Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include "dc.h"
19 #include "drm.h"
20 #include "gem.h"
21
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 struct tegra_dc_soc_info {
27 bool supports_border_color;
28 bool supports_interlacing;
29 bool supports_cursor;
30 bool supports_block_linear;
31 unsigned int pitch_align;
32 bool has_powergate;
33 };
34
35 struct tegra_plane {
36 struct drm_plane base;
37 unsigned int index;
38 };
39
40 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
41 {
42 return container_of(plane, struct tegra_plane, base);
43 }
44
45 struct tegra_dc_state {
46 struct drm_crtc_state base;
47
48 struct clk *clk;
49 unsigned long pclk;
50 unsigned int div;
51
52 u32 planes;
53 };
54
55 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
56 {
57 if (state)
58 return container_of(state, struct tegra_dc_state, base);
59
60 return NULL;
61 }
62
63 struct tegra_plane_state {
64 struct drm_plane_state base;
65
66 struct tegra_bo_tiling tiling;
67 u32 format;
68 u32 swap;
69 };
70
71 static inline struct tegra_plane_state *
72 to_tegra_plane_state(struct drm_plane_state *state)
73 {
74 if (state)
75 return container_of(state, struct tegra_plane_state, base);
76
77 return NULL;
78 }
79
80 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
81 {
82 stats->frames = 0;
83 stats->vblank = 0;
84 stats->underflow = 0;
85 stats->overflow = 0;
86 }
87
88 /*
89 * Reads the active copy of a register. This takes the dc->lock spinlock to
90 * prevent races with the VBLANK processing which also needs access to the
91 * active copy of some registers.
92 */
93 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
94 {
95 unsigned long flags;
96 u32 value;
97
98 spin_lock_irqsave(&dc->lock, flags);
99
100 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
101 value = tegra_dc_readl(dc, offset);
102 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
103
104 spin_unlock_irqrestore(&dc->lock, flags);
105 return value;
106 }
107
108 /*
109 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111 * Latching happens mmediately if the display controller is in STOP mode or
112 * on the next frame boundary otherwise.
113 *
114 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117 * into the ACTIVE copy, either immediately if the display controller is in
118 * STOP mode, or at the next frame boundary otherwise.
119 */
120 void tegra_dc_commit(struct tegra_dc *dc)
121 {
122 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 }
125
126 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
127 {
128 /* assume no swapping of fetched data */
129 if (swap)
130 *swap = BYTE_SWAP_NOSWAP;
131
132 switch (fourcc) {
133 case DRM_FORMAT_XBGR8888:
134 *format = WIN_COLOR_DEPTH_R8G8B8A8;
135 break;
136
137 case DRM_FORMAT_XRGB8888:
138 *format = WIN_COLOR_DEPTH_B8G8R8A8;
139 break;
140
141 case DRM_FORMAT_RGB565:
142 *format = WIN_COLOR_DEPTH_B5G6R5;
143 break;
144
145 case DRM_FORMAT_UYVY:
146 *format = WIN_COLOR_DEPTH_YCbCr422;
147 break;
148
149 case DRM_FORMAT_YUYV:
150 if (swap)
151 *swap = BYTE_SWAP_SWAP2;
152
153 *format = WIN_COLOR_DEPTH_YCbCr422;
154 break;
155
156 case DRM_FORMAT_YUV420:
157 *format = WIN_COLOR_DEPTH_YCbCr420P;
158 break;
159
160 case DRM_FORMAT_YUV422:
161 *format = WIN_COLOR_DEPTH_YCbCr422P;
162 break;
163
164 default:
165 return -EINVAL;
166 }
167
168 return 0;
169 }
170
171 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
172 {
173 switch (format) {
174 case WIN_COLOR_DEPTH_YCbCr422:
175 case WIN_COLOR_DEPTH_YUV422:
176 if (planar)
177 *planar = false;
178
179 return true;
180
181 case WIN_COLOR_DEPTH_YCbCr420P:
182 case WIN_COLOR_DEPTH_YUV420P:
183 case WIN_COLOR_DEPTH_YCbCr422P:
184 case WIN_COLOR_DEPTH_YUV422P:
185 case WIN_COLOR_DEPTH_YCbCr422R:
186 case WIN_COLOR_DEPTH_YUV422R:
187 case WIN_COLOR_DEPTH_YCbCr422RA:
188 case WIN_COLOR_DEPTH_YUV422RA:
189 if (planar)
190 *planar = true;
191
192 return true;
193 }
194
195 if (planar)
196 *planar = false;
197
198 return false;
199 }
200
201 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
202 unsigned int bpp)
203 {
204 fixed20_12 outf = dfixed_init(out);
205 fixed20_12 inf = dfixed_init(in);
206 u32 dda_inc;
207 int max;
208
209 if (v)
210 max = 15;
211 else {
212 switch (bpp) {
213 case 2:
214 max = 8;
215 break;
216
217 default:
218 WARN_ON_ONCE(1);
219 /* fallthrough */
220 case 4:
221 max = 4;
222 break;
223 }
224 }
225
226 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
227 inf.full -= dfixed_const(1);
228
229 dda_inc = dfixed_div(inf, outf);
230 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
231
232 return dda_inc;
233 }
234
235 static inline u32 compute_initial_dda(unsigned int in)
236 {
237 fixed20_12 inf = dfixed_init(in);
238 return dfixed_frac(inf);
239 }
240
241 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
242 const struct tegra_dc_window *window)
243 {
244 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
245 unsigned long value, flags;
246 bool yuv, planar;
247
248 /*
249 * For YUV planar modes, the number of bytes per pixel takes into
250 * account only the luma component and therefore is 1.
251 */
252 yuv = tegra_dc_format_is_yuv(window->format, &planar);
253 if (!yuv)
254 bpp = window->bits_per_pixel / 8;
255 else
256 bpp = planar ? 1 : 2;
257
258 spin_lock_irqsave(&dc->lock, flags);
259
260 value = WINDOW_A_SELECT << index;
261 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
262
263 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
264 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
265
266 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
267 tegra_dc_writel(dc, value, DC_WIN_POSITION);
268
269 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
270 tegra_dc_writel(dc, value, DC_WIN_SIZE);
271
272 h_offset = window->src.x * bpp;
273 v_offset = window->src.y;
274 h_size = window->src.w * bpp;
275 v_size = window->src.h;
276
277 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
278 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
279
280 /*
281 * For DDA computations the number of bytes per pixel for YUV planar
282 * modes needs to take into account all Y, U and V components.
