ARM: 8618/1: decompressor: reset ttbcr fields to use TTBR0 on ARMv7
[deliverable/linux.git] / drivers / infiniband / hw / cxgb4 / cm.c
1 /*
2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49
50 #include <rdma/ib_addr.h>
51
52 #include "iw_cxgb4.h"
53 #include "clip_tbl.h"
54
55 static char *states[] = {
56 "idle",
57 "listen",
58 "connecting",
59 "mpa_wait_req",
60 "mpa_req_sent",
61 "mpa_req_rcvd",
62 "mpa_rep_sent",
63 "fpdu_mode",
64 "aborting",
65 "closing",
66 "moribund",
67 "dead",
68 NULL,
69 };
70
71 static int nocong;
72 module_param(nocong, int, 0644);
73 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
74
75 static int enable_ecn;
76 module_param(enable_ecn, int, 0644);
77 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
78
79 static int dack_mode = 1;
80 module_param(dack_mode, int, 0644);
81 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
82
83 uint c4iw_max_read_depth = 32;
84 module_param(c4iw_max_read_depth, int, 0644);
85 MODULE_PARM_DESC(c4iw_max_read_depth,
86 "Per-connection max ORD/IRD (default=32)");
87
88 static int enable_tcp_timestamps;
89 module_param(enable_tcp_timestamps, int, 0644);
90 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
91
92 static int enable_tcp_sack;
93 module_param(enable_tcp_sack, int, 0644);
94 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
95
96 static int enable_tcp_window_scaling = 1;
97 module_param(enable_tcp_window_scaling, int, 0644);
98 MODULE_PARM_DESC(enable_tcp_window_scaling,
99 "Enable tcp window scaling (default=1)");
100
101 int c4iw_debug;
102 module_param(c4iw_debug, int, 0644);
103 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
104
105 static int peer2peer = 1;
106 module_param(peer2peer, int, 0644);
107 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
108
109 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
110 module_param(p2p_type, int, 0644);
111 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
112 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
113
114 static int ep_timeout_secs = 60;
115 module_param(ep_timeout_secs, int, 0644);
116 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
117 "in seconds (default=60)");
118
119 static int mpa_rev = 2;
120 module_param(mpa_rev, int, 0644);
121 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
122 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
123 " compliant (default=2)");
124
125 static int markers_enabled;
126 module_param(markers_enabled, int, 0644);
127 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
128
129 static int crc_enabled = 1;
130 module_param(crc_enabled, int, 0644);
131 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
132
133 static int rcv_win = 256 * 1024;
134 module_param(rcv_win, int, 0644);
135 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
136
137 static int snd_win = 128 * 1024;
138 module_param(snd_win, int, 0644);
139 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
140
141 static struct workqueue_struct *workq;
142
143 static struct sk_buff_head rxq;
144
145 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
146 static void ep_timeout(unsigned long arg);
147 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
148 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
149
150 static LIST_HEAD(timeout_list);
151 static spinlock_t timeout_lock;
152
153 static void deref_cm_id(struct c4iw_ep_common *epc)
154 {
155 epc->cm_id->rem_ref(epc->cm_id);
156 epc->cm_id = NULL;
157 set_bit(CM_ID_DEREFED, &epc->history);
158 }
159
160 static void ref_cm_id(struct c4iw_ep_common *epc)
161 {
162 set_bit(CM_ID_REFED, &epc->history);
163 epc->cm_id->add_ref(epc->cm_id);
164 }
165
166 static void deref_qp(struct c4iw_ep *ep)
167 {
168 c4iw_qp_rem_ref(&ep->com.qp->ibqp);
169 clear_bit(QP_REFERENCED, &ep->com.flags);
170 set_bit(QP_DEREFED, &ep->com.history);
171 }
172
173 static void ref_qp(struct c4iw_ep *ep)
174 {
175 set_bit(QP_REFERENCED, &ep->com.flags);
176 set_bit(QP_REFED, &ep->com.history);
177 c4iw_qp_add_ref(&ep->com.qp->ibqp);
178 }
179
180 static void start_ep_timer(struct c4iw_ep *ep)
181 {
182 PDBG("%s ep %p\n", __func__, ep);
183 if (timer_pending(&ep->timer)) {
184 pr_err("%s timer already started! ep %p\n",
185 __func__, ep);
186 return;
187 }
188 clear_bit(TIMEOUT, &ep->com.flags);
189 c4iw_get_ep(&ep->com);
190 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
191 ep->timer.data = (unsigned long)ep;
192 ep->timer.function = ep_timeout;
193 add_timer(&ep->timer);
194 }
195
196 static int stop_ep_timer(struct c4iw_ep *ep)
197 {
198 PDBG("%s ep %p stopping\n", __func__, ep);
199 del_timer_sync(&ep->timer);
200 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
201 c4iw_put_ep(&ep->com);
202 return 0;
203 }
204 return 1;
205 }
206
207 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
208 struct l2t_entry *l2e)
209 {
210 int error = 0;
211
212 if (c4iw_fatal_error(rdev)) {
213 kfree_skb(skb);
214 PDBG("%s - device in error state - dropping\n", __func__);
215 return -EIO;
216 }
217 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
218 if (error < 0)
219 kfree_skb(skb);
220 else if (error == NET_XMIT_DROP)
221 return -ENOMEM;
222 return error < 0 ? error : 0;
223 }
224
225 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
226 {
227 int error = 0;
228
229 if (c4iw_fatal_error(rdev)) {
230 kfree_skb(skb);
231 PDBG("%s - device in error state - dropping\n", __func__);
232 return -EIO;
233 }
234 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
235 if (error < 0)
236 kfree_skb(skb);
237 return error < 0 ? error : 0;
238 }
239
240 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
241 {
242 struct cpl_tid_release *req;
243
244 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
245 if (!skb)
246 return;
247 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
248 INIT_TP_WR(req, hwtid);
249 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
250 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
251 c4iw_ofld_send(rdev, skb);
252 return;
253 }
254
255 static void set_emss(struct c4iw_ep *ep, u16 opt)
256 {
257 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
258 ((AF_INET == ep->com.remote_addr.ss_family) ?
259 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
260 sizeof(struct tcphdr);
261 ep->mss = ep->emss;
262 if (TCPOPT_TSTAMP_G(opt))
263 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
264 if (ep->emss < 128)
265 ep->emss = 128;
266 if (ep->emss & 7)
267 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
268 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
269 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
270 ep->mss, ep->emss);
271 }
272
273 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
274 {
275 enum c4iw_ep_state state;
276
277 mutex_lock(&epc->mutex);
278 state = epc->state;
279 mutex_unlock(&epc->mutex);
280 return state;
281 }
282
283 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
284 {
285 epc->state = new;
286 }
287
288 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
289 {
290 mutex_lock(&epc->mutex);
291 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
292 __state_set(epc, new);
293 mutex_unlock(&epc->mutex);
294 return;
295 }
296
297 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
298 {
299 struct sk_buff *skb;
300 unsigned int i;
301 size_t len;
302
303 len = roundup(sizeof(union cpl_wr_size), 16);
304 for (i = 0; i < size; i++) {
305 skb = alloc_skb(len, GFP_KERNEL);
306 if (!skb)
307 goto fail;
308 skb_queue_tail(ep_skb_list, skb);
309 }
310 return 0;
311 fail:
312 skb_queue_purge(ep_skb_list);
313 return -ENOMEM;
314 }
315
316 static void *alloc_ep(int size, gfp_t gfp)
317 {
318 struct c4iw_ep_common *epc;
319
320 epc = kzalloc(size, gfp);
321 if (epc) {
322 kref_init(&epc->kref);
323 mutex_init(&epc->mutex);
324 c4iw_init_wr_wait(&epc->wr_wait);
325 }
326 PDBG("%s alloc ep %p\n", __func__, epc);
327 return epc;
328 }
329
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(&ep->com.dev->lock, flags);
335 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
336 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
337 }
338
339 static void insert_ep_tid(struct c4iw_ep *ep)
340 {
341 unsigned long flags;
342
343 spin_lock_irqsave(&ep->com.dev->lock, flags);
344 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
345 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
346 }
347
348 /*
349 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
350 */
351 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
352 {
353 struct c4iw_ep *ep;
354 unsigned long flags;
355
356 spin_lock_irqsave(&dev->lock, flags);
357 ep = idr_find(&dev->hwtid_idr, tid);
358 if (ep)
359 c4iw_get_ep(&ep->com);
360 spin_unlock_irqrestore(&dev->lock, flags);
361 return ep;
362 }
363
364 /*
365 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
366 */
367 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
368 unsigned int stid)
369 {
370 struct c4iw_listen_ep *ep;
371 unsigned long flags;
372
373 spin_lock_irqsave(&dev->lock, flags);
374 ep = idr_find(&dev->stid_idr, stid);
375 if (ep)
376 c4iw_get_ep(&ep->com);
377 spin_unlock_irqrestore(&dev->lock, flags);
378 return ep;
379 }
380
381 void _c4iw_free_ep(struct kref *kref)
382 {
383 struct c4iw_ep *ep;
384
385 ep = container_of(kref, struct c4iw_ep, com.kref);
386 PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
387 if (test_bit(QP_REFERENCED, &ep->com.flags))
388 deref_qp(ep);
389 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
390 if (ep->com.remote_addr.ss_family == AF_INET6) {
391 struct sockaddr_in6 *sin6 =
392 (struct sockaddr_in6 *)
393 &ep->com.local_addr;
394
395 cxgb4_clip_release(
396 ep->com.dev->rdev.lldi.ports[0],
397 (const u32 *)&sin6->sin6_addr.s6_addr,
398 1);
399 }
400 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
401 dst_release(ep->dst);
402 cxgb4_l2t_release(ep->l2t);
403 if (ep->mpa_skb)
404 kfree_skb(ep->mpa_skb);
405 }
406 if (!skb_queue_empty(&ep->com.ep_skb_list))
407 skb_queue_purge(&ep->com.ep_skb_list);
408 kfree(ep);
409 }
410
411 static void release_ep_resources(struct c4iw_ep *ep)
412 {
413 set_bit(RELEASE_RESOURCES, &ep->com.flags);
414
415 /*
416 * If we have a hwtid, then remove it from the idr table
417 * so lookups will no longer find this endpoint. Otherwise
418 * we have a race where one thread finds the ep ptr just
419 * before the other thread is freeing the ep memory.
420 */
421 if (ep->hwtid != -1)
422 remove_ep_tid(ep);
423 c4iw_put_ep(&ep->com);
424 }
425
426 static int status2errno(int status)
427 {
428 switch (status) {
429 case CPL_ERR_NONE:
430 return 0;
431 case CPL_ERR_CONN_RESET:
432 return -ECONNRESET;
433 case CPL_ERR_ARP_MISS:
434 return -EHOSTUNREACH;
435 case CPL_ERR_CONN_TIMEDOUT:
436 return -ETIMEDOUT;
437 case CPL_ERR_TCAM_FULL:
438 return -ENOMEM;
439 case CPL_ERR_CONN_EXIST:
440 return -EADDRINUSE;
441 default:
442 return -EIO;
443 }
444 }
445
446 /*
447 * Try and reuse skbs already allocated...
448 */
449 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
450 {
451 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
452 skb_trim(skb, 0);
453 skb_get(skb);
454 skb_reset_transport_header(skb);
455 } else {
456 skb = alloc_skb(len, gfp);
457 }
458 t4_set_arp_err_handler(skb, NULL, NULL);
459 return skb;
460 }
461
462 static struct net_device *get_real_dev(struct net_device *egress_dev)
463 {
464 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
465 }
466
467 static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev)
468 {
469 int i;
470
471 egress_dev = get_real_dev(egress_dev);
472 for (i = 0; i < dev->rdev.lldi.nports; i++)
473 if (dev->rdev.lldi.ports[i] == egress_dev)
474 return 1;
475 return 0;
476 }
477
478 static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip,
479 __u8 *peer_ip, __be16 local_port,
480 __be16 peer_port, u8 tos,
481 __u32 sin6_scope_id)
482 {
483 struct dst_entry *dst = NULL;
484
485 if (IS_ENABLED(CONFIG_IPV6)) {
486 struct flowi6 fl6;
487
488 memset(&fl6, 0, sizeof(fl6));
489 memcpy(&fl6.daddr, peer_ip, 16);
490 memcpy(&fl6.saddr, local_ip, 16);
491 if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
492 fl6.flowi6_oif = sin6_scope_id;
493 dst = ip6_route_output(&init_net, NULL, &fl6);
494 if (!dst)
495 goto out;
496 if (!our_interface(dev, ip6_dst_idev(dst)->dev) &&
497 !(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
498 dst_release(dst);
499 dst = NULL;
500 }
501 }
502
503 out:
504 return dst;
505 }
506
507 static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip,
508 __be32 peer_ip, __be16 local_port,
509 __be16 peer_port, u8 tos)
510 {
511 struct rtable *rt;
512 struct flowi4 fl4;
513 struct neighbour *n;
514
515 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
516 peer_port, local_port, IPPROTO_TCP,
517 tos, 0);
518 if (IS_ERR(rt))
519 return NULL;
520 n = dst_neigh_lookup(&rt->dst, &peer_ip);
521 if (!n)
522 return NULL;
523 if (!our_interface(dev, n->dev) &&
524 !(n->dev->flags & IFF_LOOPBACK)) {
525 neigh_release(n);
526 dst_release(&rt->dst);
527 return NULL;
528 }
529 neigh_release(n);
530 return &rt->dst;
531 }
532
533 static void arp_failure_discard(void *handle, struct sk_buff *skb)
534 {
535 pr_err(MOD "ARP failure\n");
536 kfree_skb(skb);
537 }
538
539 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
540 {
541 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
542 }
543
544 enum {
545 NUM_FAKE_CPLS = 2,
546 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
547 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
548 };
549
550 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
551 {
552 struct c4iw_ep *ep;
553
554 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
555 release_ep_resources(ep);
556 return 0;
557 }
558
559 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
560 {
561 struct c4iw_ep *ep;
562
563 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
564 c4iw_put_ep(&ep->parent_ep->com);
565 release_ep_resources(ep);
566 return 0;
567 }
568
569 /*
570 * Fake up a special CPL opcode and call sched() so process_work() will call
571 * _put_ep_safe() in a safe context to free the ep resources. This is needed
572 * because ARP error handlers are called in an ATOMIC context, and
573 * _c4iw_free_ep() needs to block.
574 */
575 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
576 int cpl)
577 {
578 struct cpl_act_establish *rpl = cplhdr(skb);
579
580 /* Set our special ARP_FAILURE opcode */
581 rpl->ot.opcode = cpl;
582
583 /*
584 * Save ep in the skb->cb area, after where sched() will save the dev
585 * ptr.
586 */
587 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
588 sched(ep->com.dev, skb);
589 }
590
591 /* Handle an ARP failure for an accept */
592 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
593 {
594 struct c4iw_ep *ep = handle;
595
596 pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n",
597 ep->hwtid);
598
599 __state_set(&ep->com, DEAD);
600 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
601 }
602
603 /*
604 * Handle an ARP failure for an active open.
605 */
606 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
607 {
608 struct c4iw_ep *ep = handle;
609
610 printk(KERN_ERR MOD "ARP failure during connect\n");
611 connect_reply_upcall(ep, -EHOSTUNREACH);
612 __state_set(&ep->com, DEAD);
613 if (ep->com.remote_addr.ss_family == AF_INET6) {
614 struct sockaddr_in6 *sin6 =
615 (struct sockaddr_in6 *)&ep->com.local_addr;
616 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
617 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
618 }
619 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
620 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
621 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
622 }
623
624 /*
625 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
626 * and send it along.
