mm, cma: prevent nr_isolated_* counters from going negative
[deliverable/linux.git] / drivers / md / dm-cache-policy-smq.c
1 /*
2 * Copyright (C) 2015 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-policy.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm.h"
10
11 #include <linux/hash.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/vmalloc.h>
16 #include <linux/math64.h>
17
18 #define DM_MSG_PREFIX "cache-policy-smq"
19
20 /*----------------------------------------------------------------*/
21
22 /*
23 * Safe division functions that return zero on divide by zero.
24 */
25 static unsigned safe_div(unsigned n, unsigned d)
26 {
27 return d ? n / d : 0u;
28 }
29
30 static unsigned safe_mod(unsigned n, unsigned d)
31 {
32 return d ? n % d : 0u;
33 }
34
35 /*----------------------------------------------------------------*/
36
37 struct entry {
38 unsigned hash_next:28;
39 unsigned prev:28;
40 unsigned next:28;
41 unsigned level:7;
42 bool dirty:1;
43 bool allocated:1;
44 bool sentinel:1;
45
46 dm_oblock_t oblock;
47 };
48
49 /*----------------------------------------------------------------*/
50
51 #define INDEXER_NULL ((1u << 28u) - 1u)
52
53 /*
54 * An entry_space manages a set of entries that we use for the queues.
55 * The clean and dirty queues share entries, so this object is separate
56 * from the queue itself.
57 */
58 struct entry_space {
59 struct entry *begin;
60 struct entry *end;
61 };
62
63 static int space_init(struct entry_space *es, unsigned nr_entries)
64 {
65 if (!nr_entries) {
66 es->begin = es->end = NULL;
67 return 0;
68 }
69
70 es->begin = vzalloc(sizeof(struct entry) * nr_entries);
71 if (!es->begin)
72 return -ENOMEM;
73
74 es->end = es->begin + nr_entries;
75 return 0;
76 }
77
78 static void space_exit(struct entry_space *es)
79 {
80 vfree(es->begin);
81 }
82
83 static struct entry *__get_entry(struct entry_space *es, unsigned block)
84 {
85 struct entry *e;
86
87 e = es->begin + block;
88 BUG_ON(e >= es->end);
89
90 return e;
91 }
92
93 static unsigned to_index(struct entry_space *es, struct entry *e)
94 {
95 BUG_ON(e < es->begin || e >= es->end);
96 return e - es->begin;
97 }
98
99 static struct entry *to_entry(struct entry_space *es, unsigned block)
100 {
101 if (block == INDEXER_NULL)
102 return NULL;
103
104 return __get_entry(es, block);
105 }
106
107 /*----------------------------------------------------------------*/
108
109 struct ilist {
110 unsigned nr_elts; /* excluding sentinel entries */
111 unsigned head, tail;
112 };
113
114 static void l_init(struct ilist *l)
115 {
116 l->nr_elts = 0;
117 l->head = l->tail = INDEXER_NULL;
118 }
119
120 static struct entry *l_head(struct entry_space *es, struct ilist *l)
121 {
122 return to_entry(es, l->head);
123 }
124
125 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
126 {
127 return to_entry(es, l->tail);
128 }
129
130 static struct entry *l_next(struct entry_space *es, struct entry *e)
131 {
132 return to_entry(es, e->next);
133 }
134
135 static struct entry *l_prev(struct entry_space *es, struct entry *e)
136 {
137 return to_entry(es, e->prev);
138 }
139
140 static bool l_empty(struct ilist *l)
141 {
142 return l->head == INDEXER_NULL;
143 }
144
145 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
146 {
147 struct entry *head = l_head(es, l);
148
149 e->next = l->head;
150 e->prev = INDEXER_NULL;
151
152 if (head)
153 head->prev = l->head = to_index(es, e);
154 else
155 l->head = l->tail = to_index(es, e);
156
157 if (!e->sentinel)
158 l->nr_elts++;
159 }
160
161 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
162 {
163 struct entry *tail = l_tail(es, l);
164
165 e->next = INDEXER_NULL;
166 e->prev = l->tail;
167
168 if (tail)
169 tail->next = l->tail = to_index(es, e);
170 else
171 l->head = l->tail = to_index(es, e);
172
173 if (!e->sentinel)
174 l->nr_elts++;
175 }
176
177 static void l_add_before(struct entry_space *es, struct ilist *l,
178 struct entry *old, struct entry *e)
179 {
180 struct entry *prev = l_prev(es, old);
181
182 if (!prev)
183 l_add_head(es, l, e);
184
185 else {
186 e->prev = old->prev;
187 e->next = to_index(es, old);
188 prev->next = old->prev = to_index(es, e);
189
190 if (!e->sentinel)
191 l->nr_elts++;
192 }
193 }
194
195 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
196 {
197 struct entry *prev = l_prev(es, e);
198 struct entry *next = l_next(es, e);
199
200 if (prev)
201 prev->next = e->next;
202 else
203 l->head = e->next;
204
205 if (next)
206 next->prev = e->prev;
207 else
208 l->tail = e->prev;
209
210 if (!e->sentinel)
211 l->nr_elts--;
212 }
213
214 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
215 {
216 struct entry *e;
217
218 for (e = l_tail(es, l); e; e = l_prev(es, e))
219 if (!e->sentinel) {
220 l_del(es, l, e);
221 return e;
222 }
223
224 return NULL;
225 }
226
227 /*----------------------------------------------------------------*/
228
229 /*
230 * The stochastic-multi-queue is a set of lru lists stacked into levels.
231 * Entries are moved up levels when they are used, which loosely orders the
232 * most accessed entries in the top levels and least in the bottom. This
233 * structure is *much* better than a single lru list.
234 */
235 #define MAX_LEVELS 64u
236
237 struct queue {
238 struct entry_space *es;
239
240 unsigned nr_elts;
241 unsigned nr_levels;
242 struct ilist qs[MAX_LEVELS];
243
244 /*
245 * We maintain a count of the number of entries we would like in each
246 * level.
