tracing: Have max_latency be defined for HWLAT_TRACER as well
[deliverable/linux.git] / drivers / i2c / busses / i2c-rk3x.c
1 /*
2 * Driver for I2C adapter in Rockchip RK3xxx SoC
3 *
4 * Max Schwarz <max.schwarz@online.de>
5 * based on the patches by Rockchip Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/io.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/spinlock.h>
23 #include <linux/clk.h>
24 #include <linux/wait.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/regmap.h>
27 #include <linux/math64.h>
28
29
30 /* Register Map */
31 #define REG_CON 0x00 /* control register */
32 #define REG_CLKDIV 0x04 /* clock divisor register */
33 #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */
34 #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */
35 #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */
36 #define REG_MRXCNT 0x14 /* number of bytes to be received */
37 #define REG_IEN 0x18 /* interrupt enable */
38 #define REG_IPD 0x1c /* interrupt pending */
39 #define REG_FCNT 0x20 /* finished count */
40
41 /* Data buffer offsets */
42 #define TXBUFFER_BASE 0x100
43 #define RXBUFFER_BASE 0x200
44
45 /* REG_CON bits */
46 #define REG_CON_EN BIT(0)
47 enum {
48 REG_CON_MOD_TX = 0, /* transmit data */
49 REG_CON_MOD_REGISTER_TX, /* select register and restart */
50 REG_CON_MOD_RX, /* receive data */
51 REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52 * register addr */
53 };
54 #define REG_CON_MOD(mod) ((mod) << 1)
55 #define REG_CON_MOD_MASK (BIT(1) | BIT(2))
56 #define REG_CON_START BIT(3)
57 #define REG_CON_STOP BIT(4)
58 #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
59 #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */
60
61 #define REG_CON_TUNING_MASK GENMASK(15, 8)
62
63 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
64 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
65 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
66
67 /* REG_MRXADDR bits */
68 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
69
70 /* REG_IEN/REG_IPD bits */
71 #define REG_INT_BTF BIT(0) /* a byte was transmitted */
72 #define REG_INT_BRF BIT(1) /* a byte was received */
73 #define REG_INT_MBTF BIT(2) /* master data transmit finished */
74 #define REG_INT_MBRF BIT(3) /* master data receive finished */
75 #define REG_INT_START BIT(4) /* START condition generated */
76 #define REG_INT_STOP BIT(5) /* STOP condition generated */
77 #define REG_INT_NAKRCV BIT(6) /* NACK received */
78 #define REG_INT_ALL 0x7f
79
80 /* Constants */
81 #define WAIT_TIMEOUT 1000 /* ms */
82 #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */
83
84 /**
85 * struct i2c_spec_values:
86 * @min_hold_start_ns: min hold time (repeated) START condition
87 * @min_low_ns: min LOW period of the SCL clock
88 * @min_high_ns: min HIGH period of the SCL cloc
89 * @min_setup_start_ns: min set-up time for a repeated START conditio
90 * @max_data_hold_ns: max data hold time
91 * @min_data_setup_ns: min data set-up time
92 * @min_setup_stop_ns: min set-up time for STOP condition
93 * @min_hold_buffer_ns: min bus free time between a STOP and
94 * START condition
95 */
96 struct i2c_spec_values {
97 unsigned long min_hold_start_ns;
98 unsigned long min_low_ns;
99 unsigned long min_high_ns;
100 unsigned long min_setup_start_ns;
101 unsigned long max_data_hold_ns;
102 unsigned long min_data_setup_ns;
103 unsigned long min_setup_stop_ns;
104 unsigned long min_hold_buffer_ns;
105 };
106
107 static const struct i2c_spec_values standard_mode_spec = {
108 .min_hold_start_ns = 4000,
109 .min_low_ns = 4700,
110 .min_high_ns = 4000,
111 .min_setup_start_ns = 4700,
112 .max_data_hold_ns = 3450,
113 .min_data_setup_ns = 250,
114 .min_setup_stop_ns = 4000,
115 .min_hold_buffer_ns = 4700,
116 };
117
118 static const struct i2c_spec_values fast_mode_spec = {
119 .min_hold_start_ns = 600,
120 .min_low_ns = 1300,
121 .min_high_ns = 600,
122 .min_setup_start_ns = 600,
123 .max_data_hold_ns = 900,
124 .min_data_setup_ns = 100,
125 .min_setup_stop_ns = 600,
126 .min_hold_buffer_ns = 1300,
127 };
128
129 static const struct i2c_spec_values fast_mode_plus_spec = {
130 .min_hold_start_ns = 260,
131 .min_low_ns = 500,
132 .min_high_ns = 260,
133 .min_setup_start_ns = 260,
134 .max_data_hold_ns = 400,
135 .min_data_setup_ns = 50,
136 .min_setup_stop_ns = 260,
137 .min_hold_buffer_ns = 500,
138 };
139
140 /**
141 * struct rk3x_i2c_calced_timings:
142 * @div_low: Divider output for low
143 * @div_high: Divider output for high
144 * @tuning: Used to adjust setup/hold data time,
145 * setup/hold start time and setup stop time for
146 * v1's calc_timings, the tuning should all be 0
147 * for old hardware anyone using v0's calc_timings.