627 */
628 static void abort_arp_failure(void *handle, struct sk_buff *skb)
629 {
630 int ret;
631 struct c4iw_ep *ep = handle;
632 struct c4iw_rdev *rdev = &ep->com.dev->rdev;
633 struct cpl_abort_req *req = cplhdr(skb);
634
635 PDBG("%s rdev %p\n", __func__, rdev);
636 req->cmd = CPL_ABORT_NO_RST;
637 ret = c4iw_ofld_send(rdev, skb);
638 if (ret) {
639 __state_set(&ep->com, DEAD);
640 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
641 }
642 }
643
644 static int send_flowc(struct c4iw_ep *ep)
645 {
646 struct fw_flowc_wr *flowc;
647 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
648 int i;
649 u16 vlan = ep->l2t->vlan;
650 int nparams;
651
652 if (WARN_ON(!skb))
653 return -ENOMEM;
654
655 if (vlan == CPL_L2T_VLAN_NONE)
656 nparams = 8;
657 else
658 nparams = 9;
659
660 flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN);
661
662 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
663 FW_FLOWC_WR_NPARAMS_V(nparams));
664 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN,
665 16)) | FW_WR_FLOWID_V(ep->hwtid));
666
667 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
668 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
669 (ep->com.dev->rdev.lldi.pf));
670 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
671 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
672 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
673 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
674 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
675 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
676 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
677 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
678 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
679 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
680 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
681 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
682 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
683 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
684 if (nparams == 9) {
685 u16 pri;
686
687 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
688 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
689 flowc->mnemval[8].val = cpu_to_be32(pri);
690 } else {
691 /* Pad WR to 16 byte boundary */
692 flowc->mnemval[8].mnemonic = 0;
693 flowc->mnemval[8].val = 0;
694 }
695 for (i = 0; i < 9; i++) {
696 flowc->mnemval[i].r4[0] = 0;
697 flowc->mnemval[i].r4[1] = 0;
698 flowc->mnemval[i].r4[2] = 0;
699 }
700
701 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
702 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
703 }
704
705 static int send_halfclose(struct c4iw_ep *ep)
706 {
707 struct cpl_close_con_req *req;
708 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
709 int wrlen = roundup(sizeof *req, 16);
710
711 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
712 if (WARN_ON(!skb))
713 return -ENOMEM;
714
715 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
716 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
717 req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
718 memset(req, 0, wrlen);
719 INIT_TP_WR(req, ep->hwtid);
720 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
721 ep->hwtid));
722 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
723 }
724
725 static int send_abort(struct c4iw_ep *ep)
726 {
727 struct cpl_abort_req *req;
728 int wrlen = roundup(sizeof *req, 16);
729 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
730
731 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
732 if (WARN_ON(!req_skb))
733 return -ENOMEM;
734
735 set_wr_txq(req_skb, CPL_PRIORITY_DATA, ep->txq_idx);
736 t4_set_arp_err_handler(req_skb, ep, abort_arp_failure);
737 req = (struct cpl_abort_req *)skb_put(req_skb, wrlen);
738 memset(req, 0, wrlen);
739 INIT_TP_WR(req, ep->hwtid);
740 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
741 req->cmd = CPL_ABORT_SEND_RST;
742 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
743 }
744
745 static void best_mtu(const unsigned short *mtus, unsigned short mtu,
746 unsigned int *idx, int use_ts, int ipv6)
747 {
748 unsigned short hdr_size = (ipv6 ?
749 sizeof(struct ipv6hdr) :
750 sizeof(struct iphdr)) +
751 sizeof(struct tcphdr) +
752 (use_ts ?
753 round_up(TCPOLEN_TIMESTAMP, 4) : 0);
754 unsigned short data_size = mtu - hdr_size;
755
756 cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
757 }
758
759 static int send_connect(struct c4iw_ep *ep)
760 {
761 struct cpl_act_open_req *req = NULL;
762 struct cpl_t5_act_open_req *t5req = NULL;
763 struct cpl_t6_act_open_req *t6req = NULL;
764 struct cpl_act_open_req6 *req6 = NULL;
765 struct cpl_t5_act_open_req6 *t5req6 = NULL;
766 struct cpl_t6_act_open_req6 *t6req6 = NULL;
767 struct sk_buff *skb;
768 u64 opt0;
769 u32 opt2;
770 unsigned int mtu_idx;
771 int wscale;
772 int win, sizev4, sizev6, wrlen;
773 struct sockaddr_in *la = (struct sockaddr_in *)
774 &ep->com.local_addr;
775 struct sockaddr_in *ra = (struct sockaddr_in *)
776 &ep->com.remote_addr;
777 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
778 &ep->com.local_addr;
779 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
780 &ep->com.remote_addr;
781 int ret;
782 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
783 u32 isn = (prandom_u32() & ~7UL) - 1;
784
785 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
786 case CHELSIO_T4:
787 sizev4 = sizeof(struct cpl_act_open_req);
788 sizev6 = sizeof(struct cpl_act_open_req6);
789 break;
790 case CHELSIO_T5:
791 sizev4 = sizeof(struct cpl_t5_act_open_req);
792 sizev6 = sizeof(struct cpl_t5_act_open_req6);
793 break;
794 case CHELSIO_T6:
795 sizev4 = sizeof(struct cpl_t6_act_open_req);
796 sizev6 = sizeof(struct cpl_t6_act_open_req6);
797 break;
798 default:
799 pr_err("T%d Chip is not supported\n",
800 CHELSIO_CHIP_VERSION(adapter_type));
801 return -EINVAL;
802 }
803
804 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
805 roundup(sizev4, 16) :
806 roundup(sizev6, 16);
807
808 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
809
810 skb = get_skb(NULL, wrlen, GFP_KERNEL);
811 if (!skb) {
812 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
813 __func__);
814 return -ENOMEM;
815 }
816 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
817
818 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
819 enable_tcp_timestamps,
820 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
821 wscale = compute_wscale(rcv_win);
822
823 /*
824 * Specify the largest window that will fit in opt0. The
825 * remainder will be specified in the rx_data_ack.
826 */
827 win = ep->rcv_win >> 10;
828 if (win > RCV_BUFSIZ_M)
829 win = RCV_BUFSIZ_M;
830
831 opt0 = (nocong ? NO_CONG_F : 0) |
832 KEEP_ALIVE_F |
833 DELACK_F |
834 WND_SCALE_V(wscale) |
835 MSS_IDX_V(mtu_idx) |
836 L2T_IDX_V(ep->l2t->idx) |
837 TX_CHAN_V(ep->tx_chan) |
838 SMAC_SEL_V(ep->smac_idx) |
839 DSCP_V(ep->tos >> 2) |
840 ULP_MODE_V(ULP_MODE_TCPDDP) |
841 RCV_BUFSIZ_V(win);
842 opt2 = RX_CHANNEL_V(0) |
843 CCTRL_ECN_V(enable_ecn) |
844 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
845 if (enable_tcp_timestamps)
846 opt2 |= TSTAMPS_EN_F;
847 if (enable_tcp_sack)
848 opt2 |= SACK_EN_F;
849 if (wscale && enable_tcp_window_scaling)
850 opt2 |= WND_SCALE_EN_F;
851 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
852 if (peer2peer)
853 isn += 4;
854
855 opt2 |= T5_OPT_2_VALID_F;
856 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
857 opt2 |= T5_ISS_F;
858 }
859
860 if (ep->com.remote_addr.ss_family == AF_INET6)
861 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
862 (const u32 *)&la6->sin6_addr.s6_addr, 1);
863
864 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
865
866 if (ep->com.remote_addr.ss_family == AF_INET) {
867 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
868 case CHELSIO_T4:
869 req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
870 INIT_TP_WR(req, 0);
871 break;
872 case CHELSIO_T5:
873 t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
874 wrlen);
875 INIT_TP_WR(t5req, 0);
876 req = (struct cpl_act_open_req *)t5req;
877 break;
878 case CHELSIO_T6:
879 t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
880 wrlen);
881 INIT_TP_WR(t6req, 0);
882 req = (struct cpl_act_open_req *)t6req;
883 t5req = (struct cpl_t5_act_open_req *)t6req;
884 break;
885 default:
886 pr_err("T%d Chip is not supported\n",
887 CHELSIO_CHIP_VERSION(adapter_type));
888 ret = -EINVAL;
889 goto clip_release;
890 }
891
892 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
893 ((ep->rss_qid<<14) | ep->atid)));
894 req->local_port = la->sin_port;
895 req->peer_port = ra->sin_port;
896 req->local_ip = la->sin_addr.s_addr;
897 req->peer_ip = ra->sin_addr.s_addr;
898 req->opt0 = cpu_to_be64(opt0);
899
900 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
901 req->params = cpu_to_be32(cxgb4_select_ntuple(
902 ep->com.dev->rdev.lldi.ports[0],
903 ep->l2t));
904 req->opt2 = cpu_to_be32(opt2);
905 } else {
906 t5req->params = cpu_to_be64(FILTER_TUPLE_V(
907 cxgb4_select_ntuple(
908 ep->com.dev->rdev.lldi.ports[0],
909 ep->l2t)));
910 t5req->rsvd = cpu_to_be32(isn);
911 PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
912 t5req->opt2 = cpu_to_be32(opt2);
913 }
914 } else {
915 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
916 case CHELSIO_T4:
917 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
918 INIT_TP_WR(req6, 0);
919 break;
920 case CHELSIO_T5:
921 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
922 wrlen);
923 INIT_TP_WR(t5req6, 0);
924 req6 = (struct cpl_act_open_req6 *)t5req6;
925 break;
926 case CHELSIO_T6:
927 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
928 wrlen);
929 INIT_TP_WR(t6req6, 0);
930 req6 = (struct cpl_act_open_req6 *)t6req6;
931 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
932 break;
933 default:
934 pr_err("T%d Chip is not supported\n",
935 CHELSIO_CHIP_VERSION(adapter_type));
936 ret = -EINVAL;
937 goto clip_release;
938 }
939
940 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
941 ((ep->rss_qid<<14)|ep->atid)));
942 req6->local_port = la6->sin6_port;
943 req6->peer_port = ra6->sin6_port;
944 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
945 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
946 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
947 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
948 req6->opt0 = cpu_to_be64(opt0);
949
950 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
951 req6->params = cpu_to_be32(cxgb4_select_ntuple(
952 ep->com.dev->rdev.lldi.ports[0],
953 ep->l2t));
954 req6->opt2 = cpu_to_be32(opt2);
955 } else {
956 t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
957 cxgb4_select_ntuple(
958 ep->com.dev->rdev.lldi.ports[0],
959 ep->l2t)));
960 t5req6->rsvd = cpu_to_be32(isn);
961 PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
962 t5req6->opt2 = cpu_to_be32(opt2);
963 }
964 }
965
966 set_bit(ACT_OPEN_REQ, &ep->com.history);
967 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
968 clip_release:
969 if (ret && ep->com.remote_addr.ss_family == AF_INET6)
970 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
971 (const u32 *)&la6->sin6_addr.s6_addr, 1);
972 return ret;
973 }
974
975 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
976 u8 mpa_rev_to_use)
977 {
978 int mpalen, wrlen, ret;
979 struct fw_ofld_tx_data_wr *req;
980 struct mpa_message *mpa;
981 struct mpa_v2_conn_params mpa_v2_params;
982
983 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
984
985 BUG_ON(skb_cloned(skb));
986
987 mpalen = sizeof(*mpa) + ep->plen;
988 if (mpa_rev_to_use == 2)
989 mpalen += sizeof(struct mpa_v2_conn_params);
990 wrlen = roundup(mpalen + sizeof *req, 16);
991 skb = get_skb(skb, wrlen, GFP_KERNEL);
992 if (!skb) {
993 connect_reply_upcall(ep, -ENOMEM);
994 return -ENOMEM;
995 }
996 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
997
998 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
999 memset(req, 0, wrlen);
1000 req->op_to_immdlen = cpu_to_be32(
1001 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1002 FW_WR_COMPL_F |
1003 FW_WR_IMMDLEN_V(mpalen));
1004 req->flowid_len16 = cpu_to_be32(
1005 FW_WR_FLOWID_V(ep->hwtid) |
1006 FW_WR_LEN16_V(wrlen >> 4));
1007 req->plen = cpu_to_be32(mpalen);
1008 req->tunnel_to_proxy = cpu_to_be32(
1009 FW_OFLD_TX_DATA_WR_FLUSH_F |
1010 FW_OFLD_TX_DATA_WR_SHOVE_F);
1011
1012 mpa = (struct mpa_message *)(req + 1);
1013 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
1014
1015 mpa->flags = 0;
1016 if (crc_enabled)
1017 mpa->flags |= MPA_CRC;
1018 if (markers_enabled) {
1019 mpa->flags |= MPA_MARKERS;
1020 ep->mpa_attr.recv_marker_enabled = 1;
1021 } else {
1022 ep->mpa_attr.recv_marker_enabled = 0;
1023 }
1024 if (mpa_rev_to_use == 2)
1025 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1026
1027 mpa->private_data_size = htons(ep->plen);
1028 mpa->revision = mpa_rev_to_use;
1029 if (mpa_rev_to_use == 1) {
1030 ep->tried_with_mpa_v1 = 1;
1031 ep->retry_with_mpa_v1 = 0;
1032 }
1033
1034 if (mpa_rev_to_use == 2) {
1035 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1036 sizeof (struct mpa_v2_conn_params));
1037 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1038 ep->ord);
1039 mpa_v2_params.ird = htons((u16)ep->ird);
1040 mpa_v2_params.ord = htons((u16)ep->ord);
1041
1042 if (peer2peer) {
1043 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1044 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1045 mpa_v2_params.ord |=
1046 htons(MPA_V2_RDMA_WRITE_RTR);
1047 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1048 mpa_v2_params.ord |=
1049 htons(MPA_V2_RDMA_READ_RTR);
1050 }
1051 memcpy(mpa->private_data, &mpa_v2_params,
1052 sizeof(struct mpa_v2_conn_params));
1053
1054 if (ep->plen)
1055 memcpy(mpa->private_data +
1056 sizeof(struct mpa_v2_conn_params),
1057 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1058 } else
1059 if (ep->plen)
1060 memcpy(mpa->private_data,
1061 ep->mpa_pkt + sizeof(*mpa), ep->plen);
1062
1063 /*
1064 * Reference the mpa skb. This ensures the data area
1065 * will remain in memory until the hw acks the tx.
1066 * Function fw4_ack() will deref it.
1067 */
1068 skb_get(skb);
1069 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1070 BUG_ON(ep->mpa_skb);
1071 ep->mpa_skb = skb;
1072 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1073 if (ret)
1074 return ret;
1075 start_ep_timer(ep);
1076 __state_set(&ep->com, MPA_REQ_SENT);
1077 ep->mpa_attr.initiator = 1;
1078 ep->snd_seq += mpalen;
1079 return ret;
1080 }
1081
1082 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1083 {
1084 int mpalen, wrlen;
1085 struct fw_ofld_tx_data_wr *req;
1086 struct mpa_message *mpa;
1087 struct sk_buff *skb;
1088 struct mpa_v2_conn_params mpa_v2_params;
1089
1090 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1091
1092 mpalen = sizeof(*mpa) + plen;
1093 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1094 mpalen += sizeof(struct mpa_v2_conn_params);
1095 wrlen = roundup(mpalen + sizeof *req, 16);
1096
1097 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1098 if (!skb) {
1099 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1100 return -ENOMEM;
1101 }
1102 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1103
1104 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
1105 memset(req, 0, wrlen);
1106 req->op_to_immdlen = cpu_to_be32(
1107 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1108 FW_WR_COMPL_F |
1109 FW_WR_IMMDLEN_V(mpalen));
1110 req->flowid_len16 = cpu_to_be32(
1111 FW_WR_FLOWID_V(ep->hwtid) |
1112 FW_WR_LEN16_V(wrlen >> 4));
1113 req->plen = cpu_to_be32(mpalen);
1114 req->tunnel_to_proxy = cpu_to_be32(
1115 FW_OFLD_TX_DATA_WR_FLUSH_F |
1116 FW_OFLD_TX_DATA_WR_SHOVE_F);
1117
1118 mpa = (struct mpa_message *)(req + 1);
1119 memset(mpa, 0, sizeof(*mpa));
1120 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1121 mpa->flags = MPA_REJECT;
1122 mpa->revision = ep->mpa_attr.version;
1123 mpa->private_data_size = htons(plen);
1124
1125 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1126 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1127 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1128 sizeof (struct mpa_v2_conn_params));
1129 mpa_v2_params.ird = htons(((u16)ep->ird) |
1130 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1131 0));
1132 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1133 (p2p_type ==
1134 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1135 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1136 FW_RI_INIT_P2PTYPE_READ_REQ ?
1137 MPA_V2_RDMA_READ_RTR : 0) : 0));
1138 memcpy(mpa->private_data, &mpa_v2_params,
1139 sizeof(struct mpa_v2_conn_params));
1140
1141 if (ep->plen)
1142 memcpy(mpa->private_data +
1143 sizeof(struct mpa_v2_conn_params), pdata, plen);
1144 } else
1145 if (plen)
1146 memcpy(mpa->private_data, pdata, plen);
1147
1148 /*
1149 * Reference the mpa skb again. This ensures the data area
1150 * will remain in memory until the hw acks the tx.
1151 * Function fw4_ack() will deref it.
