Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / drivers / infiniband / hw / hfi1 / init.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <rdma/rdma_vt.h>
57
58 #include "hfi.h"
59 #include "device.h"
60 #include "common.h"
61 #include "trace.h"
62 #include "mad.h"
63 #include "sdma.h"
64 #include "debugfs.h"
65 #include "verbs.h"
66 #include "aspm.h"
67 #include "affinity.h"
68
69 #undef pr_fmt
70 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
71
72 /*
73 * min buffers we want to have per context, after driver
74 */
75 #define HFI1_MIN_USER_CTXT_BUFCNT 7
76
77 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
78 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
79 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
80 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
81
82 /*
83 * Number of user receive contexts we are configured to use (to allow for more
84 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
85 */
86 int num_user_contexts = -1;
87 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
88 MODULE_PARM_DESC(
89 num_user_contexts, "Set max number of user contexts to use");
90
91 uint krcvqs[RXE_NUM_DATA_VL];
92 int krcvqsset;
93 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
94 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
95
96 /* computed based on above array */
97 unsigned n_krcvqs;
98
99 static unsigned hfi1_rcvarr_split = 25;
100 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
101 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
102
103 static uint eager_buffer_size = (2 << 20); /* 2MB */
104 module_param(eager_buffer_size, uint, S_IRUGO);
105 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
106
107 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
108 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
109 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
110
111 static uint hfi1_hdrq_entsize = 32;
112 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
113 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
114
115 unsigned int user_credit_return_threshold = 33; /* default is 33% */
116 module_param(user_credit_return_threshold, uint, S_IRUGO);
117 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
118
119 static inline u64 encode_rcv_header_entry_size(u16);
120
121 static struct idr hfi1_unit_table;
122 u32 hfi1_cpulist_count;
123 unsigned long *hfi1_cpulist;
124
125 /*
126 * Common code for creating the receive context array.
127 */
128 int hfi1_create_ctxts(struct hfi1_devdata *dd)
129 {
130 unsigned i;
131 int ret;
132
133 /* Control context has to be always 0 */
134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135
136 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
137 GFP_KERNEL, dd->node);
138 if (!dd->rcd)
139 goto nomem;
140
141 /* create one or more kernel contexts */
142 for (i = 0; i < dd->first_user_ctxt; ++i) {
143 struct hfi1_pportdata *ppd;
144 struct hfi1_ctxtdata *rcd;
145
146 ppd = dd->pport + (i % dd->num_pports);
147 rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
148 if (!rcd) {
149 dd_dev_err(dd,
150 "Unable to allocate kernel receive context, failing\n");
151 goto nomem;
152 }
153 /*
154 * Set up the kernel context flags here and now because they
155 * use default values for all receive side memories. User
156 * contexts will be handled as they are created.
157 */
158 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
159 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
160 HFI1_CAP_KGET(NODROP_EGR_FULL) |
161 HFI1_CAP_KGET(DMA_RTAIL);
162
163 /* Control context must use DMA_RTAIL */
164 if (rcd->ctxt == HFI1_CTRL_CTXT)
165 rcd->flags |= HFI1_CAP_DMA_RTAIL;
166 rcd->seq_cnt = 1;
167
168 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
169 if (!rcd->sc) {
170 dd_dev_err(dd,
171 "Unable to allocate kernel send context, failing\n");
172 dd->rcd[rcd->ctxt] = NULL;
173 hfi1_free_ctxtdata(dd, rcd);
174 goto nomem;
175 }
176
177 ret = hfi1_init_ctxt(rcd->sc);
178 if (ret < 0) {
179 dd_dev_err(dd,
180 "Failed to setup kernel receive context, failing\n");
181 sc_free(rcd->sc);
182 dd->rcd[rcd->ctxt] = NULL;
183 hfi1_free_ctxtdata(dd, rcd);
184 ret = -EFAULT;
185 goto bail;
186 }
187 }
188
189 /*
190 * Initialize aspm, to be done after gen3 transition and setting up
191 * contexts and before enabling interrupts
192 */
193 aspm_init(dd);
194
195 return 0;
196 nomem:
197 ret = -ENOMEM;
198 bail:
199 kfree(dd->rcd);
200 dd->rcd = NULL;
201 return ret;
202 }
203
204 /*
205 * Common code for user and kernel context setup.
206 */
207 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
208 int numa)
209 {
210 struct hfi1_devdata *dd = ppd->dd;
211 struct hfi1_ctxtdata *rcd;
212 unsigned kctxt_ngroups = 0;
213 u32 base;
214
215 if (dd->rcv_entries.nctxt_extra >
216 dd->num_rcv_contexts - dd->first_user_ctxt)
217 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
218 (dd->num_rcv_contexts - dd->first_user_ctxt));
219 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
220 if (rcd) {
221 u32 rcvtids, max_entries;
222
223 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
224
225 INIT_LIST_HEAD(&rcd->qp_wait_list);
226 rcd->ppd = ppd;
227 rcd->dd = dd;
228 rcd->cnt = 1;
229 rcd->ctxt = ctxt;
230 dd->rcd[ctxt] = rcd;
231 rcd->numa_id = numa;
232 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
233
234 mutex_init(&rcd->exp_lock);
235
236 /*
237 * Calculate the context's RcvArray entry starting point.
238 * We do this here because we have to take into account all
239 * the RcvArray entries that previous context would have
240 * taken and we have to account for any extra groups
241 * assigned to the kernel or user contexts.
242 */
243 if (ctxt < dd->first_user_ctxt) {
244 if (ctxt < kctxt_ngroups) {
245 base = ctxt * (dd->rcv_entries.ngroups + 1);
246 rcd->rcv_array_groups++;
247 } else
248 base = kctxt_ngroups +
249 (ctxt * dd->rcv_entries.ngroups);
250 } else {
251 u16 ct = ctxt - dd->first_user_ctxt;
252
253 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
254 kctxt_ngroups);
255 if (ct < dd->rcv_entries.nctxt_extra) {
256 base += ct * (dd->rcv_entries.ngroups + 1);
257 rcd->rcv_array_groups++;
258 } else
259 base += dd->rcv_entries.nctxt_extra +
260 (ct * dd->rcv_entries.ngroups);
261 }
262 rcd->eager_base = base * dd->rcv_entries.group_size;
263
264 /* Validate and initialize Rcv Hdr Q variables */
265 if (rcvhdrcnt % HDRQ_INCREMENT) {
266 dd_dev_err(dd,
267 "ctxt%u: header queue count %d must be divisible by %lu\n",
268 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
269 goto bail;
270 }
271 rcd->rcvhdrq_cnt = rcvhdrcnt;
272 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
273 /*
274 * Simple Eager buffer allocation: we have already pre-allocated
275 * the number of RcvArray entry groups. Each ctxtdata structure
276 * holds the number of groups for that context.
