Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / drivers / infiniband / hw / hfi1 / driver.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62
63 #undef pr_fmt
64 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
65
66 /*
67 * The size has to be longer than this string, so we can append
68 * board/chip information to it in the initialization code.
69 */
70 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
71
72 DEFINE_SPINLOCK(hfi1_devs_lock);
73 LIST_HEAD(hfi1_dev_list);
74 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
75
76 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
77 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
79 HFI1_DEFAULT_MAX_MTU));
80
81 unsigned int hfi1_cu = 1;
82 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
83 MODULE_PARM_DESC(cu, "Credit return units");
84
85 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
86 static int hfi1_caps_set(const char *, const struct kernel_param *);
87 static int hfi1_caps_get(char *, const struct kernel_param *);
88 static const struct kernel_param_ops cap_ops = {
89 .set = hfi1_caps_set,
90 .get = hfi1_caps_get
91 };
92 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
93 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
94
95 MODULE_LICENSE("Dual BSD/GPL");
96 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
97 MODULE_VERSION(HFI1_DRIVER_VERSION);
98
99 /*
100 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
101 */
102 #define MAX_PKT_RECV 64
103 #define EGR_HEAD_UPDATE_THRESHOLD 16
104
105 struct hfi1_ib_stats hfi1_stats;
106
107 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
108 {
109 int ret = 0;
110 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
111 cap_mask = *cap_mask_ptr, value, diff,
112 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
113 HFI1_CAP_WRITABLE_MASK);
114
115 ret = kstrtoul(val, 0, &value);
116 if (ret) {
117 pr_warn("Invalid module parameter value for 'cap_mask'\n");
118 goto done;
119 }
120 /* Get the changed bits (except the locked bit) */
121 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
122
123 /* Remove any bits that are not allowed to change after driver load */
124 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
125 pr_warn("Ignoring non-writable capability bits %#lx\n",
126 diff & ~write_mask);
127 diff &= write_mask;
128 }
129
130 /* Mask off any reserved bits */
131 diff &= ~HFI1_CAP_RESERVED_MASK;
132 /* Clear any previously set and changing bits */
133 cap_mask &= ~diff;
134 /* Update the bits with the new capability */
135 cap_mask |= (value & diff);
136 /* Check for any kernel/user restrictions */
137 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
138 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
139 cap_mask &= ~diff;
140 /* Set the bitmask to the final set */
141 *cap_mask_ptr = cap_mask;
142 done:
143 return ret;
144 }
145
146 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
147 {
148 unsigned long cap_mask = *(unsigned long *)kp->arg;
149
150 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
151 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
152
153 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
154 }
155
156 const char *get_unit_name(int unit)
157 {
158 static char iname[16];
159
160 snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
161 return iname;
162 }
163
164 const char *get_card_name(struct rvt_dev_info *rdi)
165 {
166 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
167 struct hfi1_devdata *dd = container_of(ibdev,
168 struct hfi1_devdata, verbs_dev);
169 return get_unit_name(dd->unit);
170 }
171
172 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
173 {
174 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
175 struct hfi1_devdata *dd = container_of(ibdev,
176 struct hfi1_devdata, verbs_dev);
177 return dd->pcidev;
178 }
179
180 /*
181 * Return count of units with at least one port ACTIVE.
182 */
183 int hfi1_count_active_units(void)
184 {
185 struct hfi1_devdata *dd;
186 struct hfi1_pportdata *ppd;
187 unsigned long flags;
188 int pidx, nunits_active = 0;
189
190 spin_lock_irqsave(&hfi1_devs_lock, flags);
191 list_for_each_entry(dd, &hfi1_dev_list, list) {
192 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
193 continue;
194 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
195 ppd = dd->pport + pidx;
196 if (ppd->lid && ppd->linkup) {
197 nunits_active++;
198 break;
199 }
200 }
201 }
202 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
203 return nunits_active;
204 }
205
206 /*
207 * Return count of all units, optionally return in arguments
208 * the number of usable (present) units, and the number of
209 * ports that are up.
210 */
211 int hfi1_count_units(int *npresentp, int *nupp)
212 {
213 int nunits = 0, npresent = 0, nup = 0;
214 struct hfi1_devdata *dd;
215 unsigned long flags;
216 int pidx;
217 struct hfi1_pportdata *ppd;
218
219 spin_lock_irqsave(&hfi1_devs_lock, flags);
220
221 list_for_each_entry(dd, &hfi1_dev_list, list) {
222 nunits++;
223 if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
224 npresent++;
225 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
226 ppd = dd->pport + pidx;
227 if (ppd->lid && ppd->linkup)
228 nup++;
229 }
230 }
231
232 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
233
234 if (npresentp)
235 *npresentp = npresent;
236 if (nupp)
237 *nupp = nup;
238
239 return nunits;
240 }
241
242 /*
243 * Get address of eager buffer from it's index (allocated in chunks, not
244 * contiguous).
245 */
246 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
247 u8 *update)
248 {
249 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
250
251 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
252 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
253 (offset * RCV_BUF_BLOCK_SIZE));
254 }
255
256 /*
257 * Validate and encode the a given RcvArray Buffer size.
