tracing: add sched_set_prio tracepoint
[deliverable/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-iommu.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/interrupt.h>
36 #include <linux/io.h>
37 #include <linux/iommu.h>
38 #include <linux/iopoll.h>
39 #include <linux/module.h>
40 #include <linux/of.h>
41 #include <linux/of_address.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46
47 #include <linux/amba/bus.h>
48
49 #include "io-pgtable.h"
50
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
53
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS 128
56
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS 128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67 * nsGFSYNR0: 0x450)
68 */
69 #define ARM_SMMU_GR0_NS(smmu) \
70 ((smmu)->base + \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
72 ? 0x400 : 0))
73
74 #ifdef CONFIG_64BIT
75 #define smmu_writeq writeq_relaxed
76 #else
77 #define smmu_writeq(reg64, addr) \
78 do { \
79 u64 __val = (reg64); \
80 void __iomem *__addr = (addr); \
81 writel_relaxed(__val >> 32, __addr + 4); \
82 writel_relaxed(__val, __addr); \
83 } while (0)
84 #endif
85
86 /* Configuration registers */
87 #define ARM_SMMU_GR0_sCR0 0x0
88 #define sCR0_CLIENTPD (1 << 0)
89 #define sCR0_GFRE (1 << 1)
90 #define sCR0_GFIE (1 << 2)
91 #define sCR0_GCFGFRE (1 << 4)
92 #define sCR0_GCFGFIE (1 << 5)
93 #define sCR0_USFCFG (1 << 10)
94 #define sCR0_VMIDPNE (1 << 11)
95 #define sCR0_PTM (1 << 12)
96 #define sCR0_FB (1 << 13)
97 #define sCR0_BSU_SHIFT 14
98 #define sCR0_BSU_MASK 0x3
99
100 /* Identification registers */
101 #define ARM_SMMU_GR0_ID0 0x20
102 #define ARM_SMMU_GR0_ID1 0x24
103 #define ARM_SMMU_GR0_ID2 0x28
104 #define ARM_SMMU_GR0_ID3 0x2c
105 #define ARM_SMMU_GR0_ID4 0x30
106 #define ARM_SMMU_GR0_ID5 0x34
107 #define ARM_SMMU_GR0_ID6 0x38
108 #define ARM_SMMU_GR0_ID7 0x3c
109 #define ARM_SMMU_GR0_sGFSR 0x48
110 #define ARM_SMMU_GR0_sGFSYNR0 0x50
111 #define ARM_SMMU_GR0_sGFSYNR1 0x54
112 #define ARM_SMMU_GR0_sGFSYNR2 0x58
113
114 #define ID0_S1TS (1 << 30)
115 #define ID0_S2TS (1 << 29)
116 #define ID0_NTS (1 << 28)
117 #define ID0_SMS (1 << 27)
118 #define ID0_ATOSNS (1 << 26)
119 #define ID0_CTTW (1 << 14)
120 #define ID0_NUMIRPT_SHIFT 16
121 #define ID0_NUMIRPT_MASK 0xff
122 #define ID0_NUMSIDB_SHIFT 9
123 #define ID0_NUMSIDB_MASK 0xf
124 #define ID0_NUMSMRG_SHIFT 0
125 #define ID0_NUMSMRG_MASK 0xff
126
127 #define ID1_PAGESIZE (1 << 31)
128 #define ID1_NUMPAGENDXB_SHIFT 28
129 #define ID1_NUMPAGENDXB_MASK 7
130 #define ID1_NUMS2CB_SHIFT 16
131 #define ID1_NUMS2CB_MASK 0xff
132 #define ID1_NUMCB_SHIFT 0
133 #define ID1_NUMCB_MASK 0xff
134
135 #define ID2_OAS_SHIFT 4
136 #define ID2_OAS_MASK 0xf
137 #define ID2_IAS_SHIFT 0
138 #define ID2_IAS_MASK 0xf
139 #define ID2_UBS_SHIFT 8
140 #define ID2_UBS_MASK 0xf
141 #define ID2_PTFS_4K (1 << 12)
142 #define ID2_PTFS_16K (1 << 13)
143 #define ID2_PTFS_64K (1 << 14)
144
145 /* Global TLB invalidation */
146 #define ARM_SMMU_GR0_TLBIVMID 0x64
147 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
148 #define ARM_SMMU_GR0_TLBIALLH 0x6c
149 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
150 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
151 #define sTLBGSTATUS_GSACTIVE (1 << 0)
152 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
153
154 /* Stream mapping registers */
155 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
156 #define SMR_VALID (1 << 31)
157 #define SMR_MASK_SHIFT 16
158 #define SMR_MASK_MASK 0x7fff
159 #define SMR_ID_SHIFT 0
160 #define SMR_ID_MASK 0x7fff
161
162 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
163 #define S2CR_CBNDX_SHIFT 0
164 #define S2CR_CBNDX_MASK 0xff
165 #define S2CR_TYPE_SHIFT 16
166 #define S2CR_TYPE_MASK 0x3
167 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
168 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
169 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
170
171 #define S2CR_PRIVCFG_SHIFT 24
172 #define S2CR_PRIVCFG_UNPRIV (2 << S2CR_PRIVCFG_SHIFT)
173
174 /* Context bank attribute registers */
175 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
176 #define CBAR_VMID_SHIFT 0
177 #define CBAR_VMID_MASK 0xff
178 #define CBAR_S1_BPSHCFG_SHIFT 8
179 #define CBAR_S1_BPSHCFG_MASK 3
180 #define CBAR_S1_BPSHCFG_NSH 3
181 #define CBAR_S1_MEMATTR_SHIFT 12
182 #define CBAR_S1_MEMATTR_MASK 0xf
183 #define CBAR_S1_MEMATTR_WB 0xf
184 #define CBAR_TYPE_SHIFT 16
185 #define CBAR_TYPE_MASK 0x3
186 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
187 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
188 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
189 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
190 #define CBAR_IRPTNDX_SHIFT 24
191 #define CBAR_IRPTNDX_MASK 0xff
192
193 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
194 #define CBA2R_RW64_32BIT (0 << 0)
195 #define CBA2R_RW64_64BIT (1 << 0)
196
197 /* Translation context bank */
198 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
199 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
200
201 #define ARM_SMMU_CB_SCTLR 0x0
202 #define ARM_SMMU_CB_RESUME 0x8
203 #define ARM_SMMU_CB_TTBCR2 0x10
204 #define ARM_SMMU_CB_TTBR0 0x20
205 #define ARM_SMMU_CB_TTBR1 0x28
206 #define ARM_SMMU_CB_TTBCR 0x30
207 #define ARM_SMMU_CB_S1_MAIR0 0x38
208 #define ARM_SMMU_CB_S1_MAIR1 0x3c
209 #define ARM_SMMU_CB_PAR_LO 0x50
210 #define ARM_SMMU_CB_PAR_HI 0x54
211 #define ARM_SMMU_CB_FSR 0x58
212 #define ARM_SMMU_CB_FAR_LO 0x60
213 #define ARM_SMMU_CB_FAR_HI 0x64
214 #define ARM_SMMU_CB_FSYNR0 0x68
215 #define ARM_SMMU_CB_S1_TLBIVA 0x600
216 #define ARM_SMMU_CB_S1_TLBIASID 0x610
217 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
218 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
219 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
220 #define ARM_SMMU_CB_ATS1PR 0x800
221 #define ARM_SMMU_CB_ATSR 0x8f0
222
223 #define SCTLR_S1_ASIDPNE (1 << 12)
224 #define SCTLR_CFCFG (1 << 7)
225 #define SCTLR_CFIE (1 << 6)
226 #define SCTLR_CFRE (1 << 5)
227 #define SCTLR_E (1 << 4)
228 #define SCTLR_AFE (1 << 2)
229 #define SCTLR_TRE (1 << 1)
230 #define SCTLR_M (1 << 0)
231 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
232
233 #define CB_PAR_F (1 << 0)
234
235 #define ATSR_ACTIVE (1 << 0)
236
237 #define RESUME_RETRY (0 << 0)
238 #define RESUME_TERMINATE (1 << 0)
239
240 #define TTBCR2_SEP_SHIFT 15
241 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
242
243 #define TTBRn_ASID_SHIFT 48
244
245 #define FSR_MULTI (1 << 31)
246 #define FSR_SS (1 << 30)
247 #define FSR_UUT (1 << 8)
248 #define FSR_ASF (1 << 7)
249 #define FSR_TLBLKF (1 << 6)
250 #define FSR_TLBMCF (1 << 5)
251 #define FSR_EF (1 << 4)