277 *
278 * To follow CSR requirements and maintain cacheline alignment,
279 * make sure all sizes and bases are multiples of group_size.
280 *
281 * The expected entry count is what is left after assigning
282 * eager.
283 */
284 max_entries = rcd->rcv_array_groups *
285 dd->rcv_entries.group_size;
286 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
287 rcd->egrbufs.count = round_down(rcvtids,
288 dd->rcv_entries.group_size);
289 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
290 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
291 rcd->ctxt);
292 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
293 }
294 hfi1_cdbg(PROC,
295 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
296 rcd->ctxt, rcd->egrbufs.count);
297
298 /*
299 * Allocate array that will hold the eager buffer accounting
300 * data.
301 * This will allocate the maximum possible buffer count based
302 * on the value of the RcvArray split parameter.
303 * The resulting value will be rounded down to the closest
304 * multiple of dd->rcv_entries.group_size.
305 */
306 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
307 sizeof(*rcd->egrbufs.buffers),
308 GFP_KERNEL);
309 if (!rcd->egrbufs.buffers)
310 goto bail;
311 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
312 sizeof(*rcd->egrbufs.rcvtids),
313 GFP_KERNEL);
314 if (!rcd->egrbufs.rcvtids)
315 goto bail;
316 rcd->egrbufs.size = eager_buffer_size;
317 /*
318 * The size of the buffers programmed into the RcvArray
319 * entries needs to be big enough to handle the highest
320 * MTU supported.
321 */
322 if (rcd->egrbufs.size < hfi1_max_mtu) {
323 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
324 hfi1_cdbg(PROC,
325 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
326 rcd->ctxt, rcd->egrbufs.size);
327 }
328 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
329
330 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
331 rcd->opstats = kzalloc(sizeof(*rcd->opstats),
332 GFP_KERNEL);
333 if (!rcd->opstats)
334 goto bail;
335 }
336 }
337 return rcd;
338 bail:
339 kfree(rcd->egrbufs.rcvtids);
340 kfree(rcd->egrbufs.buffers);
341 kfree(rcd);
342 return NULL;
343 }
344
345 /*
346 * Convert a receive header entry size that to the encoding used in the CSR.
347 *
348 * Return a zero if the given size is invalid.
349 */
350 static inline u64 encode_rcv_header_entry_size(u16 size)
351 {
352 /* there are only 3 valid receive header entry sizes */
353 if (size == 2)
354 return 1;
355 if (size == 16)
356 return 2;
357 else if (size == 32)
358 return 4;
359 return 0; /* invalid */
360 }
361
362 /*
363 * Select the largest ccti value over all SLs to determine the intra-
364 * packet gap for the link.
365 *
366 * called with cca_timer_lock held (to protect access to cca_timer
367 * array), and rcu_read_lock() (to protect access to cc_state).
368 */
369 void set_link_ipg(struct hfi1_pportdata *ppd)
370 {
371 struct hfi1_devdata *dd = ppd->dd;
372 struct cc_state *cc_state;
373 int i;
374 u16 cce, ccti_limit, max_ccti = 0;
375 u16 shift, mult;
376 u64 src;
377 u32 current_egress_rate; /* Mbits /sec */
378 u32 max_pkt_time;
379 /*
380 * max_pkt_time is the maximum packet egress time in units
381 * of the fabric clock period 1/(805 MHz).
382 */
383
384 cc_state = get_cc_state(ppd);
385
386 if (!cc_state)
387 /*
388 * This should _never_ happen - rcu_read_lock() is held,
389 * and set_link_ipg() should not be called if cc_state
390 * is NULL.
391 */
392 return;
393
394 for (i = 0; i < OPA_MAX_SLS; i++) {
395 u16 ccti = ppd->cca_timer[i].ccti;
396
397 if (ccti > max_ccti)
398 max_ccti = ccti;
399 }
400
401 ccti_limit = cc_state->cct.ccti_limit;
402 if (max_ccti > ccti_limit)
403 max_ccti = ccti_limit;
404
405 cce = cc_state->cct.entries[max_ccti].entry;
406 shift = (cce & 0xc000) >> 14;
407 mult = (cce & 0x3fff);
408
409 current_egress_rate = active_egress_rate(ppd);
410
411 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
412
413 src = (max_pkt_time >> shift) * mult;
414
415 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
416 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
417
418 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
419 }
420
421 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
422 {
423 struct cca_timer *cca_timer;
424 struct hfi1_pportdata *ppd;
425 int sl;
426 u16 ccti_timer, ccti_min;
427 struct cc_state *cc_state;
428 unsigned long flags;
429 enum hrtimer_restart ret = HRTIMER_NORESTART;
430
431 cca_timer = container_of(t, struct cca_timer, hrtimer);
432 ppd = cca_timer->ppd;
433 sl = cca_timer->sl;
434
435 rcu_read_lock();
436
437 cc_state = get_cc_state(ppd);
438
439 if (!cc_state) {
440 rcu_read_unlock();
441 return HRTIMER_NORESTART;
442 }
443
444 /*
445 * 1) decrement ccti for SL
446 * 2) calculate IPG for link (set_link_ipg())
447 * 3) restart timer, unless ccti is at min value
448 */
449
450 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
451 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
452
453 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
454
455 if (cca_timer->ccti > ccti_min) {
456 cca_timer->ccti--;
457 set_link_ipg(ppd);
458 }
459
460 if (cca_timer->ccti > ccti_min) {
461 unsigned long nsec = 1024 * ccti_timer;
462 /* ccti_timer is in units of 1.024 usec */
463 hrtimer_forward_now(t, ns_to_ktime(nsec));
464 ret = HRTIMER_RESTART;
465 }
466
467 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
468 rcu_read_unlock();
469 return ret;
470 }
471
472 /*
473 * Common code for initializing the physical port structure.
474 */
475 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
476 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
477 {
478 int i;
479 uint default_pkey_idx;
480 struct cc_state *cc_state;
481
482 ppd->dd = dd;
483 ppd->hw_pidx = hw_pidx;
484 ppd->port = port; /* IB port number, not index */
485
486 default_pkey_idx = 1;
487
488 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
489 if (loopback) {
490 hfi1_early_err(&pdev->dev,
491 "Faking data partition 0x8001 in idx %u\n",
492 !default_pkey_idx);
493 ppd->pkeys[!default_pkey_idx] = 0x8001;
494 }
495
496 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
497 INIT_WORK(&ppd->link_up_work, handle_link_up);
498 INIT_WORK(&ppd->link_down_work, handle_link_down);
499 INIT_WORK(&ppd->freeze_work, handle_freeze);
500 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
501 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
502 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
503 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
504 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
505
506 mutex_init(&ppd->hls_lock);
507 spin_lock_init(&ppd->sdma_alllock);
508 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
509
510 ppd->qsfp_info.ppd = ppd;
511 ppd->sm_trap_qp = 0x0;
512 ppd->sa_qp = 0x1;
513
514 ppd->hfi1_wq = NULL;
515
516 spin_lock_init(&ppd->cca_timer_lock);
517
518 for (i = 0; i < OPA_MAX_SLS; i++) {
519 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
520 HRTIMER_MODE_REL);
521 ppd->cca_timer[i].ppd = ppd;
522 ppd->cca_timer[i].sl = i;
523 ppd->cca_timer[i].ccti = 0;
524 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
525 }
526
527 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
528
529 spin_lock_init(&ppd->cc_state_lock);
530 spin_lock_init(&ppd->cc_log_lock);
531 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
532 RCU_INIT_POINTER(ppd->cc_state, cc_state);
533 if (!cc_state)
534 goto bail;
535 return;
536
537 bail:
538
539 hfi1_early_err(&pdev->dev,
540 "Congestion Control Agent disabled for port %d\n", port);
541 }
542
543 /*
544 * Do initialization for device that is only needed on
545 * first detect, not on resets.
