regsbak, vop->len);
475 /*
476 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
477 */
478 vop->is_enabled = true;
479
480 spin_lock(&vop->reg_lock);
481
482 VOP_CTRL_SET(vop, standby, 0);
483
484 spin_unlock(&vop->reg_lock);
485
486 enable_irq(vop->irq);
487
488 drm_crtc_vblank_on(crtc);
489
490 return;
491
492 err_disable_aclk:
493 clk_disable(vop->aclk);
494 err_disable_dclk:
495 clk_disable(vop->dclk);
496 err_disable_hclk:
497 clk_disable(vop->hclk);
498 }
499
500 static void vop_crtc_disable(struct drm_crtc *crtc)
501 {
502 struct vop *vop = to_vop(crtc);
503 int i;
504
505 WARN_ON(vop->event);
506
507 /*
508 * We need to make sure that all windows are disabled before we
509 * disable that crtc. Otherwise we might try to scan from a destroyed
510 * buffer later.
511 */
512 for (i = 0; i < vop->data->win_size; i++) {
513 struct vop_win *vop_win = &vop->win[i];
514 const struct vop_win_data *win = vop_win->data;
515
516 spin_lock(&vop->reg_lock);
517 VOP_WIN_SET(vop, win, enable, 0);
518 spin_unlock(&vop->reg_lock);
519 }
520
521 drm_crtc_vblank_off(crtc);
522
523 /*
524 * Vop standby will take effect at end of current frame,
525 * if dsp hold valid irq happen, it means standby complete.
526 *
527 * we must wait standby complete when we want to disable aclk,
528 * if not, memory bus maybe dead.
529 */
530 reinit_completion(&vop->dsp_hold_completion);
531 vop_dsp_hold_valid_irq_enable(vop);
532
533 spin_lock(&vop->reg_lock);
534
535 VOP_CTRL_SET(vop, standby, 1);
536
537 spin_unlock(&vop->reg_lock);
538
539 wait_for_completion(&vop->dsp_hold_completion);
540
541 vop_dsp_hold_valid_irq_disable(vop);
542
543 disable_irq(vop->irq);
544
545 vop->is_enabled = false;
546
547 /*
548 * vop standby complete, so iommu detach is safe.
549 */
550 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
551
552 clk_disable(vop->dclk);
553 clk_disable(vop->aclk);
554 clk_disable(vop->hclk);
555 pm_runtime_put(vop->dev);
556
557 if (crtc->state->event && !crtc->state->active) {
558 spin_lock_irq(&crtc->dev->event_lock);
559 drm_crtc_send_vblank_event(crtc, crtc->state->event);
560 spin_unlock_irq(&crtc->dev->event_lock);
561
562 crtc->state->event = NULL;
563 }
564 }
565
566 static void vop_plane_destroy(struct drm_plane *plane)
567 {
568 drm_plane_cleanup(plane);
569 }
570
571 static int vop_plane_prepare_fb(struct drm_plane *plane,
572 const struct drm_plane_state *new_state)
573 {
574 if (plane->state->fb)
575 drm_framebuffer_reference(plane->state->fb);
576
577 return 0;
578 }
579
580 static void vop_plane_cleanup_fb(struct drm_plane *plane,
581 const struct drm_plane_state *old_state)
582 {
583 if (old_state->fb)
584 drm_framebuffer_unreference(old_state->fb);
585 }
586
587 static int vop_plane_atomic_check(struct drm_plane *plane,
588 struct drm_plane_state *state)
589 {
590 struct drm_crtc *crtc = state->crtc;
591 struct drm_crtc_state *crtc_state;
592 struct drm_framebuffer *fb = state->fb;
593 struct vop_win *vop_win = to_vop_win(plane);
594 struct vop_plane_state *vop_plane_state = to_vop_plane_state(state);
595 const struct vop_win_data *win = vop_win->data;
596 bool visible;
597 int ret;
598 struct drm_rect *dest = &vop_plane_state->dest;
599 struct drm_rect *src = &vop_plane_state->src;
600 struct drm_rect clip;
601 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
602 DRM_PLANE_HELPER_NO_SCALING;
603 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
604 DRM_PLANE_HELPER_NO_SCALING;
605
606 if (!crtc || !fb)
607 goto out_disable;
608
609 crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
610 if (WARN_ON(!crtc_state))
611 return -EINVAL;
612
613 src->x1 = state->src_x;
614 src->y1 = state->src_y;
615 src->x2 = state->src_x + state->src_w;
616 src->y2 = state->src_y + state->src_h;
617 dest->x1 = state->crtc_x;
618 dest->y1 = state->crtc_y;
619 dest->x2 = state->crtc_x + state->crtc_w;
620 dest->y2 = state->crtc_y + state->crtc_h;
621
622 clip.x1 = 0;
623 clip.y1 = 0;
624 clip.x2 = crtc_state->adjusted_mode.hdisplay;
625 clip.y2 = crtc_state->adjusted_mode.vdisplay;
626
627 ret = drm_plane_helper_check_update(plane, crtc, state->fb,
628 src, dest, &clip,
629 state->rotation,
630 min_scale,
631 max_scale,
632 true, true, &visible);
633 if (ret)
634 return ret;
635
636 if (!visible)
637 goto out_disable;
638
639 vop_plane_state->format = vop_convert_format(fb->pixel_format);
640 if (vop_plane_state->format < 0)
641 return vop_plane_state->format;
642
643 /*
644 * Src.x1 can be odd when do clip, but yuv plane start point
645 * need align with 2 pixel.