258 * The function will check whether the given size falls within
259 * allowed size ranges for the respective type and, optionally,
260 * return the proper encoding.
261 */
262 inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
263 {
264 if (unlikely(!PAGE_ALIGNED(size)))
265 return 0;
266 if (unlikely(size < MIN_EAGER_BUFFER))
267 return 0;
268 if (size >
269 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
270 return 0;
271 if (encoded)
272 *encoded = ilog2(size / PAGE_SIZE) + 1;
273 return 1;
274 }
275
276 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
277 struct hfi1_packet *packet)
278 {
279 struct hfi1_message_header *rhdr = packet->hdr;
280 u32 rte = rhf_rcv_type_err(packet->rhf);
281 int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
282 struct hfi1_ibport *ibp = &ppd->ibport_data;
283 struct hfi1_devdata *dd = ppd->dd;
284 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
285
286 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
287 return;
288
289 if (packet->rhf & RHF_TID_ERR) {
290 /* For TIDERR and RC QPs preemptively schedule a NAK */
291 struct hfi1_ib_header *hdr = (struct hfi1_ib_header *)rhdr;
292 struct hfi1_other_headers *ohdr = NULL;
293 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
294 u16 lid = be16_to_cpu(hdr->lrh[1]);
295 u32 qp_num;
296 u32 rcv_flags = 0;
297
298 /* Sanity check packet */
299 if (tlen < 24)
300 goto drop;
301
302 /* Check for GRH */
303 if (lnh == HFI1_LRH_BTH) {
304 ohdr = &hdr->u.oth;
305 } else if (lnh == HFI1_LRH_GRH) {
306 u32 vtf;
307
308 ohdr = &hdr->u.l.oth;
309 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
310 goto drop;
311 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
312 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
313 goto drop;
314 rcv_flags |= HFI1_HAS_GRH;
315 } else {
316 goto drop;
317 }
318 /* Get the destination QP number. */
319 qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
320 if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) {
321 struct rvt_qp *qp;
322 unsigned long flags;
323
324 rcu_read_lock();
325 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
326 if (!qp) {
327 rcu_read_unlock();
328 goto drop;
329 }
330
331 /*
332 * Handle only RC QPs - for other QP types drop error
333 * packet.
334 */
335 spin_lock_irqsave(&qp->r_lock, flags);
336
337 /* Check for valid receive state. */
338 if (!(ib_rvt_state_ops[qp->state] &
339 RVT_PROCESS_RECV_OK)) {
340 ibp->rvp.n_pkt_drops++;
341 }
342
343 switch (qp->ibqp.qp_type) {
344 case IB_QPT_RC:
345 hfi1_rc_hdrerr(
346 rcd,
347 hdr,
348 rcv_flags,
349 qp);
350 break;
351 default:
352 /* For now don't handle any other QP types */
353 break;
354 }
355
356 spin_unlock_irqrestore(&qp->r_lock, flags);
357 rcu_read_unlock();
358 } /* Unicast QP */
359 } /* Valid packet with TIDErr */
360
361 /* handle "RcvTypeErr" flags */
362 switch (rte) {
363 case RHF_RTE_ERROR_OP_CODE_ERR:
364 {
365 u32 opcode;
366 void *ebuf = NULL;
367 __be32 *bth = NULL;
368
369 if (rhf_use_egr_bfr(packet->rhf))
370 ebuf = packet->ebuf;
371
372 if (!ebuf)
373 goto drop; /* this should never happen */
374
375 if (lnh == HFI1_LRH_BTH)
376 bth = (__be32 *)ebuf;
377 else if (lnh == HFI1_LRH_GRH)
378 bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
379 else
380 goto drop;
381
382 opcode = be32_to_cpu(bth[0]) >> 24;
383 opcode &= 0xff;
384
385 if (opcode == IB_OPCODE_CNP) {
386 /*
387 * Only in pre-B0 h/w is the CNP_OPCODE handled
388 * via this code path.