283 */
284 if (yuv && planar)
285 bpp = 2;
286
287 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
288 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
289
290 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
291 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
292
293 h_dda = compute_initial_dda(window->src.x);
294 v_dda = compute_initial_dda(window->src.y);
295
296 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
297 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
298
299 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
300 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
301
302 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
303
304 if (yuv && planar) {
305 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
306 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
307 value = window->stride[1] << 16 | window->stride[0];
308 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
309 } else {
310 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
311 }
312
313 if (window->bottom_up)
314 v_offset += window->src.h - 1;
315
316 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
317 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
318
319 if (dc->soc->supports_block_linear) {
320 unsigned long height = window->tiling.value;
321
322 switch (window->tiling.mode) {
323 case TEGRA_BO_TILING_MODE_PITCH:
324 value = DC_WINBUF_SURFACE_KIND_PITCH;
325 break;
326
327 case TEGRA_BO_TILING_MODE_TILED:
328 value = DC_WINBUF_SURFACE_KIND_TILED;
329 break;
330
331 case TEGRA_BO_TILING_MODE_BLOCK:
332 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
333 DC_WINBUF_SURFACE_KIND_BLOCK;
334 break;
335 }
336
337 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
338 } else {
339 switch (window->tiling.mode) {
340 case TEGRA_BO_TILING_MODE_PITCH:
341 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
342 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
343 break;
344
345 case TEGRA_BO_TILING_MODE_TILED:
346 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
347 DC_WIN_BUFFER_ADDR_MODE_TILE;
348 break;
349
350 case TEGRA_BO_TILING_MODE_BLOCK:
351 /*
352 * No need to handle this here because ->atomic_check
353 * will already have filtered it out.
354 */
355 break;
356 }
357
358 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
359 }
360
361 value = WIN_ENABLE;
362
363 if (yuv) {
364 /* setup default colorspace conversion coefficients */
365 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
366 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
367 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
368 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
369 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
370 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
371 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
372 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
373
374 value |= CSC_ENABLE;
375 } else if (window->bits_per_pixel < 24) {
376 value |= COLOR_EXPAND;
377 }
378
379 if (window->bottom_up)
380 value |= V_DIRECTION;
381
382 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
383
384 /*
385 * Disable blending and assume Window A is the bottom-most window,
386 * Window C is the top-most window and Window B is in the middle.
387 */
388 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
389 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
390
391 switch (index) {
392 case 0:
393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
395 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
396 break;
397
398 case 1:
399 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
400 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
401 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
402 break;
403
404 case 2:
405 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
407 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
408 break;
409 }
410
411 spin_unlock_irqrestore(&dc->lock, flags);
412 }
413
414 static void tegra_plane_destroy(struct drm_plane *plane)
415 {
416 struct tegra_plane *p = to_tegra_plane(plane);
417
418 drm_plane_cleanup(plane);
419 kfree(p);
420 }
421
422 static const u32 tegra_primary_plane_formats[] = {
423 DRM_FORMAT_XBGR8888,
424 DRM_FORMAT_XRGB8888,
425 DRM_FORMAT_RGB565,
426 };
427
428 static void tegra_primary_plane_destroy(struct drm_plane *plane)
429 {
430 tegra_plane_destroy(plane);
431 }
432
433 static void tegra_plane_reset(struct drm_plane *plane)
434 {
435 struct tegra_plane_state *state;
436
437 if (plane->state)
438 __drm_atomic_helper_plane_destroy_state(plane->state);
439
440 kfree(plane->state);
441 plane->state = NULL;
442
443 state = kzalloc(sizeof(*state), GFP_KERNEL);
444 if (state) {
445 plane->state = &state->base;
446 plane->state->plane = plane;
447 }
448 }
449
450 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
451 {
452 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
453 struct tegra_plane_state *copy;
454
455 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
456 if (!copy)
457 return NULL;
458
459 __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
460 copy->tiling = state->tiling;
461 copy->format = state->format;
462 copy->swap = state->swap;
463
464 return &copy->base;
465 }
466
467 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
468 struct drm_plane_state *state)
469 {
470 __drm_atomic_helper_plane_destroy_state(state);
471 kfree(state);
472 }
473
474 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
475 .update_plane = drm_atomic_helper_update_plane,
476 .disable_plane = drm_atomic_helper_disable_plane,
477 .destroy = tegra_primary_plane_destroy,
478 .reset = tegra_plane_reset,
479 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
480 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
481 };
482
483 static int tegra_plane_prepare_fb(struct drm_plane *plane,
484 const struct drm_plane_state *new_state)
485 {
486 return 0;
487 }
488
489 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
490 const struct drm_plane_state *old_fb)
491 {
492 }
493
494 static int tegra_plane_state_add(struct tegra_plane *plane,
495 struct drm_plane_state *state)
496 {
497 struct drm_crtc_state *crtc_state;
498 struct tegra_dc_state *tegra;
499
500 /* Propagate errors from allocation or locking failures. */
501 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
502 if (IS_ERR(crtc_state))
503 return PTR_ERR(crtc_state);
504
505 tegra = to_dc_state(crtc_state);
506
507 tegra->planes |= WIN_A_ACT_REQ << plane->index;
508
509 return 0;
510 }
511
512 static int tegra_plane_atomic_check(struct drm_plane *plane,
513 struct drm_plane_state *state)
514 {
515 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
516 struct tegra_bo_tiling *tiling = &plane_state->tiling;
517 struct tegra_plane *tegra = to_tegra_plane(plane);
518 struct tegra_dc *dc = to_tegra_dc(state->crtc);
519 int err;
520
521 /* no need for further checks if the plane is being disabled */
522 if (!state->crtc)
523 return 0;
524
525 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
526 &plane_state->swap);
527 if (err < 0)
528 return err;
529
530 err = tegra_fb_get_tiling(state->fb, tiling);
531 if (err < 0)
532 return err;
533
534 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
535 !dc->soc->supports_block_linear) {
536 DRM_ERROR("hardware doesn't support block linear mode\n");
537 return -EINVAL;
538 }
539
540 /*
541 * Tegra doesn't support different strides for U and V planes so we
542 * error out if the user tries to display a framebuffer with such a
543 * configuration.