252 #define FSR_PF (1 << 3)
253 #define FSR_AFF (1 << 2)
254 #define FSR_TF (1 << 1)
255
256 #define FSR_IGN (FSR_AFF | FSR_ASF | \
257 FSR_TLBMCF | FSR_TLBLKF)
258 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
259 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
260
261 #define FSYNR0_WNR (1 << 4)
262
263 static int force_stage;
264 module_param(force_stage, int, S_IRUGO);
265 MODULE_PARM_DESC(force_stage,
266 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
267 static bool disable_bypass;
268 module_param(disable_bypass, bool, S_IRUGO);
269 MODULE_PARM_DESC(disable_bypass,
270 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
271
272 enum arm_smmu_arch_version {
273 ARM_SMMU_V1 = 1,
274 ARM_SMMU_V2,
275 };
276
277 struct arm_smmu_smr {
278 u8 idx;
279 u16 mask;
280 u16 id;
281 };
282
283 struct arm_smmu_master_cfg {
284 int num_streamids;
285 u16 streamids[MAX_MASTER_STREAMIDS];
286 struct arm_smmu_smr *smrs;
287 };
288
289 struct arm_smmu_master {
290 struct device_node *of_node;
291 struct rb_node node;
292 struct arm_smmu_master_cfg cfg;
293 };
294
295 struct arm_smmu_device {
296 struct device *dev;
297
298 void __iomem *base;
299 unsigned long size;
300 unsigned long pgshift;
301
302 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
303 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
304 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
305 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
306 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
307 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
308 u32 features;
309
310 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
311 u32 options;
312 enum arm_smmu_arch_version version;
313
314 u32 num_context_banks;
315 u32 num_s2_context_banks;
316 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
317 atomic_t irptndx;
318
319 u32 num_mapping_groups;
320 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
321
322 unsigned long va_size;
323 unsigned long ipa_size;
324 unsigned long pa_size;
325
326 u32 num_global_irqs;
327 u32 num_context_irqs;
328 unsigned int *irqs;
329
330 struct list_head list;
331 struct rb_root masters;
332 };
333
334 struct arm_smmu_cfg {
335 u8 cbndx;
336 u8 irptndx;
337 u32 cbar;
338 };
339 #define INVALID_IRPTNDX 0xff
340
341 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
342 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
343
344 enum arm_smmu_domain_stage {
345 ARM_SMMU_DOMAIN_S1 = 0,
346 ARM_SMMU_DOMAIN_S2,
347 ARM_SMMU_DOMAIN_NESTED,
348 };
349
350 struct arm_smmu_domain {
351 struct arm_smmu_device *smmu;
352 struct io_pgtable_ops *pgtbl_ops;
353 spinlock_t pgtbl_lock;
354 struct arm_smmu_cfg cfg;
355 enum arm_smmu_domain_stage stage;
356 struct mutex init_mutex; /* Protects smmu pointer */
357 struct iommu_domain domain;
358 };
359
360 static struct iommu_ops arm_smmu_ops;
361
362 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
363 static LIST_HEAD(arm_smmu_devices);
364
365 struct arm_smmu_option_prop {
366 u32 opt;
367 const char *prop;
368 };
369
370 static struct arm_smmu_option_prop arm_smmu_options[] = {
371 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
372 { 0, NULL},
373 };
374
375 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
376 {
377 return container_of(dom, struct arm_smmu_domain, domain);
378 }
379
380 static void parse_driver_options(struct arm_smmu_device *smmu)
381 {
382 int i = 0;
383
384 do {
385 if (of_property_read_bool(smmu->dev->of_node,
386 arm_smmu_options[i].prop)) {
387 smmu->options |= arm_smmu_options[i].opt;
388 dev_notice(smmu->dev, "option %s\n",
389 arm_smmu_options[i].prop);
390 }
391 } while (arm_smmu_options[++i].opt);
392 }
393
394 static struct device_node *dev_get_dev_node(struct device *dev)
395 {
396 if (dev_is_pci(dev)) {
397 struct pci_bus *bus = to_pci_dev(dev)->bus;
398
399 while (!pci_is_root_bus(bus))
400 bus = bus->parent;
401 return bus->bridge->parent->of_node;
402 }
403
404 return dev->of_node;
405 }
406
407 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
408 struct device_node *dev_node)
409 {
410 struct rb_node *node = smmu->masters.rb_node;
411
412 while (node) {
413 struct arm_smmu_master *master;
414
415 master = container_of(node, struct arm_smmu_master, node);
416
417 if (dev_node < master->of_node)
418 node = node->rb_left;
419 else if (dev_node > master->of_node)
420 node = node->rb_right;
421 else
422 return master;
423 }
424
425 return NULL;
426 }
427
428 static struct arm_smmu_master_cfg *
429 find_smmu_master_cfg(struct device *dev)
430 {
431 struct arm_smmu_master_cfg *cfg = NULL;
432 struct iommu_group *group = iommu_group_get(dev);
433
434 if (group) {
435 cfg = iommu_group_get_iommudata(group);
436 iommu_group_put(group);
437 }
438
439 return cfg;
440 }
441
442 static int insert_smmu_master(struct arm_smmu_device *smmu,
443 struct arm_smmu_master *master)
444 {
445 struct rb_node **new, *parent;
446
447 new = &smmu->masters.rb_node;
448 parent = NULL;
449 while (*new) {
450 struct arm_smmu_master *this
451 = container_of(*new, struct arm_smmu_master, node);
452
453 parent = *new;
454 if (master->of_node < this->of_node)
455 new = &((*new)->rb_left);
456 else if (master->of_node > this->of_node)
457 new = &((*new)->rb_right);
458 else
459 return -EEXIST;
460 }
461
462 rb_link_node(&master->node, parent, new);
463 rb_insert_color(&master->node, &smmu->masters);
464 return 0;
465 }
466
467 static int register_smmu_master(struct arm_smmu_device *smmu,
468 struct device *dev,
469 struct of_phandle_args *masterspec)
470 {
471 int i;
472 struct arm_smmu_master *master;
473
474 master = find_smmu_master(smmu, masterspec->np);
475 if (master) {
476 dev_err(dev,
477 "rejecting multiple registrations for master device %s\n",
478 masterspec->np->name);
479 return -EBUSY;
480 }
481
482 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
483 dev_err(dev,
484 "reached maximum number (%d) of stream IDs for master device %s\n",
485 MAX_MASTER_STREAMIDS, masterspec->np->name);
486 return -ENOSPC;
487 }
488
489 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
490 if (!master)
491 return -ENOMEM;
492
493 master->of_node = masterspec->np;
494 master->cfg.num_streamids = masterspec->args_count;
495
496 for (i = 0; i < master->cfg.num_streamids; ++i) {
497 u16 streamid = masterspec->args[i];
498
499 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
500 (streamid >= smmu->num_mapping_groups)) {
501 dev_err(dev,
502 "stream ID for master device %s greater than maximum allowed (%d)\n",
503 masterspec->np->name, smmu->num_mapping_groups);
504 return -ERANGE;
505 }
506 master->cfg.streamids[i] = streamid;
507 }
508 return insert_smmu_master(smmu, master);
509 }
510
