vfio/pci: Fix typos in comments
[deliverable/linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
51
52 /* Which HVS channel we're using for our CRTC. */
53 int channel;
54
55 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
58 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
60
61 struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73 return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79 return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
85
86 enum vc4_encoder_type encoder0_type;
87 enum vc4_encoder_type encoder1_type;
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 u32 reg;
96 const char *name;
97 } crtc_regs[] = {
98 CRTC_REG(PV_CONTROL),
99 CRTC_REG(PV_V_CONTROL),
100 CRTC_REG(PV_VSYNCD_EVEN),
101 CRTC_REG(PV_HORZA),
102 CRTC_REG(PV_HORZB),
103 CRTC_REG(PV_VERTA),
104 CRTC_REG(PV_VERTB),
105 CRTC_REG(PV_VERTA_EVEN),
106 CRTC_REG(PV_VERTB_EVEN),
107 CRTC_REG(PV_INTEN),
108 CRTC_REG(PV_INTSTAT),
109 CRTC_REG(PV_STAT),
110 CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 int i;
116
117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 DRM_INFO("0x%04x (%s): 0x%08x\n",
119 crtc_regs[i].reg, crtc_regs[i].name,
120 CRTC_READ(crtc_regs[i].reg));
121 }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 struct drm_info_node *node = (struct drm_info_node *)m->private;
128 struct drm_device *dev = node->minor->dev;
129 int crtc_index = (uintptr_t)node->info_ent->data;
130 struct drm_crtc *crtc;
131 struct vc4_crtc *vc4_crtc;
132 int i;
133
134 i = 0;
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 if (i == crtc_index)
137 break;
138 i++;
139 }
140 if (!crtc)
141 return 0;
142 vc4_crtc = to_vc4_crtc(crtc);
143
144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 crtc_regs[i].name, crtc_regs[i].reg,
147 CRTC_READ(crtc_regs[i].reg));
148 }
149
150 return 0;
151 }
152 #endif
153
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 unsigned int flags, int *vpos, int *hpos,
156 ktime_t *stime, ktime_t *etime,
157 const struct drm_display_mode *mode)
158 {
159 struct vc4_dev *vc4 = to_vc4_dev(dev);
160 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
161 u32 val;
162 int fifo_lines;
163 int vblank_lines;
164 int ret = 0;
165
166 /*
167 * XXX Doesn't work well in interlaced mode yet, partially due
168 * to problems in vc4 kms or drm core interlaced mode handling,
169 * so disable for now in interlaced mode.
170 */
171 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
172 return ret;
173
174 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
175
176 /* Get optional system timestamp before query. */
177 if (stime)
178 *stime = ktime_get();
179
180 /*
181 * Read vertical scanline which is currently composed for our
182 * pixelvalve by the HVS, and also the scaler status.
183 */
184 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
185
186 /* Get optional system timestamp after query. */
187 if (etime)
188 *etime = ktime_get();
189
190 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
191
192 /* Vertical position of hvs composed scanline. */
193 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
194
195 /* No hpos info available. */
196 if (hpos)
197 *hpos = 0;
198
199 /* This is the offset we need for translating hvs -> pv scanout pos. */
200 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
201
202 if (fifo_lines > 0)
203 ret |= DRM_SCANOUTPOS_VALID;
204
205 /* HVS more than fifo_lines into frame for compositing? */
206 if (*vpos > fifo_lines) {
207 /*
208 * We are in active scanout and can get some meaningful results
209 * from HVS. The actual PV scanout can not trail behind more
210 * than fifo_lines as that is the fifo's capacity. Assume that
211 * in active scanout the HVS and PV work in lockstep wrt. HVS
212 * refilling the fifo and PV consuming from the fifo, ie.
213 * whenever the PV consumes and frees up a scanline in the
214 * fifo, the HVS will immediately refill it, therefore
215 * incrementing vpos. Therefore we choose HVS read position -
216 * fifo size in scanlines as a estimate of the real scanout
217 * position of the PV.