148 */
149 struct rk3x_i2c_calced_timings {
150 unsigned long div_low;
151 unsigned long div_high;
152 unsigned int tuning;
153 };
154
155 enum rk3x_i2c_state {
156 STATE_IDLE,
157 STATE_START,
158 STATE_READ,
159 STATE_WRITE,
160 STATE_STOP
161 };
162
163 /**
164 * @grf_offset: offset inside the grf regmap for setting the i2c type
165 * @calc_timings: Callback function for i2c timing information calculated
166 */
167 struct rk3x_i2c_soc_data {
168 int grf_offset;
169 int (*calc_timings)(unsigned long, struct i2c_timings *,
170 struct rk3x_i2c_calced_timings *);
171 };
172
173 /**
174 * struct rk3x_i2c - private data of the controller
175 * @adap: corresponding I2C adapter
176 * @dev: device for this controller
177 * @soc_data: related soc data struct
178 * @regs: virtual memory area
179 * @clk: function clk for rk3399 or function & Bus clks for others
180 * @pclk: Bus clk for rk3399
181 * @clk_rate_nb: i2c clk rate change notify
182 * @t: I2C known timing information
183 * @lock: spinlock for the i2c bus
184 * @wait: the waitqueue to wait for i2c transfer
185 * @busy: the condition for the event to wait for
186 * @msg: current i2c message
187 * @addr: addr of i2c slave device
188 * @mode: mode of i2c transfer
189 * @is_last_msg: flag determines whether it is the last msg in this transfer
190 * @state: state of i2c transfer
191 * @processed: byte length which has been send or received
192 * @error: error code for i2c transfer
193 */
194 struct rk3x_i2c {
195 struct i2c_adapter adap;
196 struct device *dev;
197 struct rk3x_i2c_soc_data *soc_data;
198
199 /* Hardware resources */
200 void __iomem *regs;
201 struct clk *clk;
202 struct clk *pclk;
203 struct notifier_block clk_rate_nb;
204
205 /* Settings */
206 struct i2c_timings t;
207
208 /* Synchronization & notification */
209 spinlock_t lock;
210 wait_queue_head_t wait;
211 bool busy;
212
213 /* Current message */
214 struct i2c_msg *msg;
215 u8 addr;
216 unsigned int mode;
217 bool is_last_msg;
218
219 /* I2C state machine */
220 enum rk3x_i2c_state state;
221 unsigned int processed;
222 int error;
223 };
224
225 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
226 unsigned int offset)
227 {
228 writel(value, i2c->regs + offset);
229 }
230
231 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
232 {
233 return readl(i2c->regs + offset);
234 }
235
236 /* Reset all interrupt pending bits */
237 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
238 {
239 i2c_writel(i2c, REG_INT_ALL, REG_IPD);
240 }
241
242 /**
243 * Generate a START condition, which triggers a REG_INT_START interrupt.
244 */
245 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
246 {
247 u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
248
249 i2c_writel(i2c, REG_INT_START, REG_IEN);
250
251 /* enable adapter with correct mode, send START condition */
252 val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
253
254 /* if we want to react to NACK, set ACTACK bit */
255 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
256 val |= REG_CON_ACTACK;
257
258 i2c_writel(i2c, val, REG_CON);
259 }
260
261 /**
262 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
263 *
264 * @error: Error code to return in rk3x_i2c_xfer
265 */
266 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
267 {
268 unsigned int ctrl;
269
270 i2c->processed = 0;
271 i2c->msg = NULL;
272 i2c->error = error;
273
274 if (i2c->is_last_msg) {
275 /* Enable stop interrupt */
276 i2c_writel(i2c, REG_INT_STOP, REG_IEN);
277
278 i2c->state = STATE_STOP;
279
280 ctrl = i2c_readl(i2c, REG_CON);
281 ctrl |= REG_CON_STOP;
282 i2c_writel(i2c, ctrl, REG_CON);
283 } else {
284 /* Signal rk3x_i2c_xfer to start the next message. */
285 i2c->busy = false;
286 i2c->state = STATE_IDLE;
287
288 /*
289 * The HW is actually not capable of REPEATED START. But we can
290 * get the intended effect by resetting its internal state
291 * and issuing an ordinary START.
292 */
293 ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
294 i2c_writel(i2c, ctrl, REG_CON);
295
296 /* signal that we are finished with the current msg */
297 wake_up(&i2c->wait);
298 }
299 }
300
301 /**
302 * Setup a read according to i2c->msg
303 */
304 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
305 {
306 unsigned int len = i2c->msg->len - i2c->processed;
307 u32 con;
308
309 con = i2c_readl(i2c, REG_CON);
310
311 /*
312 * The hw can read up to 32 bytes at a time. If we need more than one
313 * chunk, send an ACK after the last byte of the current chunk.
