Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-iommu.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/interrupt.h>
36 #include <linux/io.h>
37 #include <linux/io-64-nonatomic-hi-lo.h>
38 #include <linux/iommu.h>
39 #include <linux/iopoll.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/of_address.h>
43 #include <linux/pci.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47
48 #include <linux/amba/bus.h>
49
50 #include "io-pgtable.h"
51
52 /* Maximum number of stream IDs assigned to a single device */
53 #define MAX_MASTER_STREAMIDS 128
54
55 /* Maximum number of context banks per SMMU */
56 #define ARM_SMMU_MAX_CBS 128
57
58 /* Maximum number of mapping groups per SMMU */
59 #define ARM_SMMU_MAX_SMRS 128
60
61 /* SMMU global address space */
62 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
63 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
64
65 /*
66 * SMMU global address space with conditional offset to access secure
67 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
68 * nsGFSYNR0: 0x450)
69 */
70 #define ARM_SMMU_GR0_NS(smmu) \
71 ((smmu)->base + \
72 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
73 ? 0x400 : 0))
74
75 /*
76 * Some 64-bit registers only make sense to write atomically, but in such
77 * cases all the data relevant to AArch32 formats lies within the lower word,
78 * therefore this actually makes more sense than it might first appear.
79 */
80 #ifdef CONFIG_64BIT
81 #define smmu_write_atomic_lq writeq_relaxed
82 #else
83 #define smmu_write_atomic_lq writel_relaxed
84 #endif
85
86 /* Configuration registers */
87 #define ARM_SMMU_GR0_sCR0 0x0
88 #define sCR0_CLIENTPD (1 << 0)
89 #define sCR0_GFRE (1 << 1)
90 #define sCR0_GFIE (1 << 2)
91 #define sCR0_GCFGFRE (1 << 4)
92 #define sCR0_GCFGFIE (1 << 5)
93 #define sCR0_USFCFG (1 << 10)
94 #define sCR0_VMIDPNE (1 << 11)
95 #define sCR0_PTM (1 << 12)
96 #define sCR0_FB (1 << 13)
97 #define sCR0_VMID16EN (1 << 31)
98 #define sCR0_BSU_SHIFT 14
99 #define sCR0_BSU_MASK 0x3
100
101 /* Auxiliary Configuration register */
102 #define ARM_SMMU_GR0_sACR 0x10
103
104 /* Identification registers */
105 #define ARM_SMMU_GR0_ID0 0x20
106 #define ARM_SMMU_GR0_ID1 0x24
107 #define ARM_SMMU_GR0_ID2 0x28
108 #define ARM_SMMU_GR0_ID3 0x2c
109 #define ARM_SMMU_GR0_ID4 0x30
110 #define ARM_SMMU_GR0_ID5 0x34
111 #define ARM_SMMU_GR0_ID6 0x38
112 #define ARM_SMMU_GR0_ID7 0x3c
113 #define ARM_SMMU_GR0_sGFSR 0x48
114 #define ARM_SMMU_GR0_sGFSYNR0 0x50
115 #define ARM_SMMU_GR0_sGFSYNR1 0x54
116 #define ARM_SMMU_GR0_sGFSYNR2 0x58
117
118 #define ID0_S1TS (1 << 30)
119 #define ID0_S2TS (1 << 29)
120 #define ID0_NTS (1 << 28)
121 #define ID0_SMS (1 << 27)
122 #define ID0_ATOSNS (1 << 26)
123 #define ID0_PTFS_NO_AARCH32 (1 << 25)
124 #define ID0_PTFS_NO_AARCH32S (1 << 24)
125 #define ID0_CTTW (1 << 14)
126 #define ID0_NUMIRPT_SHIFT 16
127 #define ID0_NUMIRPT_MASK 0xff
128 #define ID0_NUMSIDB_SHIFT 9
129 #define ID0_NUMSIDB_MASK 0xf
130 #define ID0_NUMSMRG_SHIFT 0
131 #define ID0_NUMSMRG_MASK 0xff
132
133 #define ID1_PAGESIZE (1 << 31)
134 #define ID1_NUMPAGENDXB_SHIFT 28
135 #define ID1_NUMPAGENDXB_MASK 7
136 #define ID1_NUMS2CB_SHIFT 16
137 #define ID1_NUMS2CB_MASK 0xff
138 #define ID1_NUMCB_SHIFT 0
139 #define ID1_NUMCB_MASK 0xff
140
141 #define ID2_OAS_SHIFT 4
142 #define ID2_OAS_MASK 0xf
143 #define ID2_IAS_SHIFT 0
144 #define ID2_IAS_MASK 0xf
145 #define ID2_UBS_SHIFT 8
146 #define ID2_UBS_MASK 0xf
147 #define ID2_PTFS_4K (1 << 12)
148 #define ID2_PTFS_16K (1 << 13)
149 #define ID2_PTFS_64K (1 << 14)
150 #define ID2_VMID16 (1 << 15)
151
152 #define ID7_MAJOR_SHIFT 4
153 #define ID7_MAJOR_MASK 0xf
154
155 /* Global TLB invalidation */
156 #define ARM_SMMU_GR0_TLBIVMID 0x64
157 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
158 #define ARM_SMMU_GR0_TLBIALLH 0x6c
159 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
160 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
161 #define sTLBGSTATUS_GSACTIVE (1 << 0)
162 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
163
164 /* Stream mapping registers */
165 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
166 #define SMR_VALID (1 << 31)
167 #define SMR_MASK_SHIFT 16
168 #define SMR_MASK_MASK 0x7fff
169 #define SMR_ID_SHIFT 0
170 #define SMR_ID_MASK 0x7fff
171
172 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
173 #define S2CR_CBNDX_SHIFT 0
174 #define S2CR_CBNDX_MASK 0xff
175 #define S2CR_TYPE_SHIFT 16
176 #define S2CR_TYPE_MASK 0x3
177 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
178 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
179 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
180
181 #define S2CR_PRIVCFG_SHIFT 24
182 #define S2CR_PRIVCFG_UNPRIV (2 << S2CR_PRIVCFG_SHIFT)
183
184 /* Context bank attribute registers */
185 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
186 #define CBAR_VMID_SHIFT 0
187 #define CBAR_VMID_MASK 0xff
188 #define CBAR_S1_BPSHCFG_SHIFT 8
189 #define CBAR_S1_BPSHCFG_MASK 3
190 #define CBAR_S1_BPSHCFG_NSH 3
191 #define CBAR_S1_MEMATTR_SHIFT 12
192 #define CBAR_S1_MEMATTR_MASK 0xf
193 #define CBAR_S1_MEMATTR_WB 0xf
194 #define CBAR_TYPE_SHIFT 16
195 #define CBAR_TYPE_MASK 0x3
196 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
197 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
198 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
199 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
200 #define CBAR_IRPTNDX_SHIFT 24
201 #define CBAR_IRPTNDX_MASK 0xff
202
203 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
204 #define CBA2R_RW64_32BIT (0 << 0)
205 #define CBA2R_RW64_64BIT (1 << 0)
206 #define CBA2R_VMID_SHIFT 16
207 #define CBA2R_VMID_MASK 0xffff
208
209 /* Translation context bank */
210 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
211 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
212
213 #define ARM_SMMU_CB_SCTLR 0x0
214 #define ARM_SMMU_CB_ACTLR 0x4
215 #define ARM_SMMU_CB_RESUME 0x8
216 #define ARM_SMMU_CB_TTBCR2 0x10
217 #define ARM_SMMU_CB_TTBR0 0x20
218 #define ARM_SMMU_CB_TTBR1 0x28
219 #define ARM_SMMU_CB_TTBCR 0x30
220 #define ARM_SMMU_CB_S1_MAIR0 0x38
221 #define ARM_SMMU_CB_S1_MAIR1 0x3c
222 #define ARM_SMMU_CB_PAR 0x50
223 #define ARM_SMMU_CB_FSR 0x58
224 #define ARM_SMMU_CB_FAR 0x60
225 #define ARM_SMMU_CB_FSYNR0 0x68
226 #define ARM_SMMU_CB_S1_TLBIVA 0x600
227 #define ARM_SMMU_CB_S1_TLBIASID 0x610
228 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
229 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
230 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
231 #define ARM_SMMU_CB_ATS1PR 0x800
232 #define ARM_SMMU_CB_ATSR 0x8f0
233
234 #define SCTLR_S1_ASIDPNE (1 << 12)
235 #define SCTLR_CFCFG (1 << 7)
236 #define SCTLR_CFIE (1 << 6)
237 #define SCTLR_CFRE (1 << 5)
238 #define SCTLR_E (1 << 4)
239 #define SCTLR_AFE (1 << 2)
240 #define SCTLR_TRE (1 << 1)
241 #define SCTLR_M (1 << 0)
242 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
243
244 #define ARM_MMU500_ACTLR_CPRE (1 << 1)
245
246 #define ARM_MMU500_ACR_CACHE_LOCK (1 << 26)
247
248 #define CB_PAR_F (1 << 0)
249
250 #define ATSR_ACTIVE (1 << 0)
251
252 #define RESUME_RETRY (0 << 0)
253 #define RESUME_TERMINATE (1 << 0)
254
255 #define TTBCR2_SEP_SHIFT 15
