Merge tag 'omap-for-v4.6/dt-ti81xx-signed' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28
29 #include <trace/events/block.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 #ifdef CONFIG_PRINTK
34 /*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42
43 /*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69 struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83 struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93 };
94
95 /*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103 struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107 };
108
109 #define MINOR_ALLOCED ((void *)-1)
110
111 /*
112 * Bits for the md->flags field.
113 */
114 #define DMF_BLOCK_IO_FOR_SUSPEND 0
115 #define DMF_SUSPENDED 1
116 #define DMF_FROZEN 2
117 #define DMF_FREEING 3
118 #define DMF_DELETING 4
119 #define DMF_NOFLUSH_SUSPENDING 5
120 #define DMF_DEFERRED_REMOVE 6
121 #define DMF_SUSPENDED_INTERNALLY 7
122
123 /*
124 * Work processed by per-device workqueue.
125 */
126 struct mapped_device {
127 struct srcu_struct io_barrier;
128 struct mutex suspend_lock;
129
130 /*
131 * The current mapping (struct dm_table *).
132 * Use dm_get_live_table{_fast} or take suspend_lock for
133 * dereference.
134 */
135 void __rcu *map;
136
137 struct list_head table_devices;
138 struct mutex table_devices_lock;
139
140 unsigned long flags;
141
142 struct request_queue *queue;
143 int numa_node_id;
144
145 unsigned type;
146 /* Protect queue and type against concurrent access. */
147 struct mutex type_lock;
148
149 atomic_t holders;
150 atomic_t open_count;
151
152 struct dm_target *immutable_target;
153 struct target_type *immutable_target_type;
154
155 struct gendisk *disk;
156 char name[16];
157
158 void *interface_ptr;
159
160 /*
161 * A list of ios that arrived while we were suspended.
162 */
163 atomic_t pending[2];
164 wait_queue_head_t wait;
165 struct work_struct work;
166 spinlock_t deferred_lock;
167 struct bio_list deferred;
168
169 /*
170 * Event handling.
171 */
172 wait_queue_head_t eventq;
173 atomic_t event_nr;
174 atomic_t uevent_seq;
175 struct list_head uevent_list;
176 spinlock_t uevent_lock; /* Protect access to uevent_list */
177
178 /* the number of internal suspends */
179 unsigned internal_suspend_count;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * freeze/thaw support require holding onto a super block
196 */
197 struct super_block *frozen_sb;
198
199 /* forced geometry settings */
200 struct hd_geometry geometry;
201
202 struct block_device *bdev;
203
204 /* kobject and completion */
205 struct dm_kobject_holder kobj_holder;
206
207 /* zero-length flush that will be cloned and submitted to targets */
208 struct bio flush_bio;
209
210 struct dm_stats stats;
211
212 struct kthread_worker kworker;
213 struct task_struct *kworker_task;
214
215 /* for request-based merge heuristic in dm_request_fn() */
216 unsigned seq_rq_merge_deadline_usecs;
217 int last_rq_rw;
218 sector_t last_rq_pos;
219 ktime_t last_rq_start_time;
220
221 /* for blk-mq request-based DM support */
222 struct blk_mq_tag_set *tag_set;
223 bool use_blk_mq:1;
224 bool init_tio_pdu:1;
225 };
226
227 #ifdef CONFIG_DM_MQ_DEFAULT
228 static bool use_blk_mq = true;
229 #else
230 static bool use_blk_mq = false;
231 #endif
232
233 #define DM_MQ_NR_HW_QUEUES 1
234 #define DM_MQ_QUEUE_DEPTH 2048
235 #define DM_NUMA_NODE NUMA_NO_NODE
236
237 static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
238 static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
239 static int dm_numa_node = DM_NUMA_NODE;
240
241 bool dm_use_blk_mq(struct mapped_device *md)
242 {
243 return md->use_blk_mq;
244 }
245 EXPORT_SYMBOL_GPL(dm_use_blk_mq);
246
247 /*
248 * For mempools pre-allocation at the table loading time.
249 */
250 struct dm_md_mempools {
251 mempool_t *io_pool;
252 mempool_t *rq_pool;
253 struct bio_set *bs;
254 };
255
256 struct table_device {
257 struct list_head list;
258 atomic_t count;
259 struct dm_dev dm_dev;
260 };
261
262 #define RESERVED_BIO_BASED_IOS 16
263 #define RESERVED_REQUEST_BASED_IOS 256
264 #define RESERVED_MAX_IOS 1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268
269 /*
270 * Bio-based DM's mempools' reserved IOs set by the user.
271 */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273
274 /*
275 * Request-based DM's mempools' reserved IOs set by the user.
276 */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278
279 static int __dm_get_module_param_int(int *module_param, int min, int max)
280 {
281 int param = ACCESS_ONCE(*module_param);
282 int modified_param = 0;
283 bool modified = true;
284
285 if (param < min)
286 modified_param = min;
287 else if (param > max)
288 modified_param = max;
289 else
290 modified = false;
291
292 if (modified) {
293 (void)cmpxchg(module_param, param, modified_param);
294 param = modified_param;
295 }
296
297 return param;
298 }
299
300 static unsigned __dm_get_module_param(unsigned *module_param,
301 unsigned def, unsigned max)
302 {
303 unsigned param = ACCESS_ONCE(*module_param);
304 unsigned modified_param = 0;
305
306 if (!param)
307 modified_param = def;
308 else if (param > max)
309 modified_param = max;
310
311 if (modified_param) {
312 (void)cmpxchg(module_param, param, modified_param);
313 param = modified_param;
314 }
315
316 return param;
317 }
318
319 unsigned dm_get_reserved_bio_based_ios(void)
320 {
321 return __dm_get_module_param(&reserved_bio_based_ios,
322 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
323 }
324 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
325
326 unsigned dm_get_reserved_rq_based_ios(void)
327 {
328 return __dm_get_module_param(&reserved_rq_based_ios,
329 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
330 }
331 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
332
333 static unsigned dm_get_blk_mq_nr_hw_queues(void)
334 {
335 return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
336 }
337
338 static unsigned dm_get_blk_mq_queue_depth(void)
339 {
340 return __dm_get_module_param(&dm_mq_queue_depth,
341 DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
342 }
343
344 static unsigned dm_get_numa_node(void)
345 {
346 return __dm_get_module_param_int(&dm_numa_node,
347 DM_NUMA_NODE, num_online_nodes() - 1);
348 }
349
350 static int __init local_init(void)
351 {
352 int r = -ENOMEM;
353
354 /* allocate a slab for the dm_ios */
355 _io_cache = KMEM_CACHE(dm_io, 0);
356 if (!_io_cache)
357 return r;
358
359 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
360 if (!_rq_tio_cache)
361 goto out_free_io_cache;
362
363 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
364 __alignof__(struct request), 0, NULL);
365 if (!_rq_cache)
366 goto out_free_rq_tio_cache;
367
368 r = dm_uevent_init();
369 if (r)
370 goto out_free_rq_cache;
371
372 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
373 if (!deferred_remove_workqueue) {
374 r = -ENOMEM;
375 goto out_uevent_exit;
376 }
377
378 _major = major;
379 r = register_blkdev(_major, _name);
380 if (r < 0)
381 goto out_free_workqueue;
382
383 if (!_major)
384 _major = r;
385
386 return 0;
387
388 out_free_workqueue:
389 destroy_workqueue(deferred_remove_workqueue);
390 out_uevent_exit:
391 dm_uevent_exit();
392 out_free_rq_cache:
393 kmem_cache_destroy(_rq_cache);
394 out_free_rq_tio_cache:
395 kmem_cache_destroy(_rq_tio_cache);
396 out_free_io_cache:
397 kmem_cache_destroy(_io_cache);
398
399 return r;
400 }
401
402 static void local_exit(void)
403 {
404 flush_scheduled_work();
405 destroy_workqueue(deferred_remove_workqueue);
406
407 kmem_cache_destroy(_rq_cache);
408 kmem_cache_destroy(_rq_tio_cache);
409 kmem_cache_destroy(_io_cache);
410 unregister_blkdev(_major, _name);
411 dm_uevent_exit();
412
413 _major = 0;
414
415 DMINFO("cleaned up");
416 }
417
418 static int (*_inits[])(void) __initdata = {
419 local_init,
420 dm_target_init,
421 dm_linear_init,
422 dm_stripe_init,
423 dm_io_init,
424 dm_kcopyd_init,
425 dm_interface_init,
426 dm_statistics_init,
427 };
428
429 static void (*_exits[])(void) = {
430 local_exit,
431 dm_target_exit,
432 dm_linear_exit,
433 dm_stripe_exit,
434 dm_io_exit,
435 dm_kcopyd_exit,
436 dm_interface_exit,
437 dm_statistics_exit,
438 };
439
440 static int __init dm_init(void)
441 {
442 const int count = ARRAY_SIZE(_inits);
443
444 int r, i;
445
446 for (i = 0; i < count; i++) {
447 r = _inits[i]();
448 if (r)
449 goto bad;
450 }
451
452 return 0;
453
454 bad:
455 while (i--)
456 _exits[i]();
457
458 return r;
459 }
460
461 static void __exit dm_exit(void)
462 {
463 int i = ARRAY_SIZE(_exits);
464
465 while (i--)
466 _exits[i]();
467
468 /*
469 * Should be empty by this point.
