fb: adv7393: off by one in probe function
[deliverable/linux.git] / drivers / hwmon / lm90.c
1 /*
2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
5 *
6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
7 * Semiconductor. It reports up to two temperatures (its own plus up to
8 * one external one) with a 0.125 deg resolution (1 deg for local
9 * temperature) and a 3-4 deg accuracy.
10 *
11 * This driver also supports the LM89 and LM99, two other sensor chips
12 * made by National Semiconductor. Both have an increased remote
13 * temperature measurement accuracy (1 degree), and the LM99
14 * additionally shifts remote temperatures (measured and limits) by 16
15 * degrees, which allows for higher temperatures measurement.
16 * Note that there is no way to differentiate between both chips.
17 * When device is auto-detected, the driver will assume an LM99.
18 *
19 * This driver also supports the LM86, another sensor chip made by
20 * National Semiconductor. It is exactly similar to the LM90 except it
21 * has a higher accuracy.
22 *
23 * This driver also supports the ADM1032, a sensor chip made by Analog
24 * Devices. That chip is similar to the LM90, with a few differences
25 * that are not handled by this driver. Among others, it has a higher
26 * accuracy than the LM90, much like the LM86 does.
27 *
28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29 * chips made by Maxim. These chips are similar to the LM86.
30 * Note that there is no easy way to differentiate between the three
31 * variants. We use the device address to detect MAX6659, which will result
32 * in a detection as max6657 if it is on address 0x4c. The extra address
33 * and features of the MAX6659 are only supported if the chip is configured
34 * explicitly as max6659, or if its address is not 0x4c.
35 * These chips lack the remote temperature offset feature.
36 *
37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38 * MAX6692 chips made by Maxim. These are again similar to the LM86,
39 * but they use unsigned temperature values and can report temperatures
40 * from 0 to 145 degrees.
41 *
42 * This driver also supports the MAX6680 and MAX6681, two other sensor
43 * chips made by Maxim. These are quite similar to the other Maxim
44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45 * be treated identically.
46 *
47 * This driver also supports the MAX6695 and MAX6696, two other sensor
48 * chips made by Maxim. These are also quite similar to other Maxim
49 * chips, but support three temperature sensors instead of two. MAX6695
50 * and MAX6696 only differ in the pinout so they can be treated identically.
51 *
52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54 * and extended mode. They are mostly compatible with LM90 except for a data
55 * format difference for the temperature value registers.
56 *
57 * This driver also supports the SA56004 from Philips. This device is
58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59 *
60 * This driver also supports the G781 from GMT. This device is compatible
61 * with the ADM1032.
62 *
63 * This driver also supports TMP451 from Texas Instruments. This device is
64 * supported in both compatibility and extended mode. It's mostly compatible
65 * with ADT7461 except for local temperature low byte register and max
66 * conversion rate.
67 *
68 * Since the LM90 was the first chipset supported by this driver, most
69 * comments will refer to this chipset, but are actually general and
70 * concern all supported chipsets, unless mentioned otherwise.
71 *
72 * This program is free software; you can redistribute it and/or modify
73 * it under the terms of the GNU General Public License as published by
74 * the Free Software Foundation; either version 2 of the License, or
75 * (at your option) any later version.
76 *
77 * This program is distributed in the hope that it will be useful,
78 * but WITHOUT ANY WARRANTY; without even the implied warranty of
79 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
80 * GNU General Public License for more details.
81 *
82 * You should have received a copy of the GNU General Public License
83 * along with this program; if not, write to the Free Software
84 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
85 */
86
87 #include <linux/module.h>
88 #include <linux/init.h>
89 #include <linux/slab.h>
90 #include <linux/jiffies.h>
91 #include <linux/i2c.h>
92 #include <linux/hwmon-sysfs.h>
93 #include <linux/hwmon.h>
94 #include <linux/err.h>
95 #include <linux/mutex.h>
96 #include <linux/sysfs.h>
97 #include <linux/interrupt.h>
98 #include <linux/regulator/consumer.h>
99
100 /*
101 * Addresses to scan
102 * Address is fully defined internally and cannot be changed except for
103 * MAX6659, MAX6680 and MAX6681.
104 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
105 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
106 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
107 * have address 0x4d.
108 * MAX6647 has address 0x4e.
109 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
110 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
111 * 0x4c, 0x4d or 0x4e.
112 * SA56004 can have address 0x48 through 0x4F.
113 */
114
115 static const unsigned short normal_i2c[] = {
116 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
117 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
118
119 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
120 max6646, w83l771, max6696, sa56004, g781, tmp451 };
121
122 /*
123 * The LM90 registers
124 */
125
126 #define LM90_REG_R_MAN_ID 0xFE
127 #define LM90_REG_R_CHIP_ID 0xFF
128 #define LM90_REG_R_CONFIG1 0x03
129 #define LM90_REG_W_CONFIG1 0x09
130 #define LM90_REG_R_CONFIG2 0xBF
131 #define LM90_REG_W_CONFIG2 0xBF
132 #define LM90_REG_R_CONVRATE 0x04
133 #define LM90_REG_W_CONVRATE 0x0A
134 #define LM90_REG_R_STATUS 0x02
135 #define LM90_REG_R_LOCAL_TEMP 0x00
136 #define LM90_REG_R_LOCAL_HIGH 0x05
137 #define LM90_REG_W_LOCAL_HIGH 0x0B
138 #define LM90_REG_R_LOCAL_LOW 0x06
139 #define LM90_REG_W_LOCAL_LOW 0x0C
140 #define LM90_REG_R_LOCAL_CRIT 0x20
141 #define LM90_REG_W_LOCAL_CRIT 0x20
142 #define LM90_REG_R_REMOTE_TEMPH 0x01
143 #define LM90_REG_R_REMOTE_TEMPL 0x10
144 #define LM90_REG_R_REMOTE_OFFSH 0x11
145 #define LM90_REG_W_REMOTE_OFFSH 0x11
146 #define LM90_REG_R_REMOTE_OFFSL 0x12
147 #define LM90_REG_W_REMOTE_OFFSL 0x12
148 #define LM90_REG_R_REMOTE_HIGHH 0x07
149 #define LM90_REG_W_REMOTE_HIGHH 0x0D
150 #define LM90_REG_R_REMOTE_HIGHL 0x13
151 #define LM90_REG_W_REMOTE_HIGHL 0x13
152 #define LM90_REG_R_REMOTE_LOWH 0x08
153 #define LM90_REG_W_REMOTE_LOWH 0x0E
154 #define LM90_REG_R_REMOTE_LOWL 0x14
155 #define LM90_REG_W_REMOTE_LOWL 0x14
156 #define LM90_REG_R_REMOTE_CRIT 0x19
157 #define LM90_REG_W_REMOTE_CRIT 0x19
158 #define LM90_REG_R_TCRIT_HYST 0x21
159 #define LM90_REG_W_TCRIT_HYST 0x21
160
161 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
162
163 #define MAX6657_REG_R_LOCAL_TEMPL 0x11
164 #define MAX6696_REG_R_STATUS2 0x12
