Merge remote-tracking branch 'md/for-next'
[deliverable/linux.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details. */
14 /* ------------------------------------------------------------------------- */
15
16 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
17 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
18 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
19 Jean Delvare <jdelvare@suse.de>
20 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
21 Michael Lawnick <michael.lawnick.ext@nsn.com>
22 OF support is copyright (c) 2008 Jochen Friedrich <jochen@scram.de>
23 (based on a previous patch from Jon Smirl <jonsmirl@gmail.com>) and
24 (c) 2013 Wolfram Sang <wsa@the-dreams.de>
25 I2C ACPI code Copyright (C) 2014 Intel Corp
26 Author: Lan Tianyu <tianyu.lan@intel.com>
27 I2C slave support (c) 2014 by Wolfram Sang <wsa@sang-engineering.com>
28 */
29
30 #define pr_fmt(fmt) "i2c-core: " fmt
31
32 #include <dt-bindings/i2c/i2c.h>
33 #include <asm/uaccess.h>
34 #include <linux/acpi.h>
35 #include <linux/clk/clk-conf.h>
36 #include <linux/completion.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/errno.h>
40 #include <linux/gpio.h>
41 #include <linux/hardirq.h>
42 #include <linux/i2c.h>
43 #include <linux/idr.h>
44 #include <linux/init.h>
45 #include <linux/irqflags.h>
46 #include <linux/jump_label.h>
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/of.h>
52 #include <linux/of_irq.h>
53 #include <linux/pm_domain.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pm_wakeirq.h>
56 #include <linux/property.h>
57 #include <linux/rwsem.h>
58 #include <linux/slab.h>
59
60 #include "i2c-core.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/i2c.h>
64
65 #define I2C_ADDR_OFFSET_TEN_BIT 0xa000
66 #define I2C_ADDR_OFFSET_SLAVE 0x1000
67
68 /* core_lock protects i2c_adapter_idr, and guarantees
69 that device detection, deletion of detected devices, and attach_adapter
70 calls are serialized */
71 static DEFINE_MUTEX(core_lock);
72 static DEFINE_IDR(i2c_adapter_idr);
73
74 static struct device_type i2c_client_type;
75 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
76
77 static struct static_key i2c_trace_msg = STATIC_KEY_INIT_FALSE;
78 static bool is_registered;
79
80 void i2c_transfer_trace_reg(void)
81 {
82 static_key_slow_inc(&i2c_trace_msg);
83 }
84
85 void i2c_transfer_trace_unreg(void)
86 {
87 static_key_slow_dec(&i2c_trace_msg);
88 }
89
90 #if defined(CONFIG_ACPI)
91 struct i2c_acpi_handler_data {
92 struct acpi_connection_info info;
93 struct i2c_adapter *adapter;
94 };
95
96 struct gsb_buffer {
97 u8 status;
98 u8 len;
99 union {
100 u16 wdata;
101 u8 bdata;
102 u8 data[0];
103 };
104 } __packed;
105
106 struct i2c_acpi_lookup {
107 struct i2c_board_info *info;
108 acpi_handle adapter_handle;
109 acpi_handle device_handle;
110 acpi_handle search_handle;
111 u32 speed;
112 u32 min_speed;
113 };
114
115 static int i2c_acpi_fill_info(struct acpi_resource *ares, void *data)
116 {
117 struct i2c_acpi_lookup *lookup = data;
118 struct i2c_board_info *info = lookup->info;
119 struct acpi_resource_i2c_serialbus *sb;
120 acpi_status status;
121
122 if (info->addr || ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
123 return 1;
124
125 sb = &ares->data.i2c_serial_bus;
126 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_I2C)
127 return 1;
128
129 status = acpi_get_handle(lookup->device_handle,
130 sb->resource_source.string_ptr,
131 &lookup->adapter_handle);
132 if (!ACPI_SUCCESS(status))
133 return 1;
134
135 info->addr = sb->slave_address;
136 lookup->speed = sb->connection_speed;
137 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
138 info->flags |= I2C_CLIENT_TEN;
139
140 return 1;
141 }
142
143 static int i2c_acpi_do_lookup(struct acpi_device *adev,
144 struct i2c_acpi_lookup *lookup)
145 {
146 struct i2c_board_info *info = lookup->info;
147 struct list_head resource_list;
148 int ret;
149
150 if (acpi_bus_get_status(adev) || !adev->status.present ||
151 acpi_device_enumerated(adev))
152 return -EINVAL;
153
154 memset(info, 0, sizeof(*info));
155 lookup->device_handle = acpi_device_handle(adev);
156
157 /* Look up for I2cSerialBus resource */
158 INIT_LIST_HEAD(&resource_list);
159 ret = acpi_dev_get_resources(adev, &resource_list,
160 i2c_acpi_fill_info, lookup);
161 acpi_dev_free_resource_list(&resource_list);
162
163 if (ret < 0 || !info->addr)
164 return -EINVAL;
165
166 return 0;
167 }
168
169 static int i2c_acpi_get_info(struct acpi_device *adev,
170 struct i2c_board_info *info,
171 acpi_handle *adapter_handle)
172 {
173 struct list_head resource_list;
174 struct resource_entry *entry;
175 struct i2c_acpi_lookup lookup;
176 int ret;
177
178 memset(&lookup, 0, sizeof(lookup));
179 lookup.info = info;
180
181 ret = i2c_acpi_do_lookup(adev, &lookup);
182 if (ret)
183 return ret;
184
185 info->fwnode = acpi_fwnode_handle(adev);
186 *adapter_handle = lookup.adapter_handle;
187
188 /* Then fill IRQ number if any */
189 INIT_LIST_HEAD(&resource_list);
190 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);
191 if (ret < 0)
192 return -EINVAL;
193
194 resource_list_for_each_entry(entry, &resource_list) {
195 if (resource_type(entry->res) == IORESOURCE_IRQ) {
196 info->irq = entry->res->start;
197 break;
198 }
199 }
200
201 acpi_dev_free_resource_list(&resource_list);
202
203 strlcpy(info->type, dev_name(&adev->dev), sizeof(info->type));
204
205 return 0;
206 }
207
208 static void i2c_acpi_register_device(struct i2c_adapter *adapter,
209 struct acpi_device *adev,
210 struct i2c_board_info *info)
211 {
212 adev->power.flags.ignore_parent = true;
213 acpi_device_set_enumerated(adev);
214
215 if (!i2c_new_device(adapter, info)) {
216 adev->power.flags.ignore_parent = false;
217 dev_err(&adapter->dev,
218 "failed to add I2C device %s from ACPI\n",
219 dev_name(&adev->dev));
220 }
221 }
222
223 static acpi_status i2c_acpi_add_device(acpi_handle handle, u32 level,
224 void *data, void **return_value)
225 {
226 struct i2c_adapter *adapter = data;
227 struct acpi_device *adev;
228 acpi_handle adapter_handle;
229 struct i2c_board_info info;
230
231 if (acpi_bus_get_device(handle, &adev))
232 return AE_OK;
233
234 if (i2c_acpi_get_info(adev, &info, &adapter_handle))
235 return AE_OK;
236
237 if (adapter_handle != ACPI_HANDLE(&adapter->dev))
238 return AE_OK;
239
240 i2c_acpi_register_device(adapter, adev, &info);
241
242 return AE_OK;
243 }
244
245 #define I2C_ACPI_MAX_SCAN_DEPTH 32
246
247 /**
248 * i2c_acpi_register_devices - enumerate I2C slave devices behind adapter
249 * @adap: pointer to adapter
250 *
251 * Enumerate all I2C slave devices behind this adapter by walking the ACPI
252 * namespace. When a device is found it will be added to the Linux device
253 * model and bound to the corresponding ACPI handle.
254 */
255 static void i2c_acpi_register_devices(struct i2c_adapter *adap)
256 {
257 acpi_status status;
258
259 if (!has_acpi_companion(&adap->dev))
260 return;
261
262 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
263 I2C_ACPI_MAX_SCAN_DEPTH,
264 i2c_acpi_add_device, NULL,
265 adap, NULL);
266 if (ACPI_FAILURE(status))
267 dev_warn(&adap->dev, "failed to enumerate I2C slaves\n");
268 }
269
270 static acpi_status i2c_acpi_lookup_speed(acpi_handle handle, u32 level,
271 void *data, void **return_value)
272 {
273 struct i2c_acpi_lookup *lookup = data;
274 struct acpi_device *adev;
275
276 if (acpi_bus_get_device(handle, &adev))
277 return AE_OK;
278
279 if (i2c_acpi_do_lookup(adev, lookup))
280 return AE_OK;
281
282 if (lookup->search_handle != lookup->adapter_handle)
283 return AE_OK;
284
285 if (lookup->speed <= lookup->min_speed)
286 lookup->min_speed = lookup->speed;
287
288 return AE_OK;
289 }
290
291 /**
292 * i2c_acpi_find_bus_speed - find I2C bus speed from ACPI
293 * @dev: The device owning the bus
294 *
295 * Find the I2C bus speed by walking the ACPI namespace for all I2C slaves
296 * devices connected to this bus and use the speed of slowest device.
297 *
298 * Returns the speed in Hz or zero
299 */
300 u32 i2c_acpi_find_bus_speed(struct device *dev)
301 {
302 struct i2c_acpi_lookup lookup;
303 struct i2c_board_info dummy;
304 acpi_status status;
305
306 if (!has_acpi_companion(dev))
307 return 0;
308
309 memset(&lookup, 0, sizeof(lookup));
310 lookup.search_handle = ACPI_HANDLE(dev);
311 lookup.min_speed = UINT_MAX;
312 lookup.info = &dummy;
313
314 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
315 I2C_ACPI_MAX_SCAN_DEPTH,
316 i2c_acpi_lookup_speed, NULL,
317 &lookup, NULL);
318
319 if (ACPI_FAILURE(status)) {
320 dev_warn(dev, "unable to find I2C bus speed from ACPI\n");
321 return 0;
322 }
323
324 return lookup.min_speed != UINT_MAX ? lookup.min_speed : 0;
325 }
326 EXPORT_SYMBOL_GPL(i2c_acpi_find_bus_speed);
327
328 static int i2c_acpi_match_adapter(struct device *dev, void *data)
329 {
330 struct i2c_adapter *adapter = i2c_verify_adapter(dev);
331
332 if (!adapter)
333 return 0;
334
335 return ACPI_HANDLE(dev) == (acpi_handle)data;
336 }
337
338 static int i2c_acpi_match_device(struct device *dev, void *data)
339 {
340 return ACPI_COMPANION(dev) == data;
341 }
342
343 static struct i2c_adapter *i2c_acpi_find_adapter_by_handle(acpi_handle handle)
344 {
345 struct device *dev;
346
347 dev = bus_find_device(&i2c_bus_type, NULL, handle,
348 i2c_acpi_match_adapter);
349 return dev ? i2c_verify_adapter(dev) : NULL;
350 }
351
352 static struct i2c_client *i2c_acpi_find_client_by_adev(struct acpi_device *adev)
353 {
354 struct device *dev;
355
356 dev = bus_find_device(&i2c_bus_type, NULL, adev, i2c_acpi_match_device);
357 return dev ? i2c_verify_client(dev) : NULL;
358 }
359
360 static int i2c_acpi_notify(struct notifier_block *nb, unsigned long value,
361 void *arg)
362 {
363 struct acpi_device *adev = arg;
364 struct i2c_board_info info;
365 acpi_handle adapter_handle;
366 struct i2c_adapter *adapter;
367 struct i2c_client *client;
368
369 switch (value) {
370 case ACPI_RECONFIG_DEVICE_ADD:
371 if (i2c_acpi_get_info(adev, &info, &adapter_handle))
372 break;
373
374 adapter = i2c_acpi_find_adapter_by_handle(adapter_handle);
375 if (!adapter)
376 break;
377
378 i2c_acpi_register_device(adapter, adev, &info);
379 break;
380 case ACPI_RECONFIG_DEVICE_REMOVE:
381 if (!acpi_device_enumerated(adev))
382 break;
383
384 client = i2c_acpi_find_client_by_adev(adev);
385 if (!client)
386 break;
387
388 i2c_unregister_device(client);
389 put_device(&client->dev);
390 break;
391 }
392
393 return NOTIFY_OK;
394 }
395
396 static struct notifier_block i2c_acpi_notifier = {
397 .notifier_call = i2c_acpi_notify,
398 };
399 #else /* CONFIG_ACPI */
400 static inline void i2c_acpi_register_devices(struct i2c_adapter *adap) { }
401 extern struct notifier_block i2c_acpi_notifier;
402 #endif /* CONFIG_ACPI */
403
404 #ifdef CONFIG_ACPI_I2C_OPREGION
405 static int acpi_gsb_i2c_read_bytes(struct i2c_client *client,
406 u8 cmd, u8 *data, u8 data_len)
407 {
408
409 struct i2c_msg msgs[2];
410 int ret;
411 u8 *buffer;
412
413 buffer = kzalloc(data_len, GFP_KERNEL);
414 if (!buffer)
415 return AE_NO_MEMORY;
416
417 msgs[0].addr = client->addr;
418 msgs[0].flags = client->flags;
419 msgs[0].len = 1;
420 msgs[0].buf = &cmd;
421
422 msgs[1].addr = client->addr;
423 msgs[1].flags = client->flags | I2C_M_RD;
424 msgs[1].len = data_len;
425 msgs[1].buf = buffer;
426
427 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
428 if (ret < 0)
429 dev_err(&client->adapter->dev, "i2c read failed\n");
430 else
431 memcpy(data, buffer, data_len);
432
433 kfree(buffer);
434 return ret;
435 }
436
437 static int acpi_gsb_i2c_write_bytes(struct i2c_client *client,
438 u8 cmd, u8 *data, u8 data_len)
439 {
440
441 struct i2c_msg msgs[1];
442 u8 *buffer;
443 int ret = AE_OK;
444
445 buffer = kzalloc(data_len + 1, GFP_KERNEL);
446 if (!buffer)
447 return AE_NO_MEMORY;
448
449 buffer[0] = cmd;
450 memcpy(buffer + 1, data, data_len);
451
452 msgs[0].addr = client->addr;
453 msgs[0].flags = client->flags;
454 msgs[0].len = data_len + 1;
455 msgs[0].buf = buffer;
456
457 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
458 if (ret < 0)
459 dev_err(&client->adapter->dev, "i2c write failed\n");
460
461 kfree(buffer);
462 return ret;
463 }
464
465 static acpi_status
466 i2c_acpi_space_handler(u32 function, acpi_physical_address command,
467 u32 bits, u64 *value64,
468 void *handler_context, void *region_context)
469 {
470 struct gsb_buffer *gsb = (struct gsb_buffer *)value64;
471 struct i2c_acpi_handler_data *data = handler_context;
472 struct acpi_connection_info *info = &data->info;
473 struct acpi_resource_i2c_serialbus *sb;
474 struct i2c_adapter *adapter = data->adapter;
475 struct i2c_client *client;
476 struct acpi_resource *ares;
477 u32 accessor_type = function >> 16;
478 u8 action = function & ACPI_IO_MASK;
479 acpi_status ret;
480 int status;
481
482 ret = acpi_buffer_to_resource(info->connection, info->length, &ares);
483 if (ACPI_FAILURE(ret))
484 return ret;
485
486 client = kzalloc(sizeof(*client), GFP_KERNEL);
487 if (!client) {
488 ret = AE_NO_MEMORY;
489 goto err;
490 }
491
492 if (!value64 || ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) {
493 ret = AE_BAD_PARAMETER;
494 goto err;
495 }
496
497 sb = &ares->data.i2c_serial_bus;
498 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_I2C) {
499 ret = AE_BAD_PARAMETER;
500 goto err;
501 }
502
503 client->adapter = adapter;
504 client->addr = sb->slave_address;
505
506 if (sb->access_mode == ACPI_I2C_10BIT_MODE)
507 client->flags |= I2C_CLIENT_TEN;
508
509 switch (accessor_type) {
510 case ACPI_GSB_ACCESS_ATTRIB_SEND_RCV:
511 if (action == ACPI_READ) {
512 status = i2c_smbus_read_byte(client);