470 */
471 idr_destroy(&_minor_idr);
472 }
473
474 /*
475 * Block device functions
476 */
477 int dm_deleting_md(struct mapped_device *md)
478 {
479 return test_bit(DMF_DELETING, &md->flags);
480 }
481
482 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
483 {
484 struct mapped_device *md;
485
486 spin_lock(&_minor_lock);
487
488 md = bdev->bd_disk->private_data;
489 if (!md)
490 goto out;
491
492 if (test_bit(DMF_FREEING, &md->flags) ||
493 dm_deleting_md(md)) {
494 md = NULL;
495 goto out;
496 }
497
498 dm_get(md);
499 atomic_inc(&md->open_count);
500 out:
501 spin_unlock(&_minor_lock);
502
503 return md ? 0 : -ENXIO;
504 }
505
506 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
507 {
508 struct mapped_device *md;
509
510 spin_lock(&_minor_lock);
511
512 md = disk->private_data;
513 if (WARN_ON(!md))
514 goto out;
515
516 if (atomic_dec_and_test(&md->open_count) &&
517 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
518 queue_work(deferred_remove_workqueue, &deferred_remove_work);
519
520 dm_put(md);
521 out:
522 spin_unlock(&_minor_lock);
523 }
524
525 int dm_open_count(struct mapped_device *md)
526 {
527 return atomic_read(&md->open_count);
528 }
529
530 /*
531 * Guarantees nothing is using the device before it's deleted.
532 */
533 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
534 {
535 int r = 0;
536
537 spin_lock(&_minor_lock);
538
539 if (dm_open_count(md)) {
540 r = -EBUSY;
541 if (mark_deferred)
542 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
543 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
544 r = -EEXIST;
545 else
546 set_bit(DMF_DELETING, &md->flags);
547
548 spin_unlock(&_minor_lock);
549
550 return r;
551 }
552
553 int dm_cancel_deferred_remove(struct mapped_device *md)
554 {
555 int r = 0;
556
557 spin_lock(&_minor_lock);
558
559 if (test_bit(DMF_DELETING, &md->flags))
560 r = -EBUSY;
561 else
562 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
563
564 spin_unlock(&_minor_lock);
565
566 return r;
567 }
568
569 static void do_deferred_remove(struct work_struct *w)
570 {
571 dm_deferred_remove();
572 }
573
574 sector_t dm_get_size(struct mapped_device *md)
575 {
576 return get_capacity(md->disk);
577 }
578
579 struct request_queue *dm_get_md_queue(struct mapped_device *md)
580 {
581 return md->queue;
582 }
583
584 struct dm_stats *dm_get_stats(struct mapped_device *md)
585 {
586 return &md->stats;
587 }
588
589 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
590 {
591 struct mapped_device *md = bdev->bd_disk->private_data;
592
593 return dm_get_geometry(md, geo);
594 }
595
596 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
597 struct block_device **bdev,
598 fmode_t *mode)
599 {
600 struct dm_target *tgt;
601 struct dm_table *map;
602 int srcu_idx, r;
603
604 retry:
605 r = -ENOTTY;
606 map = dm_get_live_table(md, &srcu_idx);
607 if (!map || !dm_table_get_size(map))
608 goto out;
609
610 /* We only support devices that have a single target */
611 if (dm_table_get_num_targets(map) != 1)
612 goto out;
613
614 tgt = dm_table_get_target(map, 0);
615 if (!tgt->type->prepare_ioctl)
616 goto out;
617
618 if (dm_suspended_md(md)) {
619 r = -EAGAIN;
620 goto out;
621 }
622
623 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
624 if (r < 0)
625 goto out;
626
627 bdgrab(*bdev);
628 dm_put_live_table(md, srcu_idx);
629 return r;
630
631 out:
632 dm_put_live_table(md, srcu_idx);
633 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
634 msleep(10);
635 goto retry;
636 }
637 return r;
638 }
639
640 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
641 unsigned int cmd, unsigned long arg)
642 {
643 struct mapped_device *md = bdev->bd_disk->private_data;
644 int r;
645
646 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
647 if (r < 0)
648 return r;
649
650 if (r > 0) {
651 /*
652 * Target determined this ioctl is being issued against
653 * a logical partition of the parent bdev; so extra
654 * validation is needed.
655 */
656 r = scsi_verify_blk_ioctl(NULL, cmd);
657 if (r)
658 goto out;
659 }
660
661 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
662 out:
663 bdput(bdev);
664 return r;
665 }
666
667 static struct dm_io *alloc_io(struct mapped_device *md)
668 {
669 return mempool_alloc(md->io_pool, GFP_NOIO);
670 }
671
672 static void free_io(struct mapped_device *md, struct dm_io *io)
673 {
674 mempool_free(io, md->io_pool);
675 }
676
677 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
678 {
679 bio_put(&tio->clone);
680 }
681
682 static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
683 gfp_t gfp_mask)
684 {
685 return mempool_alloc(md->io_pool, gfp_mask);
686 }
687
688 static void free_old_rq_tio(struct dm_rq_target_io *tio)
689 {
690 mempool_free(tio, tio->md->io_pool);
691 }
692
693 static struct request *alloc_old_clone_request(struct mapped_device *md,
694 gfp_t gfp_mask)
695 {
696 return mempool_alloc(md->rq_pool, gfp_mask);
697 }
698
699 static void free_old_clone_request(struct mapped_device *md, struct request *rq)
700 {
701 mempool_free(rq, md->rq_pool);
702 }
703
704 static int md_in_flight(struct mapped_device *md)
705 {
706 return atomic_read(&md->pending[READ]) +
707 atomic_read(&md->pending[WRITE]);
708 }
709
710 static void start_io_acct(struct dm_io *io)
711 {
712 struct mapped_device *md = io->md;
713 struct bio *bio = io->bio;
714 int cpu;
715 int rw = bio_data_dir(bio);
716
717 io->start_time = jiffies;
718
719 cpu = part_stat_lock();
720 part_round_stats(cpu, &dm_disk(md)->part0);
721 part_stat_unlock();
722 atomic_set(&dm_disk(md)->part0.in_flight[rw],
723 atomic_inc_return(&md->pending[rw]));
724
725 if (unlikely(dm_stats_used(&md->stats)))
726 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
727 bio_sectors(bio), false, 0, &io->stats_aux);
728 }
729
730 static void end_io_acct(struct dm_io *io)
731 {
732 struct mapped_device *md = io->md;
733 struct bio *bio = io->bio;
734 unsigned long duration = jiffies - io->start_time;
735 int pending;
736 int rw = bio_data_dir(bio);
737
738 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
739
740 if (unlikely(dm_stats_used(&md->stats)))
741 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
742 bio_sectors(bio), true, duration, &io->stats_aux);
743
744 /*
745 * After this is decremented the bio must not be touched if it is
746 * a flush.