546 */
547 static int loadtime_init(struct hfi1_devdata *dd)
548 {
549 return 0;
550 }
551
552 /**
553 * init_after_reset - re-initialize after a reset
554 * @dd: the hfi1_ib device
555 *
556 * sanity check at least some of the values after reset, and
557 * ensure no receive or transmit (explicitly, in case reset
558 * failed
559 */
560 static int init_after_reset(struct hfi1_devdata *dd)
561 {
562 int i;
563
564 /*
565 * Ensure chip does no sends or receives, tail updates, or
566 * pioavail updates while we re-initialize. This is mostly
567 * for the driver data structures, not chip registers.
568 */
569 for (i = 0; i < dd->num_rcv_contexts; i++)
570 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
571 HFI1_RCVCTRL_INTRAVAIL_DIS |
572 HFI1_RCVCTRL_TAILUPD_DIS, i);
573 pio_send_control(dd, PSC_GLOBAL_DISABLE);
574 for (i = 0; i < dd->num_send_contexts; i++)
575 sc_disable(dd->send_contexts[i].sc);
576
577 return 0;
578 }
579
580 static void enable_chip(struct hfi1_devdata *dd)
581 {
582 u32 rcvmask;
583 u32 i;
584
585 /* enable PIO send */
586 pio_send_control(dd, PSC_GLOBAL_ENABLE);
587
588 /*
589 * Enable kernel ctxts' receive and receive interrupt.
590 * Other ctxts done as user opens and initializes them.
591 */
592 for (i = 0; i < dd->first_user_ctxt; ++i) {
593 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
594 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
595 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
596 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
597 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
598 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
599 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
600 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
601 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
602 hfi1_rcvctrl(dd, rcvmask, i);
603 sc_enable(dd->rcd[i]->sc);
604 }
605 }
606
607 /**
608 * create_workqueues - create per port workqueues
609 * @dd: the hfi1_ib device
610 */
611 static int create_workqueues(struct hfi1_devdata *dd)
612 {
613 int pidx;
614 struct hfi1_pportdata *ppd;
615
616 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
617 ppd = dd->pport + pidx;
618 if (!ppd->hfi1_wq) {
619 ppd->hfi1_wq =
620 alloc_workqueue(
621 "hfi%d_%d",
622 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
623 dd->num_sdma,
624 dd->unit, pidx);
625 if (!ppd->hfi1_wq)
626 goto wq_error;
627 }
628 }
629 return 0;
630 wq_error:
631 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
632 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
633 ppd = dd->pport + pidx;
634 if (ppd->hfi1_wq) {
635 destroy_workqueue(ppd->hfi1_wq);
636 ppd->hfi1_wq = NULL;
637 }
638 }
639 return -ENOMEM;
640 }
641
642 /**
643 * hfi1_init - do the actual initialization sequence on the chip
644 * @dd: the hfi1_ib device
645 * @reinit: re-initializing, so don't allocate new memory
646 *
647 * Do the actual initialization sequence on the chip. This is done
648 * both from the init routine called from the PCI infrastructure, and
649 * when we reset the chip, or detect that it was reset internally,
650 * or it's administratively re-enabled.
651 *
652 * Memory allocation here and in called routines is only done in
653 * the first case (reinit == 0). We have to be careful, because even
654 * without memory allocation, we need to re-write all the chip registers
655 * TIDs, etc. after the reset or enable has completed.
656 */
657 int hfi1_init(struct hfi1_devdata *dd, int reinit)
658 {
659 int ret = 0, pidx, lastfail = 0;
660 unsigned i, len;
661 struct hfi1_ctxtdata *rcd;
662 struct hfi1_pportdata *ppd;
663
664 /* Set up recv low level handlers */
665 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
666 kdeth_process_expected;
667 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
668 kdeth_process_eager;
669 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
670 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
671 process_receive_error;
672 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
673 process_receive_bypass;
674 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
675 process_receive_invalid;
676 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
677 process_receive_invalid;
678 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
679 process_receive_invalid;
680 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
681
682 /* Set up send low level handlers */
683 dd->process_pio_send = hfi1_verbs_send_pio;
684 dd->process_dma_send = hfi1_verbs_send_dma;
685 dd->pio_inline_send = pio_copy;
686
687 if (is_ax(dd)) {
688 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
689 dd->do_drop = 1;
690 } else {
691 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
692 dd->do_drop = 0;
693 }
694
695 /* make sure the link is not "up" */
696 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
697 ppd = dd->pport + pidx;
698 ppd->linkup = 0;
699 }
700
701 if (reinit)
702 ret = init_after_reset(dd);
703 else
704 ret = loadtime_init(dd);
705 if (ret)
706 goto done;
707
708 /* allocate dummy tail memory for all receive contexts */
709 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
710 &dd->pcidev->dev, sizeof(u64),
711 &dd->rcvhdrtail_dummy_physaddr,
712 GFP_KERNEL);
713
714 if (!dd->rcvhdrtail_dummy_kvaddr) {
715 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
716 ret = -ENOMEM;
717 goto done;
718 }
719
720 /* dd->rcd can be NULL if early initialization failed */
721 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
722 /*
723 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
724 * re-init, the simplest way to handle this is to free
725 * existing, and re-allocate.
726 * Need to re-create rest of ctxt 0 ctxtdata as well.
727 */
728 rcd = dd->rcd[i];
729 if (!rcd)
730 continue;
731
732 rcd->do_interrupt = &handle_receive_interrupt;
733
734 lastfail = hfi1_create_rcvhdrq(dd, rcd);
735 if (!lastfail)
736 lastfail = hfi1_setup_eagerbufs(rcd);
737 if (lastfail) {
738 dd_dev_err(dd,
739 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
740 ret = lastfail;
741 }
742 }
743
744 /* Allocate enough memory for user event notification. */
745 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
746 sizeof(*dd->events));
747 dd->events = vmalloc_user(len);
748 if (!dd->events)
749 dd_dev_err(dd, "Failed to allocate user events page\n");
750 /*
751 * Allocate a page for device and port status.
