Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include "dc.h"
19 #include "drm.h"
20 #include "gem.h"
21
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 struct tegra_dc_soc_info {
27 bool supports_border_color;
28 bool supports_interlacing;
29 bool supports_cursor;
30 bool supports_block_linear;
31 unsigned int pitch_align;
32 bool has_powergate;
33 };
34
35 struct tegra_plane {
36 struct drm_plane base;
37 unsigned int index;
38 };
39
40 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
41 {
42 return container_of(plane, struct tegra_plane, base);
43 }
44
45 struct tegra_dc_state {
46 struct drm_crtc_state base;
47
48 struct clk *clk;
49 unsigned long pclk;
50 unsigned int div;
51
52 u32 planes;
53 };
54
55 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
56 {
57 if (state)
58 return container_of(state, struct tegra_dc_state, base);
59
60 return NULL;
61 }
62
63 struct tegra_plane_state {
64 struct drm_plane_state base;
65
66 struct tegra_bo_tiling tiling;
67 u32 format;
68 u32 swap;
69 };
70
71 static inline struct tegra_plane_state *
72 to_tegra_plane_state(struct drm_plane_state *state)
73 {
74 if (state)
75 return container_of(state, struct tegra_plane_state, base);
76
77 return NULL;
78 }
79
80 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
81 {
82 stats->frames = 0;
83 stats->vblank = 0;
84 stats->underflow = 0;
85 stats->overflow = 0;
86 }
87
88 /*
89 * Reads the active copy of a register. This takes the dc->lock spinlock to
90 * prevent races with the VBLANK processing which also needs access to the
91 * active copy of some registers.
92 */
93 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
94 {
95 unsigned long flags;
96 u32 value;
97
98 spin_lock_irqsave(&dc->lock, flags);
99
100 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
101 value = tegra_dc_readl(dc, offset);
102 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
103
104 spin_unlock_irqrestore(&dc->lock, flags);
105 return value;
106 }
107
108 /*
109 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111 * Latching happens mmediately if the display controller is in STOP mode or
112 * on the next frame boundary otherwise.
113 *
114 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117 * into the ACTIVE copy, either immediately if the display controller is in
118 * STOP mode, or at the next frame boundary otherwise.
119 */
120 void tegra_dc_commit(struct tegra_dc *dc)
121 {
122 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 }
125
126 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
127 {
128 /* assume no swapping of fetched data */
129 if (swap)
130 *swap = BYTE_SWAP_NOSWAP;
131
132 switch (fourcc) {
133 case DRM_FORMAT_XBGR8888:
134 *format = WIN_COLOR_DEPTH_R8G8B8A8;
135 break;
136
137 case DRM_FORMAT_XRGB8888:
138 *format = WIN_COLOR_DEPTH_B8G8R8A8;
139 break;
140
141 case DRM_FORMAT_RGB565:
142 *format = WIN_COLOR_DEPTH_B5G6R5;
143 break;
144
145 case DRM_FORMAT_UYVY:
146 *format = WIN_COLOR_DEPTH_YCbCr422;
147 break;
148
149 case DRM_FORMAT_YUYV:
150 if (swap)
151 *swap = BYTE_SWAP_SWAP2;
152
153 *format = WIN_COLOR_DEPTH_YCbCr422;
154 break;
155
156 case DRM_FORMAT_YUV420:
157 *format = WIN_COLOR_DEPTH_YCbCr420P;
158 break;
159
160 case DRM_FORMAT_YUV422:
161 *format = WIN_COLOR_DEPTH_YCbCr422P;
162 break;
163
164 default:
165 return -EINVAL;
166 }
167
168 return 0;
169 }
170
171 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
172 {
173 switch (format) {
174 case WIN_COLOR_DEPTH_YCbCr422:
175 case WIN_COLOR_DEPTH_YUV422:
176 if (planar)
177 *planar = false;
178
179 return true;
180
181 case WIN_COLOR_DEPTH_YCbCr420P:
182 case WIN_COLOR_DEPTH_YUV420P:
183 case WIN_COLOR_DEPTH_YCbCr422P:
184 case WIN_COLOR_DEPTH_YUV422P:
185 case WIN_COLOR_DEPTH_YCbCr422R:
186 case WIN_COLOR_DEPTH_YUV422R:
187 case WIN_COLOR_DEPTH_YCbCr422RA:
188 case WIN_COLOR_DEPTH_YUV422RA:
189 if (planar)
190 *planar = true;
191
192 return true;
193 }
194
195 if (planar)
196 *planar = false;
197
198 return false;
199 }
200
201 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
202 unsigned int bpp)
203 {
204 fixed20_12 outf = dfixed_init(out);
205 fixed20_12 inf = dfixed_init(in);
206 u32 dda_inc;
207 int max;
208
209 if (v)
210 max = 15;
211 else {
212 switch (bpp) {
213 case 2:
214 max = 8;
215 break;
216
217 default:
218 WARN_ON_ONCE(1);
219 /* fallthrough */
220 case 4:
221 max = 4;
222 break;
223 }
224 }
225
226 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
227 inf.full -= dfixed_const(1);
228
229 dda_inc = dfixed_div(inf, outf);
230 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
231
232 return dda_inc;
233 }
234
235 static inline u32 compute_initial_dda(unsigned int in)
236 {
237 fixed20_12 inf = dfixed_init(in);
238 return dfixed_frac(inf);
239 }
240
241 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
242 const struct tegra_dc_window *window)
243 {
244 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
245 unsigned long value, flags;
246 bool yuv, planar;
247
248 /*
249 * For YUV planar modes, the number of bytes per pixel takes into
250 * account only the luma component and therefore is 1.
251 */
252 yuv = tegra_dc_format_is_yuv(window->format, &planar);
253 if (!yuv)
254 bpp = window->bits_per_pixel / 8;
255 else
256 bpp = planar ? 1 : 2;
257
258 spin_lock_irqsave(&dc->lock, flags);
259
260 value = WINDOW_A_SELECT << index;
261 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
262
263 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
264 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
265
266 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
267 tegra_dc_writel(dc, value, DC_WIN_POSITION);
268
269 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
270 tegra_dc_writel(dc, value, DC_WIN_SIZE);
271
272 h_offset = window->src.x * bpp;
273 v_offset = window->src.y;
274 h_size = window->src.w * bpp;
275 v_size = window->src.h;
276
277 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
278 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
279
280 /*
281 * For DDA computations the number of bytes per pixel for YUV planar
282 * modes needs to take into account all Y, U and V components.