646 */
647 if (is_yuv_support(fb->pixel_format) && ((src->x1 >> 16) % 2))
648 return -EINVAL;
649
650 vop_plane_state->enable = true;
651
652 return 0;
653
654 out_disable:
655 vop_plane_state->enable = false;
656 return 0;
657 }
658
659 static void vop_plane_atomic_disable(struct drm_plane *plane,
660 struct drm_plane_state *old_state)
661 {
662 struct vop_plane_state *vop_plane_state = to_vop_plane_state(old_state);
663 struct vop_win *vop_win = to_vop_win(plane);
664 const struct vop_win_data *win = vop_win->data;
665 struct vop *vop = to_vop(old_state->crtc);
666
667 if (!old_state->crtc)
668 return;
669
670 spin_lock_irq(&plane->dev->event_lock);
671 vop_win->enable = false;
672 vop_win->yrgb_mst = 0;
673 spin_unlock_irq(&plane->dev->event_lock);
674
675 spin_lock(&vop->reg_lock);
676
677 VOP_WIN_SET(vop, win, enable, 0);
678
679 spin_unlock(&vop->reg_lock);
680
681 vop_plane_state->enable = false;
682 }
683
684 static void vop_plane_atomic_update(struct drm_plane *plane,
685 struct drm_plane_state *old_state)
686 {
687 struct drm_plane_state *state = plane->state;
688 struct drm_crtc *crtc = state->crtc;
689 struct vop_win *vop_win = to_vop_win(plane);
690 struct vop_plane_state *vop_plane_state = to_vop_plane_state(state);
691 const struct vop_win_data *win = vop_win->data;
692 struct vop *vop = to_vop(state->crtc);
693 struct drm_framebuffer *fb = state->fb;
694 unsigned int actual_w, actual_h;
695 unsigned int dsp_stx, dsp_sty;
696 uint32_t act_info, dsp_info, dsp_st;
697 struct drm_rect *src = &vop_plane_state->src;
698 struct drm_rect *dest = &vop_plane_state->dest;
699 struct drm_gem_object *obj, *uv_obj;
700 struct rockchip_gem_object *rk_obj, *rk_uv_obj;
701 unsigned long offset;
702 dma_addr_t dma_addr;
703 uint32_t val;
704 bool rb_swap;
705
706 /*
707 * can't update plane when vop is disabled.