752 * Page will be shared amongst all user processes.
753 */
754 dd->status = vmalloc_user(PAGE_SIZE);
755 if (!dd->status)
756 dd_dev_err(dd, "Failed to allocate dev status page\n");
757 else
758 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
759 sizeof(dd->status->freezemsg));
760 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
761 ppd = dd->pport + pidx;
762 if (dd->status)
763 /* Currently, we only have one port */
764 ppd->statusp = &dd->status->port;
765
766 set_mtu(ppd);
767 }
768
769 /* enable chip even if we have an error, so we can debug cause */
770 enable_chip(dd);
771
772 done:
773 /*
774 * Set status even if port serdes is not initialized
775 * so that diags will work.
776 */
777 if (dd->status)
778 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
779 HFI1_STATUS_INITTED;
780 if (!ret) {
781 /* enable all interrupts from the chip */
782 set_intr_state(dd, 1);
783
784 /* chip is OK for user apps; mark it as initialized */
785 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
786 ppd = dd->pport + pidx;
787
788 /*
789 * start the serdes - must be after interrupts are
790 * enabled so we are notified when the link goes up
791 */
792 lastfail = bringup_serdes(ppd);
793 if (lastfail)
794 dd_dev_info(dd,
795 "Failed to bring up port %u\n",
796 ppd->port);
797
798 /*
799 * Set status even if port serdes is not initialized
800 * so that diags will work.
801 */
802 if (ppd->statusp)
803 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
804 HFI1_STATUS_INITTED;
805 if (!ppd->link_speed_enabled)
806 continue;
807 }
808 }
809
810 /* if ret is non-zero, we probably should do some cleanup here... */
811 return ret;
812 }
813
814 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
815 {
816 return idr_find(&hfi1_unit_table, unit);
817 }
818
819 struct hfi1_devdata *hfi1_lookup(int unit)
820 {
821 struct hfi1_devdata *dd;
822 unsigned long flags;
823
824 spin_lock_irqsave(&hfi1_devs_lock, flags);
825 dd = __hfi1_lookup(unit);
826 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
827
828 return dd;
829 }
830
831 /*
832 * Stop the timers during unit shutdown, or after an error late
833 * in initialization.
834 */
835 static void stop_timers(struct hfi1_devdata *dd)
836 {
837 struct hfi1_pportdata *ppd;
838 int pidx;
839
840 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
841 ppd = dd->pport + pidx;
842 if (ppd->led_override_timer.data) {
843 del_timer_sync(&ppd->led_override_timer);
844 atomic_set(&ppd->led_override_timer_active, 0);
845 }
846 }
847 }
848
849 /**
850 * shutdown_device - shut down a device
851 * @dd: the hfi1_ib device
852 *
853 * This is called to make the device quiet when we are about to
854 * unload the driver, and also when the device is administratively
855 * disabled. It does not free any data structures.
856 * Everything it does has to be setup again by hfi1_init(dd, 1)
857 */
858 static void shutdown_device(struct hfi1_devdata *dd)
859 {
860 struct hfi1_pportdata *ppd;
861 unsigned pidx;
862 int i;
863
864 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
865 ppd = dd->pport + pidx;
866
867 ppd->linkup = 0;
868 if (ppd->statusp)
869 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
870 HFI1_STATUS_IB_READY);
871 }
872 dd->flags &= ~HFI1_INITTED;
873
874 /* mask interrupts, but not errors */
875 set_intr_state(dd, 0);
876
877 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
878 ppd = dd->pport + pidx;
879 for (i = 0; i < dd->num_rcv_contexts; i++)
880 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
881 HFI1_RCVCTRL_CTXT_DIS |
882 HFI1_RCVCTRL_INTRAVAIL_DIS |
883 HFI1_RCVCTRL_PKEY_DIS |
884 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
885 /*
886 * Gracefully stop all sends allowing any in progress to
887 * trickle out first.
888 */
889 for (i = 0; i < dd->num_send_contexts; i++)
890 sc_flush(dd->send_contexts[i].sc);
891 }
892
893 /*
894 * Enough for anything that's going to trickle out to have actually
895 * done so.
896 */
897 udelay(20);
898
899 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
900 ppd = dd->pport + pidx;
901
902 /* disable all contexts */
903 for (i = 0; i < dd->num_send_contexts; i++)
904 sc_disable(dd->send_contexts[i].sc);
905 /* disable the send device */
906 pio_send_control(dd, PSC_GLOBAL_DISABLE);
907
908 shutdown_led_override(ppd);
909
910 /*
911 * Clear SerdesEnable.
912 * We can't count on interrupts since we are stopping.
913 */
914 hfi1_quiet_serdes(ppd);
915
916 if (ppd->hfi1_wq) {
917 destroy_workqueue(ppd->hfi1_wq);
918 ppd->hfi1_wq = NULL;
919 }
920 }
921 sdma_exit(dd);
922 }
923
924 /**
925 * hfi1_free_ctxtdata - free a context's allocated data
926 * @dd: the hfi1_ib device
927 * @rcd: the ctxtdata structure
928 *
929 * free up any allocated data for a context
930 * This should not touch anything that would affect a simultaneous
931 * re-allocation of context data, because it is called after hfi1_mutex
932 * is released (and can be called from reinit as well).
933 * It should never change any chip state, or global driver state.
934 */
935 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
936 {
937 unsigned e;
938
939 if (!rcd)
940 return;
941
942 if (rcd->rcvhdrq) {
943 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
944 rcd->rcvhdrq, rcd->rcvhdrq_phys);
945 rcd->rcvhdrq = NULL;
946 if (rcd->rcvhdrtail_kvaddr) {
947 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
948 (void *)rcd->rcvhdrtail_kvaddr,
949 rcd->rcvhdrqtailaddr_phys);
950 rcd->rcvhdrtail_kvaddr = NULL;
951 }
952 }
953
954 /* all the RcvArray entries should have been cleared by now */
955 kfree(rcd->egrbufs.rcvtids);
956
957 for (e = 0; e < rcd->egrbufs.alloced; e++) {
958 if (rcd->egrbufs.buffers[e].phys)
959 dma_free_coherent(&dd->pcidev->dev,
960 rcd->egrbufs.buffers[e].len,
961 rcd->egrbufs.buffers[e].addr,
962 rcd->egrbufs.buffers[e].phys);
963 }
964 kfree(rcd->egrbufs.buffers);
965
966 sc_free(rcd->sc);
967 vfree(rcd->user_event_mask);
968 vfree(rcd->subctxt_uregbase);
969 vfree(rcd->subctxt_rcvegrbuf);
970 vfree(rcd->subctxt_rcvhdr_base);
971 kfree(rcd->opstats);
972 kfree(rcd);
973 }
974
975 /*
976 * Release our hold on the shared asic data. If we are the last one,
977 * return the structure to be finalized outside the lock. Must be
978 * holding hfi1_devs_lock.
