iommu/arm-smmu: support MMU-401
[deliverable/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 48-bit addressing (dependent on VA_BITS)
28 * - Context fault reporting
29 */
30
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46
47 #include <linux/amba/bus.h>
48
49 #include <asm/pgalloc.h>
50
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
53
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS 128
56
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS 128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67 * nsGFSYNR0: 0x450)
68 */
69 #define ARM_SMMU_GR0_NS(smmu) \
70 ((smmu)->base + \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
72 ? 0x400 : 0))
73
74 /* Page table bits */
75 #define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
76 #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
77 #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
78 #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
79 #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
80 #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
81 #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
82
83 #if PAGE_SIZE == SZ_4K
84 #define ARM_SMMU_PTE_CONT_ENTRIES 16
85 #elif PAGE_SIZE == SZ_64K
86 #define ARM_SMMU_PTE_CONT_ENTRIES 32
87 #else
88 #define ARM_SMMU_PTE_CONT_ENTRIES 1
89 #endif
90
91 #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92 #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
93
94 /* Stage-1 PTE */
95 #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
96 #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
97 #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
98 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
99
100 /* Stage-2 PTE */
101 #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
102 #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
103 #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
104 #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
106 #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
107
108 /* Configuration registers */
109 #define ARM_SMMU_GR0_sCR0 0x0
110 #define sCR0_CLIENTPD (1 << 0)
111 #define sCR0_GFRE (1 << 1)
112 #define sCR0_GFIE (1 << 2)
113 #define sCR0_GCFGFRE (1 << 4)
114 #define sCR0_GCFGFIE (1 << 5)
115 #define sCR0_USFCFG (1 << 10)
116 #define sCR0_VMIDPNE (1 << 11)
117 #define sCR0_PTM (1 << 12)
118 #define sCR0_FB (1 << 13)
119 #define sCR0_BSU_SHIFT 14
120 #define sCR0_BSU_MASK 0x3
121
122 /* Identification registers */
123 #define ARM_SMMU_GR0_ID0 0x20
124 #define ARM_SMMU_GR0_ID1 0x24
125 #define ARM_SMMU_GR0_ID2 0x28
126 #define ARM_SMMU_GR0_ID3 0x2c
127 #define ARM_SMMU_GR0_ID4 0x30
128 #define ARM_SMMU_GR0_ID5 0x34
129 #define ARM_SMMU_GR0_ID6 0x38
130 #define ARM_SMMU_GR0_ID7 0x3c
131 #define ARM_SMMU_GR0_sGFSR 0x48
132 #define ARM_SMMU_GR0_sGFSYNR0 0x50
133 #define ARM_SMMU_GR0_sGFSYNR1 0x54
134 #define ARM_SMMU_GR0_sGFSYNR2 0x58
135 #define ARM_SMMU_GR0_PIDR0 0xfe0
136 #define ARM_SMMU_GR0_PIDR1 0xfe4
137 #define ARM_SMMU_GR0_PIDR2 0xfe8
138
139 #define ID0_S1TS (1 << 30)
140 #define ID0_S2TS (1 << 29)
141 #define ID0_NTS (1 << 28)
142 #define ID0_SMS (1 << 27)
143 #define ID0_PTFS_SHIFT 24
144 #define ID0_PTFS_MASK 0x2
145 #define ID0_PTFS_V8_ONLY 0x2
146 #define ID0_CTTW (1 << 14)
147 #define ID0_NUMIRPT_SHIFT 16
148 #define ID0_NUMIRPT_MASK 0xff
149 #define ID0_NUMSIDB_SHIFT 9
150 #define ID0_NUMSIDB_MASK 0xf
151 #define ID0_NUMSMRG_SHIFT 0
152 #define ID0_NUMSMRG_MASK 0xff
153
154 #define ID1_PAGESIZE (1 << 31)
155 #define ID1_NUMPAGENDXB_SHIFT 28
156 #define ID1_NUMPAGENDXB_MASK 7
157 #define ID1_NUMS2CB_SHIFT 16
158 #define ID1_NUMS2CB_MASK 0xff
159 #define ID1_NUMCB_SHIFT 0
160 #define ID1_NUMCB_MASK 0xff
161
162 #define ID2_OAS_SHIFT 4
163 #define ID2_OAS_MASK 0xf
164 #define ID2_IAS_SHIFT 0
165 #define ID2_IAS_MASK 0xf
166 #define ID2_UBS_SHIFT 8
167 #define ID2_UBS_MASK 0xf
168 #define ID2_PTFS_4K (1 << 12)
169 #define ID2_PTFS_16K (1 << 13)
170 #define ID2_PTFS_64K (1 << 14)
171
172 #define PIDR2_ARCH_SHIFT 4
173 #define PIDR2_ARCH_MASK 0xf
174
175 /* Global TLB invalidation */
176 #define ARM_SMMU_GR0_STLBIALL 0x60
177 #define ARM_SMMU_GR0_TLBIVMID 0x64
178 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
179 #define ARM_SMMU_GR0_TLBIALLH 0x6c
180 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
181 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
182 #define sTLBGSTATUS_GSACTIVE (1 << 0)
183 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
184
185 /* Stream mapping registers */
186 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
187 #define SMR_VALID (1 << 31)
188 #define SMR_MASK_SHIFT 16
189 #define SMR_MASK_MASK 0x7fff
190 #define SMR_ID_SHIFT 0
191 #define SMR_ID_MASK 0x7fff
192
193 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
194 #define S2CR_CBNDX_SHIFT 0
195 #define S2CR_CBNDX_MASK 0xff
196 #define S2CR_TYPE_SHIFT 16
197 #define S2CR_TYPE_MASK 0x3
198 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
199 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
200 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
201
202 /* Context bank attribute registers */
203 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
204 #define CBAR_VMID_SHIFT 0
205 #define CBAR_VMID_MASK 0xff
206 #define CBAR_S1_BPSHCFG_SHIFT 8
207 #define CBAR_S1_BPSHCFG_MASK 3
208 #define CBAR_S1_BPSHCFG_NSH 3
209 #define CBAR_S1_MEMATTR_SHIFT 12
210 #define CBAR_S1_MEMATTR_MASK 0xf
211 #define CBAR_S1_MEMATTR_WB 0xf
212 #define CBAR_TYPE_SHIFT 16
213 #define CBAR_TYPE_MASK 0x3
214 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
215 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
216 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
217 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
218 #define CBAR_IRPTNDX_SHIFT 24
219 #define CBAR_IRPTNDX_MASK 0xff
220
221 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
222 #define CBA2R_RW64_32BIT (0 << 0)
223 #define CBA2R_RW64_64BIT (1 << 0)
224
225 /* Translation context bank */
226 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
227 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
228
229 #define ARM_SMMU_CB_SCTLR 0x0
230 #define ARM_SMMU_CB_RESUME 0x8
231 #define ARM_SMMU_CB_TTBCR2 0x10
232 #define ARM_SMMU_CB_TTBR0_LO 0x20
233 #define ARM_SMMU_CB_TTBR0_HI 0x24
234 #define ARM_SMMU_CB_TTBCR 0x30
235 #define ARM_SMMU_CB_S1_MAIR0 0x38
236 #define ARM_SMMU_CB_FSR 0x58
237 #define ARM_SMMU_CB_FAR_LO 0x60
238 #define ARM_SMMU_CB_FAR_HI 0x64
239 #define ARM_SMMU_CB_FSYNR0 0x68
240 #define ARM_SMMU_CB_S1_TLBIASID 0x610
241
242 #define SCTLR_S1_ASIDPNE (1 << 12)
243 #define SCTLR_CFCFG (1 << 7)
244 #define SCTLR_CFIE (1 << 6)
245 #define SCTLR_CFRE (1 << 5)
246 #define SCTLR_E (1 << 4)
247 #define SCTLR_AFE (1 << 2)
248 #define SCTLR_TRE (1 << 1)
249 #define SCTLR_M (1 << 0)