513 if (status >= 0) {
514 gsb->bdata = status;
515 status = 0;
516 }
517 } else {
518 status = i2c_smbus_write_byte(client, gsb->bdata);
519 }
520 break;
521
522 case ACPI_GSB_ACCESS_ATTRIB_BYTE:
523 if (action == ACPI_READ) {
524 status = i2c_smbus_read_byte_data(client, command);
525 if (status >= 0) {
526 gsb->bdata = status;
527 status = 0;
528 }
529 } else {
530 status = i2c_smbus_write_byte_data(client, command,
531 gsb->bdata);
532 }
533 break;
534
535 case ACPI_GSB_ACCESS_ATTRIB_WORD:
536 if (action == ACPI_READ) {
537 status = i2c_smbus_read_word_data(client, command);
538 if (status >= 0) {
539 gsb->wdata = status;
540 status = 0;
541 }
542 } else {
543 status = i2c_smbus_write_word_data(client, command,
544 gsb->wdata);
545 }
546 break;
547
548 case ACPI_GSB_ACCESS_ATTRIB_BLOCK:
549 if (action == ACPI_READ) {
550 status = i2c_smbus_read_block_data(client, command,
551 gsb->data);
552 if (status >= 0) {
553 gsb->len = status;
554 status = 0;
555 }
556 } else {
557 status = i2c_smbus_write_block_data(client, command,
558 gsb->len, gsb->data);
559 }
560 break;
561
562 case ACPI_GSB_ACCESS_ATTRIB_MULTIBYTE:
563 if (action == ACPI_READ) {
564 status = acpi_gsb_i2c_read_bytes(client, command,
565 gsb->data, info->access_length);
566 if (status > 0)
567 status = 0;
568 } else {
569 status = acpi_gsb_i2c_write_bytes(client, command,
570 gsb->data, info->access_length);
571 }
572 break;
573
574 default:
575 dev_warn(&adapter->dev, "protocol 0x%02x not supported for client 0x%02x\n",
576 accessor_type, client->addr);
577 ret = AE_BAD_PARAMETER;
578 goto err;
579 }
580
581 gsb->status = status;
582
583 err:
584 kfree(client);
585 ACPI_FREE(ares);
586 return ret;
587 }
588
589
590 static int i2c_acpi_install_space_handler(struct i2c_adapter *adapter)
591 {
592 acpi_handle handle;
593 struct i2c_acpi_handler_data *data;
594 acpi_status status;
595
596 if (!adapter->dev.parent)
597 return -ENODEV;
598
599 handle = ACPI_HANDLE(adapter->dev.parent);
600
601 if (!handle)
602 return -ENODEV;
603
604 data = kzalloc(sizeof(struct i2c_acpi_handler_data),
605 GFP_KERNEL);
606 if (!data)
607 return -ENOMEM;
608
609 data->adapter = adapter;
610 status = acpi_bus_attach_private_data(handle, (void *)data);
611 if (ACPI_FAILURE(status)) {
612 kfree(data);
613 return -ENOMEM;
614 }
615
616 status = acpi_install_address_space_handler(handle,
617 ACPI_ADR_SPACE_GSBUS,
618 &i2c_acpi_space_handler,
619 NULL,
620 data);
621 if (ACPI_FAILURE(status)) {
622 dev_err(&adapter->dev, "Error installing i2c space handler\n");
623 acpi_bus_detach_private_data(handle);
624 kfree(data);
625 return -ENOMEM;
626 }
627
628 acpi_walk_dep_device_list(handle);
629 return 0;
630 }
631
632 static void i2c_acpi_remove_space_handler(struct i2c_adapter *adapter)
633 {
634 acpi_handle handle;
635 struct i2c_acpi_handler_data *data;
636 acpi_status status;
637
638 if (!adapter->dev.parent)
639 return;
640
641 handle = ACPI_HANDLE(adapter->dev.parent);
642
643 if (!handle)
644 return;
645
646 acpi_remove_address_space_handler(handle,
647 ACPI_ADR_SPACE_GSBUS,
648 &i2c_acpi_space_handler);
649
650 status = acpi_bus_get_private_data(handle, (void **)&data);
651 if (ACPI_SUCCESS(status))
652 kfree(data);
653
654 acpi_bus_detach_private_data(handle);
655 }
656 #else /* CONFIG_ACPI_I2C_OPREGION */
657 static inline void i2c_acpi_remove_space_handler(struct i2c_adapter *adapter)
658 { }
659
660 static inline int i2c_acpi_install_space_handler(struct i2c_adapter *adapter)
661 { return 0; }
662 #endif /* CONFIG_ACPI_I2C_OPREGION */
663
664 /* ------------------------------------------------------------------------- */
665
666 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
667 const struct i2c_client *client)
668 {
669 while (id->name[0]) {
670 if (strcmp(client->name, id->name) == 0)
671 return id;
672 id++;
673 }
674 return NULL;
675 }
676
677 static int i2c_device_match(struct device *dev, struct device_driver *drv)
678 {
679 struct i2c_client *client = i2c_verify_client(dev);
680 struct i2c_driver *driver;
681
682 if (!client)
683 return 0;
684
685 /* Attempt an OF style match */
686 if (of_driver_match_device(dev, drv))
687 return 1;
688
689 /* Then ACPI style match */
690 if (acpi_driver_match_device(dev, drv))
691 return 1;
692
693 driver = to_i2c_driver(drv);
694 /* match on an id table if there is one */
695 if (driver->id_table)
696 return i2c_match_id(driver->id_table, client) != NULL;
697
698 return 0;
699 }
700
701 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
702 {
703 struct i2c_client *client = to_i2c_client(dev);
704 int rc;
705
706 rc = acpi_device_uevent_modalias(dev, env);
707 if (rc != -ENODEV)
708 return rc;
709
710 return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name);
711 }
712
713 /* i2c bus recovery routines */
714 static int get_scl_gpio_value(struct i2c_adapter *adap)
715 {
716 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
717 }
718
719 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
720 {
721 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
722 }
723
724 static int get_sda_gpio_value(struct i2c_adapter *adap)
725 {
726 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
727 }
728
729 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
730 {
731 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
732 struct device *dev = &adap->dev;
733 int ret = 0;
734
735 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
736 GPIOF_OUT_INIT_HIGH, "i2c-scl");
737 if (ret) {
738 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
739 return ret;
740 }
741
742 if (bri->get_sda) {
743 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
744 /* work without SDA polling */
745 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
746 bri->sda_gpio);
747 bri->get_sda = NULL;
748 }
749 }
750
751 return ret;
752 }
753
754 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
755 {
756 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
757
758 if (bri->get_sda)
759 gpio_free(bri->sda_gpio);
760
761 gpio_free(bri->scl_gpio);
762 }
763
764 /*
765 * We are generating clock pulses. ndelay() determines durating of clk pulses.
766 * We will generate clock with rate 100 KHz and so duration of both clock levels
767 * is: delay in ns = (10^6 / 100) / 2
768 */
769 #define RECOVERY_NDELAY 5000
770 #define RECOVERY_CLK_CNT 9
771
772 static int i2c_generic_recovery(struct i2c_adapter *adap)
773 {
774 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
775 int i = 0, val = 1, ret = 0;
776
777 if (bri->prepare_recovery)
778 bri->prepare_recovery(adap);
779
780 bri->set_scl(adap, val);
781 ndelay(RECOVERY_NDELAY);
782
783 /*
784 * By this time SCL is high, as we need to give 9 falling-rising edges
785 */
786 while (i++ < RECOVERY_CLK_CNT * 2) {
787 if (val) {
788 /* Break if SDA is high */
789 if (bri->get_sda && bri->get_sda(adap))
790 break;
791 /* SCL shouldn't be low here */
792 if (!bri->get_scl(adap)) {
793 dev_err(&adap->dev,
794 "SCL is stuck low, exit recovery\n");
795 ret = -EBUSY;
796 break;
797 }
798 }
799
800 val = !val;
801 bri->set_scl(adap, val);
802 ndelay(RECOVERY_NDELAY);
803 }
804
805 if (bri->unprepare_recovery)
806 bri->unprepare_recovery(adap);
807
808 return ret;
809 }
810
811 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
812 {
813 return i2c_generic_recovery(adap);
814 }
815 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery);
816
817 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
818 {
819 int ret;
820
821 ret = i2c_get_gpios_for_recovery(adap);
822 if (ret)
823 return ret;
824
825 ret = i2c_generic_recovery(adap);
826 i2c_put_gpios_for_recovery(adap);
827
828 return ret;
829 }
830 EXPORT_SYMBOL_GPL(i2c_generic_gpio_recovery);
831
832 int i2c_recover_bus(struct i2c_adapter *adap)
833 {
834 if (!adap->bus_recovery_info)
835 return -EOPNOTSUPP;
836
837 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
838 return adap->bus_recovery_info->recover_bus(adap);
839 }
840 EXPORT_SYMBOL_GPL(i2c_recover_bus);
841
842 static void i2c_init_recovery(struct i2c_adapter *adap)
843 {
844 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
845 char *err_str;
846
847 if (!bri)
848 return;
849
850 if (!bri->recover_bus) {
851 err_str = "no recover_bus() found";
852 goto err;
853 }
854
855 /* Generic GPIO recovery */
856 if (bri->recover_bus == i2c_generic_gpio_recovery) {
857 if (!gpio_is_valid(bri->scl_gpio)) {
858 err_str = "invalid SCL gpio";
859 goto err;
860 }
861
862 if (gpio_is_valid(bri->sda_gpio))
863 bri->get_sda = get_sda_gpio_value;
864 else
865 bri->get_sda = NULL;
866
867 bri->get_scl = get_scl_gpio_value;
868 bri->set_scl = set_scl_gpio_value;
869 } else if (bri->recover_bus == i2c_generic_scl_recovery) {
870 /* Generic SCL recovery */
871 if (!bri->set_scl || !bri->get_scl) {
872 err_str = "no {get|set}_scl() found";
873 goto err;
874 }
875 }
876
877 return;
878 err:
879 dev_err(&adap->dev, "Not using recovery: %s\n", err_str);
880 adap->bus_recovery_info = NULL;
881 }
882
883 static int i2c_device_probe(struct device *dev)
884 {
885 struct i2c_client *client = i2c_verify_client(dev);
886 struct i2c_driver *driver;
887 int status;
888
889 if (!client)
890 return 0;
891
892 if (!client->irq) {
893 int irq = -ENOENT;
894
895 if (dev->of_node) {
896 irq = of_irq_get_byname(dev->of_node, "irq");
897 if (irq == -EINVAL || irq == -ENODATA)
898 irq = of_irq_get(dev->of_node, 0);
899 } else if (ACPI_COMPANION(dev)) {
900 irq = acpi_dev_gpio_irq_get(ACPI_COMPANION(dev), 0);
901 }
902 if (irq == -EPROBE_DEFER)
903 return irq;
904 if (irq < 0)
905 irq = 0;
906
907 client->irq = irq;
908 }
909
910 driver = to_i2c_driver(dev->driver);
911 if (!driver->probe || !driver->id_table)
912 return -ENODEV;
913
914 if (client->flags & I2C_CLIENT_WAKE) {
915 int wakeirq = -ENOENT;
916
917 if (dev->of_node) {
918 wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
919 if (wakeirq == -EPROBE_DEFER)
920 return wakeirq;
921 }
922
923 device_init_wakeup(&client->dev, true);
924
925 if (wakeirq > 0 && wakeirq != client->irq)
926 status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
927 else if (client->irq > 0)
928 status = dev_pm_set_wake_irq(dev, client->irq);
929 else
930 status = 0;
931
932 if (status)
933 dev_warn(&client->dev, "failed to set up wakeup irq\n");
934 }
935
936 dev_dbg(dev, "probe\n");
937
938 status = of_clk_set_defaults(dev->of_node, false);
939 if (status < 0)
940 goto err_clear_wakeup_irq;
941
942 status = dev_pm_domain_attach(&client->dev, true);
943 if (status == -EPROBE_DEFER)
944 goto err_clear_wakeup_irq;
945
946 status = driver->probe(client, i2c_match_id(driver->id_table, client));
947 if (status)
948 goto err_detach_pm_domain;
949
950 return 0;
951
952 err_detach_pm_domain:
953 dev_pm_domain_detach(&client->dev, true);
954 err_clear_wakeup_irq:
955 dev_pm_clear_wake_irq(&client->dev);
956 device_init_wakeup(&client->dev, false);
957 return status;
958 }
959
960 static int i2c_device_remove(struct device *dev)
961 {
962 struct i2c_client *client = i2c_verify_client(dev);
963 struct i2c_driver *driver;
964 int status = 0;
965
966 if (!client || !dev->driver)
967 return 0;
968
969 driver = to_i2c_driver(dev->driver);
970 if (driver->remove) {
971 dev_dbg(dev, "remove\n");
972 status = driver->remove(client);
973 }
974
975 dev_pm_domain_detach(&client->dev, true);
976
977 dev_pm_clear_wake_irq(&client->dev);
978 device_init_wakeup(&client->dev, false);
979
980 return status;
981 }
982
983 static void i2c_device_shutdown(struct device *dev)
984 {
985 struct i2c_client *client = i2c_verify_client(dev);
986 struct i2c_driver *driver;
987
988 if (!client || !dev->driver)
989 return;
990 driver = to_i2c_driver(dev->driver);
991 if (driver->shutdown)
992 driver->shutdown(client);
993 }
994
995 static void i2c_client_dev_release(struct device *dev)
996 {
997 kfree(to_i2c_client(dev));
998 }
999
1000 static ssize_t
1001 show_name(struct device *dev, struct device_attribute *attr, char *buf)
1002 {
1003 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
1004 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
1005 }
1006 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
1007
1008 static ssize_t
1009 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
1010 {
1011 struct i2c_client *client = to_i2c_client(dev);
1012 int len;
1013
1014 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
1015 if (len != -ENODEV)
1016 return len;
1017
1018 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
1019 }
1020 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
1021
1022 static struct attribute *i2c_dev_attrs[] = {
1023 &dev_attr_name.attr,
1024 /* modalias helps coldplug: modprobe $(cat .../modalias) */
1025 &dev_attr_modalias.attr,
1026 NULL
1027 };
1028 ATTRIBUTE_GROUPS(i2c_dev);
1029
1030 struct bus_type i2c_bus_type = {
1031 .name = "i2c",
1032 .match = i2c_device_match,
1033 .probe = i2c_device_probe,
1034 .remove = i2c_device_remove,
1035 .shutdown = i2c_device_shutdown,
1036 };
1037 EXPORT_SYMBOL_GPL(i2c_bus_type);
1038
1039 static struct device_type i2c_client_type = {
1040 .groups = i2c_dev_groups,
1041 .uevent = i2c_device_uevent,
1042 .release = i2c_client_dev_release,
1043 };
1044
1045
1046 /**
1047 * i2c_verify_client - return parameter as i2c_client, or NULL
1048 * @dev: device, probably from some driver model iterator
1049 *
1050 * When traversing the driver model tree, perhaps using driver model
1051 * iterators like @device_for_each_child(), you can't assume very much
1052 * about the nodes you find. Use this function to avoid oopses caused
1053 * by wrongly treating some non-I2C device as an i2c_client.