979 */
980 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
981 {
982 struct hfi1_asic_data *ad;
983 int other;
984
985 if (!dd->asic_data)
986 return NULL;
987 dd->asic_data->dds[dd->hfi1_id] = NULL;
988 other = dd->hfi1_id ? 0 : 1;
989 ad = dd->asic_data;
990 dd->asic_data = NULL;
991 /* return NULL if the other dd still has a link */
992 return ad->dds[other] ? NULL : ad;
993 }
994
995 static void finalize_asic_data(struct hfi1_devdata *dd,
996 struct hfi1_asic_data *ad)
997 {
998 clean_up_i2c(dd, ad);
999 kfree(ad);
1000 }
1001
1002 static void __hfi1_free_devdata(struct kobject *kobj)
1003 {
1004 struct hfi1_devdata *dd =
1005 container_of(kobj, struct hfi1_devdata, kobj);
1006 struct hfi1_asic_data *ad;
1007 unsigned long flags;
1008
1009 spin_lock_irqsave(&hfi1_devs_lock, flags);
1010 idr_remove(&hfi1_unit_table, dd->unit);
1011 list_del(&dd->list);
1012 ad = release_asic_data(dd);
1013 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1014 if (ad)
1015 finalize_asic_data(dd, ad);
1016 free_platform_config(dd);
1017 rcu_barrier(); /* wait for rcu callbacks to complete */
1018 free_percpu(dd->int_counter);
1019 free_percpu(dd->rcv_limit);
1020 free_percpu(dd->send_schedule);
1021 rvt_dealloc_device(&dd->verbs_dev.rdi);
1022 }
1023
1024 static struct kobj_type hfi1_devdata_type = {
1025 .release = __hfi1_free_devdata,
1026 };
1027
1028 void hfi1_free_devdata(struct hfi1_devdata *dd)
1029 {
1030 kobject_put(&dd->kobj);
1031 }
1032
1033 /*
1034 * Allocate our primary per-unit data structure. Must be done via verbs
1035 * allocator, because the verbs cleanup process both does cleanup and
1036 * free of the data structure.
1037 * "extra" is for chip-specific data.
1038 *
1039 * Use the idr mechanism to get a unit number for this unit.
1040 */
1041 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1042 {
1043 unsigned long flags;
1044 struct hfi1_devdata *dd;
1045 int ret, nports;
1046
1047 /* extra is * number of ports */
1048 nports = extra / sizeof(struct hfi1_pportdata);
1049
1050 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1051 nports);
1052 if (!dd)
1053 return ERR_PTR(-ENOMEM);
1054 dd->num_pports = nports;
1055 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1056
1057 INIT_LIST_HEAD(&dd->list);
1058 idr_preload(GFP_KERNEL);
1059 spin_lock_irqsave(&hfi1_devs_lock, flags);
1060
1061 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1062 if (ret >= 0) {
1063 dd->unit = ret;
1064 list_add(&dd->list, &hfi1_dev_list);
1065 }
1066
1067 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1068 idr_preload_end();
1069
1070 if (ret < 0) {
1071 hfi1_early_err(&pdev->dev,
1072 "Could not allocate unit ID: error %d\n", -ret);
1073 goto bail;
1074 }
1075 /*
1076 * Initialize all locks for the device. This needs to be as early as
1077 * possible so locks are usable.
1078 */
1079 spin_lock_init(&dd->sc_lock);
1080 spin_lock_init(&dd->sendctrl_lock);
1081 spin_lock_init(&dd->rcvctrl_lock);
1082 spin_lock_init(&dd->uctxt_lock);
1083 spin_lock_init(&dd->hfi1_diag_trans_lock);
1084 spin_lock_init(&dd->sc_init_lock);
1085 spin_lock_init(&dd->dc8051_lock);
1086 spin_lock_init(&dd->dc8051_memlock);
1087 seqlock_init(&dd->sc2vl_lock);
1088 spin_lock_init(&dd->sde_map_lock);
1089 spin_lock_init(&dd->pio_map_lock);
1090 init_waitqueue_head(&dd->event_queue);
1091
1092 dd->int_counter = alloc_percpu(u64);
1093 if (!dd->int_counter) {
1094 ret = -ENOMEM;
1095 hfi1_early_err(&pdev->dev,
1096 "Could not allocate per-cpu int_counter\n");
1097 goto bail;
1098 }
1099
1100 dd->rcv_limit = alloc_percpu(u64);
1101 if (!dd->rcv_limit) {
1102 ret = -ENOMEM;
1103 hfi1_early_err(&pdev->dev,
1104 "Could not allocate per-cpu rcv_limit\n");
1105 goto bail;
1106 }
1107
1108 dd->send_schedule = alloc_percpu(u64);
1109 if (!dd->send_schedule) {
1110 ret = -ENOMEM;
1111 hfi1_early_err(&pdev->dev,
1112 "Could not allocate per-cpu int_counter\n");
1113 goto bail;
1114 }
1115
1116 if (!hfi1_cpulist_count) {
1117 u32 count = num_online_cpus();
1118
1119 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1120 GFP_KERNEL);
1121 if (hfi1_cpulist)
1122 hfi1_cpulist_count = count;
1123 else
1124 hfi1_early_err(
1125 &pdev->dev,
1126 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1127 }
1128 kobject_init(&dd->kobj, &hfi1_devdata_type);
1129 return dd;
1130
1131 bail:
1132 if (!list_empty(&dd->list))
1133 list_del_init(&dd->list);
1134 rvt_dealloc_device(&dd->verbs_dev.rdi);
1135 return ERR_PTR(ret);
1136 }
1137
1138 /*
1139 * Called from freeze mode handlers, and from PCI error
1140 * reporting code. Should be paranoid about state of
1141 * system and data structures.
1142 */
1143 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1144 {
1145 if (dd->flags & HFI1_INITTED) {
1146 u32 pidx;
1147
1148 dd->flags &= ~HFI1_INITTED;
1149 if (dd->pport)
1150 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1151 struct hfi1_pportdata *ppd;
1152
1153 ppd = dd->pport + pidx;
1154 if (dd->flags & HFI1_PRESENT)
1155 set_link_state(ppd, HLS_DN_DISABLE);
1156
1157 if (ppd->statusp)
1158 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1159 }
1160 }
1161
1162 /*
1163 * Mark as having had an error for driver, and also
1164 * for /sys and status word mapped to user programs.
1165 * This marks unit as not usable, until reset.