1152 */
1153 skb_get(skb);
1154 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1155 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1156 BUG_ON(ep->mpa_skb);
1157 ep->mpa_skb = skb;
1158 ep->snd_seq += mpalen;
1159 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1160 }
1161
1162 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1163 {
1164 int mpalen, wrlen;
1165 struct fw_ofld_tx_data_wr *req;
1166 struct mpa_message *mpa;
1167 struct sk_buff *skb;
1168 struct mpa_v2_conn_params mpa_v2_params;
1169
1170 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1171
1172 mpalen = sizeof(*mpa) + plen;
1173 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1174 mpalen += sizeof(struct mpa_v2_conn_params);
1175 wrlen = roundup(mpalen + sizeof *req, 16);
1176
1177 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1178 if (!skb) {
1179 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1180 return -ENOMEM;
1181 }
1182 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1183
1184 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
1185 memset(req, 0, wrlen);
1186 req->op_to_immdlen = cpu_to_be32(
1187 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1188 FW_WR_COMPL_F |
1189 FW_WR_IMMDLEN_V(mpalen));
1190 req->flowid_len16 = cpu_to_be32(
1191 FW_WR_FLOWID_V(ep->hwtid) |
1192 FW_WR_LEN16_V(wrlen >> 4));
1193 req->plen = cpu_to_be32(mpalen);
1194 req->tunnel_to_proxy = cpu_to_be32(
1195 FW_OFLD_TX_DATA_WR_FLUSH_F |
1196 FW_OFLD_TX_DATA_WR_SHOVE_F);
1197
1198 mpa = (struct mpa_message *)(req + 1);
1199 memset(mpa, 0, sizeof(*mpa));
1200 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1201 mpa->flags = 0;
1202 if (ep->mpa_attr.crc_enabled)
1203 mpa->flags |= MPA_CRC;
1204 if (ep->mpa_attr.recv_marker_enabled)
1205 mpa->flags |= MPA_MARKERS;
1206 mpa->revision = ep->mpa_attr.version;
1207 mpa->private_data_size = htons(plen);
1208
1209 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1210 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1211 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1212 sizeof (struct mpa_v2_conn_params));
1213 mpa_v2_params.ird = htons((u16)ep->ird);
1214 mpa_v2_params.ord = htons((u16)ep->ord);
1215 if (peer2peer && (ep->mpa_attr.p2p_type !=
1216 FW_RI_INIT_P2PTYPE_DISABLED)) {
1217 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1218
1219 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1220 mpa_v2_params.ord |=
1221 htons(MPA_V2_RDMA_WRITE_RTR);
1222 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1223 mpa_v2_params.ord |=
1224 htons(MPA_V2_RDMA_READ_RTR);
1225 }
1226
1227 memcpy(mpa->private_data, &mpa_v2_params,
1228 sizeof(struct mpa_v2_conn_params));
1229
1230 if (ep->plen)
1231 memcpy(mpa->private_data +
1232 sizeof(struct mpa_v2_conn_params), pdata, plen);
1233 } else
1234 if (plen)
1235 memcpy(mpa->private_data, pdata, plen);
1236
1237 /*
1238 * Reference the mpa skb. This ensures the data area
1239 * will remain in memory until the hw acks the tx.
1240 * Function fw4_ack() will deref it.
1241 */
1242 skb_get(skb);
1243 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1244 ep->mpa_skb = skb;
1245 __state_set(&ep->com, MPA_REP_SENT);
1246 ep->snd_seq += mpalen;
1247 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1248 }
1249
1250 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1251 {
1252 struct c4iw_ep *ep;
1253 struct cpl_act_establish *req = cplhdr(skb);
1254 unsigned int tid = GET_TID(req);
1255 unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1256 struct tid_info *t = dev->rdev.lldi.tids;
1257 int ret;
1258
1259 ep = lookup_atid(t, atid);
1260
1261 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1262 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1263
1264 mutex_lock(&ep->com.mutex);
1265 dst_confirm(ep->dst);
1266
1267 /* setup the hwtid for this connection */
1268 ep->hwtid = tid;
1269 cxgb4_insert_tid(t, ep, tid);
1270 insert_ep_tid(ep);
1271
1272 ep->snd_seq = be32_to_cpu(req->snd_isn);
1273 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1274
1275 set_emss(ep, ntohs(req->tcp_opt));
1276
1277 /* dealloc the atid */
1278 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1279 cxgb4_free_atid(t, atid);
1280 set_bit(ACT_ESTAB, &ep->com.history);
1281
1282 /* start MPA negotiation */
1283 ret = send_flowc(ep);
1284 if (ret)
1285 goto err;
1286 if (ep->retry_with_mpa_v1)
1287 ret = send_mpa_req(ep, skb, 1);
1288 else
1289 ret = send_mpa_req(ep, skb, mpa_rev);
1290 if (ret)
1291 goto err;
1292 mutex_unlock(&ep->com.mutex);
1293 return 0;
1294 err:
1295 mutex_unlock(&ep->com.mutex);
1296 connect_reply_upcall(ep, -ENOMEM);
1297 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1298 return 0;
1299 }
1300
1301 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1302 {
1303 struct iw_cm_event event;
1304
1305 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1306 memset(&event, 0, sizeof(event));
1307 event.event = IW_CM_EVENT_CLOSE;
1308 event.status = status;
1309 if (ep->com.cm_id) {
1310 PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1311 ep, ep->com.cm_id, ep->hwtid);
1312 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 deref_cm_id(&ep->com);
1314 set_bit(CLOSE_UPCALL, &ep->com.history);
1315 }
1316 }
1317
1318 static void peer_close_upcall(struct c4iw_ep *ep)
1319 {
1320 struct iw_cm_event event;
1321
1322 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1323 memset(&event, 0, sizeof(event));
1324 event.event = IW_CM_EVENT_DISCONNECT;
1325 if (ep->com.cm_id) {
1326 PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1327 ep, ep->com.cm_id, ep->hwtid);
1328 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1329 set_bit(DISCONN_UPCALL, &ep->com.history);
1330 }
1331 }
1332
1333 static void peer_abort_upcall(struct c4iw_ep *ep)
1334 {
1335 struct iw_cm_event event;
1336
1337 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1338 memset(&event, 0, sizeof(event));
1339 event.event = IW_CM_EVENT_CLOSE;
1340 event.status = -ECONNRESET;
1341 if (ep->com.cm_id) {
1342 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
1343 ep->com.cm_id, ep->hwtid);
1344 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1345 deref_cm_id(&ep->com);
1346 set_bit(ABORT_UPCALL, &ep->com.history);
1347 }
1348 }
1349
1350 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1351 {
1352 struct iw_cm_event event;
1353
1354 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
1355 memset(&event, 0, sizeof(event));
1356 event.event = IW_CM_EVENT_CONNECT_REPLY;
1357 event.status = status;
1358 memcpy(&event.local_addr, &ep->com.local_addr,
1359 sizeof(ep->com.local_addr));
1360 memcpy(&event.remote_addr, &ep->com.remote_addr,
1361 sizeof(ep->com.remote_addr));
1362
1363 if ((status == 0) || (status == -ECONNREFUSED)) {
1364 if (!ep->tried_with_mpa_v1) {
1365 /* this means MPA_v2 is used */
1366 event.ord = ep->ird;
1367 event.ird = ep->ord;
1368 event.private_data_len = ep->plen -
1369 sizeof(struct mpa_v2_conn_params);
1370 event.private_data = ep->mpa_pkt +
1371 sizeof(struct mpa_message) +
1372 sizeof(struct mpa_v2_conn_params);
1373 } else {
1374 /* this means MPA_v1 is used */
1375 event.ord = cur_max_read_depth(ep->com.dev);
1376 event.ird = cur_max_read_depth(ep->com.dev);
1377 event.private_data_len = ep->plen;
1378 event.private_data = ep->mpa_pkt +
1379 sizeof(struct mpa_message);
1380 }
1381 }
1382
1383 PDBG("%s ep %p tid %u status %d\n", __func__, ep,
1384 ep->hwtid, status);
1385 set_bit(CONN_RPL_UPCALL, &ep->com.history);
1386 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1387
1388 if (status < 0)
1389 deref_cm_id(&ep->com);
1390 }
1391
1392 static int connect_request_upcall(struct c4iw_ep *ep)
1393 {
1394 struct iw_cm_event event;
1395 int ret;
1396
1397 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1398 memset(&event, 0, sizeof(event));
1399 event.event = IW_CM_EVENT_CONNECT_REQUEST;
1400 memcpy(&event.local_addr, &ep->com.local_addr,
1401 sizeof(ep->com.local_addr));
1402 memcpy(&event.remote_addr, &ep->com.remote_addr,
1403 sizeof(ep->com.remote_addr));
1404 event.provider_data = ep;
1405 if (!ep->tried_with_mpa_v1) {
1406 /* this means MPA_v2 is used */
1407 event.ord = ep->ord;
1408 event.ird = ep->ird;
1409 event.private_data_len = ep->plen -
1410 sizeof(struct mpa_v2_conn_params);
1411 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1412 sizeof(struct mpa_v2_conn_params);
1413 } else {
1414 /* this means MPA_v1 is used. Send max supported */
1415 event.ord = cur_max_read_depth(ep->com.dev);
1416 event.ird = cur_max_read_depth(ep->com.dev);
1417 event.private_data_len = ep->plen;
1418 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1419 }
1420 c4iw_get_ep(&ep->com);
1421 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1422 &event);
1423 if (ret)
1424 c4iw_put_ep(&ep->com);
1425 set_bit(CONNREQ_UPCALL, &ep->com.history);
1426 c4iw_put_ep(&ep->parent_ep->com);
1427 return ret;
1428 }
1429
1430 static void established_upcall(struct c4iw_ep *ep)
1431 {
1432 struct iw_cm_event event;
1433
1434 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1435 memset(&event, 0, sizeof(event));
1436 event.event = IW_CM_EVENT_ESTABLISHED;
1437 event.ird = ep->ord;
1438 event.ord = ep->ird;
1439 if (ep->com.cm_id) {
1440 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1441 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1442 set_bit(ESTAB_UPCALL, &ep->com.history);
1443 }
1444 }
1445
1446 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1447 {
1448 struct cpl_rx_data_ack *req;
1449 struct sk_buff *skb;
1450 int wrlen = roundup(sizeof *req, 16);
1451
1452 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1453 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1454 if (!skb) {
1455 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1456 return 0;
1457 }
1458
1459 /*
1460 * If we couldn't specify the entire rcv window at connection setup
1461 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1462 * then add the overage in to the credits returned.
1463 */
1464 if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1465 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1466
1467 req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
1468 memset(req, 0, wrlen);
1469 INIT_TP_WR(req, ep->hwtid);
1470 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
1471 ep->hwtid));
1472 req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F |
1473 RX_DACK_CHANGE_F |
1474 RX_DACK_MODE_V(dack_mode));
1475 set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
1476 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1477 return credits;
1478 }
1479
1480 #define RELAXED_IRD_NEGOTIATION 1
1481
1482 /*
1483 * process_mpa_reply - process streaming mode MPA reply
1484 *
1485 * Returns:
1486 *
1487 * 0 upon success indicating a connect request was delivered to the ULP
1488 * or the mpa request is incomplete but valid so far.
1489 *
1490 * 1 if a failure requires the caller to close the connection.
1491 *
1492 * 2 if a failure requires the caller to abort the connection.
1493 */
1494 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1495 {
1496 struct mpa_message *mpa;
1497 struct mpa_v2_conn_params *mpa_v2_params;
1498 u16 plen;
1499 u16 resp_ird, resp_ord;
1500 u8 rtr_mismatch = 0, insuff_ird = 0;
1501 struct c4iw_qp_attributes attrs;
1502 enum c4iw_qp_attr_mask mask;
1503 int err;
1504 int disconnect = 0;
1505
1506 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1507
1508 /*
1509 * If we get more than the supported amount of private data
1510 * then we must fail this connection.
1511 */
1512 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1513 err = -EINVAL;
1514 goto err_stop_timer;
1515 }
1516
1517 /*
1518 * copy the new data into our accumulation buffer.
1519 */
1520 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1521 skb->len);
1522 ep->mpa_pkt_len += skb->len;
1523
1524 /*
1525 * if we don't even have the mpa message, then bail.
1526 */
1527 if (ep->mpa_pkt_len < sizeof(*mpa))
1528 return 0;
1529 mpa = (struct mpa_message *) ep->mpa_pkt;
1530
1531 /* Validate MPA header. */
1532 if (mpa->revision > mpa_rev) {
1533 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1534 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1535 err = -EPROTO;
1536 goto err_stop_timer;
1537 }
1538 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1539 err = -EPROTO;
1540 goto err_stop_timer;
1541 }
1542
1543 plen = ntohs(mpa->private_data_size);
1544
1545 /*
1546 * Fail if there's too much private data.
1547 */
1548 if (plen > MPA_MAX_PRIVATE_DATA) {
1549 err = -EPROTO;
1550 goto err_stop_timer;
1551 }
1552
1553 /*
1554 * If plen does not account for pkt size
1555 */
1556 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1557 err = -EPROTO;
1558 goto err_stop_timer;
1559 }
1560
1561 ep->plen = (u8) plen;
1562
1563 /*
1564 * If we don't have all the pdata yet, then bail.
1565 * We'll continue process when more data arrives.
1566 */
1567 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1568 return 0;
1569
1570 if (mpa->flags & MPA_REJECT) {
1571 err = -ECONNREFUSED;
1572 goto err_stop_timer;
1573 }
1574
1575 /*
1576 * Stop mpa timer. If it expired, then
1577 * we ignore the MPA reply. process_timeout()
1578 * will abort the connection.
1579 */
1580 if (stop_ep_timer(ep))
1581 return 0;
1582
1583 /*
1584 * If we get here we have accumulated the entire mpa
1585 * start reply message including private data. And
1586 * the MPA header is valid.
1587 */
1588 __state_set(&ep->com, FPDU_MODE);
1589 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1590 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1591 ep->mpa_attr.version = mpa->revision;
1592 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1593
1594 if (mpa->revision == 2) {
1595 ep->mpa_attr.enhanced_rdma_conn =
1596 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1597 if (ep->mpa_attr.enhanced_rdma_conn) {
1598 mpa_v2_params = (struct mpa_v2_conn_params *)
1599 (ep->mpa_pkt + sizeof(*mpa));
1600 resp_ird = ntohs(mpa_v2_params->ird) &
1601 MPA_V2_IRD_ORD_MASK;
1602 resp_ord = ntohs(mpa_v2_params->ord) &
1603 MPA_V2_IRD_ORD_MASK;
1604 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1605 __func__, resp_ird, resp_ord, ep->ird, ep->ord);
1606
1607 /*
1608 * This is a double-check. Ideally, below checks are
1609 * not required since ird/ord stuff has been taken
1610 * care of in c4iw_accept_cr
1611 */
1612 if (ep->ird < resp_ord) {
1613 if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1614 ep->com.dev->rdev.lldi.max_ordird_qp)
1615 ep->ird = resp_ord;
1616 else
1617 insuff_ird = 1;
1618 } else if (ep->ird > resp_ord) {
1619 ep->ird = resp_ord;
1620 }
1621 if (ep->ord > resp_ird) {
1622 if (RELAXED_IRD_NEGOTIATION)
1623 ep->ord = resp_ird;
1624 else
1625 insuff_ird = 1;
1626 }
1627 if (insuff_ird) {
1628 err = -ENOMEM;
1629 ep->ird = resp_ord;
1630 ep->ord = resp_ird;
1631 }
1632
1633 if (ntohs(mpa_v2_params->ird) &
1634 MPA_V2_PEER2PEER_MODEL) {
1635 if (ntohs(mpa_v2_params->ord) &
1636 MPA_V2_RDMA_WRITE_RTR)
1637 ep->mpa_attr.p2p_type =
1638 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1639 else if (ntohs(mpa_v2_params->ord) &
1640 MPA_V2_RDMA_READ_RTR)
1641 ep->mpa_attr.p2p_type =
1642 FW_RI_INIT_P2PTYPE_READ_REQ;
1643 }
1644 }
1645 } else if (mpa->revision == 1)
1646 if (peer2peer)
1647 ep->mpa_attr.p2p_type = p2p_type;
1648
1649 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1650 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1651 "%d\n", __func__, ep->mpa_attr.crc_enabled,
1652 ep->mpa_attr.recv_marker_enabled,
1653 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1654 ep->mpa_attr.p2p_type, p2p_type);
1655
1656 /*
1657 * If responder's RTR does not match with that of initiator, assign
1658 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1659 * generated when moving QP to RTS state.