747 */
748 pending = atomic_dec_return(&md->pending[rw]);
749 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
750 pending += atomic_read(&md->pending[rw^0x1]);
751
752 /* nudge anyone waiting on suspend queue */
753 if (!pending)
754 wake_up(&md->wait);
755 }
756
757 /*
758 * Add the bio to the list of deferred io.
759 */
760 static void queue_io(struct mapped_device *md, struct bio *bio)
761 {
762 unsigned long flags;
763
764 spin_lock_irqsave(&md->deferred_lock, flags);
765 bio_list_add(&md->deferred, bio);
766 spin_unlock_irqrestore(&md->deferred_lock, flags);
767 queue_work(md->wq, &md->work);
768 }
769
770 /*
771 * Everyone (including functions in this file), should use this
772 * function to access the md->map field, and make sure they call
773 * dm_put_live_table() when finished.
774 */
775 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
776 {
777 *srcu_idx = srcu_read_lock(&md->io_barrier);
778
779 return srcu_dereference(md->map, &md->io_barrier);
780 }
781
782 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
783 {
784 srcu_read_unlock(&md->io_barrier, srcu_idx);
785 }
786
787 void dm_sync_table(struct mapped_device *md)
788 {
789 synchronize_srcu(&md->io_barrier);
790 synchronize_rcu_expedited();
791 }
792
793 /*
794 * A fast alternative to dm_get_live_table/dm_put_live_table.
795 * The caller must not block between these two functions.
796 */
797 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
798 {
799 rcu_read_lock();
800 return rcu_dereference(md->map);
801 }
802
803 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
804 {
805 rcu_read_unlock();
806 }
807
808 /*
809 * Open a table device so we can use it as a map destination.
810 */
811 static int open_table_device(struct table_device *td, dev_t dev,
812 struct mapped_device *md)
813 {
814 static char *_claim_ptr = "I belong to device-mapper";
815 struct block_device *bdev;
816
817 int r;
818
819 BUG_ON(td->dm_dev.bdev);
820
821 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
822 if (IS_ERR(bdev))
823 return PTR_ERR(bdev);
824
825 r = bd_link_disk_holder(bdev, dm_disk(md));
826 if (r) {
827 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
828 return r;
829 }
830
831 td->dm_dev.bdev = bdev;
832 return 0;
833 }
834
835 /*
836 * Close a table device that we've been using.
837 */
838 static void close_table_device(struct table_device *td, struct mapped_device *md)
839 {
840 if (!td->dm_dev.bdev)
841 return;
842
843 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
844 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
845 td->dm_dev.bdev = NULL;
846 }
847
848 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
849 fmode_t mode) {
850 struct table_device *td;
851
852 list_for_each_entry(td, l, list)
853 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
854 return td;
855
856 return NULL;
857 }
858
859 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
860 struct dm_dev **result) {
861 int r;
862 struct table_device *td;
863
864 mutex_lock(&md->table_devices_lock);
865 td = find_table_device(&md->table_devices, dev, mode);
866 if (!td) {
867 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
868 if (!td) {
869 mutex_unlock(&md->table_devices_lock);
870 return -ENOMEM;
871 }
872
873 td->dm_dev.mode = mode;
874 td->dm_dev.bdev = NULL;
875
876 if ((r = open_table_device(td, dev, md))) {
877 mutex_unlock(&md->table_devices_lock);
878 kfree(td);
879 return r;
880 }
881
882 format_dev_t(td->dm_dev.name, dev);
883
884 atomic_set(&td->count, 0);
885 list_add(&td->list, &md->table_devices);
886 }
887 atomic_inc(&td->count);
888 mutex_unlock(&md->table_devices_lock);
889
890 *result = &td->dm_dev;
891 return 0;
892 }
893 EXPORT_SYMBOL_GPL(dm_get_table_device);
894
895 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
896 {
897 struct table_device *td = container_of(d, struct table_device, dm_dev);
898
899 mutex_lock(&md->table_devices_lock);
900 if (atomic_dec_and_test(&td->count)) {
901 close_table_device(td, md);
902 list_del(&td->list);
903 kfree(td);
904 }
905 mutex_unlock(&md->table_devices_lock);
906 }
907 EXPORT_SYMBOL(dm_put_table_device);
908
909 static void free_table_devices(struct list_head *devices)
910 {
911 struct list_head *tmp, *next;
912
913 list_for_each_safe(tmp, next, devices) {
914 struct table_device *td = list_entry(tmp, struct table_device, list);
915
916 DMWARN("dm_destroy: %s still exists with %d references",
917 td->dm_dev.name, atomic_read(&td->count));
918 kfree(td);
919 }
920 }
921
922 /*
923 * Get the geometry associated with a dm device
924 */
925 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
926 {
927 *geo = md->geometry;
928
929 return 0;
930 }
931
932 /*
933 * Set the geometry of a device.
934 */
935 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
936 {
937 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
938
939 if (geo->start > sz) {
940 DMWARN("Start sector is beyond the geometry limits.");
941 return -EINVAL;
942 }
943
944 md->geometry = *geo;
945
946 return 0;
947 }
948
949 /*-----------------------------------------------------------------
950 * CRUD START:
951 * A more elegant soln is in the works that uses the queue
952 * merge fn, unfortunately there are a couple of changes to
953 * the block layer that I want to make for this. So in the
954 * interests of getting something for people to use I give
955 * you this clearly demarcated crap.
956 *---------------------------------------------------------------*/
957
958 static int __noflush_suspending(struct mapped_device *md)
959 {
960 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
961 }
962
963 /*
964 * Decrements the number of outstanding ios that a bio has been
965 * cloned into, completing the original io if necc.
966 */
967 static void dec_pending(struct dm_io *io, int error)
968 {
969 unsigned long flags;
970 int io_error;
971 struct bio *bio;
972 struct mapped_device *md = io->md;
973
974 /* Push-back supersedes any I/O errors */
975 if (unlikely(error)) {
976 spin_lock_irqsave(&io->endio_lock, flags);
977 if (!(io->error > 0 && __noflush_suspending(md)))
978 io->error = error;
979 spin_unlock_irqrestore(&io->endio_lock, flags);
980 }
981
982 if (atomic_dec_and_test(&io->io_count)) {
983 if (io->error == DM_ENDIO_REQUEUE) {
984 /*
985 * Target requested pushing back the I/O.