256 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
257
258 #define TTBRn_ASID_SHIFT 48
259
260 #define FSR_MULTI (1 << 31)
261 #define FSR_SS (1 << 30)
262 #define FSR_UUT (1 << 8)
263 #define FSR_ASF (1 << 7)
264 #define FSR_TLBLKF (1 << 6)
265 #define FSR_TLBMCF (1 << 5)
266 #define FSR_EF (1 << 4)
267 #define FSR_PF (1 << 3)
268 #define FSR_AFF (1 << 2)
269 #define FSR_TF (1 << 1)
270
271 #define FSR_IGN (FSR_AFF | FSR_ASF | \
272 FSR_TLBMCF | FSR_TLBLKF)
273 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
274 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
275
276 #define FSYNR0_WNR (1 << 4)
277
278 static int force_stage;
279 module_param(force_stage, int, S_IRUGO);
280 MODULE_PARM_DESC(force_stage,
281 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
282 static bool disable_bypass;
283 module_param(disable_bypass, bool, S_IRUGO);
284 MODULE_PARM_DESC(disable_bypass,
285 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
286
287 enum arm_smmu_arch_version {
288 ARM_SMMU_V1,
289 ARM_SMMU_V1_64K,
290 ARM_SMMU_V2,
291 };
292
293 enum arm_smmu_implementation {
294 GENERIC_SMMU,
295 ARM_MMU500,
296 CAVIUM_SMMUV2,
297 };
298
299 struct arm_smmu_smr {
300 u8 idx;
301 u16 mask;
302 u16 id;
303 };
304
305 struct arm_smmu_master_cfg {
306 int num_streamids;
307 u16 streamids[MAX_MASTER_STREAMIDS];
308 struct arm_smmu_smr *smrs;
309 };
310
311 struct arm_smmu_master {
312 struct device_node *of_node;
313 struct rb_node node;
314 struct arm_smmu_master_cfg cfg;
315 };
316
317 struct arm_smmu_device {
318 struct device *dev;
319
320 void __iomem *base;
321 unsigned long size;
322 unsigned long pgshift;
323
324 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
325 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
326 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
327 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
328 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
329 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
330 #define ARM_SMMU_FEAT_VMID16 (1 << 6)
331 #define ARM_SMMU_FEAT_FMT_AARCH64_4K (1 << 7)
332 #define ARM_SMMU_FEAT_FMT_AARCH64_16K (1 << 8)
333 #define ARM_SMMU_FEAT_FMT_AARCH64_64K (1 << 9)
334 #define ARM_SMMU_FEAT_FMT_AARCH32_L (1 << 10)
335 #define ARM_SMMU_FEAT_FMT_AARCH32_S (1 << 11)
336 u32 features;
337
338 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
339 u32 options;
340 enum arm_smmu_arch_version version;
341 enum arm_smmu_implementation model;
342
343 u32 num_context_banks;
344 u32 num_s2_context_banks;
345 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
346 atomic_t irptndx;
347
348 u32 num_mapping_groups;
349 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
350
351 unsigned long va_size;
352 unsigned long ipa_size;
353 unsigned long pa_size;
354 unsigned long pgsize_bitmap;
355
356 u32 num_global_irqs;
357 u32 num_context_irqs;
358 unsigned int *irqs;
359
360 struct list_head list;
361 struct rb_root masters;
362
363 u32 cavium_id_base; /* Specific to Cavium */
364 };
365
366 enum arm_smmu_context_fmt {
367 ARM_SMMU_CTX_FMT_NONE,
368 ARM_SMMU_CTX_FMT_AARCH64,
369 ARM_SMMU_CTX_FMT_AARCH32_L,
370 ARM_SMMU_CTX_FMT_AARCH32_S,
371 };
372
373 struct arm_smmu_cfg {
374 u8 cbndx;
375 u8 irptndx;
376 u32 cbar;
377 enum arm_smmu_context_fmt fmt;
378 };
379 #define INVALID_IRPTNDX 0xff
380
381 #define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
382 #define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
383
384 enum arm_smmu_domain_stage {
385 ARM_SMMU_DOMAIN_S1 = 0,
386 ARM_SMMU_DOMAIN_S2,
387 ARM_SMMU_DOMAIN_NESTED,
388 };
389
390 struct arm_smmu_domain {
391 struct arm_smmu_device *smmu;
392 struct io_pgtable_ops *pgtbl_ops;
393 spinlock_t pgtbl_lock;
394 struct arm_smmu_cfg cfg;
395 enum arm_smmu_domain_stage stage;
396 struct mutex init_mutex; /* Protects smmu pointer */
397 struct iommu_domain domain;
398 };
399
400 struct arm_smmu_phandle_args {
401 struct device_node *np;
402 int args_count;
403 uint32_t args[MAX_MASTER_STREAMIDS];
404 };
405
406 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
407 static LIST_HEAD(arm_smmu_devices);
408
409 struct arm_smmu_option_prop {
410 u32 opt;
411 const char *prop;
412 };
413
414 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
415
416 static struct arm_smmu_option_prop arm_smmu_options[] = {
417 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
418 { 0, NULL},
419 };
420
421 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
422 {
423 return container_of(dom, struct arm_smmu_domain, domain);
424 }
425
426 static void parse_driver_options(struct arm_smmu_device *smmu)
427 {
428 int i = 0;
429
430 do {
431 if (of_property_read_bool(smmu->dev->of_node,
432 arm_smmu_options[i].prop)) {
433 smmu->options |= arm_smmu_options[i].opt;
434 dev_notice(smmu->dev, "option %s\n",
435 arm_smmu_options[i].prop);
436 }
437 } while (arm_smmu_options[++i].opt);
438 }
439
440 static struct device_node *dev_get_dev_node(struct device *dev)
441 {
442 if (dev_is_pci(dev)) {
443 struct pci_bus *bus = to_pci_dev(dev)->bus;
444
445 while (!pci_is_root_bus(bus))
446 bus = bus->parent;
447 return bus->bridge->parent->of_node;
448 }
449
450 return dev->of_node;
451 }
452
453 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
454 struct device_node *dev_node)
455 {
456 struct rb_node *node = smmu->masters.rb_node;
457
458 while (node) {
459 struct arm_smmu_master *master;
460
461 master = container_of(node, struct arm_smmu_master, node);
462
463 if (dev_node < master->of_node)
464 node = node->rb_left;
465 else if (dev_node > master->of_node)
466 node = node->rb_right;
467 else
468 return master;
469 }
470
471 return NULL;
472 }
473
474 static struct arm_smmu_master_cfg *
475 find_smmu_master_cfg(struct device *dev)
476 {
477 struct arm_smmu_master_cfg *cfg = NULL;
478 struct iommu_group *group = iommu_group_get(dev);
479
480 if (group) {
481 cfg = iommu_group_get_iommudata(group);
482 iommu_group_put(group);
483 }
484
485 return cfg;
486 }
487
488 static int insert_smmu_master(struct arm_smmu_device *smmu,
489 struct arm_smmu_master *master)
490 {
491 struct rb_node **new, *parent;
492
493 new = &smmu->masters.rb_node;
494 parent = NULL;
495 while (*new) {
496 struct arm_smmu_master *this
497 = container_of(*new, struct arm_smmu_master, node);
498
499 parent = *new;
500 if (master->of_node < this->of_node)
501 new = &((*new)->rb_left);
502 else if (master->of_node > this->of_node)
503 new = &((*new)->rb_right);
504 else
505 return -EEXIST;
506 }
507
508 rb_link_node(&master->node, parent, new);
509 rb_insert_color(&master->node, &smmu->masters);
510 return 0;
511 }
512
513 static int register_smmu_master(struct arm_smmu_device *smmu,
514 struct device *dev,
515 struct arm_smmu_phandle_args *masterspec)
516 {
517 int i;
518 struct arm_smmu_master *master;
519
520 master = find_smmu_master(smmu, masterspec->np);
521 if (master) {
522 dev_err(dev,
523 "rejecting multiple registrations for master device %s\n",
524 masterspec->np->name);
525 return -EBUSY;
526 }
527
528 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
529 dev_err(dev,
530 "reached maximum number (%d) of stream IDs for master device %s\n",
531 MAX_MASTER_STREAMIDS, masterspec->np->name);