250 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
251
252 #define RESUME_RETRY (0 << 0)
253 #define RESUME_TERMINATE (1 << 0)
254
255 #define TTBCR_EAE (1 << 31)
256
257 #define TTBCR_PASIZE_SHIFT 16
258 #define TTBCR_PASIZE_MASK 0x7
259
260 #define TTBCR_TG0_4K (0 << 14)
261 #define TTBCR_TG0_64K (1 << 14)
262
263 #define TTBCR_SH0_SHIFT 12
264 #define TTBCR_SH0_MASK 0x3
265 #define TTBCR_SH_NS 0
266 #define TTBCR_SH_OS 2
267 #define TTBCR_SH_IS 3
268
269 #define TTBCR_ORGN0_SHIFT 10
270 #define TTBCR_IRGN0_SHIFT 8
271 #define TTBCR_RGN_MASK 0x3
272 #define TTBCR_RGN_NC 0
273 #define TTBCR_RGN_WBWA 1
274 #define TTBCR_RGN_WT 2
275 #define TTBCR_RGN_WB 3
276
277 #define TTBCR_SL0_SHIFT 6
278 #define TTBCR_SL0_MASK 0x3
279 #define TTBCR_SL0_LVL_2 0
280 #define TTBCR_SL0_LVL_1 1
281
282 #define TTBCR_T1SZ_SHIFT 16
283 #define TTBCR_T0SZ_SHIFT 0
284 #define TTBCR_SZ_MASK 0xf
285
286 #define TTBCR2_SEP_SHIFT 15
287 #define TTBCR2_SEP_MASK 0x7
288
289 #define TTBCR2_PASIZE_SHIFT 0
290 #define TTBCR2_PASIZE_MASK 0x7
291
292 /* Common definitions for PASize and SEP fields */
293 #define TTBCR2_ADDR_32 0
294 #define TTBCR2_ADDR_36 1
295 #define TTBCR2_ADDR_40 2
296 #define TTBCR2_ADDR_42 3
297 #define TTBCR2_ADDR_44 4
298 #define TTBCR2_ADDR_48 5
299
300 #define TTBRn_HI_ASID_SHIFT 16
301
302 #define MAIR_ATTR_SHIFT(n) ((n) << 3)
303 #define MAIR_ATTR_MASK 0xff
304 #define MAIR_ATTR_DEVICE 0x04
305 #define MAIR_ATTR_NC 0x44
306 #define MAIR_ATTR_WBRWA 0xff
307 #define MAIR_ATTR_IDX_NC 0
308 #define MAIR_ATTR_IDX_CACHE 1
309 #define MAIR_ATTR_IDX_DEV 2
310
311 #define FSR_MULTI (1 << 31)
312 #define FSR_SS (1 << 30)
313 #define FSR_UUT (1 << 8)
314 #define FSR_ASF (1 << 7)
315 #define FSR_TLBLKF (1 << 6)
316 #define FSR_TLBMCF (1 << 5)
317 #define FSR_EF (1 << 4)
318 #define FSR_PF (1 << 3)
319 #define FSR_AFF (1 << 2)
320 #define FSR_TF (1 << 1)
321
322 #define FSR_IGN (FSR_AFF | FSR_ASF | \
323 FSR_TLBMCF | FSR_TLBLKF)
324 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
325 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326
327 #define FSYNR0_WNR (1 << 4)
328
329 static int force_stage;
330 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
331 MODULE_PARM_DESC(force_stage,
332 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
333
334 enum arm_smmu_arch_version {
335 ARM_SMMU_V1 = 1,
336 ARM_SMMU_V2,
337 };
338
339 struct arm_smmu_smr {
340 u8 idx;
341 u16 mask;
342 u16 id;
343 };
344
345 struct arm_smmu_master_cfg {
346 int num_streamids;
347 u16 streamids[MAX_MASTER_STREAMIDS];
348 struct arm_smmu_smr *smrs;
349 };
350
351 struct arm_smmu_master {
352 struct device_node *of_node;
353 struct rb_node node;
354 struct arm_smmu_master_cfg cfg;
355 };
356
357 struct arm_smmu_device {
358 struct device *dev;
359
360 void __iomem *base;
361 unsigned long size;
362 unsigned long pgshift;
363
364 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
365 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
366 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
367 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
368 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
369 u32 features;
370
371 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
372 u32 options;
373 enum arm_smmu_arch_version version;
374
375 u32 num_context_banks;
376 u32 num_s2_context_banks;
377 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
378 atomic_t irptndx;
379
380 u32 num_mapping_groups;
381 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
382
383 unsigned long s1_input_size;
384 unsigned long s1_output_size;
385 unsigned long s2_input_size;
386 unsigned long s2_output_size;
387
388 u32 num_global_irqs;
389 u32 num_context_irqs;
390 unsigned int *irqs;
391
392 struct list_head list;
393 struct rb_root masters;
394 };
395
396 struct arm_smmu_cfg {
397 u8 cbndx;
398 u8 irptndx;
399 u32 cbar;
400 pgd_t *pgd;
401 };
402 #define INVALID_IRPTNDX 0xff
403
404 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
405 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
406
407 struct arm_smmu_domain {
408 struct arm_smmu_device *smmu;
409 struct arm_smmu_cfg cfg;
410 spinlock_t lock;
411 };
412
413 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
414 static LIST_HEAD(arm_smmu_devices);
415
416 struct arm_smmu_option_prop {
417 u32 opt;
418 const char *prop;
419 };
420
421 static struct arm_smmu_option_prop arm_smmu_options[] = {
422 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
423 { 0, NULL},
424 };
425
426 static void parse_driver_options(struct arm_smmu_device *smmu)
427 {
428 int i = 0;
429
430 do {
431 if (of_property_read_bool(smmu->dev->of_node,
432 arm_smmu_options[i].prop)) {
433 smmu->options |= arm_smmu_options[i].opt;
434 dev_notice(smmu->dev, "option %s\n",
435 arm_smmu_options[i].prop);
436 }
437 } while (arm_smmu_options[++i].opt);
438 }
439
440 static struct device_node *dev_get_dev_node(struct device *dev)
441 {
442 if (dev_is_pci(dev)) {
443 struct pci_bus *bus = to_pci_dev(dev)->bus;
444
445 while (!pci_is_root_bus(bus))
446 bus = bus->parent;
447 return bus->bridge->parent->of_node;
448 }
449
450 return dev->of_node;
451 }
452
453 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
454 struct device_node *dev_node)
455 {
456 struct rb_node *node = smmu->masters.rb_node;
457
458 while (node) {
459 struct arm_smmu_master *master;
460
461 master = container_of(node, struct arm_smmu_master, node);
462
463 if (dev_node < master->of_node)
464 node = node->rb_left;
465 else if (dev_node > master->of_node)
466 node = node->rb_right;
467 else
468 return master;
469 }
470
471 return NULL;
472 }
473
474 static struct arm_smmu_master_cfg *
475 find_smmu_master_cfg(struct device *dev)
476 {
477 struct arm_smmu_master_cfg *cfg = NULL;
478 struct iommu_group *group = iommu_group_get(dev);
479
480 if (group) {
481 cfg = iommu_group_get_iommudata(group);
482 iommu_group_put(group);
483 }
484
485 return cfg;
486 }
487
488 static int insert_smmu_master(struct arm_smmu_device *smmu,
489 struct arm_smmu_master *master)
490 {
491 struct rb_node **new, *parent;
492
493 new = &smmu->masters.rb_node;
494 parent = NULL;
495 while (*new) {
496 struct arm_smmu_master *this
497 = container_of(*new, struct arm_smmu_master, node);
498
499 parent = *new;
500 if (master->of_node < this->of_node)
501 new = &((*new)->rb_left);
502 else if (master->of_node > this->of_node)
503 new = &((*new)->rb_right);
504 else
505 return -EEXIST;
506 }
507
508 rb_link_node(&master->node, parent, new);
509 rb_insert_color(&master->node, &smmu->masters);
510 return 0;
511 }
512
513 static int register_smmu_master(struct arm_smmu_device *smmu,
514 struct device *dev,
515 struct of_phandle_args *masterspec)
516 {
517 int i;
518 struct arm_smmu_master *master;
519
520 master = find_smmu_master(smmu, masterspec->np);