986 */
987 spin_lock_irqsave(&md->deferred_lock, flags);
988 if (__noflush_suspending(md))
989 bio_list_add_head(&md->deferred, io->bio);
990 else
991 /* noflush suspend was interrupted. */
992 io->error = -EIO;
993 spin_unlock_irqrestore(&md->deferred_lock, flags);
994 }
995
996 io_error = io->error;
997 bio = io->bio;
998 end_io_acct(io);
999 free_io(md, io);
1000
1001 if (io_error == DM_ENDIO_REQUEUE)
1002 return;
1003
1004 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1005 /*
1006 * Preflush done for flush with data, reissue
1007 * without REQ_FLUSH.
1008 */
1009 bio->bi_rw &= ~REQ_FLUSH;
1010 queue_io(md, bio);
1011 } else {
1012 /* done with normal IO or empty flush */
1013 trace_block_bio_complete(md->queue, bio, io_error);
1014 bio->bi_error = io_error;
1015 bio_endio(bio);
1016 }
1017 }
1018 }
1019
1020 static void disable_write_same(struct mapped_device *md)
1021 {
1022 struct queue_limits *limits = dm_get_queue_limits(md);
1023
1024 /* device doesn't really support WRITE SAME, disable it */
1025 limits->max_write_same_sectors = 0;
1026 }
1027
1028 static void clone_endio(struct bio *bio)
1029 {
1030 int error = bio->bi_error;
1031 int r = error;
1032 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1033 struct dm_io *io = tio->io;
1034 struct mapped_device *md = tio->io->md;
1035 dm_endio_fn endio = tio->ti->type->end_io;
1036
1037 if (endio) {
1038 r = endio(tio->ti, bio, error);
1039 if (r < 0 || r == DM_ENDIO_REQUEUE)
1040 /*
1041 * error and requeue request are handled
1042 * in dec_pending().
1043 */
1044 error = r;
1045 else if (r == DM_ENDIO_INCOMPLETE)
1046 /* The target will handle the io */
1047 return;
1048 else if (r) {
1049 DMWARN("unimplemented target endio return value: %d", r);
1050 BUG();
1051 }
1052 }
1053
1054 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1055 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1056 disable_write_same(md);
1057
1058 free_tio(md, tio);
1059 dec_pending(io, error);
1060 }
1061
1062 /*
1063 * Partial completion handling for request-based dm
1064 */
1065 static void end_clone_bio(struct bio *clone)
1066 {
1067 struct dm_rq_clone_bio_info *info =
1068 container_of(clone, struct dm_rq_clone_bio_info, clone);
1069 struct dm_rq_target_io *tio = info->tio;
1070 struct bio *bio = info->orig;
1071 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1072 int error = clone->bi_error;
1073
1074 bio_put(clone);
1075
1076 if (tio->error)
1077 /*
1078 * An error has already been detected on the request.
1079 * Once error occurred, just let clone->end_io() handle
1080 * the remainder.
1081 */
1082 return;
1083 else if (error) {
1084 /*
1085 * Don't notice the error to the upper layer yet.
1086 * The error handling decision is made by the target driver,
1087 * when the request is completed.
1088 */
1089 tio->error = error;
1090 return;
1091 }
1092
1093 /*
1094 * I/O for the bio successfully completed.
1095 * Notice the data completion to the upper layer.
1096 */
1097
1098 /*
1099 * bios are processed from the head of the list.
1100 * So the completing bio should always be rq->bio.
1101 * If it's not, something wrong is happening.
1102 */
1103 if (tio->orig->bio != bio)
1104 DMERR("bio completion is going in the middle of the request");
1105
1106 /*
1107 * Update the original request.
1108 * Do not use blk_end_request() here, because it may complete
1109 * the original request before the clone, and break the ordering.
1110 */
1111 blk_update_request(tio->orig, 0, nr_bytes);
1112 }
1113
1114 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1115 {
1116 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1117 }
1118
1119 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1120 {
1121 if (unlikely(dm_stats_used(&md->stats))) {
1122 struct dm_rq_target_io *tio = tio_from_request(orig);
1123 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1124 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1125 tio->n_sectors, true, tio->duration_jiffies,
1126 &tio->stats_aux);
1127 }
1128 }
1129
1130 /*
1131 * Don't touch any member of the md after calling this function because
1132 * the md may be freed in dm_put() at the end of this function.
1133 * Or do dm_get() before calling this function and dm_put() later.
1134 */
1135 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1136 {
1137 atomic_dec(&md->pending[rw]);
1138
1139 /* nudge anyone waiting on suspend queue */
1140 if (!md_in_flight(md))
1141 wake_up(&md->wait);
1142
1143 /*
1144 * Run this off this callpath, as drivers could invoke end_io while
1145 * inside their request_fn (and holding the queue lock). Calling
1146 * back into ->request_fn() could deadlock attempting to grab the
1147 * queue lock again.
1148 */
1149 if (!md->queue->mq_ops && run_queue)
1150 blk_run_queue_async(md->queue);
1151
1152 /*
1153 * dm_put() must be at the end of this function. See the comment above
1154 */
1155 dm_put(md);
1156 }
1157
1158 static void free_rq_clone(struct request *clone)
1159 {
1160 struct dm_rq_target_io *tio = clone->end_io_data;
1161 struct mapped_device *md = tio->md;
1162
1163 blk_rq_unprep_clone(clone);
1164
1165 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1166 /* stacked on blk-mq queue(s) */
1167 tio->ti->type->release_clone_rq(clone);
1168 else if (!md->queue->mq_ops)
1169 /* request_fn queue stacked on request_fn queue(s) */
1170 free_old_clone_request(md, clone);
1171
1172 if (!md->queue->mq_ops)
1173 free_old_rq_tio(tio);
1174 }
1175
1176 /*
1177 * Complete the clone and the original request.
1178 * Must be called without clone's queue lock held,
1179 * see end_clone_request() for more details.
1180 */
1181 static void dm_end_request(struct request *clone, int error)
1182 {
1183 int rw = rq_data_dir(clone);
1184 struct dm_rq_target_io *tio = clone->end_io_data;
1185 struct mapped_device *md = tio->md;
1186 struct request *rq = tio->orig;
1187
1188 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1189 rq->errors = clone->errors;
1190 rq->resid_len = clone->resid_len;
1191
1192 if (rq->sense)
1193 /*
1194 * We are using the sense buffer of the original
1195 * request.
1196 * So setting the length of the sense data is enough.
1197 */
1198 rq->sense_len = clone->sense_len;
1199 }
1200
1201 free_rq_clone(clone);
1202 rq_end_stats(md, rq);
1203 if (!rq->q->mq_ops)
1204 blk_end_request_all(rq, error);
1205 else
1206 blk_mq_end_request(rq, error);
1207 rq_completed(md, rw, true);
1208 }
1209
1210 static void dm_unprep_request(struct request *rq)
1211 {
1212 struct dm_rq_target_io *tio = tio_from_request(rq);
1213 struct request *clone = tio->clone;
1214
1215 if (!rq->q->mq_ops) {
1216 rq->special = NULL;
1217 rq->cmd_flags &= ~REQ_DONTPREP;
1218 }
1219
1220 if (clone)
1221 free_rq_clone(clone);
1222 else if (!tio->md->queue->mq_ops)
1223 free_old_rq_tio(tio);
1224 }
1225
1226 /*
1227 * Requeue the original request of a clone.