1054 */
1055 struct i2c_client *i2c_verify_client(struct device *dev)
1056 {
1057 return (dev->type == &i2c_client_type)
1058 ? to_i2c_client(dev)
1059 : NULL;
1060 }
1061 EXPORT_SYMBOL(i2c_verify_client);
1062
1063
1064 /* Return a unique address which takes the flags of the client into account */
1065 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
1066 {
1067 unsigned short addr = client->addr;
1068
1069 /* For some client flags, add an arbitrary offset to avoid collisions */
1070 if (client->flags & I2C_CLIENT_TEN)
1071 addr |= I2C_ADDR_OFFSET_TEN_BIT;
1072
1073 if (client->flags & I2C_CLIENT_SLAVE)
1074 addr |= I2C_ADDR_OFFSET_SLAVE;
1075
1076 return addr;
1077 }
1078
1079 /* This is a permissive address validity check, I2C address map constraints
1080 * are purposely not enforced, except for the general call address. */
1081 static int i2c_check_addr_validity(unsigned addr, unsigned short flags)
1082 {
1083 if (flags & I2C_CLIENT_TEN) {
1084 /* 10-bit address, all values are valid */
1085 if (addr > 0x3ff)
1086 return -EINVAL;
1087 } else {
1088 /* 7-bit address, reject the general call address */
1089 if (addr == 0x00 || addr > 0x7f)
1090 return -EINVAL;
1091 }
1092 return 0;
1093 }
1094
1095 /* And this is a strict address validity check, used when probing. If a
1096 * device uses a reserved address, then it shouldn't be probed. 7-bit
1097 * addressing is assumed, 10-bit address devices are rare and should be
1098 * explicitly enumerated. */
1099 static int i2c_check_7bit_addr_validity_strict(unsigned short addr)
1100 {
1101 /*
1102 * Reserved addresses per I2C specification:
1103 * 0x00 General call address / START byte
1104 * 0x01 CBUS address
1105 * 0x02 Reserved for different bus format
1106 * 0x03 Reserved for future purposes
1107 * 0x04-0x07 Hs-mode master code
1108 * 0x78-0x7b 10-bit slave addressing
1109 * 0x7c-0x7f Reserved for future purposes
1110 */
1111 if (addr < 0x08 || addr > 0x77)
1112 return -EINVAL;
1113 return 0;
1114 }
1115
1116 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
1117 {
1118 struct i2c_client *client = i2c_verify_client(dev);
1119 int addr = *(int *)addrp;
1120
1121 if (client && i2c_encode_flags_to_addr(client) == addr)
1122 return -EBUSY;
1123 return 0;
1124 }
1125
1126 /* walk up mux tree */
1127 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
1128 {
1129 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
1130 int result;
1131
1132 result = device_for_each_child(&adapter->dev, &addr,
1133 __i2c_check_addr_busy);
1134
1135 if (!result && parent)
1136 result = i2c_check_mux_parents(parent, addr);
1137
1138 return result;
1139 }
1140
1141 /* recurse down mux tree */
1142 static int i2c_check_mux_children(struct device *dev, void *addrp)
1143 {
1144 int result;
1145
1146 if (dev->type == &i2c_adapter_type)
1147 result = device_for_each_child(dev, addrp,
1148 i2c_check_mux_children);
1149 else
1150 result = __i2c_check_addr_busy(dev, addrp);
1151
1152 return result;
1153 }
1154
1155 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
1156 {
1157 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
1158 int result = 0;
1159
1160 if (parent)
1161 result = i2c_check_mux_parents(parent, addr);
1162
1163 if (!result)
1164 result = device_for_each_child(&adapter->dev, &addr,
1165 i2c_check_mux_children);
1166
1167 return result;
1168 }
1169
1170 /**
1171 * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment
1172 * @adapter: Target I2C bus segment
1173 * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT
1174 * locks only this branch in the adapter tree
1175 */
1176 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter,
1177 unsigned int flags)
1178 {
1179 rt_mutex_lock(&adapter->bus_lock);
1180 }
1181
1182 /**
1183 * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment
1184 * @adapter: Target I2C bus segment
1185 * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT
1186 * trylocks only this branch in the adapter tree
1187 */
1188 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter,
1189 unsigned int flags)
1190 {
1191 return rt_mutex_trylock(&adapter->bus_lock);
1192 }
1193
1194 /**
1195 * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment
1196 * @adapter: Target I2C bus segment
1197 * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT
1198 * unlocks only this branch in the adapter tree
1199 */
1200 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter,
1201 unsigned int flags)
1202 {
1203 rt_mutex_unlock(&adapter->bus_lock);
1204 }
1205
1206 static void i2c_dev_set_name(struct i2c_adapter *adap,
1207 struct i2c_client *client)
1208 {
1209 struct acpi_device *adev = ACPI_COMPANION(&client->dev);
1210
1211 if (adev) {
1212 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
1213 return;
1214 }
1215
1216 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
1217 i2c_encode_flags_to_addr(client));
1218 }
1219
1220 /**
1221 * i2c_new_device - instantiate an i2c device
1222 * @adap: the adapter managing the device
1223 * @info: describes one I2C device; bus_num is ignored
1224 * Context: can sleep
1225 *
1226 * Create an i2c device. Binding is handled through driver model
1227 * probe()/remove() methods. A driver may be bound to this device when we
1228 * return from this function, or any later moment (e.g. maybe hotplugging will
1229 * load the driver module). This call is not appropriate for use by mainboard
1230 * initialization logic, which usually runs during an arch_initcall() long
1231 * before any i2c_adapter could exist.
1232 *
1233 * This returns the new i2c client, which may be saved for later use with
1234 * i2c_unregister_device(); or NULL to indicate an error.
1235 */
1236 struct i2c_client *
1237 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
1238 {
1239 struct i2c_client *client;
1240 int status;
1241
1242 client = kzalloc(sizeof *client, GFP_KERNEL);
1243 if (!client)
1244 return NULL;
1245
1246 client->adapter = adap;
1247
1248 client->dev.platform_data = info->platform_data;
1249
1250 if (info->archdata)
1251 client->dev.archdata = *info->archdata;
1252
1253 client->flags = info->flags;
1254 client->addr = info->addr;
1255 client->irq = info->irq;
1256
1257 strlcpy(client->name, info->type, sizeof(client->name));
1258
1259 status = i2c_check_addr_validity(client->addr, client->flags);
1260 if (status) {
1261 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
1262 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
1263 goto out_err_silent;
1264 }
1265
1266 /* Check for address business */
1267 status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
1268 if (status)
1269 goto out_err;
1270
1271 client->dev.parent = &client->adapter->dev;
1272 client->dev.bus = &i2c_bus_type;
1273 client->dev.type = &i2c_client_type;
1274 client->dev.of_node = info->of_node;
1275 client->dev.fwnode = info->fwnode;
1276
1277 i2c_dev_set_name(adap, client);
1278 status = device_register(&client->dev);
1279 if (status)
1280 goto out_err;
1281
1282 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
1283 client->name, dev_name(&client->dev));
1284
1285 return client;
1286
1287 out_err:
1288 dev_err(&adap->dev,
1289 "Failed to register i2c client %s at 0x%02x (%d)\n",
1290 client->name, client->addr, status);
1291 out_err_silent:
1292 kfree(client);
1293 return NULL;
1294 }
1295 EXPORT_SYMBOL_GPL(i2c_new_device);
1296
1297
1298 /**
1299 * i2c_unregister_device - reverse effect of i2c_new_device()
1300 * @client: value returned from i2c_new_device()
1301 * Context: can sleep
1302 */
1303 void i2c_unregister_device(struct i2c_client *client)
1304 {
1305 if (client->dev.of_node)
1306 of_node_clear_flag(client->dev.of_node, OF_POPULATED);
1307 if (ACPI_COMPANION(&client->dev))
1308 acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev));
1309 device_unregister(&client->dev);
1310 }
1311 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1312
1313
1314 static const struct i2c_device_id dummy_id[] = {
1315 { "dummy", 0 },
1316 { },
1317 };
1318
1319 static int dummy_probe(struct i2c_client *client,
1320 const struct i2c_device_id *id)
1321 {
1322 return 0;
1323 }
1324
1325 static int dummy_remove(struct i2c_client *client)
1326 {
1327 return 0;
1328 }
1329
1330 static struct i2c_driver dummy_driver = {
1331 .driver.name = "dummy",
1332 .probe = dummy_probe,
1333 .remove = dummy_remove,
1334 .id_table = dummy_id,
1335 };
1336
1337 /**
1338 * i2c_new_dummy - return a new i2c device bound to a dummy driver
1339 * @adapter: the adapter managing the device
1340 * @address: seven bit address to be used
1341 * Context: can sleep
1342 *
1343 * This returns an I2C client bound to the "dummy" driver, intended for use
1344 * with devices that consume multiple addresses. Examples of such chips
1345 * include various EEPROMS (like 24c04 and 24c08 models).
1346 *
1347 * These dummy devices have two main uses. First, most I2C and SMBus calls
1348 * except i2c_transfer() need a client handle; the dummy will be that handle.
1349 * And second, this prevents the specified address from being bound to a
1350 * different driver.
1351 *
1352 * This returns the new i2c client, which should be saved for later use with
1353 * i2c_unregister_device(); or NULL to indicate an error.
1354 */
1355 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
1356 {
1357 struct i2c_board_info info = {
1358 I2C_BOARD_INFO("dummy", address),
1359 };
1360
1361 return i2c_new_device(adapter, &info);
1362 }
1363 EXPORT_SYMBOL_GPL(i2c_new_dummy);
1364
1365 /**
1366 * i2c_new_secondary_device - Helper to get the instantiated secondary address
1367 * and create the associated device
1368 * @client: Handle to the primary client
1369 * @name: Handle to specify which secondary address to get
1370 * @default_addr: Used as a fallback if no secondary address was specified
1371 * Context: can sleep
1372 *
1373 * I2C clients can be composed of multiple I2C slaves bound together in a single
1374 * component. The I2C client driver then binds to the master I2C slave and needs
1375 * to create I2C dummy clients to communicate with all the other slaves.
1376 *
1377 * This function creates and returns an I2C dummy client whose I2C address is
1378 * retrieved from the platform firmware based on the given slave name. If no
1379 * address is specified by the firmware default_addr is used.
1380 *
1381 * On DT-based platforms the address is retrieved from the "reg" property entry
1382 * cell whose "reg-names" value matches the slave name.
