Merge remote-tracking branch 'xen-tip/linux-next'
[deliverable/linux.git] / drivers / infiniband / hw / hfi1 / init.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <rdma/rdma_vt.h>
57
58 #include "hfi.h"
59 #include "device.h"
60 #include "common.h"
61 #include "trace.h"
62 #include "mad.h"
63 #include "sdma.h"
64 #include "debugfs.h"
65 #include "verbs.h"
66 #include "aspm.h"
67 #include "affinity.h"
68
69 #undef pr_fmt
70 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
71
72 /*
73 * min buffers we want to have per context, after driver
74 */
75 #define HFI1_MIN_USER_CTXT_BUFCNT 7
76
77 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
78 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
79 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
80 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
81
82 /*
83 * Number of user receive contexts we are configured to use (to allow for more
84 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
85 */
86 int num_user_contexts = -1;
87 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
88 MODULE_PARM_DESC(
89 num_user_contexts, "Set max number of user contexts to use");
90
91 uint krcvqs[RXE_NUM_DATA_VL];
92 int krcvqsset;
93 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
94 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
95
96 /* computed based on above array */
97 unsigned long n_krcvqs;
98
99 static unsigned hfi1_rcvarr_split = 25;
100 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
101 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
102
103 static uint eager_buffer_size = (2 << 20); /* 2MB */
104 module_param(eager_buffer_size, uint, S_IRUGO);
105 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
106
107 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
108 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
109 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
110
111 static uint hfi1_hdrq_entsize = 32;
112 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
113 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
114
115 unsigned int user_credit_return_threshold = 33; /* default is 33% */
116 module_param(user_credit_return_threshold, uint, S_IRUGO);
117 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
118
119 static inline u64 encode_rcv_header_entry_size(u16);
120
121 static struct idr hfi1_unit_table;
122 u32 hfi1_cpulist_count;
123 unsigned long *hfi1_cpulist;
124
125 /*
126 * Common code for creating the receive context array.
127 */
128 int hfi1_create_ctxts(struct hfi1_devdata *dd)
129 {
130 unsigned i;
131 int ret;
132
133 /* Control context has to be always 0 */
134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135
136 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
137 GFP_KERNEL, dd->node);
138 if (!dd->rcd)
139 goto nomem;
140
141 /* create one or more kernel contexts */
142 for (i = 0; i < dd->first_user_ctxt; ++i) {
143 struct hfi1_pportdata *ppd;
144 struct hfi1_ctxtdata *rcd;
145
146 ppd = dd->pport + (i % dd->num_pports);
147 rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
148 if (!rcd) {
149 dd_dev_err(dd,
150 "Unable to allocate kernel receive context, failing\n");
151 goto nomem;
152 }
153 /*
154 * Set up the kernel context flags here and now because they
155 * use default values for all receive side memories. User
156 * contexts will be handled as they are created.
157 */
158 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
159 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
160 HFI1_CAP_KGET(NODROP_EGR_FULL) |
161 HFI1_CAP_KGET(DMA_RTAIL);
162
163 /* Control context must use DMA_RTAIL */
164 if (rcd->ctxt == HFI1_CTRL_CTXT)
165 rcd->flags |= HFI1_CAP_DMA_RTAIL;
166 rcd->seq_cnt = 1;
167
168 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
169 if (!rcd->sc) {
170 dd_dev_err(dd,
171 "Unable to allocate kernel send context, failing\n");
172 dd->rcd[rcd->ctxt] = NULL;
173 hfi1_free_ctxtdata(dd, rcd);
174 goto nomem;
175 }
176
177 ret = hfi1_init_ctxt(rcd->sc);
178 if (ret < 0) {
179 dd_dev_err(dd,
180 "Failed to setup kernel receive context, failing\n");
181 sc_free(rcd->sc);
182 dd->rcd[rcd->ctxt] = NULL;
183 hfi1_free_ctxtdata(dd, rcd);
184 ret = -EFAULT;
185 goto bail;
186 }
187 }
188
189 /*
190 * Initialize aspm, to be done after gen3 transition and setting up
191 * contexts and before enabling interrupts
192 */
193 aspm_init(dd);
194
195 return 0;
196 nomem:
197 ret = -ENOMEM;
198 bail:
199 kfree(dd->rcd);
200 dd->rcd = NULL;
201 return ret;
202 }
203
204 /*
205 * Common code for user and kernel context setup.
206 */
207 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
208 int numa)
209 {
210 struct hfi1_devdata *dd = ppd->dd;
211 struct hfi1_ctxtdata *rcd;
212 unsigned kctxt_ngroups = 0;
213 u32 base;
214
215 if (dd->rcv_entries.nctxt_extra >
216 dd->num_rcv_contexts - dd->first_user_ctxt)
217 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
218 (dd->num_rcv_contexts - dd->first_user_ctxt));
219 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
220 if (rcd) {
221 u32 rcvtids, max_entries;
222
223 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
224
225 INIT_LIST_HEAD(&rcd->qp_wait_list);
226 rcd->ppd = ppd;
227 rcd->dd = dd;
228 rcd->cnt = 1;
229 rcd->ctxt = ctxt;
230 dd->rcd[ctxt] = rcd;
231 rcd->numa_id = numa;
232 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
233
234 mutex_init(&rcd->exp_lock);
235
236 /*
237 * Calculate the context's RcvArray entry starting point.
238 * We do this here because we have to take into account all
239 * the RcvArray entries that previous context would have
240 * taken and we have to account for any extra groups
241 * assigned to the kernel or user contexts.
242 */
243 if (ctxt < dd->first_user_ctxt) {
244 if (ctxt < kctxt_ngroups) {
245 base = ctxt * (dd->rcv_entries.ngroups + 1);
246 rcd->rcv_array_groups++;
247 } else
248 base = kctxt_ngroups +
249 (ctxt * dd->rcv_entries.ngroups);
250 } else {
251 u16 ct = ctxt - dd->first_user_ctxt;
252
253 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
254 kctxt_ngroups);
255 if (ct < dd->rcv_entries.nctxt_extra) {
256 base += ct * (dd->rcv_entries.ngroups + 1);
257 rcd->rcv_array_groups++;
258 } else
259 base += dd->rcv_entries.nctxt_extra +
260 (ct * dd->rcv_entries.ngroups);
261 }
262 rcd->eager_base = base * dd->rcv_entries.group_size;
263
264 /* Validate and initialize Rcv Hdr Q variables */
265 if (rcvhdrcnt % HDRQ_INCREMENT) {
266 dd_dev_err(dd,
267 "ctxt%u: header queue count %d must be divisible by %lu\n",
268 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
269 goto bail;
270 }
271 rcd->rcvhdrq_cnt = rcvhdrcnt;
272 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
273 /*
274 * Simple Eager buffer allocation: we have already pre-allocated
275 * the number of RcvArray entry groups. Each ctxtdata structure
276 * holds the number of groups for that context.