314 */
315 if (len > 32) {
316 len = 32;
317 con &= ~REG_CON_LASTACK;
318 } else {
319 con |= REG_CON_LASTACK;
320 }
321
322 /* make sure we are in plain RX mode if we read a second chunk */
323 if (i2c->processed != 0) {
324 con &= ~REG_CON_MOD_MASK;
325 con |= REG_CON_MOD(REG_CON_MOD_RX);
326 }
327
328 i2c_writel(i2c, con, REG_CON);
329 i2c_writel(i2c, len, REG_MRXCNT);
330 }
331
332 /**
333 * Fill the transmit buffer with data from i2c->msg
334 */
335 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
336 {
337 unsigned int i, j;
338 u32 cnt = 0;
339 u32 val;
340 u8 byte;
341
342 for (i = 0; i < 8; ++i) {
343 val = 0;
344 for (j = 0; j < 4; ++j) {
345 if ((i2c->processed == i2c->msg->len) && (cnt != 0))
346 break;
347
348 if (i2c->processed == 0 && cnt == 0)
349 byte = (i2c->addr & 0x7f) << 1;
350 else
351 byte = i2c->msg->buf[i2c->processed++];
352
353 val |= byte << (j * 8);
354 cnt++;
355 }
356
357 i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
358
359 if (i2c->processed == i2c->msg->len)
360 break;
361 }
362
363 i2c_writel(i2c, cnt, REG_MTXCNT);
364 }
365
366
367 /* IRQ handlers for individual states */
368
369 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
370 {
371 if (!(ipd & REG_INT_START)) {
372 rk3x_i2c_stop(i2c, -EIO);
373 dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
374 rk3x_i2c_clean_ipd(i2c);
375 return;
376 }
377
378 /* ack interrupt */
379 i2c_writel(i2c, REG_INT_START, REG_IPD);
380
381 /* disable start bit */
382 i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
383
384 /* enable appropriate interrupts and transition */
385 if (i2c->mode == REG_CON_MOD_TX) {
386 i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
387 i2c->state = STATE_WRITE;
388 rk3x_i2c_fill_transmit_buf(i2c);
389 } else {
390 /* in any other case, we are going to be reading. */
391 i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
392 i2c->state = STATE_READ;
393 rk3x_i2c_prepare_read(i2c);
394 }
395 }
396
397 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
398 {
399 if (!(ipd & REG_INT_MBTF)) {
400 rk3x_i2c_stop(i2c, -EIO);
401 dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
402 rk3x_i2c_clean_ipd(i2c);
403 return;
404 }
405
406 /* ack interrupt */
407 i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
408
409 /* are we finished? */
410 if (i2c->processed == i2c->msg->len)
411 rk3x_i2c_stop(i2c, i2c->error);
412 else
413 rk3x_i2c_fill_transmit_buf(i2c);
414 }
415
416 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
417 {
418 unsigned int i;
419 unsigned int len = i2c->msg->len - i2c->processed;
420 u32 uninitialized_var(val);
421 u8 byte;
422
423 /* we only care for MBRF here. */
424 if (!(ipd & REG_INT_MBRF))
425 return;
426
427 /* ack interrupt */
428 i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
429
430 /* Can only handle a maximum of 32 bytes at a time */
431 if (len > 32)
432 len = 32;
433
434 /* read the data from receive buffer */
435 for (i = 0; i < len; ++i) {
436 if (i % 4 == 0)
437 val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
438
439 byte = (val >> ((i % 4) * 8)) & 0xff;
440 i2c->msg->buf[i2c->processed++] = byte;
441 }
442
443 /* are we finished? */
444 if (i2c->processed == i2c->msg->len)
445 rk3x_i2c_stop(i2c, i2c->error);
446 else
447 rk3x_i2c_prepare_read(i2c);
448 }
449
450 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
451 {
452 unsigned int con;
453
454 if (!(ipd & REG_INT_STOP)) {
455 rk3x_i2c_stop(i2c, -EIO);
456 dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
457 rk3x_i2c_clean_ipd(i2c);
458 return;
459 }
460
461 /* ack interrupt */
462 i2c_writel(i2c, REG_INT_STOP, REG_IPD);
463
464 /* disable STOP bit */
465 con = i2c_readl(i2c, REG_CON);
466 con &= ~REG_CON_STOP;
467 i2c_writel(i2c, con, REG_CON);
468
469 i2c->busy = false;
470 i2c->state = STATE_IDLE;
471
472 /* signal rk3x_i2c_xfer that we are finished */
473 wake_up(&i2c->wait);
474 }
475
476 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
477 {
478 struct rk3x_i2c *i2c = dev_id;
479 unsigned int ipd;
480
481 spin_lock(&i2c->lock);
482
483 ipd = i2c_readl(i2c, REG_IPD);
484 if (i2c->state == STATE_IDLE) {
485 dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
486 rk3x_i2c_clean_ipd(i2c);
487 goto out;
488 }
489
490 dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
491
492 /* Clean interrupt bits we don't care about */
493 ipd &= ~(REG_INT_BRF | REG_INT_BTF);
494
495 if (ipd & REG_INT_NAKRCV) {
496 /*
497 * We got a NACK in the last operation. Depending on whether
498 * IGNORE_NAK is set, we have to stop the operation and report
499 * an error.