218 */
219 *vpos -= fifo_lines + 1;
220 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
221 *vpos /= 2;
222
223 ret |= DRM_SCANOUTPOS_ACCURATE;
224 return ret;
225 }
226
227 /*
228 * Less: This happens when we are in vblank and the HVS, after getting
229 * the VSTART restart signal from the PV, just started refilling its
230 * fifo with new lines from the top-most lines of the new framebuffers.
231 * The PV does not scan out in vblank, so does not remove lines from
232 * the fifo, so the fifo will be full quickly and the HVS has to pause.
233 * We can't get meaningful readings wrt. scanline position of the PV
234 * and need to make things up in a approximative but consistent way.
235 */
236 ret |= DRM_SCANOUTPOS_IN_VBLANK;
237 vblank_lines = mode->crtc_vtotal - mode->crtc_vdisplay;
238
239 if (flags & DRM_CALLED_FROM_VBLIRQ) {
240 /*
241 * Assume the irq handler got called close to first
242 * line of vblank, so PV has about a full vblank
243 * scanlines to go, and as a base timestamp use the
244 * one taken at entry into vblank irq handler, so it
245 * is not affected by random delays due to lock
246 * contention on event_lock or vblank_time lock in
247 * the core.
248 */
249 *vpos = -vblank_lines;
250
251 if (stime)
252 *stime = vc4_crtc->t_vblank;
253 if (etime)
254 *etime = vc4_crtc->t_vblank;
255
256 /*
257 * If the HVS fifo is not yet full then we know for certain
258 * we are at the very beginning of vblank, as the hvs just
259 * started refilling, and the stime and etime timestamps
260 * truly correspond to start of vblank.
261 */
262 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
263 ret |= DRM_SCANOUTPOS_ACCURATE;
264 } else {
265 /*
266 * No clue where we are inside vblank. Return a vpos of zero,
267 * which will cause calling code to just return the etime
268 * timestamp uncorrected. At least this is no worse than the
269 * standard fallback.
270 */
271 *vpos = 0;
272 }
273
274 return ret;
275 }
276
277 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
278 int *max_error, struct timeval *vblank_time,
279 unsigned flags)
280 {
281 struct vc4_dev *vc4 = to_vc4_dev(dev);
282 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
283 struct drm_crtc *crtc = &vc4_crtc->base;
284 struct drm_crtc_state *state = crtc->state;
285
286 /* Helper routine in DRM core does all the work: */
287 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
288 vblank_time, flags,
289 &state->adjusted_mode);
290 }
291
292 static void vc4_crtc_destroy(struct drm_crtc *crtc)
293 {
294 drm_crtc_cleanup(crtc);
295 }
296
297 static void
298 vc4_crtc_lut_load(struct drm_crtc *crtc)
299 {
300 struct drm_device *dev = crtc->dev;
301 struct vc4_dev *vc4 = to_vc4_dev(dev);
302 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
303 u32 i;
304
305 /* The LUT memory is laid out with each HVS channel in order,
306 * each of which takes 256 writes for R, 256 for G, then 256
307 * for B.
308 */
309 HVS_WRITE(SCALER_GAMADDR,
310 SCALER_GAMADDR_AUTOINC |
311 (vc4_crtc->channel * 3 * crtc->gamma_size));
312
313 for (i = 0; i < crtc->gamma_size; i++)
314 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
315 for (i = 0; i < crtc->gamma_size; i++)
316 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
317 for (i = 0; i < crtc->gamma_size; i++)
318 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
319 }
320
321 static int
322 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
323 uint32_t size)
324 {
325 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326 u32 i;
327
328 for (i = 0; i < size; i++) {
329 vc4_crtc->lut_r[i] = r[i] >> 8;
330 vc4_crtc->lut_g[i] = g[i] >> 8;
331 vc4_crtc->lut_b[i] = b[i] >> 8;
332 }
333
334 vc4_crtc_lut_load(crtc);
335
336 return 0;
337 }
338
339 static u32 vc4_get_fifo_full_level(u32 format)
340 {
341 static const u32 fifo_len_bytes = 64;
342 static const u32 hvs_latency_pix = 6;
343
344 switch (format) {
345 case PV_CONTROL_FORMAT_DSIV_16:
346 case PV_CONTROL_FORMAT_DSIC_16:
347 return fifo_len_bytes - 2 * hvs_latency_pix;
348 case PV_CONTROL_FORMAT_DSIV_18:
349 return fifo_len_bytes - 14;
350 case PV_CONTROL_FORMAT_24:
351 case PV_CONTROL_FORMAT_DSIV_24:
352 default:
353 return fifo_len_bytes - 3 * hvs_latency_pix;
354 }
355 }
356
357 /*
358 * Returns the clock select bit for the connector attached to the
359 * CRTC.