532 return -ENOSPC;
533 }
534
535 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
536 if (!master)
537 return -ENOMEM;
538
539 master->of_node = masterspec->np;
540 master->cfg.num_streamids = masterspec->args_count;
541
542 for (i = 0; i < master->cfg.num_streamids; ++i) {
543 u16 streamid = masterspec->args[i];
544
545 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
546 (streamid >= smmu->num_mapping_groups)) {
547 dev_err(dev,
548 "stream ID for master device %s greater than maximum allowed (%d)\n",
549 masterspec->np->name, smmu->num_mapping_groups);
550 return -ERANGE;
551 }
552 master->cfg.streamids[i] = streamid;
553 }
554 return insert_smmu_master(smmu, master);
555 }
556
557 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
558 {
559 struct arm_smmu_device *smmu;
560 struct arm_smmu_master *master = NULL;
561 struct device_node *dev_node = dev_get_dev_node(dev);
562
563 spin_lock(&arm_smmu_devices_lock);
564 list_for_each_entry(smmu, &arm_smmu_devices, list) {
565 master = find_smmu_master(smmu, dev_node);
566 if (master)
567 break;
568 }
569 spin_unlock(&arm_smmu_devices_lock);
570
571 return master ? smmu : NULL;
572 }
573
574 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
575 {
576 int idx;
577
578 do {
579 idx = find_next_zero_bit(map, end, start);
580 if (idx == end)
581 return -ENOSPC;
582 } while (test_and_set_bit(idx, map));
583
584 return idx;
585 }
586
587 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
588 {
589 clear_bit(idx, map);
590 }
591
592 /* Wait for any pending TLB invalidations to complete */
593 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
594 {
595 int count = 0;
596 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
597
598 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
599 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
600 & sTLBGSTATUS_GSACTIVE) {
601 cpu_relax();
602 if (++count == TLB_LOOP_TIMEOUT) {
603 dev_err_ratelimited(smmu->dev,
604 "TLB sync timed out -- SMMU may be deadlocked\n");
605 return;
606 }
607 udelay(1);
608 }
609 }
610
611 static void arm_smmu_tlb_sync(void *cookie)
612 {
613 struct arm_smmu_domain *smmu_domain = cookie;
614 __arm_smmu_tlb_sync(smmu_domain->smmu);
615 }
616
617 static void arm_smmu_tlb_inv_context(void *cookie)
618 {
619 struct arm_smmu_domain *smmu_domain = cookie;
620 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
621 struct arm_smmu_device *smmu = smmu_domain->smmu;
622 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
623 void __iomem *base;
624
625 if (stage1) {
626 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
627 writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
628 base + ARM_SMMU_CB_S1_TLBIASID);
629 } else {
630 base = ARM_SMMU_GR0(smmu);
631 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
632 base + ARM_SMMU_GR0_TLBIVMID);
633 }
634
635 __arm_smmu_tlb_sync(smmu);
636 }
637
638 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
639 size_t granule, bool leaf, void *cookie)
640 {
641 struct arm_smmu_domain *smmu_domain = cookie;
642 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
643 struct arm_smmu_device *smmu = smmu_domain->smmu;
644 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
645 void __iomem *reg;
646
647 if (stage1) {
648 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
649 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
650
651 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
652 iova &= ~12UL;
653 iova |= ARM_SMMU_CB_ASID(smmu, cfg);
654 do {
655 writel_relaxed(iova, reg);
656 iova += granule;
657 } while (size -= granule);
658 } else {
659 iova >>= 12;
660 iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
661 do {
662 writeq_relaxed(iova, reg);
663 iova += granule >> 12;
664 } while (size -= granule);
665 }
666 } else if (smmu->version == ARM_SMMU_V2) {
667 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
668 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
669 ARM_SMMU_CB_S2_TLBIIPAS2;
670 iova >>= 12;
671 do {
672 smmu_write_atomic_lq(iova, reg);
673 iova += granule >> 12;
674 } while (size -= granule);
675 } else {
676 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
677 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
678 }
679 }
680
681 static struct iommu_gather_ops arm_smmu_gather_ops = {
682 .tlb_flush_all = arm_smmu_tlb_inv_context,
683 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
684 .tlb_sync = arm_smmu_tlb_sync,
685 };
686
687 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
688 {
689 u32 fsr, fsynr;
690 unsigned long iova;
691 struct iommu_domain *domain = dev;
692 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
693 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
694 struct arm_smmu_device *smmu = smmu_domain->smmu;
695 void __iomem *cb_base;
696
697 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
698 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
699
700 if (!(fsr & FSR_FAULT))
701 return IRQ_NONE;
702
703 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
704 iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
705
706 dev_err_ratelimited(smmu->dev,
707 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
708 fsr, iova, fsynr, cfg->cbndx);
709
710 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
711 return IRQ_HANDLED;
712 }
713
714 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
715 {
716 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
717 struct arm_smmu_device *smmu = dev;
718 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
719
720 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
721 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
722 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
723 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
724
725 if (!gfsr)
726 return IRQ_NONE;
727
728 dev_err_ratelimited(smmu->dev,
729 "Unexpected global fault, this could be serious\n");
730 dev_err_ratelimited(smmu->dev,
731 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
732 gfsr, gfsynr0, gfsynr1, gfsynr2);
733
734 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
735 return IRQ_HANDLED;
736 }
737
738 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
739 struct io_pgtable_cfg *pgtbl_cfg)
740 {
741 u32 reg;
742 u64 reg64;
743 bool stage1;
744 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
745 struct arm_smmu_device *smmu = smmu_domain->smmu;
746 void __iomem *cb_base, *gr1_base;
747
748 gr1_base = ARM_SMMU_GR1(smmu);
749 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
750 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
751
752 if (smmu->version > ARM_SMMU_V1) {
753 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
754 reg = CBA2R_RW64_64BIT;
755 else
756 reg = CBA2R_RW64_32BIT;
757 /* 16-bit VMIDs live in CBA2R */
758 if (smmu->features & ARM_SMMU_FEAT_VMID16)
759 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
760
761 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
762 }
763
764 /* CBAR */
765 reg = cfg->cbar;
766 if (smmu->version < ARM_SMMU_V2)
767 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
768
769 /*
770 * Use the weakest shareability/memory types, so they are
771 * overridden by the ttbcr/pte.