277 *
278 * To follow CSR requirements and maintain cacheline alignment,
279 * make sure all sizes and bases are multiples of group_size.
280 *
281 * The expected entry count is what is left after assigning
282 * eager.
283 */
284 max_entries = rcd->rcv_array_groups *
285 dd->rcv_entries.group_size;
286 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
287 rcd->egrbufs.count = round_down(rcvtids,
288 dd->rcv_entries.group_size);
289 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
290 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
291 rcd->ctxt);
292 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
293 }
294 hfi1_cdbg(PROC,
295 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
296 rcd->ctxt, rcd->egrbufs.count);
297
298 /*
299 * Allocate array that will hold the eager buffer accounting
300 * data.
301 * This will allocate the maximum possible buffer count based
302 * on the value of the RcvArray split parameter.
303 * The resulting value will be rounded down to the closest
304 * multiple of dd->rcv_entries.group_size.
305 */
306 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
307 sizeof(*rcd->egrbufs.buffers),
308 GFP_KERNEL);
309 if (!rcd->egrbufs.buffers)
310 goto bail;
311 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
312 sizeof(*rcd->egrbufs.rcvtids),
313 GFP_KERNEL);
314 if (!rcd->egrbufs.rcvtids)
315 goto bail;
316 rcd->egrbufs.size = eager_buffer_size;
317 /*
318 * The size of the buffers programmed into the RcvArray
319 * entries needs to be big enough to handle the highest
320 * MTU supported.
321 */
322 if (rcd->egrbufs.size < hfi1_max_mtu) {
323 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
324 hfi1_cdbg(PROC,
325 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
326 rcd->ctxt, rcd->egrbufs.size);
327 }
328 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
329
330 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
331 rcd->opstats = kzalloc(sizeof(*rcd->opstats),
332 GFP_KERNEL);
333 if (!rcd->opstats)
334 goto bail;
335 }
336 }
337 return rcd;
338 bail:
339 kfree(rcd->egrbufs.rcvtids);
340 kfree(rcd->egrbufs.buffers);
341 kfree(rcd);
342 return NULL;
343 }
344
345 /*
346 * Convert a receive header entry size that to the encoding used in the CSR.
347 *
348 * Return a zero if the given size is invalid.
349 */
350 static inline u64 encode_rcv_header_entry_size(u16 size)
351 {
352 /* there are only 3 valid receive header entry sizes */
353 if (size == 2)
354 return 1;
355 if (size == 16)
356 return 2;
357 else if (size == 32)
358 return 4;
359 return 0; /* invalid */
360 }
361
362 /*
363 * Select the largest ccti value over all SLs to determine the intra-
364 * packet gap for the link.
365 *
366 * called with cca_timer_lock held (to protect access to cca_timer
367 * array), and rcu_read_lock() (to protect access to cc_state).
368 */
369 void set_link_ipg(struct hfi1_pportdata *ppd)
370 {
371 struct hfi1_devdata *dd = ppd->dd;
372 struct cc_state *cc_state;
373 int i;
374 u16 cce, ccti_limit, max_ccti = 0;
375 u16 shift, mult;
376 u64 src;
377 u32 current_egress_rate; /* Mbits /sec */
378 u32 max_pkt_time;
379 /*
380 * max_pkt_time is the maximum packet egress time in units
381 * of the fabric clock period 1/(805 MHz).
382 */
383
384 cc_state = get_cc_state(ppd);
385
386 if (!cc_state)
387 /*
388 * This should _never_ happen - rcu_read_lock() is held,
389 * and set_link_ipg() should not be called if cc_state
390 * is NULL.
391 */
392 return;
393
394 for (i = 0; i < OPA_MAX_SLS; i++) {
395 u16 ccti = ppd->cca_timer[i].ccti;
396
397 if (ccti > max_ccti)
398 max_ccti = ccti;
399 }
400
401 ccti_limit = cc_state->cct.ccti_limit;
402 if (max_ccti > ccti_limit)
403 max_ccti = ccti_limit;
404
405 cce = cc_state->cct.entries[max_ccti].entry;
406 shift = (cce & 0xc000) >> 14;
407 mult = (cce & 0x3fff);
408
409 current_egress_rate = active_egress_rate(ppd);
410
411 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
412
413 src = (max_pkt_time >> shift) * mult;
414
415 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
416 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
417
418 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
419 }
420
421 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
422 {
423 struct cca_timer *cca_timer;
424 struct hfi1_pportdata *ppd;
425 int sl;
426 u16 ccti_timer, ccti_min;
427 struct cc_state *cc_state;
428 unsigned long flags;
429 enum hrtimer_restart ret = HRTIMER_NORESTART;
430
431 cca_timer = container_of(t, struct cca_timer, hrtimer);
432 ppd = cca_timer->ppd;
433 sl = cca_timer->sl;
434
435 rcu_read_lock();
436
437 cc_state = get_cc_state(ppd);
438
439 if (!cc_state) {
440 rcu_read_unlock();
441 return HRTIMER_NORESTART;
442 }
443
444 /*
445 * 1) decrement ccti for SL
446 * 2) calculate IPG for link (set_link_ipg())
447 * 3) restart timer, unless ccti is at min value
448 */
449
450 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
451 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
452
453 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
454
455 if (cca_timer->ccti > ccti_min) {
456 cca_timer->ccti--;
457 set_link_ipg(ppd);
458 }
459
460 if (cca_timer->ccti > ccti_min) {
461 unsigned long nsec = 1024 * ccti_timer;
462 /* ccti_timer is in units of 1.024 usec */
463 hrtimer_forward_now(t, ns_to_ktime(nsec));
464 ret = HRTIMER_RESTART;
465 }
466
467 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
468 rcu_read_unlock();
469 return ret;
470 }
471
472 /*
473 * Common code for initializing the physical port structure.
474 */
475 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
476 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
477 {
478 int i;
479 uint default_pkey_idx;
480 struct cc_state *cc_state;
481
482 ppd->dd = dd;
483 ppd->hw_pidx = hw_pidx;
484 ppd->port = port; /* IB port number, not index */
485
486 default_pkey_idx = 1;
487
488 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
489 if (loopback) {
490 hfi1_early_err(&pdev->dev,
491 "Faking data partition 0x8001 in idx %u\n",
492 !default_pkey_idx);
493 ppd->pkeys[!default_pkey_idx] = 0x8001;
494 }
495
496 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
497 INIT_WORK(&ppd->link_up_work, handle_link_up);
498 INIT_WORK(&ppd->link_down_work, handle_link_down);
499 INIT_WORK(&ppd->freeze_work, handle_freeze);
500 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
501 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
502 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
503 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
504 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
505 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
506
507 mutex_init(&ppd->hls_lock);
508 spin_lock_init(&ppd->sdma_alllock);
509 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
510
511 ppd->qsfp_info.ppd = ppd;
512 ppd->sm_trap_qp = 0x0;
513 ppd->sa_qp = 0x1;
514
515 ppd->hfi1_wq = NULL;
516
517 spin_lock_init(&ppd->cca_timer_lock);
518
519 for (i = 0; i < OPA_MAX_SLS; i++) {
520 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
521 HRTIMER_MODE_REL);
522 ppd->cca_timer[i].ppd = ppd;
523 ppd->cca_timer[i].sl = i;
524 ppd->cca_timer[i].ccti = 0;
525 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
526 }
527
528 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
529
530 spin_lock_init(&ppd->cc_state_lock);
531 spin_lock_init(&ppd->cc_log_lock);
532 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
533 RCU_INIT_POINTER(ppd->cc_state, cc_state);
534 if (!cc_state)
535 goto bail;
536 return;
537
538 bail:
539
540 hfi1_early_err(&pdev->dev,
541 "Congestion Control Agent disabled for port %d\n", port);
542 }
543
544 /*
545 * Do initialization for device that is only needed on
546 * first detect, not on resets.