1383 *
1384 * This returns the new i2c client, which should be saved for later use with
1385 * i2c_unregister_device(); or NULL to indicate an error.
1386 */
1387 struct i2c_client *i2c_new_secondary_device(struct i2c_client *client,
1388 const char *name,
1389 u16 default_addr)
1390 {
1391 struct device_node *np = client->dev.of_node;
1392 u32 addr = default_addr;
1393 int i;
1394
1395 if (np) {
1396 i = of_property_match_string(np, "reg-names", name);
1397 if (i >= 0)
1398 of_property_read_u32_index(np, "reg", i, &addr);
1399 }
1400
1401 dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr);
1402 return i2c_new_dummy(client->adapter, addr);
1403 }
1404 EXPORT_SYMBOL_GPL(i2c_new_secondary_device);
1405
1406 /* ------------------------------------------------------------------------- */
1407
1408 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1409
1410 static void i2c_adapter_dev_release(struct device *dev)
1411 {
1412 struct i2c_adapter *adap = to_i2c_adapter(dev);
1413 complete(&adap->dev_released);
1414 }
1415
1416 /*
1417 * This function is only needed for mutex_lock_nested, so it is never
1418 * called unless locking correctness checking is enabled. Thus we
1419 * make it inline to avoid a compiler warning. That's what gcc ends up
1420 * doing anyway.
1421 */
1422 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1423 {
1424 unsigned int depth = 0;
1425
1426 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
1427 depth++;
1428
1429 return depth;
1430 }
1431
1432 /*
1433 * Let users instantiate I2C devices through sysfs. This can be used when
1434 * platform initialization code doesn't contain the proper data for
1435 * whatever reason. Also useful for drivers that do device detection and
1436 * detection fails, either because the device uses an unexpected address,
1437 * or this is a compatible device with different ID register values.
1438 *
1439 * Parameter checking may look overzealous, but we really don't want
1440 * the user to provide incorrect parameters.
1441 */
1442 static ssize_t
1443 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
1444 const char *buf, size_t count)
1445 {
1446 struct i2c_adapter *adap = to_i2c_adapter(dev);
1447 struct i2c_board_info info;
1448 struct i2c_client *client;
1449 char *blank, end;
1450 int res;
1451
1452 memset(&info, 0, sizeof(struct i2c_board_info));
1453
1454 blank = strchr(buf, ' ');
1455 if (!blank) {
1456 dev_err(dev, "%s: Missing parameters\n", "new_device");
1457 return -EINVAL;
1458 }
1459 if (blank - buf > I2C_NAME_SIZE - 1) {
1460 dev_err(dev, "%s: Invalid device name\n", "new_device");
1461 return -EINVAL;
1462 }
1463 memcpy(info.type, buf, blank - buf);
1464
1465 /* Parse remaining parameters, reject extra parameters */
1466 res = sscanf(++blank, "%hi%c", &info.addr, &end);
1467 if (res < 1) {
1468 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1469 return -EINVAL;
1470 }
1471 if (res > 1 && end != '\n') {
1472 dev_err(dev, "%s: Extra parameters\n", "new_device");
1473 return -EINVAL;
1474 }
1475
1476 if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
1477 info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
1478 info.flags |= I2C_CLIENT_TEN;
1479 }
1480
1481 if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
1482 info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
1483 info.flags |= I2C_CLIENT_SLAVE;
1484 }
1485
1486 client = i2c_new_device(adap, &info);
1487 if (!client)
1488 return -EINVAL;
1489
1490 /* Keep track of the added device */
1491 mutex_lock(&adap->userspace_clients_lock);
1492 list_add_tail(&client->detected, &adap->userspace_clients);
1493 mutex_unlock(&adap->userspace_clients_lock);
1494 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1495 info.type, info.addr);
1496
1497 return count;
1498 }
1499 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
1500
1501 /*
1502 * And of course let the users delete the devices they instantiated, if
1503 * they got it wrong. This interface can only be used to delete devices
1504 * instantiated by i2c_sysfs_new_device above. This guarantees that we
1505 * don't delete devices to which some kernel code still has references.
1506 *
1507 * Parameter checking may look overzealous, but we really don't want
1508 * the user to delete the wrong device.
1509 */
1510 static ssize_t
1511 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
1512 const char *buf, size_t count)
1513 {
1514 struct i2c_adapter *adap = to_i2c_adapter(dev);
1515 struct i2c_client *client, *next;
1516 unsigned short addr;
1517 char end;
1518 int res;
1519
1520 /* Parse parameters, reject extra parameters */
1521 res = sscanf(buf, "%hi%c", &addr, &end);
1522 if (res < 1) {
1523 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1524 return -EINVAL;
1525 }
1526 if (res > 1 && end != '\n') {
1527 dev_err(dev, "%s: Extra parameters\n", "delete_device");
1528 return -EINVAL;
1529 }
1530
1531 /* Make sure the device was added through sysfs */
1532 res = -ENOENT;
1533 mutex_lock_nested(&adap->userspace_clients_lock,
1534 i2c_adapter_depth(adap));
1535 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1536 detected) {
1537 if (i2c_encode_flags_to_addr(client) == addr) {
1538 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1539 "delete_device", client->name, client->addr);
1540
1541 list_del(&client->detected);
1542 i2c_unregister_device(client);
1543 res = count;
1544 break;
1545 }
1546 }
1547 mutex_unlock(&adap->userspace_clients_lock);
1548
1549 if (res < 0)
1550 dev_err(dev, "%s: Can't find device in list\n",
1551 "delete_device");
1552 return res;
1553 }
1554 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1555 i2c_sysfs_delete_device);
1556
1557 static struct attribute *i2c_adapter_attrs[] = {
1558 &dev_attr_name.attr,
1559 &dev_attr_new_device.attr,
1560 &dev_attr_delete_device.attr,
1561 NULL
1562 };
1563 ATTRIBUTE_GROUPS(i2c_adapter);
1564
1565 struct device_type i2c_adapter_type = {
1566 .groups = i2c_adapter_groups,
1567 .release = i2c_adapter_dev_release,
1568 };
1569 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1570
1571 /**
1572 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1573 * @dev: device, probably from some driver model iterator
1574 *
1575 * When traversing the driver model tree, perhaps using driver model
1576 * iterators like @device_for_each_child(), you can't assume very much
1577 * about the nodes you find. Use this function to avoid oopses caused
1578 * by wrongly treating some non-I2C device as an i2c_adapter.
1579 */
1580 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1581 {
1582 return (dev->type == &i2c_adapter_type)
1583 ? to_i2c_adapter(dev)
1584 : NULL;
1585 }
1586 EXPORT_SYMBOL(i2c_verify_adapter);
1587
1588 #ifdef CONFIG_I2C_COMPAT
1589 static struct class_compat *i2c_adapter_compat_class;
1590 #endif
1591
1592 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1593 {
1594 struct i2c_devinfo *devinfo;
1595
1596 down_read(&__i2c_board_lock);
1597 list_for_each_entry(devinfo, &__i2c_board_list, list) {
1598 if (devinfo->busnum == adapter->nr
1599 && !i2c_new_device(adapter,
1600 &devinfo->board_info))
1601 dev_err(&adapter->dev,
1602 "Can't create device at 0x%02x\n",
1603 devinfo->board_info.addr);
1604 }
1605 up_read(&__i2c_board_lock);
1606 }
1607
1608 /* OF support code */
1609
1610 #if IS_ENABLED(CONFIG_OF)
1611 static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap,
1612 struct device_node *node)
1613 {
1614 struct i2c_client *result;
1615 struct i2c_board_info info = {};
1616 struct dev_archdata dev_ad = {};
1617 const __be32 *addr_be;
1618 u32 addr;
1619 int len;
1620
1621 dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name);
1622
1623 if (of_modalias_node(node, info.type, sizeof(info.type)) < 0) {
1624 dev_err(&adap->dev, "of_i2c: modalias failure on %s\n",
1625 node->full_name);
1626 return ERR_PTR(-EINVAL);
1627 }
1628
1629 addr_be = of_get_property(node, "reg", &len);
1630 if (!addr_be || (len < sizeof(*addr_be))) {
1631 dev_err(&adap->dev, "of_i2c: invalid reg on %s\n",
1632 node->full_name);
1633 return ERR_PTR(-EINVAL);
1634 }
1635
1636 addr = be32_to_cpup(addr_be);
1637 if (addr & I2C_TEN_BIT_ADDRESS) {
1638 addr &= ~I2C_TEN_BIT_ADDRESS;
1639 info.flags |= I2C_CLIENT_TEN;
1640 }
1641
1642 if (addr & I2C_OWN_SLAVE_ADDRESS) {
1643 addr &= ~I2C_OWN_SLAVE_ADDRESS;
1644 info.flags |= I2C_CLIENT_SLAVE;
1645 }
1646
1647 if (i2c_check_addr_validity(addr, info.flags)) {
1648 dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n",
1649 info.addr, node->full_name);
1650 return ERR_PTR(-EINVAL);
1651 }
1652
1653 info.addr = addr;
1654 info.of_node = of_node_get(node);
1655 info.archdata = &dev_ad;
1656
1657 if (of_get_property(node, "wakeup-source", NULL))
1658 info.flags |= I2C_CLIENT_WAKE;
1659
1660 result = i2c_new_device(adap, &info);
1661 if (result == NULL) {
1662 dev_err(&adap->dev, "of_i2c: Failure registering %s\n",
1663 node->full_name);
1664 of_node_put(node);
1665 return ERR_PTR(-EINVAL);
1666 }
1667 return result;
1668 }
1669
1670 static void of_i2c_register_devices(struct i2c_adapter *adap)
1671 {
1672 struct device_node *node;
1673
1674 /* Only register child devices if the adapter has a node pointer set */
1675 if (!adap->dev.of_node)
1676 return;
1677
1678 dev_dbg(&adap->dev, "of_i2c: walking child nodes\n");
1679
1680 for_each_available_child_of_node(adap->dev.of_node, node) {
1681 if (of_node_test_and_set_flag(node, OF_POPULATED))
1682 continue;
1683 of_i2c_register_device(adap, node);
1684 }
1685 }
1686
1687 static int of_dev_node_match(struct device *dev, void *data)
1688 {
1689 return dev->of_node == data;
1690 }
1691
1692 /* must call put_device() when done with returned i2c_client device */
1693 struct i2c_client *of_find_i2c_device_by_node(struct device_node *node)
1694 {
1695 struct device *dev;
1696 struct i2c_client *client;
1697
1698 dev = bus_find_device(&i2c_bus_type, NULL, node, of_dev_node_match);
1699 if (!dev)
1700 return NULL;
1701
1702 client = i2c_verify_client(dev);
1703 if (!client)
1704 put_device(dev);
1705
1706 return client;
1707 }
1708 EXPORT_SYMBOL(of_find_i2c_device_by_node);
1709
1710 /* must call put_device() when done with returned i2c_adapter device */
1711 struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node)
1712 {
1713 struct device *dev;
1714 struct i2c_adapter *adapter;
1715
1716 dev = bus_find_device(&i2c_bus_type, NULL, node, of_dev_node_match);
1717 if (!dev)
1718 return NULL;
1719
1720 adapter = i2c_verify_adapter(dev);
1721 if (!adapter)
1722 put_device(dev);
1723
1724 return adapter;
1725 }
1726 EXPORT_SYMBOL(of_find_i2c_adapter_by_node);
1727
1728 /* must call i2c_put_adapter() when done with returned i2c_adapter device */
1729 struct i2c_adapter *of_get_i2c_adapter_by_node(struct device_node *node)
1730 {
1731 struct i2c_adapter *adapter;
1732
1733 adapter = of_find_i2c_adapter_by_node(node);
1734 if (!adapter)
1735 return NULL;
1736
1737 if (!try_module_get(adapter->owner)) {
1738 put_device(&adapter->dev);
1739 adapter = NULL;
1740 }
1741
1742 return adapter;
1743 }
1744 EXPORT_SYMBOL(of_get_i2c_adapter_by_node);
1745 #else
1746 static void of_i2c_register_devices(struct i2c_adapter *adap) { }
1747 #endif /* CONFIG_OF */
1748
1749 static int i2c_do_add_adapter(struct i2c_driver *driver,
1750 struct i2c_adapter *adap)
1751 {
1752 /* Detect supported devices on that bus, and instantiate them */
1753 i2c_detect(adap, driver);
1754
1755 /* Let legacy drivers scan this bus for matching devices */
1756 if (driver->attach_adapter) {
1757 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
1758 driver->driver.name);
1759 dev_warn(&adap->dev,
1760 "Please use another way to instantiate your i2c_client\n");
1761 /* We ignore the return code; if it fails, too bad */
1762 driver->attach_adapter(adap);
1763 }
1764 return 0;
1765 }
1766
1767 static int __process_new_adapter(struct device_driver *d, void *data)
1768 {
1769 return i2c_do_add_adapter(to_i2c_driver(d), data);
1770 }
1771
1772 static const struct i2c_lock_operations i2c_adapter_lock_ops = {
1773 .lock_bus = i2c_adapter_lock_bus,
1774 .trylock_bus = i2c_adapter_trylock_bus,
1775 .unlock_bus = i2c_adapter_unlock_bus,
1776 };
1777
1778 static int i2c_register_adapter(struct i2c_adapter *adap)
1779 {
1780 int res = -EINVAL;
1781
1782 /* Can't register until after driver model init */
1783 if (WARN_ON(!is_registered)) {
1784 res = -EAGAIN;
1785 goto out_list;
1786 }
1787
1788 /* Sanity checks */
1789 if (WARN(!adap->name[0], "i2c adapter has no name"))
1790 goto out_list;
1791
1792 if (!adap->algo) {
1793 pr_err("adapter '%s': no algo supplied!\n", adap->name);
1794 goto out_list;
1795 }
1796
1797 if (!adap->lock_ops)
1798 adap->lock_ops = &i2c_adapter_lock_ops;
1799
1800 rt_mutex_init(&adap->bus_lock);
1801 rt_mutex_init(&adap->mux_lock);
1802 mutex_init(&adap->userspace_clients_lock);
1803 INIT_LIST_HEAD(&adap->userspace_clients);
1804
1805 /* Set default timeout to 1 second if not already set */
1806 if (adap->timeout == 0)
1807 adap->timeout = HZ;
1808
1809 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1810 adap->dev.bus = &i2c_bus_type;
1811 adap->dev.type = &i2c_adapter_type;
1812 res = device_register(&adap->dev);
1813 if (res) {
1814 pr_err("adapter '%s': can't register device (%d)\n", adap->name, res);
1815 goto out_list;
1816 }
1817
1818 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1819
1820 pm_runtime_no_callbacks(&adap->dev);
1821 pm_suspend_ignore_children(&adap->dev, true);
1822 pm_runtime_enable(&adap->dev);
1823
1824 #ifdef CONFIG_I2C_COMPAT
1825 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1826 adap->dev.parent);
1827 if (res)
1828 dev_warn(&adap->dev,
1829 "Failed to create compatibility class link\n");
1830 #endif
1831
1832 i2c_init_recovery(adap);
1833
1834 /* create pre-declared device nodes */
1835 of_i2c_register_devices(adap);
1836 i2c_acpi_register_devices(adap);
1837 i2c_acpi_install_space_handler(adap);
1838
1839 if (adap->nr < __i2c_first_dynamic_bus_num)
1840 i2c_scan_static_board_info(adap);
1841
1842 /* Notify drivers */
1843 mutex_lock(&core_lock);
1844 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1845 mutex_unlock(&core_lock);
1846
1847 return 0;
1848
1849 out_list:
1850 mutex_lock(&core_lock);
1851 idr_remove(&i2c_adapter_idr, adap->nr);
1852 mutex_unlock(&core_lock);
1853 return res;
1854 }
1855
1856 /**
1857 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1858 * @adap: the adapter to register (with adap->nr initialized)
1859 * Context: can sleep
1860 *
1861 * See i2c_add_numbered_adapter() for details.