511 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
512 {
513 struct arm_smmu_device *smmu;
514 struct arm_smmu_master *master = NULL;
515 struct device_node *dev_node = dev_get_dev_node(dev);
516
517 spin_lock(&arm_smmu_devices_lock);
518 list_for_each_entry(smmu, &arm_smmu_devices, list) {
519 master = find_smmu_master(smmu, dev_node);
520 if (master)
521 break;
522 }
523 spin_unlock(&arm_smmu_devices_lock);
524
525 return master ? smmu : NULL;
526 }
527
528 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
529 {
530 int idx;
531
532 do {
533 idx = find_next_zero_bit(map, end, start);
534 if (idx == end)
535 return -ENOSPC;
536 } while (test_and_set_bit(idx, map));
537
538 return idx;
539 }
540
541 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
542 {
543 clear_bit(idx, map);
544 }
545
546 /* Wait for any pending TLB invalidations to complete */
547 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
548 {
549 int count = 0;
550 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
551
552 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
553 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
554 & sTLBGSTATUS_GSACTIVE) {
555 cpu_relax();
556 if (++count == TLB_LOOP_TIMEOUT) {
557 dev_err_ratelimited(smmu->dev,
558 "TLB sync timed out -- SMMU may be deadlocked\n");
559 return;
560 }
561 udelay(1);
562 }
563 }
564
565 static void arm_smmu_tlb_sync(void *cookie)
566 {
567 struct arm_smmu_domain *smmu_domain = cookie;
568 __arm_smmu_tlb_sync(smmu_domain->smmu);
569 }
570
571 static void arm_smmu_tlb_inv_context(void *cookie)
572 {
573 struct arm_smmu_domain *smmu_domain = cookie;
574 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
575 struct arm_smmu_device *smmu = smmu_domain->smmu;
576 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
577 void __iomem *base;
578
579 if (stage1) {
580 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
581 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
582 base + ARM_SMMU_CB_S1_TLBIASID);
583 } else {
584 base = ARM_SMMU_GR0(smmu);
585 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
586 base + ARM_SMMU_GR0_TLBIVMID);
587 }
588
589 __arm_smmu_tlb_sync(smmu);
590 }
591
592 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
593 size_t granule, bool leaf, void *cookie)
594 {
595 struct arm_smmu_domain *smmu_domain = cookie;
596 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
597 struct arm_smmu_device *smmu = smmu_domain->smmu;
598 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
599 void __iomem *reg;
600
601 if (stage1) {
602 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
603 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
604
605 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
606 iova &= ~12UL;
607 iova |= ARM_SMMU_CB_ASID(cfg);
608 do {
609 writel_relaxed(iova, reg);
610 iova += granule;
611 } while (size -= granule);
612 #ifdef CONFIG_64BIT
613 } else {
614 iova >>= 12;
615 iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
616 do {
617 writeq_relaxed(iova, reg);
618 iova += granule >> 12;
619 } while (size -= granule);
620 #endif
621 }
622 #ifdef CONFIG_64BIT
623 } else if (smmu->version == ARM_SMMU_V2) {
624 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
625 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
626 ARM_SMMU_CB_S2_TLBIIPAS2;
627 iova >>= 12;
628 do {
629 writeq_relaxed(iova, reg);
630 iova += granule >> 12;
631 } while (size -= granule);
632 #endif
633 } else {
634 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
635 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
636 }
637 }
638
639 static struct iommu_gather_ops arm_smmu_gather_ops = {
640 .tlb_flush_all = arm_smmu_tlb_inv_context,
641 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
642 .tlb_sync = arm_smmu_tlb_sync,
643 };
644
645 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
646 {
647 int flags, ret;
648 u32 fsr, far, fsynr, resume;
649 unsigned long iova;
650 struct iommu_domain *domain = dev;
651 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
652 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
653 struct arm_smmu_device *smmu = smmu_domain->smmu;
654 void __iomem *cb_base;
655
656 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
657 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
658
659 if (!(fsr & FSR_FAULT))
660 return IRQ_NONE;
661
662 if (fsr & FSR_IGN)
663 dev_err_ratelimited(smmu->dev,
664 "Unexpected context fault (fsr 0x%x)\n",
665 fsr);
666
667 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
668 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
669
670 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
671 iova = far;
672 #ifdef CONFIG_64BIT
673 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
674 iova |= ((unsigned long)far << 32);
675 #endif
676
677 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
678 ret = IRQ_HANDLED;
679 resume = RESUME_RETRY;
680 } else {
681 dev_err_ratelimited(smmu->dev,
682 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
683 iova, fsynr, cfg->cbndx);
684 ret = IRQ_NONE;
685 resume = RESUME_TERMINATE;
686 }
687
688 /* Clear the faulting FSR */
689 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
690
691 /* Retry or terminate any stalled transactions */
692 if (fsr & FSR_SS)
693 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
694
695 return ret;
696 }
697
698 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
699 {
700 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
701 struct arm_smmu_device *smmu = dev;
702 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
703
704 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
705 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
706 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
707 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
708
709 if (!gfsr)
710 return IRQ_NONE;
711
712 dev_err_ratelimited(smmu->dev,
713 "Unexpected global fault, this could be serious\n");
714 dev_err_ratelimited(smmu->dev,
715 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
716 gfsr, gfsynr0, gfsynr1, gfsynr2);
717
718 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
719 return IRQ_HANDLED;
720 }
721
722 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
723 struct io_pgtable_cfg *pgtbl_cfg)
724 {
725 u32 reg;
726 u64 reg64;
727 bool stage1;
728 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
729 struct arm_smmu_device *smmu = smmu_domain->smmu;
730 void __iomem *cb_base, *gr1_base;
731
732 gr1_base = ARM_SMMU_GR1(smmu);
733 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
734 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
735
736 if (smmu->version > ARM_SMMU_V1) {
737 /*
738 * CBA2R.