247 */
248 unsigned last_target_nr_elts;
249 unsigned nr_top_levels;
250 unsigned nr_in_top_levels;
251 unsigned target_count[MAX_LEVELS];
252 };
253
254 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
255 {
256 unsigned i;
257
258 q->es = es;
259 q->nr_elts = 0;
260 q->nr_levels = nr_levels;
261
262 for (i = 0; i < q->nr_levels; i++) {
263 l_init(q->qs + i);
264 q->target_count[i] = 0u;
265 }
266
267 q->last_target_nr_elts = 0u;
268 q->nr_top_levels = 0u;
269 q->nr_in_top_levels = 0u;
270 }
271
272 static unsigned q_size(struct queue *q)
273 {
274 return q->nr_elts;
275 }
276
277 /*
278 * Insert an entry to the back of the given level.
279 */
280 static void q_push(struct queue *q, struct entry *e)
281 {
282 if (!e->sentinel)
283 q->nr_elts++;
284
285 l_add_tail(q->es, q->qs + e->level, e);
286 }
287
288 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
289 {
290 if (!e->sentinel)
291 q->nr_elts++;
292
293 l_add_before(q->es, q->qs + e->level, old, e);
294 }
295
296 static void q_del(struct queue *q, struct entry *e)
297 {
298 l_del(q->es, q->qs + e->level, e);
299 if (!e->sentinel)
300 q->nr_elts--;
301 }
302
303 /*
304 * Return the oldest entry of the lowest populated level.
305 */
306 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
307 {
308 unsigned level;
309 struct entry *e;
310
311 max_level = min(max_level, q->nr_levels);
312
313 for (level = 0; level < max_level; level++)
314 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
315 if (e->sentinel) {
316 if (can_cross_sentinel)
317 continue;
318 else
319 break;
320 }
321
322 return e;
323 }
324
325 return NULL;
326 }
327
328 static struct entry *q_pop(struct queue *q)
329 {
330 struct entry *e = q_peek(q, q->nr_levels, true);
331
332 if (e)
333 q_del(q, e);
334
335 return e;
336 }
337
338 /*
339 * Pops an entry from a level that is not past a sentinel.
340 */
341 static struct entry *q_pop_old(struct queue *q, unsigned max_level)
342 {
343 struct entry *e = q_peek(q, max_level, false);
344
345 if (e)
346 q_del(q, e);
347
348 return e;
349 }
350
351 /*
352 * This function assumes there is a non-sentinel entry to pop. It's only
353 * used by redistribute, so we know this is true. It also doesn't adjust
354 * the q->nr_elts count.
355 */
356 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
357 {
358 struct entry *e;
359
360 for (; level < q->nr_levels; level++)
361 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
362 if (!e->sentinel) {
363 l_del(q->es, q->qs + e->level, e);
364 return e;
365 }
366
367 return NULL;
368 }
369
370 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
371 {
372 unsigned level, nr_levels, entries_per_level, remainder;
373
374 BUG_ON(lbegin > lend);
375 BUG_ON(lend > q->nr_levels);
376 nr_levels = lend - lbegin;
377 entries_per_level = safe_div(nr_elts, nr_levels);
378 remainder = safe_mod(nr_elts, nr_levels);
379
380 for (level = lbegin; level < lend; level++)
381 q->target_count[level] =
382 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
383 }
384
385 /*
386 * Typically we have fewer elements in the top few levels which allows us
387 * to adjust the promote threshold nicely.
388 */
389 static void q_set_targets(struct queue *q)
390 {
391 if (q->last_target_nr_elts == q->nr_elts)
392 return;
393
394 q->last_target_nr_elts = q->nr_elts;
395
396 if (q->nr_top_levels > q->nr_levels)
397 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
398
399 else {
400 q_set_targets_subrange_(q, q->nr_in_top_levels,
401 q->nr_levels - q->nr_top_levels, q->nr_levels);
402
403 if (q->nr_in_top_levels < q->nr_elts)
404 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
405 0, q->nr_levels - q->nr_top_levels);
406 else
407 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
408 }
409 }
410
411 static void q_redistribute(struct queue *q)
412 {
413 unsigned target, level;
414 struct ilist *l, *l_above;
415 struct entry *e;
416
417 q_set_targets(q);
418
419 for (level = 0u; level < q->nr_levels - 1u; level++) {
420 l = q->qs + level;
421 target = q->target_count[level];
422
423 /*
424 * Pull down some entries from the level above.
425 */
426 while (l->nr_elts < target) {
427 e = __redist_pop_from(q, level + 1u);
428 if (!e) {
429 /* bug in nr_elts */
430 break;
431 }
432
433 e->level = level;
434 l_add_tail(q->es, l, e);
435 }
436
437 /*
438 * Push some entries up.
439 */
440 l_above = q->qs + level + 1u;
441 while (l->nr_elts > target) {
442 e = l_pop_tail(q->es, l);
443
444 if (!e)
445 /* bug in nr_elts */
446 break;
447
448 e->level = level + 1u;
449 l_add_head(q->es, l_above, e);
450 }
451 }
452 }
453
454 static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels)
455 {
456 struct entry *de;
457 unsigned new_level;
458
459 q_del(q, e);
460
461 if (extra_levels && (e->level < q->nr_levels - 1u)) {
462 new_level = min(q->nr_levels - 1u, e->level + extra_levels);
463 for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) {
464 if (de->sentinel)
465 continue;
466
467 q_del(q, de);
468 de->level = e->level;
469
470 if (dest)
471 q_push_before(q, dest, de);
472 else
473 q_push(q, de);
474 break;
475 }
476
477 e->level = new_level;
478 }
479
480 q_push(q, e);
481 }
482
483 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels)
484 {
485 q_requeue_before(q, NULL, e, extra_levels);
486 }
487
488 /*----------------------------------------------------------------*/
489
490 #define FP_SHIFT 8
491 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
492 #define EIGHTH (1u << (FP_SHIFT - 3u))
493
494 struct stats {
495 unsigned hit_threshold;
496 unsigned hits;
497 unsigned misses;
498 };
499
500 enum performance {
501 Q_POOR,
502 Q_FAIR,
503 Q_WELL
504 };
505
506 static void stats_init(struct stats *s, unsigned nr_levels)
507 {
508 s->hit_threshold = (nr_levels * 3u) / 4u;
509 s->hits = 0u;
510 s->misses = 0u;
511 }
512
513 static void stats_reset(struct stats *s)
514 {
515 s->hits = s->misses = 0u;
516 }
517
518 static void stats_level_accessed(struct stats *s, unsigned level)
519 {
520 if (level >= s->hit_threshold)
521 s->hits++;
522 else
523 s->misses++;
524 }
525
526 static void stats_miss(struct stats *s)
527 {
528 s->misses++;
529 }
530
531 /*
532 * There are times when we don't have any confidence in the hotspot queue.