389 */
390 struct rvt_qp *qp = NULL;
391 u32 lqpn, rqpn;
392 u16 rlid;
393 u8 svc_type, sl, sc5;
394
395 sc5 = hdr2sc(rhdr, packet->rhf);
396 sl = ibp->sc_to_sl[sc5];
397
398 lqpn = be32_to_cpu(bth[1]) & RVT_QPN_MASK;
399 rcu_read_lock();
400 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
401 if (!qp) {
402 rcu_read_unlock();
403 goto drop;
404 }
405
406 switch (qp->ibqp.qp_type) {
407 case IB_QPT_UD:
408 rlid = 0;
409 rqpn = 0;
410 svc_type = IB_CC_SVCTYPE_UD;
411 break;
412 case IB_QPT_UC:
413 rlid = be16_to_cpu(rhdr->lrh[3]);
414 rqpn = qp->remote_qpn;
415 svc_type = IB_CC_SVCTYPE_UC;
416 break;
417 default:
418 goto drop;
419 }
420
421 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
422 rcu_read_unlock();
423 }
424
425 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
426 break;
427 }
428 default:
429 break;
430 }
431
432 drop:
433 return;
434 }
435
436 static inline void init_packet(struct hfi1_ctxtdata *rcd,
437 struct hfi1_packet *packet)
438 {
439 packet->rsize = rcd->rcvhdrqentsize; /* words */
440 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
441 packet->rcd = rcd;
442 packet->updegr = 0;
443 packet->etail = -1;
444 packet->rhf_addr = get_rhf_addr(rcd);
445 packet->rhf = rhf_to_cpu(packet->rhf_addr);
446 packet->rhqoff = rcd->head;
447 packet->numpkt = 0;
448 packet->rcv_flags = 0;
449 }
450
451 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
452 bool do_cnp)
453 {
454 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
455 struct hfi1_ib_header *hdr = pkt->hdr;
456 struct hfi1_other_headers *ohdr = pkt->ohdr;
457 struct ib_grh *grh = NULL;
458 u32 rqpn = 0, bth1;
459 u16 rlid, dlid = be16_to_cpu(hdr->lrh[1]);
460 u8 sc, svc_type;
461 bool is_mcast = false;
462
463 if (pkt->rcv_flags & HFI1_HAS_GRH)
464 grh = &hdr->u.l.grh;
465
466 switch (qp->ibqp.qp_type) {
467 case IB_QPT_SMI:
468 case IB_QPT_GSI:
469 case IB_QPT_UD:
470 rlid = be16_to_cpu(hdr->lrh[3]);
471 rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK;
472 svc_type = IB_CC_SVCTYPE_UD;
473 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
474 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
475 break;
476 case IB_QPT_UC:
477 rlid = qp->remote_ah_attr.dlid;
478 rqpn = qp->remote_qpn;
479 svc_type = IB_CC_SVCTYPE_UC;
480 break;
481 case IB_QPT_RC:
482 rlid = qp->remote_ah_attr.dlid;
483 rqpn = qp->remote_qpn;
484 svc_type = IB_CC_SVCTYPE_RC;
485 break;
486 default:
487 return;
488 }
489
490 sc = hdr2sc((struct hfi1_message_header *)hdr, pkt->rhf);
491
492 bth1 = be32_to_cpu(ohdr->bth[1]);
493 if (do_cnp && (bth1 & HFI1_FECN_SMASK)) {
494 u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
495
496 return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc, grh);
497 }
498
499 if (!is_mcast && (bth1 & HFI1_BECN_SMASK)) {
500 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
501 u32 lqpn = bth1 & RVT_QPN_MASK;
502 u8 sl = ibp->sc_to_sl[sc];
503
504 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
505 }
506
507 }
508
509 struct ps_mdata {
510 struct hfi1_ctxtdata *rcd;
511 u32 rsize;
512 u32 maxcnt;
513 u32 ps_head;
514 u32 ps_tail;
515 u32 ps_seq;
516 };
517
518 static inline void init_ps_mdata(struct ps_mdata *mdata,
519 struct hfi1_packet *packet)
520 {
521 struct hfi1_ctxtdata *rcd = packet->rcd;
522
523 mdata->rcd = rcd;
524 mdata->rsize = packet->rsize;
525 mdata->maxcnt = packet->maxcnt;
526 mdata->ps_head = packet->rhqoff;
527
528 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
529 mdata->ps_tail = get_rcvhdrtail(rcd);
530 if (rcd->ctxt == HFI1_CTRL_CTXT)
531 mdata->ps_seq = rcd->seq_cnt;
532 else
533 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
534 } else {
535 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
536 mdata->ps_seq = rcd->seq_cnt;
537 }
538 }
539
540 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
541 struct hfi1_ctxtdata *rcd)
542 {
543 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
544 return mdata->ps_head == mdata->ps_tail;
545 return mdata->ps_seq != rhf_rcv_seq(rhf);
546 }
547
548 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
549 struct hfi1_ctxtdata *rcd)
550 {
551 /*
552 * Control context can potentially receive an invalid rhf.
553 * Drop such packets.
554 */
555 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
556 return mdata->ps_seq != rhf_rcv_seq(rhf);
557
558 return 0;
559 }
560
561 static inline void update_ps_mdata(struct ps_mdata *mdata,
562 struct hfi1_ctxtdata *rcd)
563 {
564 mdata->ps_head += mdata->rsize;
565 if (mdata->ps_head >= mdata->maxcnt)
566 mdata->ps_head = 0;
567
568 /* Control context must do seq counting */
569 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
570 (rcd->ctxt == HFI1_CTRL_CTXT)) {
571 if (++mdata->ps_seq > 13)
572 mdata->ps_seq = 1;
573 }
574 }
575
576 /*
577 * prescan_rxq - search through the receive queue looking for packets
578 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
579 * When an ECN is found, process the Congestion Notification, and toggle
580 * it off.
581 * This is declared as a macro to allow quick checking of the port to avoid
582 * the overhead of a function call if not enabled.