1660 * A TERM message will be sent after QP has moved to RTS state
1661 */
1662 if ((ep->mpa_attr.version == 2) && peer2peer &&
1663 (ep->mpa_attr.p2p_type != p2p_type)) {
1664 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1665 rtr_mismatch = 1;
1666 }
1667
1668 attrs.mpa_attr = ep->mpa_attr;
1669 attrs.max_ird = ep->ird;
1670 attrs.max_ord = ep->ord;
1671 attrs.llp_stream_handle = ep;
1672 attrs.next_state = C4IW_QP_STATE_RTS;
1673
1674 mask = C4IW_QP_ATTR_NEXT_STATE |
1675 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1676 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1677
1678 /* bind QP and TID with INIT_WR */
1679 err = c4iw_modify_qp(ep->com.qp->rhp,
1680 ep->com.qp, mask, &attrs, 1);
1681 if (err)
1682 goto err;
1683
1684 /*
1685 * If responder's RTR requirement did not match with what initiator
1686 * supports, generate TERM message
1687 */
1688 if (rtr_mismatch) {
1689 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1690 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1691 attrs.ecode = MPA_NOMATCH_RTR;
1692 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1693 attrs.send_term = 1;
1694 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1695 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1696 err = -ENOMEM;
1697 disconnect = 1;
1698 goto out;
1699 }
1700
1701 /*
1702 * Generate TERM if initiator IRD is not sufficient for responder
1703 * provided ORD. Currently, we do the same behaviour even when
1704 * responder provided IRD is also not sufficient as regards to
1705 * initiator ORD.
1706 */
1707 if (insuff_ird) {
1708 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1709 __func__);
1710 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1711 attrs.ecode = MPA_INSUFF_IRD;
1712 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1713 attrs.send_term = 1;
1714 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1715 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1716 err = -ENOMEM;
1717 disconnect = 1;
1718 goto out;
1719 }
1720 goto out;
1721 err_stop_timer:
1722 stop_ep_timer(ep);
1723 err:
1724 disconnect = 2;
1725 out:
1726 connect_reply_upcall(ep, err);
1727 return disconnect;
1728 }
1729
1730 /*
1731 * process_mpa_request - process streaming mode MPA request
1732 *
1733 * Returns:
1734 *
1735 * 0 upon success indicating a connect request was delivered to the ULP
1736 * or the mpa request is incomplete but valid so far.
1737 *
1738 * 1 if a failure requires the caller to close the connection.
1739 *
1740 * 2 if a failure requires the caller to abort the connection.
1741 */
1742 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1743 {
1744 struct mpa_message *mpa;
1745 struct mpa_v2_conn_params *mpa_v2_params;
1746 u16 plen;
1747
1748 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1749
1750 /*
1751 * If we get more than the supported amount of private data
1752 * then we must fail this connection.
1753 */
1754 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1755 goto err_stop_timer;
1756
1757 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1758
1759 /*
1760 * Copy the new data into our accumulation buffer.
1761 */
1762 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1763 skb->len);
1764 ep->mpa_pkt_len += skb->len;
1765
1766 /*
1767 * If we don't even have the mpa message, then bail.
1768 * We'll continue process when more data arrives.
1769 */
1770 if (ep->mpa_pkt_len < sizeof(*mpa))
1771 return 0;
1772
1773 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1774 mpa = (struct mpa_message *) ep->mpa_pkt;
1775
1776 /*
1777 * Validate MPA Header.
1778 */
1779 if (mpa->revision > mpa_rev) {
1780 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1781 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1782 goto err_stop_timer;
1783 }
1784
1785 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1786 goto err_stop_timer;
1787
1788 plen = ntohs(mpa->private_data_size);
1789
1790 /*
1791 * Fail if there's too much private data.
1792 */
1793 if (plen > MPA_MAX_PRIVATE_DATA)
1794 goto err_stop_timer;
1795
1796 /*
1797 * If plen does not account for pkt size
1798 */
1799 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1800 goto err_stop_timer;
1801 ep->plen = (u8) plen;
1802
1803 /*
1804 * If we don't have all the pdata yet, then bail.
1805 */
1806 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1807 return 0;
1808
1809 /*
1810 * If we get here we have accumulated the entire mpa
1811 * start reply message including private data.
1812 */
1813 ep->mpa_attr.initiator = 0;
1814 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1815 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1816 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1817 ep->mpa_attr.version = mpa->revision;
1818 if (mpa->revision == 1)
1819 ep->tried_with_mpa_v1 = 1;
1820 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1821
1822 if (mpa->revision == 2) {
1823 ep->mpa_attr.enhanced_rdma_conn =
1824 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1825 if (ep->mpa_attr.enhanced_rdma_conn) {
1826 mpa_v2_params = (struct mpa_v2_conn_params *)
1827 (ep->mpa_pkt + sizeof(*mpa));
1828 ep->ird = ntohs(mpa_v2_params->ird) &
1829 MPA_V2_IRD_ORD_MASK;
1830 ep->ird = min_t(u32, ep->ird,
1831 cur_max_read_depth(ep->com.dev));
1832 ep->ord = ntohs(mpa_v2_params->ord) &
1833 MPA_V2_IRD_ORD_MASK;
1834 ep->ord = min_t(u32, ep->ord,
1835 cur_max_read_depth(ep->com.dev));
1836 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1837 ep->ord);
1838 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1839 if (peer2peer) {
1840 if (ntohs(mpa_v2_params->ord) &
1841 MPA_V2_RDMA_WRITE_RTR)
1842 ep->mpa_attr.p2p_type =
1843 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1844 else if (ntohs(mpa_v2_params->ord) &
1845 MPA_V2_RDMA_READ_RTR)
1846 ep->mpa_attr.p2p_type =
1847 FW_RI_INIT_P2PTYPE_READ_REQ;
1848 }
1849 }
1850 } else if (mpa->revision == 1)
1851 if (peer2peer)
1852 ep->mpa_attr.p2p_type = p2p_type;
1853
1854 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1855 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1856 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1857 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1858 ep->mpa_attr.p2p_type);
1859
1860 __state_set(&ep->com, MPA_REQ_RCVD);
1861
1862 /* drive upcall */
1863 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1864 if (ep->parent_ep->com.state != DEAD) {
1865 if (connect_request_upcall(ep))
1866 goto err_unlock_parent;
1867 } else {
1868 goto err_unlock_parent;
1869 }
1870 mutex_unlock(&ep->parent_ep->com.mutex);
1871 return 0;
1872
1873 err_unlock_parent:
1874 mutex_unlock(&ep->parent_ep->com.mutex);
1875 goto err_out;
1876 err_stop_timer:
1877 (void)stop_ep_timer(ep);
1878 err_out:
1879 return 2;
1880 }
1881
1882 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1883 {
1884 struct c4iw_ep *ep;
1885 struct cpl_rx_data *hdr = cplhdr(skb);
1886 unsigned int dlen = ntohs(hdr->len);
1887 unsigned int tid = GET_TID(hdr);
1888 __u8 status = hdr->status;
1889 int disconnect = 0;
1890
1891 ep = get_ep_from_tid(dev, tid);
1892 if (!ep)
1893 return 0;
1894 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1895 skb_pull(skb, sizeof(*hdr));
1896 skb_trim(skb, dlen);
1897 mutex_lock(&ep->com.mutex);
1898
1899 /* update RX credits */
1900 update_rx_credits(ep, dlen);
1901
1902 switch (ep->com.state) {
1903 case MPA_REQ_SENT:
1904 ep->rcv_seq += dlen;
1905 disconnect = process_mpa_reply(ep, skb);
1906 break;
1907 case MPA_REQ_WAIT:
1908 ep->rcv_seq += dlen;
1909 disconnect = process_mpa_request(ep, skb);
1910 break;
1911 case FPDU_MODE: {
1912 struct c4iw_qp_attributes attrs;
1913 BUG_ON(!ep->com.qp);
1914 if (status)
1915 pr_err("%s Unexpected streaming data." \
1916 " qpid %u ep %p state %d tid %u status %d\n",
1917 __func__, ep->com.qp->wq.sq.qid, ep,
1918 ep->com.state, ep->hwtid, status);
1919 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1920 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1921 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1922 disconnect = 1;
1923 break;
1924 }
1925 default:
1926 break;
1927 }
1928 mutex_unlock(&ep->com.mutex);
1929 if (disconnect)
1930 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1931 c4iw_put_ep(&ep->com);
1932 return 0;
1933 }
1934
1935 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1936 {
1937 struct c4iw_ep *ep;
1938 struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1939 int release = 0;
1940 unsigned int tid = GET_TID(rpl);
1941
1942 ep = get_ep_from_tid(dev, tid);
1943 if (!ep) {
1944 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1945 return 0;
1946 }
1947 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1948 mutex_lock(&ep->com.mutex);
1949 switch (ep->com.state) {
1950 case ABORTING:
1951 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1952 __state_set(&ep->com, DEAD);
1953 release = 1;
1954 break;
1955 default:
1956 printk(KERN_ERR "%s ep %p state %d\n",
1957 __func__, ep, ep->com.state);
1958 break;
1959 }
1960 mutex_unlock(&ep->com.mutex);
1961
1962 if (release)
1963 release_ep_resources(ep);
1964 c4iw_put_ep(&ep->com);
1965 return 0;
1966 }
1967
1968 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1969 {
1970 struct sk_buff *skb;
1971 struct fw_ofld_connection_wr *req;
1972 unsigned int mtu_idx;
1973 int wscale;
1974 struct sockaddr_in *sin;
1975 int win;
1976
1977 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1978 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1979 memset(req, 0, sizeof(*req));
1980 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1981 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1982 req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1983 ep->com.dev->rdev.lldi.ports[0],
1984 ep->l2t));
1985 sin = (struct sockaddr_in *)&ep->com.local_addr;
1986 req->le.lport = sin->sin_port;
1987 req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1988 sin = (struct sockaddr_in *)&ep->com.remote_addr;
1989 req->le.pport = sin->sin_port;
1990 req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1991 req->tcb.t_state_to_astid =
1992 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1993 FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1994 req->tcb.cplrxdataack_cplpassacceptrpl =
1995 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1996 req->tcb.tx_max = (__force __be32) jiffies;
1997 req->tcb.rcv_adv = htons(1);
1998 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1999 enable_tcp_timestamps,
2000 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2001 wscale = compute_wscale(rcv_win);
2002
2003 /*
2004 * Specify the largest window that will fit in opt0. The
2005 * remainder will be specified in the rx_data_ack.
2006 */
2007 win = ep->rcv_win >> 10;
2008 if (win > RCV_BUFSIZ_M)
2009 win = RCV_BUFSIZ_M;
2010
2011 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
2012 (nocong ? NO_CONG_F : 0) |
2013 KEEP_ALIVE_F |
2014 DELACK_F |
2015 WND_SCALE_V(wscale) |
2016 MSS_IDX_V(mtu_idx) |
2017 L2T_IDX_V(ep->l2t->idx) |
2018 TX_CHAN_V(ep->tx_chan) |
2019 SMAC_SEL_V(ep->smac_idx) |
2020 DSCP_V(ep->tos >> 2) |
2021 ULP_MODE_V(ULP_MODE_TCPDDP) |
2022 RCV_BUFSIZ_V(win));
2023 req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2024 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2025 RX_CHANNEL_V(0) |
2026 CCTRL_ECN_V(enable_ecn) |
2027 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2028 if (enable_tcp_timestamps)
2029 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2030 if (enable_tcp_sack)
2031 req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2032 if (wscale && enable_tcp_window_scaling)
2033 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2034 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2035 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2036 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2037 set_bit(ACT_OFLD_CONN, &ep->com.history);
2038 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2039 }
2040
2041 /*
2042 * Some of the error codes above implicitly indicate that there is no TID
2043 * allocated with the result of an ACT_OPEN. We use this predicate to make
2044 * that explicit.
2045 */
2046 static inline int act_open_has_tid(int status)
2047 {
2048 return (status != CPL_ERR_TCAM_PARITY &&
2049 status != CPL_ERR_TCAM_MISS &&
2050 status != CPL_ERR_TCAM_FULL &&
2051 status != CPL_ERR_CONN_EXIST_SYNRECV &&
2052 status != CPL_ERR_CONN_EXIST);
2053 }
2054
2055 /* Returns whether a CPL status conveys negative advice.
2056 */
2057 static int is_neg_adv(unsigned int status)
2058 {
2059 return status == CPL_ERR_RTX_NEG_ADVICE ||
2060 status == CPL_ERR_PERSIST_NEG_ADVICE ||
2061 status == CPL_ERR_KEEPALV_NEG_ADVICE;
2062 }
2063
2064 static char *neg_adv_str(unsigned int status)
2065 {
2066 switch (status) {
2067 case CPL_ERR_RTX_NEG_ADVICE:
2068 return "Retransmit timeout";
2069 case CPL_ERR_PERSIST_NEG_ADVICE:
2070 return "Persist timeout";
2071 case CPL_ERR_KEEPALV_NEG_ADVICE:
2072 return "Keepalive timeout";
2073 default:
2074 return "Unknown";
2075 }
2076 }
2077
2078 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2079 {
2080 ep->snd_win = snd_win;
2081 ep->rcv_win = rcv_win;
2082 PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
2083 }
2084
2085 #define ACT_OPEN_RETRY_COUNT 2
2086
2087 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2088 struct dst_entry *dst, struct c4iw_dev *cdev,
2089 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2090 {
2091 struct neighbour *n;
2092 int err, step;
2093 struct net_device *pdev;
2094
2095 n = dst_neigh_lookup(dst, peer_ip);
2096 if (!n)
2097 return -ENODEV;
2098
2099 rcu_read_lock();
2100 err = -ENOMEM;
2101 if (n->dev->flags & IFF_LOOPBACK) {
2102 if (iptype == 4)
2103 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2104 else if (IS_ENABLED(CONFIG_IPV6))
2105 for_each_netdev(&init_net, pdev) {
2106 if (ipv6_chk_addr(&init_net,
2107 (struct in6_addr *)peer_ip,
2108 pdev, 1))
2109 break;
2110 }
2111 else
2112 pdev = NULL;
2113
2114 if (!pdev) {
2115 err = -ENODEV;
2116 goto out;
2117 }
2118 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2119 n, pdev, rt_tos2priority(tos));
2120 if (!ep->l2t)
2121 goto out;
2122 ep->mtu = pdev->mtu;
2123 ep->tx_chan = cxgb4_port_chan(pdev);
2124 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2125 cxgb4_port_viid(pdev));
2126 step = cdev->rdev.lldi.ntxq /
2127 cdev->rdev.lldi.nchan;
2128 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2129 step = cdev->rdev.lldi.nrxq /
2130 cdev->rdev.lldi.nchan;
2131 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2132 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2133 cxgb4_port_idx(pdev) * step];
2134 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2135 dev_put(pdev);
2136 } else {
2137 pdev = get_real_dev(n->dev);
2138 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2139 n, pdev, 0);
2140 if (!ep->l2t)
2141 goto out;
2142 ep->mtu = dst_mtu(dst);
2143 ep->tx_chan = cxgb4_port_chan(pdev);
2144 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2145 cxgb4_port_viid(pdev));
2146 step = cdev->rdev.lldi.ntxq /
2147 cdev->rdev.lldi.nchan;
2148 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2149 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2150 step = cdev->rdev.lldi.nrxq /
2151 cdev->rdev.lldi.nchan;
2152 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2153 cxgb4_port_idx(pdev) * step];
2154 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2155
2156 if (clear_mpa_v1) {
2157 ep->retry_with_mpa_v1 = 0;
2158 ep->tried_with_mpa_v1 = 0;
2159 }
2160 }
2161 err = 0;
2162 out:
2163 rcu_read_unlock();
2164
2165 neigh_release(n);
2166
2167 return err;
2168 }
2169
2170 static int c4iw_reconnect(struct c4iw_ep *ep)
2171 {
2172 int err = 0;
2173 int size = 0;
2174 struct sockaddr_in *laddr = (struct sockaddr_in *)
2175 &ep->com.cm_id->m_local_addr;
2176 struct sockaddr_in *raddr = (struct sockaddr_in *)
2177 &ep->com.cm_id->m_remote_addr;
2178 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2179 &ep->com.cm_id->m_local_addr;
2180 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2181 &ep->com.cm_id->m_remote_addr;
2182 int iptype;
2183 __u8 *ra;
2184
2185 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
2186 init_timer(&ep->timer);
2187 c4iw_init_wr_wait(&ep->com.wr_wait);
2188
2189 /* When MPA revision is different on nodes, the node with MPA_rev=2
2190 * tries to reconnect with MPA_rev 1 for the same EP through
2191 * c4iw_reconnect(), where the same EP is assigned with new tid for
2192 * further connection establishment. As we are using the same EP pointer
2193 * for reconnect, few skbs are used during the previous c4iw_connect(),
2194 * which leaves the EP with inadequate skbs for further
2195 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty
2196 * skb_list() during peer_abort(). Allocate skbs which is already used.