544 */
545 if (drm_format_num_planes(state->fb->pixel_format) > 2) {
546 if (state->fb->pitches[2] != state->fb->pitches[1]) {
547 DRM_ERROR("unsupported UV-plane configuration\n");
548 return -EINVAL;
549 }
550 }
551
552 err = tegra_plane_state_add(tegra, state);
553 if (err < 0)
554 return err;
555
556 return 0;
557 }
558
559 static void tegra_plane_atomic_update(struct drm_plane *plane,
560 struct drm_plane_state *old_state)
561 {
562 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
563 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
564 struct drm_framebuffer *fb = plane->state->fb;
565 struct tegra_plane *p = to_tegra_plane(plane);
566 struct tegra_dc_window window;
567 unsigned int i;
568
569 /* rien ne va plus */
570 if (!plane->state->crtc || !plane->state->fb)
571 return;
572
573 memset(&window, 0, sizeof(window));
574 window.src.x = plane->state->src_x >> 16;
575 window.src.y = plane->state->src_y >> 16;
576 window.src.w = plane->state->src_w >> 16;
577 window.src.h = plane->state->src_h >> 16;
578 window.dst.x = plane->state->crtc_x;
579 window.dst.y = plane->state->crtc_y;
580 window.dst.w = plane->state->crtc_w;
581 window.dst.h = plane->state->crtc_h;
582 window.bits_per_pixel = fb->bits_per_pixel;
583 window.bottom_up = tegra_fb_is_bottom_up(fb);
584
585 /* copy from state */
586 window.tiling = state->tiling;
587 window.format = state->format;
588 window.swap = state->swap;
589
590 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
591 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
592
593 window.base[i] = bo->paddr + fb->offsets[i];
594 window.stride[i] = fb->pitches[i];
595 }
596
597 tegra_dc_setup_window(dc, p->index, &window);
598 }
599
600 static void tegra_plane_atomic_disable(struct drm_plane *plane,
601 struct drm_plane_state *old_state)
602 {
603 struct tegra_plane *p = to_tegra_plane(plane);
604 struct tegra_dc *dc;
605 unsigned long flags;
606 u32 value;
607
608 /* rien ne va plus */
609 if (!old_state || !old_state->crtc)
610 return;
611
612 dc = to_tegra_dc(old_state->crtc);
613
614 spin_lock_irqsave(&dc->lock, flags);
615
616 value = WINDOW_A_SELECT << p->index;
617 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
618
619 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
620 value &= ~WIN_ENABLE;
621 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
622
623 spin_unlock_irqrestore(&dc->lock, flags);
624 }
625
626 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
627 .prepare_fb = tegra_plane_prepare_fb,
628 .cleanup_fb = tegra_plane_cleanup_fb,
629 .atomic_check = tegra_plane_atomic_check,
630 .atomic_update = tegra_plane_atomic_update,
631 .atomic_disable = tegra_plane_atomic_disable,
632 };
633
634 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
635 struct tegra_dc *dc)
636 {
637 /*
638 * Ideally this would use drm_crtc_mask(), but that would require the
639 * CRTC to already be in the mode_config's list of CRTCs. However, it
640 * will only be added to that list in the drm_crtc_init_with_planes()
641 * (in tegra_dc_init()), which in turn requires registration of these
642 * planes. So we have ourselves a nice little chicken and egg problem
643 * here.
644 *
645 * We work around this by manually creating the mask from the number
646 * of CRTCs that have been registered, and should therefore always be
647 * the same as drm_crtc_index() after registration.
648 */
649 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
650 struct tegra_plane *plane;
651 unsigned int num_formats;
652 const u32 *formats;
653 int err;
654
655 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
656 if (!plane)
657 return ERR_PTR(-ENOMEM);
658
659 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
660 formats = tegra_primary_plane_formats;
661
662 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
663 &tegra_primary_plane_funcs, formats,
664 num_formats, DRM_PLANE_TYPE_PRIMARY,
665 NULL);
666 if (err < 0) {
667 kfree(plane);
668 return ERR_PTR(err);
669 }
670
671 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
672
673 return &plane->base;
674 }
675
676 static const u32 tegra_cursor_plane_formats[] = {
677 DRM_FORMAT_RGBA8888,
678 };
679
680 static int tegra_cursor_atomic_check(struct drm_plane *plane,
681 struct drm_plane_state *state)
682 {
683 struct tegra_plane *tegra = to_tegra_plane(plane);
684 int err;
685
686 /* no need for further checks if the plane is being disabled */
687 if (!state->crtc)
688 return 0;
689
690 /* scaling not supported for cursor */
691 if ((state->src_w >> 16 != state->crtc_w) ||
692 (state->src_h >> 16 != state->crtc_h))
693 return -EINVAL;
694
695 /* only square cursors supported */
696 if (state->src_w != state->src_h)
697 return -EINVAL;
698
699 if (state->crtc_w != 32 && state->crtc_w != 64 &&
700 state->crtc_w != 128 && state->crtc_w != 256)
701 return -EINVAL;
702
703 err = tegra_plane_state_add(tegra, state);
704 if (err < 0)
705 return err;
706
707 return 0;
708 }
709
710 static void tegra_cursor_atomic_update(struct drm_plane *plane,
711 struct drm_plane_state *old_state)
712 {
713 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
714 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
715 struct drm_plane_state *state = plane->state;
716 u32 value = CURSOR_CLIP_DISPLAY;
717
718 /* rien ne va plus */
719 if (!plane->state->crtc || !plane->state->fb)
720 return;
721
722 switch (state->crtc_w) {
723 case 32:
724 value |= CURSOR_SIZE_32x32;
725 break;
726
727 case 64:
728 value |= CURSOR_SIZE_64x64;
729 break;
730
731 case 128:
732 value |= CURSOR_SIZE_128x128;
733 break;
734
735 case 256:
736 value |= CURSOR_SIZE_256x256;
737 break;
738
739 default:
740 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
741 state->crtc_h);
742 return;
743 }
744
745 value |= (bo->paddr >> 10) & 0x3fffff;
746 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
747
748 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
749 value = (bo->paddr >> 32) & 0x3;
750 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
751 #endif
752
753 /* enable cursor and set blend mode */
754 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
755 value |= CURSOR_ENABLE;
756 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
757
758 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
759 value &= ~CURSOR_DST_BLEND_MASK;
760 value &= ~CURSOR_SRC_BLEND_MASK;
761 value |= CURSOR_MODE_NORMAL;
762 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
763 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
764 value |= CURSOR_ALPHA;
765 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
766
767 /* position the cursor */
768 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
769 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
770 }
771
772 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
773 struct drm_plane_state *old_state)
774 {
775 struct tegra_dc *dc;
776 u32 value;
777
778 /* rien ne va plus */
779 if (!old_state || !old_state->crtc)
780 return;
781
782 dc = to_tegra_dc(old_state->crtc);
783
784 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
785 value &= ~CURSOR_ENABLE;
786 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
787 }
788
789 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
790 .update_plane = drm_atomic_helper_update_plane,
791 .disable_plane = drm_atomic_helper_disable_plane,
792 .destroy = tegra_plane_destroy,
793 .reset = tegra_plane_reset,
794 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
795 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
796 };
797
798 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
799 .prepare_fb = tegra_plane_prepare_fb,
800 .cleanup_fb = tegra_plane_cleanup_fb,
801 .atomic_check = tegra_cursor_atomic_check,
802 .atomic_update = tegra_cursor_atomic_update,
803 .atomic_disable = tegra_cursor_atomic_disable,
804 };
805
806 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
807 struct tegra_dc *dc)
808 {
809 struct tegra_plane *plane;
810 unsigned int num_formats;
811 const u32 *formats;
812 int err;
813
814 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815 if (!plane)
816 return ERR_PTR(-ENOMEM);
817
818 /*
819 * This index is kind of fake. The cursor isn't a regular plane, but
820 * its update and activation request bits in DC_CMD_STATE_CONTROL do
821 * use the same programming. Setting this fake index here allows the
822 * code in tegra_add_plane_state() to do the right thing without the
823 * need to special-casing the cursor plane.