165 #define MAX6659_REG_R_REMOTE_EMERG 0x16
166 #define MAX6659_REG_W_REMOTE_EMERG 0x16
167 #define MAX6659_REG_R_LOCAL_EMERG 0x17
168 #define MAX6659_REG_W_LOCAL_EMERG 0x17
169
170 /* SA56004 registers */
171
172 #define SA56004_REG_R_LOCAL_TEMPL 0x22
173
174 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
175
176 /* TMP451 registers */
177 #define TMP451_REG_R_LOCAL_TEMPL 0x15
178
179 /*
180 * Device flags
181 */
182 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
183 /* Device features */
184 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
185 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
186 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
187 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
188 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
189 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
190
191 /* LM90 status */
192 #define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */
193 #define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */
194 #define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */
195 #define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */
196 #define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */
197 #define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */
198 #define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */
199
200 #define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */
201 #define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */
202 #define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */
203 #define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */
204 #define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */
205 #define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */
206 #define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */
207
208 /*
209 * Driver data (common to all clients)
210 */
211
212 static const struct i2c_device_id lm90_id[] = {
213 { "adm1032", adm1032 },
214 { "adt7461", adt7461 },
215 { "adt7461a", adt7461 },
216 { "g781", g781 },
217 { "lm90", lm90 },
218 { "lm86", lm86 },
219 { "lm89", lm86 },
220 { "lm99", lm99 },
221 { "max6646", max6646 },
222 { "max6647", max6646 },
223 { "max6649", max6646 },
224 { "max6657", max6657 },
225 { "max6658", max6657 },
226 { "max6659", max6659 },
227 { "max6680", max6680 },
228 { "max6681", max6680 },
229 { "max6695", max6696 },
230 { "max6696", max6696 },
231 { "nct1008", adt7461 },
232 { "w83l771", w83l771 },
233 { "sa56004", sa56004 },
234 { "tmp451", tmp451 },
235 { }
236 };
237 MODULE_DEVICE_TABLE(i2c, lm90_id);
238
239 /*
240 * chip type specific parameters
241 */
242 struct lm90_params {
243 u32 flags; /* Capabilities */
244 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
245 /* Upper 8 bits for max6695/96 */
246 u8 max_convrate; /* Maximum conversion rate register value */
247 u8 reg_local_ext; /* Extended local temp register (optional) */
248 };
249
250 static const struct lm90_params lm90_params[] = {
251 [adm1032] = {
252 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
253 | LM90_HAVE_BROKEN_ALERT,
254 .alert_alarms = 0x7c,
255 .max_convrate = 10,
256 },
257 [adt7461] = {
258 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
259 | LM90_HAVE_BROKEN_ALERT,
260 .alert_alarms = 0x7c,
261 .max_convrate = 10,
262 },
263 [g781] = {
264 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
265 | LM90_HAVE_BROKEN_ALERT,
266 .alert_alarms = 0x7c,
267 .max_convrate = 8,
268 },
269 [lm86] = {
270 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
271 .alert_alarms = 0x7b,
272 .max_convrate = 9,
273 },
274 [lm90] = {
275 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
276 .alert_alarms = 0x7b,
277 .max_convrate = 9,
278 },
279 [lm99] = {
280 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
281 .alert_alarms = 0x7b,
282 .max_convrate = 9,
283 },
284 [max6646] = {
285 .alert_alarms = 0x7c,
286 .max_convrate = 6,
287 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
288 },
289 [max6657] = {
290 .alert_alarms = 0x7c,
291 .max_convrate = 8,
292 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
293 },
294 [max6659] = {
295 .flags = LM90_HAVE_EMERGENCY,
296 .alert_alarms = 0x7c,
297 .max_convrate = 8,
298 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
299 },
300 [max6680] = {
301 .flags = LM90_HAVE_OFFSET,
302 .alert_alarms = 0x7c,
303 .max_convrate = 7,
304 },
305 [max6696] = {
306 .flags = LM90_HAVE_EMERGENCY
307 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
308 .alert_alarms = 0x1c7c,
309 .max_convrate = 6,
310 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
311 },
312 [w83l771] = {
313 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
314 .alert_alarms = 0x7c,
315 .max_convrate = 8,
316 },
317 [sa56004] = {
318 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
319 .alert_alarms = 0x7b,
320 .max_convrate = 9,
321 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
322 },
323 [tmp451] = {
324 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
325 | LM90_HAVE_BROKEN_ALERT,
326 .alert_alarms = 0x7c,
327 .max_convrate = 9,
328 .reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
329 }
330 };
331
332 /*
333 * TEMP8 register index
334 */
335 enum lm90_temp8_reg_index {
336 LOCAL_LOW = 0,
337 LOCAL_HIGH,
338 LOCAL_CRIT,
339 REMOTE_CRIT,
340 LOCAL_EMERG, /* max6659 and max6695/96 */
341 REMOTE_EMERG, /* max6659 and max6695/96 */
342 REMOTE2_CRIT, /* max6695/96 only */
343 REMOTE2_EMERG, /* max6695/96 only */
344 TEMP8_REG_NUM
345 };
346
347 /*
348 * TEMP11 register index
349 */
350 enum lm90_temp11_reg_index {
351 REMOTE_TEMP = 0,
352 REMOTE_LOW,
353 REMOTE_HIGH,
354 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
355 LOCAL_TEMP,
356 REMOTE2_TEMP, /* max6695/96 only */
357 REMOTE2_LOW, /* max6695/96 only */
358 REMOTE2_HIGH, /* max6695/96 only */
359 TEMP11_REG_NUM
360 };
361
362 /*
363 * Client data (each client gets its own)
364 */
365
366 struct lm90_data {
367 struct i2c_client *client;
368 const struct attribute_group *groups[6];
369 struct mutex update_lock;
370 bool valid; /* true if register values are valid */
371 unsigned long last_updated; /* in jiffies */
372 int kind;
373 u32 flags;
374
375 unsigned int update_interval; /* in milliseconds */
376
377 u8 config_orig; /* Original configuration register value */
378 u8 convrate_orig; /* Original conversion rate register value */
379 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
380 /* Upper 8 bits for max6695/96 */
381 u8 max_convrate; /* Maximum conversion rate */
382 u8 reg_local_ext; /* local extension register offset */
383
384 /* registers values */
385 s8 temp8[TEMP8_REG_NUM];
386 s16 temp11[TEMP11_REG_NUM];
387 u8 temp_hyst;
388 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
389 };
390
391 /*
392 * Support functions
393 */
394
395 /*
396 * The ADM1032 supports PEC but not on write byte transactions, so we need
397 * to explicitly ask for a transaction without PEC.