360 */
361 static int vc4_get_clock_select(struct drm_crtc *crtc)
362 {
363 struct drm_connector *connector;
364
365 drm_for_each_connector(connector, crtc->dev) {
366 if (connector->state->crtc == crtc) {
367 struct drm_encoder *encoder = connector->encoder;
368 struct vc4_encoder *vc4_encoder =
369 to_vc4_encoder(encoder);
370
371 return vc4_encoder->clock_select;
372 }
373 }
374
375 return -1;
376 }
377
378 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
379 {
380 struct drm_device *dev = crtc->dev;
381 struct vc4_dev *vc4 = to_vc4_dev(dev);
382 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
383 struct drm_crtc_state *state = crtc->state;
384 struct drm_display_mode *mode = &state->adjusted_mode;
385 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
386 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
387 u32 format = PV_CONTROL_FORMAT_24;
388 bool debug_dump_regs = false;
389 int clock_select = vc4_get_clock_select(crtc);
390
391 if (debug_dump_regs) {
392 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
393 vc4_crtc_dump_regs(vc4_crtc);
394 }
395
396 /* Reset the PV fifo. */
397 CRTC_WRITE(PV_CONTROL, 0);
398 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
399 CRTC_WRITE(PV_CONTROL, 0);
400
401 CRTC_WRITE(PV_HORZA,
402 VC4_SET_FIELD(mode->htotal - mode->hsync_end,
403 PV_HORZA_HBP) |
404 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
405 PV_HORZA_HSYNC));
406 CRTC_WRITE(PV_HORZB,
407 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
408 PV_HORZB_HFP) |
409 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
410
411 CRTC_WRITE(PV_VERTA,
412 VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
413 PV_VERTA_VBP) |
414 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
415 PV_VERTA_VSYNC));
416 CRTC_WRITE(PV_VERTB,
417 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
418 PV_VERTB_VFP) |
419 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
420
421 if (interlace) {
422 CRTC_WRITE(PV_VERTA_EVEN,
423 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
424 PV_VERTA_VBP) |
425 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
426 PV_VERTA_VSYNC));
427 CRTC_WRITE(PV_VERTB_EVEN,
428 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
429 PV_VERTB_VFP) |
430 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
431 }
432
433 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
434
435 CRTC_WRITE(PV_V_CONTROL,
436 PV_VCONTROL_CONTINUOUS |
437 (interlace ? PV_VCONTROL_INTERLACE : 0));
438
439 CRTC_WRITE(PV_CONTROL,
440 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
441 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
442 PV_CONTROL_FIFO_LEVEL) |
443 PV_CONTROL_CLR_AT_START |
444 PV_CONTROL_TRIGGER_UNDERFLOW |
445 PV_CONTROL_WAIT_HSTART |
446 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
447 PV_CONTROL_FIFO_CLR |
448 PV_CONTROL_EN);
449
450 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
451 SCALER_DISPBKGND_AUTOHS |
452 SCALER_DISPBKGND_GAMMA |
453 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
454
455 /* Reload the LUT, since the SRAMs would have been disabled if
456 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
457 */
458 vc4_crtc_lut_load(crtc);
459
460 if (debug_dump_regs) {
461 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
462 vc4_crtc_dump_regs(vc4_crtc);
463 }
464 }
465
466 static void require_hvs_enabled(struct drm_device *dev)
467 {
468 struct vc4_dev *vc4 = to_vc4_dev(dev);
469
470 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
471 SCALER_DISPCTRL_ENABLE);
472 }
473
474 static void vc4_crtc_disable(struct drm_crtc *crtc)
475 {
476 struct drm_device *dev = crtc->dev;
477 struct vc4_dev *vc4 = to_vc4_dev(dev);
478 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
479 u32 chan = vc4_crtc->channel;
480 int ret;
481 require_hvs_enabled(dev);
482
483 CRTC_WRITE(PV_V_CONTROL,
484 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
485 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
486 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
487
488 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
489 SCALER_DISPCTRLX_ENABLE) {
490 HVS_WRITE(SCALER_DISPCTRLX(chan),
491 SCALER_DISPCTRLX_RESET);
492
493 /* While the docs say that reset is self-clearing, it
494 * seems it doesn't actually.