283 */
284 if (yuv && planar)
285 bpp = 2;
286
287 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
288 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
289
290 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
291 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
292
293 h_dda = compute_initial_dda(window->src.x);
294 v_dda = compute_initial_dda(window->src.y);
295
296 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
297 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
298
299 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
300 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
301
302 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
303
304 if (yuv && planar) {
305 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
306 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
307 value = window->stride[1] << 16 | window->stride[0];
308 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
309 } else {
310 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
311 }
312
313 if (window->bottom_up)
314 v_offset += window->src.h - 1;
315
316 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
317 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
318
319 if (dc->soc->supports_block_linear) {
320 unsigned long height = window->tiling.value;
321
322 switch (window->tiling.mode) {
323 case TEGRA_BO_TILING_MODE_PITCH:
324 value = DC_WINBUF_SURFACE_KIND_PITCH;
325 break;
326
327 case TEGRA_BO_TILING_MODE_TILED:
328 value = DC_WINBUF_SURFACE_KIND_TILED;
329 break;
330
331 case TEGRA_BO_TILING_MODE_BLOCK:
332 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
333 DC_WINBUF_SURFACE_KIND_BLOCK;
334 break;
335 }
336
337 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
338 } else {
339 switch (window->tiling.mode) {
340 case TEGRA_BO_TILING_MODE_PITCH:
341 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
342 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
343 break;
344
345 case TEGRA_BO_TILING_MODE_TILED:
346 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
347 DC_WIN_BUFFER_ADDR_MODE_TILE;
348 break;
349
350 case TEGRA_BO_TILING_MODE_BLOCK:
351 /*
352 * No need to handle this here because ->atomic_check
353 * will already have filtered it out.
354 */
355 break;
356 }
357
358 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
359 }
360
361 value = WIN_ENABLE;
362
363 if (yuv) {
364 /* setup default colorspace conversion coefficients */
365 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
366 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
367 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
368 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
369 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
370 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
371 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
372 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
373
374 value |= CSC_ENABLE;
375 } else if (window->bits_per_pixel < 24) {
376 value |= COLOR_EXPAND;
377 }
378
379 if (window->bottom_up)
380 value |= V_DIRECTION;
381
382 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
383
384 /*
385 * Disable blending and assume Window A is the bottom-most window,
386 * Window C is the top-most window and Window B is in the middle.
387 */
388 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
389 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
390
391 switch (index) {
392 case 0:
393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
395 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
396 break;
397
398 case 1:
399 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
400 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
401 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
402 break;
403
404 case 2:
405 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
407 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
408 break;
409 }
410
411 spin_unlock_irqrestore(&dc->lock, flags);
412 }
413
414 static void tegra_plane_destroy(struct drm_plane *plane)
415 {
416 struct tegra_plane *p = to_tegra_plane(plane);
417
418 drm_plane_cleanup(plane);
419 kfree(p);
420 }
421
422 static const u32 tegra_primary_plane_formats[] = {
423 DRM_FORMAT_XBGR8888,
424 DRM_FORMAT_XRGB8888,
425 DRM_FORMAT_RGB565,
426 };
427
428 static void tegra_primary_plane_destroy(struct drm_plane *plane)
429 {
430 tegra_plane_destroy(plane);
431 }
432
433 static void tegra_plane_reset(struct drm_plane *plane)
434 {
435 struct tegra_plane_state *state;
436
437 if (plane->state)
438 __drm_atomic_helper_plane_destroy_state(plane->state);
439
440 kfree(plane->state);
441 plane->state = NULL;
442
443 state = kzalloc(sizeof(*state), GFP_KERNEL);
444 if (state) {
445 plane->state = &state->base;
446 plane->state->plane = plane;
447 }
448 }
449
450 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
451 {
452 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
453 struct tegra_plane_state *copy;
454
455 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
456 if (!copy)
457 return NULL;
458
459 __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
460 copy->tiling = state->tiling;
461 copy->format = state->format;
462 copy->swap = state->swap;
463
464 return &copy->base;
465 }
466
467 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
468 struct drm_plane_state *state)
469 {
470 __drm_atomic_helper_plane_destroy_state(state);
471 kfree(state);
472 }
473
474 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
475 .update_plane = drm_atomic_helper_update_plane,
476 .disable_plane = drm_atomic_helper_disable_plane,
477 .destroy = tegra_primary_plane_destroy,
478 .reset = tegra_plane_reset,
479 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
480 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
481 };
482
483 static int tegra_plane_state_add(struct tegra_plane *plane,
484 struct drm_plane_state *state)
485 {
486 struct drm_crtc_state *crtc_state;
487 struct tegra_dc_state *tegra;
488
489 /* Propagate errors from allocation or locking failures. */
490 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
491 if (IS_ERR(crtc_state))
492 return PTR_ERR(crtc_state);
493
494 tegra = to_dc_state(crtc_state);
495
496 tegra->planes |= WIN_A_ACT_REQ << plane->index;
497
498 return 0;
499 }
500
501 static int tegra_plane_atomic_check(struct drm_plane *plane,
502 struct drm_plane_state *state)
503 {
504 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
505 struct tegra_bo_tiling *tiling = &plane_state->tiling;
506 struct tegra_plane *tegra = to_tegra_plane(plane);
507 struct tegra_dc *dc = to_tegra_dc(state->crtc);
508 int err;
509
510 /* no need for further checks if the plane is being disabled */
511 if (!state->crtc)
512 return 0;
513
514 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
515 &plane_state->swap);
516 if (err < 0)
517 return err;
518
519 err = tegra_fb_get_tiling(state->fb, tiling);
520 if (err < 0)
521 return err;
522
523 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
524 !dc->soc->supports_block_linear) {
525 DRM_ERROR("hardware doesn't support block linear mode\n");
526 return -EINVAL;
527 }
528
529 /*
530 * Tegra doesn't support different strides for U and V planes so we
531 * error out if the user tries to display a framebuffer with such a
532 * configuration.
533 */
534 if (drm_format_num_planes(state->fb->pixel_format) > 2) {
535 if (state->fb->pitches[2] != state->fb->pitches[1]) {
536 DRM_ERROR("unsupported UV-plane configuration\n");
537 return -EINVAL;
538 }
539 }
540
541 err = tegra_plane_state_add(tegra, state);
542 if (err < 0)
543 return err;
544
545 return 0;
546 }
547
548 static void tegra_plane_atomic_update(struct drm_plane *plane,
549 struct drm_plane_state *old_state)
550 {
551 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
552 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
553 struct drm_framebuffer *fb = plane->state->fb;
554 struct tegra_plane *p = to_tegra_plane(plane);
555 struct tegra_dc_window window;
556 unsigned int i;
557
558 /* rien ne va plus */
559 if (!plane->state->crtc || !plane->state->fb)
560 return;
561
562 memset(&window, 0, sizeof(window));
563 window.src.x = plane->state->src_x >> 16;
564 window.src.y = plane->state->src_y >> 16;
565 window.src.w = plane->state->src_w >> 16;
566 window.src.h = plane->state->src_h >> 16;
567 window.dst.x = plane->state->crtc_x;
568 window.dst.y = plane->state->crtc_y;
569 window.dst.w = plane->state->crtc_w;
570 window.dst.h = plane->state->crtc_h;
571 window.bits_per_pixel = fb->bits_per_pixel;
572 window.bottom_up = tegra_fb_is_bottom_up(fb);
573
574 /* copy from state */
575 window.tiling = state->tiling;
576 window.format = state->format;
577 window.swap = state->swap;
578
579 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
580 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
581
582 window.base[i] = bo->paddr + fb->offsets[i];
583
584 /*
585 * Tegra uses a shared stride for UV planes. Framebuffers are
586 * already checked for this in the tegra_plane_atomic_check()
587 * function, so it's safe to ignore the V-plane pitch here.