708 */
709 if (WARN_ON(!crtc))
710 return;
711
712 if (WARN_ON(!vop->is_enabled))
713 return;
714
715 if (!vop_plane_state->enable) {
716 vop_plane_atomic_disable(plane, old_state);
717 return;
718 }
719
720 obj = rockchip_fb_get_gem_obj(fb, 0);
721 rk_obj = to_rockchip_obj(obj);
722
723 actual_w = drm_rect_width(src) >> 16;
724 actual_h = drm_rect_height(src) >> 16;
725 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
726
727 dsp_info = (drm_rect_height(dest) - 1) << 16;
728 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
729
730 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
731 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
732 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
733
734 offset = (src->x1 >> 16) * drm_format_plane_cpp(fb->pixel_format, 0);
735 offset += (src->y1 >> 16) * fb->pitches[0];
736 vop_plane_state->yrgb_mst = rk_obj->dma_addr + offset + fb->offsets[0];
737
738 spin_lock_irq(&plane->dev->event_lock);
739 vop_win->enable = true;
740 vop_win->yrgb_mst = vop_plane_state->yrgb_mst;
741 spin_unlock_irq(&plane->dev->event_lock);
742
743 spin_lock(&vop->reg_lock);
744
745 VOP_WIN_SET(vop, win, format, vop_plane_state->format);
746 VOP_WIN_SET(vop, win, yrgb_vir, fb->pitches[0] >> 2);
747 VOP_WIN_SET(vop, win, yrgb_mst, vop_plane_state->yrgb_mst);
748 if (is_yuv_support(fb->pixel_format)) {
749 int hsub = drm_format_horz_chroma_subsampling(fb->pixel_format);
750 int vsub = drm_format_vert_chroma_subsampling(fb->pixel_format);
751 int bpp = drm_format_plane_cpp(fb->pixel_format, 1);
752
753 uv_obj = rockchip_fb_get_gem_obj(fb, 1);
754 rk_uv_obj = to_rockchip_obj(uv_obj);
755
756 offset = (src->x1 >> 16) * bpp / hsub;
757 offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
758
759 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
760 VOP_WIN_SET(vop, win, uv_vir, fb->pitches[1] >> 2);
761 VOP_WIN_SET(vop, win, uv_mst, dma_addr);
762 }
763
764 if (win->phy->scl)
765 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
766 drm_rect_width(dest), drm_rect_height(dest),
767 fb->pixel_format);
768
769 VOP_WIN_SET(vop, win, act_info, act_info);
770 VOP_WIN_SET(vop, win, dsp_info, dsp_info);
771 VOP_WIN_SET(vop, win, dsp_st, dsp_st);
772
773 rb_swap = has_rb_swapped(fb->pixel_format);
774 VOP_WIN_SET(vop, win, rb_swap, rb_swap);
775
776 if (is_alpha_support(fb->pixel_format)) {
777 VOP_WIN_SET(vop, win, dst_alpha_ctl,
778 DST_FACTOR_M0(ALPHA_SRC_INVERSE));
779 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
780 SRC_ALPHA_M0(ALPHA_STRAIGHT) |
781 SRC_BLEND_M0(ALPHA_PER_PIX) |
782 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
783 SRC_FACTOR_M0(ALPHA_ONE);
784 VOP_WIN_SET(vop, win, src_alpha_ctl, val);
785 } else {
786 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
787 }
788
789 VOP_WIN_SET(vop, win, enable, 1);
790 spin_unlock(&vop->reg_lock);
791 }
792
793 static const struct drm_plane_helper_funcs plane_helper_funcs = {
794 .prepare_fb = vop_plane_prepare_fb,
795 .cleanup_fb = vop_plane_cleanup_fb,
796 .atomic_check = vop_plane_atomic_check,
797 .atomic_update = vop_plane_atomic_update,
798 .atomic_disable = vop_plane_atomic_disable,
799 };
800
801 static void vop_atomic_plane_reset(struct drm_plane *plane)
802 {
803 struct vop_plane_state *vop_plane_state =
804 to_vop_plane_state(plane->state);
805
806 if (plane->state && plane->state->fb)
807 drm_framebuffer_unreference(plane->state->fb);
808
809 kfree(vop_plane_state);
810 vop_plane_state = kzalloc(sizeof(*vop_plane_state), GFP_KERNEL);
811 if (!vop_plane_state)
812 return;
813
814 plane->state = &vop_plane_state->base;
815 plane->state->plane = plane;
816 }
817
818 static struct drm_plane_state *
819 vop_atomic_plane_duplicate_state(struct drm_plane *plane)
820 {
821 struct vop_plane_state *old_vop_plane_state;
822 struct vop_plane_state *vop_plane_state;
823
824 if (WARN_ON(!plane->state))