495 */
496 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
497 }
498
499 /* Once we leave, the scaler should be disabled and its fifo empty. */
500
501 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
502
503 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
504 SCALER_DISPSTATX_MODE) !=
505 SCALER_DISPSTATX_MODE_DISABLED);
506
507 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
508 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
509 SCALER_DISPSTATX_EMPTY);
510 }
511
512 static void vc4_crtc_enable(struct drm_crtc *crtc)
513 {
514 struct drm_device *dev = crtc->dev;
515 struct vc4_dev *vc4 = to_vc4_dev(dev);
516 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
517 struct drm_crtc_state *state = crtc->state;
518 struct drm_display_mode *mode = &state->adjusted_mode;
519
520 require_hvs_enabled(dev);
521
522 /* Turn on the scaler, which will wait for vstart to start
523 * compositing.
524 */
525 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
526 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
527 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
528 SCALER_DISPCTRLX_ENABLE);
529
530 /* Turn on the pixel valve, which will emit the vstart signal. */
531 CRTC_WRITE(PV_V_CONTROL,
532 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
533 }
534
535 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
536 struct drm_crtc_state *state)
537 {
538 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
539 struct drm_device *dev = crtc->dev;
540 struct vc4_dev *vc4 = to_vc4_dev(dev);
541 struct drm_plane *plane;
542 unsigned long flags;
543 const struct drm_plane_state *plane_state;
544 u32 dlist_count = 0;
545 int ret;
546
547 /* The pixelvalve can only feed one encoder (and encoders are
548 * 1:1 with connectors.)
549 */
550 if (hweight32(state->connector_mask) > 1)
551 return -EINVAL;
552
553 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
554 dlist_count += vc4_plane_dlist_size(plane_state);
555
556 dlist_count++; /* Account for SCALER_CTL0_END. */
557
558 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
559 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
560 dlist_count, 1, 0);
561 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
562 if (ret)
563 return ret;
564
565 return 0;
566 }
567
568 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
569 struct drm_crtc_state *old_state)
570 {
571 struct drm_device *dev = crtc->dev;
572 struct vc4_dev *vc4 = to_vc4_dev(dev);
573 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
574 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
575 struct drm_plane *plane;
576 bool debug_dump_regs = false;
577 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
578 u32 __iomem *dlist_next = dlist_start;
579
580 if (debug_dump_regs) {
581 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
582 vc4_hvs_dump_state(dev);
583 }
584
585 /* Copy all the active planes' dlist contents to the hardware dlist. */
586 drm_atomic_crtc_for_each_plane(plane, crtc) {
587 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
588 }
589
590 writel(SCALER_CTL0_END, dlist_next);
591 dlist_next++;
592
593 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
594
595 if (crtc->state->event) {
596 unsigned long flags;
597
598 crtc->state->event->pipe = drm_crtc_index(crtc);
599
600 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
601
602 spin_lock_irqsave(&dev->event_lock, flags);
603 vc4_crtc->event = crtc->state->event;
604 crtc->state->event = NULL;
605
606 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
607 vc4_state->mm.start);
608
609 spin_unlock_irqrestore(&dev->event_lock, flags);
610 } else {
611 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
612 vc4_state->mm.start);
613 }
614
615 if (debug_dump_regs) {
616 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
617 vc4_hvs_dump_state(dev);
618 }
619 }
620
621 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
622 {
623 struct vc4_dev *vc4 = to_vc4_dev(dev);