739 * *Must* be initialised before CBAR thanks to VMID16
740 * architectural oversight affected some implementations.
741 */
742 #ifdef CONFIG_64BIT
743 reg = CBA2R_RW64_64BIT;
744 #else
745 reg = CBA2R_RW64_32BIT;
746 #endif
747 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
748 }
749
750 /* CBAR */
751 reg = cfg->cbar;
752 if (smmu->version == ARM_SMMU_V1)
753 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
754
755 /*
756 * Use the weakest shareability/memory types, so they are
757 * overridden by the ttbcr/pte.
758 */
759 if (stage1) {
760 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
761 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
762 } else {
763 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
764 }
765 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
766
767 /* TTBRs */
768 if (stage1) {
769 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
770
771 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
772 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
773
774 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
775 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
776 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
777 } else {
778 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
779 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
780 }
781
782 /* TTBCR */
783 if (stage1) {
784 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
785 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
786 if (smmu->version > ARM_SMMU_V1) {
787 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
788 reg |= TTBCR2_SEP_UPSTREAM;
789 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
790 }
791 } else {
792 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
793 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
794 }
795
796 /* MAIRs (stage-1 only) */
797 if (stage1) {
798 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
799 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
800 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
801 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
802 }
803
804 /* SCTLR */
805 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
806 if (stage1)
807 reg |= SCTLR_S1_ASIDPNE;
808 #ifdef __BIG_ENDIAN
809 reg |= SCTLR_E;
810 #endif
811 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
812 }
813
814 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
815 struct arm_smmu_device *smmu)
816 {
817 int irq, start, ret = 0;
818 unsigned long ias, oas;
819 struct io_pgtable_ops *pgtbl_ops;
820 struct io_pgtable_cfg pgtbl_cfg;
821 enum io_pgtable_fmt fmt;
822 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
823 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
824
825 mutex_lock(&smmu_domain->init_mutex);
826 if (smmu_domain->smmu)
827 goto out_unlock;
828
829 /* We're bypassing these SIDs, so don't allocate an actual context */
830 if (domain->type == IOMMU_DOMAIN_DMA) {
831 smmu_domain->smmu = smmu;
832 goto out_unlock;
833 }
834
835 /*
836 * Mapping the requested stage onto what we support is surprisingly
837 * complicated, mainly because the spec allows S1+S2 SMMUs without
838 * support for nested translation. That means we end up with the
839 * following table:
840 *
841 * Requested Supported Actual
842 * S1 N S1
843 * S1 S1+S2 S1
844 * S1 S2 S2
845 * S1 S1 S1
846 * N N N
847 * N S1+S2 S2
848 * N S2 S2
849 * N S1 S1
850 *
851 * Note that you can't actually request stage-2 mappings.
852 */
853 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
854 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
855 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
856 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
857
858 switch (smmu_domain->stage) {
859 case ARM_SMMU_DOMAIN_S1:
860 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
861 start = smmu->num_s2_context_banks;
862 ias = smmu->va_size;
863 oas = smmu->ipa_size;
864 if (IS_ENABLED(CONFIG_64BIT))
865 fmt = ARM_64_LPAE_S1;
866 else
867 fmt = ARM_32_LPAE_S1;
868 break;
869 case ARM_SMMU_DOMAIN_NESTED:
870 /*
871 * We will likely want to change this if/when KVM gets
872 * involved.
873 */
874 case ARM_SMMU_DOMAIN_S2:
875 cfg->cbar = CBAR_TYPE_S2_TRANS;
876 start = 0;
877 ias = smmu->ipa_size;
878 oas = smmu->pa_size;
879 if (IS_ENABLED(CONFIG_64BIT))
880 fmt = ARM_64_LPAE_S2;
881 else
882 fmt = ARM_32_LPAE_S2;
883 break;
884 default:
885 ret = -EINVAL;
886 goto out_unlock;
887 }
888
889 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
890 smmu->num_context_banks);
891 if (IS_ERR_VALUE(ret))
892 goto out_unlock;
893
894 cfg->cbndx = ret;
895 if (smmu->version == ARM_SMMU_V1) {
896 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
897 cfg->irptndx %= smmu->num_context_irqs;
898 } else {
899 cfg->irptndx = cfg->cbndx;
900 }
901
902 pgtbl_cfg = (struct io_pgtable_cfg) {
903 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
904 .ias = ias,
905 .oas = oas,
906 .tlb = &arm_smmu_gather_ops,
907 .iommu_dev = smmu->dev,
908 };
909
910 smmu_domain->smmu = smmu;
911 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
912 if (!pgtbl_ops) {
913 ret = -ENOMEM;
914 goto out_clear_smmu;
915 }
916
917 /* Update our support page sizes to reflect the page table format */
918 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
919
920 /* Initialise the context bank with our page table cfg */
921 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
922
923 /*
924 * Request context fault interrupt. Do this last to avoid the
925 * handler seeing a half-initialised domain state.
926 */
927 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
928 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
929 "arm-smmu-context-fault", domain);
930 if (IS_ERR_VALUE(ret)) {
931 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
932 cfg->irptndx, irq);
933 cfg->irptndx = INVALID_IRPTNDX;
934 }
935
936 mutex_unlock(&smmu_domain->init_mutex);
937
938 /* Publish page table ops for map/unmap */
939 smmu_domain->pgtbl_ops = pgtbl_ops;
940 return 0;
941
942 out_clear_smmu:
943 smmu_domain->smmu = NULL;
944 out_unlock:
945 mutex_unlock(&smmu_domain->init_mutex);
946 return ret;
947 }
948
949 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
950 {
951 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
952 struct arm_smmu_device *smmu = smmu_domain->smmu;
953 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
954 void __iomem *cb_base;
955 int irq;
956
957 if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
958 return;
959
960 /*
961 * Disable the context bank and free the page tables before freeing
962 * it.