588 */
589 if (i < 2)
590 window.stride[i] = fb->pitches[i];
591 }
592
593 tegra_dc_setup_window(dc, p->index, &window);
594 }
595
596 static void tegra_plane_atomic_disable(struct drm_plane *plane,
597 struct drm_plane_state *old_state)
598 {
599 struct tegra_plane *p = to_tegra_plane(plane);
600 struct tegra_dc *dc;
601 unsigned long flags;
602 u32 value;
603
604 /* rien ne va plus */
605 if (!old_state || !old_state->crtc)
606 return;
607
608 dc = to_tegra_dc(old_state->crtc);
609
610 spin_lock_irqsave(&dc->lock, flags);
611
612 value = WINDOW_A_SELECT << p->index;
613 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
614
615 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
616 value &= ~WIN_ENABLE;
617 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
618
619 spin_unlock_irqrestore(&dc->lock, flags);
620 }
621
622 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
623 .atomic_check = tegra_plane_atomic_check,
624 .atomic_update = tegra_plane_atomic_update,
625 .atomic_disable = tegra_plane_atomic_disable,
626 };
627
628 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
629 struct tegra_dc *dc)
630 {
631 /*
632 * Ideally this would use drm_crtc_mask(), but that would require the
633 * CRTC to already be in the mode_config's list of CRTCs. However, it
634 * will only be added to that list in the drm_crtc_init_with_planes()
635 * (in tegra_dc_init()), which in turn requires registration of these
636 * planes. So we have ourselves a nice little chicken and egg problem
637 * here.
638 *
639 * We work around this by manually creating the mask from the number
640 * of CRTCs that have been registered, and should therefore always be
641 * the same as drm_crtc_index() after registration.
642 */
643 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
644 struct tegra_plane *plane;
645 unsigned int num_formats;
646 const u32 *formats;
647 int err;
648
649 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
650 if (!plane)
651 return ERR_PTR(-ENOMEM);
652
653 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
654 formats = tegra_primary_plane_formats;
655
656 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
657 &tegra_primary_plane_funcs, formats,
658 num_formats, DRM_PLANE_TYPE_PRIMARY,
659 NULL);
660 if (err < 0) {
661 kfree(plane);
662 return ERR_PTR(err);
663 }
664
665 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
666
667 return &plane->base;
668 }
669
670 static const u32 tegra_cursor_plane_formats[] = {
671 DRM_FORMAT_RGBA8888,
672 };
673
674 static int tegra_cursor_atomic_check(struct drm_plane *plane,
675 struct drm_plane_state *state)
676 {
677 struct tegra_plane *tegra = to_tegra_plane(plane);
678 int err;
679
680 /* no need for further checks if the plane is being disabled */
681 if (!state->crtc)
682 return 0;
683
684 /* scaling not supported for cursor */
685 if ((state->src_w >> 16 != state->crtc_w) ||
686 (state->src_h >> 16 != state->crtc_h))
687 return -EINVAL;
688
689 /* only square cursors supported */
690 if (state->src_w != state->src_h)
691 return -EINVAL;
692
693 if (state->crtc_w != 32 && state->crtc_w != 64 &&
694 state->crtc_w != 128 && state->crtc_w != 256)
695 return -EINVAL;
696
697 err = tegra_plane_state_add(tegra, state);
698 if (err < 0)
699 return err;
700
701 return 0;
702 }
703
704 static void tegra_cursor_atomic_update(struct drm_plane *plane,
705 struct drm_plane_state *old_state)
706 {
707 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
708 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
709 struct drm_plane_state *state = plane->state;
710 u32 value = CURSOR_CLIP_DISPLAY;
711
712 /* rien ne va plus */
713 if (!plane->state->crtc || !plane->state->fb)
714 return;
715
716 switch (state->crtc_w) {
717 case 32:
718 value |= CURSOR_SIZE_32x32;
719 break;
720
721 case 64:
722 value |= CURSOR_SIZE_64x64;
723 break;
724
725 case 128:
726 value |= CURSOR_SIZE_128x128;
727 break;
728
729 case 256:
730 value |= CURSOR_SIZE_256x256;
731 break;
732
733 default:
734 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
735 state->crtc_h);
736 return;
737 }
738
739 value |= (bo->paddr >> 10) & 0x3fffff;
740 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
741
742 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
743 value = (bo->paddr >> 32) & 0x3;
744 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
745 #endif
746
747 /* enable cursor and set blend mode */
748 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
749 value |= CURSOR_ENABLE;
750 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
751
752 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
753 value &= ~CURSOR_DST_BLEND_MASK;
754 value &= ~CURSOR_SRC_BLEND_MASK;
755 value |= CURSOR_MODE_NORMAL;
756 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
757 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
758 value |= CURSOR_ALPHA;
759 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
760
761 /* position the cursor */
762 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
763 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
764 }
765
766 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
767 struct drm_plane_state *old_state)
768 {
769 struct tegra_dc *dc;
770 u32 value;
771
772 /* rien ne va plus */
773 if (!old_state || !old_state->crtc)
774 return;
775
776 dc = to_tegra_dc(old_state->crtc);
777
778 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
779 value &= ~CURSOR_ENABLE;
780 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
781 }
782
783 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
784 .update_plane = drm_atomic_helper_update_plane,
785 .disable_plane = drm_atomic_helper_disable_plane,
786 .destroy = tegra_plane_destroy,
787 .reset = tegra_plane_reset,
788 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
789 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
790 };
791
792 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
793 .atomic_check = tegra_cursor_atomic_check,
794 .atomic_update = tegra_cursor_atomic_update,
795 .atomic_disable = tegra_cursor_atomic_disable,
796 };
797
798 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
799 struct tegra_dc *dc)
800 {
801 struct tegra_plane *plane;
802 unsigned int num_formats;
803 const u32 *formats;
804 int err;
805
806 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
807 if (!plane)
808 return ERR_PTR(-ENOMEM);
809
810 /*
811 * This index is kind of fake. The cursor isn't a regular plane, but
812 * its update and activation request bits in DC_CMD_STATE_CONTROL do
813 * use the same programming. Setting this fake index here allows the
814 * code in tegra_add_plane_state() to do the right thing without the
815 * need to special-casing the cursor plane.