624 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
625
626 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
627
628 return 0;
629 }
630
631 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
632 {
633 struct vc4_dev *vc4 = to_vc4_dev(dev);
634 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
635
636 CRTC_WRITE(PV_INTEN, 0);
637 }
638
639 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
640 {
641 struct drm_crtc *crtc = &vc4_crtc->base;
642 struct drm_device *dev = crtc->dev;
643 struct vc4_dev *vc4 = to_vc4_dev(dev);
644 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
645 u32 chan = vc4_crtc->channel;
646 unsigned long flags;
647
648 spin_lock_irqsave(&dev->event_lock, flags);
649 if (vc4_crtc->event &&
650 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
651 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
652 vc4_crtc->event = NULL;
653 drm_crtc_vblank_put(crtc);
654 }
655 spin_unlock_irqrestore(&dev->event_lock, flags);
656 }
657
658 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
659 {
660 struct vc4_crtc *vc4_crtc = data;
661 u32 stat = CRTC_READ(PV_INTSTAT);
662 irqreturn_t ret = IRQ_NONE;
663
664 if (stat & PV_INT_VFP_START) {
665 vc4_crtc->t_vblank = ktime_get();
666 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
667 drm_crtc_handle_vblank(&vc4_crtc->base);
668 vc4_crtc_handle_page_flip(vc4_crtc);
669 ret = IRQ_HANDLED;
670 }
671
672 return ret;
673 }
674
675 struct vc4_async_flip_state {
676 struct drm_crtc *crtc;
677 struct drm_framebuffer *fb;
678 struct drm_pending_vblank_event *event;
679
680 struct vc4_seqno_cb cb;
681 };
682
683 /* Called when the V3D execution for the BO being flipped to is done, so that
684 * we can actually update the plane's address to point to it.
685 */
686 static void
687 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
688 {
689 struct vc4_async_flip_state *flip_state =
690 container_of(cb, struct vc4_async_flip_state, cb);
691 struct drm_crtc *crtc = flip_state->crtc;
692 struct drm_device *dev = crtc->dev;
693 struct vc4_dev *vc4 = to_vc4_dev(dev);
694 struct drm_plane *plane = crtc->primary;
695
696 vc4_plane_async_set_fb(plane, flip_state->fb);
697 if (flip_state->event) {
698 unsigned long flags;
699
700 spin_lock_irqsave(&dev->event_lock, flags);
701 drm_crtc_send_vblank_event(crtc, flip_state->event);
702 spin_unlock_irqrestore(&dev->event_lock, flags);
703 }
704
705 drm_crtc_vblank_put(crtc);
706 drm_framebuffer_unreference(flip_state->fb);
707 kfree(flip_state);
708
709 up(&vc4->async_modeset);
710 }
711
712 /* Implements async (non-vblank-synced) page flips.
713 *
714 * The page flip ioctl needs to return immediately, so we grab the
715 * modeset semaphore on the pipe, and queue the address update for
716 * when V3D is done with the BO being flipped to.
717 */
718 static int vc4_async_page_flip(struct drm_crtc *crtc,
719 struct drm_framebuffer *fb,
720 struct drm_pending_vblank_event *event,
721 uint32_t flags)
722 {
723 struct drm_device *dev = crtc->dev;
724 struct vc4_dev *vc4 = to_vc4_dev(dev);
725 struct drm_plane *plane = crtc->primary;
726 int ret = 0;
727 struct vc4_async_flip_state *flip_state;
728 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
729 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
730
731 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
732 if (!flip_state)
733 return -ENOMEM;
734
735 drm_framebuffer_reference(fb);
736 flip_state->fb = fb;
737 flip_state->crtc = crtc;
738 flip_state->event = event;
739
740 /* Make sure all other async modesetes have landed. */
741 ret = down_interruptible(&vc4->async_modeset);
742 if (ret) {
743 drm_framebuffer_unreference(fb);
744 kfree(flip_state);
745 return ret;
746 }
747
748 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
749
750 /* Immediately update the plane's legacy fb pointer, so that later
751 * modeset prep sees the state that will be present when the semaphore
752 * is released.