2197 */
2198 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2199 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2200 err = -ENOMEM;
2201 goto fail1;
2202 }
2203
2204 /*
2205 * Allocate an active TID to initiate a TCP connection.
2206 */
2207 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2208 if (ep->atid == -1) {
2209 pr_err("%s - cannot alloc atid.\n", __func__);
2210 err = -ENOMEM;
2211 goto fail2;
2212 }
2213 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2214
2215 /* find a route */
2216 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2217 ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr,
2218 raddr->sin_addr.s_addr, laddr->sin_port,
2219 raddr->sin_port, ep->com.cm_id->tos);
2220 iptype = 4;
2221 ra = (__u8 *)&raddr->sin_addr;
2222 } else {
2223 ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr,
2224 raddr6->sin6_addr.s6_addr,
2225 laddr6->sin6_port, raddr6->sin6_port, 0,
2226 raddr6->sin6_scope_id);
2227 iptype = 6;
2228 ra = (__u8 *)&raddr6->sin6_addr;
2229 }
2230 if (!ep->dst) {
2231 pr_err("%s - cannot find route.\n", __func__);
2232 err = -EHOSTUNREACH;
2233 goto fail3;
2234 }
2235 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2236 ep->com.dev->rdev.lldi.adapter_type,
2237 ep->com.cm_id->tos);
2238 if (err) {
2239 pr_err("%s - cannot alloc l2e.\n", __func__);
2240 goto fail4;
2241 }
2242
2243 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2244 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2245 ep->l2t->idx);
2246
2247 state_set(&ep->com, CONNECTING);
2248 ep->tos = ep->com.cm_id->tos;
2249
2250 /* send connect request to rnic */
2251 err = send_connect(ep);
2252 if (!err)
2253 goto out;
2254
2255 cxgb4_l2t_release(ep->l2t);
2256 fail4:
2257 dst_release(ep->dst);
2258 fail3:
2259 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2260 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2261 fail2:
2262 /*
2263 * remember to send notification to upper layer.
2264 * We are in here so the upper layer is not aware that this is
2265 * re-connect attempt and so, upper layer is still waiting for
2266 * response of 1st connect request.
2267 */
2268 connect_reply_upcall(ep, -ECONNRESET);
2269 fail1:
2270 c4iw_put_ep(&ep->com);
2271 out:
2272 return err;
2273 }
2274
2275 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2276 {
2277 struct c4iw_ep *ep;
2278 struct cpl_act_open_rpl *rpl = cplhdr(skb);
2279 unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2280 ntohl(rpl->atid_status)));
2281 struct tid_info *t = dev->rdev.lldi.tids;
2282 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2283 struct sockaddr_in *la;
2284 struct sockaddr_in *ra;
2285 struct sockaddr_in6 *la6;
2286 struct sockaddr_in6 *ra6;
2287 int ret = 0;
2288
2289 ep = lookup_atid(t, atid);
2290 la = (struct sockaddr_in *)&ep->com.local_addr;
2291 ra = (struct sockaddr_in *)&ep->com.remote_addr;
2292 la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2293 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2294
2295 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2296 status, status2errno(status));
2297
2298 if (is_neg_adv(status)) {
2299 PDBG("%s Connection problems for atid %u status %u (%s)\n",
2300 __func__, atid, status, neg_adv_str(status));
2301 ep->stats.connect_neg_adv++;
2302 mutex_lock(&dev->rdev.stats.lock);
2303 dev->rdev.stats.neg_adv++;
2304 mutex_unlock(&dev->rdev.stats.lock);
2305 return 0;
2306 }
2307
2308 set_bit(ACT_OPEN_RPL, &ep->com.history);
2309
2310 /*
2311 * Log interesting failures.
2312 */
2313 switch (status) {
2314 case CPL_ERR_CONN_RESET:
2315 case CPL_ERR_CONN_TIMEDOUT:
2316 break;
2317 case CPL_ERR_TCAM_FULL:
2318 mutex_lock(&dev->rdev.stats.lock);
2319 dev->rdev.stats.tcam_full++;
2320 mutex_unlock(&dev->rdev.stats.lock);
2321 if (ep->com.local_addr.ss_family == AF_INET &&
2322 dev->rdev.lldi.enable_fw_ofld_conn) {
2323 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2324 ntohl(rpl->atid_status))));
2325 if (ret)
2326 goto fail;
2327 return 0;
2328 }
2329 break;
2330 case CPL_ERR_CONN_EXIST:
2331 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2332 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2333 if (ep->com.remote_addr.ss_family == AF_INET6) {
2334 struct sockaddr_in6 *sin6 =
2335 (struct sockaddr_in6 *)
2336 &ep->com.local_addr;
2337 cxgb4_clip_release(
2338 ep->com.dev->rdev.lldi.ports[0],
2339 (const u32 *)
2340 &sin6->sin6_addr.s6_addr, 1);
2341 }
2342 remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2343 atid);
2344 cxgb4_free_atid(t, atid);
2345 dst_release(ep->dst);
2346 cxgb4_l2t_release(ep->l2t);
2347 c4iw_reconnect(ep);
2348 return 0;
2349 }
2350 break;
2351 default:
2352 if (ep->com.local_addr.ss_family == AF_INET) {
2353 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2354 atid, status, status2errno(status),
2355 &la->sin_addr.s_addr, ntohs(la->sin_port),
2356 &ra->sin_addr.s_addr, ntohs(ra->sin_port));
2357 } else {
2358 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2359 atid, status, status2errno(status),
2360 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2361 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2362 }
2363 break;
2364 }
2365
2366 fail:
2367 connect_reply_upcall(ep, status2errno(status));
2368 state_set(&ep->com, DEAD);
2369
2370 if (ep->com.remote_addr.ss_family == AF_INET6) {
2371 struct sockaddr_in6 *sin6 =
2372 (struct sockaddr_in6 *)&ep->com.local_addr;
2373 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2374 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2375 }
2376 if (status && act_open_has_tid(status))
2377 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
2378
2379 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2380 cxgb4_free_atid(t, atid);
2381 dst_release(ep->dst);
2382 cxgb4_l2t_release(ep->l2t);
2383 c4iw_put_ep(&ep->com);
2384
2385 return 0;
2386 }
2387
2388 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2389 {
2390 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2391 unsigned int stid = GET_TID(rpl);
2392 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2393
2394 if (!ep) {
2395 PDBG("%s stid %d lookup failure!\n", __func__, stid);
2396 goto out;
2397 }
2398 PDBG("%s ep %p status %d error %d\n", __func__, ep,
2399 rpl->status, status2errno(rpl->status));
2400 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2401 c4iw_put_ep(&ep->com);
2402 out:
2403 return 0;
2404 }
2405
2406 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2407 {
2408 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2409 unsigned int stid = GET_TID(rpl);
2410 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2411
2412 PDBG("%s ep %p\n", __func__, ep);
2413 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2414 c4iw_put_ep(&ep->com);
2415 return 0;
2416 }
2417
2418 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2419 struct cpl_pass_accept_req *req)
2420 {
2421 struct cpl_pass_accept_rpl *rpl;
2422 unsigned int mtu_idx;
2423 u64 opt0;
2424 u32 opt2;
2425 int wscale;
2426 struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2427 int win;
2428 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2429
2430 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2431 BUG_ON(skb_cloned(skb));
2432
2433 skb_get(skb);
2434 rpl = cplhdr(skb);
2435 if (!is_t4(adapter_type)) {
2436 skb_trim(skb, roundup(sizeof(*rpl5), 16));
2437 rpl5 = (void *)rpl;
2438 INIT_TP_WR(rpl5, ep->hwtid);
2439 } else {
2440 skb_trim(skb, sizeof(*rpl));
2441 INIT_TP_WR(rpl, ep->hwtid);
2442 }
2443 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2444 ep->hwtid));
2445
2446 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2447 enable_tcp_timestamps && req->tcpopt.tstamp,
2448 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2449 wscale = compute_wscale(rcv_win);
2450
2451 /*
2452 * Specify the largest window that will fit in opt0. The
2453 * remainder will be specified in the rx_data_ack.
2454 */
2455 win = ep->rcv_win >> 10;
2456 if (win > RCV_BUFSIZ_M)
2457 win = RCV_BUFSIZ_M;
2458 opt0 = (nocong ? NO_CONG_F : 0) |
2459 KEEP_ALIVE_F |
2460 DELACK_F |
2461 WND_SCALE_V(wscale) |
2462 MSS_IDX_V(mtu_idx) |
2463 L2T_IDX_V(ep->l2t->idx) |
2464 TX_CHAN_V(ep->tx_chan) |
2465 SMAC_SEL_V(ep->smac_idx) |
2466 DSCP_V(ep->tos >> 2) |
2467 ULP_MODE_V(ULP_MODE_TCPDDP) |
2468 RCV_BUFSIZ_V(win);
2469 opt2 = RX_CHANNEL_V(0) |
2470 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2471
2472 if (enable_tcp_timestamps && req->tcpopt.tstamp)
2473 opt2 |= TSTAMPS_EN_F;
2474 if (enable_tcp_sack && req->tcpopt.sack)
2475 opt2 |= SACK_EN_F;
2476 if (wscale && enable_tcp_window_scaling)
2477 opt2 |= WND_SCALE_EN_F;
2478 if (enable_ecn) {
2479 const struct tcphdr *tcph;
2480 u32 hlen = ntohl(req->hdr_len);
2481
2482 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2483 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2484 IP_HDR_LEN_G(hlen);
2485 else
2486 tcph = (const void *)(req + 1) +
2487 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2488 if (tcph->ece && tcph->cwr)
2489 opt2 |= CCTRL_ECN_V(1);
2490 }
2491 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2492 u32 isn = (prandom_u32() & ~7UL) - 1;
2493 opt2 |= T5_OPT_2_VALID_F;
2494 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2495 opt2 |= T5_ISS_F;
2496 rpl5 = (void *)rpl;
2497 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2498 if (peer2peer)
2499 isn += 4;
2500 rpl5->iss = cpu_to_be32(isn);
2501 PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2502 }
2503
2504 rpl->opt0 = cpu_to_be64(opt0);
2505 rpl->opt2 = cpu_to_be32(opt2);
2506 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2507 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2508
2509 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2510 }
2511
2512 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2513 {
2514 PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2515 BUG_ON(skb_cloned(skb));
2516 skb_trim(skb, sizeof(struct cpl_tid_release));
2517 release_tid(&dev->rdev, hwtid, skb);
2518 return;
2519 }
2520
2521 static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type,
2522 int *iptype, __u8 *local_ip, __u8 *peer_ip,
2523 __be16 *local_port, __be16 *peer_port)
2524 {
2525 int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2526 ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2527 T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2528 int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2529 IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2530 T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2531 struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
2532 struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
2533 struct tcphdr *tcp = (struct tcphdr *)
2534 ((u8 *)(req + 1) + eth_len + ip_len);
2535
2536 if (ip->version == 4) {
2537 PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
2538 ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
2539 ntohs(tcp->dest));
2540 *iptype = 4;
2541 memcpy(peer_ip, &ip->saddr, 4);
2542 memcpy(local_ip, &ip->daddr, 4);
2543 } else {
2544 PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__,
2545 ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source),
2546 ntohs(tcp->dest));
2547 *iptype = 6;
2548 memcpy(peer_ip, ip6->saddr.s6_addr, 16);
2549 memcpy(local_ip, ip6->daddr.s6_addr, 16);
2550 }
2551 *peer_port = tcp->source;
2552 *local_port = tcp->dest;
2553
2554 return;
2555 }
2556
2557 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2558 {
2559 struct c4iw_ep *child_ep = NULL, *parent_ep;
2560 struct cpl_pass_accept_req *req = cplhdr(skb);
2561 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2562 struct tid_info *t = dev->rdev.lldi.tids;
2563 unsigned int hwtid = GET_TID(req);
2564 struct dst_entry *dst;
2565 __u8 local_ip[16], peer_ip[16];
2566 __be16 local_port, peer_port;
2567 struct sockaddr_in6 *sin6;
2568 int err;
2569 u16 peer_mss = ntohs(req->tcpopt.mss);
2570 int iptype;
2571 unsigned short hdrs;
2572 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2573
2574 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2575 if (!parent_ep) {
2576 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2577 goto reject;
2578 }
2579
2580 if (state_read(&parent_ep->com) != LISTEN) {
2581 PDBG("%s - listening ep not in LISTEN\n", __func__);
2582 goto reject;
2583 }
2584
2585 get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype,
2586 local_ip, peer_ip, &local_port, &peer_port);
2587
2588 /* Find output route */
2589 if (iptype == 4) {
2590 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2591 , __func__, parent_ep, hwtid,
2592 local_ip, peer_ip, ntohs(local_port),
2593 ntohs(peer_port), peer_mss);
2594 dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip,
2595 local_port, peer_port,
2596 tos);
2597 } else {
2598 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2599 , __func__, parent_ep, hwtid,
2600 local_ip, peer_ip, ntohs(local_port),
2601 ntohs(peer_port), peer_mss);
2602 dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port,
2603 PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2604 ((struct sockaddr_in6 *)
2605 &parent_ep->com.local_addr)->sin6_scope_id);
2606 }
2607 if (!dst) {
2608 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
2609 __func__);
2610 goto reject;
2611 }
2612
2613 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2614 if (!child_ep) {
2615 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
2616 __func__);
2617 dst_release(dst);
2618 goto reject;
2619 }
2620
2621 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2622 parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2623 if (err) {
2624 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
2625 __func__);
2626 dst_release(dst);
2627 kfree(child_ep);
2628 goto reject;
2629 }
2630
2631 hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
2632 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2633 if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2634 child_ep->mtu = peer_mss + hdrs;
2635
2636 skb_queue_head_init(&child_ep->com.ep_skb_list);
2637 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2638 goto fail;
2639
2640 state_set(&child_ep->com, CONNECTING);
2641 child_ep->com.dev = dev;
2642 child_ep->com.cm_id = NULL;
2643
2644 if (iptype == 4) {
2645 struct sockaddr_in *sin = (struct sockaddr_in *)
2646 &child_ep->com.local_addr;
2647
2648 sin->sin_family = PF_INET;
2649 sin->sin_port = local_port;
2650 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2651
2652 sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2653 sin->sin_family = PF_INET;
2654 sin->sin_port = ((struct sockaddr_in *)
2655 &parent_ep->com.local_addr)->sin_port;
2656 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2657
2658 sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2659 sin->sin_family = PF_INET;
2660 sin->sin_port = peer_port;
2661 sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2662 } else {
2663 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2664 sin6->sin6_family = PF_INET6;
2665 sin6->sin6_port = local_port;
2666 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2667
2668 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2669 sin6->sin6_family = PF_INET6;
2670 sin6->sin6_port = ((struct sockaddr_in6 *)
2671 &parent_ep->com.local_addr)->sin6_port;
2672 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2673
2674 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2675 sin6->sin6_family = PF_INET6;
2676 sin6->sin6_port = peer_port;
2677 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2678 }
2679
2680 c4iw_get_ep(&parent_ep->com);
2681 child_ep->parent_ep = parent_ep;
2682 child_ep->tos = tos;
2683 child_ep->dst = dst;
2684 child_ep->hwtid = hwtid;
2685
2686 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2687 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2688
2689 init_timer(&child_ep->timer);
2690 cxgb4_insert_tid(t, child_ep, hwtid);
2691 insert_ep_tid(child_ep);
2692 if (accept_cr(child_ep, skb, req)) {
2693 c4iw_put_ep(&parent_ep->com);
2694 release_ep_resources(child_ep);
2695 } else {
2696 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2697 }
2698 if (iptype == 6) {
2699 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2700 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2701 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2702 }
2703 goto out;
2704 fail:
2705 c4iw_put_ep(&child_ep->com);
2706 reject:
2707 reject_cr(dev, hwtid, skb);
2708 if (parent_ep)
2709 c4iw_put_ep(&parent_ep->com);
2710 out:
2711 return 0;
2712 }
2713
2714 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2715 {
2716 struct c4iw_ep *ep;
2717 struct cpl_pass_establish *req = cplhdr(skb);
2718 unsigned int tid = GET_TID(req);
2719 int ret;
2720
2721 ep = get_ep_from_tid(dev, tid);
2722 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2723 ep->snd_seq = be32_to_cpu(req->snd_isn);
2724 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2725
2726 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2727 ntohs(req->tcp_opt));
2728
2729 set_emss(ep, ntohs(req->tcp_opt));
2730
2731 dst_confirm(ep->dst);
2732 mutex_lock(&ep->com.mutex);
2733 ep->com.state = MPA_REQ_WAIT;
2734 start_ep_timer(ep);
2735 set_bit(PASS_ESTAB, &ep->com.history);
2736 ret = send_flowc(ep);
2737 mutex_unlock(&ep->com.mutex);
2738 if (ret)
2739 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2740 c4iw_put_ep(&ep->com);
2741
2742 return 0;
2743 }
2744
2745 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2746 {
2747 struct cpl_peer_close *hdr = cplhdr(skb);
2748 struct c4iw_ep *ep;
2749 struct c4iw_qp_attributes attrs;
2750 int disconnect = 1;
2751 int release = 0;
2752 unsigned int tid = GET_TID(hdr);
2753 int ret;
2754
2755 ep = get_ep_from_tid(dev, tid);
2756 if (!ep)
2757 return 0;
2758
2759 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2760 dst_confirm(ep->dst);
2761
2762 set_bit(PEER_CLOSE, &ep->com.history);
2763 mutex_lock(&ep->com.mutex);
2764 switch (ep->com.state) {
2765 case MPA_REQ_WAIT:
2766 __state_set(&ep->com, CLOSING);
2767 break;
2768 case MPA_REQ_SENT:
2769 __state_set(&ep->com, CLOSING);
2770 connect_reply_upcall(ep, -ECONNRESET);
2771 break;
2772 case MPA_REQ_RCVD:
2773
2774 /*
2775 * We're gonna mark this puppy DEAD, but keep
2776 * the reference on it until the ULP accepts or
2777 * rejects the CR. Also wake up anyone waiting
2778 * in rdma connection migration (see c4iw_accept_cr()).