398 */
399 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
400 {
401 return i2c_smbus_xfer(client->adapter, client->addr,
402 client->flags & ~I2C_CLIENT_PEC,
403 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
404 }
405
406 /*
407 * It is assumed that client->update_lock is held (unless we are in
408 * detection or initialization steps). This matters when PEC is enabled,
409 * because we don't want the address pointer to change between the write
410 * byte and the read byte transactions.
411 */
412 static int lm90_read_reg(struct i2c_client *client, u8 reg)
413 {
414 int err;
415
416 if (client->flags & I2C_CLIENT_PEC) {
417 err = adm1032_write_byte(client, reg);
418 if (err >= 0)
419 err = i2c_smbus_read_byte(client);
420 } else
421 err = i2c_smbus_read_byte_data(client, reg);
422
423 return err;
424 }
425
426 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl)
427 {
428 int oldh, newh, l;
429
430 /*
431 * There is a trick here. We have to read two registers to have the
432 * sensor temperature, but we have to beware a conversion could occur
433 * between the readings. The datasheet says we should either use
434 * the one-shot conversion register, which we don't want to do
435 * (disables hardware monitoring) or monitor the busy bit, which is
436 * impossible (we can't read the values and monitor that bit at the
437 * exact same time). So the solution used here is to read the high
438 * byte once, then the low byte, then the high byte again. If the new
439 * high byte matches the old one, then we have a valid reading. Else
440 * we have to read the low byte again, and now we believe we have a
441 * correct reading.
442 */
443 oldh = lm90_read_reg(client, regh);
444 if (oldh < 0)
445 return oldh;
446 l = lm90_read_reg(client, regl);
447 if (l < 0)
448 return l;
449 newh = lm90_read_reg(client, regh);
450 if (newh < 0)
451 return newh;
452 if (oldh != newh) {
453 l = lm90_read_reg(client, regl);
454 if (l < 0)
455 return l;
456 }
457 return (newh << 8) | l;
458 }
459
460 /*
461 * client->update_lock must be held when calling this function (unless we are
462 * in detection or initialization steps), and while a remote channel other
463 * than channel 0 is selected. Also, calling code must make sure to re-select
464 * external channel 0 before releasing the lock. This is necessary because
465 * various registers have different meanings as a result of selecting a
466 * non-default remote channel.
467 */
468 static inline int lm90_select_remote_channel(struct i2c_client *client,
469 struct lm90_data *data,
470 int channel)
471 {
472 int config;
473
474 if (data->kind == max6696) {
475 config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
476 if (config < 0)
477 return config;
478 config &= ~0x08;
479 if (channel)
480 config |= 0x08;
481 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
482 config);
483 }
484 return 0;
485 }
486
487 /*
488 * Set conversion rate.
489 * client->update_lock must be held when calling this function (unless we are
490 * in detection or initialization steps).
491 */
492 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
493 unsigned int interval)
494 {
495 int i;
496 unsigned int update_interval;
497
498 /* Shift calculations to avoid rounding errors */
499 interval <<= 6;
500
501 /* find the nearest update rate */
502 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
503 i < data->max_convrate; i++, update_interval >>= 1)
504 if (interval >= update_interval * 3 / 4)
505 break;
506
507 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
508 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
509 }
510
511 static int lm90_update_limits(struct device *dev)
512 {
513 struct lm90_data *data = dev_get_drvdata(dev);
514 struct i2c_client *client = data->client;
515 int val;
516
517 val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT);
518 if (val < 0)
519 return val;
520 data->temp8[LOCAL_CRIT] = val;
521
522 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
523 if (val < 0)
524 return val;
525 data->temp8[REMOTE_CRIT] = val;
526
527 val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST);
528 if (val < 0)
529 return val;
530 data->temp_hyst = val;
531
532 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
533 if (val < 0)
534 return val;
535 data->temp11[REMOTE_LOW] = val << 8;
536
537 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
538 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL);
539 if (val < 0)
540 return val;
541 data->temp11[REMOTE_LOW] |= val;
542 }
543
544 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
545 if (val < 0)
546 return val;
547 data->temp11[REMOTE_HIGH] = val << 8;
548
549 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) {
550 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL);
551 if (val < 0)
552 return val;
553 data->temp11[REMOTE_HIGH] |= val;
554 }
555
556 if (data->flags & LM90_HAVE_OFFSET) {
557 val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH,
558 LM90_REG_R_REMOTE_OFFSL);
559 if (val < 0)
560 return val;
561 data->temp11[REMOTE_OFFSET] = val;
562 }
563
564 if (data->flags & LM90_HAVE_EMERGENCY) {
565 val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG);
566 if (val < 0)
567 return val;
568 data->temp8[LOCAL_EMERG] = val;
569
570 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
571 if (val < 0)
572 return val;
573 data->temp8[REMOTE_EMERG] = val;
574 }
575
576 if (data->kind == max6696) {
577 val = lm90_select_remote_channel(client, data, 1);
578 if (val < 0)
579 return val;
580
581 val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT);
582 if (val < 0)
583 return val;
584 data->temp8[REMOTE2_CRIT] = val;
585
586 val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG);
587 if (val < 0)
588 return val;
589 data->temp8[REMOTE2_EMERG] = val;
590
591 val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH);
592 if (val < 0)
593 return val;
594 data->temp11[REMOTE2_LOW] = val << 8;
595
596 val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH);
597 if (val < 0)
598 return val;
599 data->temp11[REMOTE2_HIGH] = val << 8;
600
601 lm90_select_remote_channel(client, data, 0);
602 }
603
604 return 0;
605 }
606
607 static struct lm90_data *lm90_update_device(struct device *dev)
608 {
609 struct lm90_data *data = dev_get_drvdata(dev);
610 struct i2c_client *client = data->client;
611 unsigned long next_update;
612 int val = 0;
613
614 mutex_lock(&data->update_lock);
615
616 if (!data->valid) {
617 val = lm90_update_limits(dev);
618 if (val < 0)
619 goto error;
620 }
621
622 next_update = data->last_updated +
623 msecs_to_jiffies(data->update_interval);
624 if (time_after(jiffies, next_update) || !data->valid) {
625 dev_dbg(&client->dev, "Updating lm90 data.\n");
626
627 data->valid = false;
628
629 val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW);
630 if (val < 0)
631 goto error;
632 data->temp8[LOCAL_LOW] = val;
633
634 val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH);
635 if (val < 0)
636 goto error;
637 data->temp8[LOCAL_HIGH] = val;
638