816 */
817 plane->index = 6;
818
819 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
820 formats = tegra_cursor_plane_formats;
821
822 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
823 &tegra_cursor_plane_funcs, formats,
824 num_formats, DRM_PLANE_TYPE_CURSOR,
825 NULL);
826 if (err < 0) {
827 kfree(plane);
828 return ERR_PTR(err);
829 }
830
831 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
832
833 return &plane->base;
834 }
835
836 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
837 {
838 tegra_plane_destroy(plane);
839 }
840
841 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
842 .update_plane = drm_atomic_helper_update_plane,
843 .disable_plane = drm_atomic_helper_disable_plane,
844 .destroy = tegra_overlay_plane_destroy,
845 .reset = tegra_plane_reset,
846 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
847 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
848 };
849
850 static const uint32_t tegra_overlay_plane_formats[] = {
851 DRM_FORMAT_XBGR8888,
852 DRM_FORMAT_XRGB8888,
853 DRM_FORMAT_RGB565,
854 DRM_FORMAT_UYVY,
855 DRM_FORMAT_YUYV,
856 DRM_FORMAT_YUV420,
857 DRM_FORMAT_YUV422,
858 };
859
860 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
861 .atomic_check = tegra_plane_atomic_check,
862 .atomic_update = tegra_plane_atomic_update,
863 .atomic_disable = tegra_plane_atomic_disable,
864 };
865
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867 struct tegra_dc *dc,
868 unsigned int index)
869 {
870 struct tegra_plane *plane;
871 unsigned int num_formats;
872 const u32 *formats;
873 int err;
874
875 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876 if (!plane)
877 return ERR_PTR(-ENOMEM);
878
879 plane->index = index;
880
881 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882 formats = tegra_overlay_plane_formats;
883
884 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885 &tegra_overlay_plane_funcs, formats,
886 num_formats, DRM_PLANE_TYPE_OVERLAY,
887 NULL);
888 if (err < 0) {
889 kfree(plane);
890 return ERR_PTR(err);
891 }
892
893 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
894
895 return &plane->base;
896 }
897
898 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
899 {
900 struct drm_plane *plane;
901 unsigned int i;
902
903 for (i = 0; i < 2; i++) {
904 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
905 if (IS_ERR(plane))
906 return PTR_ERR(plane);
907 }
908
909 return 0;
910 }
911
912 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
913 {
914 if (dc->syncpt)
915 return host1x_syncpt_read(dc->syncpt);
916
917 /* fallback to software emulated VBLANK counter */
918 return drm_crtc_vblank_count(&dc->base);
919 }
920
921 void tegra_dc_enable_vblank(struct tegra_dc *dc)
922 {
923 unsigned long value, flags;
924
925 spin_lock_irqsave(&dc->lock, flags);
926
927 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
928 value |= VBLANK_INT;
929 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
930
931 spin_unlock_irqrestore(&dc->lock, flags);
932 }
933
934 void tegra_dc_disable_vblank(struct tegra_dc *dc)
935 {
936 unsigned long value, flags;
937
938 spin_lock_irqsave(&dc->lock, flags);
939
940 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
941 value &= ~VBLANK_INT;
942 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
943
944 spin_unlock_irqrestore(&dc->lock, flags);
945 }
946
947 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
948 {
949 struct drm_device *drm = dc->base.dev;
950 struct drm_crtc *crtc = &dc->base;
951 unsigned long flags, base;
952 struct tegra_bo *bo;
953
954 spin_lock_irqsave(&drm->event_lock, flags);
955
956 if (!dc->event) {
957 spin_unlock_irqrestore(&drm->event_lock, flags);
958 return;
959 }
960
961 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
962
963 spin_lock(&dc->lock);
964
965 /* check if new start address has been latched */
966 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
967 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
968 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
969 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
970
971 spin_unlock(&dc->lock);
972
973 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
974 drm_crtc_send_vblank_event(crtc, dc->event);
975 drm_crtc_vblank_put(crtc);
976 dc->event = NULL;
977 }
978
979 spin_unlock_irqrestore(&drm->event_lock, flags);
980 }
981
982 static void tegra_dc_destroy(struct drm_crtc *crtc)
983 {
984 drm_crtc_cleanup(crtc);
985 }
986
987 static void tegra_crtc_reset(struct drm_crtc *crtc)
988 {
989 struct tegra_dc_state *state;
990
991 if (crtc->state)
992 __drm_atomic_helper_crtc_destroy_state(crtc->state);
993
994 kfree(crtc->state);
995 crtc->state = NULL;
996
997 state = kzalloc(sizeof(*state), GFP_KERNEL);
998 if (state) {
999 crtc->state = &state->base;
1000 crtc->state->crtc = crtc;
1001 }
1002
1003 drm_crtc_vblank_reset(crtc);
1004 }
1005
1006 static struct drm_crtc_state *
1007 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1008 {
1009 struct tegra_dc_state *state = to_dc_state(crtc->state);
1010 struct tegra_dc_state *copy;
1011
1012 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1013 if (!copy)
1014 return NULL;
1015
1016 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1017 copy->clk = state->clk;
1018 copy->pclk = state->pclk;
1019 copy->div = state->div;
1020 copy->planes = state->planes;
1021
1022 return &copy->base;
1023 }
1024
1025 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1026 struct drm_crtc_state *state)
1027 {
1028 __drm_atomic_helper_crtc_destroy_state(state);
1029 kfree(state);
1030 }
1031
1032 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1033 .page_flip = drm_atomic_helper_page_flip,
1034 .set_config = drm_atomic_helper_set_config,
1035 .destroy = tegra_dc_destroy,
1036 .reset = tegra_crtc_reset,
1037 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1038 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1039 };
1040
1041 static int tegra_dc_set_timings(struct tegra_dc *dc,
1042 struct drm_display_mode *mode)
1043 {
1044 unsigned int h_ref_to_sync = 1;
1045 unsigned int v_ref_to_sync = 1;
1046 unsigned long value;
1047
1048 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1049
1050 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1051 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1052
1053 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1054 ((mode->hsync_end - mode->hsync_start) << 0);
1055 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1056
1057 value = ((mode->vtotal - mode->vsync_end) << 16) |
1058 ((mode->htotal - mode->hsync_end) << 0);
1059 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1060
1061 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1062 ((mode->hsync_start - mode->hdisplay) << 0);
1063 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1064
1065 value = (mode->vdisplay << 16) | mode->hdisplay;
1066 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1067
1068 return 0;
1069 }
1070
1071 /**
1072 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1073 * state
1074 * @dc: display controller
1075 * @crtc_state: CRTC atomic state
1076 * @clk: parent clock for display controller
1077 * @pclk: pixel clock
1078 * @div: shift clock divider
1079 *
1080 * Returns:
1081 * 0 on success or a negative error-code on failure.
