Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 #include <linux/reservation.h>
44
45 #define TTM_ASSERT_LOCKED(param)
46 #define TTM_DEBUG(fmt, arg...)
47 #define TTM_BO_HASH_ORDER 13
48
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53 .name = "bo_count",
54 .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
58 uint32_t *mem_type)
59 {
60 int i;
61
62 for (i = 0; i <= TTM_PL_PRIV5; i++)
63 if (place->flags & (1 << i)) {
64 *mem_type = i;
65 return 0;
66 }
67 return -EINVAL;
68 }
69
70 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
71 {
72 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
73
74 pr_err(" has_type: %d\n", man->has_type);
75 pr_err(" use_type: %d\n", man->use_type);
76 pr_err(" flags: 0x%08X\n", man->flags);
77 pr_err(" gpu_offset: 0x%08llX\n", man->gpu_offset);
78 pr_err(" size: %llu\n", man->size);
79 pr_err(" available_caching: 0x%08X\n", man->available_caching);
80 pr_err(" default_caching: 0x%08X\n", man->default_caching);
81 if (mem_type != TTM_PL_SYSTEM)
82 (*man->func->debug)(man, TTM_PFX);
83 }
84
85 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
86 struct ttm_placement *placement)
87 {
88 int i, ret, mem_type;
89
90 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
91 bo, bo->mem.num_pages, bo->mem.size >> 10,
92 bo->mem.size >> 20);
93 for (i = 0; i < placement->num_placement; i++) {
94 ret = ttm_mem_type_from_place(&placement->placement[i],
95 &mem_type);
96 if (ret)
97 return;
98 pr_err(" placement[%d]=0x%08X (%d)\n",
99 i, placement->placement[i].flags, mem_type);
100 ttm_mem_type_debug(bo->bdev, mem_type);
101 }
102 }
103
104 static ssize_t ttm_bo_global_show(struct kobject *kobj,
105 struct attribute *attr,
106 char *buffer)
107 {
108 struct ttm_bo_global *glob =
109 container_of(kobj, struct ttm_bo_global, kobj);
110
111 return snprintf(buffer, PAGE_SIZE, "%lu\n",
112 (unsigned long) atomic_read(&glob->bo_count));
113 }
114
115 static struct attribute *ttm_bo_global_attrs[] = {
116 &ttm_bo_count,
117 NULL
118 };
119
120 static const struct sysfs_ops ttm_bo_global_ops = {
121 .show = &ttm_bo_global_show
122 };
123
124 static struct kobj_type ttm_bo_glob_kobj_type = {
125 .release = &ttm_bo_global_kobj_release,
126 .sysfs_ops = &ttm_bo_global_ops,
127 .default_attrs = ttm_bo_global_attrs
128 };
129
130
131 static inline uint32_t ttm_bo_type_flags(unsigned type)
132 {
133 return 1 << (type);
134 }
135
136 static void ttm_bo_release_list(struct kref *list_kref)
137 {
138 struct ttm_buffer_object *bo =
139 container_of(list_kref, struct ttm_buffer_object, list_kref);
140 struct ttm_bo_device *bdev = bo->bdev;
141 size_t acc_size = bo->acc_size;
142
143 BUG_ON(atomic_read(&bo->list_kref.refcount));
144 BUG_ON(atomic_read(&bo->kref.refcount));
145 BUG_ON(atomic_read(&bo->cpu_writers));
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
149 ttm_tt_destroy(bo->ttm);
150 atomic_dec(&bo->glob->bo_count);
151 fence_put(bo->moving);
152 if (bo->resv == &bo->ttm_resv)
153 reservation_object_fini(&bo->ttm_resv);
154 mutex_destroy(&bo->wu_mutex);
155 if (bo->destroy)
156 bo->destroy(bo);
157 else {
158 kfree(bo);
159 }
160 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
161 }
162
163 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
164 {
165 struct ttm_bo_device *bdev = bo->bdev;
166
167 lockdep_assert_held(&bo->resv->lock.base);
168
169 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
170
171 BUG_ON(!list_empty(&bo->lru));
172
173 list_add(&bo->lru, bdev->driver->lru_tail(bo));
174 kref_get(&bo->list_kref);
175
176 if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
177 list_add(&bo->swap, bdev->driver->swap_lru_tail(bo));
178 kref_get(&bo->list_kref);
179 }
180 }
181 }
182 EXPORT_SYMBOL(ttm_bo_add_to_lru);
183
184 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
185 {
186 struct ttm_bo_device *bdev = bo->bdev;
187 int put_count = 0;
188
189 if (bdev->driver->lru_removal)
190 bdev->driver->lru_removal(bo);
191
192 if (!list_empty(&bo->swap)) {
193 list_del_init(&bo->swap);
194 ++put_count;
195 }
196 if (!list_empty(&bo->lru)) {
197 list_del_init(&bo->lru);
198 ++put_count;
199 }
200
201 return put_count;
202 }
203
204 static void ttm_bo_ref_bug(struct kref *list_kref)
205 {
206 BUG();
207 }
208
209 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
210 bool never_free)
211 {
212 kref_sub(&bo->list_kref, count,
213 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
214 }
215
216 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
217 {
218 int put_count;
219
220 spin_lock(&bo->glob->lru_lock);
221 put_count = ttm_bo_del_from_lru(bo);
222 spin_unlock(&bo->glob->lru_lock);
223 ttm_bo_list_ref_sub(bo, put_count, true);
224 }
225 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
226
227 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
228 {
229 struct ttm_bo_device *bdev = bo->bdev;
230 int put_count = 0;
231
232 lockdep_assert_held(&bo->resv->lock.base);
233
234 if (bdev->driver->lru_removal)
235 bdev->driver->lru_removal(bo);
236
237 put_count = ttm_bo_del_from_lru(bo);
238 ttm_bo_list_ref_sub(bo, put_count, true);
239 ttm_bo_add_to_lru(bo);
240 }
241 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
242
243 struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo)
244 {
245 return bo->bdev->man[bo->mem.mem_type].lru.prev;
246 }
247 EXPORT_SYMBOL(ttm_bo_default_lru_tail);
248
249 struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo)
250 {
251 return bo->glob->swap_lru.prev;
252 }
253 EXPORT_SYMBOL(ttm_bo_default_swap_lru_tail);
254
255 /*
256 * Call bo->mutex locked.