963 */
964 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
965 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
966
967 if (cfg->irptndx != INVALID_IRPTNDX) {
968 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
969 free_irq(irq, domain);
970 }
971
972 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
973 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
974 }
975
976 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
977 {
978 struct arm_smmu_domain *smmu_domain;
979
980 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
981 return NULL;
982 /*
983 * Allocate the domain and initialise some of its data structures.
984 * We can't really do anything meaningful until we've added a
985 * master.
986 */
987 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
988 if (!smmu_domain)
989 return NULL;
990
991 if (type == IOMMU_DOMAIN_DMA &&
992 iommu_get_dma_cookie(&smmu_domain->domain)) {
993 kfree(smmu_domain);
994 return NULL;
995 }
996
997 mutex_init(&smmu_domain->init_mutex);
998 spin_lock_init(&smmu_domain->pgtbl_lock);
999
1000 return &smmu_domain->domain;
1001 }
1002
1003 static void arm_smmu_domain_free(struct iommu_domain *domain)
1004 {
1005 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1006
1007 /*
1008 * Free the domain resources. We assume that all devices have
1009 * already been detached.
1010 */
1011 iommu_put_dma_cookie(domain);
1012 arm_smmu_destroy_domain_context(domain);
1013 kfree(smmu_domain);
1014 }
1015
1016 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1017 struct arm_smmu_master_cfg *cfg)
1018 {
1019 int i;
1020 struct arm_smmu_smr *smrs;
1021 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1022
1023 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1024 return 0;
1025
1026 if (cfg->smrs)
1027 return -EEXIST;
1028
1029 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1030 if (!smrs) {
1031 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1032 cfg->num_streamids);
1033 return -ENOMEM;
1034 }
1035
1036 /* Allocate the SMRs on the SMMU */
1037 for (i = 0; i < cfg->num_streamids; ++i) {
1038 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1039 smmu->num_mapping_groups);
1040 if (IS_ERR_VALUE(idx)) {
1041 dev_err(smmu->dev, "failed to allocate free SMR\n");
1042 goto err_free_smrs;
1043 }
1044
1045 smrs[i] = (struct arm_smmu_smr) {
1046 .idx = idx,
1047 .mask = 0, /* We don't currently share SMRs */
1048 .id = cfg->streamids[i],
1049 };
1050 }
1051
1052 /* It worked! Now, poke the actual hardware */
1053 for (i = 0; i < cfg->num_streamids; ++i) {
1054 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1055 smrs[i].mask << SMR_MASK_SHIFT;
1056 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1057 }
1058
1059 cfg->smrs = smrs;
1060 return 0;
1061
1062 err_free_smrs:
1063 while (--i >= 0)
1064 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1065 kfree(smrs);
1066 return -ENOSPC;
1067 }
1068
1069 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1070 struct arm_smmu_master_cfg *cfg)
1071 {
1072 int i;
1073 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1074 struct arm_smmu_smr *smrs = cfg->smrs;
1075
1076 if (!smrs)
1077 return;
1078
1079 /* Invalidate the SMRs before freeing back to the allocator */
1080 for (i = 0; i < cfg->num_streamids; ++i) {
1081 u8 idx = smrs[i].idx;
1082
1083 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1084 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1085 }
1086
1087 cfg->smrs = NULL;
1088 kfree(smrs);
1089 }
1090
1091 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1092 struct arm_smmu_master_cfg *cfg)
1093 {
1094 int i, ret;
1095 struct arm_smmu_device *smmu = smmu_domain->smmu;
1096 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1097
1098 /*
1099 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1100 * for all devices behind the SMMU. Note that we need to take
1101 * care configuring SMRs for devices both a platform_device and
1102 * and a PCI device (i.e. a PCI host controller)
1103 */
1104 if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
1105 return 0;
1106
1107 /* Devices in an IOMMU group may already be configured */
1108 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1109 if (ret)
1110 return ret == -EEXIST ? 0 : ret;
1111
1112 for (i = 0; i < cfg->num_streamids; ++i) {
1113 u32 idx, s2cr;
1114
1115 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1116 s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1117 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1118 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1119 }
1120
1121 return 0;
1122 }
1123
1124 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1125 struct arm_smmu_master_cfg *cfg)
1126 {
1127 int i;
1128 struct arm_smmu_device *smmu = smmu_domain->smmu;
1129 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1130
1131 /* An IOMMU group is torn down by the first device to be removed */
1132 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1133 return;
1134
1135 /*
1136 * We *must* clear the S2CR first, because freeing the SMR means
1137 * that it can be re-allocated immediately.
1138 */
1139 for (i = 0; i < cfg->num_streamids; ++i) {
1140 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1141 u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1142
1143 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1144 }
1145
1146 arm_smmu_master_free_smrs(smmu, cfg);
1147 }
1148
1149 static void arm_smmu_detach_dev(struct device *dev,
1150 struct arm_smmu_master_cfg *cfg)
1151 {
1152 struct iommu_domain *domain = dev->archdata.iommu;
1153 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1154
1155 dev->archdata.iommu = NULL;
1156 arm_smmu_domain_remove_master(smmu_domain, cfg);
1157 }
1158
1159 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1160 {
1161 int ret;
1162 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1163 struct arm_smmu_device *smmu;
1164 struct arm_smmu_master_cfg *cfg;
1165
1166 smmu = find_smmu_for_device(dev);
1167 if (!smmu) {
1168 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1169 return -ENXIO;
1170 }
1171
1172 /* Ensure that the domain is finalised */
1173 ret = arm_smmu_init_domain_context(domain, smmu);
1174 if (IS_ERR_VALUE(ret))
1175 return ret;
1176
1177 /*
1178 * Sanity check the domain. We don't support domains across
1179 * different SMMUs.