1082 */
1083 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1084 struct drm_crtc_state *crtc_state,
1085 struct clk *clk, unsigned long pclk,
1086 unsigned int div)
1087 {
1088 struct tegra_dc_state *state = to_dc_state(crtc_state);
1089
1090 if (!clk_has_parent(dc->clk, clk))
1091 return -EINVAL;
1092
1093 state->clk = clk;
1094 state->pclk = pclk;
1095 state->div = div;
1096
1097 return 0;
1098 }
1099
1100 static void tegra_dc_commit_state(struct tegra_dc *dc,
1101 struct tegra_dc_state *state)
1102 {
1103 u32 value;
1104 int err;
1105
1106 err = clk_set_parent(dc->clk, state->clk);
1107 if (err < 0)
1108 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1109
1110 /*
1111 * Outputs may not want to change the parent clock rate. This is only
1112 * relevant to Tegra20 where only a single display PLL is available.
1113 * Since that PLL would typically be used for HDMI, an internal LVDS
1114 * panel would need to be driven by some other clock such as PLL_P
1115 * which is shared with other peripherals. Changing the clock rate
1116 * should therefore be avoided.
1117 */
1118 if (state->pclk > 0) {
1119 err = clk_set_rate(state->clk, state->pclk);
1120 if (err < 0)
1121 dev_err(dc->dev,
1122 "failed to set clock rate to %lu Hz\n",
1123 state->pclk);
1124 }
1125
1126 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1127 state->div);
1128 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1129
1130 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1131 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1132 }
1133
1134 static void tegra_dc_stop(struct tegra_dc *dc)
1135 {
1136 u32 value;
1137
1138 /* stop the display controller */
1139 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1140 value &= ~DISP_CTRL_MODE_MASK;
1141 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1142
1143 tegra_dc_commit(dc);
1144 }
1145
1146 static bool tegra_dc_idle(struct tegra_dc *dc)
1147 {
1148 u32 value;
1149
1150 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1151
1152 return (value & DISP_CTRL_MODE_MASK) == 0;
1153 }
1154
1155 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1156 {
1157 timeout = jiffies + msecs_to_jiffies(timeout);
1158
1159 while (time_before(jiffies, timeout)) {
1160 if (tegra_dc_idle(dc))
1161 return 0;
1162
1163 usleep_range(1000, 2000);
1164 }
1165
1166 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1167 return -ETIMEDOUT;
1168 }
1169
1170 static void tegra_crtc_disable(struct drm_crtc *crtc)
1171 {
1172 struct tegra_dc *dc = to_tegra_dc(crtc);
1173 u32 value;
1174
1175 if (!tegra_dc_idle(dc)) {
1176 tegra_dc_stop(dc);
1177
1178 /*
1179 * Ignore the return value, there isn't anything useful to do
1180 * in case this fails.
1181 */
1182 tegra_dc_wait_idle(dc, 100);
1183 }
1184
1185 /*
1186 * This should really be part of the RGB encoder driver, but clearing
1187 * these bits has the side-effect of stopping the display controller.
1188 * When that happens no VBLANK interrupts will be raised. At the same
1189 * time the encoder is disabled before the display controller, so the
1190 * above code is always going to timeout waiting for the controller
1191 * to go idle.
1192 *
1193 * Given the close coupling between the RGB encoder and the display
1194 * controller doing it here is still kind of okay. None of the other
1195 * encoder drivers require these bits to be cleared.
1196 *
1197 * XXX: Perhaps given that the display controller is switched off at
1198 * this point anyway maybe clearing these bits isn't even useful for
1199 * the RGB encoder?
1200 */
1201 if (dc->rgb) {
1202 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1203 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1204 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1205 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1206 }
1207
1208 tegra_dc_stats_reset(&dc->stats);
1209 drm_crtc_vblank_off(crtc);
1210
1211 pm_runtime_put_sync(dc->dev);
1212 }
1213
1214 static void tegra_crtc_enable(struct drm_crtc *crtc)
1215 {
1216 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1217 struct tegra_dc_state *state = to_dc_state(crtc->state);
1218 struct tegra_dc *dc = to_tegra_dc(crtc);
1219 u32 value;
1220
1221 pm_runtime_get_sync(dc->dev);
1222
1223 /* initialize display controller */
1224 if (dc->syncpt) {
1225 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1226
1227 value = SYNCPT_CNTRL_NO_STALL;
1228 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1229
1230 value = SYNCPT_VSYNC_ENABLE | syncpt;
1231 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1232 }
1233
1234 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1235 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1236 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1237
1238 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1239 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1240 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1241
1242 /* initialize timer */
1243 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1244 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1245 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1246
1247 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1248 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1249 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1250
1251 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1252 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1253 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1254
1255 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1256 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1257 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1258
1259 if (dc->soc->supports_border_color)
1260 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1261
1262 /* apply PLL and pixel clock changes */
1263 tegra_dc_commit_state(dc, state);
1264
1265 /* program display mode */
1266 tegra_dc_set_timings(dc, mode);
1267
1268 /* interlacing isn't supported yet, so disable it */
1269 if (dc->soc->supports_interlacing) {
1270 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1271 value &= ~INTERLACE_ENABLE;
1272 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1273 }
1274
1275 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1276 value &= ~DISP_CTRL_MODE_MASK;
1277 value |= DISP_CTRL_MODE_C_DISPLAY;
1278 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1279
1280 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1281 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1282 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1283 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1284
1285 tegra_dc_commit(dc);
1286
1287 drm_crtc_vblank_on(crtc);
1288 }
1289
1290 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1291 struct drm_crtc_state *state)
1292 {
1293 return 0;
1294 }
1295
1296 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1297 struct drm_crtc_state *old_crtc_state)
1298 {
1299 struct tegra_dc *dc = to_tegra_dc(crtc);
1300
1301 if (crtc->state->event) {
1302 crtc->state->event->pipe = drm_crtc_index(crtc);
1303
1304 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1305
1306 dc->event = crtc->state->event;
1307 crtc->state->event = NULL;
1308 }
1309 }
1310
1311 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1312 struct drm_crtc_state *old_crtc_state)
1313 {
1314 struct tegra_dc_state *state = to_dc_state(crtc->state);
1315 struct tegra_dc *dc = to_tegra_dc(crtc);
1316
1317 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1318 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1319 }
1320
1321 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1322 .disable = tegra_crtc_disable,
1323 .enable = tegra_crtc_enable,
1324 .atomic_check = tegra_crtc_atomic_check,
1325 .atomic_begin = tegra_crtc_atomic_begin,
1326 .atomic_flush = tegra_crtc_atomic_flush,
1327 };
1328
1329 static irqreturn_t tegra_dc_irq(int irq, void *data)
1330 {
1331 struct tegra_dc *dc = data;
1332 unsigned long status;
1333
1334 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1335 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1336
1337 if (status & FRAME_END_INT) {
1338 /*
1339 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1340 */
1341 dc->stats.frames++;
1342 }
1343
1344 if (status & VBLANK_INT) {
1345 /*
1346 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1347 */
1348 drm_crtc_handle_vblank(&dc->base);
1349 tegra_dc_finish_page_flip(dc);
1350 dc->stats.vblank++;
1351 }
1352
1353 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1354 /*
1355 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1356 */
1357 dc->stats.underflow++;
1358 }
1359
1360 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1361 /*
1362 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1363 */
1364 dc->stats.overflow++;
1365 }
1366
1367 return IRQ_HANDLED;
1368 }
1369
1370 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1371 {
1372 struct drm_info_node *node = s->private;
1373 struct tegra_dc *dc = node->info_ent->data;
1374 int err = 0;
1375
1376 drm_modeset_lock_crtc(&dc->base, NULL);
1377
1378 if (!dc->base.state->active) {
1379 err = -EBUSY;
1380 goto unlock;
1381 }
1382
1383 #define DUMP_REG(name) \
1384 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1385 tegra_dc_readl(dc, name))
1386