547 */
548 static int loadtime_init(struct hfi1_devdata *dd)
549 {
550 return 0;
551 }
552
553 /**
554 * init_after_reset - re-initialize after a reset
555 * @dd: the hfi1_ib device
556 *
557 * sanity check at least some of the values after reset, and
558 * ensure no receive or transmit (explicitly, in case reset
559 * failed
560 */
561 static int init_after_reset(struct hfi1_devdata *dd)
562 {
563 int i;
564
565 /*
566 * Ensure chip does no sends or receives, tail updates, or
567 * pioavail updates while we re-initialize. This is mostly
568 * for the driver data structures, not chip registers.
569 */
570 for (i = 0; i < dd->num_rcv_contexts; i++)
571 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
572 HFI1_RCVCTRL_INTRAVAIL_DIS |
573 HFI1_RCVCTRL_TAILUPD_DIS, i);
574 pio_send_control(dd, PSC_GLOBAL_DISABLE);
575 for (i = 0; i < dd->num_send_contexts; i++)
576 sc_disable(dd->send_contexts[i].sc);
577
578 return 0;
579 }
580
581 static void enable_chip(struct hfi1_devdata *dd)
582 {
583 u32 rcvmask;
584 u32 i;
585
586 /* enable PIO send */
587 pio_send_control(dd, PSC_GLOBAL_ENABLE);
588
589 /*
590 * Enable kernel ctxts' receive and receive interrupt.
591 * Other ctxts done as user opens and initializes them.
592 */
593 for (i = 0; i < dd->first_user_ctxt; ++i) {
594 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
595 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
596 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
597 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
598 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
599 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
600 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
601 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
602 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
603 hfi1_rcvctrl(dd, rcvmask, i);
604 sc_enable(dd->rcd[i]->sc);
605 }
606 }
607
608 /**
609 * create_workqueues - create per port workqueues
610 * @dd: the hfi1_ib device
611 */
612 static int create_workqueues(struct hfi1_devdata *dd)
613 {
614 int pidx;
615 struct hfi1_pportdata *ppd;
616
617 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
618 ppd = dd->pport + pidx;
619 if (!ppd->hfi1_wq) {
620 ppd->hfi1_wq =
621 alloc_workqueue(
622 "hfi%d_%d",
623 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
624 dd->num_sdma,
625 dd->unit, pidx);
626 if (!ppd->hfi1_wq)
627 goto wq_error;
628 }
629 }
630 return 0;
631 wq_error:
632 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
633 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
634 ppd = dd->pport + pidx;
635 if (ppd->hfi1_wq) {
636 destroy_workqueue(ppd->hfi1_wq);
637 ppd->hfi1_wq = NULL;
638 }
639 }
640 return -ENOMEM;
641 }
642
643 /**
644 * hfi1_init - do the actual initialization sequence on the chip
645 * @dd: the hfi1_ib device
646 * @reinit: re-initializing, so don't allocate new memory
647 *
648 * Do the actual initialization sequence on the chip. This is done
649 * both from the init routine called from the PCI infrastructure, and
650 * when we reset the chip, or detect that it was reset internally,
651 * or it's administratively re-enabled.
652 *
653 * Memory allocation here and in called routines is only done in
654 * the first case (reinit == 0). We have to be careful, because even
655 * without memory allocation, we need to re-write all the chip registers
656 * TIDs, etc. after the reset or enable has completed.
657 */
658 int hfi1_init(struct hfi1_devdata *dd, int reinit)
659 {
660 int ret = 0, pidx, lastfail = 0;
661 unsigned i, len;
662 struct hfi1_ctxtdata *rcd;
663 struct hfi1_pportdata *ppd;
664
665 /* Set up recv low level handlers */
666 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
667 kdeth_process_expected;
668 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
669 kdeth_process_eager;
670 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
671 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
672 process_receive_error;
673 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
674 process_receive_bypass;
675 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
676 process_receive_invalid;
677 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
678 process_receive_invalid;
679 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
680 process_receive_invalid;
681 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
682
683 /* Set up send low level handlers */
684 dd->process_pio_send = hfi1_verbs_send_pio;
685 dd->process_dma_send = hfi1_verbs_send_dma;
686 dd->pio_inline_send = pio_copy;
687
688 if (is_ax(dd)) {
689 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
690 dd->do_drop = 1;
691 } else {
692 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
693 dd->do_drop = 0;
694 }
695
696 /* make sure the link is not "up" */
697 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
698 ppd = dd->pport + pidx;
699 ppd->linkup = 0;
700 }
701
702 if (reinit)
703 ret = init_after_reset(dd);
704 else
705 ret = loadtime_init(dd);
706 if (ret)
707 goto done;
708
709 /* allocate dummy tail memory for all receive contexts */
710 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
711 &dd->pcidev->dev, sizeof(u64),
712 &dd->rcvhdrtail_dummy_physaddr,
713 GFP_KERNEL);
714
715 if (!dd->rcvhdrtail_dummy_kvaddr) {
716 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
717 ret = -ENOMEM;
718 goto done;
719 }
720
721 /* dd->rcd can be NULL if early initialization failed */
722 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
723 /*
724 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
725 * re-init, the simplest way to handle this is to free
726 * existing, and re-allocate.
727 * Need to re-create rest of ctxt 0 ctxtdata as well.
728 */
729 rcd = dd->rcd[i];
730 if (!rcd)
731 continue;
732
733 rcd->do_interrupt = &handle_receive_interrupt;
734
735 lastfail = hfi1_create_rcvhdrq(dd, rcd);
736 if (!lastfail)
737 lastfail = hfi1_setup_eagerbufs(rcd);
738 if (lastfail) {
739 dd_dev_err(dd,
740 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
741 ret = lastfail;
742 }
743 }
744
745 /* Allocate enough memory for user event notification. */
746 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
747 sizeof(*dd->events));
748 dd->events = vmalloc_user(len);
749 if (!dd->events)
750 dd_dev_err(dd, "Failed to allocate user events page\n");
751 /*
752 * Allocate a page for device and port status.