825 return NULL;
826
827 old_vop_plane_state = to_vop_plane_state(plane->state);
828 vop_plane_state = kmemdup(old_vop_plane_state,
829 sizeof(*vop_plane_state), GFP_KERNEL);
830 if (!vop_plane_state)
831 return NULL;
832
833 __drm_atomic_helper_plane_duplicate_state(plane,
834 &vop_plane_state->base);
835
836 return &vop_plane_state->base;
837 }
838
839 static void vop_atomic_plane_destroy_state(struct drm_plane *plane,
840 struct drm_plane_state *state)
841 {
842 struct vop_plane_state *vop_state = to_vop_plane_state(state);
843
844 __drm_atomic_helper_plane_destroy_state(state);
845
846 kfree(vop_state);
847 }
848
849 static const struct drm_plane_funcs vop_plane_funcs = {
850 .update_plane = drm_atomic_helper_update_plane,
851 .disable_plane = drm_atomic_helper_disable_plane,
852 .destroy = vop_plane_destroy,
853 .reset = vop_atomic_plane_reset,
854 .atomic_duplicate_state = vop_atomic_plane_duplicate_state,
855 .atomic_destroy_state = vop_atomic_plane_destroy_state,
856 };
857
858 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
859 {
860 struct vop *vop = to_vop(crtc);
861 unsigned long flags;
862
863 if (WARN_ON(!vop->is_enabled))
864 return -EPERM;
865
866 spin_lock_irqsave(&vop->irq_lock, flags);
867
868 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
869
870 spin_unlock_irqrestore(&vop->irq_lock, flags);
871
872 return 0;
873 }
874
875 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
876 {
877 struct vop *vop = to_vop(crtc);
878 unsigned long flags;
879
880 if (WARN_ON(!vop->is_enabled))
881 return;
882
883 spin_lock_irqsave(&vop->irq_lock, flags);
884
885 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
886
887 spin_unlock_irqrestore(&vop->irq_lock, flags);
888 }
889
890 static void vop_crtc_wait_for_update(struct drm_crtc *crtc)
891 {
892 struct vop *vop = to_vop(crtc);
893
894 reinit_completion(&vop->wait_update_complete);
895 WARN_ON(!wait_for_completion_timeout(&vop->wait_update_complete, 100));
896 }
897
898 static const struct rockchip_crtc_funcs private_crtc_funcs = {
899 .enable_vblank = vop_crtc_enable_vblank,
900 .disable_vblank = vop_crtc_disable_vblank,
901 .wait_for_update = vop_crtc_wait_for_update,
902 };
903
904 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
905 const struct drm_display_mode *mode,
906 struct drm_display_mode *adjusted_mode)
907 {
908 struct vop *vop = to_vop(crtc);
909
910 adjusted_mode->clock =
911 clk_round_rate(vop->dclk, mode->clock * 1000) / 1000;
912
913 return true;
914 }
915
916 static void vop_crtc_enable(struct drm_crtc *crtc)
917 {
918 struct vop *vop = to_vop(crtc);
919 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
920 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
921 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
922 u16 hdisplay = adjusted_mode->hdisplay;
923 u16 htotal = adjusted_mode->htotal;
924 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
925 u16 hact_end = hact_st + hdisplay;
926 u16 vdisplay = adjusted_mode->vdisplay;
927 u16 vtotal = adjusted_mode->vtotal;
928 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
929 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
930 u16 vact_end = vact_st + vdisplay;
931 uint32_t val;
932
933 WARN_ON(vop->event);
934
935 vop_enable(crtc);
936 /*
937 * If dclk rate is zero, mean that scanout is stop,
938 * we don't need wait any more.
939 */
940 if (clk_get_rate(vop->dclk)) {
941 /*
942 * Rk3288 vop timing register is immediately, when configure
943 * display timing on display time, may cause tearing.
944 *
945 * Vop standby will take effect at end of current frame,
946 * if dsp hold valid irq happen, it means standby complete.
947 *
948 * mode set:
949 * standby and wait complete --> |----
950 * | display time
951 * |----
952 * |---> dsp hold irq
953 * configure display timing --> |
954 * standby exit |
955 * | new frame start.