533 * Such as when a fresh cache is created and the blocks have been spread
534 * out across the levels, or if an io load changes. We detect this by
535 * seeing how often a lookup is in the top levels of the hotspot queue.
536 */
537 static enum performance stats_assess(struct stats *s)
538 {
539 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
540
541 if (confidence < SIXTEENTH)
542 return Q_POOR;
543
544 else if (confidence < EIGHTH)
545 return Q_FAIR;
546
547 else
548 return Q_WELL;
549 }
550
551 /*----------------------------------------------------------------*/
552
553 struct hash_table {
554 struct entry_space *es;
555 unsigned long long hash_bits;
556 unsigned *buckets;
557 };
558
559 /*
560 * All cache entries are stored in a chained hash table. To save space we
561 * use indexing again, and only store indexes to the next entry.
562 */
563 static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries)
564 {
565 unsigned i, nr_buckets;
566
567 ht->es = es;
568 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
569 ht->hash_bits = __ffs(nr_buckets);
570
571 ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
572 if (!ht->buckets)
573 return -ENOMEM;
574
575 for (i = 0; i < nr_buckets; i++)
576 ht->buckets[i] = INDEXER_NULL;
577
578 return 0;
579 }
580
581 static void h_exit(struct hash_table *ht)
582 {
583 vfree(ht->buckets);
584 }
585
586 static struct entry *h_head(struct hash_table *ht, unsigned bucket)
587 {
588 return to_entry(ht->es, ht->buckets[bucket]);
589 }
590
591 static struct entry *h_next(struct hash_table *ht, struct entry *e)
592 {
593 return to_entry(ht->es, e->hash_next);
594 }
595
596 static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e)
597 {
598 e->hash_next = ht->buckets[bucket];
599 ht->buckets[bucket] = to_index(ht->es, e);
600 }
601
602 static void h_insert(struct hash_table *ht, struct entry *e)
603 {
604 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
605 __h_insert(ht, h, e);
606 }
607
608 static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock,
609 struct entry **prev)
610 {
611 struct entry *e;
612
613 *prev = NULL;
614 for (e = h_head(ht, h); e; e = h_next(ht, e)) {
615 if (e->oblock == oblock)
616 return e;
617
618 *prev = e;
619 }
620
621 return NULL;
622 }
623
624 static void __h_unlink(struct hash_table *ht, unsigned h,
625 struct entry *e, struct entry *prev)
626 {
627 if (prev)
628 prev->hash_next = e->hash_next;
629 else
630 ht->buckets[h] = e->hash_next;
631 }
632
633 /*
634 * Also moves each entry to the front of the bucket.
635 */
636 static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock)
637 {
638 struct entry *e, *prev;
639 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
640
641 e = __h_lookup(ht, h, oblock, &prev);
642 if (e && prev) {
643 /*
644 * Move to the front because this entry is likely
645 * to be hit again.
646 */
647 __h_unlink(ht, h, e, prev);
648 __h_insert(ht, h, e);
649 }
650
651 return e;
652 }
653
654 static void h_remove(struct hash_table *ht, struct entry *e)
655 {
656 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
657 struct entry *prev;
658
659 /*
660 * The down side of using a singly linked list is we have to
661 * iterate the bucket to remove an item.
662 */
663 e = __h_lookup(ht, h, e->oblock, &prev);
664 if (e)
665 __h_unlink(ht, h, e, prev);
666 }
667
668 /*----------------------------------------------------------------*/
669
670 struct entry_alloc {
671 struct entry_space *es;
672 unsigned begin;
673
674 unsigned nr_allocated;
675 struct ilist free;
676 };
677
678 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
679 unsigned begin, unsigned end)
680 {
681 unsigned i;
682
683 ea->es = es;
684 ea->nr_allocated = 0u;
685 ea->begin = begin;
686
687 l_init(&ea->free);
688 for (i = begin; i != end; i++)
689 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
690 }
691
692 static void init_entry(struct entry *e)
693 {
694 /*
695 * We can't memset because that would clear the hotspot and
696 * sentinel bits which remain constant.
697 */
698 e->hash_next = INDEXER_NULL;
699 e->next = INDEXER_NULL;
700 e->prev = INDEXER_NULL;
701 e->level = 0u;
702 e->allocated = true;
703 }
704
705 static struct entry *alloc_entry(struct entry_alloc *ea)
706 {
707 struct entry *e;
708
709 if (l_empty(&ea->free))
710 return NULL;
711
712 e = l_pop_tail(ea->es, &ea->free);
713 init_entry(e);
714 ea->nr_allocated++;
715
716 return e;
717 }
718
719 /*
720 * This assumes the cblock hasn't already been allocated.
721 */
722 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
723 {
724 struct entry *e = __get_entry(ea->es, ea->begin + i);
725
726 BUG_ON(e->allocated);
727
728 l_del(ea->es, &ea->free, e);
729 init_entry(e);
730 ea->nr_allocated++;
731
732 return e;
733 }
734
735 static void free_entry(struct entry_alloc *ea, struct entry *e)
736 {
737 BUG_ON(!ea->nr_allocated);
738 BUG_ON(!e->allocated);
739
740 ea->nr_allocated--;
741 e->allocated = false;
742 l_add_tail(ea->es, &ea->free, e);
743 }
744
745 static bool allocator_empty(struct entry_alloc *ea)
746 {
747 return l_empty(&ea->free);
748 }
749
750 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
751 {
752 return to_index(ea->es, e) - ea->begin;
753 }
754
755 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
756 {
757 return __get_entry(ea->es, ea->begin + index);
758 }
759
760 /*----------------------------------------------------------------*/
761
762 #define NR_HOTSPOT_LEVELS 64u
763 #define NR_CACHE_LEVELS 64u
764
765 #define WRITEBACK_PERIOD (10 * HZ)
766 #define DEMOTE_PERIOD (60 * HZ)
767
768 #define HOTSPOT_UPDATE_PERIOD (HZ)
769 #define CACHE_UPDATE_PERIOD (10u * HZ)
770
771 struct smq_policy {
772 struct dm_cache_policy policy;
773
774 /* protects everything */
775 spinlock_t lock;
776 dm_cblock_t cache_size;
777 sector_t cache_block_size;
778
779 sector_t hotspot_block_size;
780 unsigned nr_hotspot_blocks;
781 unsigned cache_blocks_per_hotspot_block;
782 unsigned hotspot_level_jump;
783
784 struct entry_space es;
785 struct entry_alloc writeback_sentinel_alloc;
786 struct entry_alloc demote_sentinel_alloc;
787 struct entry_alloc hotspot_alloc;
788 struct entry_alloc cache_alloc;
789
790 unsigned long *hotspot_hit_bits;
791 unsigned long *cache_hit_bits;
792
793 /*
794 * We maintain three queues of entries. The cache proper,
795 * consisting of a clean and dirty queue, containing the currently
796 * active mappings. The hotspot queue uses a larger block size to
797 * track blocks that are being hit frequently and potential
798 * candidates for promotion to the cache.