257 */
258 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
259 {
260 struct ttm_bo_device *bdev = bo->bdev;
261 struct ttm_bo_global *glob = bo->glob;
262 int ret = 0;
263 uint32_t page_flags = 0;
264
265 TTM_ASSERT_LOCKED(&bo->mutex);
266 bo->ttm = NULL;
267
268 if (bdev->need_dma32)
269 page_flags |= TTM_PAGE_FLAG_DMA32;
270
271 switch (bo->type) {
272 case ttm_bo_type_device:
273 if (zero_alloc)
274 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
275 case ttm_bo_type_kernel:
276 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
277 page_flags, glob->dummy_read_page);
278 if (unlikely(bo->ttm == NULL))
279 ret = -ENOMEM;
280 break;
281 case ttm_bo_type_sg:
282 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
283 page_flags | TTM_PAGE_FLAG_SG,
284 glob->dummy_read_page);
285 if (unlikely(bo->ttm == NULL)) {
286 ret = -ENOMEM;
287 break;
288 }
289 bo->ttm->sg = bo->sg;
290 break;
291 default:
292 pr_err("Illegal buffer object type\n");
293 ret = -EINVAL;
294 break;
295 }
296
297 return ret;
298 }
299
300 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
301 struct ttm_mem_reg *mem,
302 bool evict, bool interruptible,
303 bool no_wait_gpu)
304 {
305 struct ttm_bo_device *bdev = bo->bdev;
306 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
307 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
308 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
309 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
310 int ret = 0;
311
312 if (old_is_pci || new_is_pci ||
313 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
314 ret = ttm_mem_io_lock(old_man, true);
315 if (unlikely(ret != 0))
316 goto out_err;
317 ttm_bo_unmap_virtual_locked(bo);
318 ttm_mem_io_unlock(old_man);
319 }
320
321 /*
322 * Create and bind a ttm if required.
323 */
324
325 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
326 if (bo->ttm == NULL) {
327 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
328 ret = ttm_bo_add_ttm(bo, zero);
329 if (ret)
330 goto out_err;
331 }
332
333 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
334 if (ret)
335 goto out_err;
336
337 if (mem->mem_type != TTM_PL_SYSTEM) {
338 ret = ttm_tt_bind(bo->ttm, mem);
339 if (ret)
340 goto out_err;
341 }
342
343 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
344 if (bdev->driver->move_notify)
345 bdev->driver->move_notify(bo, mem);
346 bo->mem = *mem;
347 mem->mm_node = NULL;
348 goto moved;
349 }
350 }
351
352 if (bdev->driver->move_notify)
353 bdev->driver->move_notify(bo, mem);
354
355 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
356 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
357 ret = ttm_bo_move_ttm(bo, evict, interruptible, no_wait_gpu,
358 mem);
359 else if (bdev->driver->move)
360 ret = bdev->driver->move(bo, evict, interruptible,
361 no_wait_gpu, mem);
362 else
363 ret = ttm_bo_move_memcpy(bo, evict, interruptible,
364 no_wait_gpu, mem);
365
366 if (ret) {
367 if (bdev->driver->move_notify) {
368 struct ttm_mem_reg tmp_mem = *mem;
369 *mem = bo->mem;
370 bo->mem = tmp_mem;
371 bdev->driver->move_notify(bo, mem);
372 bo->mem = *mem;
373 *mem = tmp_mem;
374 }
375
376 goto out_err;
377 }
378
379 moved:
380 if (bo->evicted) {
381 if (bdev->driver->invalidate_caches) {
382 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
383 if (ret)
384 pr_err("Can not flush read caches\n");
385 }
386 bo->evicted = false;
387 }
388
389 if (bo->mem.mm_node) {
390 bo->offset = (bo->mem.start << PAGE_SHIFT) +
391 bdev->man[bo->mem.mem_type].gpu_offset;
392 bo->cur_placement = bo->mem.placement;
393 } else
394 bo->offset = 0;
395
396 return 0;
397
398 out_err:
399 new_man = &bdev->man[bo->mem.mem_type];
400 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
401 ttm_tt_destroy(bo->ttm);
402 bo->ttm = NULL;
403 }
404
405 return ret;
406 }
407
408 /**
409 * Call bo::reserved.
410 * Will release GPU memory type usage on destruction.
411 * This is the place to put in driver specific hooks to release
412 * driver private resources.
413 * Will release the bo::reserved lock.
414 */
415
416 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
417 {
418 if (bo->bdev->driver->move_notify)
419 bo->bdev->driver->move_notify(bo, NULL);
420
421 ttm_tt_destroy(bo->ttm);
422 bo->ttm = NULL;
423 ttm_bo_mem_put(bo, &bo->mem);
424
425 ww_mutex_unlock (&bo->resv->lock);
426 }
427
428 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
429 {
430 struct reservation_object_list *fobj;
431 struct fence *fence;
432 int i;
433
434 fobj = reservation_object_get_list(bo->resv);
435 fence = reservation_object_get_excl(bo->resv);
436 if (fence && !fence->ops->signaled)
437 fence_enable_sw_signaling(fence);
438
439 for (i = 0; fobj && i < fobj->shared_count; ++i) {
440 fence = rcu_dereference_protected(fobj->shared[i],
441 reservation_object_held(bo->resv));
442
443 if (!fence->ops->signaled)
444 fence_enable_sw_signaling(fence);
445 }
446 }
447
448 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
449 {
450 struct ttm_bo_device *bdev = bo->bdev;
451 struct ttm_bo_global *glob = bo->glob;
452 int put_count;
453 int ret;
454
455 spin_lock(&glob->lru_lock);
456 ret = __ttm_bo_reserve(bo, false, true, NULL);
457
458 if (!ret) {
459 if (!ttm_bo_wait(bo, false, true)) {
460 put_count = ttm_bo_del_from_lru(bo);
461
462 spin_unlock(&glob->lru_lock);
463 ttm_bo_cleanup_memtype_use(bo);
464
465 ttm_bo_list_ref_sub(bo, put_count, true);
466
467 return;
468 } else
469 ttm_bo_flush_all_fences(bo);
470
471 /*
472 * Make NO_EVICT bos immediately available to
473 * shrinkers, now that they are queued for
474 * destruction.