753 * Page will be shared amongst all user processes.
754 */
755 dd->status = vmalloc_user(PAGE_SIZE);
756 if (!dd->status)
757 dd_dev_err(dd, "Failed to allocate dev status page\n");
758 else
759 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
760 sizeof(dd->status->freezemsg));
761 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
762 ppd = dd->pport + pidx;
763 if (dd->status)
764 /* Currently, we only have one port */
765 ppd->statusp = &dd->status->port;
766
767 set_mtu(ppd);
768 }
769
770 /* enable chip even if we have an error, so we can debug cause */
771 enable_chip(dd);
772
773 done:
774 /*
775 * Set status even if port serdes is not initialized
776 * so that diags will work.
777 */
778 if (dd->status)
779 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
780 HFI1_STATUS_INITTED;
781 if (!ret) {
782 /* enable all interrupts from the chip */
783 set_intr_state(dd, 1);
784
785 /* chip is OK for user apps; mark it as initialized */
786 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
787 ppd = dd->pport + pidx;
788
789 /*
790 * start the serdes - must be after interrupts are
791 * enabled so we are notified when the link goes up
792 */
793 lastfail = bringup_serdes(ppd);
794 if (lastfail)
795 dd_dev_info(dd,
796 "Failed to bring up port %u\n",
797 ppd->port);
798
799 /*
800 * Set status even if port serdes is not initialized
801 * so that diags will work.
802 */
803 if (ppd->statusp)
804 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
805 HFI1_STATUS_INITTED;
806 if (!ppd->link_speed_enabled)
807 continue;
808 }
809 }
810
811 /* if ret is non-zero, we probably should do some cleanup here... */
812 return ret;
813 }
814
815 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
816 {
817 return idr_find(&hfi1_unit_table, unit);
818 }
819
820 struct hfi1_devdata *hfi1_lookup(int unit)
821 {
822 struct hfi1_devdata *dd;
823 unsigned long flags;
824
825 spin_lock_irqsave(&hfi1_devs_lock, flags);
826 dd = __hfi1_lookup(unit);
827 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
828
829 return dd;
830 }
831
832 /*
833 * Stop the timers during unit shutdown, or after an error late
834 * in initialization.
835 */
836 static void stop_timers(struct hfi1_devdata *dd)
837 {
838 struct hfi1_pportdata *ppd;
839 int pidx;
840
841 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
842 ppd = dd->pport + pidx;
843 if (ppd->led_override_timer.data) {
844 del_timer_sync(&ppd->led_override_timer);
845 atomic_set(&ppd->led_override_timer_active, 0);
846 }
847 }
848 }
849
850 /**
851 * shutdown_device - shut down a device
852 * @dd: the hfi1_ib device
853 *
854 * This is called to make the device quiet when we are about to
855 * unload the driver, and also when the device is administratively
856 * disabled. It does not free any data structures.
857 * Everything it does has to be setup again by hfi1_init(dd, 1)
858 */
859 static void shutdown_device(struct hfi1_devdata *dd)
860 {
861 struct hfi1_pportdata *ppd;
862 unsigned pidx;
863 int i;
864
865 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
866 ppd = dd->pport + pidx;
867
868 ppd->linkup = 0;
869 if (ppd->statusp)
870 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
871 HFI1_STATUS_IB_READY);
872 }
873 dd->flags &= ~HFI1_INITTED;
874
875 /* mask interrupts, but not errors */
876 set_intr_state(dd, 0);
877
878 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
879 ppd = dd->pport + pidx;
880 for (i = 0; i < dd->num_rcv_contexts; i++)
881 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
882 HFI1_RCVCTRL_CTXT_DIS |
883 HFI1_RCVCTRL_INTRAVAIL_DIS |
884 HFI1_RCVCTRL_PKEY_DIS |
885 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
886 /*
887 * Gracefully stop all sends allowing any in progress to
888 * trickle out first.
889 */
890 for (i = 0; i < dd->num_send_contexts; i++)
891 sc_flush(dd->send_contexts[i].sc);
892 }
893
894 /*
895 * Enough for anything that's going to trickle out to have actually
896 * done so.
897 */
898 udelay(20);
899
900 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
901 ppd = dd->pport + pidx;
902
903 /* disable all contexts */
904 for (i = 0; i < dd->num_send_contexts; i++)
905 sc_disable(dd->send_contexts[i].sc);
906 /* disable the send device */
907 pio_send_control(dd, PSC_GLOBAL_DISABLE);
908
909 shutdown_led_override(ppd);
910
911 /*
912 * Clear SerdesEnable.
913 * We can't count on interrupts since we are stopping.
914 */
915 hfi1_quiet_serdes(ppd);
916
917 if (ppd->hfi1_wq) {
918 destroy_workqueue(ppd->hfi1_wq);
919 ppd->hfi1_wq = NULL;
920 }
921 }
922 sdma_exit(dd);
923 }
924
925 /**
926 * hfi1_free_ctxtdata - free a context's allocated data
927 * @dd: the hfi1_ib device
928 * @rcd: the ctxtdata structure
929 *
930 * free up any allocated data for a context
931 * This should not touch anything that would affect a simultaneous
932 * re-allocation of context data, because it is called after hfi1_mutex
933 * is released (and can be called from reinit as well).
934 * It should never change any chip state, or global driver state.
935 */
936 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
937 {
938 unsigned e;
939
940 if (!rcd)
941 return;
942
943 if (rcd->rcvhdrq) {
944 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
945 rcd->rcvhdrq, rcd->rcvhdrq_phys);
946 rcd->rcvhdrq = NULL;
947 if (rcd->rcvhdrtail_kvaddr) {
948 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
949 (void *)rcd->rcvhdrtail_kvaddr,
950 rcd->rcvhdrqtailaddr_phys);
951 rcd->rcvhdrtail_kvaddr = NULL;
952 }
953 }
954
955 /* all the RcvArray entries should have been cleared by now */
956 kfree(rcd->egrbufs.rcvtids);
957
958 for (e = 0; e < rcd->egrbufs.alloced; e++) {
959 if (rcd->egrbufs.buffers[e].phys)
960 dma_free_coherent(&dd->pcidev->dev,
961 rcd->egrbufs.buffers[e].len,
962 rcd->egrbufs.buffers[e].addr,
963 rcd->egrbufs.buffers[e].phys);
964 }
965 kfree(rcd->egrbufs.buffers);
966
967 sc_free(rcd->sc);
968 vfree(rcd->user_event_mask);
969 vfree(rcd->subctxt_uregbase);
970 vfree(rcd->subctxt_rcvegrbuf);
971 vfree(rcd->subctxt_rcvhdr_base);
972 kfree(rcd->opstats);
973 kfree(rcd);
974 }
975
976 /*
977 * Release our hold on the shared asic data. If we are the last one,
978 * return the structure to be finalized outside the lock. Must be
979 * holding hfi1_devs_lock.