799 */
800 struct queue hotspot;
801 struct queue clean;
802 struct queue dirty;
803
804 struct stats hotspot_stats;
805 struct stats cache_stats;
806
807 /*
808 * Keeps track of time, incremented by the core. We use this to
809 * avoid attributing multiple hits within the same tick.
810 */
811 unsigned tick;
812
813 /*
814 * The hash tables allows us to quickly find an entry by origin
815 * block.
816 */
817 struct hash_table table;
818 struct hash_table hotspot_table;
819
820 bool current_writeback_sentinels;
821 unsigned long next_writeback_period;
822
823 bool current_demote_sentinels;
824 unsigned long next_demote_period;
825
826 unsigned write_promote_level;
827 unsigned read_promote_level;
828
829 unsigned long next_hotspot_period;
830 unsigned long next_cache_period;
831 };
832
833 /*----------------------------------------------------------------*/
834
835 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
836 {
837 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
838 }
839
840 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
841 {
842 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
843 }
844
845 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
846 {
847 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
848 }
849
850 static void __update_writeback_sentinels(struct smq_policy *mq)
851 {
852 unsigned level;
853 struct queue *q = &mq->dirty;
854 struct entry *sentinel;
855
856 for (level = 0; level < q->nr_levels; level++) {
857 sentinel = writeback_sentinel(mq, level);
858 q_del(q, sentinel);
859 q_push(q, sentinel);
860 }
861 }
862
863 static void __update_demote_sentinels(struct smq_policy *mq)
864 {
865 unsigned level;
866 struct queue *q = &mq->clean;
867 struct entry *sentinel;
868
869 for (level = 0; level < q->nr_levels; level++) {
870 sentinel = demote_sentinel(mq, level);
871 q_del(q, sentinel);
872 q_push(q, sentinel);
873 }
874 }
875
876 static void update_sentinels(struct smq_policy *mq)
877 {
878 if (time_after(jiffies, mq->next_writeback_period)) {
879 __update_writeback_sentinels(mq);
880 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
881 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
882 }
883
884 if (time_after(jiffies, mq->next_demote_period)) {
885 __update_demote_sentinels(mq);
886 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
887 mq->current_demote_sentinels = !mq->current_demote_sentinels;
888 }
889 }
890
891 static void __sentinels_init(struct smq_policy *mq)
892 {
893 unsigned level;
894 struct entry *sentinel;
895
896 for (level = 0; level < NR_CACHE_LEVELS; level++) {
897 sentinel = writeback_sentinel(mq, level);
898 sentinel->level = level;
899 q_push(&mq->dirty, sentinel);
900
901 sentinel = demote_sentinel(mq, level);
902 sentinel->level = level;
903 q_push(&mq->clean, sentinel);
904 }
905 }
906
907 static void sentinels_init(struct smq_policy *mq)
908 {
909 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
910 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
911
912 mq->current_writeback_sentinels = false;
913 mq->current_demote_sentinels = false;
914 __sentinels_init(mq);
915
916 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
917 mq->current_demote_sentinels = !mq->current_demote_sentinels;
918 __sentinels_init(mq);
919 }
920
921 /*----------------------------------------------------------------*/
922
923 /*
924 * These methods tie together the dirty queue, clean queue and hash table.
925 */
926 static void push_new(struct smq_policy *mq, struct entry *e)
927 {
928 struct queue *q = e->dirty ? &mq->dirty : &mq->clean;
929 h_insert(&mq->table, e);
930 q_push(q, e);
931 }
932
933 static void push(struct smq_policy *mq, struct entry *e)
934 {
935 struct entry *sentinel;
936
937 h_insert(&mq->table, e);
938
939 /*
940 * Punch this into the queue just in front of the sentinel, to
941 * ensure it's cleaned straight away.
942 */
943 if (e->dirty) {
944 sentinel = writeback_sentinel(mq, e->level);
945 q_push_before(&mq->dirty, sentinel, e);
946 } else {
947 sentinel = demote_sentinel(mq, e->level);
948 q_push_before(&mq->clean, sentinel, e);
949 }
950 }
951
952 /*
953 * Removes an entry from cache. Removes from the hash table.
954 */
955 static void __del(struct smq_policy *mq, struct queue *q, struct entry *e)
956 {
957 q_del(q, e);
958 h_remove(&mq->table, e);
959 }
960
961 static void del(struct smq_policy *mq, struct entry *e)
962 {
963 __del(mq, e->dirty ? &mq->dirty : &mq->clean, e);
964 }
965
966 static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level)
967 {
968 struct entry *e = q_pop_old(q, max_level);
969 if (e)
970 h_remove(&mq->table, e);
971 return e;
972 }
973
974 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
975 {
976 return to_cblock(get_index(&mq->cache_alloc, e));
977 }
978
979 static void requeue(struct smq_policy *mq, struct entry *e)
980 {
981 struct entry *sentinel;
982
983 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
984 if (e->dirty) {
985 sentinel = writeback_sentinel(mq, e->level);
986 q_requeue_before(&mq->dirty, sentinel, e, 1u);
987 } else {
988 sentinel = demote_sentinel(mq, e->level);
989 q_requeue_before(&mq->clean, sentinel, e, 1u);
990 }
991 }
992 }
993
994 static unsigned default_promote_level(struct smq_policy *mq)
995 {
996 /*
997 * The promote level depends on the current performance of the
998 * cache.