824 */
825 plane->index = 6;
826
827 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
828 formats = tegra_cursor_plane_formats;
829
830 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
831 &tegra_cursor_plane_funcs, formats,
832 num_formats, DRM_PLANE_TYPE_CURSOR,
833 NULL);
834 if (err < 0) {
835 kfree(plane);
836 return ERR_PTR(err);
837 }
838
839 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
840
841 return &plane->base;
842 }
843
844 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
845 {
846 tegra_plane_destroy(plane);
847 }
848
849 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
850 .update_plane = drm_atomic_helper_update_plane,
851 .disable_plane = drm_atomic_helper_disable_plane,
852 .destroy = tegra_overlay_plane_destroy,
853 .reset = tegra_plane_reset,
854 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
855 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
856 };
857
858 static const uint32_t tegra_overlay_plane_formats[] = {
859 DRM_FORMAT_XBGR8888,
860 DRM_FORMAT_XRGB8888,
861 DRM_FORMAT_RGB565,
862 DRM_FORMAT_UYVY,
863 DRM_FORMAT_YUYV,
864 DRM_FORMAT_YUV420,
865 DRM_FORMAT_YUV422,
866 };
867
868 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
869 .prepare_fb = tegra_plane_prepare_fb,
870 .cleanup_fb = tegra_plane_cleanup_fb,
871 .atomic_check = tegra_plane_atomic_check,
872 .atomic_update = tegra_plane_atomic_update,
873 .atomic_disable = tegra_plane_atomic_disable,
874 };
875
876 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
877 struct tegra_dc *dc,
878 unsigned int index)
879 {
880 struct tegra_plane *plane;
881 unsigned int num_formats;
882 const u32 *formats;
883 int err;
884
885 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
886 if (!plane)
887 return ERR_PTR(-ENOMEM);
888
889 plane->index = index;
890
891 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
892 formats = tegra_overlay_plane_formats;
893
894 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
895 &tegra_overlay_plane_funcs, formats,
896 num_formats, DRM_PLANE_TYPE_OVERLAY,
897 NULL);
898 if (err < 0) {
899 kfree(plane);
900 return ERR_PTR(err);
901 }
902
903 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
904
905 return &plane->base;
906 }
907
908 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
909 {
910 struct drm_plane *plane;
911 unsigned int i;
912
913 for (i = 0; i < 2; i++) {
914 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
915 if (IS_ERR(plane))
916 return PTR_ERR(plane);
917 }
918
919 return 0;
920 }
921
922 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
923 {
924 if (dc->syncpt)
925 return host1x_syncpt_read(dc->syncpt);
926
927 /* fallback to software emulated VBLANK counter */
928 return drm_crtc_vblank_count(&dc->base);
929 }
930
931 void tegra_dc_enable_vblank(struct tegra_dc *dc)
932 {
933 unsigned long value, flags;
934
935 spin_lock_irqsave(&dc->lock, flags);
936
937 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
938 value |= VBLANK_INT;
939 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
940
941 spin_unlock_irqrestore(&dc->lock, flags);
942 }
943
944 void tegra_dc_disable_vblank(struct tegra_dc *dc)
945 {
946 unsigned long value, flags;
947
948 spin_lock_irqsave(&dc->lock, flags);
949
950 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
951 value &= ~VBLANK_INT;
952 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
953
954 spin_unlock_irqrestore(&dc->lock, flags);
955 }
956
957 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
958 {
959 struct drm_device *drm = dc->base.dev;
960 struct drm_crtc *crtc = &dc->base;
961 unsigned long flags, base;
962 struct tegra_bo *bo;
963
964 spin_lock_irqsave(&drm->event_lock, flags);
965
966 if (!dc->event) {
967 spin_unlock_irqrestore(&drm->event_lock, flags);
968 return;
969 }
970
971 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
972
973 spin_lock(&dc->lock);
974
975 /* check if new start address has been latched */
976 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
977 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
978 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
979 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
980
981 spin_unlock(&dc->lock);
982
983 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
984 drm_crtc_send_vblank_event(crtc, dc->event);
985 drm_crtc_vblank_put(crtc);
986 dc->event = NULL;
987 }
988
989 spin_unlock_irqrestore(&drm->event_lock, flags);
990 }
991
992 static void tegra_dc_destroy(struct drm_crtc *crtc)
993 {
994 drm_crtc_cleanup(crtc);
995 }
996
997 static void tegra_crtc_reset(struct drm_crtc *crtc)
998 {
999 struct tegra_dc_state *state;
1000
1001 if (crtc->state)
1002 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1003
1004 kfree(crtc->state);
1005 crtc->state = NULL;
1006
1007 state = kzalloc(sizeof(*state), GFP_KERNEL);
1008 if (state) {
1009 crtc->state = &state->base;
1010 crtc->state->crtc = crtc;
1011 }
1012
1013 drm_crtc_vblank_reset(crtc);
1014 }
1015
1016 static struct drm_crtc_state *
1017 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1018 {
1019 struct tegra_dc_state *state = to_dc_state(crtc->state);
1020 struct tegra_dc_state *copy;
1021
1022 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1023 if (!copy)
1024 return NULL;
1025
1026 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1027 copy->clk = state->clk;
1028 copy->pclk = state->pclk;
1029 copy->div = state->div;
1030 copy->planes = state->planes;
1031
1032 return &copy->base;
1033 }
1034
1035 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1036 struct drm_crtc_state *state)
1037 {
1038 __drm_atomic_helper_crtc_destroy_state(state);
1039 kfree(state);
1040 }
1041
1042 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1043 .page_flip = drm_atomic_helper_page_flip,
1044 .set_config = drm_atomic_helper_set_config,
1045 .destroy = tegra_dc_destroy,
1046 .reset = tegra_crtc_reset,
1047 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1048 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1049 };
1050
1051 static int tegra_dc_set_timings(struct tegra_dc *dc,
1052 struct drm_display_mode *mode)
1053 {
1054 unsigned int h_ref_to_sync = 1;
1055 unsigned int v_ref_to_sync = 1;
1056 unsigned long value;
1057
1058 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1059
1060 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1061 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1062
1063 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1064 ((mode->hsync_end - mode->hsync_start) << 0);
1065 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1066
1067 value = ((mode->vtotal - mode->vsync_end) << 16) |
1068 ((mode->htotal - mode->hsync_end) << 0);
1069 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1070
1071 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1072 ((mode->hsync_start - mode->hdisplay) << 0);
1073 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1074
1075 value = (mode->vdisplay << 16) | mode->hdisplay;
1076 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1083 * state
1084 * @dc: display controller
1085 * @crtc_state: CRTC atomic state
1086 * @clk: parent clock for display controller
1087 * @pclk: pixel clock
1088 * @div: shift clock divider
1089 *
1090 * Returns:
1091 * 0 on success or a negative error-code on failure.