639 if (data->reg_local_ext) {
640 val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
641 data->reg_local_ext);
642 if (val < 0)
643 goto error;
644 data->temp11[LOCAL_TEMP] = val;
645 } else {
646 val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP);
647 if (val < 0)
648 goto error;
649 data->temp11[LOCAL_TEMP] = val << 8;
650 }
651 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
652 LM90_REG_R_REMOTE_TEMPL);
653 if (val < 0)
654 goto error;
655 data->temp11[REMOTE_TEMP] = val;
656
657 val = lm90_read_reg(client, LM90_REG_R_STATUS);
658 if (val < 0)
659 goto error;
660 data->alarms = val; /* lower 8 bit of alarms */
661
662 if (data->kind == max6696) {
663 val = lm90_select_remote_channel(client, data, 1);
664 if (val < 0)
665 goto error;
666
667 val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
668 LM90_REG_R_REMOTE_TEMPL);
669 if (val < 0)
670 goto error;
671 data->temp11[REMOTE2_TEMP] = val;
672
673 lm90_select_remote_channel(client, data, 0);
674
675 val = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
676 if (val < 0)
677 goto error;
678 data->alarms |= val << 8;
679 }
680
681 /*
682 * Re-enable ALERT# output if it was originally enabled and
683 * relevant alarms are all clear
684 */
685 if (!(data->config_orig & 0x80) &&
686 !(data->alarms & data->alert_alarms)) {
687 val = lm90_read_reg(client, LM90_REG_R_CONFIG1);
688 if (val < 0)
689 goto error;
690
691 if (val & 0x80) {
692 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
693 i2c_smbus_write_byte_data(client,
694 LM90_REG_W_CONFIG1,
695 val & ~0x80);
696 }
697 }
698
699 data->last_updated = jiffies;
700 data->valid = true;
701 }
702
703 error:
704 mutex_unlock(&data->update_lock);
705
706 if (val < 0)
707 return ERR_PTR(val);
708
709 return data;
710 }
711
712 /*
713 * Conversions
714 * For local temperatures and limits, critical limits and the hysteresis
715 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
716 * For remote temperatures and limits, it uses signed 11-bit values with
717 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
718 * Maxim chips use unsigned values.
719 */
720
721 static inline int temp_from_s8(s8 val)
722 {
723 return val * 1000;
724 }
725
726 static inline int temp_from_u8(u8 val)
727 {
728 return val * 1000;
729 }
730
731 static inline int temp_from_s16(s16 val)
732 {
733 return val / 32 * 125;
734 }
735
736 static inline int temp_from_u16(u16 val)
737 {
738 return val / 32 * 125;
739 }
740
741 static s8 temp_to_s8(long val)
742 {
743 if (val <= -128000)
744 return -128;
745 if (val >= 127000)
746 return 127;
747 if (val < 0)
748 return (val - 500) / 1000;
749 return (val + 500) / 1000;
750 }
751
752 static u8 temp_to_u8(long val)
753 {
754 if (val <= 0)
755 return 0;
756 if (val >= 255000)
757 return 255;
758 return (val + 500) / 1000;
759 }
760
761 static s16 temp_to_s16(long val)
762 {
763 if (val <= -128000)
764 return 0x8000;
765 if (val >= 127875)
766 return 0x7FE0;
767 if (val < 0)
768 return (val - 62) / 125 * 32;
769 return (val + 62) / 125 * 32;
770 }
771
772 static u8 hyst_to_reg(long val)
773 {
774 if (val <= 0)
775 return 0;
776 if (val >= 30500)
777 return 31;
778 return (val + 500) / 1000;
779 }
780
781 /*
782 * ADT7461 in compatibility mode is almost identical to LM90 except that
783 * attempts to write values that are outside the range 0 < temp < 127 are
784 * treated as the boundary value.
785 *
786 * ADT7461 in "extended mode" operation uses unsigned integers offset by
787 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
788 */
789 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
790 {
791 if (data->flags & LM90_FLAG_ADT7461_EXT)
792 return (val - 64) * 1000;
793 return temp_from_s8(val);
794 }
795
796 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
797 {
798 if (data->flags & LM90_FLAG_ADT7461_EXT)
799 return (val - 0x4000) / 64 * 250;
800 return temp_from_s16(val);
801 }
802
803 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
804 {
805 if (data->flags & LM90_FLAG_ADT7461_EXT) {
806 if (val <= -64000)
807 return 0;
808 if (val >= 191000)
809 return 0xFF;
810 return (val + 500 + 64000) / 1000;
811 }
812 if (val <= 0)
813 return 0;
814 if (val >= 127000)
815 return 127;
816 return (val + 500) / 1000;
817 }
818
819 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
820 {
821 if (data->flags & LM90_FLAG_ADT7461_EXT) {
822 if (val <= -64000)
823 return 0;
824 if (val >= 191750)
825 return 0xFFC0;
826 return (val + 64000 + 125) / 250 * 64;
827 }
828 if (val <= 0)
829 return 0;
830 if (val >= 127750)
831 return 0x7FC0;
832 return (val + 125) / 250 * 64;
833 }
834
835 /*
836 * Sysfs stuff
837 */
838
839 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
840 char *buf)
841 {
842 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
843 struct lm90_data *data = lm90_update_device(dev);
844 int temp;
845
846 if (IS_ERR(data))
847 return PTR_ERR(data);
848
849 if (data->kind == adt7461 || data->kind == tmp451)
850 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
851 else if (data->kind == max6646)
852 temp = temp_from_u8(data->temp8[attr->index]);
853 else
854 temp = temp_from_s8(data->temp8[attr->index]);
855
856 /* +16 degrees offset for temp2 for the LM99 */
857 if (data->kind == lm99 && attr->index == 3)
858 temp += 16000;
859
860 return sprintf(buf, "%d\n", temp);
861 }
862
863 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
864 const char *buf, size_t count)
865 {
866 static const u8 reg[TEMP8_REG_NUM] = {
867 LM90_REG_W_LOCAL_LOW,
868 LM90_REG_W_LOCAL_HIGH,
869 LM90_REG_W_LOCAL_CRIT,
870 LM90_REG_W_REMOTE_CRIT,
871 MAX6659_REG_W_LOCAL_EMERG,
872 MAX6659_REG_W_REMOTE_EMERG,
873 LM90_REG_W_REMOTE_CRIT,
874 MAX6659_REG_W_REMOTE_EMERG,
875 };
876
877 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
878 struct lm90_data *data = dev_get_drvdata(dev);
879 struct i2c_client *client = data->client;
880 int nr = attr->index;
881 long val;
882 int err;
883
884 err = kstrtol(buf, 10, &val);
885 if (err < 0)
886 return err;
887
888 /* +16 degrees offset for temp2 for the LM99 */
889 if (data->kind == lm99 && attr->index == 3)
890 val -= 16000;
891
892 mutex_lock(&data->update_lock);
893 if (data->kind == adt7461 || data->kind == tmp451)
894 data->temp8[nr] = temp_to_u8_adt7461(data, val);
895 else if (data->kind == max6646)
896 data->temp8[nr] = temp_to_u8(val);
897 else
898 data->temp8[nr] = temp_to_s8(val);
899
900 lm90_select_remote_channel(client, data, nr >= 6);
901 i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
902 lm90_select_remote_channel(client, data, 0);
903
904 mutex_unlock(&data->update_lock);
905 return count;
906 }
907
908 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
909 char *buf)
910 {
911 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
912 struct lm90_data *data = lm90_update_device(dev);
913 int temp;
914
915 if (IS_ERR(data))
916 return PTR_ERR(data);
917
918 if (data->kind == adt7461 || data->kind == tmp451)
919 temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
920 else if (data->kind == max6646)