999 *
1000 * If the cache is performing badly, then we can't afford
1001 * to promote much without causing performance to drop below that
1002 * of the origin device.
1003 *
1004 * If the cache is performing well, then we don't need to promote
1005 * much. If it isn't broken, don't fix it.
1006 *
1007 * If the cache is middling then we promote more.
1008 *
1009 * This scheme reminds me of a graph of entropy vs probability of a
1010 * binary variable.
1011 */
1012 static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1013
1014 unsigned hits = mq->cache_stats.hits;
1015 unsigned misses = mq->cache_stats.misses;
1016 unsigned index = safe_div(hits << 4u, hits + misses);
1017 return table[index];
1018 }
1019
1020 static void update_promote_levels(struct smq_policy *mq)
1021 {
1022 /*
1023 * If there are unused cache entries then we want to be really
1024 * eager to promote.
1025 */
1026 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1027 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1028
1029 /*
1030 * If the hotspot queue is performing badly then we have little
1031 * confidence that we know which blocks to promote. So we cut down
1032 * the amount of promotions.
1033 */
1034 switch (stats_assess(&mq->hotspot_stats)) {
1035 case Q_POOR:
1036 threshold_level /= 4u;
1037 break;
1038
1039 case Q_FAIR:
1040 threshold_level /= 2u;
1041 break;
1042
1043 case Q_WELL:
1044 break;
1045 }
1046
1047 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1048 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u;
1049 }
1050
1051 /*
1052 * If the hotspot queue is performing badly, then we try and move entries
1053 * around more quickly.
1054 */
1055 static void update_level_jump(struct smq_policy *mq)
1056 {
1057 switch (stats_assess(&mq->hotspot_stats)) {
1058 case Q_POOR:
1059 mq->hotspot_level_jump = 4u;
1060 break;
1061
1062 case Q_FAIR:
1063 mq->hotspot_level_jump = 2u;
1064 break;
1065
1066 case Q_WELL:
1067 mq->hotspot_level_jump = 1u;
1068 break;
1069 }
1070 }
1071
1072 static void end_hotspot_period(struct smq_policy *mq)
1073 {
1074 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1075 update_promote_levels(mq);
1076
1077 if (time_after(jiffies, mq->next_hotspot_period)) {
1078 update_level_jump(mq);
1079 q_redistribute(&mq->hotspot);
1080 stats_reset(&mq->hotspot_stats);
1081 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1082 }
1083 }
1084
1085 static void end_cache_period(struct smq_policy *mq)
1086 {
1087 if (time_after(jiffies, mq->next_cache_period)) {
1088 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1089
1090 q_redistribute(&mq->dirty);
1091 q_redistribute(&mq->clean);
1092 stats_reset(&mq->cache_stats);
1093
1094 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1095 }
1096 }
1097
1098 static int demote_cblock(struct smq_policy *mq,
1099 struct policy_locker *locker,
1100 dm_oblock_t *oblock)
1101 {
1102 struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false);
1103 if (!demoted)
1104 /*
1105 * We could get a block from mq->dirty, but that
1106 * would add extra latency to the triggering bio as it
1107 * waits for the writeback. Better to not promote this
1108 * time and hope there's a clean block next time this block
1109 * is hit.
1110 */
1111 return -ENOSPC;
1112
1113 if (locker->fn(locker, demoted->oblock))
1114 /*
1115 * We couldn't lock this block.
1116 */
1117 return -EBUSY;
1118
1119 del(mq, demoted);
1120 *oblock = demoted->oblock;
1121 free_entry(&mq->cache_alloc, demoted);
1122
1123 return 0;
1124 }
1125
1126 enum promote_result {
1127 PROMOTE_NOT,
1128 PROMOTE_TEMPORARY,
1129 PROMOTE_PERMANENT
1130 };
1131
1132 /*
1133 * Converts a boolean into a promote result.
1134 */
1135 static enum promote_result maybe_promote(bool promote)
1136 {
1137 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1138 }
1139
1140 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio,
1141 bool fast_promote)
1142 {
1143 if (bio_data_dir(bio) == WRITE) {
1144 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1145 return PROMOTE_TEMPORARY;
1146
1147 else
1148 return maybe_promote(hs_e->level >= mq->write_promote_level);
1149 } else
1150 return maybe_promote(hs_e->level >= mq->read_promote_level);
1151 }
1152
1153 static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock,
1154 struct policy_locker *locker,
1155 struct policy_result *result, enum promote_result pr)
1156 {
1157 int r;
1158 struct entry *e;
1159
1160 if (allocator_empty(&mq->cache_alloc)) {
1161 result->op = POLICY_REPLACE;
1162 r = demote_cblock(mq, locker, &result->old_oblock);
1163 if (r) {
1164 result->op = POLICY_MISS;
1165 return;
1166 }
1167
1168 } else
1169 result->op = POLICY_NEW;
1170
1171 e = alloc_entry(&mq->cache_alloc);
1172 BUG_ON(!e);
1173 e->oblock = oblock;
1174
1175 if (pr == PROMOTE_TEMPORARY)
1176 push(mq, e);
1177 else
1178 push_new(mq, e);
1179
1180 result->cblock = infer_cblock(mq, e);
1181 }
1182
1183 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1184 {
1185 sector_t r = from_oblock(b);
1186 (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1187 return to_oblock(r);
1188 }
1189
1190 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio)
1191 {
1192 unsigned hi;
1193 dm_oblock_t hb = to_hblock(mq, b);
1194 struct entry *e = h_lookup(&mq->hotspot_table, hb);
1195
1196 if (e) {
1197 stats_level_accessed(&mq->hotspot_stats, e->level);
1198
1199 hi = get_index(&mq->hotspot_alloc, e);
1200 q_requeue(&mq->hotspot, e,
1201 test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1202 0u : mq->hotspot_level_jump);
1203
1204 } else {
1205 stats_miss(&mq->hotspot_stats);
1206
1207 e = alloc_entry(&mq->hotspot_alloc);
1208 if (!e) {
1209 e = q_pop(&mq->hotspot);
1210 if (e) {
1211 h_remove(&mq->hotspot_table, e);
1212 hi = get_index(&mq->hotspot_alloc, e);
1213 clear_bit(hi, mq->hotspot_hit_bits);
1214 }
1215
1216 }
1217
1218 if (e) {
1219 e->oblock = hb;
1220 q_push(&mq->hotspot, e);
1221 h_insert(&mq->hotspot_table, e);
1222 }
1223 }
1224
1225 return e;
1226 }
1227
1228 /*
1229 * Looks the oblock up in the hash table, then decides whether to put in
1230 * pre_cache, or cache etc.