1862 */
1863 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1864 {
1865 int id;
1866
1867 mutex_lock(&core_lock);
1868 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);
1869 mutex_unlock(&core_lock);
1870 if (WARN(id < 0, "couldn't get idr"))
1871 return id == -ENOSPC ? -EBUSY : id;
1872
1873 return i2c_register_adapter(adap);
1874 }
1875
1876 /**
1877 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1878 * @adapter: the adapter to add
1879 * Context: can sleep
1880 *
1881 * This routine is used to declare an I2C adapter when its bus number
1882 * doesn't matter or when its bus number is specified by an dt alias.
1883 * Examples of bases when the bus number doesn't matter: I2C adapters
1884 * dynamically added by USB links or PCI plugin cards.
1885 *
1886 * When this returns zero, a new bus number was allocated and stored
1887 * in adap->nr, and the specified adapter became available for clients.
1888 * Otherwise, a negative errno value is returned.
1889 */
1890 int i2c_add_adapter(struct i2c_adapter *adapter)
1891 {
1892 struct device *dev = &adapter->dev;
1893 int id;
1894
1895 if (dev->of_node) {
1896 id = of_alias_get_id(dev->of_node, "i2c");
1897 if (id >= 0) {
1898 adapter->nr = id;
1899 return __i2c_add_numbered_adapter(adapter);
1900 }
1901 }
1902
1903 mutex_lock(&core_lock);
1904 id = idr_alloc(&i2c_adapter_idr, adapter,
1905 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1906 mutex_unlock(&core_lock);
1907 if (WARN(id < 0, "couldn't get idr"))
1908 return id;
1909
1910 adapter->nr = id;
1911
1912 return i2c_register_adapter(adapter);
1913 }
1914 EXPORT_SYMBOL(i2c_add_adapter);
1915
1916 /**
1917 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1918 * @adap: the adapter to register (with adap->nr initialized)
1919 * Context: can sleep
1920 *
1921 * This routine is used to declare an I2C adapter when its bus number
1922 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1923 * or otherwise built in to the system's mainboard, and where i2c_board_info
1924 * is used to properly configure I2C devices.
1925 *
1926 * If the requested bus number is set to -1, then this function will behave
1927 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1928 *
1929 * If no devices have pre-been declared for this bus, then be sure to
1930 * register the adapter before any dynamically allocated ones. Otherwise
1931 * the required bus ID may not be available.
1932 *
1933 * When this returns zero, the specified adapter became available for
1934 * clients using the bus number provided in adap->nr. Also, the table
1935 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1936 * and the appropriate driver model device nodes are created. Otherwise, a
1937 * negative errno value is returned.
1938 */
1939 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1940 {
1941 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1942 return i2c_add_adapter(adap);
1943
1944 return __i2c_add_numbered_adapter(adap);
1945 }
1946 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1947
1948 static void i2c_do_del_adapter(struct i2c_driver *driver,
1949 struct i2c_adapter *adapter)
1950 {
1951 struct i2c_client *client, *_n;
1952
1953 /* Remove the devices we created ourselves as the result of hardware
1954 * probing (using a driver's detect method) */
1955 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1956 if (client->adapter == adapter) {
1957 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1958 client->name, client->addr);
1959 list_del(&client->detected);
1960 i2c_unregister_device(client);
1961 }
1962 }
1963 }
1964
1965 static int __unregister_client(struct device *dev, void *dummy)
1966 {
1967 struct i2c_client *client = i2c_verify_client(dev);
1968 if (client && strcmp(client->name, "dummy"))
1969 i2c_unregister_device(client);
1970 return 0;
1971 }
1972
1973 static int __unregister_dummy(struct device *dev, void *dummy)
1974 {
1975 struct i2c_client *client = i2c_verify_client(dev);
1976 if (client)
1977 i2c_unregister_device(client);
1978 return 0;
1979 }
1980
1981 static int __process_removed_adapter(struct device_driver *d, void *data)
1982 {
1983 i2c_do_del_adapter(to_i2c_driver(d), data);
1984 return 0;
1985 }
1986
1987 /**
1988 * i2c_del_adapter - unregister I2C adapter
1989 * @adap: the adapter being unregistered
1990 * Context: can sleep
1991 *
1992 * This unregisters an I2C adapter which was previously registered
1993 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1994 */
1995 void i2c_del_adapter(struct i2c_adapter *adap)
1996 {
1997 struct i2c_adapter *found;
1998 struct i2c_client *client, *next;
1999
2000 /* First make sure that this adapter was ever added */
2001 mutex_lock(&core_lock);
2002 found = idr_find(&i2c_adapter_idr, adap->nr);
2003 mutex_unlock(&core_lock);
2004 if (found != adap) {
2005 pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name);
2006 return;
2007 }
2008
2009 i2c_acpi_remove_space_handler(adap);
2010 /* Tell drivers about this removal */
2011 mutex_lock(&core_lock);
2012 bus_for_each_drv(&i2c_bus_type, NULL, adap,
2013 __process_removed_adapter);
2014 mutex_unlock(&core_lock);
2015
2016 /* Remove devices instantiated from sysfs */
2017 mutex_lock_nested(&adap->userspace_clients_lock,
2018 i2c_adapter_depth(adap));
2019 list_for_each_entry_safe(client, next, &adap->userspace_clients,
2020 detected) {
2021 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
2022 client->addr);
2023 list_del(&client->detected);
2024 i2c_unregister_device(client);
2025 }
2026 mutex_unlock(&adap->userspace_clients_lock);
2027
2028 /* Detach any active clients. This can't fail, thus we do not
2029 * check the returned value. This is a two-pass process, because
2030 * we can't remove the dummy devices during the first pass: they
2031 * could have been instantiated by real devices wishing to clean
2032 * them up properly, so we give them a chance to do that first. */
2033 device_for_each_child(&adap->dev, NULL, __unregister_client);
2034 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
2035
2036 #ifdef CONFIG_I2C_COMPAT
2037 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
2038 adap->dev.parent);
2039 #endif
2040
2041 /* device name is gone after device_unregister */
2042 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
2043
2044 pm_runtime_disable(&adap->dev);
2045
2046 /* wait until all references to the device are gone
2047 *
2048 * FIXME: This is old code and should ideally be replaced by an
2049 * alternative which results in decoupling the lifetime of the struct
2050 * device from the i2c_adapter, like spi or netdev do. Any solution
2051 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
2052 */
2053 init_completion(&adap->dev_released);
2054 device_unregister(&adap->dev);
2055 wait_for_completion(&adap->dev_released);
2056
2057 /* free bus id */
2058 mutex_lock(&core_lock);
2059 idr_remove(&i2c_adapter_idr, adap->nr);
2060 mutex_unlock(&core_lock);
2061
2062 /* Clear the device structure in case this adapter is ever going to be
2063 added again */
2064 memset(&adap->dev, 0, sizeof(adap->dev));
2065 }
2066 EXPORT_SYMBOL(i2c_del_adapter);
2067
2068 /**
2069 * i2c_parse_fw_timings - get I2C related timing parameters from firmware
2070 * @dev: The device to scan for I2C timing properties
2071 * @t: the i2c_timings struct to be filled with values
2072 * @use_defaults: bool to use sane defaults derived from the I2C specification
2073 * when properties are not found, otherwise use 0
2074 *
2075 * Scan the device for the generic I2C properties describing timing parameters
2076 * for the signal and fill the given struct with the results. If a property was
2077 * not found and use_defaults was true, then maximum timings are assumed which
2078 * are derived from the I2C specification. If use_defaults is not used, the
2079 * results will be 0, so drivers can apply their own defaults later. The latter
2080 * is mainly intended for avoiding regressions of existing drivers which want
2081 * to switch to this function. New drivers almost always should use the defaults.
2082 */
2083
2084 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults)
2085 {
2086 int ret;
2087
2088 memset(t, 0, sizeof(*t));
2089
2090 ret = device_property_read_u32(dev, "clock-frequency", &t->bus_freq_hz);
2091 if (ret && use_defaults)
2092 t->bus_freq_hz = 100000;
2093
2094 ret = device_property_read_u32(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns);
2095 if (ret && use_defaults) {
2096 if (t->bus_freq_hz <= 100000)
2097 t->scl_rise_ns = 1000;
2098 else if (t->bus_freq_hz <= 400000)
2099 t->scl_rise_ns = 300;
2100 else
2101 t->scl_rise_ns = 120;
2102 }
2103
2104 ret = device_property_read_u32(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns);
2105 if (ret && use_defaults) {
2106 if (t->bus_freq_hz <= 400000)
2107 t->scl_fall_ns = 300;
2108 else
2109 t->scl_fall_ns = 120;
2110 }
2111
2112 device_property_read_u32(dev, "i2c-scl-internal-delay-ns", &t->scl_int_delay_ns);
2113
2114 ret = device_property_read_u32(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns);
2115 if (ret && use_defaults)
2116 t->sda_fall_ns = t->scl_fall_ns;
2117 }
2118 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings);
2119
2120 /* ------------------------------------------------------------------------- */
2121
2122 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
2123 {
2124 int res;
2125
2126 mutex_lock(&core_lock);
2127 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
2128 mutex_unlock(&core_lock);
2129
2130 return res;
2131 }
2132 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
2133
2134 static int __process_new_driver(struct device *dev, void *data)
2135 {
2136 if (dev->type != &i2c_adapter_type)
2137 return 0;
2138 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
2139 }
2140
2141 /*
2142 * An i2c_driver is used with one or more i2c_client (device) nodes to access
2143 * i2c slave chips, on a bus instance associated with some i2c_adapter.
2144 */
2145
2146 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
2147 {
2148 int res;
2149
2150 /* Can't register until after driver model init */
2151 if (WARN_ON(!is_registered))
2152 return -EAGAIN;
2153
2154 /* add the driver to the list of i2c drivers in the driver core */
2155 driver->driver.owner = owner;
2156 driver->driver.bus = &i2c_bus_type;
2157
2158 /* When registration returns, the driver core
2159 * will have called probe() for all matching-but-unbound devices.
2160 */
2161 res = driver_register(&driver->driver);
2162 if (res)
2163 return res;
2164
2165 pr_debug("driver [%s] registered\n", driver->driver.name);
2166
2167 INIT_LIST_HEAD(&driver->clients);
2168 /* Walk the adapters that are already present */
2169 i2c_for_each_dev(driver, __process_new_driver);
2170
2171 return 0;
2172 }
2173 EXPORT_SYMBOL(i2c_register_driver);
2174
2175 static int __process_removed_driver(struct device *dev, void *data)
2176 {
2177 if (dev->type == &i2c_adapter_type)
2178 i2c_do_del_adapter(data, to_i2c_adapter(dev));
2179 return 0;
2180 }
2181
2182 /**
2183 * i2c_del_driver - unregister I2C driver
2184 * @driver: the driver being unregistered
2185 * Context: can sleep
2186 */
2187 void i2c_del_driver(struct i2c_driver *driver)
2188 {
2189 i2c_for_each_dev(driver, __process_removed_driver);
2190
2191 driver_unregister(&driver->driver);
2192 pr_debug("driver [%s] unregistered\n", driver->driver.name);
2193 }
2194 EXPORT_SYMBOL(i2c_del_driver);
2195
2196 /* ------------------------------------------------------------------------- */
2197
2198 /**
2199 * i2c_use_client - increments the reference count of the i2c client structure
2200 * @client: the client being referenced
2201 *
2202 * Each live reference to a client should be refcounted. The driver model does
2203 * that automatically as part of driver binding, so that most drivers don't
2204 * need to do this explicitly: they hold a reference until they're unbound
2205 * from the device.
2206 *
2207 * A pointer to the client with the incremented reference counter is returned.