956 */
957
958 reinit_completion(&vop->dsp_hold_completion);
959 vop_dsp_hold_valid_irq_enable(vop);
960
961 spin_lock(&vop->reg_lock);
962
963 VOP_CTRL_SET(vop, standby, 1);
964
965 spin_unlock(&vop->reg_lock);
966
967 wait_for_completion(&vop->dsp_hold_completion);
968
969 vop_dsp_hold_valid_irq_disable(vop);
970 }
971
972 val = 0x8;
973 val |= (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) ? 0 : 1;
974 val |= (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) ? 0 : (1 << 1);
975 VOP_CTRL_SET(vop, pin_pol, val);
976 switch (s->output_type) {
977 case DRM_MODE_CONNECTOR_LVDS:
978 VOP_CTRL_SET(vop, rgb_en, 1);
979 break;
980 case DRM_MODE_CONNECTOR_eDP:
981 VOP_CTRL_SET(vop, edp_en, 1);
982 break;
983 case DRM_MODE_CONNECTOR_HDMIA:
984 VOP_CTRL_SET(vop, hdmi_en, 1);
985 break;
986 case DRM_MODE_CONNECTOR_DSI:
987 VOP_CTRL_SET(vop, mipi_en, 1);
988 break;
989 default:
990 DRM_ERROR("unsupport connector_type[%d]\n", s->output_type);
991 }
992 VOP_CTRL_SET(vop, out_mode, s->output_mode);
993
994 VOP_CTRL_SET(vop, htotal_pw, (htotal << 16) | hsync_len);
995 val = hact_st << 16;
996 val |= hact_end;
997 VOP_CTRL_SET(vop, hact_st_end, val);
998 VOP_CTRL_SET(vop, hpost_st_end, val);
999
1000 VOP_CTRL_SET(vop, vtotal_pw, (vtotal << 16) | vsync_len);
1001 val = vact_st << 16;
1002 val |= vact_end;
1003 VOP_CTRL_SET(vop, vact_st_end, val);
1004 VOP_CTRL_SET(vop, vpost_st_end, val);
1005
1006 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1007
1008 VOP_CTRL_SET(vop, standby, 0);
1009 }
1010
1011 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1012 struct drm_crtc_state *old_crtc_state)
1013 {
1014 struct vop *vop = to_vop(crtc);
1015
1016 if (WARN_ON(!vop->is_enabled))
1017 return;
1018
1019 spin_lock(&vop->reg_lock);
1020
1021 vop_cfg_done(vop);
1022
1023 spin_unlock(&vop->reg_lock);
1024 }
1025
1026 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1027 struct drm_crtc_state *old_crtc_state)
1028 {
1029 struct vop *vop = to_vop(crtc);
1030
1031 spin_lock_irq(&crtc->dev->event_lock);
1032 if (crtc->state->event) {
1033 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1034 WARN_ON(vop->event);
1035
1036 vop->event = crtc->state->event;
1037 crtc->state->event = NULL;
1038 }
1039 spin_unlock_irq(&crtc->dev->event_lock);
1040 }
1041
1042 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1043 .enable = vop_crtc_enable,
1044 .disable = vop_crtc_disable,
1045 .mode_fixup = vop_crtc_mode_fixup,
1046 .atomic_flush = vop_crtc_atomic_flush,
1047 .atomic_begin = vop_crtc_atomic_begin,
1048 };
1049
1050 static void vop_crtc_destroy(struct drm_crtc *crtc)
1051 {
1052 drm_crtc_cleanup(crtc);
1053 }
1054
1055 static void vop_crtc_reset(struct drm_crtc *crtc)
1056 {
1057 if (crtc->state)
1058 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1059 kfree(crtc->state);
1060
1061 crtc->state = kzalloc(sizeof(struct rockchip_crtc_state), GFP_KERNEL);
1062 if (crtc->state)
1063 crtc->state->crtc = crtc;
1064 }
1065
1066 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1067 {
1068 struct rockchip_crtc_state *rockchip_state;
1069
1070 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1071 if (!rockchip_state)
1072 return NULL;
1073
1074 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1075 return &rockchip_state->base;
1076 }
1077
1078 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1079 struct drm_crtc_state *state)
1080 {
1081 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1082
1083 __drm_atomic_helper_crtc_destroy_state(&s->base);
1084 kfree(s);
1085 }
1086
1087 static const struct drm_crtc_funcs vop_crtc_funcs = {
1088 .set_config = drm_atomic_helper_set_config,
1089 .page_flip = drm_atomic_helper_page_flip,
1090 .destroy = vop_crtc_destroy,
1091 .reset = vop_crtc_reset,
1092 .atomic_duplicate_state = vop_crtc_duplicate_state,
1093 .atomic_destroy_state = vop_crtc_destroy_state,
1094 };
1095
1096 static bool vop_win_pending_is_complete(struct vop_win *vop_win)
1097 {
1098 dma_addr_t yrgb_mst;
1099
1100 if (!vop_win->enable)
1101 return VOP_WIN_GET(vop_win->vop, vop_win->data, enable) == 0;
1102
1103 yrgb_mst = VOP_WIN_GET_YRGBADDR(vop_win->vop, vop_win->data);
1104
1105 return yrgb_mst == vop_win->yrgb_mst;
1106 }
1107
1108 static void vop_handle_vblank(struct vop *vop)
1109 {
1110 struct drm_device *drm = vop->drm_dev;
1111 struct drm_crtc *crtc = &vop->crtc;
1112 unsigned long flags;
1113 int i;
1114
1115 for (i = 0; i < vop->data->win_size; i++) {
1116 if (!vop_win_pending_is_complete(&vop->win[i]))
1117 return;
1118 }
1119
1120 spin_lock_irqsave(&drm->event_lock, flags);
1121 if (vop->event) {
1122
1123 drm_crtc_send_vblank_event(crtc, vop->event);
1124 drm_crtc_vblank_put(crtc);
1125 vop->event = NULL;
1126
1127 }
1128 spin_unlock_irqrestore(&drm->event_lock, flags);
1129
1130 if (!completion_done(&vop->wait_update_complete))
1131 complete(&vop->wait_update_complete);
1132 }
1133
1134 static irqreturn_t vop_isr(int irq, void *data)
1135 {
1136 struct vop *vop = data;
1137 struct drm_crtc *crtc = &vop->crtc;
1138 uint32_t active_irqs;
1139 unsigned long flags;
1140 int ret = IRQ_NONE;
1141
1142 /*
1143 * interrupt register has interrupt status, enable and clear bits, we
1144 * must hold irq_lock to avoid a race with enable/disable_vblank().