1387 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1388 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1389 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1390 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1391 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1392 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1393 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1394 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1395 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1396 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1397 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1398 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1399 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1400 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1401 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1402 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1403 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1404 DUMP_REG(DC_CMD_INT_STATUS);
1405 DUMP_REG(DC_CMD_INT_MASK);
1406 DUMP_REG(DC_CMD_INT_ENABLE);
1407 DUMP_REG(DC_CMD_INT_TYPE);
1408 DUMP_REG(DC_CMD_INT_POLARITY);
1409 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1410 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1411 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1412 DUMP_REG(DC_CMD_STATE_ACCESS);
1413 DUMP_REG(DC_CMD_STATE_CONTROL);
1414 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1415 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1416 DUMP_REG(DC_COM_CRC_CONTROL);
1417 DUMP_REG(DC_COM_CRC_CHECKSUM);
1418 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1419 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1420 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1421 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1422 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1423 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1424 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1425 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1426 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1427 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1428 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1429 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1430 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1431 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1432 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1433 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1434 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1435 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1436 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1437 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1438 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1439 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1440 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1441 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1442 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1443 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1444 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1445 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1446 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1447 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1448 DUMP_REG(DC_COM_SPI_CONTROL);
1449 DUMP_REG(DC_COM_SPI_START_BYTE);
1450 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1451 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1452 DUMP_REG(DC_COM_HSPI_CS_DC);
1453 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1454 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1455 DUMP_REG(DC_COM_GPIO_CTRL);
1456 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1457 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1458 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1459 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1460 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1461 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1462 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1463 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1464 DUMP_REG(DC_DISP_REF_TO_SYNC);
1465 DUMP_REG(DC_DISP_SYNC_WIDTH);
1466 DUMP_REG(DC_DISP_BACK_PORCH);
1467 DUMP_REG(DC_DISP_ACTIVE);
1468 DUMP_REG(DC_DISP_FRONT_PORCH);
1469 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1470 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1471 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1472 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1473 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1474 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1475 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1476 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1477 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1478 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1479 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1480 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1481 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1482 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1483 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1484 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1485 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1486 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1487 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1488 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1489 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1490 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1491 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1492 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1493 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1494 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1495 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1496 DUMP_REG(DC_DISP_M0_CONTROL);
1497 DUMP_REG(DC_DISP_M1_CONTROL);
1498 DUMP_REG(DC_DISP_DI_CONTROL);
1499 DUMP_REG(DC_DISP_PP_CONTROL);
1500 DUMP_REG(DC_DISP_PP_SELECT_A);
1501 DUMP_REG(DC_DISP_PP_SELECT_B);
1502 DUMP_REG(DC_DISP_PP_SELECT_C);
1503 DUMP_REG(DC_DISP_PP_SELECT_D);
1504 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1505 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1506 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1507 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1508 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1509 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1510 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1511 DUMP_REG(DC_DISP_BORDER_COLOR);
1512 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1513 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1514 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1515 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1516 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1517 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1518 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1519 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1520 DUMP_REG(DC_DISP_CURSOR_POSITION);
1521 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1522 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1523 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1524 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1525 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1526 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1527 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1528 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1529 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1530 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1531 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1532 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1533 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1534 DUMP_REG(DC_DISP_SD_CONTROL);
1535 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1536 DUMP_REG(DC_DISP_SD_LUT(0));
1537 DUMP_REG(DC_DISP_SD_LUT(1));
1538 DUMP_REG(DC_DISP_SD_LUT(2));
1539 DUMP_REG(DC_DISP_SD_LUT(3));
1540 DUMP_REG(DC_DISP_SD_LUT(4));
1541 DUMP_REG(DC_DISP_SD_LUT(5));
1542 DUMP_REG(DC_DISP_SD_LUT(6));
1543 DUMP_REG(DC_DISP_SD_LUT(7));
1544 DUMP_REG(DC_DISP_SD_LUT(8));
1545 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1546 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1547 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1548 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1549 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1550 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1551 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1552 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1553 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1554 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1555 DUMP_REG(DC_DISP_SD_BL_TF(0));
1556 DUMP_REG(DC_DISP_SD_BL_TF(1));
1557 DUMP_REG(DC_DISP_SD_BL_TF(2));
1558 DUMP_REG(DC_DISP_SD_BL_TF(3));
1559 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1560 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1561 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1562 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1563 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1564 DUMP_REG(DC_WIN_WIN_OPTIONS);
1565 DUMP_REG(DC_WIN_BYTE_SWAP);
1566 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1567 DUMP_REG(DC_WIN_COLOR_DEPTH);
1568 DUMP_REG(DC_WIN_POSITION);
1569 DUMP_REG(DC_WIN_SIZE);
1570 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1571 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1572 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1573 DUMP_REG(DC_WIN_DDA_INC);
1574 DUMP_REG(DC_WIN_LINE_STRIDE);
1575 DUMP_REG(DC_WIN_BUF_STRIDE);
1576 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1577 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1578 DUMP_REG(DC_WIN_DV_CONTROL);
1579 DUMP_REG(DC_WIN_BLEND_NOKEY);
1580 DUMP_REG(DC_WIN_BLEND_1WIN);