475 */
476 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
477 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
478 ttm_bo_add_to_lru(bo);
479 }
480
481 __ttm_bo_unreserve(bo);
482 }
483
484 kref_get(&bo->list_kref);
485 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
486 spin_unlock(&glob->lru_lock);
487
488 schedule_delayed_work(&bdev->wq,
489 ((HZ / 100) < 1) ? 1 : HZ / 100);
490 }
491
492 /**
493 * function ttm_bo_cleanup_refs_and_unlock
494 * If bo idle, remove from delayed- and lru lists, and unref.
495 * If not idle, do nothing.
496 *
497 * Must be called with lru_lock and reservation held, this function
498 * will drop both before returning.
499 *
500 * @interruptible Any sleeps should occur interruptibly.
501 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
502 */
503
504 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
505 bool interruptible,
506 bool no_wait_gpu)
507 {
508 struct ttm_bo_global *glob = bo->glob;
509 int put_count;
510 int ret;
511
512 ret = ttm_bo_wait(bo, false, true);
513
514 if (ret && !no_wait_gpu) {
515 long lret;
516 ww_mutex_unlock(&bo->resv->lock);
517 spin_unlock(&glob->lru_lock);
518
519 lret = reservation_object_wait_timeout_rcu(bo->resv,
520 true,
521 interruptible,
522 30 * HZ);
523
524 if (lret < 0)
525 return lret;
526 else if (lret == 0)
527 return -EBUSY;
528
529 spin_lock(&glob->lru_lock);
530 ret = __ttm_bo_reserve(bo, false, true, NULL);
531
532 /*
533 * We raced, and lost, someone else holds the reservation now,
534 * and is probably busy in ttm_bo_cleanup_memtype_use.
535 *
536 * Even if it's not the case, because we finished waiting any
537 * delayed destruction would succeed, so just return success
538 * here.
539 */
540 if (ret) {
541 spin_unlock(&glob->lru_lock);
542 return 0;
543 }
544
545 /*
546 * remove sync_obj with ttm_bo_wait, the wait should be
547 * finished, and no new wait object should have been added.
548 */
549 ret = ttm_bo_wait(bo, false, true);
550 WARN_ON(ret);
551 }
552
553 if (ret || unlikely(list_empty(&bo->ddestroy))) {
554 __ttm_bo_unreserve(bo);
555 spin_unlock(&glob->lru_lock);
556 return ret;
557 }
558
559 put_count = ttm_bo_del_from_lru(bo);
560 list_del_init(&bo->ddestroy);
561 ++put_count;
562
563 spin_unlock(&glob->lru_lock);
564 ttm_bo_cleanup_memtype_use(bo);
565
566 ttm_bo_list_ref_sub(bo, put_count, true);
567
568 return 0;
569 }
570
571 /**
572 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
573 * encountered buffers.
574 */
575
576 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
577 {
578 struct ttm_bo_global *glob = bdev->glob;
579 struct ttm_buffer_object *entry = NULL;
580 int ret = 0;
581
582 spin_lock(&glob->lru_lock);
583 if (list_empty(&bdev->ddestroy))
584 goto out_unlock;
585
586 entry = list_first_entry(&bdev->ddestroy,
587 struct ttm_buffer_object, ddestroy);
588 kref_get(&entry->list_kref);
589
590 for (;;) {
591 struct ttm_buffer_object *nentry = NULL;
592
593 if (entry->ddestroy.next != &bdev->ddestroy) {
594 nentry = list_first_entry(&entry->ddestroy,
595 struct ttm_buffer_object, ddestroy);
596 kref_get(&nentry->list_kref);
597 }
598
599 ret = __ttm_bo_reserve(entry, false, true, NULL);
600 if (remove_all && ret) {
601 spin_unlock(&glob->lru_lock);
602 ret = __ttm_bo_reserve(entry, false, false, NULL);
603 spin_lock(&glob->lru_lock);
604 }
605
606 if (!ret)
607 ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
608 !remove_all);
609 else
610 spin_unlock(&glob->lru_lock);
611
612 kref_put(&entry->list_kref, ttm_bo_release_list);
613 entry = nentry;
614
615 if (ret || !entry)
616 goto out;
617
618 spin_lock(&glob->lru_lock);
619 if (list_empty(&entry->ddestroy))
620 break;
621 }
622
623 out_unlock:
624 spin_unlock(&glob->lru_lock);
625 out:
626 if (entry)
627 kref_put(&entry->list_kref, ttm_bo_release_list);
628 return ret;
629 }
630
631 static void ttm_bo_delayed_workqueue(struct work_struct *work)
632 {
633 struct ttm_bo_device *bdev =
634 container_of(work, struct ttm_bo_device, wq.work);
635
636 if (ttm_bo_delayed_delete(bdev, false)) {
637 schedule_delayed_work(&bdev->wq,
638 ((HZ / 100) < 1) ? 1 : HZ / 100);
639 }
640 }
641
642 static void ttm_bo_release(struct kref *kref)
643 {
644 struct ttm_buffer_object *bo =
645 container_of(kref, struct ttm_buffer_object, kref);
646 struct ttm_bo_device *bdev = bo->bdev;
647 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
648
649 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
650 ttm_mem_io_lock(man, false);
651 ttm_mem_io_free_vm(bo);
652 ttm_mem_io_unlock(man);
653 ttm_bo_cleanup_refs_or_queue(bo);
654 kref_put(&bo->list_kref, ttm_bo_release_list);
655 }
656
657 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
658 {
659 struct ttm_buffer_object *bo = *p_bo;
660
661 *p_bo = NULL;
662 kref_put(&bo->kref, ttm_bo_release);
663 }
664 EXPORT_SYMBOL(ttm_bo_unref);
665
666 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
667 {
668 return cancel_delayed_work_sync(&bdev->wq);
669 }
670 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
671
672 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
673 {
674 if (resched)
675 schedule_delayed_work(&bdev->wq,
676 ((HZ / 100) < 1) ? 1 : HZ / 100);
677 }
678 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
679
680 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
681 bool no_wait_gpu)
682 {
683 struct ttm_bo_device *bdev = bo->bdev;
684 struct ttm_mem_reg evict_mem;
685 struct ttm_placement placement;
686 int ret = 0;
687
688 lockdep_assert_held(&bo->resv->lock.base);
689
690 evict_mem = bo->mem;