772 */
773 if (stage1) {
774 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
775 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
776 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
777 /* 8-bit VMIDs live in CBAR */
778 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
779 }
780 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
781
782 /* TTBRs */
783 if (stage1) {
784 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
785
786 reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
787 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
788
789 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
790 reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
791 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
792 } else {
793 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
794 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
795 }
796
797 /* TTBCR */
798 if (stage1) {
799 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
800 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
801 if (smmu->version > ARM_SMMU_V1) {
802 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
803 reg |= TTBCR2_SEP_UPSTREAM;
804 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
805 }
806 } else {
807 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
808 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
809 }
810
811 /* MAIRs (stage-1 only) */
812 if (stage1) {
813 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
814 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
815 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
816 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
817 }
818
819 /* SCTLR */
820 reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
821 if (stage1)
822 reg |= SCTLR_S1_ASIDPNE;
823 #ifdef __BIG_ENDIAN
824 reg |= SCTLR_E;
825 #endif
826 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
827 }
828
829 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
830 struct arm_smmu_device *smmu)
831 {
832 int irq, start, ret = 0;
833 unsigned long ias, oas;
834 struct io_pgtable_ops *pgtbl_ops;
835 struct io_pgtable_cfg pgtbl_cfg;
836 enum io_pgtable_fmt fmt;
837 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
838 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
839
840 mutex_lock(&smmu_domain->init_mutex);
841 if (smmu_domain->smmu)
842 goto out_unlock;
843
844 /* We're bypassing these SIDs, so don't allocate an actual context */
845 if (domain->type == IOMMU_DOMAIN_DMA) {
846 smmu_domain->smmu = smmu;
847 goto out_unlock;
848 }
849
850 /*
851 * Mapping the requested stage onto what we support is surprisingly
852 * complicated, mainly because the spec allows S1+S2 SMMUs without
853 * support for nested translation. That means we end up with the
854 * following table:
855 *
856 * Requested Supported Actual
857 * S1 N S1
858 * S1 S1+S2 S1
859 * S1 S2 S2
860 * S1 S1 S1
861 * N N N
862 * N S1+S2 S2
863 * N S2 S2
864 * N S1 S1
865 *
866 * Note that you can't actually request stage-2 mappings.
867 */
868 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
869 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
870 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
871 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
872
873 /*
874 * Choosing a suitable context format is even more fiddly. Until we
875 * grow some way for the caller to express a preference, and/or move
876 * the decision into the io-pgtable code where it arguably belongs,
877 * just aim for the closest thing to the rest of the system, and hope
878 * that the hardware isn't esoteric enough that we can't assume AArch64
879 * support to be a superset of AArch32 support...
880 */
881 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
882 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
883 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
884 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
885 ARM_SMMU_FEAT_FMT_AARCH64_16K |
886 ARM_SMMU_FEAT_FMT_AARCH64_4K)))
887 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
888
889 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
890 ret = -EINVAL;
891 goto out_unlock;
892 }
893
894 switch (smmu_domain->stage) {
895 case ARM_SMMU_DOMAIN_S1:
896 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
897 start = smmu->num_s2_context_banks;
898 ias = smmu->va_size;
899 oas = smmu->ipa_size;
900 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
901 fmt = ARM_64_LPAE_S1;
902 } else {
903 fmt = ARM_32_LPAE_S1;
904 ias = min(ias, 32UL);
905 oas = min(oas, 40UL);
906 }
907 break;
908 case ARM_SMMU_DOMAIN_NESTED:
909 /*
910 * We will likely want to change this if/when KVM gets
911 * involved.
912 */
913 case ARM_SMMU_DOMAIN_S2:
914 cfg->cbar = CBAR_TYPE_S2_TRANS;
915 start = 0;
916 ias = smmu->ipa_size;
917 oas = smmu->pa_size;
918 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
919 fmt = ARM_64_LPAE_S2;
920 } else {
921 fmt = ARM_32_LPAE_S2;
922 ias = min(ias, 40UL);
923 oas = min(oas, 40UL);
924 }
925 break;
926 default:
927 ret = -EINVAL;
928 goto out_unlock;
929 }
930
931 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
932 smmu->num_context_banks);
933 if (ret < 0)
934 goto out_unlock;
935
936 cfg->cbndx = ret;
937 if (smmu->version < ARM_SMMU_V2) {
938 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
939 cfg->irptndx %= smmu->num_context_irqs;
940 } else {
941 cfg->irptndx = cfg->cbndx;
942 }
943
944 pgtbl_cfg = (struct io_pgtable_cfg) {
945 .pgsize_bitmap = smmu->pgsize_bitmap,
946 .ias = ias,
947 .oas = oas,
948 .tlb = &arm_smmu_gather_ops,
949 .iommu_dev = smmu->dev,
950 };
951
952 smmu_domain->smmu = smmu;
953 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
954 if (!pgtbl_ops) {
955 ret = -ENOMEM;
956 goto out_clear_smmu;
957 }
958
959 /* Update the domain's page sizes to reflect the page table format */
960 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
961
962 /* Initialise the context bank with our page table cfg */
963 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
964
965 /*
966 * Request context fault interrupt. Do this last to avoid the
967 * handler seeing a half-initialised domain state.
968 */
969 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
970 ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
971 IRQF_SHARED, "arm-smmu-context-fault", domain);
972 if (ret < 0) {
973 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
974 cfg->irptndx, irq);
975 cfg->irptndx = INVALID_IRPTNDX;
976 }
977
978 mutex_unlock(&smmu_domain->init_mutex);
979
980 /* Publish page table ops for map/unmap */
981 smmu_domain->pgtbl_ops = pgtbl_ops;
982 return 0;
983
984 out_clear_smmu:
985 smmu_domain->smmu = NULL;
986 out_unlock:
987 mutex_unlock(&smmu_domain->init_mutex);
988 return ret;
989 }
990
991 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
992 {
993 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
994 struct arm_smmu_device *smmu = smmu_domain->smmu;
995 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
996 void __iomem *cb_base;
997 int irq;
998
999 if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
1000 return;
1001
1002 /*
1003 * Disable the context bank and free the page tables before freeing
1004 * it.