2779 */
2780 __state_set(&ep->com, CLOSING);
2781 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2782 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2783 break;
2784 case MPA_REP_SENT:
2785 __state_set(&ep->com, CLOSING);
2786 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2787 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2788 break;
2789 case FPDU_MODE:
2790 start_ep_timer(ep);
2791 __state_set(&ep->com, CLOSING);
2792 attrs.next_state = C4IW_QP_STATE_CLOSING;
2793 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2794 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2795 if (ret != -ECONNRESET) {
2796 peer_close_upcall(ep);
2797 disconnect = 1;
2798 }
2799 break;
2800 case ABORTING:
2801 disconnect = 0;
2802 break;
2803 case CLOSING:
2804 __state_set(&ep->com, MORIBUND);
2805 disconnect = 0;
2806 break;
2807 case MORIBUND:
2808 (void)stop_ep_timer(ep);
2809 if (ep->com.cm_id && ep->com.qp) {
2810 attrs.next_state = C4IW_QP_STATE_IDLE;
2811 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2812 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2813 }
2814 close_complete_upcall(ep, 0);
2815 __state_set(&ep->com, DEAD);
2816 release = 1;
2817 disconnect = 0;
2818 break;
2819 case DEAD:
2820 disconnect = 0;
2821 break;
2822 default:
2823 BUG_ON(1);
2824 }
2825 mutex_unlock(&ep->com.mutex);
2826 if (disconnect)
2827 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2828 if (release)
2829 release_ep_resources(ep);
2830 c4iw_put_ep(&ep->com);
2831 return 0;
2832 }
2833
2834 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2835 {
2836 struct cpl_abort_req_rss *req = cplhdr(skb);
2837 struct c4iw_ep *ep;
2838 struct cpl_abort_rpl *rpl;
2839 struct sk_buff *rpl_skb;
2840 struct c4iw_qp_attributes attrs;
2841 int ret;
2842 int release = 0;
2843 unsigned int tid = GET_TID(req);
2844
2845 ep = get_ep_from_tid(dev, tid);
2846 if (!ep)
2847 return 0;
2848
2849 if (is_neg_adv(req->status)) {
2850 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2851 __func__, ep->hwtid, req->status,
2852 neg_adv_str(req->status));
2853 ep->stats.abort_neg_adv++;
2854 mutex_lock(&dev->rdev.stats.lock);
2855 dev->rdev.stats.neg_adv++;
2856 mutex_unlock(&dev->rdev.stats.lock);
2857 goto deref_ep;
2858 }
2859 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2860 ep->com.state);
2861 set_bit(PEER_ABORT, &ep->com.history);
2862
2863 /*
2864 * Wake up any threads in rdma_init() or rdma_fini().
2865 * However, this is not needed if com state is just
2866 * MPA_REQ_SENT
2867 */
2868 if (ep->com.state != MPA_REQ_SENT)
2869 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2870
2871 mutex_lock(&ep->com.mutex);
2872 switch (ep->com.state) {
2873 case CONNECTING:
2874 c4iw_put_ep(&ep->parent_ep->com);
2875 break;
2876 case MPA_REQ_WAIT:
2877 (void)stop_ep_timer(ep);
2878 break;
2879 case MPA_REQ_SENT:
2880 (void)stop_ep_timer(ep);
2881 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2882 connect_reply_upcall(ep, -ECONNRESET);
2883 else {
2884 /*
2885 * we just don't send notification upwards because we
2886 * want to retry with mpa_v1 without upper layers even
2887 * knowing it.
2888 *
2889 * do some housekeeping so as to re-initiate the
2890 * connection
2891 */
2892 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2893 mpa_rev);
2894 ep->retry_with_mpa_v1 = 1;
2895 }
2896 break;
2897 case MPA_REP_SENT:
2898 break;
2899 case MPA_REQ_RCVD:
2900 break;
2901 case MORIBUND:
2902 case CLOSING:
2903 stop_ep_timer(ep);
2904 /*FALLTHROUGH*/
2905 case FPDU_MODE:
2906 if (ep->com.cm_id && ep->com.qp) {
2907 attrs.next_state = C4IW_QP_STATE_ERROR;
2908 ret = c4iw_modify_qp(ep->com.qp->rhp,
2909 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2910 &attrs, 1);
2911 if (ret)
2912 printk(KERN_ERR MOD
2913 "%s - qp <- error failed!\n",
2914 __func__);
2915 }
2916 peer_abort_upcall(ep);
2917 break;
2918 case ABORTING:
2919 break;
2920 case DEAD:
2921 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2922 mutex_unlock(&ep->com.mutex);
2923 goto deref_ep;
2924 default:
2925 BUG_ON(1);
2926 break;
2927 }
2928 dst_confirm(ep->dst);
2929 if (ep->com.state != ABORTING) {
2930 __state_set(&ep->com, DEAD);
2931 /* we don't release if we want to retry with mpa_v1 */
2932 if (!ep->retry_with_mpa_v1)
2933 release = 1;
2934 }
2935 mutex_unlock(&ep->com.mutex);
2936
2937 rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2938 if (WARN_ON(!rpl_skb)) {
2939 release = 1;
2940 goto out;
2941 }
2942 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2943 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2944 INIT_TP_WR(rpl, ep->hwtid);
2945 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2946 rpl->cmd = CPL_ABORT_NO_RST;
2947 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2948 out:
2949 if (release)
2950 release_ep_resources(ep);
2951 else if (ep->retry_with_mpa_v1) {
2952 if (ep->com.remote_addr.ss_family == AF_INET6) {
2953 struct sockaddr_in6 *sin6 =
2954 (struct sockaddr_in6 *)
2955 &ep->com.local_addr;
2956 cxgb4_clip_release(
2957 ep->com.dev->rdev.lldi.ports[0],
2958 (const u32 *)&sin6->sin6_addr.s6_addr,
2959 1);
2960 }
2961 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2962 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2963 dst_release(ep->dst);
2964 cxgb4_l2t_release(ep->l2t);
2965 c4iw_reconnect(ep);
2966 }
2967
2968 deref_ep:
2969 c4iw_put_ep(&ep->com);
2970 /* Dereferencing ep, referenced in peer_abort_intr() */
2971 c4iw_put_ep(&ep->com);
2972 return 0;
2973 }
2974
2975 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2976 {
2977 struct c4iw_ep *ep;
2978 struct c4iw_qp_attributes attrs;
2979 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2980 int release = 0;
2981 unsigned int tid = GET_TID(rpl);
2982
2983 ep = get_ep_from_tid(dev, tid);
2984 if (!ep)
2985 return 0;
2986
2987 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2988 BUG_ON(!ep);
2989
2990 /* The cm_id may be null if we failed to connect */
2991 mutex_lock(&ep->com.mutex);
2992 set_bit(CLOSE_CON_RPL, &ep->com.history);
2993 switch (ep->com.state) {
2994 case CLOSING:
2995 __state_set(&ep->com, MORIBUND);
2996 break;
2997 case MORIBUND:
2998 (void)stop_ep_timer(ep);
2999 if ((ep->com.cm_id) && (ep->com.qp)) {
3000 attrs.next_state = C4IW_QP_STATE_IDLE;
3001 c4iw_modify_qp(ep->com.qp->rhp,
3002 ep->com.qp,
3003 C4IW_QP_ATTR_NEXT_STATE,
3004 &attrs, 1);
3005 }
3006 close_complete_upcall(ep, 0);
3007 __state_set(&ep->com, DEAD);
3008 release = 1;
3009 break;
3010 case ABORTING:
3011 case DEAD:
3012 break;
3013 default:
3014 BUG_ON(1);
3015 break;
3016 }
3017 mutex_unlock(&ep->com.mutex);
3018 if (release)
3019 release_ep_resources(ep);
3020 c4iw_put_ep(&ep->com);
3021 return 0;
3022 }
3023
3024 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3025 {
3026 struct cpl_rdma_terminate *rpl = cplhdr(skb);
3027 unsigned int tid = GET_TID(rpl);
3028 struct c4iw_ep *ep;
3029 struct c4iw_qp_attributes attrs;
3030
3031 ep = get_ep_from_tid(dev, tid);
3032 BUG_ON(!ep);
3033
3034 if (ep && ep->com.qp) {
3035 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
3036 ep->com.qp->wq.sq.qid);
3037 attrs.next_state = C4IW_QP_STATE_TERMINATE;
3038 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3039 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3040 } else
3041 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
3042 c4iw_put_ep(&ep->com);
3043
3044 return 0;
3045 }
3046
3047 /*
3048 * Upcall from the adapter indicating data has been transmitted.
3049 * For us its just the single MPA request or reply. We can now free
3050 * the skb holding the mpa message.
3051 */
3052 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3053 {
3054 struct c4iw_ep *ep;
3055 struct cpl_fw4_ack *hdr = cplhdr(skb);
3056 u8 credits = hdr->credits;
3057 unsigned int tid = GET_TID(hdr);
3058
3059
3060 ep = get_ep_from_tid(dev, tid);
3061 if (!ep)
3062 return 0;
3063 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
3064 if (credits == 0) {
3065 PDBG("%s 0 credit ack ep %p tid %u state %u\n",
3066 __func__, ep, ep->hwtid, state_read(&ep->com));
3067 goto out;
3068 }
3069
3070 dst_confirm(ep->dst);
3071 if (ep->mpa_skb) {
3072 PDBG("%s last streaming msg ack ep %p tid %u state %u "
3073 "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
3074 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
3075 mutex_lock(&ep->com.mutex);
3076 kfree_skb(ep->mpa_skb);
3077 ep->mpa_skb = NULL;
3078 if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3079 stop_ep_timer(ep);
3080 mutex_unlock(&ep->com.mutex);
3081 }
3082 out:
3083 c4iw_put_ep(&ep->com);
3084 return 0;
3085 }
3086
3087 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3088 {
3089 int abort;
3090 struct c4iw_ep *ep = to_ep(cm_id);
3091
3092 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3093
3094 mutex_lock(&ep->com.mutex);
3095 if (ep->com.state != MPA_REQ_RCVD) {
3096 mutex_unlock(&ep->com.mutex);
3097 c4iw_put_ep(&ep->com);
3098 return -ECONNRESET;
3099 }
3100 set_bit(ULP_REJECT, &ep->com.history);
3101 if (mpa_rev == 0)
3102 abort = 1;
3103 else
3104 abort = send_mpa_reject(ep, pdata, pdata_len);
3105 mutex_unlock(&ep->com.mutex);
3106
3107 stop_ep_timer(ep);
3108 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3109 c4iw_put_ep(&ep->com);
3110 return 0;
3111 }
3112
3113 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3114 {
3115 int err;
3116 struct c4iw_qp_attributes attrs;
3117 enum c4iw_qp_attr_mask mask;
3118 struct c4iw_ep *ep = to_ep(cm_id);
3119 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3120 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3121 int abort = 0;
3122
3123 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3124
3125 mutex_lock(&ep->com.mutex);
3126 if (ep->com.state != MPA_REQ_RCVD) {
3127 err = -ECONNRESET;
3128 goto err_out;
3129 }
3130
3131 BUG_ON(!qp);
3132
3133 set_bit(ULP_ACCEPT, &ep->com.history);
3134 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3135 (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3136 err = -EINVAL;
3137 goto err_abort;
3138 }
3139
3140 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3141 if (conn_param->ord > ep->ird) {
3142 if (RELAXED_IRD_NEGOTIATION) {
3143 conn_param->ord = ep->ird;
3144 } else {
3145 ep->ird = conn_param->ird;
3146 ep->ord = conn_param->ord;
3147 send_mpa_reject(ep, conn_param->private_data,
3148 conn_param->private_data_len);
3149 err = -ENOMEM;
3150 goto err_abort;
3151 }
3152 }
3153 if (conn_param->ird < ep->ord) {
3154 if (RELAXED_IRD_NEGOTIATION &&
3155 ep->ord <= h->rdev.lldi.max_ordird_qp) {
3156 conn_param->ird = ep->ord;
3157 } else {
3158 err = -ENOMEM;
3159 goto err_abort;
3160 }
3161 }
3162 }
3163 ep->ird = conn_param->ird;
3164 ep->ord = conn_param->ord;
3165
3166 if (ep->mpa_attr.version == 1) {
3167 if (peer2peer && ep->ird == 0)
3168 ep->ird = 1;
3169 } else {
3170 if (peer2peer &&
3171 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3172 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3173 ep->ird = 1;
3174 }
3175
3176 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
3177
3178 ep->com.cm_id = cm_id;
3179 ref_cm_id(&ep->com);
3180 ep->com.qp = qp;
3181 ref_qp(ep);
3182
3183 /* bind QP to EP and move to RTS */
3184 attrs.mpa_attr = ep->mpa_attr;
3185 attrs.max_ird = ep->ird;
3186 attrs.max_ord = ep->ord;
3187 attrs.llp_stream_handle = ep;
3188 attrs.next_state = C4IW_QP_STATE_RTS;
3189
3190 /* bind QP and TID with INIT_WR */
3191 mask = C4IW_QP_ATTR_NEXT_STATE |
3192 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3193 C4IW_QP_ATTR_MPA_ATTR |
3194 C4IW_QP_ATTR_MAX_IRD |
3195 C4IW_QP_ATTR_MAX_ORD;
3196
3197 err = c4iw_modify_qp(ep->com.qp->rhp,
3198 ep->com.qp, mask, &attrs, 1);
3199 if (err)
3200 goto err_deref_cm_id;
3201
3202 set_bit(STOP_MPA_TIMER, &ep->com.flags);
3203 err = send_mpa_reply(ep, conn_param->private_data,
3204 conn_param->private_data_len);
3205 if (err)
3206 goto err_deref_cm_id;
3207
3208 __state_set(&ep->com, FPDU_MODE);
3209 established_upcall(ep);
3210 mutex_unlock(&ep->com.mutex);
3211 c4iw_put_ep(&ep->com);
3212 return 0;
3213 err_deref_cm_id:
3214 deref_cm_id(&ep->com);
3215 err_abort:
3216 abort = 1;
3217 err_out:
3218 mutex_unlock(&ep->com.mutex);
3219 if (abort)
3220 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3221 c4iw_put_ep(&ep->com);
3222 return err;
3223 }
3224
3225 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3226 {
3227 struct in_device *ind;
3228 int found = 0;
3229 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3230 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3231
3232 ind = in_dev_get(dev->rdev.lldi.ports[0]);
3233 if (!ind)
3234 return -EADDRNOTAVAIL;
3235 for_primary_ifa(ind) {
3236 laddr->sin_addr.s_addr = ifa->ifa_address;
3237 raddr->sin_addr.s_addr = ifa->ifa_address;
3238 found = 1;
3239 break;
3240 }
3241 endfor_ifa(ind);
3242 in_dev_put(ind);
3243 return found ? 0 : -EADDRNOTAVAIL;
3244 }
3245
3246 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3247 unsigned char banned_flags)
3248 {
3249 struct inet6_dev *idev;
3250 int err = -EADDRNOTAVAIL;
3251
3252 rcu_read_lock();
3253 idev = __in6_dev_get(dev);
3254 if (idev != NULL) {
3255 struct inet6_ifaddr *ifp;
3256
3257 read_lock_bh(&idev->lock);
3258 list_for_each_entry(ifp, &idev->addr_list, if_list) {
3259 if (ifp->scope == IFA_LINK &&
3260 !(ifp->flags & banned_flags)) {
3261 memcpy(addr, &ifp->addr, 16);
3262 err = 0;
3263 break;
3264 }
3265 }
3266 read_unlock_bh(&idev->lock);
3267 }
3268 rcu_read_unlock();
3269 return err;
3270 }
3271
3272 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3273 {
3274 struct in6_addr uninitialized_var(addr);
3275 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3276 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3277
3278 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3279 memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3280 memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3281 return 0;
3282 }
3283 return -EADDRNOTAVAIL;
3284 }
3285
3286 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3287 {
3288 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3289 struct c4iw_ep *ep;
3290 int err = 0;
3291 struct sockaddr_in *laddr;
3292 struct sockaddr_in *raddr;
3293 struct sockaddr_in6 *laddr6;
3294 struct sockaddr_in6 *raddr6;
3295 __u8 *ra;
3296 int iptype;
3297
3298 if ((conn_param->ord > cur_max_read_depth(dev)) ||
3299 (conn_param->ird > cur_max_read_depth(dev))) {
3300 err = -EINVAL;
3301 goto out;
3302 }
3303 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3304 if (!ep) {
3305 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3306 err = -ENOMEM;
3307 goto out;
3308 }
3309
3310 skb_queue_head_init(&ep->com.ep_skb_list);
3311 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3312 err = -ENOMEM;
3313 goto fail1;
3314 }
3315
3316 init_timer(&ep->timer);
3317 ep->plen = conn_param->private_data_len;
3318 if (ep->plen)
3319 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3320 conn_param->private_data, ep->plen);
3321 ep->ird = conn_param->ird;
3322 ep->ord = conn_param->ord;
3323
3324 if (peer2peer && ep->ord == 0)
3325 ep->ord = 1;
3326
3327 ep->com.cm_id = cm_id;
3328 ref_cm_id(&ep->com);
3329 ep->com.dev = dev;
3330 ep->com.qp = get_qhp(dev, conn_param->qpn);
3331 if (!ep->com.qp) {
3332 PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3333 err = -EINVAL;
3334 goto fail2;
3335 }
3336 ref_qp(ep);
3337 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3338 ep->com.qp, cm_id);
3339
3340 /*
3341 * Allocate an active TID to initiate a TCP connection.