1228 */
1229 static void dm_old_requeue_request(struct request *rq)
1230 {
1231 struct request_queue *q = rq->q;
1232 unsigned long flags;
1233
1234 spin_lock_irqsave(q->queue_lock, flags);
1235 blk_requeue_request(q, rq);
1236 blk_run_queue_async(q);
1237 spin_unlock_irqrestore(q->queue_lock, flags);
1238 }
1239
1240 static void dm_mq_requeue_request(struct request *rq)
1241 {
1242 struct request_queue *q = rq->q;
1243 unsigned long flags;
1244
1245 blk_mq_requeue_request(rq);
1246 spin_lock_irqsave(q->queue_lock, flags);
1247 if (!blk_queue_stopped(q))
1248 blk_mq_kick_requeue_list(q);
1249 spin_unlock_irqrestore(q->queue_lock, flags);
1250 }
1251
1252 static void dm_requeue_original_request(struct mapped_device *md,
1253 struct request *rq)
1254 {
1255 int rw = rq_data_dir(rq);
1256
1257 rq_end_stats(md, rq);
1258 dm_unprep_request(rq);
1259
1260 if (!rq->q->mq_ops)
1261 dm_old_requeue_request(rq);
1262 else
1263 dm_mq_requeue_request(rq);
1264
1265 rq_completed(md, rw, false);
1266 }
1267
1268 static void dm_old_stop_queue(struct request_queue *q)
1269 {
1270 unsigned long flags;
1271
1272 spin_lock_irqsave(q->queue_lock, flags);
1273 if (blk_queue_stopped(q)) {
1274 spin_unlock_irqrestore(q->queue_lock, flags);
1275 return;
1276 }
1277
1278 blk_stop_queue(q);
1279 spin_unlock_irqrestore(q->queue_lock, flags);
1280 }
1281
1282 static void dm_stop_queue(struct request_queue *q)
1283 {
1284 if (!q->mq_ops)
1285 dm_old_stop_queue(q);
1286 else
1287 blk_mq_stop_hw_queues(q);
1288 }
1289
1290 static void dm_old_start_queue(struct request_queue *q)
1291 {
1292 unsigned long flags;
1293
1294 spin_lock_irqsave(q->queue_lock, flags);
1295 if (blk_queue_stopped(q))
1296 blk_start_queue(q);
1297 spin_unlock_irqrestore(q->queue_lock, flags);
1298 }
1299
1300 static void dm_start_queue(struct request_queue *q)
1301 {
1302 if (!q->mq_ops)
1303 dm_old_start_queue(q);
1304 else {
1305 blk_mq_start_stopped_hw_queues(q, true);
1306 blk_mq_kick_requeue_list(q);
1307 }
1308 }
1309
1310 static void dm_done(struct request *clone, int error, bool mapped)
1311 {
1312 int r = error;
1313 struct dm_rq_target_io *tio = clone->end_io_data;
1314 dm_request_endio_fn rq_end_io = NULL;
1315
1316 if (tio->ti) {
1317 rq_end_io = tio->ti->type->rq_end_io;
1318
1319 if (mapped && rq_end_io)
1320 r = rq_end_io(tio->ti, clone, error, &tio->info);
1321 }
1322
1323 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1324 !clone->q->limits.max_write_same_sectors))
1325 disable_write_same(tio->md);
1326
1327 if (r <= 0)
1328 /* The target wants to complete the I/O */
1329 dm_end_request(clone, r);
1330 else if (r == DM_ENDIO_INCOMPLETE)
1331 /* The target will handle the I/O */
1332 return;
1333 else if (r == DM_ENDIO_REQUEUE)
1334 /* The target wants to requeue the I/O */
1335 dm_requeue_original_request(tio->md, tio->orig);
1336 else {
1337 DMWARN("unimplemented target endio return value: %d", r);
1338 BUG();
1339 }
1340 }
1341
1342 /*
1343 * Request completion handler for request-based dm
1344 */
1345 static void dm_softirq_done(struct request *rq)
1346 {
1347 bool mapped = true;
1348 struct dm_rq_target_io *tio = tio_from_request(rq);
1349 struct request *clone = tio->clone;
1350 int rw;
1351
1352 if (!clone) {
1353 rq_end_stats(tio->md, rq);
1354 rw = rq_data_dir(rq);
1355 if (!rq->q->mq_ops) {
1356 blk_end_request_all(rq, tio->error);
1357 rq_completed(tio->md, rw, false);
1358 free_old_rq_tio(tio);
1359 } else {
1360 blk_mq_end_request(rq, tio->error);
1361 rq_completed(tio->md, rw, false);
1362 }
1363 return;
1364 }
1365
1366 if (rq->cmd_flags & REQ_FAILED)
1367 mapped = false;
1368
1369 dm_done(clone, tio->error, mapped);
1370 }
1371
1372 /*
1373 * Complete the clone and the original request with the error status
1374 * through softirq context.
1375 */
1376 static void dm_complete_request(struct request *rq, int error)
1377 {
1378 struct dm_rq_target_io *tio = tio_from_request(rq);
1379
1380 tio->error = error;
1381 if (!rq->q->mq_ops)
1382 blk_complete_request(rq);
1383 else
1384 blk_mq_complete_request(rq, error);
1385 }
1386
1387 /*
1388 * Complete the not-mapped clone and the original request with the error status
1389 * through softirq context.
1390 * Target's rq_end_io() function isn't called.
1391 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1392 */
1393 static void dm_kill_unmapped_request(struct request *rq, int error)
1394 {
1395 rq->cmd_flags |= REQ_FAILED;
1396 dm_complete_request(rq, error);
1397 }
1398
1399 /*
1400 * Called with the clone's queue lock held (in the case of .request_fn)
1401 */
1402 static void end_clone_request(struct request *clone, int error)
1403 {
1404 struct dm_rq_target_io *tio = clone->end_io_data;
1405
1406 if (!clone->q->mq_ops) {
1407 /*
1408 * For just cleaning up the information of the queue in which
1409 * the clone was dispatched.
1410 * The clone is *NOT* freed actually here because it is alloced
1411 * from dm own mempool (REQ_ALLOCED isn't set).
1412 */
1413 __blk_put_request(clone->q, clone);
1414 }
1415
1416 /*
1417 * Actual request completion is done in a softirq context which doesn't
1418 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1419 * - another request may be submitted by the upper level driver
1420 * of the stacking during the completion
1421 * - the submission which requires queue lock may be done
1422 * against this clone's queue
1423 */
1424 dm_complete_request(tio->orig, error);
1425 }
1426
1427 /*
1428 * Return maximum size of I/O possible at the supplied sector up to the current
1429 * target boundary.
1430 */
1431 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1432 {
1433 sector_t target_offset = dm_target_offset(ti, sector);
1434
1435 return ti->len - target_offset;
1436 }
1437
1438 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1439 {
1440 sector_t len = max_io_len_target_boundary(sector, ti);
1441 sector_t offset, max_len;
1442
1443 /*
1444 * Does the target need to split even further?