1145 */
1146 spin_lock_irqsave(&vop->irq_lock, flags);
1147
1148 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1149 /* Clear all active interrupt sources */
1150 if (active_irqs)
1151 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1152
1153 spin_unlock_irqrestore(&vop->irq_lock, flags);
1154
1155 /* This is expected for vop iommu irqs, since the irq is shared */
1156 if (!active_irqs)
1157 return IRQ_NONE;
1158
1159 if (active_irqs & DSP_HOLD_VALID_INTR) {
1160 complete(&vop->dsp_hold_completion);
1161 active_irqs &= ~DSP_HOLD_VALID_INTR;
1162 ret = IRQ_HANDLED;
1163 }
1164
1165 if (active_irqs & FS_INTR) {
1166 drm_crtc_handle_vblank(crtc);
1167 vop_handle_vblank(vop);
1168 active_irqs &= ~FS_INTR;
1169 ret = IRQ_HANDLED;
1170 }
1171
1172 /* Unhandled irqs are spurious. */
1173 if (active_irqs)
1174 DRM_ERROR("Unknown VOP IRQs: %#02x\n", active_irqs);
1175
1176 return ret;
1177 }
1178
1179 static int vop_create_crtc(struct vop *vop)
1180 {
1181 const struct vop_data *vop_data = vop->data;
1182 struct device *dev = vop->dev;
1183 struct drm_device *drm_dev = vop->drm_dev;
1184 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1185 struct drm_crtc *crtc = &vop->crtc;
1186 struct device_node *port;
1187 int ret;
1188 int i;
1189
1190 /*
1191 * Create drm_plane for primary and cursor planes first, since we need
1192 * to pass them to drm_crtc_init_with_planes, which sets the
1193 * "possible_crtcs" to the newly initialized crtc.
1194 */
1195 for (i = 0; i < vop_data->win_size; i++) {
1196 struct vop_win *vop_win = &vop->win[i];
1197 const struct vop_win_data *win_data = vop_win->data;
1198
1199 if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1200 win_data->type != DRM_PLANE_TYPE_CURSOR)
1201 continue;
1202
1203 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1204 0, &vop_plane_funcs,
1205 win_data->phy->data_formats,
1206 win_data->phy->nformats,
1207 win_data->type, NULL);
1208 if (ret) {
1209 DRM_ERROR("failed to initialize plane\n");
1210 goto err_cleanup_planes;
1211 }
1212
1213 plane = &vop_win->base;
1214 drm_plane_helper_add(plane, &plane_helper_funcs);
1215 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1216 primary = plane;
1217 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1218 cursor = plane;
1219 }
1220
1221 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1222 &vop_crtc_funcs, NULL);
1223 if (ret)
1224 goto err_cleanup_planes;
1225
1226 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1227
1228 /*
1229 * Create drm_planes for overlay windows with possible_crtcs restricted
1230 * to the newly created crtc.