1180 */
1181 if (smmu_domain->smmu != smmu) {
1182 dev_err(dev,
1183 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1184 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1185 return -EINVAL;
1186 }
1187
1188 /* Looks ok, so add the device to the domain */
1189 cfg = find_smmu_master_cfg(dev);
1190 if (!cfg)
1191 return -ENODEV;
1192
1193 /* Detach the dev from its current domain */
1194 if (dev->archdata.iommu)
1195 arm_smmu_detach_dev(dev, cfg);
1196
1197 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1198 if (!ret)
1199 dev->archdata.iommu = domain;
1200 return ret;
1201 }
1202
1203 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1204 phys_addr_t paddr, size_t size, int prot)
1205 {
1206 int ret;
1207 unsigned long flags;
1208 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1209 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1210
1211 if (!ops)
1212 return -ENODEV;
1213
1214 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1215 ret = ops->map(ops, iova, paddr, size, prot);
1216 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1217 return ret;
1218 }
1219
1220 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1221 size_t size)
1222 {
1223 size_t ret;
1224 unsigned long flags;
1225 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1226 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1227
1228 if (!ops)
1229 return 0;
1230
1231 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1232 ret = ops->unmap(ops, iova, size);
1233 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1234 return ret;
1235 }
1236
1237 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1238 dma_addr_t iova)
1239 {
1240 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1241 struct arm_smmu_device *smmu = smmu_domain->smmu;
1242 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1243 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1244 struct device *dev = smmu->dev;
1245 void __iomem *cb_base;
1246 u32 tmp;
1247 u64 phys;
1248 unsigned long va;
1249
1250 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1251
1252 /* ATS1 registers can only be written atomically */
1253 va = iova & ~0xfffUL;
1254 if (smmu->version == ARM_SMMU_V2)
1255 smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1256 else
1257 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1258
1259 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1260 !(tmp & ATSR_ACTIVE), 5, 50)) {
1261 dev_err(dev,
1262 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1263 &iova);
1264 return ops->iova_to_phys(ops, iova);
1265 }
1266
1267 phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1268 phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1269
1270 if (phys & CB_PAR_F) {
1271 dev_err(dev, "translation fault!\n");
1272 dev_err(dev, "PAR = 0x%llx\n", phys);
1273 return 0;
1274 }
1275
1276 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1277 }
1278
1279 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1280 dma_addr_t iova)
1281 {
1282 phys_addr_t ret;
1283 unsigned long flags;
1284 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1285 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1286
1287 if (!ops)
1288 return 0;
1289
1290 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1291 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1292 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1293 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1294 } else {
1295 ret = ops->iova_to_phys(ops, iova);
1296 }
1297
1298 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1299
1300 return ret;
1301 }
1302
1303 static bool arm_smmu_capable(enum iommu_cap cap)
1304 {
1305 switch (cap) {
1306 case IOMMU_CAP_CACHE_COHERENCY:
1307 /*
1308 * Return true here as the SMMU can always send out coherent
1309 * requests.
1310 */
1311 return true;
1312 case IOMMU_CAP_INTR_REMAP:
1313 return true; /* MSIs are just memory writes */
1314 case IOMMU_CAP_NOEXEC:
1315 return true;
1316 default:
1317 return false;
1318 }
1319 }
1320
1321 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1322 {
1323 *((u16 *)data) = alias;
1324 return 0; /* Continue walking */
1325 }
1326
1327 static void __arm_smmu_release_pci_iommudata(void *data)
1328 {
1329 kfree(data);
1330 }
1331
1332 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1333 struct iommu_group *group)
1334 {
1335 struct arm_smmu_master_cfg *cfg;
1336 u16 sid;
1337 int i;
1338
1339 cfg = iommu_group_get_iommudata(group);
1340 if (!cfg) {
1341 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1342 if (!cfg)
1343 return -ENOMEM;
1344
1345 iommu_group_set_iommudata(group, cfg,
1346 __arm_smmu_release_pci_iommudata);
1347 }
1348
1349 if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1350 return -ENOSPC;
1351
1352 /*
1353 * Assume Stream ID == Requester ID for now.
1354 * We need a way to describe the ID mappings in FDT.
1355 */
1356 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1357 for (i = 0; i < cfg->num_streamids; ++i)
1358 if (cfg->streamids[i] == sid)
1359 break;
1360
1361 /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1362 if (i == cfg->num_streamids)
1363 cfg->streamids[cfg->num_streamids++] = sid;
1364
1365 return 0;
1366 }
1367
1368 static int arm_smmu_init_platform_device(struct device *dev,
1369 struct iommu_group *group)
1370 {
1371 struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1372 struct arm_smmu_master *master;
1373
1374 if (!smmu)
1375 return -ENODEV;
1376
1377 master = find_smmu_master(smmu, dev->of_node);
1378 if (!master)
1379 return -ENODEV;
1380
1381 iommu_group_set_iommudata(group, &master->cfg, NULL);
1382
1383 return 0;
1384 }
1385
1386 static int arm_smmu_add_device(struct device *dev)
1387 {
1388 struct iommu_group *group;
1389
1390 group = iommu_group_get_for_dev(dev);
1391 if (IS_ERR(group))
1392 return PTR_ERR(group);
1393
1394 iommu_group_put(group);
1395 return 0;
1396 }
1397
1398 static void arm_smmu_remove_device(struct device *dev)
1399 {
1400 iommu_group_remove_device(dev);
1401 }
1402
1403 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1404 {
1405 struct iommu_group *group;
1406 int ret;
1407
1408 if (dev_is_pci(dev))
1409 group = pci_device_group(dev);
1410 else
1411 group = generic_device_group(dev);
1412
1413 if (IS_ERR(group))
1414 return group;
1415
1416 if (dev_is_pci(dev))
1417 ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1418 else
1419 ret = arm_smmu_init_platform_device(dev, group);
1420
1421 if (ret) {
1422 iommu_group_put(group);
1423 group = ERR_PTR(ret);
1424 }
1425
1426 return group;
1427 }
1428
1429 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1430 enum iommu_attr attr, void *data)
1431 {
1432 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1433
1434 switch (attr) {
1435 case DOMAIN_ATTR_NESTING:
1436 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1437 return 0;
1438 default:
1439 return -ENODEV;
1440 }
1441 }
1442
1443 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1444 enum iommu_attr attr, void *data)
1445 {
1446 int ret = 0;
1447 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1448
1449 mutex_lock(&smmu_domain->init_mutex);
1450
1451 switch (attr) {
1452 case DOMAIN_ATTR_NESTING:
1453 if (smmu_domain->smmu) {
1454 ret = -EPERM;
1455 goto out_unlock;
1456 }
1457
1458 if (*(int *)data)
1459 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1460 else
1461 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1462
1463 break;
1464 default:
1465 ret = -ENODEV;