1445 */
1446 if (ti->max_io_len) {
1447 offset = dm_target_offset(ti, sector);
1448 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1449 max_len = sector_div(offset, ti->max_io_len);
1450 else
1451 max_len = offset & (ti->max_io_len - 1);
1452 max_len = ti->max_io_len - max_len;
1453
1454 if (len > max_len)
1455 len = max_len;
1456 }
1457
1458 return len;
1459 }
1460
1461 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1462 {
1463 if (len > UINT_MAX) {
1464 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1465 (unsigned long long)len, UINT_MAX);
1466 ti->error = "Maximum size of target IO is too large";
1467 return -EINVAL;
1468 }
1469
1470 ti->max_io_len = (uint32_t) len;
1471
1472 return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1475
1476 /*
1477 * A target may call dm_accept_partial_bio only from the map routine. It is
1478 * allowed for all bio types except REQ_FLUSH.
1479 *
1480 * dm_accept_partial_bio informs the dm that the target only wants to process
1481 * additional n_sectors sectors of the bio and the rest of the data should be
1482 * sent in a next bio.
1483 *
1484 * A diagram that explains the arithmetics:
1485 * +--------------------+---------------+-------+
1486 * | 1 | 2 | 3 |
1487 * +--------------------+---------------+-------+
1488 *
1489 * <-------------- *tio->len_ptr --------------->
1490 * <------- bi_size ------->
1491 * <-- n_sectors -->
1492 *
1493 * Region 1 was already iterated over with bio_advance or similar function.
1494 * (it may be empty if the target doesn't use bio_advance)
1495 * Region 2 is the remaining bio size that the target wants to process.
1496 * (it may be empty if region 1 is non-empty, although there is no reason
1497 * to make it empty)
1498 * The target requires that region 3 is to be sent in the next bio.
1499 *
1500 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1501 * the partially processed part (the sum of regions 1+2) must be the same for all
1502 * copies of the bio.
1503 */
1504 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1505 {
1506 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1507 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1508 BUG_ON(bio->bi_rw & REQ_FLUSH);
1509 BUG_ON(bi_size > *tio->len_ptr);
1510 BUG_ON(n_sectors > bi_size);
1511 *tio->len_ptr -= bi_size - n_sectors;
1512 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1513 }
1514 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1515
1516 static void __map_bio(struct dm_target_io *tio)
1517 {
1518 int r;
1519 sector_t sector;
1520 struct mapped_device *md;
1521 struct bio *clone = &tio->clone;
1522 struct dm_target *ti = tio->ti;
1523
1524 clone->bi_end_io = clone_endio;
1525
1526 /*
1527 * Map the clone. If r == 0 we don't need to do
1528 * anything, the target has assumed ownership of
1529 * this io.
1530 */
1531 atomic_inc(&tio->io->io_count);
1532 sector = clone->bi_iter.bi_sector;
1533 r = ti->type->map(ti, clone);
1534 if (r == DM_MAPIO_REMAPPED) {
1535 /* the bio has been remapped so dispatch it */
1536
1537 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1538 tio->io->bio->bi_bdev->bd_dev, sector);
1539
1540 generic_make_request(clone);
1541 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1542 /* error the io and bail out, or requeue it if needed */
1543 md = tio->io->md;
1544 dec_pending(tio->io, r);
1545 free_tio(md, tio);
1546 } else if (r != DM_MAPIO_SUBMITTED) {
1547 DMWARN("unimplemented target map return value: %d", r);
1548 BUG();
1549 }
1550 }
1551
1552 struct clone_info {
1553 struct mapped_device *md;
1554 struct dm_table *map;
1555 struct bio *bio;
1556 struct dm_io *io;
1557 sector_t sector;
1558 unsigned sector_count;
1559 };
1560
1561 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562 {
1563 bio->bi_iter.bi_sector = sector;
1564 bio->bi_iter.bi_size = to_bytes(len);
1565 }
1566
1567 /*
1568 * Creates a bio that consists of range of complete bvecs.
1569 */
1570 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571 sector_t sector, unsigned len)
1572 {
1573 struct bio *clone = &tio->clone;
1574
1575 __bio_clone_fast(clone, bio);
1576
1577 if (bio_integrity(bio)) {
1578 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1579 if (r < 0)
1580 return r;
1581 }
1582
1583 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584 clone->bi_iter.bi_size = to_bytes(len);
1585
1586 if (bio_integrity(bio))
1587 bio_integrity_trim(clone, 0, len);
1588
1589 return 0;
1590 }
1591
1592 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593 struct dm_target *ti,
1594 unsigned target_bio_nr)
1595 {
1596 struct dm_target_io *tio;
1597 struct bio *clone;
1598
1599 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600 tio = container_of(clone, struct dm_target_io, clone);
1601
1602 tio->io = ci->io;
1603 tio->ti = ti;
1604 tio->target_bio_nr = target_bio_nr;
1605
1606 return tio;
1607 }
1608
1609 static void __clone_and_map_simple_bio(struct clone_info *ci,
1610 struct dm_target *ti,
1611 unsigned target_bio_nr, unsigned *len)
1612 {
1613 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614 struct bio *clone = &tio->clone;
1615
1616 tio->len_ptr = len;
1617
1618 __bio_clone_fast(clone, ci->bio);
1619 if (len)
1620 bio_setup_sector(clone, ci->sector, *len);
1621
1622 __map_bio(tio);
1623 }
1624
1625 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626 unsigned num_bios, unsigned *len)
1627 {
1628 unsigned target_bio_nr;
1629
1630 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1632 }
1633
1634 static int __send_empty_flush(struct clone_info *ci)
1635 {
1636 unsigned target_nr = 0;
1637 struct dm_target *ti;
1638
1639 BUG_ON(bio_has_data(ci->bio));
1640 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1642
1643 return 0;
1644 }
1645
1646 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647 sector_t sector, unsigned *len)
1648 {
1649 struct bio *bio = ci->bio;
1650 struct dm_target_io *tio;
1651 unsigned target_bio_nr;
1652 unsigned num_target_bios = 1;
1653 int r = 0;
1654
1655 /*
1656 * Does the target want to receive duplicate copies of the bio?
1657 */
1658 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659 num_target_bios = ti->num_write_bios(ti, bio);
1660
1661 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662 tio = alloc_tio(ci, ti, target_bio_nr);
1663 tio->len_ptr = len;
1664 r = clone_bio(tio, bio, sector, *len);
1665 if (r < 0)
1666 break;
1667 __map_bio(tio);
1668 }
1669
1670 return r;
1671 }
1672
1673 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1674
1675 static unsigned get_num_discard_bios(struct dm_target *ti)
1676 {
1677 return ti->num_discard_bios;
1678 }
1679
1680 static unsigned get_num_write_same_bios(struct dm_target *ti)
1681 {
1682 return ti->num_write_same_bios;
1683 }
1684
1685 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1686
1687 static bool is_split_required_for_discard(struct dm_target *ti)
1688 {
1689 return ti->split_discard_bios;
1690 }
1691
1692 static int __send_changing_extent_only(struct clone_info *ci,
1693 get_num_bios_fn get_num_bios,
1694 is_split_required_fn is_split_required)
1695 {
1696 struct dm_target *ti;
1697 unsigned len;
1698 unsigned num_bios;
1699
1700 do {
1701 ti = dm_table_find_target(ci->map, ci->sector);
1702 if (!dm_target_is_valid(ti))
1703 return -EIO;
1704
1705 /*
1706 * Even though the device advertised support for this type of
1707 * request, that does not mean every target supports it, and
1708 * reconfiguration might also have changed that since the
1709 * check was performed.