921 temp = temp_from_u16(data->temp11[attr->index]);
922 else
923 temp = temp_from_s16(data->temp11[attr->index]);
924
925 /* +16 degrees offset for temp2 for the LM99 */
926 if (data->kind == lm99 && attr->index <= 2)
927 temp += 16000;
928
929 return sprintf(buf, "%d\n", temp);
930 }
931
932 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
933 const char *buf, size_t count)
934 {
935 struct {
936 u8 high;
937 u8 low;
938 int channel;
939 } reg[5] = {
940 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
941 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
942 { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
943 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
944 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
945 };
946
947 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
948 struct lm90_data *data = dev_get_drvdata(dev);
949 struct i2c_client *client = data->client;
950 int nr = attr->nr;
951 int index = attr->index;
952 long val;
953 int err;
954
955 err = kstrtol(buf, 10, &val);
956 if (err < 0)
957 return err;
958
959 /* +16 degrees offset for temp2 for the LM99 */
960 if (data->kind == lm99 && index <= 2)
961 val -= 16000;
962
963 mutex_lock(&data->update_lock);
964 if (data->kind == adt7461 || data->kind == tmp451)
965 data->temp11[index] = temp_to_u16_adt7461(data, val);
966 else if (data->kind == max6646)
967 data->temp11[index] = temp_to_u8(val) << 8;
968 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
969 data->temp11[index] = temp_to_s16(val);
970 else
971 data->temp11[index] = temp_to_s8(val) << 8;
972
973 lm90_select_remote_channel(client, data, reg[nr].channel);
974 i2c_smbus_write_byte_data(client, reg[nr].high,
975 data->temp11[index] >> 8);
976 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
977 i2c_smbus_write_byte_data(client, reg[nr].low,
978 data->temp11[index] & 0xff);
979 lm90_select_remote_channel(client, data, 0);
980
981 mutex_unlock(&data->update_lock);
982 return count;
983 }
984
985 static ssize_t show_temphyst(struct device *dev,
986 struct device_attribute *devattr,
987 char *buf)
988 {
989 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
990 struct lm90_data *data = lm90_update_device(dev);
991 int temp;
992
993 if (IS_ERR(data))
994 return PTR_ERR(data);
995
996 if (data->kind == adt7461 || data->kind == tmp451)
997 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
998 else if (data->kind == max6646)
999 temp = temp_from_u8(data->temp8[attr->index]);
1000 else
1001 temp = temp_from_s8(data->temp8[attr->index]);
1002
1003 /* +16 degrees offset for temp2 for the LM99 */
1004 if (data->kind == lm99 && attr->index == 3)
1005 temp += 16000;
1006
1007 return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
1008 }
1009
1010 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
1011 const char *buf, size_t count)
1012 {
1013 struct lm90_data *data = dev_get_drvdata(dev);
1014 struct i2c_client *client = data->client;
1015 long val;
1016 int err;
1017 int temp;
1018
1019 err = kstrtol(buf, 10, &val);
1020 if (err < 0)
1021 return err;
1022
1023 mutex_lock(&data->update_lock);
1024 if (data->kind == adt7461 || data->kind == tmp451)
1025 temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
1026 else if (data->kind == max6646)
1027 temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
1028 else
1029 temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
1030
1031 data->temp_hyst = hyst_to_reg(temp - val);
1032 i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
1033 data->temp_hyst);
1034 mutex_unlock(&data->update_lock);
1035 return count;
1036 }
1037
1038 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
1039 char *buf)
1040 {
1041 struct lm90_data *data = lm90_update_device(dev);
1042
1043 if (IS_ERR(data))
1044 return PTR_ERR(data);
1045
1046 return sprintf(buf, "%d\n", data->alarms);
1047 }
1048
1049 static ssize_t show_alarm(struct device *dev, struct device_attribute
1050 *devattr, char *buf)
1051 {
1052 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
1053 struct lm90_data *data = lm90_update_device(dev);
1054 int bitnr = attr->index;
1055
1056 if (IS_ERR(data))
1057 return PTR_ERR(data);
1058
1059 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
1060 }
1061
1062 static ssize_t show_update_interval(struct device *dev,
1063 struct device_attribute *attr, char *buf)
1064 {
1065 struct lm90_data *data = dev_get_drvdata(dev);
1066
1067 return sprintf(buf, "%u\n", data->update_interval);
1068 }
1069
1070 static ssize_t set_update_interval(struct device *dev,
1071 struct device_attribute *attr,
1072 const char *buf, size_t count)
1073 {
1074 struct lm90_data *data = dev_get_drvdata(dev);
1075 struct i2c_client *client = data->client;
1076 unsigned long val;
1077 int err;
1078
1079 err = kstrtoul(buf, 10, &val);
1080 if (err)
1081 return err;
1082
1083 mutex_lock(&data->update_lock);
1084 lm90_set_convrate(client, data, clamp_val(val, 0, 100000));
1085 mutex_unlock(&data->update_lock);
1086
1087 return count;
1088 }
1089
1090 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL,
1091 0, LOCAL_TEMP);
1092 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL,
1093 0, REMOTE_TEMP);
1094 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
1095 set_temp8, LOCAL_LOW);
1096 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
1097 set_temp11, 0, REMOTE_LOW);
1098 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
1099 set_temp8, LOCAL_HIGH);
1100 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
1101 set_temp11, 1, REMOTE_HIGH);
1102 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
1103 set_temp8, LOCAL_CRIT);
1104 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
1105 set_temp8, REMOTE_CRIT);
1106 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
1107 set_temphyst, LOCAL_CRIT);
1108 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL,
1109 REMOTE_CRIT);
1110 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
1111 set_temp11, 2, REMOTE_OFFSET);
1112
1113 /* Individual alarm files */
1114 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
1115 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
1116 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
1117 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
1118 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
1119 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
1120 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
1121 /* Raw alarm file for compatibility */
1122 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
1123
1124 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
1125 set_update_interval);
1126
1127 static struct attribute *lm90_attributes[] = {
1128 &sensor_dev_attr_temp1_input.dev_attr.attr,
1129 &sensor_dev_attr_temp2_input.dev_attr.attr,
1130 &sensor_dev_attr_temp1_min.dev_attr.attr,
1131 &sensor_dev_attr_temp2_min.dev_attr.attr,
1132 &sensor_dev_attr_temp1_max.dev_attr.attr,
1133 &sensor_dev_attr_temp2_max.dev_attr.attr,
1134 &sensor_dev_attr_temp1_crit.dev_attr.attr,
1135 &sensor_dev_attr_temp2_crit.dev_attr.attr,