1005 */
1006 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1007 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1008
1009 if (cfg->irptndx != INVALID_IRPTNDX) {
1010 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1011 devm_free_irq(smmu->dev, irq, domain);
1012 }
1013
1014 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1015 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1016 }
1017
1018 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1019 {
1020 struct arm_smmu_domain *smmu_domain;
1021
1022 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1023 return NULL;
1024 /*
1025 * Allocate the domain and initialise some of its data structures.
1026 * We can't really do anything meaningful until we've added a
1027 * master.
1028 */
1029 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1030 if (!smmu_domain)
1031 return NULL;
1032
1033 if (type == IOMMU_DOMAIN_DMA &&
1034 iommu_get_dma_cookie(&smmu_domain->domain)) {
1035 kfree(smmu_domain);
1036 return NULL;
1037 }
1038
1039 mutex_init(&smmu_domain->init_mutex);
1040 spin_lock_init(&smmu_domain->pgtbl_lock);
1041
1042 return &smmu_domain->domain;
1043 }
1044
1045 static void arm_smmu_domain_free(struct iommu_domain *domain)
1046 {
1047 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1048
1049 /*
1050 * Free the domain resources. We assume that all devices have
1051 * already been detached.
1052 */
1053 iommu_put_dma_cookie(domain);
1054 arm_smmu_destroy_domain_context(domain);
1055 kfree(smmu_domain);
1056 }
1057
1058 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1059 struct arm_smmu_master_cfg *cfg)
1060 {
1061 int i;
1062 struct arm_smmu_smr *smrs;
1063 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1064
1065 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1066 return 0;
1067
1068 if (cfg->smrs)
1069 return -EEXIST;
1070
1071 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1072 if (!smrs) {
1073 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1074 cfg->num_streamids);
1075 return -ENOMEM;
1076 }
1077
1078 /* Allocate the SMRs on the SMMU */
1079 for (i = 0; i < cfg->num_streamids; ++i) {
1080 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1081 smmu->num_mapping_groups);
1082 if (idx < 0) {
1083 dev_err(smmu->dev, "failed to allocate free SMR\n");
1084 goto err_free_smrs;
1085 }
1086
1087 smrs[i] = (struct arm_smmu_smr) {
1088 .idx = idx,
1089 .mask = 0, /* We don't currently share SMRs */
1090 .id = cfg->streamids[i],
1091 };
1092 }
1093
1094 /* It worked! Now, poke the actual hardware */
1095 for (i = 0; i < cfg->num_streamids; ++i) {
1096 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1097 smrs[i].mask << SMR_MASK_SHIFT;
1098 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1099 }
1100
1101 cfg->smrs = smrs;
1102 return 0;
1103
1104 err_free_smrs:
1105 while (--i >= 0)
1106 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1107 kfree(smrs);
1108 return -ENOSPC;
1109 }
1110
1111 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1112 struct arm_smmu_master_cfg *cfg)
1113 {
1114 int i;
1115 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1116 struct arm_smmu_smr *smrs = cfg->smrs;
1117
1118 if (!smrs)
1119 return;
1120
1121 /* Invalidate the SMRs before freeing back to the allocator */
1122 for (i = 0; i < cfg->num_streamids; ++i) {
1123 u8 idx = smrs[i].idx;
1124
1125 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1126 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1127 }
1128
1129 cfg->smrs = NULL;
1130 kfree(smrs);
1131 }
1132
1133 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1134 struct arm_smmu_master_cfg *cfg)
1135 {
1136 int i, ret;
1137 struct arm_smmu_device *smmu = smmu_domain->smmu;
1138 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1139
1140 /*
1141 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1142 * for all devices behind the SMMU. Note that we need to take
1143 * care configuring SMRs for devices both a platform_device and
1144 * and a PCI device (i.e. a PCI host controller)
1145 */
1146 if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
1147 return 0;
1148
1149 /* Devices in an IOMMU group may already be configured */
1150 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1151 if (ret)
1152 return ret == -EEXIST ? 0 : ret;
1153
1154 for (i = 0; i < cfg->num_streamids; ++i) {
1155 u32 idx, s2cr;
1156
1157 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1158 s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1159 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1160 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1161 }
1162
1163 return 0;
1164 }
1165
1166 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1167 struct arm_smmu_master_cfg *cfg)
1168 {
1169 int i;
1170 struct arm_smmu_device *smmu = smmu_domain->smmu;
1171 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1172
1173 /* An IOMMU group is torn down by the first device to be removed */
1174 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1175 return;
1176
1177 /*
1178 * We *must* clear the S2CR first, because freeing the SMR means
1179 * that it can be re-allocated immediately.
1180 */
1181 for (i = 0; i < cfg->num_streamids; ++i) {
1182 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1183 u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1184
1185 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1186 }
1187
1188 arm_smmu_master_free_smrs(smmu, cfg);
1189 }
1190
1191 static void arm_smmu_detach_dev(struct device *dev,
1192 struct arm_smmu_master_cfg *cfg)
1193 {
1194 struct iommu_domain *domain = dev->archdata.iommu;
1195 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1196
1197 dev->archdata.iommu = NULL;
1198 arm_smmu_domain_remove_master(smmu_domain, cfg);
1199 }
1200
1201 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1202 {
1203 int ret;
1204 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1205 struct arm_smmu_device *smmu;
1206 struct arm_smmu_master_cfg *cfg;
1207
1208 smmu = find_smmu_for_device(dev);
1209 if (!smmu) {
1210 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1211 return -ENXIO;
1212 }
1213
1214 /* Ensure that the domain is finalised */
1215 ret = arm_smmu_init_domain_context(domain, smmu);
1216 if (ret < 0)
1217 return ret;
1218
1219 /*
1220 * Sanity check the domain. We don't support domains across
1221 * different SMMUs.