1710 */
1711 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1712 if (!num_bios)
1713 return -EOPNOTSUPP;
1714
1715 if (is_split_required && !is_split_required(ti))
1716 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1717 else
1718 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1719
1720 __send_duplicate_bios(ci, ti, num_bios, &len);
1721
1722 ci->sector += len;
1723 } while (ci->sector_count -= len);
1724
1725 return 0;
1726 }
1727
1728 static int __send_discard(struct clone_info *ci)
1729 {
1730 return __send_changing_extent_only(ci, get_num_discard_bios,
1731 is_split_required_for_discard);
1732 }
1733
1734 static int __send_write_same(struct clone_info *ci)
1735 {
1736 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1737 }
1738
1739 /*
1740 * Select the correct strategy for processing a non-flush bio.
1741 */
1742 static int __split_and_process_non_flush(struct clone_info *ci)
1743 {
1744 struct bio *bio = ci->bio;
1745 struct dm_target *ti;
1746 unsigned len;
1747 int r;
1748
1749 if (unlikely(bio->bi_rw & REQ_DISCARD))
1750 return __send_discard(ci);
1751 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1752 return __send_write_same(ci);
1753
1754 ti = dm_table_find_target(ci->map, ci->sector);
1755 if (!dm_target_is_valid(ti))
1756 return -EIO;
1757
1758 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1759
1760 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1761 if (r < 0)
1762 return r;
1763
1764 ci->sector += len;
1765 ci->sector_count -= len;
1766
1767 return 0;
1768 }
1769
1770 /*
1771 * Entry point to split a bio into clones and submit them to the targets.
1772 */
1773 static void __split_and_process_bio(struct mapped_device *md,
1774 struct dm_table *map, struct bio *bio)
1775 {
1776 struct clone_info ci;
1777 int error = 0;
1778
1779 if (unlikely(!map)) {
1780 bio_io_error(bio);
1781 return;
1782 }
1783
1784 ci.map = map;
1785 ci.md = md;
1786 ci.io = alloc_io(md);
1787 ci.io->error = 0;
1788 atomic_set(&ci.io->io_count, 1);
1789 ci.io->bio = bio;
1790 ci.io->md = md;
1791 spin_lock_init(&ci.io->endio_lock);
1792 ci.sector = bio->bi_iter.bi_sector;
1793
1794 start_io_acct(ci.io);
1795
1796 if (bio->bi_rw & REQ_FLUSH) {
1797 ci.bio = &ci.md->flush_bio;
1798 ci.sector_count = 0;
1799 error = __send_empty_flush(&ci);
1800 /* dec_pending submits any data associated with flush */
1801 } else {
1802 ci.bio = bio;
1803 ci.sector_count = bio_sectors(bio);
1804 while (ci.sector_count && !error)
1805 error = __split_and_process_non_flush(&ci);
1806 }
1807
1808 /* drop the extra reference count */
1809 dec_pending(ci.io, error);
1810 }
1811 /*-----------------------------------------------------------------
1812 * CRUD END
1813 *---------------------------------------------------------------*/
1814
1815 /*
1816 * The request function that just remaps the bio built up by
1817 * dm_merge_bvec.
1818 */
1819 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1820 {
1821 int rw = bio_data_dir(bio);
1822 struct mapped_device *md = q->queuedata;
1823 int srcu_idx;
1824 struct dm_table *map;
1825
1826 map = dm_get_live_table(md, &srcu_idx);
1827
1828 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1829
1830 /* if we're suspended, we have to queue this io for later */
1831 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1832 dm_put_live_table(md, srcu_idx);
1833
1834 if (bio_rw(bio) != READA)
1835 queue_io(md, bio);
1836 else
1837 bio_io_error(bio);
1838 return BLK_QC_T_NONE;
1839 }
1840
1841 __split_and_process_bio(md, map, bio);
1842 dm_put_live_table(md, srcu_idx);
1843 return BLK_QC_T_NONE;
1844 }
1845
1846 int dm_request_based(struct mapped_device *md)
1847 {
1848 return blk_queue_stackable(md->queue);
1849 }
1850
1851 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1852 {
1853 int r;
1854
1855 if (blk_queue_io_stat(clone->q))
1856 clone->cmd_flags |= REQ_IO_STAT;
1857
1858 clone->start_time = jiffies;
1859 r = blk_insert_cloned_request(clone->q, clone);
1860 if (r)
1861 /* must complete clone in terms of original request */
1862 dm_complete_request(rq, r);
1863 }
1864
1865 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1866 void *data)
1867 {
1868 struct dm_rq_target_io *tio = data;
1869 struct dm_rq_clone_bio_info *info =
1870 container_of(bio, struct dm_rq_clone_bio_info, clone);
1871
1872 info->orig = bio_orig;
1873 info->tio = tio;
1874 bio->bi_end_io = end_clone_bio;
1875
1876 return 0;
1877 }
1878
1879 static int setup_clone(struct request *clone, struct request *rq,
1880 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1881 {
1882 int r;
1883
1884 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1885 dm_rq_bio_constructor, tio);
1886 if (r)
1887 return r;
1888
1889 clone->cmd = rq->cmd;
1890 clone->cmd_len = rq->cmd_len;
1891 clone->sense = rq->sense;
1892 clone->end_io = end_clone_request;
1893 clone->end_io_data = tio;
1894
1895 tio->clone = clone;
1896
1897 return 0;
1898 }
1899
1900 static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1901 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1902 {
1903 /*
1904 * Create clone for use with .request_fn request_queue
1905 */
1906 struct request *clone;
1907
1908 clone = alloc_old_clone_request(md, gfp_mask);
1909 if (!clone)
1910 return NULL;
1911
1912 blk_rq_init(NULL, clone);
1913 if (setup_clone(clone, rq, tio, gfp_mask)) {
1914 /* -ENOMEM */
1915 free_old_clone_request(md, clone);
1916 return NULL;
1917 }
1918
1919 return clone;
1920 }
1921
1922 static void map_tio_request(struct kthread_work *work);
1923
1924 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1925 struct mapped_device *md)
1926 {
1927 tio->md = md;
1928 tio->ti = NULL;
1929 tio->clone = NULL;
1930 tio->orig = rq;
1931 tio->error = 0;
1932 /*
1933 * Avoid initializing info for blk-mq; it passes
1934 * target-specific data through info.ptr
1935 * (see: dm_mq_init_request)
1936 */
1937 if (!md->init_tio_pdu)
1938 memset(&tio->info, 0, sizeof(tio->info));
1939 if (md->kworker_task)
1940 init_kthread_work(&tio->work, map_tio_request);
1941 }
1942
1943 static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1944 struct mapped_device *md,
1945 gfp_t gfp_mask)
1946 {
1947 struct dm_rq_target_io *tio;
1948 int srcu_idx;
1949 struct dm_table *table;
1950
1951 tio = alloc_old_rq_tio(md, gfp_mask);
1952 if (!tio)
1953 return NULL;
1954
1955 init_tio(tio, rq, md);
1956
1957 table = dm_get_live_table(md, &srcu_idx);
1958 /*
1959 * Must clone a request if this .request_fn DM device
1960 * is stacked on .request_fn device(s).
1961 */
1962 if (!dm_table_mq_request_based(table)) {
1963 if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1964 dm_put_live_table(md, srcu_idx);
1965 free_old_rq_tio(tio);
1966 return NULL;
1967 }
1968 }
1969 dm_put_live_table(md, srcu_idx);
1970
1971 return tio;
1972 }
1973
1974 /*
1975 * Called with the queue lock held.