1466 }
1467
1468 out_unlock:
1469 mutex_unlock(&smmu_domain->init_mutex);
1470 return ret;
1471 }
1472
1473 static struct iommu_ops arm_smmu_ops = {
1474 .capable = arm_smmu_capable,
1475 .domain_alloc = arm_smmu_domain_alloc,
1476 .domain_free = arm_smmu_domain_free,
1477 .attach_dev = arm_smmu_attach_dev,
1478 .map = arm_smmu_map,
1479 .unmap = arm_smmu_unmap,
1480 .map_sg = default_iommu_map_sg,
1481 .iova_to_phys = arm_smmu_iova_to_phys,
1482 .add_device = arm_smmu_add_device,
1483 .remove_device = arm_smmu_remove_device,
1484 .device_group = arm_smmu_device_group,
1485 .domain_get_attr = arm_smmu_domain_get_attr,
1486 .domain_set_attr = arm_smmu_domain_set_attr,
1487 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1488 };
1489
1490 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1491 {
1492 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1493 void __iomem *cb_base;
1494 int i = 0;
1495 u32 reg;
1496
1497 /* clear global FSR */
1498 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1499 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1500
1501 /* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
1502 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1503 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1504 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1505 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1506 }
1507
1508 /* Make sure all context banks are disabled and clear CB_FSR */
1509 for (i = 0; i < smmu->num_context_banks; ++i) {
1510 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1511 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1512 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1513 }
1514
1515 /* Invalidate the TLB, just in case */
1516 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1517 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1518
1519 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1520
1521 /* Enable fault reporting */
1522 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1523
1524 /* Disable TLB broadcasting. */
1525 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1526
1527 /* Enable client access, handling unmatched streams as appropriate */
1528 reg &= ~sCR0_CLIENTPD;
1529 if (disable_bypass)
1530 reg |= sCR0_USFCFG;
1531 else
1532 reg &= ~sCR0_USFCFG;
1533
1534 /* Disable forced broadcasting */
1535 reg &= ~sCR0_FB;
1536
1537 /* Don't upgrade barriers */
1538 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1539
1540 /* Push the button */
1541 __arm_smmu_tlb_sync(smmu);
1542 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1543 }
1544
1545 static int arm_smmu_id_size_to_bits(int size)
1546 {
1547 switch (size) {
1548 case 0:
1549 return 32;
1550 case 1:
1551 return 36;
1552 case 2:
1553 return 40;
1554 case 3:
1555 return 42;
1556 case 4:
1557 return 44;
1558 case 5:
1559 default:
1560 return 48;
1561 }
1562 }
1563
1564 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1565 {
1566 unsigned long size;
1567 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1568 u32 id;
1569 bool cttw_dt, cttw_reg;
1570
1571 dev_notice(smmu->dev, "probing hardware configuration...\n");
1572 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1573
1574 /* ID0 */
1575 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1576
1577 /* Restrict available stages based on module parameter */
1578 if (force_stage == 1)
1579 id &= ~(ID0_S2TS | ID0_NTS);
1580 else if (force_stage == 2)
1581 id &= ~(ID0_S1TS | ID0_NTS);
1582
1583 if (id & ID0_S1TS) {
1584 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1585 dev_notice(smmu->dev, "\tstage 1 translation\n");
1586 }
1587
1588 if (id & ID0_S2TS) {
1589 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1590 dev_notice(smmu->dev, "\tstage 2 translation\n");
1591 }
1592
1593 if (id & ID0_NTS) {
1594 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1595 dev_notice(smmu->dev, "\tnested translation\n");
1596 }
1597
1598 if (!(smmu->features &
1599 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1600 dev_err(smmu->dev, "\tno translation support!\n");
1601 return -ENODEV;
1602 }
1603
1604 if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1605 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1606 dev_notice(smmu->dev, "\taddress translation ops\n");
1607 }
1608
1609 /*
1610 * In order for DMA API calls to work properly, we must defer to what
1611 * the DT says about coherency, regardless of what the hardware claims.
1612 * Fortunately, this also opens up a workaround for systems where the
1613 * ID register value has ended up configured incorrectly.
1614 */
1615 cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1616 cttw_reg = !!(id & ID0_CTTW);
1617 if (cttw_dt)
1618 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1619 if (cttw_dt || cttw_reg)
1620 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1621 cttw_dt ? "" : "non-");
1622 if (cttw_dt != cttw_reg)
1623 dev_notice(smmu->dev,
1624 "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1625
1626 if (id & ID0_SMS) {
1627 u32 smr, sid, mask;
1628
1629 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1630 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1631 ID0_NUMSMRG_MASK;
1632 if (smmu->num_mapping_groups == 0) {
1633 dev_err(smmu->dev,
1634 "stream-matching supported, but no SMRs present!\n");
1635 return -ENODEV;
1636 }
1637
1638 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1639 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1640 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1641 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1642
1643 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1644 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1645 if ((mask & sid) != sid) {
1646 dev_err(smmu->dev,
1647 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1648 mask, sid);
1649 return -ENODEV;
1650 }
1651
1652 dev_notice(smmu->dev,
1653 "\tstream matching with %u register groups, mask 0x%x",
1654 smmu->num_mapping_groups, mask);
1655 } else {
1656 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1657 ID0_NUMSIDB_MASK;
1658 }
1659
1660 /* ID1 */
1661 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1662 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1663
1664 /* Check for size mismatch of SMMU address space from mapped region */
1665 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1666 size *= 2 << smmu->pgshift;
1667 if (smmu->size != size)
1668 dev_warn(smmu->dev,
1669 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1670 size, smmu->size);
1671
1672 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1673 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1674 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1675 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1676 return -ENODEV;
1677 }
1678 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1679 smmu->num_context_banks, smmu->num_s2_context_banks);
1680
1681 /* ID2 */
1682 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1683 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1684 smmu->ipa_size = size;
1685
1686 /* The output mask is also applied for bypass */
1687 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1688 smmu->pa_size = size;
1689
1690 /*
1691 * What the page table walker can address actually depends on which
1692 * descriptor format is in use, but since a) we don't know that yet,
1693 * and b) it can vary per context bank, this will have to do...