1092 */
1093 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1094 struct drm_crtc_state *crtc_state,
1095 struct clk *clk, unsigned long pclk,
1096 unsigned int div)
1097 {
1098 struct tegra_dc_state *state = to_dc_state(crtc_state);
1099
1100 if (!clk_has_parent(dc->clk, clk))
1101 return -EINVAL;
1102
1103 state->clk = clk;
1104 state->pclk = pclk;
1105 state->div = div;
1106
1107 return 0;
1108 }
1109
1110 static void tegra_dc_commit_state(struct tegra_dc *dc,
1111 struct tegra_dc_state *state)
1112 {
1113 u32 value;
1114 int err;
1115
1116 err = clk_set_parent(dc->clk, state->clk);
1117 if (err < 0)
1118 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1119
1120 /*
1121 * Outputs may not want to change the parent clock rate. This is only
1122 * relevant to Tegra20 where only a single display PLL is available.
1123 * Since that PLL would typically be used for HDMI, an internal LVDS
1124 * panel would need to be driven by some other clock such as PLL_P
1125 * which is shared with other peripherals. Changing the clock rate
1126 * should therefore be avoided.
1127 */
1128 if (state->pclk > 0) {
1129 err = clk_set_rate(state->clk, state->pclk);
1130 if (err < 0)
1131 dev_err(dc->dev,
1132 "failed to set clock rate to %lu Hz\n",
1133 state->pclk);
1134 }
1135
1136 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1137 state->div);
1138 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1139
1140 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1141 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1142 }
1143
1144 static void tegra_dc_stop(struct tegra_dc *dc)
1145 {
1146 u32 value;
1147
1148 /* stop the display controller */
1149 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1150 value &= ~DISP_CTRL_MODE_MASK;
1151 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1152
1153 tegra_dc_commit(dc);
1154 }
1155
1156 static bool tegra_dc_idle(struct tegra_dc *dc)
1157 {
1158 u32 value;
1159
1160 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1161
1162 return (value & DISP_CTRL_MODE_MASK) == 0;
1163 }
1164
1165 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1166 {
1167 timeout = jiffies + msecs_to_jiffies(timeout);
1168
1169 while (time_before(jiffies, timeout)) {
1170 if (tegra_dc_idle(dc))
1171 return 0;
1172
1173 usleep_range(1000, 2000);
1174 }
1175
1176 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1177 return -ETIMEDOUT;
1178 }
1179
1180 static void tegra_crtc_disable(struct drm_crtc *crtc)
1181 {
1182 struct tegra_dc *dc = to_tegra_dc(crtc);
1183 u32 value;
1184
1185 if (!tegra_dc_idle(dc)) {
1186 tegra_dc_stop(dc);
1187
1188 /*
1189 * Ignore the return value, there isn't anything useful to do
1190 * in case this fails.
1191 */
1192 tegra_dc_wait_idle(dc, 100);
1193 }
1194
1195 /*
1196 * This should really be part of the RGB encoder driver, but clearing
1197 * these bits has the side-effect of stopping the display controller.
1198 * When that happens no VBLANK interrupts will be raised. At the same
1199 * time the encoder is disabled before the display controller, so the
1200 * above code is always going to timeout waiting for the controller
1201 * to go idle.
1202 *
1203 * Given the close coupling between the RGB encoder and the display
1204 * controller doing it here is still kind of okay. None of the other
1205 * encoder drivers require these bits to be cleared.
1206 *
1207 * XXX: Perhaps given that the display controller is switched off at
1208 * this point anyway maybe clearing these bits isn't even useful for
1209 * the RGB encoder?
1210 */
1211 if (dc->rgb) {
1212 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1213 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1214 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1215 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1216 }
1217
1218 tegra_dc_stats_reset(&dc->stats);
1219 drm_crtc_vblank_off(crtc);
1220
1221 pm_runtime_put_sync(dc->dev);
1222 }
1223
1224 static void tegra_crtc_enable(struct drm_crtc *crtc)
1225 {
1226 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1227 struct tegra_dc_state *state = to_dc_state(crtc->state);
1228 struct tegra_dc *dc = to_tegra_dc(crtc);
1229 u32 value;
1230
1231 pm_runtime_get_sync(dc->dev);
1232
1233 /* initialize display controller */
1234 if (dc->syncpt) {
1235 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1236
1237 value = SYNCPT_CNTRL_NO_STALL;
1238 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1239
1240 value = SYNCPT_VSYNC_ENABLE | syncpt;
1241 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1242 }
1243
1244 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1245 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1246 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1247
1248 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1249 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1250 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1251
1252 /* initialize timer */
1253 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1254 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1255 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1256
1257 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1258 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1259 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1260
1261 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1262 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1263 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1264
1265 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1266 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1267 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1268
1269 if (dc->soc->supports_border_color)
1270 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1271
1272 /* apply PLL and pixel clock changes */
1273 tegra_dc_commit_state(dc, state);
1274
1275 /* program display mode */
1276 tegra_dc_set_timings(dc, mode);
1277
1278 /* interlacing isn't supported yet, so disable it */
1279 if (dc->soc->supports_interlacing) {
1280 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1281 value &= ~INTERLACE_ENABLE;
1282 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1283 }
1284
1285 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1286 value &= ~DISP_CTRL_MODE_MASK;
1287 value |= DISP_CTRL_MODE_C_DISPLAY;
1288 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1289
1290 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1291 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1292 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1293 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1294
1295 tegra_dc_commit(dc);
1296
1297 drm_crtc_vblank_on(crtc);
1298 }
1299
1300 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1301 struct drm_crtc_state *state)
1302 {
1303 return 0;
1304 }
1305
1306 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1307 struct drm_crtc_state *old_crtc_state)
1308 {
1309 struct tegra_dc *dc = to_tegra_dc(crtc);
1310
1311 if (crtc->state->event) {
1312 crtc->state->event->pipe = drm_crtc_index(crtc);
1313
1314 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1315
1316 dc->event = crtc->state->event;
1317 crtc->state->event = NULL;
1318 }
1319 }
1320
1321 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1322 struct drm_crtc_state *old_crtc_state)
1323 {
1324 struct tegra_dc_state *state = to_dc_state(crtc->state);
1325 struct tegra_dc *dc = to_tegra_dc(crtc);
1326
1327 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1328 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1329 }
1330
1331 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1332 .disable = tegra_crtc_disable,
1333 .enable = tegra_crtc_enable,
1334 .atomic_check = tegra_crtc_atomic_check,
1335 .atomic_begin = tegra_crtc_atomic_begin,
1336 .atomic_flush = tegra_crtc_atomic_flush,
1337 };
1338
1339 static irqreturn_t tegra_dc_irq(int irq, void *data)
1340 {
1341 struct tegra_dc *dc = data;
1342 unsigned long status;
1343
1344 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1345 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1346
1347 if (status & FRAME_END_INT) {
1348 /*
1349 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1350 */
1351 dc->stats.frames++;
1352 }
1353
1354 if (status & VBLANK_INT) {
1355 /*
1356 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1357 */
1358 drm_crtc_handle_vblank(&dc->base);
1359 tegra_dc_finish_page_flip(dc);
1360 dc->stats.vblank++;
1361 }
1362
1363 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1364 /*
1365 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1366 */
1367 dc->stats.underflow++;
1368 }
1369
1370 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1371 /*
1372 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1373 */
1374 dc->stats.overflow++;
1375 }
1376
1377 return IRQ_HANDLED;
1378 }
1379
1380 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1381 {
1382 struct drm_info_node *node = s->private;
1383 struct tegra_dc *dc = node->info_ent->data;
1384 int err = 0;
1385
1386 drm_modeset_lock_crtc(&dc->base, NULL);
1387
1388 if (!dc->base.state->active) {
1389 err = -EBUSY;
1390 goto unlock;
1391 }
1392
1393 #define DUMP_REG(name) \
1394 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1395 tegra_dc_readl(dc, name))
1396