1231 */
1232 static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock,
1233 bool can_migrate, bool fast_promote,
1234 struct policy_locker *locker, struct policy_result *result)
1235 {
1236 struct entry *e, *hs_e;
1237 enum promote_result pr;
1238
1239 hs_e = update_hotspot_queue(mq, oblock, bio);
1240
1241 e = h_lookup(&mq->table, oblock);
1242 if (e) {
1243 stats_level_accessed(&mq->cache_stats, e->level);
1244
1245 requeue(mq, e);
1246 result->op = POLICY_HIT;
1247 result->cblock = infer_cblock(mq, e);
1248
1249 } else {
1250 stats_miss(&mq->cache_stats);
1251
1252 pr = should_promote(mq, hs_e, bio, fast_promote);
1253 if (pr == PROMOTE_NOT)
1254 result->op = POLICY_MISS;
1255
1256 else {
1257 if (!can_migrate) {
1258 result->op = POLICY_MISS;
1259 return -EWOULDBLOCK;
1260 }
1261
1262 insert_in_cache(mq, oblock, locker, result, pr);
1263 }
1264 }
1265
1266 return 0;
1267 }
1268
1269 /*----------------------------------------------------------------*/
1270
1271 /*
1272 * Public interface, via the policy struct. See dm-cache-policy.h for a
1273 * description of these.
1274 */
1275
1276 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1277 {
1278 return container_of(p, struct smq_policy, policy);
1279 }
1280
1281 static void smq_destroy(struct dm_cache_policy *p)
1282 {
1283 struct smq_policy *mq = to_smq_policy(p);
1284
1285 h_exit(&mq->hotspot_table);
1286 h_exit(&mq->table);
1287 free_bitset(mq->hotspot_hit_bits);
1288 free_bitset(mq->cache_hit_bits);
1289 space_exit(&mq->es);
1290 kfree(mq);
1291 }
1292
1293 static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1294 bool can_block, bool can_migrate, bool fast_promote,
1295 struct bio *bio, struct policy_locker *locker,
1296 struct policy_result *result)
1297 {
1298 int r;
1299 unsigned long flags;
1300 struct smq_policy *mq = to_smq_policy(p);
1301
1302 result->op = POLICY_MISS;
1303
1304 spin_lock_irqsave(&mq->lock, flags);
1305 r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result);
1306 spin_unlock_irqrestore(&mq->lock, flags);
1307
1308 return r;
1309 }
1310
1311 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1312 {
1313 int r;
1314 unsigned long flags;
1315 struct smq_policy *mq = to_smq_policy(p);
1316 struct entry *e;
1317
1318 spin_lock_irqsave(&mq->lock, flags);
1319 e = h_lookup(&mq->table, oblock);
1320 if (e) {
1321 *cblock = infer_cblock(mq, e);
1322 r = 0;
1323 } else
1324 r = -ENOENT;
1325 spin_unlock_irqrestore(&mq->lock, flags);
1326
1327 return r;
1328 }
1329
1330 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set)
1331 {
1332 struct entry *e;
1333
1334 e = h_lookup(&mq->table, oblock);
1335 BUG_ON(!e);
1336
1337 del(mq, e);
1338 e->dirty = set;
1339 push(mq, e);
1340 }
1341
1342 static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1343 {
1344 unsigned long flags;
1345 struct smq_policy *mq = to_smq_policy(p);
1346
1347 spin_lock_irqsave(&mq->lock, flags);
1348 __smq_set_clear_dirty(mq, oblock, true);
1349 spin_unlock_irqrestore(&mq->lock, flags);
1350 }
1351
1352 static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1353 {
1354 struct smq_policy *mq = to_smq_policy(p);
1355 unsigned long flags;
1356
1357 spin_lock_irqsave(&mq->lock, flags);
1358 __smq_set_clear_dirty(mq, oblock, false);
1359 spin_unlock_irqrestore(&mq->lock, flags);
1360 }
1361
1362 static int smq_load_mapping(struct dm_cache_policy *p,
1363 dm_oblock_t oblock, dm_cblock_t cblock,
1364 uint32_t hint, bool hint_valid)
1365 {
1366 struct smq_policy *mq = to_smq_policy(p);
1367 struct entry *e;
1368
1369 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1370 e->oblock = oblock;
1371 e->dirty = false; /* this gets corrected in a minute */
1372 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1;
1373 push(mq, e);
1374
1375 return 0;
1376 }
1377
1378 static int smq_save_hints(struct smq_policy *mq, struct queue *q,
1379 policy_walk_fn fn, void *context)
1380 {
1381 int r;
1382 unsigned level;
1383 struct entry *e;
1384
1385 for (level = 0; level < q->nr_levels; level++)
1386 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
1387 if (!e->sentinel) {
1388 r = fn(context, infer_cblock(mq, e),
1389 e->oblock, e->level);
1390 if (r)
1391 return r;
1392 }
1393 }
1394
1395 return 0;
1396 }
1397
1398 static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1399 void *context)
1400 {
1401 struct smq_policy *mq = to_smq_policy(p);
1402 int r = 0;
1403
1404 /*
1405 * We don't need to lock here since this method is only called once
1406 * the IO has stopped.