500 */
501 i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
502
503 ipd &= ~REG_INT_NAKRCV;
504
505 if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
506 rk3x_i2c_stop(i2c, -ENXIO);
507 }
508
509 /* is there anything left to handle? */
510 if ((ipd & REG_INT_ALL) == 0)
511 goto out;
512
513 switch (i2c->state) {
514 case STATE_START:
515 rk3x_i2c_handle_start(i2c, ipd);
516 break;
517 case STATE_WRITE:
518 rk3x_i2c_handle_write(i2c, ipd);
519 break;
520 case STATE_READ:
521 rk3x_i2c_handle_read(i2c, ipd);
522 break;
523 case STATE_STOP:
524 rk3x_i2c_handle_stop(i2c, ipd);
525 break;
526 case STATE_IDLE:
527 break;
528 }
529
530 out:
531 spin_unlock(&i2c->lock);
532 return IRQ_HANDLED;
533 }
534
535 /**
536 * Get timing values of I2C specification
537 *
538 * @speed: Desired SCL frequency
539 *
540 * Returns: Matched i2c spec values.
541 */
542 static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
543 {
544 if (speed <= 100000)
545 return &standard_mode_spec;
546 else if (speed <= 400000)
547 return &fast_mode_spec;
548 else
549 return &fast_mode_plus_spec;
550 }
551
552 /**
553 * Calculate divider values for desired SCL frequency
554 *
555 * @clk_rate: I2C input clock rate
556 * @t: Known I2C timing information
557 * @t_calc: Caculated rk3x private timings that would be written into regs
558 *
559 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
560 * a best-effort divider value is returned in divs. If the target rate is
561 * too high, we silently use the highest possible rate.
562 */
563 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
564 struct i2c_timings *t,
565 struct rk3x_i2c_calced_timings *t_calc)
566 {
567 unsigned long min_low_ns, min_high_ns;
568 unsigned long max_low_ns, min_total_ns;
569
570 unsigned long clk_rate_khz, scl_rate_khz;
571
572 unsigned long min_low_div, min_high_div;
573 unsigned long max_low_div;
574
575 unsigned long min_div_for_hold, min_total_div;
576 unsigned long extra_div, extra_low_div, ideal_low_div;
577
578 unsigned long data_hold_buffer_ns = 50;
579 const struct i2c_spec_values *spec;
580 int ret = 0;
581
582 /* Only support standard-mode and fast-mode */
583 if (WARN_ON(t->bus_freq_hz > 400000))
584 t->bus_freq_hz = 400000;
585
586 /* prevent scl_rate_khz from becoming 0 */
587 if (WARN_ON(t->bus_freq_hz < 1000))
588 t->bus_freq_hz = 1000;
589
590 /*
591 * min_low_ns: The minimum number of ns we need to hold low to
592 * meet I2C specification, should include fall time.
593 * min_high_ns: The minimum number of ns we need to hold high to
594 * meet I2C specification, should include rise time.
595 * max_low_ns: The maximum number of ns we can hold low to meet
596 * I2C specification.
597 *
598 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
599 * This is because the i2c host on Rockchip holds the data line
600 * for half the low time.
601 */
602 spec = rk3x_i2c_get_spec(t->bus_freq_hz);
603 min_high_ns = t->scl_rise_ns + spec->min_high_ns;
604
605 /*
606 * Timings for repeated start:
607 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
608 * - controller appears to keep SCL high for 2x programmed clk high.
609 *
610 * We need to account for those rules in picking our "high" time so
611 * we meet tSU;STA and tHD;STA times.
612 */
613 min_high_ns = max(min_high_ns, DIV_ROUND_UP(
614 (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
615 min_high_ns = max(min_high_ns, DIV_ROUND_UP(
616 (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
617 spec->min_high_ns), 2));
618
619 min_low_ns = t->scl_fall_ns + spec->min_low_ns;
620 max_low_ns = spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
621 min_total_ns = min_low_ns + min_high_ns;
622
623 /* Adjust to avoid overflow */
624 clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
625 scl_rate_khz = t->bus_freq_hz / 1000;
626
627 /*
628 * We need the total div to be >= this number
629 * so we don't clock too fast.
630 */
631 min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
632
633 /* These are the min dividers needed for min hold times. */
634 min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
635 min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
636 min_div_for_hold = (min_low_div + min_high_div);
637
638 /*
639 * This is the maximum divider so we don't go over the maximum.
640 * We don't round up here (we round down) since this is a maximum.
641 */
642 max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
643
644 if (min_low_div > max_low_div) {
645 WARN_ONCE(true,
646 "Conflicting, min_low_div %lu, max_low_div %lu\n",
647 min_low_div, max_low_div);
648 max_low_div = min_low_div;
649 }
650
651 if (min_div_for_hold > min_total_div) {
652 /*
653 * Time needed to meet hold requirements is important.
654 * Just use that.
655 */
656 t_calc->div_low = min_low_div;
657 t_calc->div_high = min_high_div;
658 } else {
659 /*
660 * We've got to distribute some time among the low and high
661 * so we don't run too fast.
662 */
663 extra_div = min_total_div - min_div_for_hold;
664
665 /*
666 * We'll try to split things up perfectly evenly,
667 * biasing slightly towards having a higher div
668 * for low (spend more time low).
669 */
670 ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
671 scl_rate_khz * 8 * min_total_ns);
672
673 /* Don't allow it to go over the maximum */
674 if (ideal_low_div > max_low_div)
675 ideal_low_div = max_low_div;
676
677 /*
678 * Handle when the ideal low div is going to take up
679 * more than we have.