753 */
754 drm_atomic_set_fb_for_plane(plane->state, fb);
755 plane->fb = fb;
756
757 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
758 vc4_async_page_flip_complete);
759
760 /* Driver takes ownership of state on successful async commit. */
761 return 0;
762 }
763
764 static int vc4_page_flip(struct drm_crtc *crtc,
765 struct drm_framebuffer *fb,
766 struct drm_pending_vblank_event *event,
767 uint32_t flags)
768 {
769 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
770 return vc4_async_page_flip(crtc, fb, event, flags);
771 else
772 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
773 }
774
775 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
776 {
777 struct vc4_crtc_state *vc4_state;
778
779 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
780 if (!vc4_state)
781 return NULL;
782
783 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
784 return &vc4_state->base;
785 }
786
787 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
788 struct drm_crtc_state *state)
789 {
790 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
791 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
792
793 if (vc4_state->mm.allocated) {
794 unsigned long flags;
795
796 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
797 drm_mm_remove_node(&vc4_state->mm);
798 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
799
800 }
801
802 __drm_atomic_helper_crtc_destroy_state(state);
803 }
804
805 static const struct drm_crtc_funcs vc4_crtc_funcs = {
806 .set_config = drm_atomic_helper_set_config,
807 .destroy = vc4_crtc_destroy,
808 .page_flip = vc4_page_flip,
809 .set_property = NULL,
810 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
811 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
812 .reset = drm_atomic_helper_crtc_reset,
813 .atomic_duplicate_state = vc4_crtc_duplicate_state,
814 .atomic_destroy_state = vc4_crtc_destroy_state,
815 .gamma_set = vc4_crtc_gamma_set,
816 };
817
818 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
819 .mode_set_nofb = vc4_crtc_mode_set_nofb,
820 .disable = vc4_crtc_disable,
821 .enable = vc4_crtc_enable,
822 .atomic_check = vc4_crtc_atomic_check,
823 .atomic_flush = vc4_crtc_atomic_flush,
824 };
825
826 static const struct vc4_crtc_data pv0_data = {
827 .hvs_channel = 0,
828 .encoder0_type = VC4_ENCODER_TYPE_DSI0,
829 .encoder1_type = VC4_ENCODER_TYPE_DPI,
830 };
831
832 static const struct vc4_crtc_data pv1_data = {
833 .hvs_channel = 2,
834 .encoder0_type = VC4_ENCODER_TYPE_DSI1,
835 .encoder1_type = VC4_ENCODER_TYPE_SMI,
836 };
837
838 static const struct vc4_crtc_data pv2_data = {
839 .hvs_channel = 1,
840 .encoder0_type = VC4_ENCODER_TYPE_VEC,
841 .encoder1_type = VC4_ENCODER_TYPE_HDMI,
842 };
843
844 static const struct of_device_id vc4_crtc_dt_match[] = {
845 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
846 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
847 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
848 {}
849 };
850
851 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
852 struct drm_crtc *crtc)
853 {
854 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
855 struct drm_encoder *encoder;
856
857 drm_for_each_encoder(encoder, drm) {
858 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
859
860 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
861 vc4_encoder->clock_select = 0;
862 encoder->possible_crtcs |= drm_crtc_mask(crtc);
863 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
864 vc4_encoder->clock_select = 1;
865 encoder->possible_crtcs |= drm_crtc_mask(crtc);
866 }
867 }
868 }
869
870 static void
871 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
872 {
873 struct drm_device *drm = vc4_crtc->base.dev;
874 struct vc4_dev *vc4 = to_vc4_dev(drm);
875 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
876 /* Top/base are supposed to be 4-pixel aligned, but the
877 * Raspberry Pi firmware fills the low bits (which are
878 * presumably ignored).