1166 */
1167 if (dd->status)
1168 dd->status->dev |= HFI1_STATUS_HWERROR;
1169 }
1170
1171 static void remove_one(struct pci_dev *);
1172 static int init_one(struct pci_dev *, const struct pci_device_id *);
1173
1174 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1175 #define PFX DRIVER_NAME ": "
1176
1177 const struct pci_device_id hfi1_pci_tbl[] = {
1178 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1179 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1180 { 0, }
1181 };
1182
1183 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1184
1185 static struct pci_driver hfi1_pci_driver = {
1186 .name = DRIVER_NAME,
1187 .probe = init_one,
1188 .remove = remove_one,
1189 .id_table = hfi1_pci_tbl,
1190 .err_handler = &hfi1_pci_err_handler,
1191 };
1192
1193 static void __init compute_krcvqs(void)
1194 {
1195 int i;
1196
1197 for (i = 0; i < krcvqsset; i++)
1198 n_krcvqs += krcvqs[i];
1199 }
1200
1201 /*
1202 * Do all the generic driver unit- and chip-independent memory
1203 * allocation and initialization.
1204 */
1205 static int __init hfi1_mod_init(void)
1206 {
1207 int ret;
1208
1209 ret = dev_init();
1210 if (ret)
1211 goto bail;
1212
1213 ret = node_affinity_init();
1214 if (ret)
1215 goto bail;
1216
1217 /* validate max MTU before any devices start */
1218 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1219 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1220 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1221 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1222 }
1223 /* valid CUs run from 1-128 in powers of 2 */
1224 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1225 hfi1_cu = 1;
1226 /* valid credit return threshold is 0-100, variable is unsigned */
1227 if (user_credit_return_threshold > 100)
1228 user_credit_return_threshold = 100;
1229
1230 compute_krcvqs();
1231 /*
1232 * sanitize receive interrupt count, time must wait until after
1233 * the hardware type is known
1234 */
1235 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1236 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1237 /* reject invalid combinations */
1238 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1239 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1240 rcv_intr_count = 1;
1241 }
1242 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1243 /*
1244 * Avoid indefinite packet delivery by requiring a timeout
1245 * if count is > 1.
1246 */
1247 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1248 rcv_intr_timeout = 1;
1249 }
1250 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1251 /*
1252 * The dynamic algorithm expects a non-zero timeout
1253 * and a count > 1.
1254 */
1255 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1256 rcv_intr_dynamic = 0;
1257 }
1258
1259 /* sanitize link CRC options */
1260 link_crc_mask &= SUPPORTED_CRCS;
1261
1262 /*
1263 * These must be called before the driver is registered with
1264 * the PCI subsystem.
1265 */
1266 idr_init(&hfi1_unit_table);
1267
1268 hfi1_dbg_init();
1269 ret = hfi1_wss_init();
1270 if (ret < 0)
1271 goto bail_wss;
1272 ret = pci_register_driver(&hfi1_pci_driver);
1273 if (ret < 0) {
1274 pr_err("Unable to register driver: error %d\n", -ret);
1275 goto bail_dev;
1276 }
1277 goto bail; /* all OK */
1278
1279 bail_dev:
1280 hfi1_wss_exit();
1281 bail_wss:
1282 hfi1_dbg_exit();
1283 idr_destroy(&hfi1_unit_table);
1284 dev_cleanup();
1285 bail:
1286 return ret;
1287 }
1288
1289 module_init(hfi1_mod_init);
1290
1291 /*
1292 * Do the non-unit driver cleanup, memory free, etc. at unload.
1293 */
1294 static void __exit hfi1_mod_cleanup(void)
1295 {
1296 pci_unregister_driver(&hfi1_pci_driver);
1297 node_affinity_destroy();
1298 hfi1_wss_exit();
1299 hfi1_dbg_exit();
1300 hfi1_cpulist_count = 0;
1301 kfree(hfi1_cpulist);
1302
1303 idr_destroy(&hfi1_unit_table);
1304 dispose_firmware(); /* asymmetric with obtain_firmware() */
1305 dev_cleanup();
1306 }
1307
1308 module_exit(hfi1_mod_cleanup);
1309
1310 /* this can only be called after a successful initialization */
1311 static void cleanup_device_data(struct hfi1_devdata *dd)
1312 {
1313 int ctxt;
1314 int pidx;
1315 struct hfi1_ctxtdata **tmp;
1316 unsigned long flags;
1317
1318 /* users can't do anything more with chip */
1319 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1320 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1321 struct cc_state *cc_state;
1322 int i;
1323
1324 if (ppd->statusp)
1325 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1326
1327 for (i = 0; i < OPA_MAX_SLS; i++)
1328 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1329
1330 spin_lock(&ppd->cc_state_lock);
1331 cc_state = get_cc_state_protected(ppd);
1332 RCU_INIT_POINTER(ppd->cc_state, NULL);
1333 spin_unlock(&ppd->cc_state_lock);
1334
1335 if (cc_state)
1336 call_rcu(&cc_state->rcu, cc_state_reclaim);
1337 }
1338
1339 free_credit_return(dd);
1340
1341 /*
1342 * Free any resources still in use (usually just kernel contexts)
1343 * at unload; we do for ctxtcnt, because that's what we allocate.
1344 * We acquire lock to be really paranoid that rcd isn't being
1345 * accessed from some interrupt-related code (that should not happen,
1346 * but best to be sure).
1347 */
1348 spin_lock_irqsave(&dd->uctxt_lock, flags);
1349 tmp = dd->rcd;
1350 dd->rcd = NULL;
1351 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1352
1353 if (dd->rcvhdrtail_dummy_kvaddr) {
1354 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1355 (void *)dd->rcvhdrtail_dummy_kvaddr,
1356 dd->rcvhdrtail_dummy_physaddr);
1357 dd->rcvhdrtail_dummy_kvaddr = NULL;
1358 }
1359
1360 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1361 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1362
1363 tmp[ctxt] = NULL; /* debugging paranoia */
1364 if (rcd) {
1365 hfi1_clear_tids(rcd);
1366 hfi1_free_ctxtdata(dd, rcd);
1367 }
1368 }
1369 kfree(tmp);
1370 free_pio_map(dd);
1371 /* must follow rcv context free - need to remove rcv's hooks */
1372 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1373 sc_free(dd->send_contexts[ctxt].sc);
1374 dd->num_send_contexts = 0;
1375 kfree(dd->send_contexts);
1376 dd->send_contexts = NULL;
1377 kfree(dd->hw_to_sw);
1378 dd->hw_to_sw = NULL;
1379 kfree(dd->boardname);
1380 vfree(dd->events);
1381 vfree(dd->status);
1382 }
1383
1384 /*
1385 * Clean up on unit shutdown, or error during unit load after
1386 * successful initialization.