521 if (master) {
522 dev_err(dev,
523 "rejecting multiple registrations for master device %s\n",
524 masterspec->np->name);
525 return -EBUSY;
526 }
527
528 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
529 dev_err(dev,
530 "reached maximum number (%d) of stream IDs for master device %s\n",
531 MAX_MASTER_STREAMIDS, masterspec->np->name);
532 return -ENOSPC;
533 }
534
535 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
536 if (!master)
537 return -ENOMEM;
538
539 master->of_node = masterspec->np;
540 master->cfg.num_streamids = masterspec->args_count;
541
542 for (i = 0; i < master->cfg.num_streamids; ++i) {
543 u16 streamid = masterspec->args[i];
544
545 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
546 (streamid >= smmu->num_mapping_groups)) {
547 dev_err(dev,
548 "stream ID for master device %s greater than maximum allowed (%d)\n",
549 masterspec->np->name, smmu->num_mapping_groups);
550 return -ERANGE;
551 }
552 master->cfg.streamids[i] = streamid;
553 }
554 return insert_smmu_master(smmu, master);
555 }
556
557 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
558 {
559 struct arm_smmu_device *smmu;
560 struct arm_smmu_master *master = NULL;
561 struct device_node *dev_node = dev_get_dev_node(dev);
562
563 spin_lock(&arm_smmu_devices_lock);
564 list_for_each_entry(smmu, &arm_smmu_devices, list) {
565 master = find_smmu_master(smmu, dev_node);
566 if (master)
567 break;
568 }
569 spin_unlock(&arm_smmu_devices_lock);
570
571 return master ? smmu : NULL;
572 }
573
574 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
575 {
576 int idx;
577
578 do {
579 idx = find_next_zero_bit(map, end, start);
580 if (idx == end)
581 return -ENOSPC;
582 } while (test_and_set_bit(idx, map));
583
584 return idx;
585 }
586
587 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
588 {
589 clear_bit(idx, map);
590 }
591
592 /* Wait for any pending TLB invalidations to complete */
593 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
594 {
595 int count = 0;
596 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
597
598 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
599 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
600 & sTLBGSTATUS_GSACTIVE) {
601 cpu_relax();
602 if (++count == TLB_LOOP_TIMEOUT) {
603 dev_err_ratelimited(smmu->dev,
604 "TLB sync timed out -- SMMU may be deadlocked\n");
605 return;
606 }
607 udelay(1);
608 }
609 }
610
611 static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
612 {
613 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
614 struct arm_smmu_device *smmu = smmu_domain->smmu;
615 void __iomem *base = ARM_SMMU_GR0(smmu);
616 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
617
618 if (stage1) {
619 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
620 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
621 base + ARM_SMMU_CB_S1_TLBIASID);
622 } else {
623 base = ARM_SMMU_GR0(smmu);
624 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
625 base + ARM_SMMU_GR0_TLBIVMID);
626 }
627
628 arm_smmu_tlb_sync(smmu);
629 }
630
631 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
632 {
633 int flags, ret;
634 u32 fsr, far, fsynr, resume;
635 unsigned long iova;
636 struct iommu_domain *domain = dev;
637 struct arm_smmu_domain *smmu_domain = domain->priv;
638 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
639 struct arm_smmu_device *smmu = smmu_domain->smmu;
640 void __iomem *cb_base;
641
642 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
643 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
644
645 if (!(fsr & FSR_FAULT))
646 return IRQ_NONE;
647
648 if (fsr & FSR_IGN)
649 dev_err_ratelimited(smmu->dev,
650 "Unexpected context fault (fsr 0x%x)\n",
651 fsr);
652
653 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
654 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
655
656 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
657 iova = far;
658 #ifdef CONFIG_64BIT
659 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
660 iova |= ((unsigned long)far << 32);
661 #endif
662
663 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
664 ret = IRQ_HANDLED;
665 resume = RESUME_RETRY;
666 } else {
667 dev_err_ratelimited(smmu->dev,
668 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
669 iova, fsynr, cfg->cbndx);
670 ret = IRQ_NONE;
671 resume = RESUME_TERMINATE;
672 }
673
674 /* Clear the faulting FSR */
675 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
676
677 /* Retry or terminate any stalled transactions */
678 if (fsr & FSR_SS)
679 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
680
681 return ret;
682 }
683
684 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
685 {
686 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
687 struct arm_smmu_device *smmu = dev;
688 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
689
690 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
691 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
692 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
693 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
694
695 if (!gfsr)
696 return IRQ_NONE;
697
698 dev_err_ratelimited(smmu->dev,
699 "Unexpected global fault, this could be serious\n");
700 dev_err_ratelimited(smmu->dev,
701 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
702 gfsr, gfsynr0, gfsynr1, gfsynr2);
703
704 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
705 return IRQ_HANDLED;
706 }
707
708 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
709 size_t size)
710 {
711 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
712
713
714 /* Ensure new page tables are visible to the hardware walker */
715 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
716 dsb(ishst);
717 } else {
718 /*
719 * If the SMMU can't walk tables in the CPU caches, treat them
720 * like non-coherent DMA since we need to flush the new entries
721 * all the way out to memory. There's no possibility of
722 * recursion here as the SMMU table walker will not be wired
723 * through another SMMU.
724 */
725 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
726 DMA_TO_DEVICE);
727 }
728 }
729
730 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
731 {
732 u32 reg;
733 bool stage1;
734 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
735 struct arm_smmu_device *smmu = smmu_domain->smmu;
736 void __iomem *cb_base, *gr0_base, *gr1_base;
737
738 gr0_base = ARM_SMMU_GR0(smmu);
739 gr1_base = ARM_SMMU_GR1(smmu);
740 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
741 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
742
743 /* CBAR */
744 reg = cfg->cbar;
745 if (smmu->version == ARM_SMMU_V1)
746 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
747
748 /*
749 * Use the weakest shareability/memory types, so they are
750 * overridden by the ttbcr/pte.