691 evict_mem.mm_node = NULL;
692 evict_mem.bus.io_reserved_vm = false;
693 evict_mem.bus.io_reserved_count = 0;
694
695 placement.num_placement = 0;
696 placement.num_busy_placement = 0;
697 bdev->driver->evict_flags(bo, &placement);
698 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
699 no_wait_gpu);
700 if (ret) {
701 if (ret != -ERESTARTSYS) {
702 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
703 bo);
704 ttm_bo_mem_space_debug(bo, &placement);
705 }
706 goto out;
707 }
708
709 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
710 no_wait_gpu);
711 if (unlikely(ret)) {
712 if (ret != -ERESTARTSYS)
713 pr_err("Buffer eviction failed\n");
714 ttm_bo_mem_put(bo, &evict_mem);
715 goto out;
716 }
717 bo->evicted = true;
718 out:
719 return ret;
720 }
721
722 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
723 uint32_t mem_type,
724 const struct ttm_place *place,
725 bool interruptible,
726 bool no_wait_gpu)
727 {
728 struct ttm_bo_global *glob = bdev->glob;
729 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
730 struct ttm_buffer_object *bo;
731 int ret = -EBUSY, put_count;
732
733 spin_lock(&glob->lru_lock);
734 list_for_each_entry(bo, &man->lru, lru) {
735 ret = __ttm_bo_reserve(bo, false, true, NULL);
736 if (!ret) {
737 if (place && (place->fpfn || place->lpfn)) {
738 /* Don't evict this BO if it's outside of the
739 * requested placement range
740 */
741 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
742 (place->lpfn && place->lpfn <= bo->mem.start)) {
743 __ttm_bo_unreserve(bo);
744 ret = -EBUSY;
745 continue;
746 }
747 }
748
749 break;
750 }
751 }
752
753 if (ret) {
754 spin_unlock(&glob->lru_lock);
755 return ret;
756 }
757
758 kref_get(&bo->list_kref);
759
760 if (!list_empty(&bo->ddestroy)) {
761 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
762 no_wait_gpu);
763 kref_put(&bo->list_kref, ttm_bo_release_list);
764 return ret;
765 }
766
767 put_count = ttm_bo_del_from_lru(bo);
768 spin_unlock(&glob->lru_lock);
769
770 BUG_ON(ret != 0);
771
772 ttm_bo_list_ref_sub(bo, put_count, true);
773
774 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
775 ttm_bo_unreserve(bo);
776
777 kref_put(&bo->list_kref, ttm_bo_release_list);
778 return ret;
779 }
780
781 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
782 {
783 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
784
785 if (mem->mm_node)
786 (*man->func->put_node)(man, mem);
787 }
788 EXPORT_SYMBOL(ttm_bo_mem_put);
789
790 /**
791 * Add the last move fence to the BO and reserve a new shared slot.
792 */
793 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
794 struct ttm_mem_type_manager *man,
795 struct ttm_mem_reg *mem)
796 {
797 struct fence *fence;
798 int ret;
799
800 spin_lock(&man->move_lock);
801 fence = fence_get(man->move);
802 spin_unlock(&man->move_lock);
803
804 if (fence) {
805 reservation_object_add_shared_fence(bo->resv, fence);
806
807 ret = reservation_object_reserve_shared(bo->resv);
808 if (unlikely(ret))
809 return ret;
810
811 fence_put(bo->moving);
812 bo->moving = fence;
813 }
814
815 return 0;
816 }
817
818 /**
819 * Repeatedly evict memory from the LRU for @mem_type until we create enough
820 * space, or we've evicted everything and there isn't enough space.
821 */
822 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
823 uint32_t mem_type,
824 const struct ttm_place *place,
825 struct ttm_mem_reg *mem,
826 bool interruptible,
827 bool no_wait_gpu)
828 {
829 struct ttm_bo_device *bdev = bo->bdev;
830 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
831 int ret;
832
833 do {
834 ret = (*man->func->get_node)(man, bo, place, mem);
835 if (unlikely(ret != 0))
836 return ret;
837 if (mem->mm_node)
838 break;
839 ret = ttm_mem_evict_first(bdev, mem_type, place,
840 interruptible, no_wait_gpu);
841 if (unlikely(ret != 0))
842 return ret;
843 } while (1);
844 mem->mem_type = mem_type;
845 return ttm_bo_add_move_fence(bo, man, mem);
846 }
847
848 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
849 uint32_t cur_placement,
850 uint32_t proposed_placement)
851 {
852 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
853 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
854
855 /**
856 * Keep current caching if possible.
857 */
858
859 if ((cur_placement & caching) != 0)
860 result |= (cur_placement & caching);
861 else if ((man->default_caching & caching) != 0)
862 result |= man->default_caching;
863 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
864 result |= TTM_PL_FLAG_CACHED;
865 else if ((TTM_PL_FLAG_WC & caching) != 0)
866 result |= TTM_PL_FLAG_WC;
867 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
868 result |= TTM_PL_FLAG_UNCACHED;
869
870 return result;
871 }
872
873 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
874 uint32_t mem_type,
875 const struct ttm_place *place,
876 uint32_t *masked_placement)
877 {
878 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
879
880 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
881 return false;
882
883 if ((place->flags & man->available_caching) == 0)
884 return false;
885
886 cur_flags |= (place->flags & man->available_caching);
887
888 *masked_placement = cur_flags;
889 return true;
890 }
891
892 /**
893 * Creates space for memory region @mem according to its type.
894 *
895 * This function first searches for free space in compatible memory types in
896 * the priority order defined by the driver. If free space isn't found, then
897 * ttm_bo_mem_force_space is attempted in priority order to evict and find
898 * space.