2208 */
2209 struct i2c_client *i2c_use_client(struct i2c_client *client)
2210 {
2211 if (client && get_device(&client->dev))
2212 return client;
2213 return NULL;
2214 }
2215 EXPORT_SYMBOL(i2c_use_client);
2216
2217 /**
2218 * i2c_release_client - release a use of the i2c client structure
2219 * @client: the client being no longer referenced
2220 *
2221 * Must be called when a user of a client is finished with it.
2222 */
2223 void i2c_release_client(struct i2c_client *client)
2224 {
2225 if (client)
2226 put_device(&client->dev);
2227 }
2228 EXPORT_SYMBOL(i2c_release_client);
2229
2230 struct i2c_cmd_arg {
2231 unsigned cmd;
2232 void *arg;
2233 };
2234
2235 static int i2c_cmd(struct device *dev, void *_arg)
2236 {
2237 struct i2c_client *client = i2c_verify_client(dev);
2238 struct i2c_cmd_arg *arg = _arg;
2239 struct i2c_driver *driver;
2240
2241 if (!client || !client->dev.driver)
2242 return 0;
2243
2244 driver = to_i2c_driver(client->dev.driver);
2245 if (driver->command)
2246 driver->command(client, arg->cmd, arg->arg);
2247 return 0;
2248 }
2249
2250 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
2251 {
2252 struct i2c_cmd_arg cmd_arg;
2253
2254 cmd_arg.cmd = cmd;
2255 cmd_arg.arg = arg;
2256 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
2257 }
2258 EXPORT_SYMBOL(i2c_clients_command);
2259
2260 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2261 static int of_i2c_notify(struct notifier_block *nb, unsigned long action,
2262 void *arg)
2263 {
2264 struct of_reconfig_data *rd = arg;
2265 struct i2c_adapter *adap;
2266 struct i2c_client *client;
2267
2268 switch (of_reconfig_get_state_change(action, rd)) {
2269 case OF_RECONFIG_CHANGE_ADD:
2270 adap = of_find_i2c_adapter_by_node(rd->dn->parent);
2271 if (adap == NULL)
2272 return NOTIFY_OK; /* not for us */
2273
2274 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2275 put_device(&adap->dev);
2276 return NOTIFY_OK;
2277 }
2278
2279 client = of_i2c_register_device(adap, rd->dn);
2280 put_device(&adap->dev);
2281
2282 if (IS_ERR(client)) {
2283 dev_err(&adap->dev, "failed to create client for '%s'\n",
2284 rd->dn->full_name);
2285 return notifier_from_errno(PTR_ERR(client));
2286 }
2287 break;
2288 case OF_RECONFIG_CHANGE_REMOVE:
2289 /* already depopulated? */
2290 if (!of_node_check_flag(rd->dn, OF_POPULATED))
2291 return NOTIFY_OK;
2292
2293 /* find our device by node */
2294 client = of_find_i2c_device_by_node(rd->dn);
2295 if (client == NULL)
2296 return NOTIFY_OK; /* no? not meant for us */
2297
2298 /* unregister takes one ref away */
2299 i2c_unregister_device(client);
2300
2301 /* and put the reference of the find */
2302 put_device(&client->dev);
2303 break;
2304 }
2305
2306 return NOTIFY_OK;
2307 }
2308 static struct notifier_block i2c_of_notifier = {
2309 .notifier_call = of_i2c_notify,
2310 };
2311 #else
2312 extern struct notifier_block i2c_of_notifier;
2313 #endif /* CONFIG_OF_DYNAMIC */
2314
2315 static int __init i2c_init(void)
2316 {
2317 int retval;
2318
2319 retval = of_alias_get_highest_id("i2c");
2320
2321 down_write(&__i2c_board_lock);
2322 if (retval >= __i2c_first_dynamic_bus_num)
2323 __i2c_first_dynamic_bus_num = retval + 1;
2324 up_write(&__i2c_board_lock);
2325
2326 retval = bus_register(&i2c_bus_type);
2327 if (retval)
2328 return retval;
2329
2330 is_registered = true;
2331
2332 #ifdef CONFIG_I2C_COMPAT
2333 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
2334 if (!i2c_adapter_compat_class) {
2335 retval = -ENOMEM;
2336 goto bus_err;
2337 }
2338 #endif
2339 retval = i2c_add_driver(&dummy_driver);
2340 if (retval)
2341 goto class_err;
2342
2343 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2344 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
2345 if (IS_ENABLED(CONFIG_ACPI))
2346 WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier));
2347
2348 return 0;
2349
2350 class_err:
2351 #ifdef CONFIG_I2C_COMPAT
2352 class_compat_unregister(i2c_adapter_compat_class);
2353 bus_err:
2354 #endif
2355 is_registered = false;
2356 bus_unregister(&i2c_bus_type);
2357 return retval;
2358 }
2359
2360 static void __exit i2c_exit(void)
2361 {
2362 if (IS_ENABLED(CONFIG_ACPI))
2363 WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier));
2364 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2365 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
2366 i2c_del_driver(&dummy_driver);
2367 #ifdef CONFIG_I2C_COMPAT
2368 class_compat_unregister(i2c_adapter_compat_class);
2369 #endif
2370 bus_unregister(&i2c_bus_type);
2371 tracepoint_synchronize_unregister();
2372 }
2373
2374 /* We must initialize early, because some subsystems register i2c drivers
2375 * in subsys_initcall() code, but are linked (and initialized) before i2c.
2376 */
2377 postcore_initcall(i2c_init);
2378 module_exit(i2c_exit);
2379
2380 /* ----------------------------------------------------
2381 * the functional interface to the i2c busses.
2382 * ----------------------------------------------------
2383 */
2384
2385 /* Check if val is exceeding the quirk IFF quirk is non 0 */
2386 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk)))
2387
2388 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg)
2389 {
2390 dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n",
2391 err_msg, msg->addr, msg->len,
2392 msg->flags & I2C_M_RD ? "read" : "write");
2393 return -EOPNOTSUPP;
2394 }
2395
2396 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2397 {
2398 const struct i2c_adapter_quirks *q = adap->quirks;
2399 int max_num = q->max_num_msgs, i;
2400 bool do_len_check = true;
2401
2402 if (q->flags & I2C_AQ_COMB) {
2403 max_num = 2;
2404
2405 /* special checks for combined messages */
2406 if (num == 2) {
2407 if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD)
2408 return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write");
2409
2410 if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD))
2411 return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read");
2412
2413 if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr)
2414 return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr");
2415
2416 if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len))
2417 return i2c_quirk_error(adap, &msgs[0], "msg too long");
2418
2419 if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len))
2420 return i2c_quirk_error(adap, &msgs[1], "msg too long");
2421
2422 do_len_check = false;
2423 }
2424 }
2425
2426 if (i2c_quirk_exceeded(num, max_num))
2427 return i2c_quirk_error(adap, &msgs[0], "too many messages");
2428
2429 for (i = 0; i < num; i++) {
2430 u16 len = msgs[i].len;
2431
2432 if (msgs[i].flags & I2C_M_RD) {
2433 if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len))
2434 return i2c_quirk_error(adap, &msgs[i], "msg too long");
2435 } else {
2436 if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len))
2437 return i2c_quirk_error(adap, &msgs[i], "msg too long");
2438 }
2439 }
2440
2441 return 0;
2442 }
2443
2444 /**
2445 * __i2c_transfer - unlocked flavor of i2c_transfer
2446 * @adap: Handle to I2C bus
2447 * @msgs: One or more messages to execute before STOP is issued to
2448 * terminate the operation; each message begins with a START.
2449 * @num: Number of messages to be executed.
2450 *
2451 * Returns negative errno, else the number of messages executed.
2452 *
2453 * Adapter lock must be held when calling this function. No debug logging
2454 * takes place. adap->algo->master_xfer existence isn't checked.
2455 */
2456 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2457 {
2458 unsigned long orig_jiffies;
2459 int ret, try;
2460
2461 if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
2462 return -EOPNOTSUPP;
2463
2464 /* i2c_trace_msg gets enabled when tracepoint i2c_transfer gets
2465 * enabled. This is an efficient way of keeping the for-loop from
2466 * being executed when not needed.
2467 */
2468 if (static_key_false(&i2c_trace_msg)) {
2469 int i;
2470 for (i = 0; i < num; i++)
2471 if (msgs[i].flags & I2C_M_RD)
2472 trace_i2c_read(adap, &msgs[i], i);
2473 else
2474 trace_i2c_write(adap, &msgs[i], i);
2475 }
2476
2477 /* Retry automatically on arbitration loss */
2478 orig_jiffies = jiffies;
2479 for (ret = 0, try = 0; try <= adap->retries; try++) {
2480 ret = adap->algo->master_xfer(adap, msgs, num);
2481 if (ret != -EAGAIN)
2482 break;
2483 if (time_after(jiffies, orig_jiffies + adap->timeout))
2484 break;
2485 }
2486
2487 if (static_key_false(&i2c_trace_msg)) {
2488 int i;
2489 for (i = 0; i < ret; i++)
2490 if (msgs[i].flags & I2C_M_RD)
2491 trace_i2c_reply(adap, &msgs[i], i);
2492 trace_i2c_result(adap, i, ret);
2493 }
2494
2495 return ret;
2496 }
2497 EXPORT_SYMBOL(__i2c_transfer);
2498
2499 /**
2500 * i2c_transfer - execute a single or combined I2C message
2501 * @adap: Handle to I2C bus
2502 * @msgs: One or more messages to execute before STOP is issued to
2503 * terminate the operation; each message begins with a START.
2504 * @num: Number of messages to be executed.
2505 *
2506 * Returns negative errno, else the number of messages executed.
2507 *
2508 * Note that there is no requirement that each message be sent to
2509 * the same slave address, although that is the most common model.
2510 */
2511 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2512 {
2513 int ret;
2514
2515 /* REVISIT the fault reporting model here is weak:
2516 *
2517 * - When we get an error after receiving N bytes from a slave,
2518 * there is no way to report "N".
2519 *
2520 * - When we get a NAK after transmitting N bytes to a slave,
2521 * there is no way to report "N" ... or to let the master
2522 * continue executing the rest of this combined message, if
2523 * that's the appropriate response.
2524 *
2525 * - When for example "num" is two and we successfully complete
2526 * the first message but get an error part way through the
2527 * second, it's unclear whether that should be reported as
2528 * one (discarding status on the second message) or errno
2529 * (discarding status on the first one).
2530 */
2531
2532 if (adap->algo->master_xfer) {
2533 #ifdef DEBUG
2534 for (ret = 0; ret < num; ret++) {
2535 dev_dbg(&adap->dev,
2536 "master_xfer[%d] %c, addr=0x%02x, len=%d%s\n",
2537 ret, (msgs[ret].flags & I2C_M_RD) ? 'R' : 'W',
2538 msgs[ret].addr, msgs[ret].len,
2539 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
2540 }
2541 #endif
2542
2543 if (in_atomic() || irqs_disabled()) {
2544 ret = i2c_trylock_bus(adap, I2C_LOCK_SEGMENT);
2545 if (!ret)
2546 /* I2C activity is ongoing. */
2547 return -EAGAIN;
2548 } else {
2549 i2c_lock_bus(adap, I2C_LOCK_SEGMENT);
2550 }
2551
2552 ret = __i2c_transfer(adap, msgs, num);
2553 i2c_unlock_bus(adap, I2C_LOCK_SEGMENT);
2554
2555 return ret;
2556 } else {
2557 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2558 return -EOPNOTSUPP;
2559 }
2560 }
2561 EXPORT_SYMBOL(i2c_transfer);
2562
2563 /**
2564 * i2c_master_send - issue a single I2C message in master transmit mode
2565 * @client: Handle to slave device
2566 * @buf: Data that will be written to the slave
2567 * @count: How many bytes to write, must be less than 64k since msg.len is u16
2568 *
2569 * Returns negative errno, or else the number of bytes written.
2570 */
2571 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
2572 {
2573 int ret;
2574 struct i2c_adapter *adap = client->adapter;
2575 struct i2c_msg msg;
2576
2577 msg.addr = client->addr;
2578 msg.flags = client->flags & I2C_M_TEN;
2579 msg.len = count;
2580 msg.buf = (char *)buf;
2581
2582 ret = i2c_transfer(adap, &msg, 1);
2583
2584 /*
2585 * If everything went ok (i.e. 1 msg transmitted), return #bytes
2586 * transmitted, else error code.
2587 */
2588 return (ret == 1) ? count : ret;
2589 }
2590 EXPORT_SYMBOL(i2c_master_send);
2591
2592 /**
2593 * i2c_master_recv - issue a single I2C message in master receive mode
2594 * @client: Handle to slave device
2595 * @buf: Where to store data read from slave
2596 * @count: How many bytes to read, must be less than 64k since msg.len is u16
2597 *
2598 * Returns negative errno, or else the number of bytes read.
2599 */
2600 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
2601 {
2602 struct i2c_adapter *adap = client->adapter;
2603 struct i2c_msg msg;
2604 int ret;
2605
2606 msg.addr = client->addr;
2607 msg.flags = client->flags & I2C_M_TEN;
2608 msg.flags |= I2C_M_RD;
2609 msg.len = count;
2610 msg.buf = buf;
2611
2612 ret = i2c_transfer(adap, &msg, 1);
2613
2614 /*
2615 * If everything went ok (i.e. 1 msg received), return #bytes received,
2616 * else error code.
2617 */
2618 return (ret == 1) ? count : ret;
2619 }
2620 EXPORT_SYMBOL(i2c_master_recv);
2621
2622 /* ----------------------------------------------------
2623 * the i2c address scanning function
2624 * Will not work for 10-bit addresses!
2625 * ----------------------------------------------------
2626 */
2627
2628 /*
2629 * Legacy default probe function, mostly relevant for SMBus. The default
2630 * probe method is a quick write, but it is known to corrupt the 24RF08
2631 * EEPROMs due to a state machine bug, and could also irreversibly
2632 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2633 * we use a short byte read instead. Also, some bus drivers don't implement
2634 * quick write, so we fallback to a byte read in that case too.