680 */
681 if (ideal_low_div > min_low_div + extra_div)
682 ideal_low_div = min_low_div + extra_div;
683
684 /* Give low the "ideal" and give high whatever extra is left */
685 extra_low_div = ideal_low_div - min_low_div;
686 t_calc->div_low = ideal_low_div;
687 t_calc->div_high = min_high_div + (extra_div - extra_low_div);
688 }
689
690 /*
691 * Adjust to the fact that the hardware has an implicit "+1".
692 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
693 */
694 t_calc->div_low--;
695 t_calc->div_high--;
696
697 /* Maximum divider supported by hw is 0xffff */
698 if (t_calc->div_low > 0xffff) {
699 t_calc->div_low = 0xffff;
700 ret = -EINVAL;
701 }
702
703 if (t_calc->div_high > 0xffff) {
704 t_calc->div_high = 0xffff;
705 ret = -EINVAL;
706 }
707
708 return ret;
709 }
710
711 /**
712 * Calculate timing values for desired SCL frequency
713 *
714 * @clk_rate: I2C input clock rate
715 * @t: Known I2C timing information
716 * @t_calc: Caculated rk3x private timings that would be written into regs
717 *
718 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
719 * a best-effort divider value is returned in divs. If the target rate is
720 * too high, we silently use the highest possible rate.
721 * The following formulas are v1's method to calculate timings.
722 *
723 * l = divl + 1;
724 * h = divh + 1;
725 * s = sda_update_config + 1;
726 * u = start_setup_config + 1;
727 * p = stop_setup_config + 1;
728 * T = Tclk_i2c;
729 *
730 * tHigh = 8 * h * T;
731 * tLow = 8 * l * T;
732 *
733 * tHD;sda = (l * s + 1) * T;
734 * tSU;sda = [(8 - s) * l + 1] * T;
735 * tI2C = 8 * (l + h) * T;
736 *
737 * tSU;sta = (8h * u + 1) * T;
738 * tHD;sta = [8h * (u + 1) - 1] * T;
739 * tSU;sto = (8h * p + 1) * T;
740 */
741 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
742 struct i2c_timings *t,
743 struct rk3x_i2c_calced_timings *t_calc)
744 {
745 unsigned long min_low_ns, min_high_ns, min_total_ns;
746 unsigned long min_setup_start_ns, min_setup_data_ns;
747 unsigned long min_setup_stop_ns, max_hold_data_ns;
748
749 unsigned long clk_rate_khz, scl_rate_khz;
750
751 unsigned long min_low_div, min_high_div;
752
753 unsigned long min_div_for_hold, min_total_div;
754 unsigned long extra_div, extra_low_div;
755 unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
756
757 const struct i2c_spec_values *spec;
758 int ret = 0;
759
760 /* Support standard-mode, fast-mode and fast-mode plus */
761 if (WARN_ON(t->bus_freq_hz > 1000000))
762 t->bus_freq_hz = 1000000;
763
764 /* prevent scl_rate_khz from becoming 0 */
765 if (WARN_ON(t->bus_freq_hz < 1000))
766 t->bus_freq_hz = 1000;
767
768 /*
769 * min_low_ns: The minimum number of ns we need to hold low to
770 * meet I2C specification, should include fall time.
771 * min_high_ns: The minimum number of ns we need to hold high to
772 * meet I2C specification, should include rise time.
773 */
774 spec = rk3x_i2c_get_spec(t->bus_freq_hz);
775
776 /* calculate min-divh and min-divl */
777 clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
778 scl_rate_khz = t->bus_freq_hz / 1000;
779 min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
780
781 min_high_ns = t->scl_rise_ns + spec->min_high_ns;
782 min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
783
784 min_low_ns = t->scl_fall_ns + spec->min_low_ns;
785 min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
786
787 /*
788 * Final divh and divl must be greater than 0, otherwise the
789 * hardware would not output the i2c clk.
790 */
791 min_high_div = (min_high_div < 1) ? 2 : min_high_div;
792 min_low_div = (min_low_div < 1) ? 2 : min_low_div;
793
794 /* These are the min dividers needed for min hold times. */
795 min_div_for_hold = (min_low_div + min_high_div);
796 min_total_ns = min_low_ns + min_high_ns;
797
798 /*
799 * This is the maximum divider so we don't go over the maximum.
800 * We don't round up here (we round down) since this is a maximum.
801 */
802 if (min_div_for_hold >= min_total_div) {
803 /*
804 * Time needed to meet hold requirements is important.
805 * Just use that.
806 */
807 t_calc->div_low = min_low_div;
808 t_calc->div_high = min_high_div;
809 } else {
810 /*
811 * We've got to distribute some time among the low and high
812 * so we don't run too fast.
813 * We'll try to split things up by the scale of min_low_div and
814 * min_high_div, biasing slightly towards having a higher div
815 * for low (spend more time low).
816 */
817 extra_div = min_total_div - min_div_for_hold;
818 extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
819 min_div_for_hold);
820
821 t_calc->div_low = min_low_div + extra_low_div;
822 t_calc->div_high = min_high_div + (extra_div - extra_low_div);
823 }
824
825 /*
826 * calculate sda data hold count by the rules, data_upd_st:3
827 * is a appropriate value to reduce calculated times.