1136 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
1137 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
1138
1139 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
1140 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
1141 &sensor_dev_attr_temp2_fault.dev_attr.attr,
1142 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
1143 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
1144 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
1145 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
1146 &dev_attr_alarms.attr,
1147 &dev_attr_update_interval.attr,
1148 NULL
1149 };
1150
1151 static const struct attribute_group lm90_group = {
1152 .attrs = lm90_attributes,
1153 };
1154
1155 static struct attribute *lm90_temp2_offset_attributes[] = {
1156 &sensor_dev_attr_temp2_offset.dev_attr.attr,
1157 NULL
1158 };
1159
1160 static const struct attribute_group lm90_temp2_offset_group = {
1161 .attrs = lm90_temp2_offset_attributes,
1162 };
1163
1164 /*
1165 * Additional attributes for devices with emergency sensors
1166 */
1167 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1168 set_temp8, LOCAL_EMERG);
1169 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1170 set_temp8, REMOTE_EMERG);
1171 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1172 NULL, LOCAL_EMERG);
1173 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1174 NULL, REMOTE_EMERG);
1175
1176 static struct attribute *lm90_emergency_attributes[] = {
1177 &sensor_dev_attr_temp1_emergency.dev_attr.attr,
1178 &sensor_dev_attr_temp2_emergency.dev_attr.attr,
1179 &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1180 &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1181 NULL
1182 };
1183
1184 static const struct attribute_group lm90_emergency_group = {
1185 .attrs = lm90_emergency_attributes,
1186 };
1187
1188 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1189 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1190
1191 static struct attribute *lm90_emergency_alarm_attributes[] = {
1192 &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1193 &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1194 NULL
1195 };
1196
1197 static const struct attribute_group lm90_emergency_alarm_group = {
1198 .attrs = lm90_emergency_alarm_attributes,
1199 };
1200
1201 /*
1202 * Additional attributes for devices with 3 temperature sensors
1203 */
1204 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL,
1205 0, REMOTE2_TEMP);
1206 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1207 set_temp11, 3, REMOTE2_LOW);
1208 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1209 set_temp11, 4, REMOTE2_HIGH);
1210 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1211 set_temp8, REMOTE2_CRIT);
1212 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL,
1213 REMOTE2_CRIT);
1214 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1215 set_temp8, REMOTE2_EMERG);
1216 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1217 NULL, REMOTE2_EMERG);
1218
1219 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1220 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1221 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1222 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1223 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1224
1225 static struct attribute *lm90_temp3_attributes[] = {
1226 &sensor_dev_attr_temp3_input.dev_attr.attr,
1227 &sensor_dev_attr_temp3_min.dev_attr.attr,
1228 &sensor_dev_attr_temp3_max.dev_attr.attr,
1229 &sensor_dev_attr_temp3_crit.dev_attr.attr,
1230 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1231 &sensor_dev_attr_temp3_emergency.dev_attr.attr,
1232 &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1233
1234 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1235 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1236 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1237 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1238 &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1239 NULL
1240 };
1241
1242 static const struct attribute_group lm90_temp3_group = {
1243 .attrs = lm90_temp3_attributes,
1244 };
1245
1246 /* pec used for ADM1032 only */
1247 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1248 char *buf)
1249 {
1250 struct i2c_client *client = to_i2c_client(dev);
1251 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1252 }
1253
1254 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1255 const char *buf, size_t count)
1256 {
1257 struct i2c_client *client = to_i2c_client(dev);
1258 long val;
1259 int err;
1260
1261 err = kstrtol(buf, 10, &val);
1262 if (err < 0)
1263 return err;
1264
1265 switch (val) {
1266 case 0:
1267 client->flags &= ~I2C_CLIENT_PEC;
1268 break;
1269 case 1:
1270 client->flags |= I2C_CLIENT_PEC;
1271 break;
1272 default:
1273 return -EINVAL;
1274 }
1275
1276 return count;
1277 }
1278
1279 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1280
1281 /*
1282 * Real code
1283 */
1284
1285 /* Return 0 if detection is successful, -ENODEV otherwise */
1286 static int lm90_detect(struct i2c_client *client,
1287 struct i2c_board_info *info)
1288 {
1289 struct i2c_adapter *adapter = client->adapter;
1290 int address = client->addr;
1291 const char *name = NULL;
1292 int man_id, chip_id, config1, config2, convrate;
1293
1294 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1295 return -ENODEV;
1296
1297 /* detection and identification */
1298 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1299 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1300 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1301 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1302 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1303 return -ENODEV;
1304
1305 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1306 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1307 if (config2 < 0)
1308 return -ENODEV;
1309 } else
1310 config2 = 0; /* Make compiler happy */
1311
1312 if ((address == 0x4C || address == 0x4D)
1313 && man_id == 0x01) { /* National Semiconductor */
1314 if ((config1 & 0x2A) == 0x00
1315 && (config2 & 0xF8) == 0x00
1316 && convrate <= 0x09) {
1317 if (address == 0x4C
1318 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1319 name = "lm90";
1320 } else
1321 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1322 name = "lm99";
1323 dev_info(&adapter->dev,
1324 "Assuming LM99 chip at 0x%02x\n",
1325 address);
1326 dev_info(&adapter->dev,
1327 "If it is an LM89, instantiate it "
1328 "with the new_device sysfs "
1329 "interface\n");
1330 } else
1331 if (address == 0x4C
1332 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1333 name = "lm86";
1334 }
1335 }
1336 } else
1337 if ((address == 0x4C || address == 0x4D)
1338 && man_id == 0x41) { /* Analog Devices */
1339 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1340 && (config1 & 0x3F) == 0x00
1341 && convrate <= 0x0A) {
1342 name = "adm1032";
1343 /*
1344 * The ADM1032 supports PEC, but only if combined
1345 * transactions are not used.