899 */
900 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
901 struct ttm_placement *placement,
902 struct ttm_mem_reg *mem,
903 bool interruptible,
904 bool no_wait_gpu)
905 {
906 struct ttm_bo_device *bdev = bo->bdev;
907 struct ttm_mem_type_manager *man;
908 uint32_t mem_type = TTM_PL_SYSTEM;
909 uint32_t cur_flags = 0;
910 bool type_found = false;
911 bool type_ok = false;
912 bool has_erestartsys = false;
913 int i, ret;
914
915 ret = reservation_object_reserve_shared(bo->resv);
916 if (unlikely(ret))
917 return ret;
918
919 mem->mm_node = NULL;
920 for (i = 0; i < placement->num_placement; ++i) {
921 const struct ttm_place *place = &placement->placement[i];
922
923 ret = ttm_mem_type_from_place(place, &mem_type);
924 if (ret)
925 return ret;
926 man = &bdev->man[mem_type];
927 if (!man->has_type || !man->use_type)
928 continue;
929
930 type_ok = ttm_bo_mt_compatible(man, mem_type, place,
931 &cur_flags);
932
933 if (!type_ok)
934 continue;
935
936 type_found = true;
937 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
938 cur_flags);
939 /*
940 * Use the access and other non-mapping-related flag bits from
941 * the memory placement flags to the current flags
942 */
943 ttm_flag_masked(&cur_flags, place->flags,
944 ~TTM_PL_MASK_MEMTYPE);
945
946 if (mem_type == TTM_PL_SYSTEM)
947 break;
948
949 ret = (*man->func->get_node)(man, bo, place, mem);
950 if (unlikely(ret))
951 return ret;
952
953 if (mem->mm_node) {
954 ret = ttm_bo_add_move_fence(bo, man, mem);
955 if (unlikely(ret)) {
956 (*man->func->put_node)(man, mem);
957 return ret;
958 }
959 break;
960 }
961 }
962
963 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
964 mem->mem_type = mem_type;
965 mem->placement = cur_flags;
966 return 0;
967 }
968
969 for (i = 0; i < placement->num_busy_placement; ++i) {
970 const struct ttm_place *place = &placement->busy_placement[i];
971
972 ret = ttm_mem_type_from_place(place, &mem_type);
973 if (ret)
974 return ret;
975 man = &bdev->man[mem_type];
976 if (!man->has_type || !man->use_type)
977 continue;
978 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
979 continue;
980
981 type_found = true;
982 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
983 cur_flags);
984 /*
985 * Use the access and other non-mapping-related flag bits from
986 * the memory placement flags to the current flags
987 */
988 ttm_flag_masked(&cur_flags, place->flags,
989 ~TTM_PL_MASK_MEMTYPE);
990
991 if (mem_type == TTM_PL_SYSTEM) {
992 mem->mem_type = mem_type;
993 mem->placement = cur_flags;
994 mem->mm_node = NULL;
995 return 0;
996 }
997
998 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
999 interruptible, no_wait_gpu);
1000 if (ret == 0 && mem->mm_node) {
1001 mem->placement = cur_flags;
1002 return 0;
1003 }
1004 if (ret == -ERESTARTSYS)
1005 has_erestartsys = true;
1006 }
1007
1008 if (!type_found) {
1009 printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
1010 return -EINVAL;
1011 }
1012
1013 return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1014 }
1015 EXPORT_SYMBOL(ttm_bo_mem_space);
1016
1017 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1018 struct ttm_placement *placement,
1019 bool interruptible,
1020 bool no_wait_gpu)
1021 {
1022 int ret = 0;
1023 struct ttm_mem_reg mem;
1024
1025 lockdep_assert_held(&bo->resv->lock.base);
1026
1027 mem.num_pages = bo->num_pages;
1028 mem.size = mem.num_pages << PAGE_SHIFT;
1029 mem.page_alignment = bo->mem.page_alignment;
1030 mem.bus.io_reserved_vm = false;
1031 mem.bus.io_reserved_count = 0;
1032 /*
1033 * Determine where to move the buffer.
1034 */
1035 ret = ttm_bo_mem_space(bo, placement, &mem,
1036 interruptible, no_wait_gpu);
1037 if (ret)
1038 goto out_unlock;
1039 ret = ttm_bo_handle_move_mem(bo, &mem, false,
1040 interruptible, no_wait_gpu);
1041 out_unlock:
1042 if (ret && mem.mm_node)
1043 ttm_bo_mem_put(bo, &mem);
1044 return ret;
1045 }
1046
1047 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1048 struct ttm_mem_reg *mem,
1049 uint32_t *new_flags)
1050 {
1051 int i;
1052
1053 for (i = 0; i < placement->num_placement; i++) {
1054 const struct ttm_place *heap = &placement->placement[i];
1055 if (mem->mm_node &&
1056 (mem->start < heap->fpfn ||
1057 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1058 continue;
1059
1060 *new_flags = heap->flags;
1061 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1062 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1063 return true;
1064 }
1065
1066 for (i = 0; i < placement->num_busy_placement; i++) {
1067 const struct ttm_place *heap = &placement->busy_placement[i];
1068 if (mem->mm_node &&
1069 (mem->start < heap->fpfn ||
1070 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1071 continue;
1072
1073 *new_flags = heap->flags;
1074 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1075 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1076 return true;
1077 }
1078
1079 return false;
1080 }
1081 EXPORT_SYMBOL(ttm_bo_mem_compat);
1082
1083 int ttm_bo_validate(struct ttm_buffer_object *bo,
1084 struct ttm_placement *placement,
1085 bool interruptible,
1086 bool no_wait_gpu)
1087 {
1088 int ret;
1089 uint32_t new_flags;
1090
1091 lockdep_assert_held(&bo->resv->lock.base);
1092 /*
1093 * Check whether we need to move buffer.
1094 */
1095 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1096 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1097 no_wait_gpu);
1098 if (ret)
1099 return ret;
1100 } else {
1101 /*
1102 * Use the access and other non-mapping-related flag bits from
1103 * the compatible memory placement flags to the active flags
1104 */
1105 ttm_flag_masked(&bo->mem.placement, new_flags,
1106 ~TTM_PL_MASK_MEMTYPE);
1107 }
1108 /*
1109 * We might need to add a TTM.