1407 */
1408 r = smq_save_hints(mq, &mq->clean, fn, context);
1409 if (!r)
1410 r = smq_save_hints(mq, &mq->dirty, fn, context);
1411
1412 return r;
1413 }
1414
1415 static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock)
1416 {
1417 struct entry *e;
1418
1419 e = h_lookup(&mq->table, oblock);
1420 BUG_ON(!e);
1421
1422 del(mq, e);
1423 free_entry(&mq->cache_alloc, e);
1424 }
1425
1426 static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1427 {
1428 struct smq_policy *mq = to_smq_policy(p);
1429 unsigned long flags;
1430
1431 spin_lock_irqsave(&mq->lock, flags);
1432 __remove_mapping(mq, oblock);
1433 spin_unlock_irqrestore(&mq->lock, flags);
1434 }
1435
1436 static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock)
1437 {
1438 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1439
1440 if (!e || !e->allocated)
1441 return -ENODATA;
1442
1443 del(mq, e);
1444 free_entry(&mq->cache_alloc, e);
1445
1446 return 0;
1447 }
1448
1449 static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1450 {
1451 int r;
1452 unsigned long flags;
1453 struct smq_policy *mq = to_smq_policy(p);
1454
1455 spin_lock_irqsave(&mq->lock, flags);
1456 r = __remove_cblock(mq, cblock);
1457 spin_unlock_irqrestore(&mq->lock, flags);
1458
1459 return r;
1460 }
1461
1462
1463 #define CLEAN_TARGET_CRITICAL 5u /* percent */
1464
1465 static bool clean_target_met(struct smq_policy *mq, bool critical)
1466 {
1467 if (critical) {
1468 /*
1469 * Cache entries may not be populated. So we're cannot rely on the
1470 * size of the clean queue.
1471 */
1472 unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
1473 unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u;
1474
1475 return nr_clean >= target;
1476 } else
1477 return !q_size(&mq->dirty);
1478 }
1479
1480 static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock,
1481 dm_cblock_t *cblock, bool critical_only)
1482 {
1483 struct entry *e = NULL;
1484 bool target_met = clean_target_met(mq, critical_only);
1485
1486 if (critical_only)
1487 /*
1488 * Always try and keep the bottom level clean.
1489 */
1490 e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels);
1491
1492 else
1493 e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels);
1494
1495 if (!e)
1496 return -ENODATA;
1497
1498 *oblock = e->oblock;
1499 *cblock = infer_cblock(mq, e);
1500 e->dirty = false;
1501 push_new(mq, e);
1502
1503 return 0;
1504 }
1505
1506 static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1507 dm_cblock_t *cblock, bool critical_only)
1508 {
1509 int r;
1510 unsigned long flags;
1511 struct smq_policy *mq = to_smq_policy(p);
1512
1513 spin_lock_irqsave(&mq->lock, flags);
1514 r = __smq_writeback_work(mq, oblock, cblock, critical_only);
1515 spin_unlock_irqrestore(&mq->lock, flags);
1516
1517 return r;
1518 }
1519
1520 static void __force_mapping(struct smq_policy *mq,
1521 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1522 {
1523 struct entry *e = h_lookup(&mq->table, current_oblock);
1524
1525 if (e) {
1526 del(mq, e);
1527 e->oblock = new_oblock;
1528 e->dirty = true;
1529 push(mq, e);
1530 }
1531 }
1532
1533 static void smq_force_mapping(struct dm_cache_policy *p,
1534 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1535 {
1536 unsigned long flags;
1537 struct smq_policy *mq = to_smq_policy(p);
1538
1539 spin_lock_irqsave(&mq->lock, flags);
1540 __force_mapping(mq, current_oblock, new_oblock);
1541 spin_unlock_irqrestore(&mq->lock, flags);
1542 }
1543
1544 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1545 {
1546 dm_cblock_t r;
1547 unsigned long flags;
1548 struct smq_policy *mq = to_smq_policy(p);
1549
1550 spin_lock_irqsave(&mq->lock, flags);
1551 r = to_cblock(mq->cache_alloc.nr_allocated);
1552 spin_unlock_irqrestore(&mq->lock, flags);
1553
1554 return r;
1555 }
1556
1557 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1558 {
1559 struct smq_policy *mq = to_smq_policy(p);
1560 unsigned long flags;
1561
1562 spin_lock_irqsave(&mq->lock, flags);
1563 mq->tick++;
1564 update_sentinels(mq);
1565 end_hotspot_period(mq);
1566 end_cache_period(mq);
1567 spin_unlock_irqrestore(&mq->lock, flags);
1568 }
1569
1570 /*
1571 * smq has no config values, but the old mq policy did. To avoid breaking
1572 * software we continue to accept these configurables for the mq policy,
1573 * but they have no effect.
1574 */
1575 static int mq_set_config_value(struct dm_cache_policy *p,
1576 const char *key, const char *value)
1577 {
1578 unsigned long tmp;
1579
1580 if (kstrtoul(value, 10, &tmp))
1581 return -EINVAL;
1582
1583 if (!strcasecmp(key, "random_threshold") ||
1584 !strcasecmp(key, "sequential_threshold") ||
1585 !strcasecmp(key, "discard_promote_adjustment") ||
1586 !strcasecmp(key, "read_promote_adjustment") ||
1587 !strcasecmp(key, "write_promote_adjustment")) {
1588 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1589 return 0;
1590 }
1591
1592 return -EINVAL;
1593 }
1594
1595 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1596 unsigned maxlen, ssize_t *sz_ptr)
1597 {
1598 ssize_t sz = *sz_ptr;
1599
1600 DMEMIT("10 random_threshold 0 "
1601 "sequential_threshold 0 "
1602 "discard_promote_adjustment 0 "
1603 "read_promote_adjustment 0 "
1604 "write_promote_adjustment 0 ");
1605
1606 *sz_ptr = sz;
1607 return 0;
1608 }
1609
1610 /* Init the policy plugin interface function pointers. */
1611 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1612 {
1613 mq->policy.destroy = smq_destroy;
1614 mq->policy.map = smq_map;
1615 mq->policy.lookup = smq_lookup;
1616 mq->policy.set_dirty = smq_set_dirty;
1617 mq->policy.clear_dirty = smq_clear_dirty;
1618 mq->policy.load_mapping = smq_load_mapping;
1619 mq->policy.walk_mappings = smq_walk_mappings;
1620 mq->policy.remove_mapping = smq_remove_mapping;
1621 mq->policy.remove_cblock = smq_remove_cblock;
1622 mq->policy.writeback_work = smq_writeback_work;
1623 mq->policy.force_mapping = smq_force_mapping;
1624 mq->policy.residency = smq_residency;
1625 mq->policy.tick = smq_tick;
1626
1627 if (mimic_mq) {
1628 mq->policy.set_config_value = mq_set_config_value;
1629 mq->policy.emit_config_values = mq_emit_config_values;
1630 }
1631 }
1632
1633 static bool too_many_hotspot_blocks(sector_t origin_size,