751 */
752 if (stage1) {
753 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
754 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
755 } else {
756 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
757 }
758 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
759
760 if (smmu->version > ARM_SMMU_V1) {
761 /* CBA2R */
762 #ifdef CONFIG_64BIT
763 reg = CBA2R_RW64_64BIT;
764 #else
765 reg = CBA2R_RW64_32BIT;
766 #endif
767 writel_relaxed(reg,
768 gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
769
770 /* TTBCR2 */
771 switch (smmu->s1_input_size) {
772 case 32:
773 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
774 break;
775 case 36:
776 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
777 break;
778 case 39:
779 case 40:
780 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
781 break;
782 case 42:
783 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
784 break;
785 case 44:
786 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
787 break;
788 case 48:
789 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
790 break;
791 }
792
793 switch (smmu->s1_output_size) {
794 case 32:
795 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
796 break;
797 case 36:
798 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
799 break;
800 case 39:
801 case 40:
802 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
803 break;
804 case 42:
805 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
806 break;
807 case 44:
808 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
809 break;
810 case 48:
811 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
812 break;
813 }
814
815 if (stage1)
816 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
817 }
818
819 /* TTBR0 */
820 arm_smmu_flush_pgtable(smmu, cfg->pgd,
821 PTRS_PER_PGD * sizeof(pgd_t));
822 reg = __pa(cfg->pgd);
823 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
824 reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
825 if (stage1)
826 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
827 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
828
829 /*
830 * TTBCR
831 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
832 */
833 if (smmu->version > ARM_SMMU_V1) {
834 if (PAGE_SIZE == SZ_4K)
835 reg = TTBCR_TG0_4K;
836 else
837 reg = TTBCR_TG0_64K;
838
839 if (!stage1) {
840 reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
841
842 switch (smmu->s2_output_size) {
843 case 32:
844 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
845 break;
846 case 36:
847 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
848 break;
849 case 40:
850 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
851 break;
852 case 42:
853 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
854 break;
855 case 44:
856 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
857 break;
858 case 48:
859 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
860 break;
861 }
862 } else {
863 reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
864 }
865 } else {
866 reg = 0;
867 }
868
869 reg |= TTBCR_EAE |
870 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
871 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
872 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
873
874 if (!stage1)
875 reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
876
877 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
878
879 /* MAIR0 (stage-1 only) */
880 if (stage1) {
881 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
882 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
883 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
884 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
885 }
886
887 /* SCTLR */
888 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
889 if (stage1)
890 reg |= SCTLR_S1_ASIDPNE;
891 #ifdef __BIG_ENDIAN
892 reg |= SCTLR_E;
893 #endif
894 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
895 }
896
897 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
898 struct arm_smmu_device *smmu)
899 {
900 int irq, start, ret = 0;
901 unsigned long flags;
902 struct arm_smmu_domain *smmu_domain = domain->priv;
903 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
904
905 spin_lock_irqsave(&smmu_domain->lock, flags);
906 if (smmu_domain->smmu)
907 goto out_unlock;
908
909 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
910 /*
911 * We will likely want to change this if/when KVM gets
912 * involved.
913 */
914 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
915 start = smmu->num_s2_context_banks;
916 } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
917 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
918 start = smmu->num_s2_context_banks;
919 } else {
920 cfg->cbar = CBAR_TYPE_S2_TRANS;
921 start = 0;
922 }
923
924 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
925 smmu->num_context_banks);
926 if (IS_ERR_VALUE(ret))
927 goto out_unlock;
928
929 cfg->cbndx = ret;
930 if (smmu->version == ARM_SMMU_V1) {
931 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
932 cfg->irptndx %= smmu->num_context_irqs;
933 } else {
934 cfg->irptndx = cfg->cbndx;
935 }
936
937 ACCESS_ONCE(smmu_domain->smmu) = smmu;
938 arm_smmu_init_context_bank(smmu_domain);
939 spin_unlock_irqrestore(&smmu_domain->lock, flags);
940
941 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
942 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
943 "arm-smmu-context-fault", domain);
944 if (IS_ERR_VALUE(ret)) {
945 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
946 cfg->irptndx, irq);
947 cfg->irptndx = INVALID_IRPTNDX;
948 }
949
950 return 0;
951
952 out_unlock:
953 spin_unlock_irqrestore(&smmu_domain->lock, flags);
954 return ret;
955 }
956
957 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
958 {
959 struct arm_smmu_domain *smmu_domain = domain->priv;
960 struct arm_smmu_device *smmu = smmu_domain->smmu;
961 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
962 void __iomem *cb_base;
963 int irq;
964
965 if (!smmu)
966 return;
967
968 /* Disable the context bank and nuke the TLB before freeing it. */
969 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
970 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
971 arm_smmu_tlb_inv_context(smmu_domain);
972
973 if (cfg->irptndx != INVALID_IRPTNDX) {
974 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
975 free_irq(irq, domain);
976 }
977
978 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
979 }
980
981 static int arm_smmu_domain_init(struct iommu_domain *domain)
982 {
983 struct arm_smmu_domain *smmu_domain;
984 pgd_t *pgd;
985
986 /*
987 * Allocate the domain and initialise some of its data structures.
988 * We can't really do anything meaningful until we've added a
989 * master.
990 */
991 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
992 if (!smmu_domain)
993 return -ENOMEM;
994
995 pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
996 if (!pgd)
997 goto out_free_domain;
998 smmu_domain->cfg.pgd = pgd;
999
1000 spin_lock_init(&smmu_domain->lock);
1001 domain->priv = smmu_domain;
1002 return 0;
1003
1004 out_free_domain:
1005 kfree(smmu_domain);
1006 return -ENOMEM;
1007 }
1008
1009 static void arm_smmu_free_ptes(pmd_t *pmd)
1010 {
1011 pgtable_t table = pmd_pgtable(*pmd);
1012
1013 __free_page(table);
1014 }
1015
1016 static void arm_smmu_free_pmds(pud_t *pud)
1017 {
1018 int i;
1019 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1020
1021 pmd = pmd_base;
1022 for (i = 0; i < PTRS_PER_PMD; ++i) {
1023 if (pmd_none(*pmd))
1024 continue;
1025
1026 arm_smmu_free_ptes(pmd);
1027 pmd++;
1028 }
1029
1030 pmd_free(NULL, pmd_base);
1031 }
1032
1033 static void arm_smmu_free_puds(pgd_t *pgd)
1034 {
1035 int i;
1036 pud_t *pud, *pud_base = pud_offset(pgd, 0);
1037
1038 pud = pud_base;
1039 for (i = 0; i < PTRS_PER_PUD; ++i) {
1040 if (pud_none(*pud))
1041 continue;
1042
1043 arm_smmu_free_pmds(pud);
1044 pud++;
1045 }
1046
1047 pud_free(NULL, pud_base);
1048 }
1049
1050 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1051 {
1052 int i;
1053 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1054 pgd_t *pgd, *pgd_base = cfg->pgd;
1055
1056 /*
1057 * Recursively free the page tables for this domain. We don't
1058 * care about speculative TLB filling because the tables should
1059 * not be active in any context bank at this point (SCTLR.M is 0).