1231 */
1232 for (i = 0; i < vop_data->win_size; i++) {
1233 struct vop_win *vop_win = &vop->win[i];
1234 const struct vop_win_data *win_data = vop_win->data;
1235 unsigned long possible_crtcs = 1 << drm_crtc_index(crtc);
1236
1237 if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1238 continue;
1239
1240 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1241 possible_crtcs,
1242 &vop_plane_funcs,
1243 win_data->phy->data_formats,
1244 win_data->phy->nformats,
1245 win_data->type, NULL);
1246 if (ret) {
1247 DRM_ERROR("failed to initialize overlay plane\n");
1248 goto err_cleanup_crtc;
1249 }
1250 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1251 }
1252
1253 port = of_get_child_by_name(dev->of_node, "port");
1254 if (!port) {
1255 DRM_ERROR("no port node found in %s\n",
1256 dev->of_node->full_name);
1257 ret = -ENOENT;
1258 goto err_cleanup_crtc;
1259 }
1260
1261 init_completion(&vop->dsp_hold_completion);
1262 init_completion(&vop->wait_update_complete);
1263 crtc->port = port;
1264 rockchip_register_crtc_funcs(crtc, &private_crtc_funcs);
1265
1266 return 0;
1267
1268 err_cleanup_crtc:
1269 drm_crtc_cleanup(crtc);
1270 err_cleanup_planes:
1271 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1272 head)
1273 drm_plane_cleanup(plane);
1274 return ret;
1275 }
1276
1277 static void vop_destroy_crtc(struct vop *vop)
1278 {
1279 struct drm_crtc *crtc = &vop->crtc;
1280 struct drm_device *drm_dev = vop->drm_dev;
1281 struct drm_plane *plane, *tmp;
1282
1283 rockchip_unregister_crtc_funcs(crtc);
1284 of_node_put(crtc->port);
1285
1286 /*
1287 * We need to cleanup the planes now. Why?
1288 *
1289 * The planes are "&vop->win[i].base". That means the memory is
1290 * all part of the big "struct vop" chunk of memory. That memory
1291 * was devm allocated and associated with this component. We need to
1292 * free it ourselves before vop_unbind() finishes.
1293 */
1294 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1295 head)
1296 vop_plane_destroy(plane);
1297
1298 /*
1299 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1300 * references the CRTC.
1301 */
1302 drm_crtc_cleanup(crtc);
1303 }
1304
1305 static int vop_initial(struct vop *vop)
1306 {
1307 const struct vop_data *vop_data = vop->data;
1308 const struct vop_reg_data *init_table = vop_data->init_table;
1309 struct reset_control *ahb_rst;
1310 int i, ret;
1311
1312 vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1313 if (IS_ERR(vop->hclk)) {
1314 dev_err(vop->dev, "failed to get hclk source\n");
1315 return PTR_ERR(vop->hclk);
1316 }
1317 vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1318 if (IS_ERR(vop->aclk)) {
1319 dev_err(vop->dev, "failed to get aclk source\n");
1320 return PTR_ERR(vop->aclk);
1321 }
1322 vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1323 if (IS_ERR(vop->dclk)) {
1324 dev_err(vop->dev, "failed to get dclk source\n");
1325 return PTR_ERR(vop->dclk);
1326 }
1327
1328 ret = clk_prepare(vop->dclk);
1329 if (ret < 0) {
1330 dev_err(vop->dev, "failed to prepare dclk\n");
1331 return ret;
1332 }
1333
1334 /* Enable both the hclk and aclk to setup the vop */
1335 ret = clk_prepare_enable(vop->hclk);
1336 if (ret < 0) {
1337 dev_err(vop->dev, "failed to prepare/enable hclk\n");
1338 goto err_unprepare_dclk;
1339 }
1340
1341 ret = clk_prepare_enable(vop->aclk);
1342 if (ret < 0) {
1343 dev_err(vop->dev, "failed to prepare/enable aclk\n");
1344 goto err_disable_hclk;
1345 }
1346
1347 /*
1348 * do hclk_reset, reset all vop registers.
1349 */
1350 ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1351 if (IS_ERR(ahb_rst)) {
1352 dev_err(vop->dev, "failed to get ahb reset\n");
1353 ret = PTR_ERR(ahb_rst);
1354 goto err_disable_aclk;
1355 }
1356 reset_control_assert(ahb_rst);
1357 usleep_range(10, 20);
1358 reset_control_deassert(ahb_rst);
1359
1360 memcpy(vop->regsbak, vop->regs, vop->len);
1361
1362 for (i = 0; i < vop_data->table_size; i++)
1363 vop_writel(vop, init_table[i].offset, init_table[i].value);
1364
1365 for (i = 0; i < vop_data->win_size; i++) {
1366 const struct vop_win_data *win = &vop_data->win[i];
1367
1368 VOP_WIN_SET(vop, win, enable, 0);
1369 }
1370
1371 vop_cfg_done(vop);
1372
1373 /*
1374 * do dclk_reset, let all config take affect.