1346 */
1347 if (i2c_check_functionality(adapter,
1348 I2C_FUNC_SMBUS_BYTE))
1349 info->flags |= I2C_CLIENT_PEC;
1350 } else
1351 if (chip_id == 0x51 /* ADT7461 */
1352 && (config1 & 0x1B) == 0x00
1353 && convrate <= 0x0A) {
1354 name = "adt7461";
1355 } else
1356 if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1357 && (config1 & 0x1B) == 0x00
1358 && convrate <= 0x0A) {
1359 name = "adt7461a";
1360 }
1361 } else
1362 if (man_id == 0x4D) { /* Maxim */
1363 int emerg, emerg2, status2;
1364
1365 /*
1366 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1367 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1368 * exists, both readings will reflect the same value. Otherwise,
1369 * the readings will be different.
1370 */
1371 emerg = i2c_smbus_read_byte_data(client,
1372 MAX6659_REG_R_REMOTE_EMERG);
1373 man_id = i2c_smbus_read_byte_data(client,
1374 LM90_REG_R_MAN_ID);
1375 emerg2 = i2c_smbus_read_byte_data(client,
1376 MAX6659_REG_R_REMOTE_EMERG);
1377 status2 = i2c_smbus_read_byte_data(client,
1378 MAX6696_REG_R_STATUS2);
1379 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1380 return -ENODEV;
1381
1382 /*
1383 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1384 * register. Reading from that address will return the last
1385 * read value, which in our case is those of the man_id
1386 * register. Likewise, the config1 register seems to lack a
1387 * low nibble, so the value will be those of the previous
1388 * read, so in our case those of the man_id register.
1389 * MAX6659 has a third set of upper temperature limit registers.
1390 * Those registers also return values on MAX6657 and MAX6658,
1391 * thus the only way to detect MAX6659 is by its address.
1392 * For this reason it will be mis-detected as MAX6657 if its
1393 * address is 0x4C.
1394 */
1395 if (chip_id == man_id
1396 && (address == 0x4C || address == 0x4D || address == 0x4E)
1397 && (config1 & 0x1F) == (man_id & 0x0F)
1398 && convrate <= 0x09) {
1399 if (address == 0x4C)
1400 name = "max6657";
1401 else
1402 name = "max6659";
1403 } else
1404 /*
1405 * Even though MAX6695 and MAX6696 do not have a chip ID
1406 * register, reading it returns 0x01. Bit 4 of the config1
1407 * register is unused and should return zero when read. Bit 0 of
1408 * the status2 register is unused and should return zero when
1409 * read.
1410 *
1411 * MAX6695 and MAX6696 have an additional set of temperature
1412 * limit registers. We can detect those chips by checking if
1413 * one of those registers exists.
1414 */
1415 if (chip_id == 0x01
1416 && (config1 & 0x10) == 0x00
1417 && (status2 & 0x01) == 0x00
1418 && emerg == emerg2
1419 && convrate <= 0x07) {
1420 name = "max6696";
1421 } else
1422 /*
1423 * The chip_id register of the MAX6680 and MAX6681 holds the
1424 * revision of the chip. The lowest bit of the config1 register
1425 * is unused and should return zero when read, so should the
1426 * second to last bit of config1 (software reset).
1427 */
1428 if (chip_id == 0x01
1429 && (config1 & 0x03) == 0x00
1430 && convrate <= 0x07) {
1431 name = "max6680";
1432 } else
1433 /*
1434 * The chip_id register of the MAX6646/6647/6649 holds the
1435 * revision of the chip. The lowest 6 bits of the config1
1436 * register are unused and should return zero when read.
1437 */
1438 if (chip_id == 0x59
1439 && (config1 & 0x3f) == 0x00
1440 && convrate <= 0x07) {
1441 name = "max6646";
1442 }
1443 } else
1444 if (address == 0x4C
1445 && man_id == 0x5C) { /* Winbond/Nuvoton */
1446 if ((config1 & 0x2A) == 0x00
1447 && (config2 & 0xF8) == 0x00) {
1448 if (chip_id == 0x01 /* W83L771W/G */
1449 && convrate <= 0x09) {
1450 name = "w83l771";
1451 } else
1452 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1453 && convrate <= 0x08) {
1454 name = "w83l771";
1455 }
1456 }
1457 } else
1458 if (address >= 0x48 && address <= 0x4F
1459 && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1460 if (chip_id == 0x00
1461 && (config1 & 0x2A) == 0x00
1462 && (config2 & 0xFE) == 0x00
1463 && convrate <= 0x09) {
1464 name = "sa56004";
1465 }
1466 } else
1467 if ((address == 0x4C || address == 0x4D)
1468 && man_id == 0x47) { /* GMT */
1469 if (chip_id == 0x01 /* G781 */
1470 && (config1 & 0x3F) == 0x00
1471 && convrate <= 0x08)
1472 name = "g781";
1473 } else
1474 if (address == 0x4C
1475 && man_id == 0x55) { /* Texas Instruments */
1476 int local_ext;
1477
1478 local_ext = i2c_smbus_read_byte_data(client,
1479 TMP451_REG_R_LOCAL_TEMPL);
1480
1481 if (chip_id == 0x00 /* TMP451 */
1482 && (config1 & 0x1B) == 0x00
1483 && convrate <= 0x09
1484 && (local_ext & 0x0F) == 0x00)
1485 name = "tmp451";
1486 }
1487
1488 if (!name) { /* identification failed */
1489 dev_dbg(&adapter->dev,
1490 "Unsupported chip at 0x%02x (man_id=0x%02X, "
1491 "chip_id=0x%02X)\n", address, man_id, chip_id);
1492 return -ENODEV;
1493 }
1494
1495 strlcpy(info->type, name, I2C_NAME_SIZE);
1496
1497 return 0;
1498 }
1499
1500 static void lm90_restore_conf(void *_data)
1501 {
1502 struct lm90_data *data = _data;
1503 struct i2c_client *client = data->client;
1504
1505 /* Restore initial configuration */
1506 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1507 data->convrate_orig);
1508 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1509 data->config_orig);
1510 }
1511
1512 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1513 {
1514 int config, convrate;
1515
1516 convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE);
1517 if (convrate < 0)
1518 return convrate;
1519 data->convrate_orig = convrate;
1520
1521 /*
1522 * Start the conversions.
1523 */
1524 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1525 config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1526 if (config < 0)
1527 return config;
1528 data->config_orig = config;
1529
1530 /* Check Temperature Range Select */
1531 if (data->kind == adt7461 || data->kind == tmp451) {
1532 if (config & 0x04)
1533 data->flags |= LM90_FLAG_ADT7461_EXT;
1534 }
1535
1536 /*
1537 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1538 * 0.125 degree resolution) and range (0x08, extend range
1539 * to -64 degree) mode for the remote temperature sensor.