1634 sector_t hotspot_block_size,
1635 unsigned nr_hotspot_blocks)
1636 {
1637 return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1638 }
1639
1640 static void calc_hotspot_params(sector_t origin_size,
1641 sector_t cache_block_size,
1642 unsigned nr_cache_blocks,
1643 sector_t *hotspot_block_size,
1644 unsigned *nr_hotspot_blocks)
1645 {
1646 *hotspot_block_size = cache_block_size * 16u;
1647 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1648
1649 while ((*hotspot_block_size > cache_block_size) &&
1650 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1651 *hotspot_block_size /= 2u;
1652 }
1653
1654 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1655 sector_t origin_size,
1656 sector_t cache_block_size,
1657 bool mimic_mq)
1658 {
1659 unsigned i;
1660 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1661 unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1662 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1663
1664 if (!mq)
1665 return NULL;
1666
1667 init_policy_functions(mq, mimic_mq);
1668 mq->cache_size = cache_size;
1669 mq->cache_block_size = cache_block_size;
1670
1671 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1672 &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1673
1674 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1675 mq->hotspot_level_jump = 1u;
1676 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1677 DMERR("couldn't initialize entry space");
1678 goto bad_pool_init;
1679 }
1680
1681 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1682 for (i = 0; i < nr_sentinels_per_queue; i++)
1683 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1684
1685 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1686 for (i = 0; i < nr_sentinels_per_queue; i++)
1687 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1688
1689 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1690 total_sentinels + mq->nr_hotspot_blocks);
1691
1692 init_allocator(&mq->cache_alloc, &mq->es,
1693 total_sentinels + mq->nr_hotspot_blocks,
1694 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1695
1696 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1697 if (!mq->hotspot_hit_bits) {
1698 DMERR("couldn't allocate hotspot hit bitset");
1699 goto bad_hotspot_hit_bits;
1700 }
1701 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1702
1703 if (from_cblock(cache_size)) {
1704 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1705 if (!mq->cache_hit_bits) {
1706 DMERR("couldn't allocate cache hit bitset");
1707 goto bad_cache_hit_bits;
1708 }
1709 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1710 } else
1711 mq->cache_hit_bits = NULL;
1712
1713 mq->tick = 0;
1714 spin_lock_init(&mq->lock);
1715
1716 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1717 mq->hotspot.nr_top_levels = 8;
1718 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1719 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1720
1721 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1722 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1723
1724 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1725 stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1726
1727 if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1728 goto bad_alloc_table;
1729
1730 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1731 goto bad_alloc_hotspot_table;
1732
1733 sentinels_init(mq);
1734 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1735
1736 mq->next_hotspot_period = jiffies;
1737 mq->next_cache_period = jiffies;
1738
1739 return &mq->policy;
1740
1741 bad_alloc_hotspot_table:
1742 h_exit(&mq->table);
1743 bad_alloc_table:
1744 free_bitset(mq->cache_hit_bits);
1745 bad_cache_hit_bits:
1746 free_bitset(mq->hotspot_hit_bits);
1747 bad_hotspot_hit_bits:
1748 space_exit(&mq->es);
1749 bad_pool_init:
1750 kfree(mq);
1751
1752 return NULL;
1753 }
1754
1755 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1756 sector_t origin_size,
1757 sector_t cache_block_size)
1758 {
1759 return __smq_create(cache_size, origin_size, cache_block_size, false);
1760 }
1761
1762 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1763 sector_t origin_size,
1764 sector_t cache_block_size)
1765 {
1766 return __smq_create(cache_size, origin_size, cache_block_size, true);
1767 }
1768
1769 /*----------------------------------------------------------------*/
1770
1771 static struct dm_cache_policy_type smq_policy_type = {
1772 .name = "smq",
1773 .version = {1, 5, 0},
1774 .hint_size = 4,
1775 .owner = THIS_MODULE,
1776 .create = smq_create
1777 };
1778
1779 static struct dm_cache_policy_type mq_policy_type = {
1780 .name = "mq",
1781 .version = {1, 5, 0},
1782 .hint_size = 4,
1783 .owner = THIS_MODULE,
1784 .create = mq_create,
1785 };
1786
1787 static struct dm_cache_policy_type default_policy_type = {
1788 .name = "default",
1789 .version = {1, 5, 0},
1790 .hint_size = 4,
1791 .owner = THIS_MODULE,
1792 .create = smq_create,
1793 .real = &smq_policy_type
1794 };
1795
1796 static int __init smq_init(void)
1797 {
1798 int r;
1799
1800 r = dm_cache_policy_register(&smq_policy_type);
1801 if (r) {
1802 DMERR("register failed %d", r);
1803 return -ENOMEM;
1804 }
1805
1806 r = dm_cache_policy_register(&mq_policy_type);
1807 if (r) {
1808 DMERR("register failed (as mq) %d", r);
1809 dm_cache_policy_unregister(&smq_policy_type);
1810 return -ENOMEM;
1811 }
1812
1813 r = dm_cache_policy_register(&default_policy_type);
1814 if (r) {
1815 DMERR("register failed (as default) %d", r);
1816 dm_cache_policy_unregister(&mq_policy_type);
1817 dm_cache_policy_unregister(&smq_policy_type);
1818 return -ENOMEM;
1819 }
1820
1821 return 0;
1822 }
1823
1824 static void __exit smq_exit(void)
1825 {
1826 dm_cache_policy_unregister(&smq_policy_type);
1827 dm_cache_policy_unregister(&mq_policy_type);
1828 dm_cache_policy_unregister(&default_policy_type);
1829 }
1830
1831 module_init(smq_init);
1832 module_exit(smq_exit);
1833
1834 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1835 MODULE_LICENSE("GPL");
1836 MODULE_DESCRIPTION("smq cache policy");
1837
1838 MODULE_ALIAS("dm-cache-default");
1839 MODULE_ALIAS("dm-cache-mq");
This page took 0.067806 seconds and 5 git commands to generate.