1375 */
1376 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1377 if (IS_ERR(vop->dclk_rst)) {
1378 dev_err(vop->dev, "failed to get dclk reset\n");
1379 ret = PTR_ERR(vop->dclk_rst);
1380 goto err_disable_aclk;
1381 }
1382 reset_control_assert(vop->dclk_rst);
1383 usleep_range(10, 20);
1384 reset_control_deassert(vop->dclk_rst);
1385
1386 clk_disable(vop->hclk);
1387 clk_disable(vop->aclk);
1388
1389 vop->is_enabled = false;
1390
1391 return 0;
1392
1393 err_disable_aclk:
1394 clk_disable_unprepare(vop->aclk);
1395 err_disable_hclk:
1396 clk_disable_unprepare(vop->hclk);
1397 err_unprepare_dclk:
1398 clk_unprepare(vop->dclk);
1399 return ret;
1400 }
1401
1402 /*
1403 * Initialize the vop->win array elements.
1404 */
1405 static void vop_win_init(struct vop *vop)
1406 {
1407 const struct vop_data *vop_data = vop->data;
1408 unsigned int i;
1409
1410 for (i = 0; i < vop_data->win_size; i++) {
1411 struct vop_win *vop_win = &vop->win[i];
1412 const struct vop_win_data *win_data = &vop_data->win[i];
1413
1414 vop_win->data = win_data;
1415 vop_win->vop = vop;
1416 }
1417 }
1418
1419 static int vop_bind(struct device *dev, struct device *master, void *data)
1420 {
1421 struct platform_device *pdev = to_platform_device(dev);
1422 const struct vop_data *vop_data;
1423 struct drm_device *drm_dev = data;
1424 struct vop *vop;
1425 struct resource *res;
1426 size_t alloc_size;
1427 int ret, irq;
1428
1429 vop_data = of_device_get_match_data(dev);
1430 if (!vop_data)
1431 return -ENODEV;
1432
1433 /* Allocate vop struct and its vop_win array */
1434 alloc_size = sizeof(*vop) + sizeof(*vop->win) * vop_data->win_size;
1435 vop = devm_kzalloc(dev, alloc_size, GFP_KERNEL);
1436 if (!vop)
1437 return -ENOMEM;
1438
1439 vop->dev = dev;
1440 vop->data = vop_data;
1441 vop->drm_dev = drm_dev;
1442 dev_set_drvdata(dev, vop);
1443
1444 vop_win_init(vop);
1445
1446 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1447 vop->len = resource_size(res);
1448 vop->regs = devm_ioremap_resource(dev, res);
1449 if (IS_ERR(vop->regs))
1450 return PTR_ERR(vop->regs);
1451
1452 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1453 if (!vop->regsbak)
1454 return -ENOMEM;
1455
1456 ret = vop_initial(vop);
1457 if (ret < 0) {
1458 dev_err(&pdev->dev, "cannot initial vop dev - err %d\n", ret);
1459 return ret;
1460 }
1461
1462 irq = platform_get_irq(pdev, 0);
1463 if (irq < 0) {
1464 dev_err(dev, "cannot find irq for vop\n");
1465 return irq;
1466 }
1467 vop->irq = (unsigned int)irq;
1468
1469 spin_lock_init(&vop->reg_lock);
1470 spin_lock_init(&vop->irq_lock);
1471
1472 mutex_init(&vop->vsync_mutex);
1473
1474 ret = devm_request_irq(dev, vop->irq, vop_isr,
1475 IRQF_SHARED, dev_name(dev), vop);
1476 if (ret)
1477 return ret;
1478
1479 /* IRQ is initially disabled; it gets enabled in power_on */
1480 disable_irq(vop->irq);
1481
1482 ret = vop_create_crtc(vop);
1483 if (ret)
1484 return ret;
1485
1486 pm_runtime_enable(&pdev->dev);
1487 return 0;
1488 }
1489
1490 static void vop_unbind(struct device *dev, struct device *master, void *data)
1491 {
1492 struct vop *vop = dev_get_drvdata(dev);
1493
1494 pm_runtime_disable(dev);
1495 vop_destroy_crtc(vop);
1496 }
1497
1498 const struct component_ops vop_component_ops = {
1499 .bind = vop_bind,
1500 .unbind = vop_unbind,
1501 };
1502 EXPORT_SYMBOL_GPL(vop_component_ops);
This page took 0.063433 seconds and 5 git commands to generate.