1397 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1398 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1399 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1400 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1401 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1402 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1403 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1404 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1405 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1406 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1407 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1408 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1409 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1410 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1411 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1412 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1413 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1414 DUMP_REG(DC_CMD_INT_STATUS);
1415 DUMP_REG(DC_CMD_INT_MASK);
1416 DUMP_REG(DC_CMD_INT_ENABLE);
1417 DUMP_REG(DC_CMD_INT_TYPE);
1418 DUMP_REG(DC_CMD_INT_POLARITY);
1419 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1420 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1421 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1422 DUMP_REG(DC_CMD_STATE_ACCESS);
1423 DUMP_REG(DC_CMD_STATE_CONTROL);
1424 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1425 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1426 DUMP_REG(DC_COM_CRC_CONTROL);
1427 DUMP_REG(DC_COM_CRC_CHECKSUM);
1428 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1429 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1430 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1431 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1432 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1433 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1434 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1435 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1436 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1437 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1438 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1439 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1440 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1441 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1442 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1443 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1444 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1445 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1446 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1447 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1448 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1449 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1450 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1451 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1452 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1453 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1454 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1455 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1456 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1457 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1458 DUMP_REG(DC_COM_SPI_CONTROL);
1459 DUMP_REG(DC_COM_SPI_START_BYTE);
1460 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1461 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1462 DUMP_REG(DC_COM_HSPI_CS_DC);
1463 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1464 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1465 DUMP_REG(DC_COM_GPIO_CTRL);
1466 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1467 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1468 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1469 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1470 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1471 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1472 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1473 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1474 DUMP_REG(DC_DISP_REF_TO_SYNC);
1475 DUMP_REG(DC_DISP_SYNC_WIDTH);
1476 DUMP_REG(DC_DISP_BACK_PORCH);
1477 DUMP_REG(DC_DISP_ACTIVE);
1478 DUMP_REG(DC_DISP_FRONT_PORCH);
1479 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1480 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1481 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1482 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1483 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1484 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1485 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1486 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1487 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1488 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1489 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1490 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1491 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1492 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1493 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1494 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1495 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1496 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1497 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1498 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1499 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1500 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1501 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1502 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1503 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1504 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1505 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1506 DUMP_REG(DC_DISP_M0_CONTROL);
1507 DUMP_REG(DC_DISP_M1_CONTROL);
1508 DUMP_REG(DC_DISP_DI_CONTROL);
1509 DUMP_REG(DC_DISP_PP_CONTROL);
1510 DUMP_REG(DC_DISP_PP_SELECT_A);
1511 DUMP_REG(DC_DISP_PP_SELECT_B);
1512 DUMP_REG(DC_DISP_PP_SELECT_C);
1513 DUMP_REG(DC_DISP_PP_SELECT_D);
1514 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1515 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1516 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1517 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1518 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1519 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1520 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1521 DUMP_REG(DC_DISP_BORDER_COLOR);
1522 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1523 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1524 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1525 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1526 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1527 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1528 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1529 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1530 DUMP_REG(DC_DISP_CURSOR_POSITION);
1531 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1532 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1533 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1534 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1535 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1536 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1537 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1538 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1539 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1540 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1541 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1542 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1543 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1544 DUMP_REG(DC_DISP_SD_CONTROL);
1545 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1546 DUMP_REG(DC_DISP_SD_LUT(0));
1547 DUMP_REG(DC_DISP_SD_LUT(1));
1548 DUMP_REG(DC_DISP_SD_LUT(2));
1549 DUMP_REG(DC_DISP_SD_LUT(3));
1550 DUMP_REG(DC_DISP_SD_LUT(4));
1551 DUMP_REG(DC_DISP_SD_LUT(5));
1552 DUMP_REG(DC_DISP_SD_LUT(6));
1553 DUMP_REG(DC_DISP_SD_LUT(7));
1554 DUMP_REG(DC_DISP_SD_LUT(8));
1555 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1556 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1557 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1558 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1559 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1560 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1561 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1562 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1563 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1564 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1565 DUMP_REG(DC_DISP_SD_BL_TF(0));
1566 DUMP_REG(DC_DISP_SD_BL_TF(1));
1567 DUMP_REG(DC_DISP_SD_BL_TF(2));
1568 DUMP_REG(DC_DISP_SD_BL_TF(3));
1569 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1570 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1571 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1572 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1573 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1574 DUMP_REG(DC_WIN_WIN_OPTIONS);
1575 DUMP_REG(DC_WIN_BYTE_SWAP);
1576 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1577 DUMP_REG(DC_WIN_COLOR_DEPTH);
1578 DUMP_REG(DC_WIN_POSITION);
1579 DUMP_REG(DC_WIN_SIZE);
1580 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1581 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1582 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1583 DUMP_REG(DC_WIN_DDA_INC);
1584 DUMP_REG(DC_WIN_LINE_STRIDE);
1585 DUMP_REG(DC_WIN_BUF_STRIDE);
1586 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1587 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1588 DUMP_REG(DC_WIN_DV_CONTROL);
1589 DUMP_REG(DC_WIN_BLEND_NOKEY);
1590 DUMP_REG(DC_WIN_BLEND_1WIN);