2635 * On x86, there is another special case for FSC hardware monitoring chips,
2636 * which want regular byte reads (address 0x73.) Fortunately, these are the
2637 * only known chips using this I2C address on PC hardware.
2638 * Returns 1 if probe succeeded, 0 if not.
2639 */
2640 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2641 {
2642 int err;
2643 union i2c_smbus_data dummy;
2644
2645 #ifdef CONFIG_X86
2646 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2647 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2648 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2649 I2C_SMBUS_BYTE_DATA, &dummy);
2650 else
2651 #endif
2652 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2653 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2654 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2655 I2C_SMBUS_QUICK, NULL);
2656 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2657 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2658 I2C_SMBUS_BYTE, &dummy);
2659 else {
2660 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2661 addr);
2662 err = -EOPNOTSUPP;
2663 }
2664
2665 return err >= 0;
2666 }
2667
2668 static int i2c_detect_address(struct i2c_client *temp_client,
2669 struct i2c_driver *driver)
2670 {
2671 struct i2c_board_info info;
2672 struct i2c_adapter *adapter = temp_client->adapter;
2673 int addr = temp_client->addr;
2674 int err;
2675
2676 /* Make sure the address is valid */
2677 err = i2c_check_7bit_addr_validity_strict(addr);
2678 if (err) {
2679 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2680 addr);
2681 return err;
2682 }
2683
2684 /* Skip if already in use (7 bit, no need to encode flags) */
2685 if (i2c_check_addr_busy(adapter, addr))
2686 return 0;
2687
2688 /* Make sure there is something at this address */
2689 if (!i2c_default_probe(adapter, addr))
2690 return 0;
2691
2692 /* Finally call the custom detection function */
2693 memset(&info, 0, sizeof(struct i2c_board_info));
2694 info.addr = addr;
2695 err = driver->detect(temp_client, &info);
2696 if (err) {
2697 /* -ENODEV is returned if the detection fails. We catch it
2698 here as this isn't an error. */
2699 return err == -ENODEV ? 0 : err;
2700 }
2701
2702 /* Consistency check */
2703 if (info.type[0] == '\0') {
2704 dev_err(&adapter->dev,
2705 "%s detection function provided no name for 0x%x\n",
2706 driver->driver.name, addr);
2707 } else {
2708 struct i2c_client *client;
2709
2710 /* Detection succeeded, instantiate the device */
2711 if (adapter->class & I2C_CLASS_DEPRECATED)
2712 dev_warn(&adapter->dev,
2713 "This adapter will soon drop class based instantiation of devices. "
2714 "Please make sure client 0x%02x gets instantiated by other means. "
2715 "Check 'Documentation/i2c/instantiating-devices' for details.\n",
2716 info.addr);
2717
2718 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2719 info.type, info.addr);
2720 client = i2c_new_device(adapter, &info);
2721 if (client)
2722 list_add_tail(&client->detected, &driver->clients);
2723 else
2724 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2725 info.type, info.addr);
2726 }
2727 return 0;
2728 }
2729
2730 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2731 {
2732 const unsigned short *address_list;
2733 struct i2c_client *temp_client;
2734 int i, err = 0;
2735 int adap_id = i2c_adapter_id(adapter);
2736
2737 address_list = driver->address_list;
2738 if (!driver->detect || !address_list)
2739 return 0;
2740
2741 /* Warn that the adapter lost class based instantiation */
2742 if (adapter->class == I2C_CLASS_DEPRECATED) {
2743 dev_dbg(&adapter->dev,
2744 "This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. "
2745 "If you need it, check 'Documentation/i2c/instantiating-devices' for alternatives.\n",
2746 driver->driver.name);
2747 return 0;
2748 }
2749
2750 /* Stop here if the classes do not match */
2751 if (!(adapter->class & driver->class))
2752 return 0;
2753
2754 /* Set up a temporary client to help detect callback */
2755 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2756 if (!temp_client)
2757 return -ENOMEM;
2758 temp_client->adapter = adapter;
2759
2760 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2761 dev_dbg(&adapter->dev,
2762 "found normal entry for adapter %d, addr 0x%02x\n",
2763 adap_id, address_list[i]);
2764 temp_client->addr = address_list[i];
2765 err = i2c_detect_address(temp_client, driver);
2766 if (unlikely(err))
2767 break;
2768 }
2769
2770 kfree(temp_client);
2771 return err;
2772 }
2773
2774 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2775 {
2776 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2777 I2C_SMBUS_QUICK, NULL) >= 0;
2778 }
2779 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2780
2781 struct i2c_client *
2782 i2c_new_probed_device(struct i2c_adapter *adap,
2783 struct i2c_board_info *info,
2784 unsigned short const *addr_list,
2785 int (*probe)(struct i2c_adapter *, unsigned short addr))
2786 {
2787 int i;
2788
2789 if (!probe)
2790 probe = i2c_default_probe;
2791
2792 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2793 /* Check address validity */
2794 if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
2795 dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n",
2796 addr_list[i]);
2797 continue;
2798 }
2799
2800 /* Check address availability (7 bit, no need to encode flags) */
2801 if (i2c_check_addr_busy(adap, addr_list[i])) {
2802 dev_dbg(&adap->dev,
2803 "Address 0x%02x already in use, not probing\n",
2804 addr_list[i]);
2805 continue;
2806 }
2807
2808 /* Test address responsiveness */
2809 if (probe(adap, addr_list[i]))
2810 break;
2811 }
2812
2813 if (addr_list[i] == I2C_CLIENT_END) {
2814 dev_dbg(&adap->dev, "Probing failed, no device found\n");
2815 return NULL;
2816 }
2817
2818 info->addr = addr_list[i];
2819 return i2c_new_device(adap, info);
2820 }
2821 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
2822
2823 struct i2c_adapter *i2c_get_adapter(int nr)
2824 {
2825 struct i2c_adapter *adapter;
2826
2827 mutex_lock(&core_lock);
2828 adapter = idr_find(&i2c_adapter_idr, nr);
2829 if (!adapter)
2830 goto exit;
2831
2832 if (try_module_get(adapter->owner))
2833 get_device(&adapter->dev);
2834 else
2835 adapter = NULL;
2836
2837 exit:
2838 mutex_unlock(&core_lock);
2839 return adapter;
2840 }
2841 EXPORT_SYMBOL(i2c_get_adapter);
2842
2843 void i2c_put_adapter(struct i2c_adapter *adap)
2844 {
2845 if (!adap)
2846 return;
2847
2848 put_device(&adap->dev);
2849 module_put(adap->owner);
2850 }
2851 EXPORT_SYMBOL(i2c_put_adapter);
2852
2853 /* The SMBus parts */
2854
2855 #define POLY (0x1070U << 3)
2856 static u8 crc8(u16 data)
2857 {
2858 int i;
2859
2860 for (i = 0; i < 8; i++) {
2861 if (data & 0x8000)
2862 data = data ^ POLY;
2863 data = data << 1;
2864 }
2865 return (u8)(data >> 8);
2866 }
2867
2868 /* Incremental CRC8 over count bytes in the array pointed to by p */
2869 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
2870 {
2871 int i;
2872
2873 for (i = 0; i < count; i++)
2874 crc = crc8((crc ^ p[i]) << 8);
2875 return crc;
2876 }
2877
2878 /* Assume a 7-bit address, which is reasonable for SMBus */
2879 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
2880 {
2881 /* The address will be sent first */
2882 u8 addr = i2c_8bit_addr_from_msg(msg);
2883 pec = i2c_smbus_pec(pec, &addr, 1);
2884
2885 /* The data buffer follows */
2886 return i2c_smbus_pec(pec, msg->buf, msg->len);
2887 }
2888
2889 /* Used for write only transactions */
2890 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
2891 {
2892 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
2893 msg->len++;
2894 }
2895
2896 /* Return <0 on CRC error
2897 If there was a write before this read (most cases) we need to take the
2898 partial CRC from the write part into account.
2899 Note that this function does modify the message (we need to decrease the
2900 message length to hide the CRC byte from the caller). */
2901 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
2902 {
2903 u8 rpec = msg->buf[--msg->len];
2904 cpec = i2c_smbus_msg_pec(cpec, msg);
2905
2906 if (rpec != cpec) {
2907 pr_debug("Bad PEC 0x%02x vs. 0x%02x\n",
2908 rpec, cpec);
2909 return -EBADMSG;
2910 }
2911 return 0;
2912 }
2913
2914 /**
2915 * i2c_smbus_read_byte - SMBus "receive byte" protocol
2916 * @client: Handle to slave device
2917 *
2918 * This executes the SMBus "receive byte" protocol, returning negative errno
2919 * else the byte received from the device.
2920 */
2921 s32 i2c_smbus_read_byte(const struct i2c_client *client)
2922 {
2923 union i2c_smbus_data data;
2924 int status;
2925
2926 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2927 I2C_SMBUS_READ, 0,
2928 I2C_SMBUS_BYTE, &data);
2929 return (status < 0) ? status : data.byte;
2930 }
2931 EXPORT_SYMBOL(i2c_smbus_read_byte);
2932
2933 /**
2934 * i2c_smbus_write_byte - SMBus "send byte" protocol
2935 * @client: Handle to slave device
2936 * @value: Byte to be sent
2937 *
2938 * This executes the SMBus "send byte" protocol, returning negative errno
2939 * else zero on success.
2940 */
2941 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
2942 {
2943 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2944 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
2945 }
2946 EXPORT_SYMBOL(i2c_smbus_write_byte);
2947
2948 /**
2949 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
2950 * @client: Handle to slave device
2951 * @command: Byte interpreted by slave
2952 *
2953 * This executes the SMBus "read byte" protocol, returning negative errno
2954 * else a data byte received from the device.
2955 */
2956 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
2957 {
2958 union i2c_smbus_data data;
2959 int status;
2960
2961 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2962 I2C_SMBUS_READ, command,
2963 I2C_SMBUS_BYTE_DATA, &data);
2964 return (status < 0) ? status : data.byte;
2965 }
2966 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
2967
2968 /**
2969 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
2970 * @client: Handle to slave device
2971 * @command: Byte interpreted by slave
2972 * @value: Byte being written
2973 *
2974 * This executes the SMBus "write byte" protocol, returning negative errno
2975 * else zero on success.
2976 */
2977 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
2978 u8 value)
2979 {
2980 union i2c_smbus_data data;
2981 data.byte = value;
2982 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2983 I2C_SMBUS_WRITE, command,
2984 I2C_SMBUS_BYTE_DATA, &data);
2985 }
2986 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
2987
2988 /**
2989 * i2c_smbus_read_word_data - SMBus "read word" protocol
2990 * @client: Handle to slave device
2991 * @command: Byte interpreted by slave
2992 *
2993 * This executes the SMBus "read word" protocol, returning negative errno
2994 * else a 16-bit unsigned "word" received from the device.
2995 */
2996 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
2997 {
2998 union i2c_smbus_data data;
2999 int status;
3000
3001 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
3002 I2C_SMBUS_READ, command,
3003 I2C_SMBUS_WORD_DATA, &data);
3004 return (status < 0) ? status : data.word;
3005 }
3006 EXPORT_SYMBOL(i2c_smbus_read_word_data);
3007
3008 /**
3009 * i2c_smbus_write_word_data - SMBus "write word" protocol
3010 * @client: Handle to slave device
3011 * @command: Byte interpreted by slave
3012 * @value: 16-bit "word" being written
3013 *
3014 * This executes the SMBus "write word" protocol, returning negative errno
3015 * else zero on success.
3016 */
3017 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
3018 u16 value)
3019 {
3020 union i2c_smbus_data data;
3021 data.word = value;
3022 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
3023 I2C_SMBUS_WRITE, command,
3024 I2C_SMBUS_WORD_DATA, &data);
3025 }
3026 EXPORT_SYMBOL(i2c_smbus_write_word_data);
3027
3028 /**
3029 * i2c_smbus_read_block_data - SMBus "block read" protocol
3030 * @client: Handle to slave device
3031 * @command: Byte interpreted by slave
3032 * @values: Byte array into which data will be read; big enough to hold
3033 * the data returned by the slave. SMBus allows at most 32 bytes.
3034 *
3035 * This executes the SMBus "block read" protocol, returning negative errno
3036 * else the number of data bytes in the slave's response.
3037 *
3038 * Note that using this function requires that the client's adapter support
3039 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
3040 * support this; its emulation through I2C messaging relies on a specific
3041 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
3042 */
3043 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
3044 u8 *values)
3045 {
3046 union i2c_smbus_data data;
3047 int status;
3048
3049 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
3050 I2C_SMBUS_READ, command,
3051 I2C_SMBUS_BLOCK_DATA, &data);
3052 if (status)
3053 return status;
3054
3055 memcpy(values, &data.block[1], data.block[0]);
3056 return data.block[0];
3057 }
3058 EXPORT_SYMBOL(i2c_smbus_read_block_data);
3059
3060 /**
3061 * i2c_smbus_write_block_data - SMBus "block write" protocol
3062 * @client: Handle to slave device
3063 * @command: Byte interpreted by slave
3064 * @length: Size of data block; SMBus allows at most 32 bytes
3065 * @values: Byte array which will be written.
3066 *
3067 * This executes the SMBus "block write" protocol, returning negative errno
3068 * else zero on success.