1060 */
1061 pgd = pgd_base;
1062 for (i = 0; i < PTRS_PER_PGD; ++i) {
1063 if (pgd_none(*pgd))
1064 continue;
1065 arm_smmu_free_puds(pgd);
1066 pgd++;
1067 }
1068
1069 kfree(pgd_base);
1070 }
1071
1072 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1073 {
1074 struct arm_smmu_domain *smmu_domain = domain->priv;
1075
1076 /*
1077 * Free the domain resources. We assume that all devices have
1078 * already been detached.
1079 */
1080 arm_smmu_destroy_domain_context(domain);
1081 arm_smmu_free_pgtables(smmu_domain);
1082 kfree(smmu_domain);
1083 }
1084
1085 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1086 struct arm_smmu_master_cfg *cfg)
1087 {
1088 int i;
1089 struct arm_smmu_smr *smrs;
1090 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1091
1092 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1093 return 0;
1094
1095 if (cfg->smrs)
1096 return -EEXIST;
1097
1098 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1099 if (!smrs) {
1100 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1101 cfg->num_streamids);
1102 return -ENOMEM;
1103 }
1104
1105 /* Allocate the SMRs on the SMMU */
1106 for (i = 0; i < cfg->num_streamids; ++i) {
1107 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1108 smmu->num_mapping_groups);
1109 if (IS_ERR_VALUE(idx)) {
1110 dev_err(smmu->dev, "failed to allocate free SMR\n");
1111 goto err_free_smrs;
1112 }
1113
1114 smrs[i] = (struct arm_smmu_smr) {
1115 .idx = idx,
1116 .mask = 0, /* We don't currently share SMRs */
1117 .id = cfg->streamids[i],
1118 };
1119 }
1120
1121 /* It worked! Now, poke the actual hardware */
1122 for (i = 0; i < cfg->num_streamids; ++i) {
1123 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1124 smrs[i].mask << SMR_MASK_SHIFT;
1125 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1126 }
1127
1128 cfg->smrs = smrs;
1129 return 0;
1130
1131 err_free_smrs:
1132 while (--i >= 0)
1133 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1134 kfree(smrs);
1135 return -ENOSPC;
1136 }
1137
1138 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1139 struct arm_smmu_master_cfg *cfg)
1140 {
1141 int i;
1142 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1143 struct arm_smmu_smr *smrs = cfg->smrs;
1144
1145 if (!smrs)
1146 return;
1147
1148 /* Invalidate the SMRs before freeing back to the allocator */
1149 for (i = 0; i < cfg->num_streamids; ++i) {
1150 u8 idx = smrs[i].idx;
1151
1152 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1153 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1154 }
1155
1156 cfg->smrs = NULL;
1157 kfree(smrs);
1158 }
1159
1160 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1161 struct arm_smmu_master_cfg *cfg)
1162 {
1163 int i, ret;
1164 struct arm_smmu_device *smmu = smmu_domain->smmu;
1165 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1166
1167 /* Devices in an IOMMU group may already be configured */
1168 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1169 if (ret)
1170 return ret == -EEXIST ? 0 : ret;
1171
1172 for (i = 0; i < cfg->num_streamids; ++i) {
1173 u32 idx, s2cr;
1174
1175 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1176 s2cr = S2CR_TYPE_TRANS |
1177 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1178 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1179 }
1180
1181 return 0;
1182 }
1183
1184 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1185 struct arm_smmu_master_cfg *cfg)
1186 {
1187 int i;
1188 struct arm_smmu_device *smmu = smmu_domain->smmu;
1189 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1190
1191 /* An IOMMU group is torn down by the first device to be removed */
1192 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1193 return;
1194
1195 /*
1196 * We *must* clear the S2CR first, because freeing the SMR means
1197 * that it can be re-allocated immediately.
1198 */
1199 for (i = 0; i < cfg->num_streamids; ++i) {
1200 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1201
1202 writel_relaxed(S2CR_TYPE_BYPASS,
1203 gr0_base + ARM_SMMU_GR0_S2CR(idx));
1204 }
1205
1206 arm_smmu_master_free_smrs(smmu, cfg);
1207 }
1208
1209 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1210 {
1211 int ret;
1212 struct arm_smmu_domain *smmu_domain = domain->priv;
1213 struct arm_smmu_device *smmu, *dom_smmu;
1214 struct arm_smmu_master_cfg *cfg;
1215
1216 smmu = find_smmu_for_device(dev);
1217 if (!smmu) {
1218 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1219 return -ENXIO;
1220 }
1221
1222 if (dev->archdata.iommu) {
1223 dev_err(dev, "already attached to IOMMU domain\n");
1224 return -EEXIST;
1225 }
1226
1227 /*
1228 * Sanity check the domain. We don't support domains across
1229 * different SMMUs.
1230 */
1231 dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1232 if (!dom_smmu) {
1233 /* Now that we have a master, we can finalise the domain */
1234 ret = arm_smmu_init_domain_context(domain, smmu);
1235 if (IS_ERR_VALUE(ret))
1236 return ret;
1237
1238 dom_smmu = smmu_domain->smmu;
1239 }
1240
1241 if (dom_smmu != smmu) {
1242 dev_err(dev,
1243 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1244 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1245 return -EINVAL;
1246 }
1247
1248 /* Looks ok, so add the device to the domain */
1249 cfg = find_smmu_master_cfg(dev);
1250 if (!cfg)
1251 return -ENODEV;
1252
1253 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1254 if (!ret)
1255 dev->archdata.iommu = domain;
1256 return ret;
1257 }
1258
1259 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1260 {
1261 struct arm_smmu_domain *smmu_domain = domain->priv;
1262 struct arm_smmu_master_cfg *cfg;
1263
1264 cfg = find_smmu_master_cfg(dev);
1265 if (!cfg)
1266 return;
1267
1268 dev->archdata.iommu = NULL;
1269 arm_smmu_domain_remove_master(smmu_domain, cfg);
1270 }
1271
1272 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1273 unsigned long end)
1274 {
1275 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1276 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1277 }
1278
1279 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1280 unsigned long addr, unsigned long end,
1281 unsigned long pfn, int prot, int stage)
1282 {
1283 pte_t *pte, *start;
1284 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1285
1286 if (pmd_none(*pmd)) {
1287 /* Allocate a new set of tables */
1288 pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1289
1290 if (!table)
1291 return -ENOMEM;
1292
1293 arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1294 pmd_populate(NULL, pmd, table);
1295 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1296 }
1297
1298 if (stage == 1) {
1299 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1300 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1301 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1302
1303 if (prot & IOMMU_CACHE)
1304 pteval |= (MAIR_ATTR_IDX_CACHE <<
1305 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1306 } else {
1307 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1308 if (prot & IOMMU_READ)
1309 pteval |= ARM_SMMU_PTE_HAP_READ;
1310 if (prot & IOMMU_WRITE)
1311 pteval |= ARM_SMMU_PTE_HAP_WRITE;
1312 if (prot & IOMMU_CACHE)
1313 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1314 else
1315 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1316 }
1317
1318 /* If no access, create a faulting entry to avoid TLB fills */
1319 if (prot & IOMMU_EXEC)
1320 pteval &= ~ARM_SMMU_PTE_XN;
1321 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1322 pteval &= ~ARM_SMMU_PTE_PAGE;
1323
1324 pteval |= ARM_SMMU_PTE_SH_IS;
1325 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1326 pte = start;
1327
1328 /*
1329 * Install the page table entries. This is fairly complicated
1330 * since we attempt to make use of the contiguous hint in the
1331 * ptes where possible. The contiguous hint indicates a series
1332 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1333 * contiguous region with the following constraints:
1334 *
1335 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1336 * - Each pte in the region has the contiguous hint bit set
1337 *
1338 * This complicates unmapping (also handled by this code, when
1339 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1340 * possible, yet highly unlikely, that a client may unmap only
1341 * part of a contiguous range. This requires clearing of the
1342 * contiguous hint bits in the range before installing the new
1343 * faulting entries.