1694 */
1695 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1696 dev_warn(smmu->dev,
1697 "failed to set DMA mask for table walker\n");
1698
1699 if (smmu->version == ARM_SMMU_V1) {
1700 smmu->va_size = smmu->ipa_size;
1701 size = SZ_4K | SZ_2M | SZ_1G;
1702 } else {
1703 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1704 smmu->va_size = arm_smmu_id_size_to_bits(size);
1705 #ifndef CONFIG_64BIT
1706 smmu->va_size = min(32UL, smmu->va_size);
1707 #endif
1708 size = 0;
1709 if (id & ID2_PTFS_4K)
1710 size |= SZ_4K | SZ_2M | SZ_1G;
1711 if (id & ID2_PTFS_16K)
1712 size |= SZ_16K | SZ_32M;
1713 if (id & ID2_PTFS_64K)
1714 size |= SZ_64K | SZ_512M;
1715 }
1716
1717 arm_smmu_ops.pgsize_bitmap &= size;
1718 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1719
1720 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1721 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1722 smmu->va_size, smmu->ipa_size);
1723
1724 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1725 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1726 smmu->ipa_size, smmu->pa_size);
1727
1728 return 0;
1729 }
1730
1731 static const struct of_device_id arm_smmu_of_match[] = {
1732 { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1733 { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1734 { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1735 { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1736 { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1737 { },
1738 };
1739 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1740
1741 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1742 {
1743 const struct of_device_id *of_id;
1744 struct resource *res;
1745 struct arm_smmu_device *smmu;
1746 struct device *dev = &pdev->dev;
1747 struct rb_node *node;
1748 struct of_phandle_args masterspec;
1749 int num_irqs, i, err;
1750
1751 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1752 if (!smmu) {
1753 dev_err(dev, "failed to allocate arm_smmu_device\n");
1754 return -ENOMEM;
1755 }
1756 smmu->dev = dev;
1757
1758 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1759 smmu->version = (enum arm_smmu_arch_version)of_id->data;
1760
1761 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1762 smmu->base = devm_ioremap_resource(dev, res);
1763 if (IS_ERR(smmu->base))
1764 return PTR_ERR(smmu->base);
1765 smmu->size = resource_size(res);
1766
1767 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1768 &smmu->num_global_irqs)) {
1769 dev_err(dev, "missing #global-interrupts property\n");
1770 return -ENODEV;
1771 }
1772
1773 num_irqs = 0;
1774 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1775 num_irqs++;
1776 if (num_irqs > smmu->num_global_irqs)
1777 smmu->num_context_irqs++;
1778 }
1779
1780 if (!smmu->num_context_irqs) {
1781 dev_err(dev, "found %d interrupts but expected at least %d\n",
1782 num_irqs, smmu->num_global_irqs + 1);
1783 return -ENODEV;
1784 }
1785
1786 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1787 GFP_KERNEL);
1788 if (!smmu->irqs) {
1789 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1790 return -ENOMEM;
1791 }
1792
1793 for (i = 0; i < num_irqs; ++i) {
1794 int irq = platform_get_irq(pdev, i);
1795
1796 if (irq < 0) {
1797 dev_err(dev, "failed to get irq index %d\n", i);
1798 return -ENODEV;
1799 }
1800 smmu->irqs[i] = irq;
1801 }
1802
1803 err = arm_smmu_device_cfg_probe(smmu);
1804 if (err)
1805 return err;
1806
1807 i = 0;
1808 smmu->masters = RB_ROOT;
1809 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1810 "#stream-id-cells", i,
1811 &masterspec)) {
1812 err = register_smmu_master(smmu, dev, &masterspec);
1813 if (err) {
1814 dev_err(dev, "failed to add master %s\n",
1815 masterspec.np->name);
1816 goto out_put_masters;
1817 }
1818
1819 i++;
1820 }
1821 dev_notice(dev, "registered %d master devices\n", i);
1822
1823 parse_driver_options(smmu);
1824
1825 if (smmu->version > ARM_SMMU_V1 &&
1826 smmu->num_context_banks != smmu->num_context_irqs) {
1827 dev_err(dev,
1828 "found only %d context interrupt(s) but %d required\n",
1829 smmu->num_context_irqs, smmu->num_context_banks);
1830 err = -ENODEV;
1831 goto out_put_masters;
1832 }
1833
1834 for (i = 0; i < smmu->num_global_irqs; ++i) {
1835 err = request_irq(smmu->irqs[i],
1836 arm_smmu_global_fault,
1837 IRQF_SHARED,
1838 "arm-smmu global fault",
1839 smmu);
1840 if (err) {
1841 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1842 i, smmu->irqs[i]);
1843 goto out_free_irqs;
1844 }
1845 }
1846
1847 INIT_LIST_HEAD(&smmu->list);
1848 spin_lock(&arm_smmu_devices_lock);
1849 list_add(&smmu->list, &arm_smmu_devices);
1850 spin_unlock(&arm_smmu_devices_lock);
1851
1852 arm_smmu_device_reset(smmu);
1853 return 0;
1854
1855 out_free_irqs:
1856 while (i--)
1857 free_irq(smmu->irqs[i], smmu);
1858
1859 out_put_masters:
1860 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1861 struct arm_smmu_master *master
1862 = container_of(node, struct arm_smmu_master, node);
1863 of_node_put(master->of_node);
1864 }
1865
1866 return err;
1867 }
1868
1869 static int arm_smmu_device_remove(struct platform_device *pdev)
1870 {
1871 int i;
1872 struct device *dev = &pdev->dev;
1873 struct arm_smmu_device *curr, *smmu = NULL;
1874 struct rb_node *node;
1875
1876 spin_lock(&arm_smmu_devices_lock);
1877 list_for_each_entry(curr, &arm_smmu_devices, list) {
1878 if (curr->dev == dev) {
1879 smmu = curr;
1880 list_del(&smmu->list);
1881 break;
1882 }
1883 }
1884 spin_unlock(&arm_smmu_devices_lock);
1885
1886 if (!smmu)
1887 return -ENODEV;
1888
1889 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1890 struct arm_smmu_master *master
1891 = container_of(node, struct arm_smmu_master, node);
1892 of_node_put(master->of_node);
1893 }
1894
1895 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1896 dev_err(dev, "removing device with active domains!\n");
1897
1898 for (i = 0; i < smmu->num_global_irqs; ++i)
1899 free_irq(smmu->irqs[i], smmu);
1900
1901 /* Turn the thing off */
1902 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1903 return 0;
1904 }
1905
1906 static struct platform_driver arm_smmu_driver = {
1907 .driver = {
1908 .name = "arm-smmu",
1909 .of_match_table = of_match_ptr(arm_smmu_of_match),
1910 },
1911 .probe = arm_smmu_device_dt_probe,
1912 .remove = arm_smmu_device_remove,
1913 };
1914
1915 static int __init arm_smmu_init(void)
1916 {
1917 struct device_node *np;
1918 int ret;
1919
1920 /*
1921 * Play nice with systems that don't have an ARM SMMU by checking that
1922 * an ARM SMMU exists in the system before proceeding with the driver
1923 * and IOMMU bus operation registration.
1924 */
1925 np = of_find_matching_node(NULL, arm_smmu_of_match);
1926 if (!np)
1927 return 0;
1928
1929 of_node_put(np);
1930
1931 ret = platform_driver_register(&arm_smmu_driver);
1932 if (ret)
1933 return ret;
1934
1935 /* Oh, for a proper bus abstraction */
1936 if (!iommu_present(&platform_bus_type))
1937 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1938
1939 #ifdef CONFIG_ARM_AMBA
1940 if (!iommu_present(&amba_bustype))
1941 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1942 #endif
1943
1944 #ifdef CONFIG_PCI
1945 if (!iommu_present(&pci_bus_type))
1946 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1947 #endif
1948
1949 return 0;
1950 }
1951
1952 static void __exit arm_smmu_exit(void)
1953 {
1954 return platform_driver_unregister(&arm_smmu_driver);
1955 }
1956
1957 subsys_initcall(arm_smmu_init);
1958 module_exit(arm_smmu_exit);
1959
1960 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1961 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1962 MODULE_LICENSE("GPL v2");
This page took 0.070814 seconds and 5 git commands to generate.