828 */
829 for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
830 max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg
831 * (t_calc->div_low) + 1)
832 * 1000000, clk_rate_khz);
833 min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg)
834 * (t_calc->div_low) + 1)
835 * 1000000, clk_rate_khz);
836 if ((max_hold_data_ns < spec->max_data_hold_ns) &&
837 (min_setup_data_ns > spec->min_data_setup_ns))
838 break;
839 }
840
841 /* calculate setup start config */
842 min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
843 stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
844 - 1000000, 8 * 1000000 * (t_calc->div_high));
845
846 /* calculate setup stop config */
847 min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
848 stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
849 - 1000000, 8 * 1000000 * (t_calc->div_high));
850
851 t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
852 REG_CON_STA_CFG(--stp_sta_cfg) |
853 REG_CON_STO_CFG(--stp_sto_cfg);
854
855 t_calc->div_low--;
856 t_calc->div_high--;
857
858 /* Maximum divider supported by hw is 0xffff */
859 if (t_calc->div_low > 0xffff) {
860 t_calc->div_low = 0xffff;
861 ret = -EINVAL;
862 }
863
864 if (t_calc->div_high > 0xffff) {
865 t_calc->div_high = 0xffff;
866 ret = -EINVAL;
867 }
868
869 return ret;
870 }
871
872 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
873 {
874 struct i2c_timings *t = &i2c->t;
875 struct rk3x_i2c_calced_timings calc;
876 u64 t_low_ns, t_high_ns;
877 unsigned long flags;
878 u32 val;
879 int ret;
880
881 ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
882 WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
883
884 clk_enable(i2c->pclk);
885
886 spin_lock_irqsave(&i2c->lock, flags);
887 val = i2c_readl(i2c, REG_CON);
888 val &= ~REG_CON_TUNING_MASK;
889 val |= calc.tuning;
890 i2c_writel(i2c, val, REG_CON);
891 i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
892 REG_CLKDIV);
893 spin_unlock_irqrestore(&i2c->lock, flags);
894
895 clk_disable(i2c->pclk);
896
897 t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
898 t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
899 clk_rate);
900 dev_dbg(i2c->dev,
901 "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
902 clk_rate / 1000,
903 1000000000 / t->bus_freq_hz,
904 t_low_ns, t_high_ns);
905 }
906
907 /**
908 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
909 * @nb: Pointer to notifier block
910 * @event: Notification reason
911 * @data: Pointer to notification data object
912 *
913 * The callback checks whether a valid bus frequency can be generated after the
914 * change. If so, the change is acknowledged, otherwise the change is aborted.
915 * New dividers are written to the HW in the pre- or post change notification
916 * depending on the scaling direction.
917 *
918 * Code adapted from i2c-cadence.c.
919 *
920 * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
921 * to acknowedge the change, NOTIFY_DONE if the notification is
922 * considered irrelevant.
923 */
924 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
925 event, void *data)
926 {
927 struct clk_notifier_data *ndata = data;
928 struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
929 struct rk3x_i2c_calced_timings calc;
930
931 switch (event) {
932 case PRE_RATE_CHANGE:
933 /*
934 * Try the calculation (but don't store the result) ahead of
935 * time to see if we need to block the clock change. Timings
936 * shouldn't actually take effect until rk3x_i2c_adapt_div().
937 */
938 if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
939 &calc) != 0)
940 return NOTIFY_STOP;
941
942 /* scale up */
943 if (ndata->new_rate > ndata->old_rate)
944 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
945
946 return NOTIFY_OK;
947 case POST_RATE_CHANGE:
948 /* scale down */
949 if (ndata->new_rate < ndata->old_rate)
950 rk3x_i2c_adapt_div(i2c, ndata->new_rate);
951 return NOTIFY_OK;
952 case ABORT_RATE_CHANGE:
953 /* scale up */
954 if (ndata->new_rate > ndata->old_rate)
955 rk3x_i2c_adapt_div(i2c, ndata->old_rate);
956 return NOTIFY_OK;
957 default:
958 return NOTIFY_DONE;
959 }
960 }
961
962 /**
963 * Setup I2C registers for an I2C operation specified by msgs, num.
964 *
965 * Must be called with i2c->lock held.
966 *
967 * @msgs: I2C msgs to process
968 * @num: Number of msgs
969 *
970 * returns: Number of I2C msgs processed or negative in case of error
971 */
972 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
973 {
974 u32 addr = (msgs[0].addr & 0x7f) << 1;
975 int ret = 0;
976
977 /*
978 * The I2C adapter can issue a small (len < 4) write packet before
979 * reading. This speeds up SMBus-style register reads.
980 * The MRXADDR/MRXRADDR hold the slave address and the slave register
981 * address in this case.