583 */
584 #define prescan_rxq(rcd, packet) \
585 do { \
586 if (rcd->ppd->cc_prescan) \
587 __prescan_rxq(packet); \
588 } while (0)
589 static void __prescan_rxq(struct hfi1_packet *packet)
590 {
591 struct hfi1_ctxtdata *rcd = packet->rcd;
592 struct ps_mdata mdata;
593
594 init_ps_mdata(&mdata, packet);
595
596 while (1) {
597 struct hfi1_devdata *dd = rcd->dd;
598 struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
599 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
600 dd->rhf_offset;
601 struct rvt_qp *qp;
602 struct hfi1_ib_header *hdr;
603 struct hfi1_other_headers *ohdr;
604 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
605 u64 rhf = rhf_to_cpu(rhf_addr);
606 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
607 int is_ecn = 0;
608 u8 lnh;
609
610 if (ps_done(&mdata, rhf, rcd))
611 break;
612
613 if (ps_skip(&mdata, rhf, rcd))
614 goto next;
615
616 if (etype != RHF_RCV_TYPE_IB)
617 goto next;
618
619 hdr = (struct hfi1_ib_header *)
620 hfi1_get_msgheader(dd, rhf_addr);
621 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
622
623 if (lnh == HFI1_LRH_BTH)
624 ohdr = &hdr->u.oth;
625 else if (lnh == HFI1_LRH_GRH)
626 ohdr = &hdr->u.l.oth;
627 else
628 goto next; /* just in case */
629
630 bth1 = be32_to_cpu(ohdr->bth[1]);
631 is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK));
632
633 if (!is_ecn)
634 goto next;
635
636 qpn = bth1 & RVT_QPN_MASK;
637 rcu_read_lock();
638 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
639
640 if (!qp) {
641 rcu_read_unlock();
642 goto next;
643 }
644
645 process_ecn(qp, packet, true);
646 rcu_read_unlock();
647
648 /* turn off BECN, FECN */
649 bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK);
650 ohdr->bth[1] = cpu_to_be32(bth1);
651 next:
652 update_ps_mdata(&mdata, rcd);
653 }
654 }
655
656 static inline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
657 {
658 int ret = RCV_PKT_OK;
659
660 /* Set up for the next packet */
661 packet->rhqoff += packet->rsize;
662 if (packet->rhqoff >= packet->maxcnt)
663 packet->rhqoff = 0;
664
665 packet->numpkt++;
666 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
667 if (thread) {
668 cond_resched();
669 } else {
670 ret = RCV_PKT_LIMIT;
671 this_cpu_inc(*packet->rcd->dd->rcv_limit);
672 }
673 }
674
675 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
676 packet->rcd->dd->rhf_offset;
677 packet->rhf = rhf_to_cpu(packet->rhf_addr);
678
679 return ret;
680 }
681
682 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
683 {
684 int ret = RCV_PKT_OK;
685
686 packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
687 packet->rhf_addr);
688 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
689 packet->etype = rhf_rcv_type(packet->rhf);
690 /* total length */
691 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
692 /* retrieve eager buffer details */
693 packet->ebuf = NULL;
694 if (rhf_use_egr_bfr(packet->rhf)) {
695 packet->etail = rhf_egr_index(packet->rhf);
696 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
697 &packet->updegr);
698 /*
699 * Prefetch the contents of the eager buffer. It is
700 * OK to send a negative length to prefetch_range().
701 * The +2 is the size of the RHF.
702 */
703 prefetch_range(packet->ebuf,
704 packet->tlen - ((packet->rcd->rcvhdrqentsize -
705 (rhf_hdrq_offset(packet->rhf)
706 + 2)) * 4));
707 }
708
709 /*
710 * Call a type specific handler for the packet. We
711 * should be able to trust that etype won't be beyond
712 * the range of valid indexes. If so something is really
713 * wrong and we can probably just let things come
714 * crashing down. There is no need to eat another
715 * comparison in this performance critical code.
716 */
717 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
718 packet->numpkt++;
719
720 /* Set up for the next packet */
721 packet->rhqoff += packet->rsize;
722 if (packet->rhqoff >= packet->maxcnt)
723 packet->rhqoff = 0;
724
725 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
726 if (thread) {
727 cond_resched();
728 } else {
729 ret = RCV_PKT_LIMIT;
730 this_cpu_inc(*packet->rcd->dd->rcv_limit);
731 }
732 }
733
734 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
735 packet->rcd->dd->rhf_offset;
736 packet->rhf = rhf_to_cpu(packet->rhf_addr);
737
738 return ret;
739 }
740
741 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
742 {
743 /*
744 * Update head regs etc., every 16 packets, if not last pkt,
745 * to help prevent rcvhdrq overflows, when many packets
746 * are processed and queue is nearly full.
747 * Don't request an interrupt for intermediate updates.
748 */
749 if (!last && !(packet->numpkt & 0xf)) {
750 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
751 packet->etail, 0, 0);
752 packet->updegr = 0;
753 }
754 packet->rcv_flags = 0;
755 }
756
757 static inline void finish_packet(struct hfi1_packet *packet)
758 {
759 /*
760 * Nothing we need to free for the packet.
761 *
762 * The only thing we need to do is a final update and call for an
763 * interrupt
764 */
765 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
766 packet->etail, rcv_intr_dynamic, packet->numpkt);
767 }
768
769 static inline void process_rcv_qp_work(struct hfi1_packet *packet)
770 {
771 struct hfi1_ctxtdata *rcd;
772 struct rvt_qp *qp, *nqp;
773
774 rcd = packet->rcd;
775 rcd->head = packet->rhqoff;
776
777 /*
778 * Iterate over all QPs waiting to respond.