1540 */
1541 if (data->kind == max6680)
1542 config |= 0x18;
1543
1544 /*
1545 * Select external channel 0 for max6695/96
1546 */
1547 if (data->kind == max6696)
1548 config &= ~0x08;
1549
1550 config &= 0xBF; /* run */
1551 if (config != data->config_orig) /* Only write if changed */
1552 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1553
1554 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
1555 }
1556
1557 static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1558 {
1559 struct lm90_data *data = i2c_get_clientdata(client);
1560 int st, st2 = 0;
1561
1562 st = lm90_read_reg(client, LM90_REG_R_STATUS);
1563 if (st < 0)
1564 return false;
1565
1566 if (data->kind == max6696) {
1567 st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2);
1568 if (st2 < 0)
1569 return false;
1570 }
1571
1572 *status = st | (st2 << 8);
1573
1574 if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1575 return false;
1576
1577 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1578 (st2 & MAX6696_STATUS2_LOT2))
1579 dev_warn(&client->dev,
1580 "temp%d out of range, please check!\n", 1);
1581 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1582 (st2 & MAX6696_STATUS2_ROT2))
1583 dev_warn(&client->dev,
1584 "temp%d out of range, please check!\n", 2);
1585 if (st & LM90_STATUS_ROPEN)
1586 dev_warn(&client->dev,
1587 "temp%d diode open, please check!\n", 2);
1588 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1589 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1590 dev_warn(&client->dev,
1591 "temp%d out of range, please check!\n", 3);
1592 if (st2 & MAX6696_STATUS2_R2OPEN)
1593 dev_warn(&client->dev,
1594 "temp%d diode open, please check!\n", 3);
1595
1596 return true;
1597 }
1598
1599 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1600 {
1601 struct i2c_client *client = dev_id;
1602 u16 status;
1603
1604 if (lm90_is_tripped(client, &status))
1605 return IRQ_HANDLED;
1606 else
1607 return IRQ_NONE;
1608 }
1609
1610 static void lm90_remove_pec(void *dev)
1611 {
1612 device_remove_file(dev, &dev_attr_pec);
1613 }
1614
1615 static void lm90_regulator_disable(void *regulator)
1616 {
1617 regulator_disable(regulator);
1618 }
1619
1620 static int lm90_probe(struct i2c_client *client,
1621 const struct i2c_device_id *id)
1622 {
1623 struct device *dev = &client->dev;
1624 struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1625 struct lm90_data *data;
1626 struct regulator *regulator;
1627 struct device *hwmon_dev;
1628 int groups = 0;
1629 int err;
1630
1631 regulator = devm_regulator_get(dev, "vcc");
1632 if (IS_ERR(regulator))
1633 return PTR_ERR(regulator);
1634
1635 err = regulator_enable(regulator);
1636 if (err < 0) {
1637 dev_err(dev, "Failed to enable regulator: %d\n", err);
1638 return err;
1639 }
1640
1641 err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
1642 if (err)
1643 return err;
1644
1645 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1646 if (!data)
1647 return -ENOMEM;
1648
1649 data->client = client;
1650 i2c_set_clientdata(client, data);
1651 mutex_init(&data->update_lock);
1652
1653 /* Set the device type */
1654 data->kind = id->driver_data;
1655 if (data->kind == adm1032) {
1656 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1657 client->flags &= ~I2C_CLIENT_PEC;
1658 }
1659
1660 /*
1661 * Different devices have different alarm bits triggering the
1662 * ALERT# output
1663 */
1664 data->alert_alarms = lm90_params[data->kind].alert_alarms;
1665
1666 /* Set chip capabilities */
1667 data->flags = lm90_params[data->kind].flags;
1668 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1669
1670 /* Set maximum conversion rate */
1671 data->max_convrate = lm90_params[data->kind].max_convrate;
1672
1673 /* Initialize the LM90 chip */
1674 err = lm90_init_client(client, data);
1675 if (err < 0) {
1676 dev_err(dev, "Failed to initialize device\n");
1677 return err;
1678 }
1679
1680 /* Register sysfs hooks */
1681 data->groups[groups++] = &lm90_group;
1682
1683 if (data->flags & LM90_HAVE_OFFSET)
1684 data->groups[groups++] = &lm90_temp2_offset_group;
1685
1686 if (data->flags & LM90_HAVE_EMERGENCY)
1687 data->groups[groups++] = &lm90_emergency_group;
1688
1689 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1690 data->groups[groups++] = &lm90_emergency_alarm_group;
1691
1692 if (data->flags & LM90_HAVE_TEMP3)
1693 data->groups[groups++] = &lm90_temp3_group;
1694
1695 if (client->flags & I2C_CLIENT_PEC) {
1696 err = device_create_file(dev, &dev_attr_pec);
1697 if (err)
1698 return err;
1699 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
1700 if (err)
1701 return err;
1702 }
1703
1704 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1705 data, data->groups);
1706 if (IS_ERR(hwmon_dev))
1707 return PTR_ERR(hwmon_dev);
1708
1709 if (client->irq) {
1710 dev_dbg(dev, "IRQ: %d\n", client->irq);
1711 err = devm_request_threaded_irq(dev, client->irq,
1712 NULL, lm90_irq_thread,
1713 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1714 "lm90", client);
1715 if (err < 0) {
1716 dev_err(dev, "cannot request IRQ %d\n", client->irq);
1717 return err;
1718 }
1719 }
1720
1721 return 0;
1722 }
1723
1724 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
1725 unsigned int flag)
1726 {
1727 u16 alarms;
1728
1729 if (type != I2C_PROTOCOL_SMBUS_ALERT)
1730 return;
1731
1732 if (lm90_is_tripped(client, &alarms)) {
1733 /*
1734 * Disable ALERT# output, because these chips don't implement
1735 * SMBus alert correctly; they should only hold the alert line
1736 * low briefly.
1737 */
1738 struct lm90_data *data = i2c_get_clientdata(client);
1739
1740 if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
1741 (alarms & data->alert_alarms)) {
1742 int config;
1743
1744 dev_dbg(&client->dev, "Disabling ALERT#\n");
1745 config = lm90_read_reg(client, LM90_REG_R_CONFIG1);
1746 if (config >= 0)
1747 i2c_smbus_write_byte_data(client,
1748 LM90_REG_W_CONFIG1,
1749 config | 0x80);
1750 }
1751 } else {
1752 dev_info(&client->dev, "Everything OK\n");
1753 }
1754 }
1755
1756 static struct i2c_driver lm90_driver = {
1757 .class = I2C_CLASS_HWMON,
1758 .driver = {
1759 .name = "lm90",
1760 },
1761 .probe = lm90_probe,
1762 .alert = lm90_alert,
1763 .id_table = lm90_id,
1764 .detect = lm90_detect,
1765 .address_list = normal_i2c,
1766 };
1767
1768 module_i2c_driver(lm90_driver);
1769
1770 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1771 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1772 MODULE_LICENSE("GPL");
This page took 0.084796 seconds and 5 git commands to generate.