980 */
981 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
982 {
983 struct hfi1_asic_data *ad;
984 int other;
985
986 if (!dd->asic_data)
987 return NULL;
988 dd->asic_data->dds[dd->hfi1_id] = NULL;
989 other = dd->hfi1_id ? 0 : 1;
990 ad = dd->asic_data;
991 dd->asic_data = NULL;
992 /* return NULL if the other dd still has a link */
993 return ad->dds[other] ? NULL : ad;
994 }
995
996 static void finalize_asic_data(struct hfi1_devdata *dd,
997 struct hfi1_asic_data *ad)
998 {
999 clean_up_i2c(dd, ad);
1000 kfree(ad);
1001 }
1002
1003 static void __hfi1_free_devdata(struct kobject *kobj)
1004 {
1005 struct hfi1_devdata *dd =
1006 container_of(kobj, struct hfi1_devdata, kobj);
1007 struct hfi1_asic_data *ad;
1008 unsigned long flags;
1009
1010 spin_lock_irqsave(&hfi1_devs_lock, flags);
1011 idr_remove(&hfi1_unit_table, dd->unit);
1012 list_del(&dd->list);
1013 ad = release_asic_data(dd);
1014 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1015 if (ad)
1016 finalize_asic_data(dd, ad);
1017 free_platform_config(dd);
1018 rcu_barrier(); /* wait for rcu callbacks to complete */
1019 free_percpu(dd->int_counter);
1020 free_percpu(dd->rcv_limit);
1021 free_percpu(dd->send_schedule);
1022 rvt_dealloc_device(&dd->verbs_dev.rdi);
1023 }
1024
1025 static struct kobj_type hfi1_devdata_type = {
1026 .release = __hfi1_free_devdata,
1027 };
1028
1029 void hfi1_free_devdata(struct hfi1_devdata *dd)
1030 {
1031 kobject_put(&dd->kobj);
1032 }
1033
1034 /*
1035 * Allocate our primary per-unit data structure. Must be done via verbs
1036 * allocator, because the verbs cleanup process both does cleanup and
1037 * free of the data structure.
1038 * "extra" is for chip-specific data.
1039 *
1040 * Use the idr mechanism to get a unit number for this unit.
1041 */
1042 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1043 {
1044 unsigned long flags;
1045 struct hfi1_devdata *dd;
1046 int ret, nports;
1047
1048 /* extra is * number of ports */
1049 nports = extra / sizeof(struct hfi1_pportdata);
1050
1051 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1052 nports);
1053 if (!dd)
1054 return ERR_PTR(-ENOMEM);
1055 dd->num_pports = nports;
1056 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1057
1058 INIT_LIST_HEAD(&dd->list);
1059 idr_preload(GFP_KERNEL);
1060 spin_lock_irqsave(&hfi1_devs_lock, flags);
1061
1062 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1063 if (ret >= 0) {
1064 dd->unit = ret;
1065 list_add(&dd->list, &hfi1_dev_list);
1066 }
1067
1068 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1069 idr_preload_end();
1070
1071 if (ret < 0) {
1072 hfi1_early_err(&pdev->dev,
1073 "Could not allocate unit ID: error %d\n", -ret);
1074 goto bail;
1075 }
1076 /*
1077 * Initialize all locks for the device. This needs to be as early as
1078 * possible so locks are usable.
1079 */
1080 spin_lock_init(&dd->sc_lock);
1081 spin_lock_init(&dd->sendctrl_lock);
1082 spin_lock_init(&dd->rcvctrl_lock);
1083 spin_lock_init(&dd->uctxt_lock);
1084 spin_lock_init(&dd->hfi1_diag_trans_lock);
1085 spin_lock_init(&dd->sc_init_lock);
1086 spin_lock_init(&dd->dc8051_lock);
1087 spin_lock_init(&dd->dc8051_memlock);
1088 seqlock_init(&dd->sc2vl_lock);
1089 spin_lock_init(&dd->sde_map_lock);
1090 spin_lock_init(&dd->pio_map_lock);
1091 init_waitqueue_head(&dd->event_queue);
1092
1093 dd->int_counter = alloc_percpu(u64);
1094 if (!dd->int_counter) {
1095 ret = -ENOMEM;
1096 hfi1_early_err(&pdev->dev,
1097 "Could not allocate per-cpu int_counter\n");
1098 goto bail;
1099 }
1100
1101 dd->rcv_limit = alloc_percpu(u64);
1102 if (!dd->rcv_limit) {
1103 ret = -ENOMEM;
1104 hfi1_early_err(&pdev->dev,
1105 "Could not allocate per-cpu rcv_limit\n");
1106 goto bail;
1107 }
1108
1109 dd->send_schedule = alloc_percpu(u64);
1110 if (!dd->send_schedule) {
1111 ret = -ENOMEM;
1112 hfi1_early_err(&pdev->dev,
1113 "Could not allocate per-cpu int_counter\n");
1114 goto bail;
1115 }
1116
1117 if (!hfi1_cpulist_count) {
1118 u32 count = num_online_cpus();
1119
1120 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1121 GFP_KERNEL);
1122 if (hfi1_cpulist)
1123 hfi1_cpulist_count = count;
1124 else
1125 hfi1_early_err(
1126 &pdev->dev,
1127 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1128 }
1129 kobject_init(&dd->kobj, &hfi1_devdata_type);
1130 return dd;
1131
1132 bail:
1133 if (!list_empty(&dd->list))
1134 list_del_init(&dd->list);
1135 rvt_dealloc_device(&dd->verbs_dev.rdi);
1136 return ERR_PTR(ret);
1137 }
1138
1139 /*
1140 * Called from freeze mode handlers, and from PCI error
1141 * reporting code. Should be paranoid about state of
1142 * system and data structures.
1143 */
1144 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1145 {
1146 if (dd->flags & HFI1_INITTED) {
1147 u32 pidx;
1148
1149 dd->flags &= ~HFI1_INITTED;
1150 if (dd->pport)
1151 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1152 struct hfi1_pportdata *ppd;
1153
1154 ppd = dd->pport + pidx;
1155 if (dd->flags & HFI1_PRESENT)
1156 set_link_state(ppd, HLS_DN_DISABLE);
1157
1158 if (ppd->statusp)
1159 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1160 }
1161 }
1162
1163 /*
1164 * Mark as having had an error for driver, and also
1165 * for /sys and status word mapped to user programs.
1166 * This marks unit as not usable, until reset.