3342 */
3343 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3344 if (ep->atid == -1) {
3345 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
3346 err = -ENOMEM;
3347 goto fail2;
3348 }
3349 insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3350
3351 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3352 sizeof(ep->com.local_addr));
3353 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3354 sizeof(ep->com.remote_addr));
3355
3356 laddr = (struct sockaddr_in *)&ep->com.local_addr;
3357 raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3358 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3359 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3360
3361 if (cm_id->m_remote_addr.ss_family == AF_INET) {
3362 iptype = 4;
3363 ra = (__u8 *)&raddr->sin_addr;
3364
3365 /*
3366 * Handle loopback requests to INADDR_ANY.
3367 */
3368 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3369 err = pick_local_ipaddrs(dev, cm_id);
3370 if (err)
3371 goto fail2;
3372 }
3373
3374 /* find a route */
3375 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3376 __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3377 ra, ntohs(raddr->sin_port));
3378 ep->dst = find_route(dev, laddr->sin_addr.s_addr,
3379 raddr->sin_addr.s_addr, laddr->sin_port,
3380 raddr->sin_port, cm_id->tos);
3381 } else {
3382 iptype = 6;
3383 ra = (__u8 *)&raddr6->sin6_addr;
3384
3385 /*
3386 * Handle loopback requests to INADDR_ANY.
3387 */
3388 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3389 err = pick_local_ip6addrs(dev, cm_id);
3390 if (err)
3391 goto fail2;
3392 }
3393
3394 /* find a route */
3395 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3396 __func__, laddr6->sin6_addr.s6_addr,
3397 ntohs(laddr6->sin6_port),
3398 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3399 ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr,
3400 raddr6->sin6_addr.s6_addr,
3401 laddr6->sin6_port, raddr6->sin6_port, 0,
3402 raddr6->sin6_scope_id);
3403 }
3404 if (!ep->dst) {
3405 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
3406 err = -EHOSTUNREACH;
3407 goto fail3;
3408 }
3409
3410 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3411 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3412 if (err) {
3413 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
3414 goto fail4;
3415 }
3416
3417 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3418 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3419 ep->l2t->idx);
3420
3421 state_set(&ep->com, CONNECTING);
3422 ep->tos = cm_id->tos;
3423
3424 /* send connect request to rnic */
3425 err = send_connect(ep);
3426 if (!err)
3427 goto out;
3428
3429 cxgb4_l2t_release(ep->l2t);
3430 fail4:
3431 dst_release(ep->dst);
3432 fail3:
3433 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3434 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3435 fail2:
3436 skb_queue_purge(&ep->com.ep_skb_list);
3437 deref_cm_id(&ep->com);
3438 fail1:
3439 c4iw_put_ep(&ep->com);
3440 out:
3441 return err;
3442 }
3443
3444 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3445 {
3446 int err;
3447 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3448 &ep->com.local_addr;
3449
3450 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3451 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3452 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3453 if (err)
3454 return err;
3455 }
3456 c4iw_init_wr_wait(&ep->com.wr_wait);
3457 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3458 ep->stid, &sin6->sin6_addr,
3459 sin6->sin6_port,
3460 ep->com.dev->rdev.lldi.rxq_ids[0]);
3461 if (!err)
3462 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3463 &ep->com.wr_wait,
3464 0, 0, __func__);
3465 else if (err > 0)
3466 err = net_xmit_errno(err);
3467 if (err) {
3468 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3469 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3470 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3471 err, ep->stid,
3472 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3473 }
3474 return err;
3475 }
3476
3477 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3478 {
3479 int err;
3480 struct sockaddr_in *sin = (struct sockaddr_in *)
3481 &ep->com.local_addr;
3482
3483 if (dev->rdev.lldi.enable_fw_ofld_conn) {
3484 do {
3485 err = cxgb4_create_server_filter(
3486 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3487 sin->sin_addr.s_addr, sin->sin_port, 0,
3488 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3489 if (err == -EBUSY) {
3490 if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3491 err = -EIO;
3492 break;
3493 }
3494 set_current_state(TASK_UNINTERRUPTIBLE);
3495 schedule_timeout(usecs_to_jiffies(100));
3496 }
3497 } while (err == -EBUSY);
3498 } else {
3499 c4iw_init_wr_wait(&ep->com.wr_wait);
3500 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3501 ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3502 0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3503 if (!err)
3504 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3505 &ep->com.wr_wait,
3506 0, 0, __func__);
3507 else if (err > 0)
3508 err = net_xmit_errno(err);
3509 }
3510 if (err)
3511 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3512 , err, ep->stid,
3513 &sin->sin_addr, ntohs(sin->sin_port));
3514 return err;
3515 }
3516
3517 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3518 {
3519 int err = 0;
3520 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3521 struct c4iw_listen_ep *ep;
3522
3523 might_sleep();
3524
3525 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3526 if (!ep) {
3527 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3528 err = -ENOMEM;
3529 goto fail1;
3530 }
3531 skb_queue_head_init(&ep->com.ep_skb_list);
3532 PDBG("%s ep %p\n", __func__, ep);
3533 ep->com.cm_id = cm_id;
3534 ref_cm_id(&ep->com);
3535 ep->com.dev = dev;
3536 ep->backlog = backlog;
3537 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3538 sizeof(ep->com.local_addr));
3539
3540 /*
3541 * Allocate a server TID.
3542 */
3543 if (dev->rdev.lldi.enable_fw_ofld_conn &&
3544 ep->com.local_addr.ss_family == AF_INET)
3545 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3546 cm_id->m_local_addr.ss_family, ep);
3547 else
3548 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3549 cm_id->m_local_addr.ss_family, ep);
3550
3551 if (ep->stid == -1) {
3552 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
3553 err = -ENOMEM;
3554 goto fail2;
3555 }
3556 insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3557
3558 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3559 sizeof(ep->com.local_addr));
3560
3561 state_set(&ep->com, LISTEN);
3562 if (ep->com.local_addr.ss_family == AF_INET)
3563 err = create_server4(dev, ep);
3564 else
3565 err = create_server6(dev, ep);
3566 if (!err) {
3567 cm_id->provider_data = ep;
3568 goto out;
3569 }
3570
3571 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3572 ep->com.local_addr.ss_family);
3573 fail2:
3574 deref_cm_id(&ep->com);
3575 c4iw_put_ep(&ep->com);
3576 fail1:
3577 out:
3578 return err;
3579 }
3580
3581 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3582 {
3583 int err;
3584 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3585
3586 PDBG("%s ep %p\n", __func__, ep);
3587
3588 might_sleep();
3589 state_set(&ep->com, DEAD);
3590 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3591 ep->com.local_addr.ss_family == AF_INET) {
3592 err = cxgb4_remove_server_filter(
3593 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3594 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3595 } else {
3596 struct sockaddr_in6 *sin6;
3597 c4iw_init_wr_wait(&ep->com.wr_wait);
3598 err = cxgb4_remove_server(
3599 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3600 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3601 if (err)
3602 goto done;
3603 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3604 0, 0, __func__);
3605 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3606 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3607 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3608 }
3609 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3610 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3611 ep->com.local_addr.ss_family);
3612 done:
3613 deref_cm_id(&ep->com);
3614 c4iw_put_ep(&ep->com);
3615 return err;
3616 }
3617
3618 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3619 {
3620 int ret = 0;
3621 int close = 0;
3622 int fatal = 0;
3623 struct c4iw_rdev *rdev;
3624
3625 mutex_lock(&ep->com.mutex);
3626
3627 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
3628 states[ep->com.state], abrupt);
3629
3630 /*
3631 * Ref the ep here in case we have fatal errors causing the
3632 * ep to be released and freed.
3633 */
3634 c4iw_get_ep(&ep->com);
3635
3636 rdev = &ep->com.dev->rdev;
3637 if (c4iw_fatal_error(rdev)) {
3638 fatal = 1;
3639 close_complete_upcall(ep, -EIO);
3640 ep->com.state = DEAD;
3641 }
3642 switch (ep->com.state) {
3643 case MPA_REQ_WAIT:
3644 case MPA_REQ_SENT:
3645 case MPA_REQ_RCVD:
3646 case MPA_REP_SENT:
3647 case FPDU_MODE:
3648 case CONNECTING:
3649 close = 1;
3650 if (abrupt)
3651 ep->com.state = ABORTING;
3652 else {
3653 ep->com.state = CLOSING;
3654
3655 /*
3656 * if we close before we see the fw4_ack() then we fix
3657 * up the timer state since we're reusing it.
3658 */
3659 if (ep->mpa_skb &&
3660 test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3661 clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3662 stop_ep_timer(ep);
3663 }
3664 start_ep_timer(ep);
3665 }
3666 set_bit(CLOSE_SENT, &ep->com.flags);
3667 break;
3668 case CLOSING:
3669 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3670 close = 1;
3671 if (abrupt) {
3672 (void)stop_ep_timer(ep);
3673 ep->com.state = ABORTING;
3674 } else
3675 ep->com.state = MORIBUND;
3676 }
3677 break;
3678 case MORIBUND:
3679 case ABORTING:
3680 case DEAD:
3681 PDBG("%s ignoring disconnect ep %p state %u\n",
3682 __func__, ep, ep->com.state);
3683 break;
3684 default:
3685 BUG();
3686 break;
3687 }
3688
3689 if (close) {
3690 if (abrupt) {
3691 set_bit(EP_DISC_ABORT, &ep->com.history);
3692 close_complete_upcall(ep, -ECONNRESET);
3693 ret = send_abort(ep);
3694 } else {
3695 set_bit(EP_DISC_CLOSE, &ep->com.history);
3696 ret = send_halfclose(ep);
3697 }
3698 if (ret) {
3699 set_bit(EP_DISC_FAIL, &ep->com.history);
3700 if (!abrupt) {
3701 stop_ep_timer(ep);
3702 close_complete_upcall(ep, -EIO);
3703 }
3704 if (ep->com.qp) {
3705 struct c4iw_qp_attributes attrs;
3706
3707 attrs.next_state = C4IW_QP_STATE_ERROR;
3708 ret = c4iw_modify_qp(ep->com.qp->rhp,
3709 ep->com.qp,
3710 C4IW_QP_ATTR_NEXT_STATE,
3711 &attrs, 1);
3712 if (ret)
3713 pr_err(MOD
3714 "%s - qp <- error failed!\n",
3715 __func__);
3716 }
3717 fatal = 1;
3718 }
3719 }
3720 mutex_unlock(&ep->com.mutex);
3721 c4iw_put_ep(&ep->com);
3722 if (fatal)
3723 release_ep_resources(ep);
3724 return ret;
3725 }
3726
3727 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3728 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3729 {
3730 struct c4iw_ep *ep;
3731 int atid = be32_to_cpu(req->tid);
3732
3733 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3734 (__force u32) req->tid);
3735 if (!ep)
3736 return;
3737
3738 switch (req->retval) {
3739 case FW_ENOMEM:
3740 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3741 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3742 send_fw_act_open_req(ep, atid);
3743 return;
3744 }
3745 case FW_EADDRINUSE:
3746 set_bit(ACT_RETRY_INUSE, &ep->com.history);
3747 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3748 send_fw_act_open_req(ep, atid);
3749 return;
3750 }
3751 break;
3752 default:
3753 pr_info("%s unexpected ofld conn wr retval %d\n",
3754 __func__, req->retval);
3755 break;
3756 }
3757 pr_err("active ofld_connect_wr failure %d atid %d\n",
3758 req->retval, atid);
3759 mutex_lock(&dev->rdev.stats.lock);
3760 dev->rdev.stats.act_ofld_conn_fails++;
3761 mutex_unlock(&dev->rdev.stats.lock);
3762 connect_reply_upcall(ep, status2errno(req->retval));
3763 state_set(&ep->com, DEAD);
3764 if (ep->com.remote_addr.ss_family == AF_INET6) {
3765 struct sockaddr_in6 *sin6 =
3766 (struct sockaddr_in6 *)&ep->com.local_addr;
3767 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3768 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3769 }
3770 remove_handle(dev, &dev->atid_idr, atid);
3771 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3772 dst_release(ep->dst);
3773 cxgb4_l2t_release(ep->l2t);
3774 c4iw_put_ep(&ep->com);
3775 }
3776
3777 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3778 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3779 {
3780 struct sk_buff *rpl_skb;
3781 struct cpl_pass_accept_req *cpl;
3782 int ret;
3783
3784 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3785 BUG_ON(!rpl_skb);
3786 if (req->retval) {
3787 PDBG("%s passive open failure %d\n", __func__, req->retval);
3788 mutex_lock(&dev->rdev.stats.lock);
3789 dev->rdev.stats.pas_ofld_conn_fails++;
3790 mutex_unlock(&dev->rdev.stats.lock);
3791 kfree_skb(rpl_skb);
3792 } else {
3793 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3794 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3795 (__force u32) htonl(
3796 (__force u32) req->tid)));
3797 ret = pass_accept_req(dev, rpl_skb);
3798 if (!ret)
3799 kfree_skb(rpl_skb);
3800 }
3801 return;
3802 }
3803
3804 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3805 {
3806 struct cpl_fw6_msg *rpl = cplhdr(skb);
3807 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3808
3809 switch (rpl->type) {
3810 case FW6_TYPE_CQE:
3811 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3812 break;
3813 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3814 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3815 switch (req->t_state) {
3816 case TCP_SYN_SENT:
3817 active_ofld_conn_reply(dev, skb, req);
3818 break;
3819 case TCP_SYN_RECV:
3820 passive_ofld_conn_reply(dev, skb, req);
3821 break;
3822 default:
3823 pr_err("%s unexpected ofld conn wr state %d\n",
3824 __func__, req->t_state);
3825 break;
3826 }
3827 break;
3828 }
3829 return 0;
3830 }
3831
3832 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3833 {
3834 __be32 l2info;
3835 __be16 hdr_len, vlantag, len;
3836 u16 eth_hdr_len;
3837 int tcp_hdr_len, ip_hdr_len;
3838 u8 intf;
3839 struct cpl_rx_pkt *cpl = cplhdr(skb);
3840 struct cpl_pass_accept_req *req;
3841 struct tcp_options_received tmp_opt;
3842 struct c4iw_dev *dev;
3843 enum chip_type type;
3844
3845 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3846 /* Store values from cpl_rx_pkt in temporary location. */
3847 vlantag = cpl->vlan;
3848 len = cpl->len;
3849 l2info = cpl->l2info;
3850 hdr_len = cpl->hdr_len;
3851 intf = cpl->iff;
3852
3853 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3854
3855 /*
3856 * We need to parse the TCP options from SYN packet.