3069 */
3070 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
3071 u8 length, const u8 *values)
3072 {
3073 union i2c_smbus_data data;
3074
3075 if (length > I2C_SMBUS_BLOCK_MAX)
3076 length = I2C_SMBUS_BLOCK_MAX;
3077 data.block[0] = length;
3078 memcpy(&data.block[1], values, length);
3079 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
3080 I2C_SMBUS_WRITE, command,
3081 I2C_SMBUS_BLOCK_DATA, &data);
3082 }
3083 EXPORT_SYMBOL(i2c_smbus_write_block_data);
3084
3085 /* Returns the number of read bytes */
3086 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
3087 u8 length, u8 *values)
3088 {
3089 union i2c_smbus_data data;
3090 int status;
3091
3092 if (length > I2C_SMBUS_BLOCK_MAX)
3093 length = I2C_SMBUS_BLOCK_MAX;
3094 data.block[0] = length;
3095 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
3096 I2C_SMBUS_READ, command,
3097 I2C_SMBUS_I2C_BLOCK_DATA, &data);
3098 if (status < 0)
3099 return status;
3100
3101 memcpy(values, &data.block[1], data.block[0]);
3102 return data.block[0];
3103 }
3104 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
3105
3106 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
3107 u8 length, const u8 *values)
3108 {
3109 union i2c_smbus_data data;
3110
3111 if (length > I2C_SMBUS_BLOCK_MAX)
3112 length = I2C_SMBUS_BLOCK_MAX;
3113 data.block[0] = length;
3114 memcpy(data.block + 1, values, length);
3115 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
3116 I2C_SMBUS_WRITE, command,
3117 I2C_SMBUS_I2C_BLOCK_DATA, &data);
3118 }
3119 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
3120
3121 /* Simulate a SMBus command using the i2c protocol
3122 No checking of parameters is done! */
3123 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
3124 unsigned short flags,
3125 char read_write, u8 command, int size,
3126 union i2c_smbus_data *data)
3127 {
3128 /* So we need to generate a series of msgs. In the case of writing, we
3129 need to use only one message; when reading, we need two. We initialize
3130 most things with sane defaults, to keep the code below somewhat
3131 simpler. */
3132 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
3133 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
3134 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
3135 int i;
3136 u8 partial_pec = 0;
3137 int status;
3138 struct i2c_msg msg[2] = {
3139 {
3140 .addr = addr,
3141 .flags = flags,
3142 .len = 1,
3143 .buf = msgbuf0,
3144 }, {
3145 .addr = addr,
3146 .flags = flags | I2C_M_RD,
3147 .len = 0,
3148 .buf = msgbuf1,
3149 },
3150 };
3151
3152 msgbuf0[0] = command;
3153 switch (size) {
3154 case I2C_SMBUS_QUICK:
3155 msg[0].len = 0;
3156 /* Special case: The read/write field is used as data */
3157 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
3158 I2C_M_RD : 0);
3159 num = 1;
3160 break;
3161 case I2C_SMBUS_BYTE:
3162 if (read_write == I2C_SMBUS_READ) {
3163 /* Special case: only a read! */
3164 msg[0].flags = I2C_M_RD | flags;
3165 num = 1;
3166 }
3167 break;
3168 case I2C_SMBUS_BYTE_DATA:
3169 if (read_write == I2C_SMBUS_READ)
3170 msg[1].len = 1;
3171 else {
3172 msg[0].len = 2;
3173 msgbuf0[1] = data->byte;
3174 }
3175 break;
3176 case I2C_SMBUS_WORD_DATA:
3177 if (read_write == I2C_SMBUS_READ)
3178 msg[1].len = 2;
3179 else {
3180 msg[0].len = 3;
3181 msgbuf0[1] = data->word & 0xff;
3182 msgbuf0[2] = data->word >> 8;
3183 }
3184 break;
3185 case I2C_SMBUS_PROC_CALL:
3186 num = 2; /* Special case */
3187 read_write = I2C_SMBUS_READ;
3188 msg[0].len = 3;
3189 msg[1].len = 2;
3190 msgbuf0[1] = data->word & 0xff;
3191 msgbuf0[2] = data->word >> 8;
3192 break;
3193 case I2C_SMBUS_BLOCK_DATA:
3194 if (read_write == I2C_SMBUS_READ) {
3195 msg[1].flags |= I2C_M_RECV_LEN;
3196 msg[1].len = 1; /* block length will be added by
3197 the underlying bus driver */
3198 } else {
3199 msg[0].len = data->block[0] + 2;
3200 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
3201 dev_err(&adapter->dev,
3202 "Invalid block write size %d\n",
3203 data->block[0]);
3204 return -EINVAL;
3205 }
3206 for (i = 1; i < msg[0].len; i++)
3207 msgbuf0[i] = data->block[i-1];
3208 }
3209 break;
3210 case I2C_SMBUS_BLOCK_PROC_CALL:
3211 num = 2; /* Another special case */
3212 read_write = I2C_SMBUS_READ;
3213 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
3214 dev_err(&adapter->dev,
3215 "Invalid block write size %d\n",
3216 data->block[0]);
3217 return -EINVAL;
3218 }
3219 msg[0].len = data->block[0] + 2;
3220 for (i = 1; i < msg[0].len; i++)
3221 msgbuf0[i] = data->block[i-1];
3222 msg[1].flags |= I2C_M_RECV_LEN;
3223 msg[1].len = 1; /* block length will be added by
3224 the underlying bus driver */
3225 break;
3226 case I2C_SMBUS_I2C_BLOCK_DATA:
3227 if (read_write == I2C_SMBUS_READ) {
3228 msg[1].len = data->block[0];
3229 } else {
3230 msg[0].len = data->block[0] + 1;
3231 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
3232 dev_err(&adapter->dev,
3233 "Invalid block write size %d\n",
3234 data->block[0]);
3235 return -EINVAL;
3236 }
3237 for (i = 1; i <= data->block[0]; i++)
3238 msgbuf0[i] = data->block[i];
3239 }
3240 break;
3241 default:
3242 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
3243 return -EOPNOTSUPP;
3244 }
3245
3246 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
3247 && size != I2C_SMBUS_I2C_BLOCK_DATA);
3248 if (i) {
3249 /* Compute PEC if first message is a write */
3250 if (!(msg[0].flags & I2C_M_RD)) {
3251 if (num == 1) /* Write only */
3252 i2c_smbus_add_pec(&msg[0]);
3253 else /* Write followed by read */
3254 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
3255 }
3256 /* Ask for PEC if last message is a read */
3257 if (msg[num-1].flags & I2C_M_RD)
3258 msg[num-1].len++;
3259 }
3260
3261 status = i2c_transfer(adapter, msg, num);
3262 if (status < 0)
3263 return status;
3264
3265 /* Check PEC if last message is a read */
3266 if (i && (msg[num-1].flags & I2C_M_RD)) {
3267 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
3268 if (status < 0)
3269 return status;
3270 }
3271
3272 if (read_write == I2C_SMBUS_READ)
3273 switch (size) {
3274 case I2C_SMBUS_BYTE:
3275 data->byte = msgbuf0[0];
3276 break;
3277 case I2C_SMBUS_BYTE_DATA:
3278 data->byte = msgbuf1[0];
3279 break;
3280 case I2C_SMBUS_WORD_DATA:
3281 case I2C_SMBUS_PROC_CALL:
3282 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
3283 break;
3284 case I2C_SMBUS_I2C_BLOCK_DATA:
3285 for (i = 0; i < data->block[0]; i++)
3286 data->block[i+1] = msgbuf1[i];
3287 break;
3288 case I2C_SMBUS_BLOCK_DATA:
3289 case I2C_SMBUS_BLOCK_PROC_CALL:
3290 for (i = 0; i < msgbuf1[0] + 1; i++)
3291 data->block[i] = msgbuf1[i];
3292 break;
3293 }
3294 return 0;
3295 }
3296
3297 /**
3298 * i2c_smbus_xfer - execute SMBus protocol operations
3299 * @adapter: Handle to I2C bus
3300 * @addr: Address of SMBus slave on that bus
3301 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
3302 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
3303 * @command: Byte interpreted by slave, for protocols which use such bytes
3304 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
3305 * @data: Data to be read or written
3306 *
3307 * This executes an SMBus protocol operation, and returns a negative
3308 * errno code else zero on success.
3309 */
3310 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
3311 char read_write, u8 command, int protocol,
3312 union i2c_smbus_data *data)
3313 {
3314 unsigned long orig_jiffies;
3315 int try;
3316 s32 res;
3317
3318 /* If enabled, the following two tracepoints are conditional on
3319 * read_write and protocol.
3320 */
3321 trace_smbus_write(adapter, addr, flags, read_write,
3322 command, protocol, data);
3323 trace_smbus_read(adapter, addr, flags, read_write,
3324 command, protocol);
3325
3326 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
3327
3328 if (adapter->algo->smbus_xfer) {
3329 i2c_lock_bus(adapter, I2C_LOCK_SEGMENT);
3330
3331 /* Retry automatically on arbitration loss */
3332 orig_jiffies = jiffies;
3333 for (res = 0, try = 0; try <= adapter->retries; try++) {
3334 res = adapter->algo->smbus_xfer(adapter, addr, flags,
3335 read_write, command,
3336 protocol, data);
3337 if (res != -EAGAIN)
3338 break;
3339 if (time_after(jiffies,
3340 orig_jiffies + adapter->timeout))
3341 break;
3342 }
3343 i2c_unlock_bus(adapter, I2C_LOCK_SEGMENT);
3344
3345 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
3346 goto trace;
3347 /*
3348 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
3349 * implement native support for the SMBus operation.
3350 */
3351 }
3352
3353 res = i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
3354 command, protocol, data);
3355
3356 trace:
3357 /* If enabled, the reply tracepoint is conditional on read_write. */
3358 trace_smbus_reply(adapter, addr, flags, read_write,
3359 command, protocol, data);
3360 trace_smbus_result(adapter, addr, flags, read_write,
3361 command, protocol, res);
3362
3363 return res;
3364 }
3365 EXPORT_SYMBOL(i2c_smbus_xfer);
3366
3367 /**
3368 * i2c_smbus_read_i2c_block_data_or_emulated - read block or emulate
3369 * @client: Handle to slave device
3370 * @command: Byte interpreted by slave
3371 * @length: Size of data block; SMBus allows at most I2C_SMBUS_BLOCK_MAX bytes
3372 * @values: Byte array into which data will be read; big enough to hold
3373 * the data returned by the slave. SMBus allows at most
3374 * I2C_SMBUS_BLOCK_MAX bytes.
3375 *
3376 * This executes the SMBus "block read" protocol if supported by the adapter.
3377 * If block read is not supported, it emulates it using either word or byte
3378 * read protocols depending on availability.
3379 *
3380 * The addresses of the I2C slave device that are accessed with this function
3381 * must be mapped to a linear region, so that a block read will have the same
3382 * effect as a byte read. Before using this function you must double-check
3383 * if the I2C slave does support exchanging a block transfer with a byte
3384 * transfer.
3385 */
3386 s32 i2c_smbus_read_i2c_block_data_or_emulated(const struct i2c_client *client,
3387 u8 command, u8 length, u8 *values)
3388 {
3389 u8 i = 0;
3390 int status;
3391
3392 if (length > I2C_SMBUS_BLOCK_MAX)
3393 length = I2C_SMBUS_BLOCK_MAX;
3394
3395 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
3396 return i2c_smbus_read_i2c_block_data(client, command, length, values);
3397
3398 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA))
3399 return -EOPNOTSUPP;
3400
3401 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_WORD_DATA)) {
3402 while ((i + 2) <= length) {
3403 status = i2c_smbus_read_word_data(client, command + i);
3404 if (status < 0)
3405 return status;
3406 values[i] = status & 0xff;
3407 values[i + 1] = status >> 8;
3408 i += 2;
3409 }
3410 }
3411
3412 while (i < length) {
3413 status = i2c_smbus_read_byte_data(client, command + i);
3414 if (status < 0)
3415 return status;
3416 values[i] = status;
3417 i++;
3418 }
3419
3420 return i;
3421 }
3422 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data_or_emulated);
3423
3424 #if IS_ENABLED(CONFIG_I2C_SLAVE)
3425 int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb)
3426 {
3427 int ret;
3428
3429 if (!client || !slave_cb) {
3430 WARN(1, "insufficent data\n");
3431 return -EINVAL;
3432 }
3433
3434 if (!(client->flags & I2C_CLIENT_SLAVE))
3435 dev_warn(&client->dev, "%s: client slave flag not set. You might see address collisions\n",
3436 __func__);
3437
3438 if (!(client->flags & I2C_CLIENT_TEN)) {
3439 /* Enforce stricter address checking */
3440 ret = i2c_check_7bit_addr_validity_strict(client->addr);
3441 if (ret) {
3442 dev_err(&client->dev, "%s: invalid address\n", __func__);
3443 return ret;
3444 }
3445 }
3446
3447 if (!client->adapter->algo->reg_slave) {
3448 dev_err(&client->dev, "%s: not supported by adapter\n", __func__);
3449 return -EOPNOTSUPP;
3450 }
3451
3452 client->slave_cb = slave_cb;
3453
3454 i2c_lock_adapter(client->adapter);
3455 ret = client->adapter->algo->reg_slave(client);
3456 i2c_unlock_adapter(client->adapter);
3457
3458 if (ret) {
3459 client->slave_cb = NULL;
3460 dev_err(&client->dev, "%s: adapter returned error %d\n", __func__, ret);
3461 }
3462
3463 return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(i2c_slave_register);
3466
3467 int i2c_slave_unregister(struct i2c_client *client)
3468 {
3469 int ret;
3470
3471 if (!client->adapter->algo->unreg_slave) {
3472 dev_err(&client->dev, "%s: not supported by adapter\n", __func__);
3473 return -EOPNOTSUPP;
3474 }
3475
3476 i2c_lock_adapter(client->adapter);
3477 ret = client->adapter->algo->unreg_slave(client);
3478 i2c_unlock_adapter(client->adapter);
3479
3480 if (ret == 0)
3481 client->slave_cb = NULL;
3482 else
3483 dev_err(&client->dev, "%s: adapter returned error %d\n", __func__, ret);
3484
3485 return ret;
3486 }
3487 EXPORT_SYMBOL_GPL(i2c_slave_unregister);
3488 #endif
3489
3490 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
3491 MODULE_DESCRIPTION("I2C-Bus main module");
3492 MODULE_LICENSE("GPL");
This page took 0.107006 seconds and 5 git commands to generate.