1167 */
1168 if (dd->status)
1169 dd->status->dev |= HFI1_STATUS_HWERROR;
1170 }
1171
1172 static void remove_one(struct pci_dev *);
1173 static int init_one(struct pci_dev *, const struct pci_device_id *);
1174
1175 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1176 #define PFX DRIVER_NAME ": "
1177
1178 const struct pci_device_id hfi1_pci_tbl[] = {
1179 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1180 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1181 { 0, }
1182 };
1183
1184 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1185
1186 static struct pci_driver hfi1_pci_driver = {
1187 .name = DRIVER_NAME,
1188 .probe = init_one,
1189 .remove = remove_one,
1190 .id_table = hfi1_pci_tbl,
1191 .err_handler = &hfi1_pci_err_handler,
1192 };
1193
1194 static void __init compute_krcvqs(void)
1195 {
1196 int i;
1197
1198 for (i = 0; i < krcvqsset; i++)
1199 n_krcvqs += krcvqs[i];
1200 }
1201
1202 /*
1203 * Do all the generic driver unit- and chip-independent memory
1204 * allocation and initialization.
1205 */
1206 static int __init hfi1_mod_init(void)
1207 {
1208 int ret;
1209
1210 ret = dev_init();
1211 if (ret)
1212 goto bail;
1213
1214 ret = node_affinity_init();
1215 if (ret)
1216 goto bail;
1217
1218 /* validate max MTU before any devices start */
1219 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1220 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1221 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1222 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1223 }
1224 /* valid CUs run from 1-128 in powers of 2 */
1225 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1226 hfi1_cu = 1;
1227 /* valid credit return threshold is 0-100, variable is unsigned */
1228 if (user_credit_return_threshold > 100)
1229 user_credit_return_threshold = 100;
1230
1231 compute_krcvqs();
1232 /*
1233 * sanitize receive interrupt count, time must wait until after
1234 * the hardware type is known
1235 */
1236 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1237 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1238 /* reject invalid combinations */
1239 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1240 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1241 rcv_intr_count = 1;
1242 }
1243 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1244 /*
1245 * Avoid indefinite packet delivery by requiring a timeout
1246 * if count is > 1.
1247 */
1248 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1249 rcv_intr_timeout = 1;
1250 }
1251 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1252 /*
1253 * The dynamic algorithm expects a non-zero timeout
1254 * and a count > 1.
1255 */
1256 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1257 rcv_intr_dynamic = 0;
1258 }
1259
1260 /* sanitize link CRC options */
1261 link_crc_mask &= SUPPORTED_CRCS;
1262
1263 /*
1264 * These must be called before the driver is registered with
1265 * the PCI subsystem.
1266 */
1267 idr_init(&hfi1_unit_table);
1268
1269 hfi1_dbg_init();
1270 ret = hfi1_wss_init();
1271 if (ret < 0)
1272 goto bail_wss;
1273 ret = pci_register_driver(&hfi1_pci_driver);
1274 if (ret < 0) {
1275 pr_err("Unable to register driver: error %d\n", -ret);
1276 goto bail_dev;
1277 }
1278 goto bail; /* all OK */
1279
1280 bail_dev:
1281 hfi1_wss_exit();
1282 bail_wss:
1283 hfi1_dbg_exit();
1284 idr_destroy(&hfi1_unit_table);
1285 dev_cleanup();
1286 bail:
1287 return ret;
1288 }
1289
1290 module_init(hfi1_mod_init);
1291
1292 /*
1293 * Do the non-unit driver cleanup, memory free, etc. at unload.
1294 */
1295 static void __exit hfi1_mod_cleanup(void)
1296 {
1297 pci_unregister_driver(&hfi1_pci_driver);
1298 node_affinity_destroy();
1299 hfi1_wss_exit();
1300 hfi1_dbg_exit();
1301 hfi1_cpulist_count = 0;
1302 kfree(hfi1_cpulist);
1303
1304 idr_destroy(&hfi1_unit_table);
1305 dispose_firmware(); /* asymmetric with obtain_firmware() */
1306 dev_cleanup();
1307 }
1308
1309 module_exit(hfi1_mod_cleanup);
1310
1311 /* this can only be called after a successful initialization */
1312 static void cleanup_device_data(struct hfi1_devdata *dd)
1313 {
1314 int ctxt;
1315 int pidx;
1316 struct hfi1_ctxtdata **tmp;
1317 unsigned long flags;
1318
1319 /* users can't do anything more with chip */
1320 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1321 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1322 struct cc_state *cc_state;
1323 int i;
1324
1325 if (ppd->statusp)
1326 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1327
1328 for (i = 0; i < OPA_MAX_SLS; i++)
1329 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1330
1331 spin_lock(&ppd->cc_state_lock);
1332 cc_state = get_cc_state_protected(ppd);
1333 RCU_INIT_POINTER(ppd->cc_state, NULL);
1334 spin_unlock(&ppd->cc_state_lock);
1335
1336 if (cc_state)
1337 kfree_rcu(cc_state, rcu);
1338 }
1339
1340 free_credit_return(dd);
1341
1342 /*
1343 * Free any resources still in use (usually just kernel contexts)
1344 * at unload; we do for ctxtcnt, because that's what we allocate.
1345 * We acquire lock to be really paranoid that rcd isn't being
1346 * accessed from some interrupt-related code (that should not happen,
1347 * but best to be sure).
1348 */
1349 spin_lock_irqsave(&dd->uctxt_lock, flags);
1350 tmp = dd->rcd;
1351 dd->rcd = NULL;
1352 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1353
1354 if (dd->rcvhdrtail_dummy_kvaddr) {
1355 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1356 (void *)dd->rcvhdrtail_dummy_kvaddr,
1357 dd->rcvhdrtail_dummy_physaddr);
1358 dd->rcvhdrtail_dummy_kvaddr = NULL;
1359 }
1360
1361 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1362 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1363
1364 tmp[ctxt] = NULL; /* debugging paranoia */
1365 if (rcd) {
1366 hfi1_clear_tids(rcd);
1367 hfi1_free_ctxtdata(dd, rcd);
1368 }
1369 }
1370 kfree(tmp);
1371 free_pio_map(dd);
1372 /* must follow rcv context free - need to remove rcv's hooks */
1373 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1374 sc_free(dd->send_contexts[ctxt].sc);
1375 dd->num_send_contexts = 0;
1376 kfree(dd->send_contexts);
1377 dd->send_contexts = NULL;
1378 kfree(dd->hw_to_sw);
1379 dd->hw_to_sw = NULL;
1380 kfree(dd->boardname);
1381 vfree(dd->events);
1382 vfree(dd->status);
1383 }
1384
1385 /*
1386 * Clean up on unit shutdown, or error during unit load after
1387 * successful initialization.