1387 */
1388 static void postinit_cleanup(struct hfi1_devdata *dd)
1389 {
1390 hfi1_start_cleanup(dd);
1391
1392 hfi1_pcie_ddcleanup(dd);
1393 hfi1_pcie_cleanup(dd->pcidev);
1394
1395 cleanup_device_data(dd);
1396
1397 hfi1_free_devdata(dd);
1398 }
1399
1400 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1401 {
1402 int ret = 0, j, pidx, initfail;
1403 struct hfi1_devdata *dd = ERR_PTR(-EINVAL);
1404 struct hfi1_pportdata *ppd;
1405
1406 /* First, lock the non-writable module parameters */
1407 HFI1_CAP_LOCK();
1408
1409 /* Validate some global module parameters */
1410 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1411 hfi1_early_err(&pdev->dev, "Header queue count too small\n");
1412 ret = -EINVAL;
1413 goto bail;
1414 }
1415 if (rcvhdrcnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1416 hfi1_early_err(&pdev->dev,
1417 "Receive header queue count cannot be greater than %u\n",
1418 HFI1_MAX_HDRQ_EGRBUF_CNT);
1419 ret = -EINVAL;
1420 goto bail;
1421 }
1422 /* use the encoding function as a sanitization check */
1423 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1424 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1425 hfi1_hdrq_entsize);
1426 ret = -EINVAL;
1427 goto bail;
1428 }
1429
1430 /* The receive eager buffer size must be set before the receive
1431 * contexts are created.
1432 *
1433 * Set the eager buffer size. Validate that it falls in a range
1434 * allowed by the hardware - all powers of 2 between the min and
1435 * max. The maximum valid MTU is within the eager buffer range
1436 * so we do not need to cap the max_mtu by an eager buffer size
1437 * setting.
1438 */
1439 if (eager_buffer_size) {
1440 if (!is_power_of_2(eager_buffer_size))
1441 eager_buffer_size =
1442 roundup_pow_of_two(eager_buffer_size);
1443 eager_buffer_size =
1444 clamp_val(eager_buffer_size,
1445 MIN_EAGER_BUFFER * 8,
1446 MAX_EAGER_BUFFER_TOTAL);
1447 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1448 eager_buffer_size);
1449 } else {
1450 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1451 ret = -EINVAL;
1452 goto bail;
1453 }
1454
1455 /* restrict value of hfi1_rcvarr_split */
1456 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1457
1458 ret = hfi1_pcie_init(pdev, ent);
1459 if (ret)
1460 goto bail;
1461
1462 /*
1463 * Do device-specific initialization, function table setup, dd
1464 * allocation, etc.
1465 */
1466 switch (ent->device) {
1467 case PCI_DEVICE_ID_INTEL0:
1468 case PCI_DEVICE_ID_INTEL1:
1469 dd = hfi1_init_dd(pdev, ent);
1470 break;
1471 default:
1472 hfi1_early_err(&pdev->dev,
1473 "Failing on unknown Intel deviceid 0x%x\n",
1474 ent->device);
1475 ret = -ENODEV;
1476 }
1477
1478 if (IS_ERR(dd))
1479 ret = PTR_ERR(dd);
1480 if (ret)
1481 goto clean_bail; /* error already printed */
1482
1483 ret = create_workqueues(dd);
1484 if (ret)
1485 goto clean_bail;
1486
1487 /* do the generic initialization */
1488 initfail = hfi1_init(dd, 0);
1489
1490 ret = hfi1_register_ib_device(dd);
1491
1492 /*
1493 * Now ready for use. this should be cleared whenever we
1494 * detect a reset, or initiate one. If earlier failure,
1495 * we still create devices, so diags, etc. can be used
1496 * to determine cause of problem.
1497 */
1498 if (!initfail && !ret) {
1499 dd->flags |= HFI1_INITTED;
1500 /* create debufs files after init and ib register */
1501 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1502 }
1503
1504 j = hfi1_device_create(dd);
1505 if (j)
1506 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1507
1508 if (initfail || ret) {
1509 stop_timers(dd);
1510 flush_workqueue(ib_wq);
1511 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1512 hfi1_quiet_serdes(dd->pport + pidx);
1513 ppd = dd->pport + pidx;
1514 if (ppd->hfi1_wq) {
1515 destroy_workqueue(ppd->hfi1_wq);
1516 ppd->hfi1_wq = NULL;
1517 }
1518 }
1519 if (!j)
1520 hfi1_device_remove(dd);
1521 if (!ret)
1522 hfi1_unregister_ib_device(dd);
1523 postinit_cleanup(dd);
1524 if (initfail)
1525 ret = initfail;
1526 goto bail; /* everything already cleaned */
1527 }
1528
1529 sdma_start(dd);
1530
1531 return 0;
1532
1533 clean_bail:
1534 hfi1_pcie_cleanup(pdev);
1535 bail:
1536 return ret;
1537 }
1538
1539 static void remove_one(struct pci_dev *pdev)
1540 {
1541 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1542
1543 /* close debugfs files before ib unregister */
1544 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1545 /* unregister from IB core */
1546 hfi1_unregister_ib_device(dd);
1547
1548 /*
1549 * Disable the IB link, disable interrupts on the device,
1550 * clear dma engines, etc.
1551 */
1552 shutdown_device(dd);
1553
1554 stop_timers(dd);
1555
1556 /* wait until all of our (qsfp) queue_work() calls complete */
1557 flush_workqueue(ib_wq);
1558
1559 hfi1_device_remove(dd);
1560
1561 postinit_cleanup(dd);
1562 }
1563
1564 /**
1565 * hfi1_create_rcvhdrq - create a receive header queue
1566 * @dd: the hfi1_ib device
1567 * @rcd: the context data
1568 *
1569 * This must be contiguous memory (from an i/o perspective), and must be
1570 * DMA'able (which means for some systems, it will go through an IOMMU,
1571 * or be forced into a low address range).
1572 */
1573 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1574 {
1575 unsigned amt;
1576 u64 reg;
1577
1578 if (!rcd->rcvhdrq) {
1579 dma_addr_t phys_hdrqtail;
1580 gfp_t gfp_flags;
1581
1582 /*
1583 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1584 * (* sizeof(u32)).
1585 */
1586 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1587 sizeof(u32));
1588
1589 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1590 GFP_USER : GFP_KERNEL;
1591 rcd->rcvhdrq = dma_zalloc_coherent(
1592 &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1593 gfp_flags | __GFP_COMP);
1594
1595 if (!rcd->rcvhdrq) {
1596 dd_dev_err(dd,
1597 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1598 amt, rcd->ctxt);
1599 goto bail;
1600 }
1601
1602 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1603 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1604 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1605 gfp_flags);
1606 if (!rcd->rcvhdrtail_kvaddr)
1607 goto bail_free;
1608 rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1609 }
1610
1611 rcd->rcvhdrq_size = amt;
1612 }
1613 /*
1614 * These values are per-context:
1615 * RcvHdrCnt
1616 * RcvHdrEntSize
1617 * RcvHdrSize
1618 */
1619 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1620 & RCV_HDR_CNT_CNT_MASK)
1621 << RCV_HDR_CNT_CNT_SHIFT;
1622 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1623 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1624 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1625 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1626 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1627 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1628 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1629 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1630
1631 /*
1632 * Program dummy tail address for every receive context
1633 * before enabling any receive context
1634 */
1635 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1636 dd->rcvhdrtail_dummy_physaddr);
1637
1638 return 0;
1639
1640 bail_free:
1641 dd_dev_err(dd,
1642 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1643 rcd->ctxt);
1644 vfree(rcd->user_event_mask);
1645 rcd->user_event_mask = NULL;
1646 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1647 rcd->rcvhdrq_phys);
1648 rcd->rcvhdrq = NULL;
1649 bail:
1650 return -ENOMEM;
1651 }
1652
1653 /**
1654 * allocate eager buffers, both kernel and user contexts.