879 */
880 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
881 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
882
883 vc4_crtc->cob_size = top - base + 4;
884 }
885
886 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
887 {
888 struct platform_device *pdev = to_platform_device(dev);
889 struct drm_device *drm = dev_get_drvdata(master);
890 struct vc4_dev *vc4 = to_vc4_dev(drm);
891 struct vc4_crtc *vc4_crtc;
892 struct drm_crtc *crtc;
893 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
894 const struct of_device_id *match;
895 int ret, i;
896
897 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
898 if (!vc4_crtc)
899 return -ENOMEM;
900 crtc = &vc4_crtc->base;
901
902 match = of_match_device(vc4_crtc_dt_match, dev);
903 if (!match)
904 return -ENODEV;
905 vc4_crtc->data = match->data;
906
907 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
908 if (IS_ERR(vc4_crtc->regs))
909 return PTR_ERR(vc4_crtc->regs);
910
911 /* For now, we create just the primary and the legacy cursor
912 * planes. We should be able to stack more planes on easily,
913 * but to do that we would need to compute the bandwidth
914 * requirement of the plane configuration, and reject ones
915 * that will take too much.
916 */
917 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
918 if (IS_ERR(primary_plane)) {
919 dev_err(dev, "failed to construct primary plane\n");
920 ret = PTR_ERR(primary_plane);
921 goto err;
922 }
923
924 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
925 &vc4_crtc_funcs, NULL);
926 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
927 primary_plane->crtc = crtc;
928 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
929 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
930 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
931
932 /* Set up some arbitrary number of planes. We're not limited
933 * by a set number of physical registers, just the space in
934 * the HVS (16k) and how small an plane can be (28 bytes).
935 * However, each plane we set up takes up some memory, and
936 * increases the cost of looping over planes, which atomic
937 * modesetting does quite a bit. As a result, we pick a
938 * modest number of planes to expose, that should hopefully
939 * still cover any sane usecase.
940 */
941 for (i = 0; i < 8; i++) {
942 struct drm_plane *plane =
943 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
944
945 if (IS_ERR(plane))
946 continue;
947
948 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
949 }
950
951 /* Set up the legacy cursor after overlay initialization,
952 * since we overlay planes on the CRTC in the order they were
953 * initialized.
954 */
955 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
956 if (!IS_ERR(cursor_plane)) {
957 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
958 cursor_plane->crtc = crtc;
959 crtc->cursor = cursor_plane;
960 }
961
962 vc4_crtc_get_cob_allocation(vc4_crtc);
963
964 CRTC_WRITE(PV_INTEN, 0);
965 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
966 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
967 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
968 if (ret)
969 goto err_destroy_planes;
970
971 vc4_set_crtc_possible_masks(drm, crtc);
972
973 for (i = 0; i < crtc->gamma_size; i++) {
974 vc4_crtc->lut_r[i] = i;
975 vc4_crtc->lut_g[i] = i;
976 vc4_crtc->lut_b[i] = i;
977 }
978
979 platform_set_drvdata(pdev, vc4_crtc);
980
981 return 0;
982
983 err_destroy_planes:
984 list_for_each_entry_safe(destroy_plane, temp,
985 &drm->mode_config.plane_list, head) {
986 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
987 destroy_plane->funcs->destroy(destroy_plane);
988 }
989 err:
990 return ret;
991 }
992
993 static void vc4_crtc_unbind(struct device *dev, struct device *master,
994 void *data)
995 {
996 struct platform_device *pdev = to_platform_device(dev);
997 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
998
999 vc4_crtc_destroy(&vc4_crtc->base);
1000
1001 CRTC_WRITE(PV_INTEN, 0);
1002
1003 platform_set_drvdata(pdev, NULL);
1004 }
1005
1006 static const struct component_ops vc4_crtc_ops = {
1007 .bind = vc4_crtc_bind,
1008 .unbind = vc4_crtc_unbind,
1009 };
1010
1011 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1012 {
1013 return component_add(&pdev->dev, &vc4_crtc_ops);
1014 }
1015
1016 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1017 {
1018 component_del(&pdev->dev, &vc4_crtc_ops);
1019 return 0;
1020 }
1021
1022 struct platform_driver vc4_crtc_driver = {
1023 .probe = vc4_crtc_dev_probe,
1024 .remove = vc4_crtc_dev_remove,
1025 .driver = {
1026 .name = "vc4_crtc",
1027 .of_match_table = vc4_crtc_dt_match,
1028 },
1029 };
This page took 0.052383 seconds and 5 git commands to generate.