1591 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1592 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1593 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1594 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1595 DUMP_REG(DC_WINBUF_START_ADDR);
1596 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1597 DUMP_REG(DC_WINBUF_START_ADDR_U);
1598 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1599 DUMP_REG(DC_WINBUF_START_ADDR_V);
1600 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1601 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1602 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1603 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1604 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1605 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1606 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1607 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1608 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1609
1610 #undef DUMP_REG
1611
1612 unlock:
1613 drm_modeset_unlock_crtc(&dc->base);
1614 return err;
1615 }
1616
1617 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1618 {
1619 struct drm_info_node *node = s->private;
1620 struct tegra_dc *dc = node->info_ent->data;
1621 int err = 0;
1622 u32 value;
1623
1624 drm_modeset_lock_crtc(&dc->base, NULL);
1625
1626 if (!dc->base.state->active) {
1627 err = -EBUSY;
1628 goto unlock;
1629 }
1630
1631 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1632 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1633 tegra_dc_commit(dc);
1634
1635 drm_crtc_wait_one_vblank(&dc->base);
1636 drm_crtc_wait_one_vblank(&dc->base);
1637
1638 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1639 seq_printf(s, "%08x\n", value);
1640
1641 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1642
1643 unlock:
1644 drm_modeset_unlock_crtc(&dc->base);
1645 return err;
1646 }
1647
1648 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1649 {
1650 struct drm_info_node *node = s->private;
1651 struct tegra_dc *dc = node->info_ent->data;
1652
1653 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1654 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1655 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1656 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1657
1658 return 0;
1659 }
1660
1661 static struct drm_info_list debugfs_files[] = {
1662 { "regs", tegra_dc_show_regs, 0, NULL },
1663 { "crc", tegra_dc_show_crc, 0, NULL },
1664 { "stats", tegra_dc_show_stats, 0, NULL },
1665 };
1666
1667 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1668 {
1669 unsigned int i;
1670 char *name;
1671 int err;
1672
1673 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1674 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1675 kfree(name);
1676
1677 if (!dc->debugfs)
1678 return -ENOMEM;
1679
1680 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1681 GFP_KERNEL);
1682 if (!dc->debugfs_files) {
1683 err = -ENOMEM;
1684 goto remove;
1685 }
1686
1687 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1688 dc->debugfs_files[i].data = dc;
1689
1690 err = drm_debugfs_create_files(dc->debugfs_files,
1691 ARRAY_SIZE(debugfs_files),
1692 dc->debugfs, minor);
1693 if (err < 0)
1694 goto free;
1695
1696 dc->minor = minor;
1697
1698 return 0;
1699
1700 free:
1701 kfree(dc->debugfs_files);
1702 dc->debugfs_files = NULL;
1703 remove:
1704 debugfs_remove(dc->debugfs);
1705 dc->debugfs = NULL;
1706
1707 return err;
1708 }
1709
1710 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1711 {
1712 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1713 dc->minor);
1714 dc->minor = NULL;
1715
1716 kfree(dc->debugfs_files);
1717 dc->debugfs_files = NULL;
1718
1719 debugfs_remove(dc->debugfs);
1720 dc->debugfs = NULL;
1721
1722 return 0;
1723 }
1724
1725 static int tegra_dc_init(struct host1x_client *client)
1726 {
1727 struct drm_device *drm = dev_get_drvdata(client->parent);
1728 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1729 struct tegra_dc *dc = host1x_client_to_dc(client);
1730 struct tegra_drm *tegra = drm->dev_private;
1731 struct drm_plane *primary = NULL;
1732 struct drm_plane *cursor = NULL;
1733 int err;
1734
1735 dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1736 if (!dc->syncpt)
1737 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1738
1739 if (tegra->domain) {
1740 err = iommu_attach_device(tegra->domain, dc->dev);
1741 if (err < 0) {
1742 dev_err(dc->dev, "failed to attach to domain: %d\n",
1743 err);
1744 return err;
1745 }
1746
1747 dc->domain = tegra->domain;
1748 }
1749
1750 primary = tegra_dc_primary_plane_create(drm, dc);
1751 if (IS_ERR(primary)) {
1752 err = PTR_ERR(primary);
1753 goto cleanup;
1754 }
1755
1756 if (dc->soc->supports_cursor) {
1757 cursor = tegra_dc_cursor_plane_create(drm, dc);
1758 if (IS_ERR(cursor)) {
1759 err = PTR_ERR(cursor);
1760 goto cleanup;
1761 }
1762 }
1763
1764 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1765 &tegra_crtc_funcs, NULL);
1766 if (err < 0)
1767 goto cleanup;
1768
1769 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1770
1771 /*
1772 * Keep track of the minimum pitch alignment across all display
1773 * controllers.
1774 */
1775 if (dc->soc->pitch_align > tegra->pitch_align)
1776 tegra->pitch_align = dc->soc->pitch_align;
1777
1778 err = tegra_dc_rgb_init(drm, dc);
1779 if (err < 0 && err != -ENODEV) {
1780 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1781 goto cleanup;
1782 }
1783
1784 err = tegra_dc_add_planes(drm, dc);
1785 if (err < 0)
1786 goto cleanup;
1787
1788 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1789 err = tegra_dc_debugfs_init(dc, drm->primary);
1790 if (err < 0)
1791 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1792 }
1793
1794 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1795 dev_name(dc->dev), dc);
1796 if (err < 0) {
1797 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1798 err);
1799 goto cleanup;
1800 }
1801
1802 return 0;
1803
1804 cleanup:
1805 if (cursor)
1806 drm_plane_cleanup(cursor);
1807
1808 if (primary)
1809 drm_plane_cleanup(primary);
1810
1811 if (tegra->domain) {
1812 iommu_detach_device(tegra->domain, dc->dev);
1813 dc->domain = NULL;
1814 }
1815
1816 return err;
1817 }
1818
1819 static int tegra_dc_exit(struct host1x_client *client)
1820 {
1821 struct tegra_dc *dc = host1x_client_to_dc(client);
1822 int err;
1823
1824 devm_free_irq(dc->dev, dc->irq, dc);
1825
1826 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1827 err = tegra_dc_debugfs_exit(dc);
1828 if (err < 0)
1829 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1830 }
1831
1832 err = tegra_dc_rgb_exit(dc);
1833 if (err) {
1834 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1835 return err;
1836 }
1837
1838 if (dc->domain) {
1839 iommu_detach_device(dc->domain, dc->dev);
1840 dc->domain = NULL;
1841 }
1842
1843 host1x_syncpt_free(dc->syncpt);
1844
1845 return 0;
1846 }
1847
1848 static const struct host1x_client_ops dc_client_ops = {
1849 .init = tegra_dc_init,
1850 .exit = tegra_dc_exit,
1851 };
1852
1853 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1854 .supports_border_color = true,
1855 .supports_interlacing = false,
1856 .supports_cursor = false,
1857 .supports_block_linear = false,
1858 .pitch_align = 8,
1859 .has_powergate = false,
1860 };
1861
1862 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1863 .supports_border_color = true,
1864 .supports_interlacing = false,
1865 .supports_cursor = false,
1866 .supports_block_linear = false,
1867 .pitch_align = 8,
1868 .has_powergate = false,
1869 };
1870
1871 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1872 .supports_border_color = true,
1873 .supports_interlacing = false,
1874 .supports_cursor = false,
1875 .supports_block_linear = false,
1876 .pitch_align = 64,
1877 .has_powergate = true,
1878 };
1879
1880 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1881 .supports_border_color = false,
1882 .supports_interlacing = true,
1883 .supports_cursor = true,
1884 .supports_block_linear = true,
1885 .pitch_align = 64,
1886 .has_powergate = true,
1887 };
1888
1889 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1890 .supports_border_color = false,
1891 .supports_interlacing = true,
1892 .supports_cursor = true,
1893 .supports_block_linear = true,
1894 .pitch_align = 64,
1895 .has_powergate = true,
1896 };
1897
1898 static const struct of_device_id tegra_dc_of_match[] = {
1899 {
1900 .compatible = "nvidia,tegra210-dc",
1901 .data = &tegra210_dc_soc_info,
1902 }, {
1903 .compatible = "nvidia,tegra124-dc",
1904 .data = &tegra124_dc_soc_info,
1905 }, {
1906 .compatible = "nvidia,tegra114-dc",
1907 .data = &tegra114_dc_soc_info,
1908 }, {
1909 .compatible = "nvidia,tegra30-dc",
1910 .data = &tegra30_dc_soc_info,
1911 }, {
1912 .compatible = "nvidia,tegra20-dc",
1913 .data = &tegra20_dc_soc_info,
1914 }, {
1915 /* sentinel */
1916 }
1917 };
1918 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1919
1920 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1921 {
1922 struct device_node *np;
1923 u32 value = 0;
1924 int err;
1925
1926 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1927 if (err < 0) {
1928 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1929
1930 /*
1931 * If the nvidia,head property isn't present, try to find the
1932 * correct head number by looking up the position of this
1933 * display controller's node within the device tree. Assuming
1934 * that the nodes are ordered properly in the DTS file and
1935 * that the translation into a flattened device tree blob
1936 * preserves that ordering this will actually yield the right
1937 * head number.