779 * The list won't change since the IRQ is only run on one CPU.
780 */
781 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
782 list_del_init(&qp->rspwait);
783 if (qp->r_flags & RVT_R_RSP_NAK) {
784 qp->r_flags &= ~RVT_R_RSP_NAK;
785 hfi1_send_rc_ack(rcd, qp, 0);
786 }
787 if (qp->r_flags & RVT_R_RSP_SEND) {
788 unsigned long flags;
789
790 qp->r_flags &= ~RVT_R_RSP_SEND;
791 spin_lock_irqsave(&qp->s_lock, flags);
792 if (ib_rvt_state_ops[qp->state] &
793 RVT_PROCESS_OR_FLUSH_SEND)
794 hfi1_schedule_send(qp);
795 spin_unlock_irqrestore(&qp->s_lock, flags);
796 }
797 if (atomic_dec_and_test(&qp->refcount))
798 wake_up(&qp->wait);
799 }
800 }
801
802 /*
803 * Handle receive interrupts when using the no dma rtail option.
804 */
805 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
806 {
807 u32 seq;
808 int last = RCV_PKT_OK;
809 struct hfi1_packet packet;
810
811 init_packet(rcd, &packet);
812 seq = rhf_rcv_seq(packet.rhf);
813 if (seq != rcd->seq_cnt) {
814 last = RCV_PKT_DONE;
815 goto bail;
816 }
817
818 prescan_rxq(rcd, &packet);
819
820 while (last == RCV_PKT_OK) {
821 last = process_rcv_packet(&packet, thread);
822 seq = rhf_rcv_seq(packet.rhf);
823 if (++rcd->seq_cnt > 13)
824 rcd->seq_cnt = 1;
825 if (seq != rcd->seq_cnt)
826 last = RCV_PKT_DONE;
827 process_rcv_update(last, &packet);
828 }
829 process_rcv_qp_work(&packet);
830 bail:
831 finish_packet(&packet);
832 return last;
833 }
834
835 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
836 {
837 u32 hdrqtail;
838 int last = RCV_PKT_OK;
839 struct hfi1_packet packet;
840
841 init_packet(rcd, &packet);
842 hdrqtail = get_rcvhdrtail(rcd);
843 if (packet.rhqoff == hdrqtail) {
844 last = RCV_PKT_DONE;
845 goto bail;
846 }
847 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
848
849 prescan_rxq(rcd, &packet);
850
851 while (last == RCV_PKT_OK) {
852 last = process_rcv_packet(&packet, thread);
853 if (packet.rhqoff == hdrqtail)
854 last = RCV_PKT_DONE;
855 process_rcv_update(last, &packet);
856 }
857 process_rcv_qp_work(&packet);
858 bail:
859 finish_packet(&packet);
860 return last;
861 }
862
863 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
864 {
865 int i;
866
867 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
868 dd->rcd[i]->do_interrupt =
869 &handle_receive_interrupt_nodma_rtail;
870 }
871
872 static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
873 {
874 int i;
875
876 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
877 dd->rcd[i]->do_interrupt =
878 &handle_receive_interrupt_dma_rtail;
879 }
880
881 void set_all_slowpath(struct hfi1_devdata *dd)
882 {
883 int i;
884
885 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
886 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
887 dd->rcd[i]->do_interrupt = &handle_receive_interrupt;
888 }
889
890 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
891 struct hfi1_packet *packet,
892 struct hfi1_devdata *dd)
893 {
894 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
895 struct hfi1_message_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
896 packet->rhf_addr);
897 u8 etype = rhf_rcv_type(packet->rhf);
898
899 if (etype == RHF_RCV_TYPE_IB && hdr2sc(hdr, packet->rhf) != 0xf) {
900 int hwstate = read_logical_state(dd);
901
902 if (hwstate != LSTATE_ACTIVE) {
903 dd_dev_info(dd, "Unexpected link state %d\n", hwstate);
904 return 0;
905 }
906
907 queue_work(rcd->ppd->hfi1_wq, lsaw);
908 return 1;
909 }
910 return 0;
911 }
912
913 /*
914 * handle_receive_interrupt - receive a packet
915 * @rcd: the context
916 *
917 * Called from interrupt handler for errors or receive interrupt.
918 * This is the slow path interrupt handler.
919 */
920 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
921 {
922 struct hfi1_devdata *dd = rcd->dd;
923 u32 hdrqtail;
924 int needset, last = RCV_PKT_OK;
925 struct hfi1_packet packet;
926 int skip_pkt = 0;
927
928 /* Control context will always use the slow path interrupt handler */
929 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
930
931 init_packet(rcd, &packet);
932
933 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
934 u32 seq = rhf_rcv_seq(packet.rhf);
935
936 if (seq != rcd->seq_cnt) {
937 last = RCV_PKT_DONE;
938 goto bail;
939 }
940 hdrqtail = 0;
941 } else {
942 hdrqtail = get_rcvhdrtail(rcd);
943 if (packet.rhqoff == hdrqtail) {
944 last = RCV_PKT_DONE;
945 goto bail;
946 }
947 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
948
949 /*
950 * Control context can potentially receive an invalid
951 * rhf. Drop such packets.