1344 *
1345 * Note that re-mapping an address range without first unmapping
1346 * it is not supported, so TLB invalidation is not required here
1347 * and is instead performed at unmap and domain-init time.
1348 */
1349 do {
1350 int i = 1;
1351
1352 pteval &= ~ARM_SMMU_PTE_CONT;
1353
1354 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1355 i = ARM_SMMU_PTE_CONT_ENTRIES;
1356 pteval |= ARM_SMMU_PTE_CONT;
1357 } else if (pte_val(*pte) &
1358 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1359 int j;
1360 pte_t *cont_start;
1361 unsigned long idx = pte_index(addr);
1362
1363 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1364 cont_start = pmd_page_vaddr(*pmd) + idx;
1365 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1366 pte_val(*(cont_start + j)) &=
1367 ~ARM_SMMU_PTE_CONT;
1368
1369 arm_smmu_flush_pgtable(smmu, cont_start,
1370 sizeof(*pte) *
1371 ARM_SMMU_PTE_CONT_ENTRIES);
1372 }
1373
1374 do {
1375 *pte = pfn_pte(pfn, __pgprot(pteval));
1376 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1377 } while (addr != end);
1378
1379 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1380 return 0;
1381 }
1382
1383 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1384 unsigned long addr, unsigned long end,
1385 phys_addr_t phys, int prot, int stage)
1386 {
1387 int ret;
1388 pmd_t *pmd;
1389 unsigned long next, pfn = __phys_to_pfn(phys);
1390
1391 #ifndef __PAGETABLE_PMD_FOLDED
1392 if (pud_none(*pud)) {
1393 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1394 if (!pmd)
1395 return -ENOMEM;
1396
1397 arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1398 pud_populate(NULL, pud, pmd);
1399 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1400
1401 pmd += pmd_index(addr);
1402 } else
1403 #endif
1404 pmd = pmd_offset(pud, addr);
1405
1406 do {
1407 next = pmd_addr_end(addr, end);
1408 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1409 prot, stage);
1410 phys += next - addr;
1411 } while (pmd++, addr = next, addr < end);
1412
1413 return ret;
1414 }
1415
1416 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1417 unsigned long addr, unsigned long end,
1418 phys_addr_t phys, int prot, int stage)
1419 {
1420 int ret = 0;
1421 pud_t *pud;
1422 unsigned long next;
1423
1424 #ifndef __PAGETABLE_PUD_FOLDED
1425 if (pgd_none(*pgd)) {
1426 pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1427 if (!pud)
1428 return -ENOMEM;
1429
1430 arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1431 pgd_populate(NULL, pgd, pud);
1432 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1433
1434 pud += pud_index(addr);
1435 } else
1436 #endif
1437 pud = pud_offset(pgd, addr);
1438
1439 do {
1440 next = pud_addr_end(addr, end);
1441 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1442 prot, stage);
1443 phys += next - addr;
1444 } while (pud++, addr = next, addr < end);
1445
1446 return ret;
1447 }
1448
1449 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1450 unsigned long iova, phys_addr_t paddr,
1451 size_t size, int prot)
1452 {
1453 int ret, stage;
1454 unsigned long end;
1455 phys_addr_t input_mask, output_mask;
1456 struct arm_smmu_device *smmu = smmu_domain->smmu;
1457 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1458 pgd_t *pgd = cfg->pgd;
1459 unsigned long flags;
1460
1461 if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1462 stage = 2;
1463 input_mask = (1ULL << smmu->s2_input_size) - 1;
1464 output_mask = (1ULL << smmu->s2_output_size) - 1;
1465 } else {
1466 stage = 1;
1467 input_mask = (1ULL << smmu->s1_input_size) - 1;
1468 output_mask = (1ULL << smmu->s1_output_size) - 1;
1469 }
1470
1471 if (!pgd)
1472 return -EINVAL;
1473
1474 if (size & ~PAGE_MASK)
1475 return -EINVAL;
1476
1477 if ((phys_addr_t)iova & ~input_mask)
1478 return -ERANGE;
1479
1480 if (paddr & ~output_mask)
1481 return -ERANGE;
1482
1483 spin_lock_irqsave(&smmu_domain->lock, flags);
1484 pgd += pgd_index(iova);
1485 end = iova + size;
1486 do {
1487 unsigned long next = pgd_addr_end(iova, end);
1488
1489 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1490 prot, stage);
1491 if (ret)
1492 goto out_unlock;
1493
1494 paddr += next - iova;
1495 iova = next;
1496 } while (pgd++, iova != end);
1497
1498 out_unlock:
1499 spin_unlock_irqrestore(&smmu_domain->lock, flags);
1500
1501 return ret;
1502 }
1503
1504 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1505 phys_addr_t paddr, size_t size, int prot)
1506 {
1507 struct arm_smmu_domain *smmu_domain = domain->priv;
1508
1509 if (!smmu_domain)
1510 return -ENODEV;
1511
1512 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1513 }
1514
1515 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1516 size_t size)
1517 {
1518 int ret;
1519 struct arm_smmu_domain *smmu_domain = domain->priv;
1520
1521 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1522 arm_smmu_tlb_inv_context(smmu_domain);
1523 return ret ? 0 : size;
1524 }
1525
1526 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1527 dma_addr_t iova)
1528 {
1529 pgd_t *pgdp, pgd;
1530 pud_t pud;
1531 pmd_t pmd;
1532 pte_t pte;
1533 struct arm_smmu_domain *smmu_domain = domain->priv;
1534 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1535
1536 pgdp = cfg->pgd;
1537 if (!pgdp)
1538 return 0;
1539
1540 pgd = *(pgdp + pgd_index(iova));
1541 if (pgd_none(pgd))
1542 return 0;
1543
1544 pud = *pud_offset(&pgd, iova);
1545 if (pud_none(pud))
1546 return 0;
1547
1548 pmd = *pmd_offset(&pud, iova);
1549 if (pmd_none(pmd))
1550 return 0;
1551
1552 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1553 if (pte_none(pte))
1554 return 0;
1555
1556 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1557 }
1558
1559 static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1560 unsigned long cap)
1561 {
1562 struct arm_smmu_domain *smmu_domain = domain->priv;
1563 struct arm_smmu_device *smmu = smmu_domain->smmu;
1564 u32 features = smmu ? smmu->features : 0;
1565
1566 switch (cap) {
1567 case IOMMU_CAP_CACHE_COHERENCY:
1568 return features & ARM_SMMU_FEAT_COHERENT_WALK;
1569 case IOMMU_CAP_INTR_REMAP:
1570 return 1; /* MSIs are just memory writes */
1571 default:
1572 return 0;
1573 }
1574 }
1575
1576 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1577 {
1578 *((u16 *)data) = alias;
1579 return 0; /* Continue walking */
1580 }
1581
1582 static void __arm_smmu_release_pci_iommudata(void *data)
1583 {
1584 kfree(data);
1585 }
1586
1587 static int arm_smmu_add_device(struct device *dev)
1588 {
1589 struct arm_smmu_device *smmu;
1590 struct arm_smmu_master_cfg *cfg;
1591 struct iommu_group *group;
1592 void (*releasefn)(void *) = NULL;
1593 int ret;
1594
1595 smmu = find_smmu_for_device(dev);
1596 if (!smmu)
1597 return -ENODEV;
1598
1599 group = iommu_group_alloc();
1600 if (IS_ERR(group)) {
1601 dev_err(dev, "Failed to allocate IOMMU group\n");
1602 return PTR_ERR(group);
1603 }
1604
1605 if (dev_is_pci(dev)) {
1606 struct pci_dev *pdev = to_pci_dev(dev);
1607
1608 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1609 if (!cfg) {
1610 ret = -ENOMEM;
1611 goto out_put_group;
1612 }
1613
1614 cfg->num_streamids = 1;
1615 /*
1616 * Assume Stream ID == Requester ID for now.