1110 */
1111 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1112 ret = ttm_bo_add_ttm(bo, true);
1113 if (ret)
1114 return ret;
1115 }
1116 return 0;
1117 }
1118 EXPORT_SYMBOL(ttm_bo_validate);
1119
1120 int ttm_bo_init(struct ttm_bo_device *bdev,
1121 struct ttm_buffer_object *bo,
1122 unsigned long size,
1123 enum ttm_bo_type type,
1124 struct ttm_placement *placement,
1125 uint32_t page_alignment,
1126 bool interruptible,
1127 struct file *persistent_swap_storage,
1128 size_t acc_size,
1129 struct sg_table *sg,
1130 struct reservation_object *resv,
1131 void (*destroy) (struct ttm_buffer_object *))
1132 {
1133 int ret = 0;
1134 unsigned long num_pages;
1135 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1136 bool locked;
1137
1138 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1139 if (ret) {
1140 pr_err("Out of kernel memory\n");
1141 if (destroy)
1142 (*destroy)(bo);
1143 else
1144 kfree(bo);
1145 return -ENOMEM;
1146 }
1147
1148 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1149 if (num_pages == 0) {
1150 pr_err("Illegal buffer object size\n");
1151 if (destroy)
1152 (*destroy)(bo);
1153 else
1154 kfree(bo);
1155 ttm_mem_global_free(mem_glob, acc_size);
1156 return -EINVAL;
1157 }
1158 bo->destroy = destroy;
1159
1160 kref_init(&bo->kref);
1161 kref_init(&bo->list_kref);
1162 atomic_set(&bo->cpu_writers, 0);
1163 INIT_LIST_HEAD(&bo->lru);
1164 INIT_LIST_HEAD(&bo->ddestroy);
1165 INIT_LIST_HEAD(&bo->swap);
1166 INIT_LIST_HEAD(&bo->io_reserve_lru);
1167 mutex_init(&bo->wu_mutex);
1168 bo->bdev = bdev;
1169 bo->glob = bdev->glob;
1170 bo->type = type;
1171 bo->num_pages = num_pages;
1172 bo->mem.size = num_pages << PAGE_SHIFT;
1173 bo->mem.mem_type = TTM_PL_SYSTEM;
1174 bo->mem.num_pages = bo->num_pages;
1175 bo->mem.mm_node = NULL;
1176 bo->mem.page_alignment = page_alignment;
1177 bo->mem.bus.io_reserved_vm = false;
1178 bo->mem.bus.io_reserved_count = 0;
1179 bo->moving = NULL;
1180 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1181 bo->persistent_swap_storage = persistent_swap_storage;
1182 bo->acc_size = acc_size;
1183 bo->sg = sg;
1184 if (resv) {
1185 bo->resv = resv;
1186 lockdep_assert_held(&bo->resv->lock.base);
1187 } else {
1188 bo->resv = &bo->ttm_resv;
1189 reservation_object_init(&bo->ttm_resv);
1190 }
1191 atomic_inc(&bo->glob->bo_count);
1192 drm_vma_node_reset(&bo->vma_node);
1193
1194 /*
1195 * For ttm_bo_type_device buffers, allocate
1196 * address space from the device.
1197 */
1198 if (bo->type == ttm_bo_type_device ||
1199 bo->type == ttm_bo_type_sg)
1200 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1201 bo->mem.num_pages);
1202
1203 /* passed reservation objects should already be locked,
1204 * since otherwise lockdep will be angered in radeon.
1205 */
1206 if (!resv) {
1207 locked = ww_mutex_trylock(&bo->resv->lock);
1208 WARN_ON(!locked);
1209 }
1210
1211 if (likely(!ret))
1212 ret = ttm_bo_validate(bo, placement, interruptible, false);
1213
1214 if (!resv) {
1215 ttm_bo_unreserve(bo);
1216
1217 } else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1218 spin_lock(&bo->glob->lru_lock);
1219 ttm_bo_add_to_lru(bo);
1220 spin_unlock(&bo->glob->lru_lock);
1221 }
1222
1223 if (unlikely(ret))
1224 ttm_bo_unref(&bo);
1225
1226 return ret;
1227 }
1228 EXPORT_SYMBOL(ttm_bo_init);
1229
1230 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1231 unsigned long bo_size,
1232 unsigned struct_size)
1233 {
1234 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1235 size_t size = 0;
1236
1237 size += ttm_round_pot(struct_size);
1238 size += ttm_round_pot(npages * sizeof(void *));
1239 size += ttm_round_pot(sizeof(struct ttm_tt));
1240 return size;
1241 }
1242 EXPORT_SYMBOL(ttm_bo_acc_size);
1243
1244 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1245 unsigned long bo_size,
1246 unsigned struct_size)
1247 {
1248 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1249 size_t size = 0;
1250
1251 size += ttm_round_pot(struct_size);
1252 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1253 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1254 return size;
1255 }
1256 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1257
1258 int ttm_bo_create(struct ttm_bo_device *bdev,
1259 unsigned long size,
1260 enum ttm_bo_type type,
1261 struct ttm_placement *placement,
1262 uint32_t page_alignment,
1263 bool interruptible,
1264 struct file *persistent_swap_storage,
1265 struct ttm_buffer_object **p_bo)
1266 {
1267 struct ttm_buffer_object *bo;
1268 size_t acc_size;
1269 int ret;
1270
1271 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1272 if (unlikely(bo == NULL))
1273 return -ENOMEM;
1274
1275 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1276 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1277 interruptible, persistent_swap_storage, acc_size,
1278 NULL, NULL, NULL);
1279 if (likely(ret == 0))
1280 *p_bo = bo;
1281
1282 return ret;
1283 }
1284 EXPORT_SYMBOL(ttm_bo_create);
1285
1286 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1287 unsigned mem_type, bool allow_errors)
1288 {
1289 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1290 struct ttm_bo_global *glob = bdev->glob;
1291 struct fence *fence;
1292 int ret;
1293
1294 /*
1295 * Can't use standard list traversal since we're unlocking.