1581 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1582 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1583 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1584 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1585 DUMP_REG(DC_WINBUF_START_ADDR);
1586 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1587 DUMP_REG(DC_WINBUF_START_ADDR_U);
1588 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1589 DUMP_REG(DC_WINBUF_START_ADDR_V);
1590 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1591 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1592 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1593 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1594 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1595 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1596 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1597 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1598 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1599
1600 #undef DUMP_REG
1601
1602 unlock:
1603 drm_modeset_unlock_crtc(&dc->base);
1604 return err;
1605 }
1606
1607 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1608 {
1609 struct drm_info_node *node = s->private;
1610 struct tegra_dc *dc = node->info_ent->data;
1611 int err = 0;
1612 u32 value;
1613
1614 drm_modeset_lock_crtc(&dc->base, NULL);
1615
1616 if (!dc->base.state->active) {
1617 err = -EBUSY;
1618 goto unlock;
1619 }
1620
1621 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1622 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1623 tegra_dc_commit(dc);
1624
1625 drm_crtc_wait_one_vblank(&dc->base);
1626 drm_crtc_wait_one_vblank(&dc->base);
1627
1628 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1629 seq_printf(s, "%08x\n", value);
1630
1631 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1632
1633 unlock:
1634 drm_modeset_unlock_crtc(&dc->base);
1635 return err;
1636 }
1637
1638 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1639 {
1640 struct drm_info_node *node = s->private;
1641 struct tegra_dc *dc = node->info_ent->data;
1642
1643 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1644 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1645 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1646 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1647
1648 return 0;
1649 }
1650
1651 static struct drm_info_list debugfs_files[] = {
1652 { "regs", tegra_dc_show_regs, 0, NULL },
1653 { "crc", tegra_dc_show_crc, 0, NULL },
1654 { "stats", tegra_dc_show_stats, 0, NULL },
1655 };
1656
1657 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1658 {
1659 unsigned int i;
1660 char *name;
1661 int err;
1662
1663 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1664 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1665 kfree(name);
1666
1667 if (!dc->debugfs)
1668 return -ENOMEM;
1669
1670 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1671 GFP_KERNEL);
1672 if (!dc->debugfs_files) {
1673 err = -ENOMEM;
1674 goto remove;
1675 }
1676
1677 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1678 dc->debugfs_files[i].data = dc;
1679
1680 err = drm_debugfs_create_files(dc->debugfs_files,
1681 ARRAY_SIZE(debugfs_files),
1682 dc->debugfs, minor);
1683 if (err < 0)
1684 goto free;
1685
1686 dc->minor = minor;
1687
1688 return 0;
1689
1690 free:
1691 kfree(dc->debugfs_files);
1692 dc->debugfs_files = NULL;
1693 remove:
1694 debugfs_remove(dc->debugfs);
1695 dc->debugfs = NULL;
1696
1697 return err;
1698 }
1699
1700 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1701 {
1702 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1703 dc->minor);
1704 dc->minor = NULL;
1705
1706 kfree(dc->debugfs_files);
1707 dc->debugfs_files = NULL;
1708
1709 debugfs_remove(dc->debugfs);
1710 dc->debugfs = NULL;
1711
1712 return 0;
1713 }
1714
1715 static int tegra_dc_init(struct host1x_client *client)
1716 {
1717 struct drm_device *drm = dev_get_drvdata(client->parent);
1718 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1719 struct tegra_dc *dc = host1x_client_to_dc(client);
1720 struct tegra_drm *tegra = drm->dev_private;
1721 struct drm_plane *primary = NULL;
1722 struct drm_plane *cursor = NULL;
1723 int err;
1724
1725 dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1726 if (!dc->syncpt)
1727 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1728
1729 if (tegra->domain) {
1730 err = iommu_attach_device(tegra->domain, dc->dev);
1731 if (err < 0) {
1732 dev_err(dc->dev, "failed to attach to domain: %d\n",
1733 err);
1734 return err;
1735 }
1736
1737 dc->domain = tegra->domain;
1738 }
1739
1740 primary = tegra_dc_primary_plane_create(drm, dc);
1741 if (IS_ERR(primary)) {
1742 err = PTR_ERR(primary);
1743 goto cleanup;
1744 }
1745
1746 if (dc->soc->supports_cursor) {
1747 cursor = tegra_dc_cursor_plane_create(drm, dc);
1748 if (IS_ERR(cursor)) {
1749 err = PTR_ERR(cursor);
1750 goto cleanup;
1751 }
1752 }
1753
1754 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1755 &tegra_crtc_funcs, NULL);
1756 if (err < 0)
1757 goto cleanup;
1758
1759 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1760
1761 /*
1762 * Keep track of the minimum pitch alignment across all display
1763 * controllers.
1764 */
1765 if (dc->soc->pitch_align > tegra->pitch_align)
1766 tegra->pitch_align = dc->soc->pitch_align;
1767
1768 err = tegra_dc_rgb_init(drm, dc);
1769 if (err < 0 && err != -ENODEV) {
1770 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1771 goto cleanup;
1772 }
1773
1774 err = tegra_dc_add_planes(drm, dc);
1775 if (err < 0)
1776 goto cleanup;
1777
1778 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1779 err = tegra_dc_debugfs_init(dc, drm->primary);
1780 if (err < 0)
1781 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1782 }
1783
1784 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1785 dev_name(dc->dev), dc);
1786 if (err < 0) {
1787 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1788 err);
1789 goto cleanup;
1790 }
1791
1792 return 0;
1793
1794 cleanup:
1795 if (cursor)
1796 drm_plane_cleanup(cursor);
1797
1798 if (primary)
1799 drm_plane_cleanup(primary);
1800
1801 if (tegra->domain) {
1802 iommu_detach_device(tegra->domain, dc->dev);
1803 dc->domain = NULL;
1804 }
1805
1806 return err;
1807 }
1808
1809 static int tegra_dc_exit(struct host1x_client *client)
1810 {
1811 struct tegra_dc *dc = host1x_client_to_dc(client);
1812 int err;
1813
1814 devm_free_irq(dc->dev, dc->irq, dc);
1815
1816 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1817 err = tegra_dc_debugfs_exit(dc);
1818 if (err < 0)
1819 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1820 }
1821
1822 err = tegra_dc_rgb_exit(dc);
1823 if (err) {
1824 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1825 return err;
1826 }
1827
1828 if (dc->domain) {
1829 iommu_detach_device(dc->domain, dc->dev);
1830 dc->domain = NULL;
1831 }
1832
1833 host1x_syncpt_free(dc->syncpt);
1834
1835 return 0;
1836 }
1837
1838 static const struct host1x_client_ops dc_client_ops = {
1839 .init = tegra_dc_init,
1840 .exit = tegra_dc_exit,
1841 };
1842
1843 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1844 .supports_border_color = true,
1845 .supports_interlacing = false,
1846 .supports_cursor = false,
1847 .supports_block_linear = false,
1848 .pitch_align = 8,
1849 .has_powergate = false,
1850 };
1851
1852 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1853 .supports_border_color = true,
1854 .supports_interlacing = false,
1855 .supports_cursor = false,
1856 .supports_block_linear = false,
1857 .pitch_align = 8,
1858 .has_powergate = false,
1859 };
1860
1861 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1862 .supports_border_color = true,
1863 .supports_interlacing = false,
1864 .supports_cursor = false,
1865 .supports_block_linear = false,
1866 .pitch_align = 64,
1867 .has_powergate = true,
1868 };
1869
1870 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1871 .supports_border_color = false,
1872 .supports_interlacing = true,
1873 .supports_cursor = true,
1874 .supports_block_linear = true,
1875 .pitch_align = 64,
1876 .has_powergate = true,
1877 };
1878
1879 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1880 .supports_border_color = false,
1881 .supports_interlacing = true,
1882 .supports_cursor = true,
1883 .supports_block_linear = true,
1884 .pitch_align = 64,
1885 .has_powergate = true,
1886 };
1887
1888 static const struct of_device_id tegra_dc_of_match[] = {
1889 {
1890 .compatible = "nvidia,tegra210-dc",
1891 .data = &tegra210_dc_soc_info,
1892 }, {
1893 .compatible = "nvidia,tegra124-dc",
1894 .data = &tegra124_dc_soc_info,
1895 }, {
1896 .compatible = "nvidia,tegra114-dc",
1897 .data = &tegra114_dc_soc_info,
1898 }, {
1899 .compatible = "nvidia,tegra30-dc",
1900 .data = &tegra30_dc_soc_info,
1901 }, {
1902 .compatible = "nvidia,tegra20-dc",
1903 .data = &tegra20_dc_soc_info,
1904 }, {
1905 /* sentinel */
1906 }
1907 };
1908 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1909
1910 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1911 {
1912 struct device_node *np;
1913 u32 value = 0;
1914 int err;
1915
1916 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1917 if (err < 0) {
1918 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1919
1920 /*
1921 * If the nvidia,head property isn't present, try to find the
1922 * correct head number by looking up the position of this
1923 * display controller's node within the device tree. Assuming
1924 * that the nodes are ordered properly in the DTS file and
1925 * that the translation into a flattened device tree blob
1926 * preserves that ordering this will actually yield the right
1927 * head number.