1617 * We need a way to describe the ID mappings in FDT.
1618 */
1619 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1620 &cfg->streamids[0]);
1621 releasefn = __arm_smmu_release_pci_iommudata;
1622 } else {
1623 struct arm_smmu_master *master;
1624
1625 master = find_smmu_master(smmu, dev->of_node);
1626 if (!master) {
1627 ret = -ENODEV;
1628 goto out_put_group;
1629 }
1630
1631 cfg = &master->cfg;
1632 }
1633
1634 iommu_group_set_iommudata(group, cfg, releasefn);
1635 ret = iommu_group_add_device(group, dev);
1636
1637 out_put_group:
1638 iommu_group_put(group);
1639 return ret;
1640 }
1641
1642 static void arm_smmu_remove_device(struct device *dev)
1643 {
1644 iommu_group_remove_device(dev);
1645 }
1646
1647 static const struct iommu_ops arm_smmu_ops = {
1648 .domain_init = arm_smmu_domain_init,
1649 .domain_destroy = arm_smmu_domain_destroy,
1650 .attach_dev = arm_smmu_attach_dev,
1651 .detach_dev = arm_smmu_detach_dev,
1652 .map = arm_smmu_map,
1653 .unmap = arm_smmu_unmap,
1654 .iova_to_phys = arm_smmu_iova_to_phys,
1655 .domain_has_cap = arm_smmu_domain_has_cap,
1656 .add_device = arm_smmu_add_device,
1657 .remove_device = arm_smmu_remove_device,
1658 .pgsize_bitmap = (SECTION_SIZE |
1659 ARM_SMMU_PTE_CONT_SIZE |
1660 PAGE_SIZE),
1661 };
1662
1663 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1664 {
1665 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1666 void __iomem *cb_base;
1667 int i = 0;
1668 u32 reg;
1669
1670 /* clear global FSR */
1671 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1672 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1673
1674 /* Mark all SMRn as invalid and all S2CRn as bypass */
1675 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1676 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1677 writel_relaxed(S2CR_TYPE_BYPASS,
1678 gr0_base + ARM_SMMU_GR0_S2CR(i));
1679 }
1680
1681 /* Make sure all context banks are disabled and clear CB_FSR */
1682 for (i = 0; i < smmu->num_context_banks; ++i) {
1683 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1684 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1685 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1686 }
1687
1688 /* Invalidate the TLB, just in case */
1689 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1690 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1691 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1692
1693 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1694
1695 /* Enable fault reporting */
1696 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1697
1698 /* Disable TLB broadcasting. */
1699 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1700
1701 /* Enable client access, but bypass when no mapping is found */
1702 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1703
1704 /* Disable forced broadcasting */
1705 reg &= ~sCR0_FB;
1706
1707 /* Don't upgrade barriers */
1708 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1709
1710 /* Push the button */
1711 arm_smmu_tlb_sync(smmu);
1712 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1713 }
1714
1715 static int arm_smmu_id_size_to_bits(int size)
1716 {
1717 switch (size) {
1718 case 0:
1719 return 32;
1720 case 1:
1721 return 36;
1722 case 2:
1723 return 40;
1724 case 3:
1725 return 42;
1726 case 4:
1727 return 44;
1728 case 5:
1729 default:
1730 return 48;
1731 }
1732 }
1733
1734 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1735 {
1736 unsigned long size;
1737 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1738 u32 id;
1739
1740 dev_notice(smmu->dev, "probing hardware configuration...\n");
1741 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1742
1743 /* ID0 */
1744 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1745 #ifndef CONFIG_64BIT
1746 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1747 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1748 return -ENODEV;
1749 }
1750 #endif
1751
1752 /* Restrict available stages based on module parameter */
1753 if (force_stage == 1)
1754 id &= ~(ID0_S2TS | ID0_NTS);
1755 else if (force_stage == 2)
1756 id &= ~(ID0_S1TS | ID0_NTS);
1757
1758 if (id & ID0_S1TS) {
1759 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1760 dev_notice(smmu->dev, "\tstage 1 translation\n");
1761 }
1762
1763 if (id & ID0_S2TS) {
1764 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1765 dev_notice(smmu->dev, "\tstage 2 translation\n");
1766 }
1767
1768 if (id & ID0_NTS) {
1769 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1770 dev_notice(smmu->dev, "\tnested translation\n");
1771 }
1772
1773 if (!(smmu->features &
1774 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1775 dev_err(smmu->dev, "\tno translation support!\n");
1776 return -ENODEV;
1777 }
1778
1779 if (id & ID0_CTTW) {
1780 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1781 dev_notice(smmu->dev, "\tcoherent table walk\n");
1782 }
1783
1784 if (id & ID0_SMS) {
1785 u32 smr, sid, mask;
1786
1787 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1788 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1789 ID0_NUMSMRG_MASK;
1790 if (smmu->num_mapping_groups == 0) {
1791 dev_err(smmu->dev,
1792 "stream-matching supported, but no SMRs present!\n");
1793 return -ENODEV;
1794 }
1795
1796 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1797 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1798 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1799 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1800
1801 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1802 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1803 if ((mask & sid) != sid) {
1804 dev_err(smmu->dev,
1805 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1806 mask, sid);
1807 return -ENODEV;
1808 }
1809
1810 dev_notice(smmu->dev,
1811 "\tstream matching with %u register groups, mask 0x%x",
1812 smmu->num_mapping_groups, mask);
1813 } else {
1814 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1815 ID0_NUMSIDB_MASK;
1816 }
1817
1818 /* ID1 */
1819 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1820 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1821
1822 /* Check for size mismatch of SMMU address space from mapped region */
1823 size = 1 <<
1824 (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1825 size *= 2 << smmu->pgshift;
1826 if (smmu->size != size)
1827 dev_warn(smmu->dev,
1828 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1829 size, smmu->size);
1830
1831 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1832 ID1_NUMS2CB_MASK;
1833 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1834 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1835 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1836 return -ENODEV;
1837 }
1838 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1839 smmu->num_context_banks, smmu->num_s2_context_banks);
1840
1841 /* ID2 */
1842 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1843 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1844 smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1845
1846 /* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
1847 #ifdef CONFIG_64BIT
1848 smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
1849 #else
1850 smmu->s2_input_size = min(32UL, size);
1851 #endif
1852
1853 /* The stage-2 output mask is also applied for bypass */