1388 */
1389 static void postinit_cleanup(struct hfi1_devdata *dd)
1390 {
1391 hfi1_start_cleanup(dd);
1392
1393 hfi1_pcie_ddcleanup(dd);
1394 hfi1_pcie_cleanup(dd->pcidev);
1395
1396 cleanup_device_data(dd);
1397
1398 hfi1_free_devdata(dd);
1399 }
1400
1401 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1402 {
1403 int ret = 0, j, pidx, initfail;
1404 struct hfi1_devdata *dd = ERR_PTR(-EINVAL);
1405 struct hfi1_pportdata *ppd;
1406
1407 /* First, lock the non-writable module parameters */
1408 HFI1_CAP_LOCK();
1409
1410 /* Validate some global module parameters */
1411 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1412 hfi1_early_err(&pdev->dev, "Header queue count too small\n");
1413 ret = -EINVAL;
1414 goto bail;
1415 }
1416 if (rcvhdrcnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1417 hfi1_early_err(&pdev->dev,
1418 "Receive header queue count cannot be greater than %u\n",
1419 HFI1_MAX_HDRQ_EGRBUF_CNT);
1420 ret = -EINVAL;
1421 goto bail;
1422 }
1423 /* use the encoding function as a sanitization check */
1424 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1425 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1426 hfi1_hdrq_entsize);
1427 ret = -EINVAL;
1428 goto bail;
1429 }
1430
1431 /* The receive eager buffer size must be set before the receive
1432 * contexts are created.
1433 *
1434 * Set the eager buffer size. Validate that it falls in a range
1435 * allowed by the hardware - all powers of 2 between the min and
1436 * max. The maximum valid MTU is within the eager buffer range
1437 * so we do not need to cap the max_mtu by an eager buffer size
1438 * setting.
1439 */
1440 if (eager_buffer_size) {
1441 if (!is_power_of_2(eager_buffer_size))
1442 eager_buffer_size =
1443 roundup_pow_of_two(eager_buffer_size);
1444 eager_buffer_size =
1445 clamp_val(eager_buffer_size,
1446 MIN_EAGER_BUFFER * 8,
1447 MAX_EAGER_BUFFER_TOTAL);
1448 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1449 eager_buffer_size);
1450 } else {
1451 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1452 ret = -EINVAL;
1453 goto bail;
1454 }
1455
1456 /* restrict value of hfi1_rcvarr_split */
1457 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1458
1459 ret = hfi1_pcie_init(pdev, ent);
1460 if (ret)
1461 goto bail;
1462
1463 /*
1464 * Do device-specific initialization, function table setup, dd
1465 * allocation, etc.
1466 */
1467 switch (ent->device) {
1468 case PCI_DEVICE_ID_INTEL0:
1469 case PCI_DEVICE_ID_INTEL1:
1470 dd = hfi1_init_dd(pdev, ent);
1471 break;
1472 default:
1473 hfi1_early_err(&pdev->dev,
1474 "Failing on unknown Intel deviceid 0x%x\n",
1475 ent->device);
1476 ret = -ENODEV;
1477 }
1478
1479 if (IS_ERR(dd))
1480 ret = PTR_ERR(dd);
1481 if (ret)
1482 goto clean_bail; /* error already printed */
1483
1484 ret = create_workqueues(dd);
1485 if (ret)
1486 goto clean_bail;
1487
1488 /* do the generic initialization */
1489 initfail = hfi1_init(dd, 0);
1490
1491 ret = hfi1_register_ib_device(dd);
1492
1493 /*
1494 * Now ready for use. this should be cleared whenever we
1495 * detect a reset, or initiate one. If earlier failure,
1496 * we still create devices, so diags, etc. can be used
1497 * to determine cause of problem.
1498 */
1499 if (!initfail && !ret) {
1500 dd->flags |= HFI1_INITTED;
1501 /* create debufs files after init and ib register */
1502 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1503 }
1504
1505 j = hfi1_device_create(dd);
1506 if (j)
1507 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1508
1509 if (initfail || ret) {
1510 stop_timers(dd);
1511 flush_workqueue(ib_wq);
1512 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1513 hfi1_quiet_serdes(dd->pport + pidx);
1514 ppd = dd->pport + pidx;
1515 if (ppd->hfi1_wq) {
1516 destroy_workqueue(ppd->hfi1_wq);
1517 ppd->hfi1_wq = NULL;
1518 }
1519 }
1520 if (!j)
1521 hfi1_device_remove(dd);
1522 if (!ret)
1523 hfi1_unregister_ib_device(dd);
1524 postinit_cleanup(dd);
1525 if (initfail)
1526 ret = initfail;
1527 goto bail; /* everything already cleaned */
1528 }
1529
1530 sdma_start(dd);
1531
1532 return 0;
1533
1534 clean_bail:
1535 hfi1_pcie_cleanup(pdev);
1536 bail:
1537 return ret;
1538 }
1539
1540 static void remove_one(struct pci_dev *pdev)
1541 {
1542 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1543
1544 /* close debugfs files before ib unregister */
1545 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1546 /* unregister from IB core */
1547 hfi1_unregister_ib_device(dd);
1548
1549 /*
1550 * Disable the IB link, disable interrupts on the device,
1551 * clear dma engines, etc.
1552 */
1553 shutdown_device(dd);
1554
1555 stop_timers(dd);
1556
1557 /* wait until all of our (qsfp) queue_work() calls complete */
1558 flush_workqueue(ib_wq);
1559
1560 hfi1_device_remove(dd);
1561
1562 postinit_cleanup(dd);
1563 }
1564
1565 /**
1566 * hfi1_create_rcvhdrq - create a receive header queue
1567 * @dd: the hfi1_ib device
1568 * @rcd: the context data
1569 *
1570 * This must be contiguous memory (from an i/o perspective), and must be
1571 * DMA'able (which means for some systems, it will go through an IOMMU,
1572 * or be forced into a low address range).
1573 */
1574 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1575 {
1576 unsigned amt;
1577 u64 reg;
1578
1579 if (!rcd->rcvhdrq) {
1580 dma_addr_t phys_hdrqtail;
1581 gfp_t gfp_flags;
1582
1583 /*
1584 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1585 * (* sizeof(u32)).
1586 */
1587 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1588 sizeof(u32));
1589
1590 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1591 GFP_USER : GFP_KERNEL;
1592 rcd->rcvhdrq = dma_zalloc_coherent(
1593 &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1594 gfp_flags | __GFP_COMP);
1595
1596 if (!rcd->rcvhdrq) {
1597 dd_dev_err(dd,
1598 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1599 amt, rcd->ctxt);
1600 goto bail;
1601 }
1602
1603 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1604 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1605 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1606 gfp_flags);
1607 if (!rcd->rcvhdrtail_kvaddr)
1608 goto bail_free;
1609 rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1610 }
1611
1612 rcd->rcvhdrq_size = amt;
1613 }
1614 /*
1615 * These values are per-context:
1616 * RcvHdrCnt
1617 * RcvHdrEntSize
1618 * RcvHdrSize
1619 */
1620 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1621 & RCV_HDR_CNT_CNT_MASK)
1622 << RCV_HDR_CNT_CNT_SHIFT;
1623 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1624 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1625 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1626 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1627 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1628 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1629 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1630 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1631
1632 /*
1633 * Program dummy tail address for every receive context
1634 * before enabling any receive context
1635 */
1636 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1637 dd->rcvhdrtail_dummy_physaddr);
1638
1639 return 0;
1640
1641 bail_free:
1642 dd_dev_err(dd,
1643 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1644 rcd->ctxt);
1645 vfree(rcd->user_event_mask);
1646 rcd->user_event_mask = NULL;
1647 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1648 rcd->rcvhdrq_phys);
1649 rcd->rcvhdrq = NULL;
1650 bail:
1651 return -ENOMEM;
1652 }
1653
1654 /**
1655 * allocate eager buffers, both kernel and user contexts.