3857 * to generate cpl_pass_accept_req.
3858 */
3859 memset(&tmp_opt, 0, sizeof(tmp_opt));
3860 tcp_clear_options(&tmp_opt);
3861 tcp_parse_options(skb, &tmp_opt, 0, NULL);
3862
3863 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
3864 memset(req, 0, sizeof(*req));
3865 req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3866 SYN_MAC_IDX_V(RX_MACIDX_G(
3867 be32_to_cpu(l2info))) |
3868 SYN_XACT_MATCH_F);
3869 type = dev->rdev.lldi.adapter_type;
3870 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3871 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3872 req->hdr_len =
3873 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3874 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3875 eth_hdr_len = is_t4(type) ?
3876 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3877 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3878 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3879 IP_HDR_LEN_V(ip_hdr_len) |
3880 ETH_HDR_LEN_V(eth_hdr_len));
3881 } else { /* T6 and later */
3882 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3883 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3884 T6_IP_HDR_LEN_V(ip_hdr_len) |
3885 T6_ETH_HDR_LEN_V(eth_hdr_len));
3886 }
3887 req->vlan = vlantag;
3888 req->len = len;
3889 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3890 PASS_OPEN_TOS_V(tos));
3891 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3892 if (tmp_opt.wscale_ok)
3893 req->tcpopt.wsf = tmp_opt.snd_wscale;
3894 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3895 if (tmp_opt.sack_ok)
3896 req->tcpopt.sack = 1;
3897 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3898 return;
3899 }
3900
3901 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3902 __be32 laddr, __be16 lport,
3903 __be32 raddr, __be16 rport,
3904 u32 rcv_isn, u32 filter, u16 window,
3905 u32 rss_qid, u8 port_id)
3906 {
3907 struct sk_buff *req_skb;
3908 struct fw_ofld_connection_wr *req;
3909 struct cpl_pass_accept_req *cpl = cplhdr(skb);
3910 int ret;
3911
3912 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3913 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
3914 memset(req, 0, sizeof(*req));
3915 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3916 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3917 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3918 req->le.filter = (__force __be32) filter;
3919 req->le.lport = lport;
3920 req->le.pport = rport;
3921 req->le.u.ipv4.lip = laddr;
3922 req->le.u.ipv4.pip = raddr;
3923 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3924 req->tcb.rcv_adv = htons(window);
3925 req->tcb.t_state_to_astid =
3926 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3927 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3928 FW_OFLD_CONNECTION_WR_ASTID_V(
3929 PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3930
3931 /*
3932 * We store the qid in opt2 which will be used by the firmware
3933 * to send us the wr response.
3934 */
3935 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3936
3937 /*
3938 * We initialize the MSS index in TCB to 0xF.
3939 * So that when driver sends cpl_pass_accept_rpl
3940 * TCB picks up the correct value. If this was 0
3941 * TP will ignore any value > 0 for MSS index.
3942 */
3943 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3944 req->cookie = (uintptr_t)skb;
3945
3946 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3947 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3948 if (ret < 0) {
3949 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3950 ret);
3951 kfree_skb(skb);
3952 kfree_skb(req_skb);
3953 }
3954 }
3955
3956 /*
3957 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3958 * messages when a filter is being used instead of server to
3959 * redirect a syn packet. When packets hit filter they are redirected
3960 * to the offload queue and driver tries to establish the connection
3961 * using firmware work request.
3962 */
3963 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3964 {
3965 int stid;
3966 unsigned int filter;
3967 struct ethhdr *eh = NULL;
3968 struct vlan_ethhdr *vlan_eh = NULL;
3969 struct iphdr *iph;
3970 struct tcphdr *tcph;
3971 struct rss_header *rss = (void *)skb->data;
3972 struct cpl_rx_pkt *cpl = (void *)skb->data;
3973 struct cpl_pass_accept_req *req = (void *)(rss + 1);
3974 struct l2t_entry *e;
3975 struct dst_entry *dst;
3976 struct c4iw_ep *lep = NULL;
3977 u16 window;
3978 struct port_info *pi;
3979 struct net_device *pdev;
3980 u16 rss_qid, eth_hdr_len;
3981 int step;
3982 u32 tx_chan;
3983 struct neighbour *neigh;
3984
3985 /* Drop all non-SYN packets */
3986 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3987 goto reject;
3988
3989 /*
3990 * Drop all packets which did not hit the filter.
3991 * Unlikely to happen.
3992 */
3993 if (!(rss->filter_hit && rss->filter_tid))
3994 goto reject;
3995
3996 /*
3997 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3998 */
3999 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4000
4001 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4002 if (!lep) {
4003 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
4004 goto reject;
4005 }
4006
4007 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4008 case CHELSIO_T4:
4009 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4010 break;
4011 case CHELSIO_T5:
4012 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4013 break;
4014 case CHELSIO_T6:
4015 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4016 break;
4017 default:
4018 pr_err("T%d Chip is not supported\n",
4019 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4020 goto reject;
4021 }
4022
4023 if (eth_hdr_len == ETH_HLEN) {
4024 eh = (struct ethhdr *)(req + 1);
4025 iph = (struct iphdr *)(eh + 1);
4026 } else {
4027 vlan_eh = (struct vlan_ethhdr *)(req + 1);
4028 iph = (struct iphdr *)(vlan_eh + 1);
4029 skb->vlan_tci = ntohs(cpl->vlan);
4030 }
4031
4032 if (iph->version != 0x4)
4033 goto reject;
4034
4035 tcph = (struct tcphdr *)(iph + 1);
4036 skb_set_network_header(skb, (void *)iph - (void *)rss);
4037 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4038 skb_get(skb);
4039
4040 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
4041 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4042 ntohs(tcph->source), iph->tos);
4043
4044 dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
4045 iph->tos);
4046 if (!dst) {
4047 pr_err("%s - failed to find dst entry!\n",
4048 __func__);
4049 goto reject;
4050 }
4051 neigh = dst_neigh_lookup_skb(dst, skb);
4052
4053 if (!neigh) {
4054 pr_err("%s - failed to allocate neigh!\n",
4055 __func__);
4056 goto free_dst;
4057 }
4058
4059 if (neigh->dev->flags & IFF_LOOPBACK) {
4060 pdev = ip_dev_find(&init_net, iph->daddr);
4061 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4062 pdev, 0);
4063 pi = (struct port_info *)netdev_priv(pdev);
4064 tx_chan = cxgb4_port_chan(pdev);
4065 dev_put(pdev);
4066 } else {
4067 pdev = get_real_dev(neigh->dev);
4068 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4069 pdev, 0);
4070 pi = (struct port_info *)netdev_priv(pdev);
4071 tx_chan = cxgb4_port_chan(pdev);
4072 }
4073 neigh_release(neigh);
4074 if (!e) {
4075 pr_err("%s - failed to allocate l2t entry!\n",
4076 __func__);
4077 goto free_dst;
4078 }
4079
4080 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4081 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4082 window = (__force u16) htons((__force u16)tcph->window);
4083
4084 /* Calcuate filter portion for LE region. */
4085 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4086 dev->rdev.lldi.ports[0],
4087 e));
4088
4089 /*
4090 * Synthesize the cpl_pass_accept_req. We have everything except the
4091 * TID. Once firmware sends a reply with TID we update the TID field
4092 * in cpl and pass it through the regular cpl_pass_accept_req path.
4093 */
4094 build_cpl_pass_accept_req(skb, stid, iph->tos);
4095 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4096 tcph->source, ntohl(tcph->seq), filter, window,
4097 rss_qid, pi->port_id);
4098 cxgb4_l2t_release(e);
4099 free_dst:
4100 dst_release(dst);
4101 reject:
4102 if (lep)
4103 c4iw_put_ep(&lep->com);
4104 return 0;
4105 }
4106
4107 /*
4108 * These are the real handlers that are called from a
4109 * work queue.
4110 */
4111 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4112 [CPL_ACT_ESTABLISH] = act_establish,
4113 [CPL_ACT_OPEN_RPL] = act_open_rpl,
4114 [CPL_RX_DATA] = rx_data,
4115 [CPL_ABORT_RPL_RSS] = abort_rpl,
4116 [CPL_ABORT_RPL] = abort_rpl,
4117 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
4118 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4119 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4120 [CPL_PASS_ESTABLISH] = pass_establish,
4121 [CPL_PEER_CLOSE] = peer_close,
4122 [CPL_ABORT_REQ_RSS] = peer_abort,
4123 [CPL_CLOSE_CON_RPL] = close_con_rpl,
4124 [CPL_RDMA_TERMINATE] = terminate,
4125 [CPL_FW4_ACK] = fw4_ack,
4126 [CPL_FW6_MSG] = deferred_fw6_msg,
4127 [CPL_RX_PKT] = rx_pkt,
4128 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4129 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4130 };
4131
4132 static void process_timeout(struct c4iw_ep *ep)
4133 {
4134 struct c4iw_qp_attributes attrs;
4135 int abort = 1;
4136
4137 mutex_lock(&ep->com.mutex);
4138 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
4139 ep->com.state);
4140 set_bit(TIMEDOUT, &ep->com.history);
4141 switch (ep->com.state) {
4142 case MPA_REQ_SENT:
4143 connect_reply_upcall(ep, -ETIMEDOUT);
4144 break;
4145 case MPA_REQ_WAIT:
4146 case MPA_REQ_RCVD:
4147 case MPA_REP_SENT:
4148 case FPDU_MODE:
4149 break;
4150 case CLOSING:
4151 case MORIBUND:
4152 if (ep->com.cm_id && ep->com.qp) {
4153 attrs.next_state = C4IW_QP_STATE_ERROR;
4154 c4iw_modify_qp(ep->com.qp->rhp,
4155 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4156 &attrs, 1);
4157 }
4158 close_complete_upcall(ep, -ETIMEDOUT);
4159 break;
4160 case ABORTING:
4161 case DEAD:
4162
4163 /*
4164 * These states are expected if the ep timed out at the same
4165 * time as another thread was calling stop_ep_timer().
4166 * So we silently do nothing for these states.
4167 */
4168 abort = 0;
4169 break;
4170 default:
4171 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4172 __func__, ep, ep->hwtid, ep->com.state);
4173 abort = 0;
4174 }
4175 mutex_unlock(&ep->com.mutex);
4176 if (abort)
4177 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4178 c4iw_put_ep(&ep->com);
4179 }
4180
4181 static void process_timedout_eps(void)
4182 {
4183 struct c4iw_ep *ep;
4184
4185 spin_lock_irq(&timeout_lock);
4186 while (!list_empty(&timeout_list)) {
4187 struct list_head *tmp;
4188
4189 tmp = timeout_list.next;
4190 list_del(tmp);
4191 tmp->next = NULL;
4192 tmp->prev = NULL;
4193 spin_unlock_irq(&timeout_lock);
4194 ep = list_entry(tmp, struct c4iw_ep, entry);
4195 process_timeout(ep);
4196 spin_lock_irq(&timeout_lock);
4197 }
4198 spin_unlock_irq(&timeout_lock);
4199 }
4200
4201 static void process_work(struct work_struct *work)
4202 {
4203 struct sk_buff *skb = NULL;
4204 struct c4iw_dev *dev;
4205 struct cpl_act_establish *rpl;
4206 unsigned int opcode;
4207 int ret;
4208
4209 process_timedout_eps();
4210 while ((skb = skb_dequeue(&rxq))) {
4211 rpl = cplhdr(skb);
4212 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4213 opcode = rpl->ot.opcode;
4214
4215 BUG_ON(!work_handlers[opcode]);
4216 ret = work_handlers[opcode](dev, skb);
4217 if (!ret)
4218 kfree_skb(skb);
4219 process_timedout_eps();
4220 }
4221 }
4222
4223 static DECLARE_WORK(skb_work, process_work);
4224
4225 static void ep_timeout(unsigned long arg)
4226 {
4227 struct c4iw_ep *ep = (struct c4iw_ep *)arg;
4228 int kickit = 0;
4229
4230 spin_lock(&timeout_lock);
4231 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4232 /*
4233 * Only insert if it is not already on the list.
4234 */
4235 if (!ep->entry.next) {
4236 list_add_tail(&ep->entry, &timeout_list);
4237 kickit = 1;
4238 }
4239 }
4240 spin_unlock(&timeout_lock);
4241 if (kickit)
4242 queue_work(workq, &skb_work);
4243 }
4244
4245 /*
4246 * All the CM events are handled on a work queue to have a safe context.
4247 */
4248 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4249 {
4250
4251 /*
4252 * Save dev in the skb->cb area.
4253 */
4254 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4255
4256 /*
4257 * Queue the skb and schedule the worker thread.
4258 */
4259 skb_queue_tail(&rxq, skb);
4260 queue_work(workq, &skb_work);
4261 return 0;
4262 }
4263
4264 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4265 {
4266 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4267
4268 if (rpl->status != CPL_ERR_NONE) {
4269 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
4270 "for tid %u\n", rpl->status, GET_TID(rpl));
4271 }
4272 kfree_skb(skb);
4273 return 0;
4274 }
4275
4276 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4277 {
4278 struct cpl_fw6_msg *rpl = cplhdr(skb);
4279 struct c4iw_wr_wait *wr_waitp;
4280 int ret;
4281
4282 PDBG("%s type %u\n", __func__, rpl->type);
4283
4284 switch (rpl->type) {
4285 case FW6_TYPE_WR_RPL:
4286 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4287 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4288 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
4289 if (wr_waitp)
4290 c4iw_wake_up(wr_waitp, ret ? -ret : 0);
4291 kfree_skb(skb);
4292 break;
4293 case FW6_TYPE_CQE:
4294 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4295 sched(dev, skb);
4296 break;
4297 default:
4298 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
4299 rpl->type);
4300 kfree_skb(skb);
4301 break;
4302 }
4303 return 0;
4304 }
4305
4306 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4307 {
4308 struct cpl_abort_req_rss *req = cplhdr(skb);
4309 struct c4iw_ep *ep;
4310 unsigned int tid = GET_TID(req);
4311
4312 ep = get_ep_from_tid(dev, tid);
4313 /* This EP will be dereferenced in peer_abort() */
4314 if (!ep) {
4315 printk(KERN_WARNING MOD
4316 "Abort on non-existent endpoint, tid %d\n", tid);
4317 kfree_skb(skb);
4318 return 0;
4319 }
4320 if (is_neg_adv(req->status)) {
4321 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4322 __func__, ep->hwtid, req->status,
4323 neg_adv_str(req->status));
4324 goto out;
4325 }
4326 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4327 ep->com.state);
4328
4329 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4330 out:
4331 sched(dev, skb);
4332 return 0;
4333 }
4334
4335 /*
4336 * Most upcalls from the T4 Core go to sched() to
4337 * schedule the processing on a work queue.
4338 */
4339 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4340 [CPL_ACT_ESTABLISH] = sched,
4341 [CPL_ACT_OPEN_RPL] = sched,
4342 [CPL_RX_DATA] = sched,
4343 [CPL_ABORT_RPL_RSS] = sched,
4344 [CPL_ABORT_RPL] = sched,
4345 [CPL_PASS_OPEN_RPL] = sched,
4346 [CPL_CLOSE_LISTSRV_RPL] = sched,
4347 [CPL_PASS_ACCEPT_REQ] = sched,
4348 [CPL_PASS_ESTABLISH] = sched,
4349 [CPL_PEER_CLOSE] = sched,
4350 [CPL_CLOSE_CON_RPL] = sched,
4351 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
4352 [CPL_RDMA_TERMINATE] = sched,
4353 [CPL_FW4_ACK] = sched,
4354 [CPL_SET_TCB_RPL] = set_tcb_rpl,
4355 [CPL_FW6_MSG] = fw6_msg,
4356 [CPL_RX_PKT] = sched
4357 };
4358
4359 int __init c4iw_cm_init(void)
4360 {
4361 spin_lock_init(&timeout_lock);
4362 skb_queue_head_init(&rxq);
4363
4364 workq = create_singlethread_workqueue("iw_cxgb4");
4365 if (!workq)
4366 return -ENOMEM;
4367
4368 return 0;
4369 }
4370
4371 void c4iw_cm_term(void)
4372 {
4373 WARN_ON(!list_empty(&timeout_list));
4374 flush_workqueue(workq);
4375 destroy_workqueue(workq);
4376 }
This page took 0.188856 seconds and 5 git commands to generate.