982 */
983
984 if (num >= 2 && msgs[0].len < 4 &&
985 !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
986 u32 reg_addr = 0;
987 int i;
988
989 dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
990 addr >> 1);
991
992 /* Fill MRXRADDR with the register address(es) */
993 for (i = 0; i < msgs[0].len; ++i) {
994 reg_addr |= msgs[0].buf[i] << (i * 8);
995 reg_addr |= REG_MRXADDR_VALID(i);
996 }
997
998 /* msgs[0] is handled by hw. */
999 i2c->msg = &msgs[1];
1000
1001 i2c->mode = REG_CON_MOD_REGISTER_TX;
1002
1003 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1004 i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1005
1006 ret = 2;
1007 } else {
1008 /*
1009 * We'll have to do it the boring way and process the msgs
1010 * one-by-one.
1011 */
1012
1013 if (msgs[0].flags & I2C_M_RD) {
1014 addr |= 1; /* set read bit */
1015
1016 /*
1017 * We have to transmit the slave addr first. Use
1018 * MOD_REGISTER_TX for that purpose.
1019 */
1020 i2c->mode = REG_CON_MOD_REGISTER_TX;
1021 i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1022 REG_MRXADDR);
1023 i2c_writel(i2c, 0, REG_MRXRADDR);
1024 } else {
1025 i2c->mode = REG_CON_MOD_TX;
1026 }
1027
1028 i2c->msg = &msgs[0];
1029
1030 ret = 1;
1031 }
1032
1033 i2c->addr = msgs[0].addr;
1034 i2c->busy = true;
1035 i2c->state = STATE_START;
1036 i2c->processed = 0;
1037 i2c->error = 0;
1038
1039 rk3x_i2c_clean_ipd(i2c);
1040
1041 return ret;
1042 }
1043
1044 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1045 struct i2c_msg *msgs, int num)
1046 {
1047 struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1048 unsigned long timeout, flags;
1049 u32 val;
1050 int ret = 0;
1051 int i;
1052
1053 spin_lock_irqsave(&i2c->lock, flags);
1054
1055 clk_enable(i2c->clk);
1056 clk_enable(i2c->pclk);
1057
1058 i2c->is_last_msg = false;
1059
1060 /*
1061 * Process msgs. We can handle more than one message at once (see
1062 * rk3x_i2c_setup()).
1063 */
1064 for (i = 0; i < num; i += ret) {
1065 ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1066
1067 if (ret < 0) {
1068 dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1069 break;
1070 }
1071
1072 if (i + ret >= num)
1073 i2c->is_last_msg = true;
1074
1075 spin_unlock_irqrestore(&i2c->lock, flags);
1076
1077 rk3x_i2c_start(i2c);
1078
1079 timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1080 msecs_to_jiffies(WAIT_TIMEOUT));
1081
1082 spin_lock_irqsave(&i2c->lock, flags);
1083
1084 if (timeout == 0) {
1085 dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1086 i2c_readl(i2c, REG_IPD), i2c->state);
1087
1088 /* Force a STOP condition without interrupt */
1089 i2c_writel(i2c, 0, REG_IEN);
1090 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1091 val |= REG_CON_EN | REG_CON_STOP;
1092 i2c_writel(i2c, val, REG_CON);
1093
1094 i2c->state = STATE_IDLE;
1095
1096 ret = -ETIMEDOUT;
1097 break;
1098 }
1099
1100 if (i2c->error) {
1101 ret = i2c->error;
1102 break;
1103 }
1104 }
1105
1106 clk_disable(i2c->pclk);
1107 clk_disable(i2c->clk);
1108
1109 spin_unlock_irqrestore(&i2c->lock, flags);
1110
1111 return ret < 0 ? ret : num;
1112 }
1113
1114 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1115 {
1116 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1117 }
1118
1119 static const struct i2c_algorithm rk3x_i2c_algorithm = {
1120 .master_xfer = rk3x_i2c_xfer,
1121 .functionality = rk3x_i2c_func,
1122 };
1123
1124 static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1125 .grf_offset = 0x154,
1126 .calc_timings = rk3x_i2c_v0_calc_timings,
1127 };
1128
1129 static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1130 .grf_offset = 0x0a4,
1131 .calc_timings = rk3x_i2c_v0_calc_timings,
1132 };
1133
1134 static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1135 .grf_offset = -1,
1136 .calc_timings = rk3x_i2c_v0_calc_timings,
1137 };
1138
1139 static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1140 .grf_offset = -1,
1141 .calc_timings = rk3x_i2c_v0_calc_timings,
1142 };
1143
1144 static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1145 .grf_offset = -1,
1146 .calc_timings = rk3x_i2c_v1_calc_timings,
1147 };
1148
1149 static const struct of_device_id rk3x_i2c_match[] = {
1150 {
1151 .compatible = "rockchip,rk3066-i2c",
1152 .data = (void *)&rk3066_soc_data
1153 },
1154 {
1155 .compatible = "rockchip,rk3188-i2c",
1156 .data = (void *)&rk3188_soc_data
1157 },
1158 {
1159 .compatible = "rockchip,rk3228-i2c",
1160 .data = (void *)&rk3228_soc_data
1161 },
1162 {
1163 .compatible = "rockchip,rk3288-i2c",
1164 .data = (void *)&rk3288_soc_data
1165 },
1166 {
1167 .compatible = "rockchip,rk3399-i2c",
1168 .data = (void *)&rk3399_soc_data
1169 },
1170 {},
1171 };
1172 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1173
1174 static int rk3x_i2c_probe(struct platform_device *pdev)
1175 {
1176 struct device_node *np = pdev->dev.of_node;
1177 const struct of_device_id *match;
1178 struct rk3x_i2c *i2c;
1179 struct resource *mem;
1180 int ret = 0;
1181 int bus_nr;
1182 u32 value;
1183 int irq;
1184 unsigned long clk_rate;
1185
1186 i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1187 if (!i2c)
1188 return -ENOMEM;
1189
1190 match = of_match_node(rk3x_i2c_match, np);
1191 i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
1192
1193 /* use common interface to get I2C timing properties */
1194 i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1195
1196 strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1197 i2c->adap.owner = THIS_MODULE;
1198 i2c->adap.algo = &rk3x_i2c_algorithm;
1199 i2c->adap.retries = 3;
1200 i2c->adap.dev.of_node = np;
1201 i2c->adap.algo_data = i2c;
1202 i2c->adap.dev.parent = &pdev->dev;
1203
1204 i2c->dev = &pdev->dev;
1205
1206 spin_lock_init(&i2c->lock);
1207 init_waitqueue_head(&i2c->wait);
1208
1209 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1210 i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
1211 if (IS_ERR(i2c->regs))
1212 return PTR_ERR(i2c->regs);
1213
1214 /* Try to set the I2C adapter number from dt */
1215 bus_nr = of_alias_get_id(np, "i2c");
1216
1217 /*
1218 * Switch to new interface if the SoC also offers the old one.