952 */
953 if (rcd->ctxt == HFI1_CTRL_CTXT) {
954 u32 seq = rhf_rcv_seq(packet.rhf);
955
956 if (seq != rcd->seq_cnt)
957 skip_pkt = 1;
958 }
959 }
960
961 prescan_rxq(rcd, &packet);
962
963 while (last == RCV_PKT_OK) {
964 if (unlikely(dd->do_drop &&
965 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
966 DROP_PACKET_ON)) {
967 dd->do_drop = 0;
968
969 /* On to the next packet */
970 packet.rhqoff += packet.rsize;
971 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
972 packet.rhqoff +
973 dd->rhf_offset;
974 packet.rhf = rhf_to_cpu(packet.rhf_addr);
975
976 } else if (skip_pkt) {
977 last = skip_rcv_packet(&packet, thread);
978 skip_pkt = 0;
979 } else {
980 /* Auto activate link on non-SC15 packet receive */
981 if (unlikely(rcd->ppd->host_link_state ==
982 HLS_UP_ARMED) &&
983 set_armed_to_active(rcd, &packet, dd))
984 goto bail;
985 last = process_rcv_packet(&packet, thread);
986 }
987
988 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
989 u32 seq = rhf_rcv_seq(packet.rhf);
990
991 if (++rcd->seq_cnt > 13)
992 rcd->seq_cnt = 1;
993 if (seq != rcd->seq_cnt)
994 last = RCV_PKT_DONE;
995 if (needset) {
996 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
997 set_all_nodma_rtail(dd);
998 needset = 0;
999 }
1000 } else {
1001 if (packet.rhqoff == hdrqtail)
1002 last = RCV_PKT_DONE;
1003 /*
1004 * Control context can potentially receive an invalid
1005 * rhf. Drop such packets.
1006 */
1007 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1008 u32 seq = rhf_rcv_seq(packet.rhf);
1009
1010 if (++rcd->seq_cnt > 13)
1011 rcd->seq_cnt = 1;
1012 if (!last && (seq != rcd->seq_cnt))
1013 skip_pkt = 1;
1014 }
1015
1016 if (needset) {
1017 dd_dev_info(dd,
1018 "Switching to DMA_RTAIL\n");
1019 set_all_dma_rtail(dd);
1020 needset = 0;
1021 }
1022 }
1023
1024 process_rcv_update(last, &packet);
1025 }
1026
1027 process_rcv_qp_work(&packet);
1028
1029 bail:
1030 /*
1031 * Always write head at end, and setup rcv interrupt, even
1032 * if no packets were processed.
1033 */
1034 finish_packet(&packet);
1035 return last;
1036 }
1037
1038 /*
1039 * We may discover in the interrupt that the hardware link state has
1040 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1041 * and we need to update the driver's notion of the link state. We cannot
1042 * run set_link_state from interrupt context, so we queue this function on
1043 * a workqueue.
1044 *
1045 * We delay the regular interrupt processing until after the state changes
1046 * so that the link will be in the correct state by the time any application
1047 * we wake up attempts to send a reply to any message it received.
1048 * (Subsequent receive interrupts may possibly force the wakeup before we
1049 * update the link state.)
1050 *
1051 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1052 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1053 * so we're safe from use-after-free of the rcd.
1054 */
1055 void receive_interrupt_work(struct work_struct *work)
1056 {
1057 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1058 linkstate_active_work);
1059 struct hfi1_devdata *dd = ppd->dd;
1060 int i;
1061
1062 /* Received non-SC15 packet implies neighbor_normal */
1063 ppd->neighbor_normal = 1;
1064 set_link_state(ppd, HLS_UP_ACTIVE);
1065
1066 /*
1067 * Interrupt all kernel contexts that could have had an
1068 * interrupt during auto activation.
1069 */
1070 for (i = HFI1_CTRL_CTXT; i < dd->first_user_ctxt; i++)
1071 force_recv_intr(dd->rcd[i]);
1072 }
1073
1074 /*
1075 * Convert a given MTU size to the on-wire MAD packet enumeration.
1076 * Return -1 if the size is invalid.
1077 */
1078 int mtu_to_enum(u32 mtu, int default_if_bad)
1079 {
1080 switch (mtu) {
1081 case 0: return OPA_MTU_0;
1082 case 256: return OPA_MTU_256;
1083 case 512: return OPA_MTU_512;
1084 case 1024: return OPA_MTU_1024;
1085 case 2048: return OPA_MTU_2048;
1086 case 4096: return OPA_MTU_4096;
1087 case 8192: return OPA_MTU_8192;
1088 case 10240: return OPA_MTU_10240;
1089 }
1090 return default_if_bad;
1091 }
1092
1093 u16 enum_to_mtu(int mtu)
1094 {
1095 switch (mtu) {
1096 case OPA_MTU_0: return 0;
1097 case OPA_MTU_256: return 256;
1098 case OPA_MTU_512: return 512;
1099 case OPA_MTU_1024: return 1024;
1100 case OPA_MTU_2048: return 2048;
1101 case OPA_MTU_4096: return 4096;
1102 case OPA_MTU_8192: return 8192;
1103 case OPA_MTU_10240: return 10240;
1104 default: return 0xffff;
1105 }
1106 }
1107
1108 /*
1109 * set_mtu - set the MTU
1110 * @ppd: the per port data
1111 *
1112 * We can handle "any" incoming size, the issue here is whether we
1113 * need to restrict our outgoing size. We do not deal with what happens
1114 * to programs that are already running when the size changes.