1296 */
1297
1298 spin_lock(&glob->lru_lock);
1299 while (!list_empty(&man->lru)) {
1300 spin_unlock(&glob->lru_lock);
1301 ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1302 if (ret) {
1303 if (allow_errors) {
1304 return ret;
1305 } else {
1306 pr_err("Cleanup eviction failed\n");
1307 }
1308 }
1309 spin_lock(&glob->lru_lock);
1310 }
1311 spin_unlock(&glob->lru_lock);
1312
1313 spin_lock(&man->move_lock);
1314 fence = fence_get(man->move);
1315 spin_unlock(&man->move_lock);
1316
1317 if (fence) {
1318 ret = fence_wait(fence, false);
1319 fence_put(fence);
1320 if (ret) {
1321 if (allow_errors) {
1322 return ret;
1323 } else {
1324 pr_err("Cleanup eviction failed\n");
1325 }
1326 }
1327 }
1328
1329 return 0;
1330 }
1331
1332 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1333 {
1334 struct ttm_mem_type_manager *man;
1335 int ret = -EINVAL;
1336
1337 if (mem_type >= TTM_NUM_MEM_TYPES) {
1338 pr_err("Illegal memory type %d\n", mem_type);
1339 return ret;
1340 }
1341 man = &bdev->man[mem_type];
1342
1343 if (!man->has_type) {
1344 pr_err("Trying to take down uninitialized memory manager type %u\n",
1345 mem_type);
1346 return ret;
1347 }
1348 fence_put(man->move);
1349
1350 man->use_type = false;
1351 man->has_type = false;
1352
1353 ret = 0;
1354 if (mem_type > 0) {
1355 ttm_bo_force_list_clean(bdev, mem_type, false);
1356
1357 ret = (*man->func->takedown)(man);
1358 }
1359
1360 return ret;
1361 }
1362 EXPORT_SYMBOL(ttm_bo_clean_mm);
1363
1364 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1365 {
1366 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1367
1368 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1369 pr_err("Illegal memory manager memory type %u\n", mem_type);
1370 return -EINVAL;
1371 }
1372
1373 if (!man->has_type) {
1374 pr_err("Memory type %u has not been initialized\n", mem_type);
1375 return 0;
1376 }
1377
1378 return ttm_bo_force_list_clean(bdev, mem_type, true);
1379 }
1380 EXPORT_SYMBOL(ttm_bo_evict_mm);
1381
1382 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1383 unsigned long p_size)
1384 {
1385 int ret = -EINVAL;
1386 struct ttm_mem_type_manager *man;
1387
1388 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1389 man = &bdev->man[type];
1390 BUG_ON(man->has_type);
1391 man->io_reserve_fastpath = true;
1392 man->use_io_reserve_lru = false;
1393 mutex_init(&man->io_reserve_mutex);
1394 spin_lock_init(&man->move_lock);
1395 INIT_LIST_HEAD(&man->io_reserve_lru);
1396
1397 ret = bdev->driver->init_mem_type(bdev, type, man);
1398 if (ret)
1399 return ret;
1400 man->bdev = bdev;
1401
1402 ret = 0;
1403 if (type != TTM_PL_SYSTEM) {
1404 ret = (*man->func->init)(man, p_size);
1405 if (ret)
1406 return ret;
1407 }
1408 man->has_type = true;
1409 man->use_type = true;
1410 man->size = p_size;
1411
1412 INIT_LIST_HEAD(&man->lru);
1413 man->move = NULL;
1414
1415 return 0;
1416 }
1417 EXPORT_SYMBOL(ttm_bo_init_mm);
1418
1419 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1420 {
1421 struct ttm_bo_global *glob =
1422 container_of(kobj, struct ttm_bo_global, kobj);
1423
1424 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1425 __free_page(glob->dummy_read_page);
1426 kfree(glob);
1427 }
1428
1429 void ttm_bo_global_release(struct drm_global_reference *ref)
1430 {
1431 struct ttm_bo_global *glob = ref->object;
1432
1433 kobject_del(&glob->kobj);
1434 kobject_put(&glob->kobj);
1435 }
1436 EXPORT_SYMBOL(ttm_bo_global_release);
1437
1438 int ttm_bo_global_init(struct drm_global_reference *ref)
1439 {
1440 struct ttm_bo_global_ref *bo_ref =
1441 container_of(ref, struct ttm_bo_global_ref, ref);
1442 struct ttm_bo_global *glob = ref->object;
1443 int ret;
1444
1445 mutex_init(&glob->device_list_mutex);
1446 spin_lock_init(&glob->lru_lock);
1447 glob->mem_glob = bo_ref->mem_glob;
1448 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1449
1450 if (unlikely(glob->dummy_read_page == NULL)) {
1451 ret = -ENOMEM;
1452 goto out_no_drp;
1453 }
1454
1455 INIT_LIST_HEAD(&glob->swap_lru);
1456 INIT_LIST_HEAD(&glob->device_list);
1457
1458 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1459 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1460 if (unlikely(ret != 0)) {
1461 pr_err("Could not register buffer object swapout\n");
1462 goto out_no_shrink;
1463 }
1464
1465 atomic_set(&glob->bo_count, 0);
1466
1467 ret = kobject_init_and_add(
1468 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1469 if (unlikely(ret != 0))
1470 kobject_put(&glob->kobj);
1471 return ret;
1472 out_no_shrink:
1473 __free_page(glob->dummy_read_page);
1474 out_no_drp:
1475 kfree(glob);
1476 return ret;
1477 }
1478 EXPORT_SYMBOL(ttm_bo_global_init);
1479
1480
1481 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1482 {
1483 int ret = 0;
1484 unsigned i = TTM_NUM_MEM_TYPES;
1485 struct ttm_mem_type_manager *man;
1486 struct ttm_bo_global *glob = bdev->glob;
1487
1488 while (i--) {
1489 man = &bdev->man[i];
1490 if (man->has_type) {
1491 man->use_type = false;
1492 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1493 ret = -EBUSY;
1494 pr_err("DRM memory manager type %d is not clean\n",
1495 i);
1496 }
1497 man->has_type = false;
1498 }
1499 }
1500
1501 mutex_lock(&glob->device_list_mutex);
1502 list_del(&bdev->device_list);
1503 mutex_unlock(&glob->device_list_mutex);
1504
1505 cancel_delayed_work_sync(&bdev->wq);
1506
1507 while (ttm_bo_delayed_delete(bdev, true))
1508 ;
1509
1510 spin_lock(&glob->lru_lock);
1511 if (list_empty(&bdev->ddestroy))
1512 TTM_DEBUG("Delayed destroy list was clean\n");
1513
1514 if (list_empty(&bdev->man[0].lru))
1515 TTM_DEBUG("Swap list was clean\n");
1516 spin_unlock(&glob->lru_lock);
1517
1518 drm_vma_offset_manager_destroy(&bdev->vma_manager);
1519
1520 return ret;
1521 }
1522 EXPORT_SYMBOL(ttm_bo_device_release);
1523
1524 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1525 struct ttm_bo_global *glob,
1526 struct ttm_bo_driver *driver,
1527 struct address_space *mapping,
1528 uint64_t file_page_offset,
1529 bool need_dma32)
1530 {
1531 int ret = -EINVAL;
1532
1533 bdev->driver = driver;
1534
1535 memset(bdev->man, 0, sizeof(bdev->man));
1536
1537 /*
1538 * Initialize the system memory buffer type.
1539 * Other types need to be driver / IOCTL initialized.