1219 * The control bit is located in the GRF register space.
1220 */
1221 if (i2c->soc_data->grf_offset >= 0) {
1222 struct regmap *grf;
1223
1224 grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1225 if (IS_ERR(grf)) {
1226 dev_err(&pdev->dev,
1227 "rk3x-i2c needs 'rockchip,grf' property\n");
1228 return PTR_ERR(grf);
1229 }
1230
1231 if (bus_nr < 0) {
1232 dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1233 return -EINVAL;
1234 }
1235
1236 /* 27+i: write mask, 11+i: value */
1237 value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1238
1239 ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1240 if (ret != 0) {
1241 dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1242 return ret;
1243 }
1244 }
1245
1246 /* IRQ setup */
1247 irq = platform_get_irq(pdev, 0);
1248 if (irq < 0) {
1249 dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
1250 return irq;
1251 }
1252
1253 ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1254 0, dev_name(&pdev->dev), i2c);
1255 if (ret < 0) {
1256 dev_err(&pdev->dev, "cannot request IRQ\n");
1257 return ret;
1258 }
1259
1260 platform_set_drvdata(pdev, i2c);
1261
1262 if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1263 /* Only one clock to use for bus clock and peripheral clock */
1264 i2c->clk = devm_clk_get(&pdev->dev, NULL);
1265 i2c->pclk = i2c->clk;
1266 } else {
1267 i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1268 i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1269 }
1270
1271 if (IS_ERR(i2c->clk)) {
1272 ret = PTR_ERR(i2c->clk);
1273 if (ret != -EPROBE_DEFER)
1274 dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
1275 return ret;
1276 }
1277 if (IS_ERR(i2c->pclk)) {
1278 ret = PTR_ERR(i2c->pclk);
1279 if (ret != -EPROBE_DEFER)
1280 dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
1281 return ret;
1282 }
1283
1284 ret = clk_prepare(i2c->clk);
1285 if (ret < 0) {
1286 dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1287 return ret;
1288 }
1289 ret = clk_prepare(i2c->pclk);
1290 if (ret < 0) {
1291 dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1292 goto err_clk;
1293 }
1294
1295 i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1296 ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1297 if (ret != 0) {
1298 dev_err(&pdev->dev, "Unable to register clock notifier\n");
1299 goto err_pclk;
1300 }
1301
1302 clk_rate = clk_get_rate(i2c->clk);
1303 rk3x_i2c_adapt_div(i2c, clk_rate);
1304
1305 ret = i2c_add_adapter(&i2c->adap);
1306 if (ret < 0) {
1307 dev_err(&pdev->dev, "Could not register adapter\n");
1308 goto err_clk_notifier;
1309 }
1310
1311 dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
1312
1313 return 0;
1314
1315 err_clk_notifier:
1316 clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1317 err_pclk:
1318 clk_unprepare(i2c->pclk);
1319 err_clk:
1320 clk_unprepare(i2c->clk);
1321 return ret;
1322 }
1323
1324 static int rk3x_i2c_remove(struct platform_device *pdev)
1325 {
1326 struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1327
1328 i2c_del_adapter(&i2c->adap);
1329
1330 clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1331 clk_unprepare(i2c->pclk);
1332 clk_unprepare(i2c->clk);
1333
1334 return 0;
1335 }
1336
1337 static struct platform_driver rk3x_i2c_driver = {
1338 .probe = rk3x_i2c_probe,
1339 .remove = rk3x_i2c_remove,
1340 .driver = {
1341 .name = "rk3x-i2c",
1342 .of_match_table = rk3x_i2c_match,
1343 },
1344 };
1345
1346 module_platform_driver(rk3x_i2c_driver);
1347
1348 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1349 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1350 MODULE_LICENSE("GPL v2");
This page took 0.065707 seconds and 5 git commands to generate.