1115 */
1116 int set_mtu(struct hfi1_pportdata *ppd)
1117 {
1118 struct hfi1_devdata *dd = ppd->dd;
1119 int i, drain, ret = 0, is_up = 0;
1120
1121 ppd->ibmtu = 0;
1122 for (i = 0; i < ppd->vls_supported; i++)
1123 if (ppd->ibmtu < dd->vld[i].mtu)
1124 ppd->ibmtu = dd->vld[i].mtu;
1125 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1126
1127 mutex_lock(&ppd->hls_lock);
1128 if (ppd->host_link_state == HLS_UP_INIT ||
1129 ppd->host_link_state == HLS_UP_ARMED ||
1130 ppd->host_link_state == HLS_UP_ACTIVE)
1131 is_up = 1;
1132
1133 drain = !is_ax(dd) && is_up;
1134
1135 if (drain)
1136 /*
1137 * MTU is specified per-VL. To ensure that no packet gets
1138 * stuck (due, e.g., to the MTU for the packet's VL being
1139 * reduced), empty the per-VL FIFOs before adjusting MTU.
1140 */
1141 ret = stop_drain_data_vls(dd);
1142
1143 if (ret) {
1144 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1145 __func__);
1146 goto err;
1147 }
1148
1149 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1150
1151 if (drain)
1152 open_fill_data_vls(dd); /* reopen all VLs */
1153
1154 err:
1155 mutex_unlock(&ppd->hls_lock);
1156
1157 return ret;
1158 }
1159
1160 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1161 {
1162 struct hfi1_devdata *dd = ppd->dd;
1163
1164 ppd->lid = lid;
1165 ppd->lmc = lmc;
1166 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1167
1168 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1169
1170 return 0;
1171 }
1172
1173 void shutdown_led_override(struct hfi1_pportdata *ppd)
1174 {
1175 struct hfi1_devdata *dd = ppd->dd;
1176
1177 /*
1178 * This pairs with the memory barrier in hfi1_start_led_override to
1179 * ensure that we read the correct state of LED beaconing represented
1180 * by led_override_timer_active
1181 */
1182 smp_rmb();
1183 if (atomic_read(&ppd->led_override_timer_active)) {
1184 del_timer_sync(&ppd->led_override_timer);
1185 atomic_set(&ppd->led_override_timer_active, 0);
1186 /* Ensure the atomic_set is visible to all CPUs */
1187 smp_wmb();
1188 }
1189
1190 /* Hand control of the LED to the DC for normal operation */
1191 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1192 }
1193
1194 static void run_led_override(unsigned long opaque)
1195 {
1196 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1197 struct hfi1_devdata *dd = ppd->dd;
1198 unsigned long timeout;
1199 int phase_idx;
1200
1201 if (!(dd->flags & HFI1_INITTED))
1202 return;
1203
1204 phase_idx = ppd->led_override_phase & 1;
1205
1206 setextled(dd, phase_idx);
1207
1208 timeout = ppd->led_override_vals[phase_idx];
1209
1210 /* Set up for next phase */
1211 ppd->led_override_phase = !ppd->led_override_phase;
1212
1213 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1214 }
1215
1216 /*
1217 * To have the LED blink in a particular pattern, provide timeon and timeoff
1218 * in milliseconds.
1219 * To turn off custom blinking and return to normal operation, use
1220 * shutdown_led_override()
1221 */
1222 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1223 unsigned int timeoff)
1224 {
1225 if (!(ppd->dd->flags & HFI1_INITTED))
1226 return;
1227
1228 /* Convert to jiffies for direct use in timer */
1229 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1230 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1231
1232 /* Arbitrarily start from LED on phase */
1233 ppd->led_override_phase = 1;
1234
1235 /*
1236 * If the timer has not already been started, do so. Use a "quick"
1237 * timeout so the handler will be called soon to look at our request.