1656 * @rcd: the context we are setting up.
1657 *
1658 * Allocate the eager TID buffers and program them into hip.
1659 * They are no longer completely contiguous, we do multiple allocation
1660 * calls. Otherwise we get the OOM code involved, by asking for too
1661 * much per call, with disastrous results on some kernels.
1662 */
1663 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1664 {
1665 struct hfi1_devdata *dd = rcd->dd;
1666 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1667 gfp_t gfp_flags;
1668 u16 order;
1669 int ret = 0;
1670 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1671
1672 /*
1673 * GFP_USER, but without GFP_FS, so buffer cache can be
1674 * coalesced (we hope); otherwise, even at order 4,
1675 * heavy filesystem activity makes these fail, and we can
1676 * use compound pages.
1677 */
1678 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1679
1680 /*
1681 * The minimum size of the eager buffers is a groups of MTU-sized
1682 * buffers.
1683 * The global eager_buffer_size parameter is checked against the
1684 * theoretical lower limit of the value. Here, we check against the
1685 * MTU.
1686 */
1687 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1688 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1689 /*
1690 * If using one-pkt-per-egr-buffer, lower the eager buffer
1691 * size to the max MTU (page-aligned).
1692 */
1693 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1694 rcd->egrbufs.rcvtid_size = round_mtu;
1695
1696 /*
1697 * Eager buffers sizes of 1MB or less require smaller TID sizes
1698 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1699 */
1700 if (rcd->egrbufs.size <= (1 << 20))
1701 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1702 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1703
1704 while (alloced_bytes < rcd->egrbufs.size &&
1705 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1706 rcd->egrbufs.buffers[idx].addr =
1707 dma_zalloc_coherent(&dd->pcidev->dev,
1708 rcd->egrbufs.rcvtid_size,
1709 &rcd->egrbufs.buffers[idx].phys,
1710 gfp_flags);
1711 if (rcd->egrbufs.buffers[idx].addr) {
1712 rcd->egrbufs.buffers[idx].len =
1713 rcd->egrbufs.rcvtid_size;
1714 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1715 rcd->egrbufs.buffers[idx].addr;
1716 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1717 rcd->egrbufs.buffers[idx].phys;
1718 rcd->egrbufs.alloced++;
1719 alloced_bytes += rcd->egrbufs.rcvtid_size;
1720 idx++;
1721 } else {
1722 u32 new_size, i, j;
1723 u64 offset = 0;
1724
1725 /*
1726 * Fail the eager buffer allocation if:
1727 * - we are already using the lowest acceptable size
1728 * - we are using one-pkt-per-egr-buffer (this implies
1729 * that we are accepting only one size)
1730 */
1731 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1732 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1733 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1734 rcd->ctxt);
1735 goto bail_rcvegrbuf_phys;
1736 }
1737
1738 new_size = rcd->egrbufs.rcvtid_size / 2;
1739
1740 /*
1741 * If the first attempt to allocate memory failed, don't
1742 * fail everything but continue with the next lower
1743 * size.
1744 */
1745 if (idx == 0) {
1746 rcd->egrbufs.rcvtid_size = new_size;
1747 continue;
1748 }
1749
1750 /*
1751 * Re-partition already allocated buffers to a smaller
1752 * size.
1753 */
1754 rcd->egrbufs.alloced = 0;
1755 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1756 if (i >= rcd->egrbufs.count)
1757 break;
1758 rcd->egrbufs.rcvtids[i].phys =
1759 rcd->egrbufs.buffers[j].phys + offset;
1760 rcd->egrbufs.rcvtids[i].addr =
1761 rcd->egrbufs.buffers[j].addr + offset;
1762 rcd->egrbufs.alloced++;
1763 if ((rcd->egrbufs.buffers[j].phys + offset +
1764 new_size) ==
1765 (rcd->egrbufs.buffers[j].phys +
1766 rcd->egrbufs.buffers[j].len)) {
1767 j++;
1768 offset = 0;
1769 } else {
1770 offset += new_size;
1771 }
1772 }
1773 rcd->egrbufs.rcvtid_size = new_size;
1774 }
1775 }
1776 rcd->egrbufs.numbufs = idx;
1777 rcd->egrbufs.size = alloced_bytes;
1778
1779 hfi1_cdbg(PROC,
1780 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1781 rcd->ctxt, rcd->egrbufs.alloced,
1782 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1783
1784 /*
1785 * Set the contexts rcv array head update threshold to the closest
1786 * power of 2 (so we can use a mask instead of modulo) below half
1787 * the allocated entries.
1788 */
1789 rcd->egrbufs.threshold =
1790 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1791 /*
1792 * Compute the expected RcvArray entry base. This is done after
1793 * allocating the eager buffers in order to maximize the
1794 * expected RcvArray entries for the context.
1795 */
1796 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1797 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1798 rcd->expected_count = max_entries - egrtop;
1799 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1800 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1801
1802 rcd->expected_base = rcd->eager_base + egrtop;
1803 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1804 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1805 rcd->eager_base, rcd->expected_base);
1806
1807 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1808 hfi1_cdbg(PROC,
1809 "ctxt%u: current Eager buffer size is invalid %u\n",
1810 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1811 ret = -EINVAL;
1812 goto bail;
1813 }
1814
1815 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1816 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1817 rcd->egrbufs.rcvtids[idx].phys, order);
1818 cond_resched();
1819 }
1820 goto bail;
1821
1822 bail_rcvegrbuf_phys:
1823 for (idx = 0; idx < rcd->egrbufs.alloced &&
1824 rcd->egrbufs.buffers[idx].addr;
1825 idx++) {
1826 dma_free_coherent(&dd->pcidev->dev,
1827 rcd->egrbufs.buffers[idx].len,
1828 rcd->egrbufs.buffers[idx].addr,
1829 rcd->egrbufs.buffers[idx].phys);
1830 rcd->egrbufs.buffers[idx].addr = NULL;
1831 rcd->egrbufs.buffers[idx].phys = 0;
1832 rcd->egrbufs.buffers[idx].len = 0;
1833 }
1834 bail:
1835 return ret;
1836 }
This page took 0.106715 seconds and 5 git commands to generate.