1928 *
1929 * If those assumptions don't hold, this will still work for
1930 * cases where only a single display controller is used.
1931 */
1932 for_each_matching_node(np, tegra_dc_of_match) {
1933 if (np == dc->dev->of_node) {
1934 of_node_put(np);
1935 break;
1936 }
1937
1938 value++;
1939 }
1940 }
1941
1942 dc->pipe = value;
1943
1944 return 0;
1945 }
1946
1947 static int tegra_dc_probe(struct platform_device *pdev)
1948 {
1949 const struct of_device_id *id;
1950 struct resource *regs;
1951 struct tegra_dc *dc;
1952 int err;
1953
1954 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1955 if (!dc)
1956 return -ENOMEM;
1957
1958 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1959 if (!id)
1960 return -ENODEV;
1961
1962 spin_lock_init(&dc->lock);
1963 INIT_LIST_HEAD(&dc->list);
1964 dc->dev = &pdev->dev;
1965 dc->soc = id->data;
1966
1967 err = tegra_dc_parse_dt(dc);
1968 if (err < 0)
1969 return err;
1970
1971 dc->clk = devm_clk_get(&pdev->dev, NULL);
1972 if (IS_ERR(dc->clk)) {
1973 dev_err(&pdev->dev, "failed to get clock\n");
1974 return PTR_ERR(dc->clk);
1975 }
1976
1977 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1978 if (IS_ERR(dc->rst)) {
1979 dev_err(&pdev->dev, "failed to get reset\n");
1980 return PTR_ERR(dc->rst);
1981 }
1982
1983 reset_control_assert(dc->rst);
1984
1985 if (dc->soc->has_powergate) {
1986 if (dc->pipe == 0)
1987 dc->powergate = TEGRA_POWERGATE_DIS;
1988 else
1989 dc->powergate = TEGRA_POWERGATE_DISB;
1990
1991 tegra_powergate_power_off(dc->powergate);
1992 }
1993
1994 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1995 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1996 if (IS_ERR(dc->regs))
1997 return PTR_ERR(dc->regs);
1998
1999 dc->irq = platform_get_irq(pdev, 0);
2000 if (dc->irq < 0) {
2001 dev_err(&pdev->dev, "failed to get IRQ\n");
2002 return -ENXIO;
2003 }
2004
2005 err = tegra_dc_rgb_probe(dc);
2006 if (err < 0 && err != -ENODEV) {
2007 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2008 return err;
2009 }
2010
2011 platform_set_drvdata(pdev, dc);
2012 pm_runtime_enable(&pdev->dev);
2013
2014 INIT_LIST_HEAD(&dc->client.list);
2015 dc->client.ops = &dc_client_ops;
2016 dc->client.dev = &pdev->dev;
2017
2018 err = host1x_client_register(&dc->client);
2019 if (err < 0) {
2020 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2021 err);
2022 return err;
2023 }
2024
2025 return 0;
2026 }
2027
2028 static int tegra_dc_remove(struct platform_device *pdev)
2029 {
2030 struct tegra_dc *dc = platform_get_drvdata(pdev);
2031 int err;
2032
2033 err = host1x_client_unregister(&dc->client);
2034 if (err < 0) {
2035 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2036 err);
2037 return err;
2038 }
2039
2040 err = tegra_dc_rgb_remove(dc);
2041 if (err < 0) {
2042 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2043 return err;
2044 }
2045
2046 pm_runtime_disable(&pdev->dev);
2047
2048 return 0;
2049 }
2050
2051 #ifdef CONFIG_PM
2052 static int tegra_dc_suspend(struct device *dev)
2053 {
2054 struct tegra_dc *dc = dev_get_drvdata(dev);
2055 int err;
2056
2057 err = reset_control_assert(dc->rst);
2058 if (err < 0) {
2059 dev_err(dev, "failed to assert reset: %d\n", err);
2060 return err;
2061 }
2062
2063 if (dc->soc->has_powergate)
2064 tegra_powergate_power_off(dc->powergate);
2065
2066 clk_disable_unprepare(dc->clk);
2067
2068 return 0;
2069 }
2070
2071 static int tegra_dc_resume(struct device *dev)
2072 {
2073 struct tegra_dc *dc = dev_get_drvdata(dev);
2074 int err;
2075
2076 if (dc->soc->has_powergate) {
2077 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2078 dc->rst);
2079 if (err < 0) {
2080 dev_err(dev, "failed to power partition: %d\n", err);
2081 return err;
2082 }
2083 } else {
2084 err = clk_prepare_enable(dc->clk);
2085 if (err < 0) {
2086 dev_err(dev, "failed to enable clock: %d\n", err);
2087 return err;
2088 }
2089
2090 err = reset_control_deassert(dc->rst);
2091 if (err < 0) {
2092 dev_err(dev, "failed to deassert reset: %d\n", err);
2093 return err;
2094 }
2095 }
2096
2097 return 0;
2098 }
2099 #endif
2100
2101 static const struct dev_pm_ops tegra_dc_pm_ops = {
2102 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2103 };
2104
2105 struct platform_driver tegra_dc_driver = {
2106 .driver = {
2107 .name = "tegra-dc",
2108 .of_match_table = tegra_dc_of_match,
2109 .pm = &tegra_dc_pm_ops,
2110 },
2111 .probe = tegra_dc_probe,
2112 .remove = tegra_dc_remove,
2113 };
This page took 0.082332 seconds and 5 git commands to generate.