1540 */
1541 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1542 if (unlikely(ret != 0))
1543 goto out_no_sys;
1544
1545 drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1546 0x10000000);
1547 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1548 INIT_LIST_HEAD(&bdev->ddestroy);
1549 bdev->dev_mapping = mapping;
1550 bdev->glob = glob;
1551 bdev->need_dma32 = need_dma32;
1552 mutex_lock(&glob->device_list_mutex);
1553 list_add_tail(&bdev->device_list, &glob->device_list);
1554 mutex_unlock(&glob->device_list_mutex);
1555
1556 return 0;
1557 out_no_sys:
1558 return ret;
1559 }
1560 EXPORT_SYMBOL(ttm_bo_device_init);
1561
1562 /*
1563 * buffer object vm functions.
1564 */
1565
1566 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1567 {
1568 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1569
1570 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1571 if (mem->mem_type == TTM_PL_SYSTEM)
1572 return false;
1573
1574 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1575 return false;
1576
1577 if (mem->placement & TTM_PL_FLAG_CACHED)
1578 return false;
1579 }
1580 return true;
1581 }
1582
1583 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1584 {
1585 struct ttm_bo_device *bdev = bo->bdev;
1586
1587 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1588 ttm_mem_io_free_vm(bo);
1589 }
1590
1591 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1592 {
1593 struct ttm_bo_device *bdev = bo->bdev;
1594 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1595
1596 ttm_mem_io_lock(man, false);
1597 ttm_bo_unmap_virtual_locked(bo);
1598 ttm_mem_io_unlock(man);
1599 }
1600
1601
1602 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1603
1604 int ttm_bo_wait(struct ttm_buffer_object *bo,
1605 bool interruptible, bool no_wait)
1606 {
1607 long timeout = no_wait ? 0 : 15 * HZ;
1608
1609 timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
1610 interruptible, timeout);
1611 if (timeout < 0)
1612 return timeout;
1613
1614 if (timeout == 0)
1615 return -EBUSY;
1616
1617 reservation_object_add_excl_fence(bo->resv, NULL);
1618 return 0;
1619 }
1620 EXPORT_SYMBOL(ttm_bo_wait);
1621
1622 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1623 {
1624 int ret = 0;
1625
1626 /*
1627 * Using ttm_bo_reserve makes sure the lru lists are updated.
1628 */
1629
1630 ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1631 if (unlikely(ret != 0))
1632 return ret;
1633 ret = ttm_bo_wait(bo, true, no_wait);
1634 if (likely(ret == 0))
1635 atomic_inc(&bo->cpu_writers);
1636 ttm_bo_unreserve(bo);
1637 return ret;
1638 }
1639 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1640
1641 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1642 {
1643 atomic_dec(&bo->cpu_writers);
1644 }
1645 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1646
1647 /**
1648 * A buffer object shrink method that tries to swap out the first
1649 * buffer object on the bo_global::swap_lru list.
1650 */
1651
1652 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1653 {
1654 struct ttm_bo_global *glob =
1655 container_of(shrink, struct ttm_bo_global, shrink);
1656 struct ttm_buffer_object *bo;
1657 int ret = -EBUSY;
1658 int put_count;
1659 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1660
1661 spin_lock(&glob->lru_lock);
1662 list_for_each_entry(bo, &glob->swap_lru, swap) {
1663 ret = __ttm_bo_reserve(bo, false, true, NULL);
1664 if (!ret)
1665 break;
1666 }
1667
1668 if (ret) {
1669 spin_unlock(&glob->lru_lock);
1670 return ret;
1671 }
1672
1673 kref_get(&bo->list_kref);
1674
1675 if (!list_empty(&bo->ddestroy)) {
1676 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1677 kref_put(&bo->list_kref, ttm_bo_release_list);
1678 return ret;
1679 }
1680
1681 put_count = ttm_bo_del_from_lru(bo);
1682 spin_unlock(&glob->lru_lock);
1683
1684 ttm_bo_list_ref_sub(bo, put_count, true);
1685
1686 /**
1687 * Move to system cached
1688 */
1689
1690 if ((bo->mem.placement & swap_placement) != swap_placement) {
1691 struct ttm_mem_reg evict_mem;
1692
1693 evict_mem = bo->mem;
1694 evict_mem.mm_node = NULL;
1695 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1696 evict_mem.mem_type = TTM_PL_SYSTEM;
1697
1698 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1699 false, false);
1700 if (unlikely(ret != 0))
1701 goto out;
1702 }
1703
1704 /**
1705 * Make sure BO is idle.
1706 */
1707
1708 ret = ttm_bo_wait(bo, false, false);
1709 if (unlikely(ret != 0))
1710 goto out;
1711
1712 ttm_bo_unmap_virtual(bo);
1713
1714 /**
1715 * Swap out. Buffer will be swapped in again as soon as
1716 * anyone tries to access a ttm page.
1717 */
1718
1719 if (bo->bdev->driver->swap_notify)
1720 bo->bdev->driver->swap_notify(bo);
1721
1722 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1723 out:
1724
1725 /**
1726 *
1727 * Unreserve without putting on LRU to avoid swapping out an
1728 * already swapped buffer.
1729 */
1730
1731 __ttm_bo_unreserve(bo);
1732 kref_put(&bo->list_kref, ttm_bo_release_list);
1733 return ret;
1734 }
1735
1736 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1737 {
1738 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1739 ;
1740 }
1741 EXPORT_SYMBOL(ttm_bo_swapout_all);
1742
1743 /**
1744 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1745 * unreserved
1746 *
1747 * @bo: Pointer to buffer
1748 */
1749 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1750 {
1751 int ret;
1752
1753 /*
1754 * In the absense of a wait_unlocked API,
1755 * Use the bo::wu_mutex to avoid triggering livelocks due to
1756 * concurrent use of this function. Note that this use of
1757 * bo::wu_mutex can go away if we change locking order to
1758 * mmap_sem -> bo::reserve.
1759 */
1760 ret = mutex_lock_interruptible(&bo->wu_mutex);
1761 if (unlikely(ret != 0))
1762 return -ERESTARTSYS;
1763 if (!ww_mutex_is_locked(&bo->resv->lock))
1764 goto out_unlock;
1765 ret = __ttm_bo_reserve(bo, true, false, NULL);
1766 if (unlikely(ret != 0))
1767 goto out_unlock;
1768 __ttm_bo_unreserve(bo);
1769
1770 out_unlock:
1771 mutex_unlock(&bo->wu_mutex);
1772 return ret;
1773 }
This page took 0.068173 seconds and 5 git commands to generate.