1222 */
1223 if (smmu_domain->smmu != smmu) {
1224 dev_err(dev,
1225 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1226 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1227 return -EINVAL;
1228 }
1229
1230 /* Looks ok, so add the device to the domain */
1231 cfg = find_smmu_master_cfg(dev);
1232 if (!cfg)
1233 return -ENODEV;
1234
1235 /* Detach the dev from its current domain */
1236 if (dev->archdata.iommu)
1237 arm_smmu_detach_dev(dev, cfg);
1238
1239 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1240 if (!ret)
1241 dev->archdata.iommu = domain;
1242 return ret;
1243 }
1244
1245 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1246 phys_addr_t paddr, size_t size, int prot)
1247 {
1248 int ret;
1249 unsigned long flags;
1250 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1251 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1252
1253 if (!ops)
1254 return -ENODEV;
1255
1256 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1257 ret = ops->map(ops, iova, paddr, size, prot);
1258 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1259 return ret;
1260 }
1261
1262 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1263 size_t size)
1264 {
1265 size_t ret;
1266 unsigned long flags;
1267 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1268 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1269
1270 if (!ops)
1271 return 0;
1272
1273 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1274 ret = ops->unmap(ops, iova, size);
1275 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1276 return ret;
1277 }
1278
1279 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1280 dma_addr_t iova)
1281 {
1282 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1283 struct arm_smmu_device *smmu = smmu_domain->smmu;
1284 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1285 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1286 struct device *dev = smmu->dev;
1287 void __iomem *cb_base;
1288 u32 tmp;
1289 u64 phys;
1290 unsigned long va;
1291
1292 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1293
1294 /* ATS1 registers can only be written atomically */
1295 va = iova & ~0xfffUL;
1296 if (smmu->version == ARM_SMMU_V2)
1297 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1298 else /* Register is only 32-bit in v1 */
1299 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1300
1301 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1302 !(tmp & ATSR_ACTIVE), 5, 50)) {
1303 dev_err(dev,
1304 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1305 &iova);
1306 return ops->iova_to_phys(ops, iova);
1307 }
1308
1309 phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1310 if (phys & CB_PAR_F) {
1311 dev_err(dev, "translation fault!\n");
1312 dev_err(dev, "PAR = 0x%llx\n", phys);
1313 return 0;
1314 }
1315
1316 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1317 }
1318
1319 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1320 dma_addr_t iova)
1321 {
1322 phys_addr_t ret;
1323 unsigned long flags;
1324 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1325 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1326
1327 if (!ops)
1328 return 0;
1329
1330 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1331 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1332 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1333 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1334 } else {
1335 ret = ops->iova_to_phys(ops, iova);
1336 }
1337
1338 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1339
1340 return ret;
1341 }
1342
1343 static bool arm_smmu_capable(enum iommu_cap cap)
1344 {
1345 switch (cap) {
1346 case IOMMU_CAP_CACHE_COHERENCY:
1347 /*
1348 * Return true here as the SMMU can always send out coherent
1349 * requests.
1350 */
1351 return true;
1352 case IOMMU_CAP_INTR_REMAP:
1353 return true; /* MSIs are just memory writes */
1354 case IOMMU_CAP_NOEXEC:
1355 return true;
1356 default:
1357 return false;
1358 }
1359 }
1360
1361 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1362 {
1363 *((u16 *)data) = alias;
1364 return 0; /* Continue walking */
1365 }
1366
1367 static void __arm_smmu_release_pci_iommudata(void *data)
1368 {
1369 kfree(data);
1370 }
1371
1372 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1373 struct iommu_group *group)
1374 {
1375 struct arm_smmu_master_cfg *cfg;
1376 u16 sid;
1377 int i;
1378
1379 cfg = iommu_group_get_iommudata(group);
1380 if (!cfg) {
1381 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1382 if (!cfg)
1383 return -ENOMEM;
1384
1385 iommu_group_set_iommudata(group, cfg,
1386 __arm_smmu_release_pci_iommudata);
1387 }
1388
1389 if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1390 return -ENOSPC;
1391
1392 /*
1393 * Assume Stream ID == Requester ID for now.
1394 * We need a way to describe the ID mappings in FDT.
1395 */
1396 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1397 for (i = 0; i < cfg->num_streamids; ++i)
1398 if (cfg->streamids[i] == sid)
1399 break;
1400
1401 /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1402 if (i == cfg->num_streamids)
1403 cfg->streamids[cfg->num_streamids++] = sid;
1404
1405 return 0;
1406 }
1407
1408 static int arm_smmu_init_platform_device(struct device *dev,
1409 struct iommu_group *group)
1410 {
1411 struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1412 struct arm_smmu_master *master;
1413
1414 if (!smmu)
1415 return -ENODEV;
1416
1417 master = find_smmu_master(smmu, dev->of_node);
1418 if (!master)
1419 return -ENODEV;
1420
1421 iommu_group_set_iommudata(group, &master->cfg, NULL);
1422
1423 return 0;
1424 }
1425
1426 static int arm_smmu_add_device(struct device *dev)
1427 {
1428 struct iommu_group *group;
1429
1430 group = iommu_group_get_for_dev(dev);
1431 if (IS_ERR(group))
1432 return PTR_ERR(group);
1433
1434 iommu_group_put(group);
1435 return 0;
1436 }
1437
1438 static void arm_smmu_remove_device(struct device *dev)
1439 {
1440 iommu_group_remove_device(dev);
1441 }
1442
1443 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1444 {
1445 struct iommu_group *group;
1446 int ret;
1447
1448 if (dev_is_pci(dev))
1449 group = pci_device_group(dev);
1450 else
1451 group = generic_device_group(dev);
1452
1453 if (IS_ERR(group))
1454 return group;
1455
1456 if (dev_is_pci(dev))
1457 ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1458 else
1459 ret = arm_smmu_init_platform_device(dev, group);
1460
1461 if (ret) {
1462 iommu_group_put(group);
1463 group = ERR_PTR(ret);
1464 }
1465
1466 return group;
1467 }
1468
1469 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1470 enum iommu_attr attr, void *data)
1471 {
1472 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1473
1474 switch (attr) {
1475 case DOMAIN_ATTR_NESTING:
1476 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1477 return 0;
1478 default:
1479 return -ENODEV;
1480 }
1481 }
1482
1483 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1484 enum iommu_attr attr, void *data)
1485 {
1486 int ret = 0;
1487 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1488
1489 mutex_lock(&smmu_domain->init_mutex);
1490
1491 switch (attr) {
1492 case DOMAIN_ATTR_NESTING:
1493 if (smmu_domain->smmu) {
1494 ret = -EPERM;
1495 goto out_unlock;
1496 }
1497
1498 if (*(int *)data)
1499 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1500 else
1501 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1502
1503 break;
1504 default:
1505 ret = -ENODEV;
1506 }
1507
1508 out_unlock:
1509 mutex_unlock(&smmu_domain->init_mutex);
1510 return ret;
1511 }
1512
1513 static struct iommu_ops arm_smmu_ops = {
1514 .capable = arm_smmu_capable,
1515 .domain_alloc = arm_smmu_domain_alloc,
1516 .domain_free = arm_smmu_domain_free,
1517 .attach_dev = arm_smmu_attach_dev,
1518 .map = arm_smmu_map,
1519 .unmap = arm_smmu_unmap,
1520 .map_sg = default_iommu_map_sg,
1521 .iova_to_phys = arm_smmu_iova_to_phys,
1522 .add_device = arm_smmu_add_device,
1523 .remove_device = arm_smmu_remove_device,
1524 .device_group = arm_smmu_device_group,
1525 .domain_get_attr = arm_smmu_domain_get_attr,
1526 .domain_set_attr = arm_smmu_domain_set_attr,
1527 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1528 };
1529
1530 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1531 {
1532 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1533 void __iomem *cb_base;
1534 int i = 0;
1535 u32 reg, major;
1536
1537 /* clear global FSR */
1538 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1539 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1540
1541 /* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
1542 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1543 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1544 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1545 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1546 }
1547
1548 /*
1549 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1550 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1551 * bit is only present in MMU-500r2 onwards.
1552 */
1553 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1554 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1555 if ((smmu->model == ARM_MMU500) && (major >= 2)) {
1556 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1557 reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1558 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1559 }
1560
1561 /* Make sure all context banks are disabled and clear CB_FSR */
1562 for (i = 0; i < smmu->num_context_banks; ++i) {
1563 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1564 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1565 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1566 /*
1567 * Disable MMU-500's not-particularly-beneficial next-page
1568 * prefetcher for the sake of errata #841119 and #826419.