1854 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1855 smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1856
1857 if (smmu->version == ARM_SMMU_V1) {
1858 smmu->s1_input_size = 32;
1859 } else {
1860 #ifdef CONFIG_64BIT
1861 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1862 size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1863 #else
1864 size = 32;
1865 #endif
1866 smmu->s1_input_size = size;
1867
1868 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1869 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1870 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1871 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1872 PAGE_SIZE);
1873 return -ENODEV;
1874 }
1875 }
1876
1877 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1878 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1879 smmu->s1_input_size, smmu->s1_output_size);
1880
1881 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1882 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1883 smmu->s2_input_size, smmu->s2_output_size);
1884
1885 return 0;
1886 }
1887
1888 static struct of_device_id arm_smmu_of_match[] = {
1889 { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1890 { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1891 { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1892 { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1893 { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1894 { },
1895 };
1896 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1897
1898 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1899 {
1900 const struct of_device_id *of_id;
1901 struct resource *res;
1902 struct arm_smmu_device *smmu;
1903 struct device *dev = &pdev->dev;
1904 struct rb_node *node;
1905 struct of_phandle_args masterspec;
1906 int num_irqs, i, err;
1907
1908 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1909 if (!smmu) {
1910 dev_err(dev, "failed to allocate arm_smmu_device\n");
1911 return -ENOMEM;
1912 }
1913 smmu->dev = dev;
1914
1915 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1916 smmu->version = (enum arm_smmu_arch_version)of_id->data;
1917
1918 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1919 smmu->base = devm_ioremap_resource(dev, res);
1920 if (IS_ERR(smmu->base))
1921 return PTR_ERR(smmu->base);
1922 smmu->size = resource_size(res);
1923
1924 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1925 &smmu->num_global_irqs)) {
1926 dev_err(dev, "missing #global-interrupts property\n");
1927 return -ENODEV;
1928 }
1929
1930 num_irqs = 0;
1931 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1932 num_irqs++;
1933 if (num_irqs > smmu->num_global_irqs)
1934 smmu->num_context_irqs++;
1935 }
1936
1937 if (!smmu->num_context_irqs) {
1938 dev_err(dev, "found %d interrupts but expected at least %d\n",
1939 num_irqs, smmu->num_global_irqs + 1);
1940 return -ENODEV;
1941 }
1942
1943 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1944 GFP_KERNEL);
1945 if (!smmu->irqs) {
1946 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1947 return -ENOMEM;
1948 }
1949
1950 for (i = 0; i < num_irqs; ++i) {
1951 int irq = platform_get_irq(pdev, i);
1952
1953 if (irq < 0) {
1954 dev_err(dev, "failed to get irq index %d\n", i);
1955 return -ENODEV;
1956 }
1957 smmu->irqs[i] = irq;
1958 }
1959
1960 err = arm_smmu_device_cfg_probe(smmu);
1961 if (err)
1962 return err;
1963
1964 i = 0;
1965 smmu->masters = RB_ROOT;
1966 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1967 "#stream-id-cells", i,
1968 &masterspec)) {
1969 err = register_smmu_master(smmu, dev, &masterspec);
1970 if (err) {
1971 dev_err(dev, "failed to add master %s\n",
1972 masterspec.np->name);
1973 goto out_put_masters;
1974 }
1975
1976 i++;
1977 }
1978 dev_notice(dev, "registered %d master devices\n", i);
1979
1980 parse_driver_options(smmu);
1981
1982 if (smmu->version > ARM_SMMU_V1 &&
1983 smmu->num_context_banks != smmu->num_context_irqs) {
1984 dev_err(dev,
1985 "found only %d context interrupt(s) but %d required\n",
1986 smmu->num_context_irqs, smmu->num_context_banks);
1987 err = -ENODEV;
1988 goto out_put_masters;
1989 }
1990
1991 for (i = 0; i < smmu->num_global_irqs; ++i) {
1992 err = request_irq(smmu->irqs[i],
1993 arm_smmu_global_fault,
1994 IRQF_SHARED,
1995 "arm-smmu global fault",
1996 smmu);
1997 if (err) {
1998 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1999 i, smmu->irqs[i]);
2000 goto out_free_irqs;
2001 }
2002 }
2003
2004 INIT_LIST_HEAD(&smmu->list);
2005 spin_lock(&arm_smmu_devices_lock);
2006 list_add(&smmu->list, &arm_smmu_devices);
2007 spin_unlock(&arm_smmu_devices_lock);
2008
2009 arm_smmu_device_reset(smmu);
2010 return 0;
2011
2012 out_free_irqs:
2013 while (i--)
2014 free_irq(smmu->irqs[i], smmu);
2015
2016 out_put_masters:
2017 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2018 struct arm_smmu_master *master
2019 = container_of(node, struct arm_smmu_master, node);
2020 of_node_put(master->of_node);
2021 }
2022
2023 return err;
2024 }
2025
2026 static int arm_smmu_device_remove(struct platform_device *pdev)
2027 {
2028 int i;
2029 struct device *dev = &pdev->dev;
2030 struct arm_smmu_device *curr, *smmu = NULL;
2031 struct rb_node *node;
2032
2033 spin_lock(&arm_smmu_devices_lock);
2034 list_for_each_entry(curr, &arm_smmu_devices, list) {
2035 if (curr->dev == dev) {
2036 smmu = curr;
2037 list_del(&smmu->list);
2038 break;
2039 }
2040 }
2041 spin_unlock(&arm_smmu_devices_lock);
2042
2043 if (!smmu)
2044 return -ENODEV;
2045
2046 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2047 struct arm_smmu_master *master
2048 = container_of(node, struct arm_smmu_master, node);
2049 of_node_put(master->of_node);
2050 }
2051
2052 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2053 dev_err(dev, "removing device with active domains!\n");
2054
2055 for (i = 0; i < smmu->num_global_irqs; ++i)
2056 free_irq(smmu->irqs[i], smmu);
2057
2058 /* Turn the thing off */
2059 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2060 return 0;
2061 }
2062
2063 static struct platform_driver arm_smmu_driver = {
2064 .driver = {
2065 .owner = THIS_MODULE,
2066 .name = "arm-smmu",
2067 .of_match_table = of_match_ptr(arm_smmu_of_match),
2068 },
2069 .probe = arm_smmu_device_dt_probe,
2070 .remove = arm_smmu_device_remove,
2071 };
2072
2073 static int __init arm_smmu_init(void)
2074 {
2075 int ret;
2076
2077 ret = platform_driver_register(&arm_smmu_driver);
2078 if (ret)
2079 return ret;
2080
2081 /* Oh, for a proper bus abstraction */
2082 if (!iommu_present(&platform_bus_type))
2083 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2084
2085 #ifdef CONFIG_ARM_AMBA
2086 if (!iommu_present(&amba_bustype))
2087 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2088 #endif
2089
2090 #ifdef CONFIG_PCI
2091 if (!iommu_present(&pci_bus_type))
2092 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2093 #endif
2094
2095 return 0;
2096 }
2097
2098 static void __exit arm_smmu_exit(void)
2099 {
2100 return platform_driver_unregister(&arm_smmu_driver);
2101 }
2102
2103 subsys_initcall(arm_smmu_init);
2104 module_exit(arm_smmu_exit);
2105
2106 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2107 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2108 MODULE_LICENSE("GPL v2");
This page took 0.077537 seconds and 5 git commands to generate.