1655 * @rcd: the context we are setting up.
1656 *
1657 * Allocate the eager TID buffers and program them into hip.
1658 * They are no longer completely contiguous, we do multiple allocation
1659 * calls. Otherwise we get the OOM code involved, by asking for too
1660 * much per call, with disastrous results on some kernels.
1661 */
1662 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1663 {
1664 struct hfi1_devdata *dd = rcd->dd;
1665 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1666 gfp_t gfp_flags;
1667 u16 order;
1668 int ret = 0;
1669 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1670
1671 /*
1672 * GFP_USER, but without GFP_FS, so buffer cache can be
1673 * coalesced (we hope); otherwise, even at order 4,
1674 * heavy filesystem activity makes these fail, and we can
1675 * use compound pages.
1676 */
1677 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1678
1679 /*
1680 * The minimum size of the eager buffers is a groups of MTU-sized
1681 * buffers.
1682 * The global eager_buffer_size parameter is checked against the
1683 * theoretical lower limit of the value. Here, we check against the
1684 * MTU.
1685 */
1686 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1687 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1688 /*
1689 * If using one-pkt-per-egr-buffer, lower the eager buffer
1690 * size to the max MTU (page-aligned).
1691 */
1692 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1693 rcd->egrbufs.rcvtid_size = round_mtu;
1694
1695 /*
1696 * Eager buffers sizes of 1MB or less require smaller TID sizes
1697 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1698 */
1699 if (rcd->egrbufs.size <= (1 << 20))
1700 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1701 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1702
1703 while (alloced_bytes < rcd->egrbufs.size &&
1704 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1705 rcd->egrbufs.buffers[idx].addr =
1706 dma_zalloc_coherent(&dd->pcidev->dev,
1707 rcd->egrbufs.rcvtid_size,
1708 &rcd->egrbufs.buffers[idx].phys,
1709 gfp_flags);
1710 if (rcd->egrbufs.buffers[idx].addr) {
1711 rcd->egrbufs.buffers[idx].len =
1712 rcd->egrbufs.rcvtid_size;
1713 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1714 rcd->egrbufs.buffers[idx].addr;
1715 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1716 rcd->egrbufs.buffers[idx].phys;
1717 rcd->egrbufs.alloced++;
1718 alloced_bytes += rcd->egrbufs.rcvtid_size;
1719 idx++;
1720 } else {
1721 u32 new_size, i, j;
1722 u64 offset = 0;
1723
1724 /*
1725 * Fail the eager buffer allocation if:
1726 * - we are already using the lowest acceptable size
1727 * - we are using one-pkt-per-egr-buffer (this implies
1728 * that we are accepting only one size)
1729 */
1730 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1731 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1732 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1733 rcd->ctxt);
1734 goto bail_rcvegrbuf_phys;
1735 }
1736
1737 new_size = rcd->egrbufs.rcvtid_size / 2;
1738
1739 /*
1740 * If the first attempt to allocate memory failed, don't
1741 * fail everything but continue with the next lower
1742 * size.
1743 */
1744 if (idx == 0) {
1745 rcd->egrbufs.rcvtid_size = new_size;
1746 continue;
1747 }
1748
1749 /*
1750 * Re-partition already allocated buffers to a smaller
1751 * size.
1752 */
1753 rcd->egrbufs.alloced = 0;
1754 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1755 if (i >= rcd->egrbufs.count)
1756 break;
1757 rcd->egrbufs.rcvtids[i].phys =
1758 rcd->egrbufs.buffers[j].phys + offset;
1759 rcd->egrbufs.rcvtids[i].addr =
1760 rcd->egrbufs.buffers[j].addr + offset;
1761 rcd->egrbufs.alloced++;
1762 if ((rcd->egrbufs.buffers[j].phys + offset +
1763 new_size) ==
1764 (rcd->egrbufs.buffers[j].phys +
1765 rcd->egrbufs.buffers[j].len)) {
1766 j++;
1767 offset = 0;
1768 } else {
1769 offset += new_size;
1770 }
1771 }
1772 rcd->egrbufs.rcvtid_size = new_size;
1773 }
1774 }
1775 rcd->egrbufs.numbufs = idx;
1776 rcd->egrbufs.size = alloced_bytes;
1777
1778 hfi1_cdbg(PROC,
1779 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1780 rcd->ctxt, rcd->egrbufs.alloced,
1781 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1782
1783 /*
1784 * Set the contexts rcv array head update threshold to the closest
1785 * power of 2 (so we can use a mask instead of modulo) below half
1786 * the allocated entries.
1787 */
1788 rcd->egrbufs.threshold =
1789 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1790 /*
1791 * Compute the expected RcvArray entry base. This is done after
1792 * allocating the eager buffers in order to maximize the
1793 * expected RcvArray entries for the context.
1794 */
1795 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1796 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1797 rcd->expected_count = max_entries - egrtop;
1798 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1799 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1800
1801 rcd->expected_base = rcd->eager_base + egrtop;
1802 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1803 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1804 rcd->eager_base, rcd->expected_base);
1805
1806 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1807 hfi1_cdbg(PROC,
1808 "ctxt%u: current Eager buffer size is invalid %u\n",
1809 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1810 ret = -EINVAL;
1811 goto bail;
1812 }
1813
1814 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1815 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1816 rcd->egrbufs.rcvtids[idx].phys, order);
1817 cond_resched();
1818 }
1819 goto bail;
1820
1821 bail_rcvegrbuf_phys:
1822 for (idx = 0; idx < rcd->egrbufs.alloced &&
1823 rcd->egrbufs.buffers[idx].addr;
1824 idx++) {
1825 dma_free_coherent(&dd->pcidev->dev,
1826 rcd->egrbufs.buffers[idx].len,
1827 rcd->egrbufs.buffers[idx].addr,
1828 rcd->egrbufs.buffers[idx].phys);
1829 rcd->egrbufs.buffers[idx].addr = NULL;
1830 rcd->egrbufs.buffers[idx].phys = 0;
1831 rcd->egrbufs.buffers[idx].len = 0;
1832 }
1833 bail:
1834 return ret;
1835 }
This page took 0.071499 seconds and 5 git commands to generate.