1938 *
1939 * If those assumptions don't hold, this will still work for
1940 * cases where only a single display controller is used.
1941 */
1942 for_each_matching_node(np, tegra_dc_of_match) {
1943 if (np == dc->dev->of_node) {
1944 of_node_put(np);
1945 break;
1946 }
1947
1948 value++;
1949 }
1950 }
1951
1952 dc->pipe = value;
1953
1954 return 0;
1955 }
1956
1957 static int tegra_dc_probe(struct platform_device *pdev)
1958 {
1959 const struct of_device_id *id;
1960 struct resource *regs;
1961 struct tegra_dc *dc;
1962 int err;
1963
1964 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1965 if (!dc)
1966 return -ENOMEM;
1967
1968 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1969 if (!id)
1970 return -ENODEV;
1971
1972 spin_lock_init(&dc->lock);
1973 INIT_LIST_HEAD(&dc->list);
1974 dc->dev = &pdev->dev;
1975 dc->soc = id->data;
1976
1977 err = tegra_dc_parse_dt(dc);
1978 if (err < 0)
1979 return err;
1980
1981 dc->clk = devm_clk_get(&pdev->dev, NULL);
1982 if (IS_ERR(dc->clk)) {
1983 dev_err(&pdev->dev, "failed to get clock\n");
1984 return PTR_ERR(dc->clk);
1985 }
1986
1987 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1988 if (IS_ERR(dc->rst)) {
1989 dev_err(&pdev->dev, "failed to get reset\n");
1990 return PTR_ERR(dc->rst);
1991 }
1992
1993 reset_control_assert(dc->rst);
1994
1995 if (dc->soc->has_powergate) {
1996 if (dc->pipe == 0)
1997 dc->powergate = TEGRA_POWERGATE_DIS;
1998 else
1999 dc->powergate = TEGRA_POWERGATE_DISB;
2000
2001 tegra_powergate_power_off(dc->powergate);
2002 }
2003
2004 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2005 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2006 if (IS_ERR(dc->regs))
2007 return PTR_ERR(dc->regs);
2008
2009 dc->irq = platform_get_irq(pdev, 0);
2010 if (dc->irq < 0) {
2011 dev_err(&pdev->dev, "failed to get IRQ\n");
2012 return -ENXIO;
2013 }
2014
2015 err = tegra_dc_rgb_probe(dc);
2016 if (err < 0 && err != -ENODEV) {
2017 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2018 return err;
2019 }
2020
2021 platform_set_drvdata(pdev, dc);
2022 pm_runtime_enable(&pdev->dev);
2023
2024 INIT_LIST_HEAD(&dc->client.list);
2025 dc->client.ops = &dc_client_ops;
2026 dc->client.dev = &pdev->dev;
2027
2028 err = host1x_client_register(&dc->client);
2029 if (err < 0) {
2030 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2031 err);
2032 return err;
2033 }
2034
2035 return 0;
2036 }
2037
2038 static int tegra_dc_remove(struct platform_device *pdev)
2039 {
2040 struct tegra_dc *dc = platform_get_drvdata(pdev);
2041 int err;
2042
2043 err = host1x_client_unregister(&dc->client);
2044 if (err < 0) {
2045 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2046 err);
2047 return err;
2048 }
2049
2050 err = tegra_dc_rgb_remove(dc);
2051 if (err < 0) {
2052 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2053 return err;
2054 }
2055
2056 pm_runtime_disable(&pdev->dev);
2057
2058 return 0;
2059 }
2060
2061 #ifdef CONFIG_PM
2062 static int tegra_dc_suspend(struct device *dev)
2063 {
2064 struct tegra_dc *dc = dev_get_drvdata(dev);
2065 int err;
2066
2067 err = reset_control_assert(dc->rst);
2068 if (err < 0) {
2069 dev_err(dev, "failed to assert reset: %d\n", err);
2070 return err;
2071 }
2072
2073 if (dc->soc->has_powergate)
2074 tegra_powergate_power_off(dc->powergate);
2075
2076 clk_disable_unprepare(dc->clk);
2077
2078 return 0;
2079 }
2080
2081 static int tegra_dc_resume(struct device *dev)
2082 {
2083 struct tegra_dc *dc = dev_get_drvdata(dev);
2084 int err;
2085
2086 if (dc->soc->has_powergate) {
2087 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2088 dc->rst);
2089 if (err < 0) {
2090 dev_err(dev, "failed to power partition: %d\n", err);
2091 return err;
2092 }
2093 } else {
2094 err = clk_prepare_enable(dc->clk);
2095 if (err < 0) {
2096 dev_err(dev, "failed to enable clock: %d\n", err);
2097 return err;
2098 }
2099
2100 err = reset_control_deassert(dc->rst);
2101 if (err < 0) {
2102 dev_err(dev, "failed to deassert reset: %d\n", err);
2103 return err;
2104 }
2105 }
2106
2107 return 0;
2108 }
2109 #endif
2110
2111 static const struct dev_pm_ops tegra_dc_pm_ops = {
2112 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2113 };
2114
2115 struct platform_driver tegra_dc_driver = {
2116 .driver = {
2117 .name = "tegra-dc",
2118 .of_match_table = tegra_dc_of_match,
2119 .pm = &tegra_dc_pm_ops,
2120 },
2121 .probe = tegra_dc_probe,
2122 .remove = tegra_dc_remove,
2123 };
This page took 0.077395 seconds and 5 git commands to generate.