1569 */
1570 if (smmu->model == ARM_MMU500) {
1571 reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1572 reg &= ~ARM_MMU500_ACTLR_CPRE;
1573 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1574 }
1575 }
1576
1577 /* Invalidate the TLB, just in case */
1578 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1579 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1580
1581 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1582
1583 /* Enable fault reporting */
1584 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1585
1586 /* Disable TLB broadcasting. */
1587 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1588
1589 /* Enable client access, handling unmatched streams as appropriate */
1590 reg &= ~sCR0_CLIENTPD;
1591 if (disable_bypass)
1592 reg |= sCR0_USFCFG;
1593 else
1594 reg &= ~sCR0_USFCFG;
1595
1596 /* Disable forced broadcasting */
1597 reg &= ~sCR0_FB;
1598
1599 /* Don't upgrade barriers */
1600 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1601
1602 if (smmu->features & ARM_SMMU_FEAT_VMID16)
1603 reg |= sCR0_VMID16EN;
1604
1605 /* Push the button */
1606 __arm_smmu_tlb_sync(smmu);
1607 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1608 }
1609
1610 static int arm_smmu_id_size_to_bits(int size)
1611 {
1612 switch (size) {
1613 case 0:
1614 return 32;
1615 case 1:
1616 return 36;
1617 case 2:
1618 return 40;
1619 case 3:
1620 return 42;
1621 case 4:
1622 return 44;
1623 case 5:
1624 default:
1625 return 48;
1626 }
1627 }
1628
1629 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1630 {
1631 unsigned long size;
1632 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1633 u32 id;
1634 bool cttw_dt, cttw_reg;
1635
1636 dev_notice(smmu->dev, "probing hardware configuration...\n");
1637 dev_notice(smmu->dev, "SMMUv%d with:\n",
1638 smmu->version == ARM_SMMU_V2 ? 2 : 1);
1639
1640 /* ID0 */
1641 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1642
1643 /* Restrict available stages based on module parameter */
1644 if (force_stage == 1)
1645 id &= ~(ID0_S2TS | ID0_NTS);
1646 else if (force_stage == 2)
1647 id &= ~(ID0_S1TS | ID0_NTS);
1648
1649 if (id & ID0_S1TS) {
1650 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1651 dev_notice(smmu->dev, "\tstage 1 translation\n");
1652 }
1653
1654 if (id & ID0_S2TS) {
1655 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1656 dev_notice(smmu->dev, "\tstage 2 translation\n");
1657 }
1658
1659 if (id & ID0_NTS) {
1660 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1661 dev_notice(smmu->dev, "\tnested translation\n");
1662 }
1663
1664 if (!(smmu->features &
1665 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1666 dev_err(smmu->dev, "\tno translation support!\n");
1667 return -ENODEV;
1668 }
1669
1670 if ((id & ID0_S1TS) &&
1671 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1672 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1673 dev_notice(smmu->dev, "\taddress translation ops\n");
1674 }
1675
1676 /*
1677 * In order for DMA API calls to work properly, we must defer to what
1678 * the DT says about coherency, regardless of what the hardware claims.
1679 * Fortunately, this also opens up a workaround for systems where the
1680 * ID register value has ended up configured incorrectly.
1681 */
1682 cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1683 cttw_reg = !!(id & ID0_CTTW);
1684 if (cttw_dt)
1685 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1686 if (cttw_dt || cttw_reg)
1687 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1688 cttw_dt ? "" : "non-");
1689 if (cttw_dt != cttw_reg)
1690 dev_notice(smmu->dev,
1691 "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1692
1693 if (id & ID0_SMS) {
1694 u32 smr, sid, mask;
1695
1696 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1697 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1698 ID0_NUMSMRG_MASK;
1699 if (smmu->num_mapping_groups == 0) {
1700 dev_err(smmu->dev,
1701 "stream-matching supported, but no SMRs present!\n");
1702 return -ENODEV;
1703 }
1704
1705 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1706 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1707 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1708 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1709
1710 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1711 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1712 if ((mask & sid) != sid) {
1713 dev_err(smmu->dev,
1714 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1715 mask, sid);
1716 return -ENODEV;
1717 }
1718
1719 dev_notice(smmu->dev,
1720 "\tstream matching with %u register groups, mask 0x%x",
1721 smmu->num_mapping_groups, mask);
1722 } else {
1723 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1724 ID0_NUMSIDB_MASK;
1725 }
1726
1727 if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1728 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1729 if (!(id & ID0_PTFS_NO_AARCH32S))
1730 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1731 }
1732
1733 /* ID1 */
1734 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1735 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1736
1737 /* Check for size mismatch of SMMU address space from mapped region */
1738 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1739 size *= 2 << smmu->pgshift;
1740 if (smmu->size != size)
1741 dev_warn(smmu->dev,
1742 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1743 size, smmu->size);
1744
1745 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1746 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1747 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1748 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1749 return -ENODEV;
1750 }
1751 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1752 smmu->num_context_banks, smmu->num_s2_context_banks);
1753 /*
1754 * Cavium CN88xx erratum #27704.
1755 * Ensure ASID and VMID allocation is unique across all SMMUs in
1756 * the system.
1757 */
1758 if (smmu->model == CAVIUM_SMMUV2) {
1759 smmu->cavium_id_base =
1760 atomic_add_return(smmu->num_context_banks,
1761 &cavium_smmu_context_count);
1762 smmu->cavium_id_base -= smmu->num_context_banks;
1763 }
1764
1765 /* ID2 */
1766 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1767 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1768 smmu->ipa_size = size;
1769
1770 /* The output mask is also applied for bypass */
1771 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1772 smmu->pa_size = size;
1773
1774 if (id & ID2_VMID16)
1775 smmu->features |= ARM_SMMU_FEAT_VMID16;
1776
1777 /*
1778 * What the page table walker can address actually depends on which
1779 * descriptor format is in use, but since a) we don't know that yet,
1780 * and b) it can vary per context bank, this will have to do...