1238 */
1239 if (!timer_pending(&ppd->led_override_timer)) {
1240 setup_timer(&ppd->led_override_timer, run_led_override,
1241 (unsigned long)ppd);
1242 ppd->led_override_timer.expires = jiffies + 1;
1243 add_timer(&ppd->led_override_timer);
1244 atomic_set(&ppd->led_override_timer_active, 1);
1245 /* Ensure the atomic_set is visible to all CPUs */
1246 smp_wmb();
1247 }
1248 }
1249
1250 /**
1251 * hfi1_reset_device - reset the chip if possible
1252 * @unit: the device to reset
1253 *
1254 * Whether or not reset is successful, we attempt to re-initialize the chip
1255 * (that is, much like a driver unload/reload). We clear the INITTED flag
1256 * so that the various entry points will fail until we reinitialize. For
1257 * now, we only allow this if no user contexts are open that use chip resources
1258 */
1259 int hfi1_reset_device(int unit)
1260 {
1261 int ret, i;
1262 struct hfi1_devdata *dd = hfi1_lookup(unit);
1263 struct hfi1_pportdata *ppd;
1264 unsigned long flags;
1265 int pidx;
1266
1267 if (!dd) {
1268 ret = -ENODEV;
1269 goto bail;
1270 }
1271
1272 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1273
1274 if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1275 dd_dev_info(dd,
1276 "Invalid unit number %u or not initialized or not present\n",
1277 unit);
1278 ret = -ENXIO;
1279 goto bail;
1280 }
1281
1282 spin_lock_irqsave(&dd->uctxt_lock, flags);
1283 if (dd->rcd)
1284 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1285 if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1286 continue;
1287 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1288 ret = -EBUSY;
1289 goto bail;
1290 }
1291 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1292
1293 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1294 ppd = dd->pport + pidx;
1295
1296 shutdown_led_override(ppd);
1297 }
1298 if (dd->flags & HFI1_HAS_SEND_DMA)
1299 sdma_exit(dd);
1300
1301 hfi1_reset_cpu_counters(dd);
1302
1303 ret = hfi1_init(dd, 1);
1304
1305 if (ret)
1306 dd_dev_err(dd,
1307 "Reinitialize unit %u after reset failed with %d\n",
1308 unit, ret);
1309 else
1310 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1311 unit);
1312
1313 bail:
1314 return ret;
1315 }
1316
1317 void handle_eflags(struct hfi1_packet *packet)
1318 {
1319 struct hfi1_ctxtdata *rcd = packet->rcd;
1320 u32 rte = rhf_rcv_type_err(packet->rhf);
1321
1322 rcv_hdrerr(rcd, rcd->ppd, packet);
1323 if (rhf_err_flags(packet->rhf))
1324 dd_dev_err(rcd->dd,
1325 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1326 rcd->ctxt, packet->rhf,
1327 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1328 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1329 packet->rhf & RHF_DC_ERR ? "dc " : "",
1330 packet->rhf & RHF_TID_ERR ? "tid " : "",
1331 packet->rhf & RHF_LEN_ERR ? "len " : "",
1332 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1333 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1334 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1335 rte);
1336 }
1337
1338 /*
1339 * The following functions are called by the interrupt handler. They are type
1340 * specific handlers for each packet type.
1341 */
1342 int process_receive_ib(struct hfi1_packet *packet)
1343 {
1344 trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1345 packet->rcd->ctxt,
1346 rhf_err_flags(packet->rhf),
1347 RHF_RCV_TYPE_IB,
1348 packet->hlen,
1349 packet->tlen,
1350 packet->updegr,
1351 rhf_egr_index(packet->rhf));
1352
1353 if (unlikely(rhf_err_flags(packet->rhf))) {
1354 handle_eflags(packet);
1355 return RHF_RCV_CONTINUE;
1356 }
1357
1358 hfi1_ib_rcv(packet);
1359 return RHF_RCV_CONTINUE;
1360 }
1361
1362 int process_receive_bypass(struct hfi1_packet *packet)
1363 {
1364 if (unlikely(rhf_err_flags(packet->rhf)))
1365 handle_eflags(packet);
1366
1367 dd_dev_err(packet->rcd->dd,
1368 "Bypass packets are not supported in normal operation. Dropping\n");
1369 incr_cntr64(&packet->rcd->dd->sw_rcv_bypass_packet_errors);
1370 return RHF_RCV_CONTINUE;
1371 }
1372
1373 int process_receive_error(struct hfi1_packet *packet)
1374 {
1375 handle_eflags(packet);
1376
1377 if (unlikely(rhf_err_flags(packet->rhf)))
1378 dd_dev_err(packet->rcd->dd,
1379 "Unhandled error packet received. Dropping.\n");
1380
1381 return RHF_RCV_CONTINUE;
1382 }
1383
1384 int kdeth_process_expected(struct hfi1_packet *packet)
1385 {
1386 if (unlikely(rhf_err_flags(packet->rhf)))
1387 handle_eflags(packet);
1388
1389 dd_dev_err(packet->rcd->dd,
1390 "Unhandled expected packet received. Dropping.\n");
1391 return RHF_RCV_CONTINUE;
1392 }
1393
1394 int kdeth_process_eager(struct hfi1_packet *packet)
1395 {
1396 if (unlikely(rhf_err_flags(packet->rhf)))
1397 handle_eflags(packet);
1398
1399 dd_dev_err(packet->rcd->dd,
1400 "Unhandled eager packet received. Dropping.\n");
1401 return RHF_RCV_CONTINUE;
1402 }
1403
1404 int process_receive_invalid(struct hfi1_packet *packet)
1405 {
1406 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1407 rhf_rcv_type(packet->rhf));
1408 return RHF_RCV_CONTINUE;
1409 }
This page took 0.061053 seconds and 5 git commands to generate.