1781 */
1782 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1783 dev_warn(smmu->dev,
1784 "failed to set DMA mask for table walker\n");
1785
1786 if (smmu->version < ARM_SMMU_V2) {
1787 smmu->va_size = smmu->ipa_size;
1788 if (smmu->version == ARM_SMMU_V1_64K)
1789 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1790 } else {
1791 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1792 smmu->va_size = arm_smmu_id_size_to_bits(size);
1793 if (id & ID2_PTFS_4K)
1794 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1795 if (id & ID2_PTFS_16K)
1796 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1797 if (id & ID2_PTFS_64K)
1798 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1799 }
1800
1801 /* Now we've corralled the various formats, what'll it do? */
1802 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1803 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1804 if (smmu->features &
1805 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1806 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1807 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1808 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1809 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1810 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
1811
1812 if (arm_smmu_ops.pgsize_bitmap == -1UL)
1813 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
1814 else
1815 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
1816 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
1817 smmu->pgsize_bitmap);
1818
1819
1820 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1821 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1822 smmu->va_size, smmu->ipa_size);
1823
1824 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1825 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1826 smmu->ipa_size, smmu->pa_size);
1827
1828 return 0;
1829 }
1830
1831 struct arm_smmu_match_data {
1832 enum arm_smmu_arch_version version;
1833 enum arm_smmu_implementation model;
1834 };
1835
1836 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \
1837 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
1838
1839 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
1840 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1841 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1842 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1843 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1844
1845 static const struct of_device_id arm_smmu_of_match[] = {
1846 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
1847 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
1848 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1849 { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1850 { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1851 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1852 { },
1853 };
1854 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1855
1856 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1857 {
1858 const struct of_device_id *of_id;
1859 const struct arm_smmu_match_data *data;
1860 struct resource *res;
1861 struct arm_smmu_device *smmu;
1862 struct device *dev = &pdev->dev;
1863 struct rb_node *node;
1864 struct of_phandle_iterator it;
1865 struct arm_smmu_phandle_args *masterspec;
1866 int num_irqs, i, err;
1867
1868 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1869 if (!smmu) {
1870 dev_err(dev, "failed to allocate arm_smmu_device\n");
1871 return -ENOMEM;
1872 }
1873 smmu->dev = dev;
1874
1875 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1876 data = of_id->data;
1877 smmu->version = data->version;
1878 smmu->model = data->model;
1879
1880 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1881 smmu->base = devm_ioremap_resource(dev, res);
1882 if (IS_ERR(smmu->base))
1883 return PTR_ERR(smmu->base);
1884 smmu->size = resource_size(res);
1885
1886 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1887 &smmu->num_global_irqs)) {
1888 dev_err(dev, "missing #global-interrupts property\n");
1889 return -ENODEV;
1890 }
1891
1892 num_irqs = 0;
1893 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1894 num_irqs++;
1895 if (num_irqs > smmu->num_global_irqs)
1896 smmu->num_context_irqs++;
1897 }
1898
1899 if (!smmu->num_context_irqs) {
1900 dev_err(dev, "found %d interrupts but expected at least %d\n",
1901 num_irqs, smmu->num_global_irqs + 1);
1902 return -ENODEV;
1903 }
1904
1905 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1906 GFP_KERNEL);
1907 if (!smmu->irqs) {
1908 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1909 return -ENOMEM;
1910 }
1911
1912 for (i = 0; i < num_irqs; ++i) {
1913 int irq = platform_get_irq(pdev, i);
1914
1915 if (irq < 0) {
1916 dev_err(dev, "failed to get irq index %d\n", i);
1917 return -ENODEV;
1918 }
1919 smmu->irqs[i] = irq;
1920 }
1921
1922 err = arm_smmu_device_cfg_probe(smmu);
1923 if (err)
1924 return err;
1925
1926 i = 0;
1927 smmu->masters = RB_ROOT;
1928
1929 err = -ENOMEM;
1930 /* No need to zero the memory for masterspec */
1931 masterspec = kmalloc(sizeof(*masterspec), GFP_KERNEL);
1932 if (!masterspec)
1933 goto out_put_masters;
1934
1935 of_for_each_phandle(&it, err, dev->of_node,
1936 "mmu-masters", "#stream-id-cells", 0) {
1937 int count = of_phandle_iterator_args(&it, masterspec->args,
1938 MAX_MASTER_STREAMIDS);
1939 masterspec->np = of_node_get(it.node);
1940 masterspec->args_count = count;
1941
1942 err = register_smmu_master(smmu, dev, masterspec);
1943 if (err) {
1944 dev_err(dev, "failed to add master %s\n",
1945 masterspec->np->name);
1946 kfree(masterspec);
1947 goto out_put_masters;
1948 }
1949
1950 i++;
1951 }
1952
1953 dev_notice(dev, "registered %d master devices\n", i);
1954
1955 kfree(masterspec);
1956
1957 parse_driver_options(smmu);
1958
1959 if (smmu->version == ARM_SMMU_V2 &&
1960 smmu->num_context_banks != smmu->num_context_irqs) {
1961 dev_err(dev,
1962 "found only %d context interrupt(s) but %d required\n",
1963 smmu->num_context_irqs, smmu->num_context_banks);
1964 err = -ENODEV;
1965 goto out_put_masters;
1966 }
1967
1968 for (i = 0; i < smmu->num_global_irqs; ++i) {
1969 err = devm_request_irq(smmu->dev, smmu->irqs[i],
1970 arm_smmu_global_fault,
1971 IRQF_SHARED,
1972 "arm-smmu global fault",
1973 smmu);
1974 if (err) {
1975 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1976 i, smmu->irqs[i]);
1977 goto out_put_masters;
1978 }
1979 }
1980
1981 INIT_LIST_HEAD(&smmu->list);
1982 spin_lock(&arm_smmu_devices_lock);
1983 list_add(&smmu->list, &arm_smmu_devices);
1984 spin_unlock(&arm_smmu_devices_lock);
1985
1986 arm_smmu_device_reset(smmu);
1987 return 0;
1988
1989 out_put_masters:
1990 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1991 struct arm_smmu_master *master
1992 = container_of(node, struct arm_smmu_master, node);
1993 of_node_put(master->of_node);
1994 }
1995
1996 return err;
1997 }
1998
1999 static int arm_smmu_device_remove(struct platform_device *pdev)
2000 {
2001 int i;
2002 struct device *dev = &pdev->dev;
2003 struct arm_smmu_device *curr, *smmu = NULL;
2004 struct rb_node *node;
2005
2006 spin_lock(&arm_smmu_devices_lock);
2007 list_for_each_entry(curr, &arm_smmu_devices, list) {
2008 if (curr->dev == dev) {
2009 smmu = curr;
2010 list_del(&smmu->list);
2011 break;
2012 }
2013 }
2014 spin_unlock(&arm_smmu_devices_lock);
2015
2016 if (!smmu)
2017 return -ENODEV;
2018
2019 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2020 struct arm_smmu_master *master
2021 = container_of(node, struct arm_smmu_master, node);
2022 of_node_put(master->of_node);
2023 }
2024
2025 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2026 dev_err(dev, "removing device with active domains!\n");
2027
2028 for (i = 0; i < smmu->num_global_irqs; ++i)
2029 devm_free_irq(smmu->dev, smmu->irqs[i], smmu);
2030
2031 /* Turn the thing off */
2032 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2033 return 0;
2034 }
2035
2036 static struct platform_driver arm_smmu_driver = {
2037 .driver = {
2038 .name = "arm-smmu",
2039 .of_match_table = of_match_ptr(arm_smmu_of_match),
2040 },
2041 .probe = arm_smmu_device_dt_probe,
2042 .remove = arm_smmu_device_remove,
2043 };
2044
2045 static int __init arm_smmu_init(void)
2046 {
2047 struct device_node *np;
2048 int ret;
2049
2050 /*
2051 * Play nice with systems that don't have an ARM SMMU by checking that
2052 * an ARM SMMU exists in the system before proceeding with the driver
2053 * and IOMMU bus operation registration.
2054 */
2055 np = of_find_matching_node(NULL, arm_smmu_of_match);
2056 if (!np)
2057 return 0;
2058
2059 of_node_put(np);
2060
2061 ret = platform_driver_register(&arm_smmu_driver);
2062 if (ret)
2063 return ret;
2064
2065 /* Oh, for a proper bus abstraction */
2066 if (!iommu_present(&platform_bus_type))
2067 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2068
2069 #ifdef CONFIG_ARM_AMBA
2070 if (!iommu_present(&amba_bustype))
2071 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2072 #endif
2073
2074 #ifdef CONFIG_PCI
2075 if (!iommu_present(&pci_bus_type)) {
2076 pci_request_acs();
2077 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2078 }
2079 #endif
2080
2081 return 0;
2082 }
2083
2084 static void __exit arm_smmu_exit(void)
2085 {
2086 return platform_driver_unregister(&arm_smmu_driver);
2087 }
2088
2089 subsys_initcall(arm_smmu_init);
2090 module_exit(arm_smmu_exit);
2091
2092 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2093 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2094 MODULE_LICENSE("GPL v2");
This page took 0.076996 seconds and 5 git commands to generate.