1976 */
1977 static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1978 {
1979 struct mapped_device *md = q->queuedata;
1980 struct dm_rq_target_io *tio;
1981
1982 if (unlikely(rq->special)) {
1983 DMWARN("Already has something in rq->special.");
1984 return BLKPREP_KILL;
1985 }
1986
1987 tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1988 if (!tio)
1989 return BLKPREP_DEFER;
1990
1991 rq->special = tio;
1992 rq->cmd_flags |= REQ_DONTPREP;
1993
1994 return BLKPREP_OK;
1995 }
1996
1997 /*
1998 * Returns:
1999 * 0 : the request has been processed
2000 * DM_MAPIO_REQUEUE : the original request needs to be requeued
2001 * < 0 : the request was completed due to failure
2002 */
2003 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2004 struct mapped_device *md)
2005 {
2006 int r;
2007 struct dm_target *ti = tio->ti;
2008 struct request *clone = NULL;
2009
2010 if (tio->clone) {
2011 clone = tio->clone;
2012 r = ti->type->map_rq(ti, clone, &tio->info);
2013 } else {
2014 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2015 if (r < 0) {
2016 /* The target wants to complete the I/O */
2017 dm_kill_unmapped_request(rq, r);
2018 return r;
2019 }
2020 if (r != DM_MAPIO_REMAPPED)
2021 return r;
2022 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2023 /* -ENOMEM */
2024 ti->type->release_clone_rq(clone);
2025 return DM_MAPIO_REQUEUE;
2026 }
2027 }
2028
2029 switch (r) {
2030 case DM_MAPIO_SUBMITTED:
2031 /* The target has taken the I/O to submit by itself later */
2032 break;
2033 case DM_MAPIO_REMAPPED:
2034 /* The target has remapped the I/O so dispatch it */
2035 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2036 blk_rq_pos(rq));
2037 dm_dispatch_clone_request(clone, rq);
2038 break;
2039 case DM_MAPIO_REQUEUE:
2040 /* The target wants to requeue the I/O */
2041 dm_requeue_original_request(md, tio->orig);
2042 break;
2043 default:
2044 if (r > 0) {
2045 DMWARN("unimplemented target map return value: %d", r);
2046 BUG();
2047 }
2048
2049 /* The target wants to complete the I/O */
2050 dm_kill_unmapped_request(rq, r);
2051 return r;
2052 }
2053
2054 return 0;
2055 }
2056
2057 static void map_tio_request(struct kthread_work *work)
2058 {
2059 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2060 struct request *rq = tio->orig;
2061 struct mapped_device *md = tio->md;
2062
2063 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2064 dm_requeue_original_request(md, rq);
2065 }
2066
2067 static void dm_start_request(struct mapped_device *md, struct request *orig)
2068 {
2069 if (!orig->q->mq_ops)
2070 blk_start_request(orig);
2071 else
2072 blk_mq_start_request(orig);
2073 atomic_inc(&md->pending[rq_data_dir(orig)]);
2074
2075 if (md->seq_rq_merge_deadline_usecs) {
2076 md->last_rq_pos = rq_end_sector(orig);
2077 md->last_rq_rw = rq_data_dir(orig);
2078 md->last_rq_start_time = ktime_get();
2079 }
2080
2081 if (unlikely(dm_stats_used(&md->stats))) {
2082 struct dm_rq_target_io *tio = tio_from_request(orig);
2083 tio->duration_jiffies = jiffies;
2084 tio->n_sectors = blk_rq_sectors(orig);
2085 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2086 tio->n_sectors, false, 0, &tio->stats_aux);
2087 }
2088
2089 /*
2090 * Hold the md reference here for the in-flight I/O.
2091 * We can't rely on the reference count by device opener,
2092 * because the device may be closed during the request completion
2093 * when all bios are completed.
2094 * See the comment in rq_completed() too.
2095 */
2096 dm_get(md);
2097 }
2098
2099 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2100
2101 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2102 {
2103 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2104 }
2105
2106 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2107 const char *buf, size_t count)
2108 {
2109 unsigned deadline;
2110
2111 if (!dm_request_based(md) || md->use_blk_mq)
2112 return count;
2113
2114 if (kstrtouint(buf, 10, &deadline))
2115 return -EINVAL;
2116
2117 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2118 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2119
2120 md->seq_rq_merge_deadline_usecs = deadline;
2121
2122 return count;
2123 }
2124
2125 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2126 {
2127 ktime_t kt_deadline;
2128
2129 if (!md->seq_rq_merge_deadline_usecs)
2130 return false;
2131
2132 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2133 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2134
2135 return !ktime_after(ktime_get(), kt_deadline);
2136 }
2137
2138 /*
2139 * q->request_fn for request-based dm.
2140 * Called with the queue lock held.
2141 */
2142 static void dm_request_fn(struct request_queue *q)
2143 {
2144 struct mapped_device *md = q->queuedata;
2145 struct dm_target *ti = md->immutable_target;
2146 struct request *rq;
2147 struct dm_rq_target_io *tio;
2148 sector_t pos = 0;
2149
2150 if (unlikely(!ti)) {
2151 int srcu_idx;
2152 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2153
2154 ti = dm_table_find_target(map, pos);
2155 dm_put_live_table(md, srcu_idx);
2156 }
2157
2158 /*
2159 * For suspend, check blk_queue_stopped() and increment
2160 * ->pending within a single queue_lock not to increment the
2161 * number of in-flight I/Os after the queue is stopped in
2162 * dm_suspend().
2163 */
2164 while (!blk_queue_stopped(q)) {
2165 rq = blk_peek_request(q);
2166 if (!rq)
2167 return;
2168
2169 /* always use block 0 to find the target for flushes for now */
2170 pos = 0;
2171 if (!(rq->cmd_flags & REQ_FLUSH))
2172 pos = blk_rq_pos(rq);
2173
2174 if ((dm_request_peeked_before_merge_deadline(md) &&
2175 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2176 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2177 (ti->type->busy && ti->type->busy(ti))) {
2178 blk_delay_queue(q, HZ / 100);
2179 return;
2180 }
2181
2182 dm_start_request(md, rq);
2183
2184 tio = tio_from_request(rq);
2185 /* Establish tio->ti before queuing work (map_tio_request) */
2186 tio->ti = ti;
2187 queue_kthread_work(&md->kworker, &tio->work);
2188 BUG_ON(!irqs_disabled());
2189 }
2190 }
2191
2192 static int dm_any_congested(void *congested_data, int bdi_bits)
2193 {
2194 int r = bdi_bits;
2195 struct mapped_device *md = congested_data;
2196 struct dm_table *map;
2197
2198 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2199 if (dm_request_based(md)) {
2200 /*
2201 * With request-based DM we only need to check the
2202 * top-level queue for congestion.
2203 */
2204 r = md->queue->backing_dev_info.wb.state & bdi_bits;
2205 } else {
2206 map = dm_get_live_table_fast(md);
2207 if (map)
2208 r = dm_table_any_congested(map, bdi_bits);
2209 dm_put_live_table_fast(md);
2210 }
2211 }
2212
2213 return r;
2214 }
2215
2216 /*-----------------------------------------------------------------
2217 * An IDR is used to keep track of allocated minor numbers.
2218 *---------------------------------------------------------------*/
2219 static void free_minor(int minor)
2220 {
2221 spin_lock(&_minor_lock);
2222 idr_remove(&_minor_idr, minor);
2223 spin_unlock(&_minor_lock);
2224 }
2225
2226 /*
2227 * See if the device with a specific minor # is free.
2228 */
2229 static int specific_minor(int minor)
2230 {
2231 int r;
2232
2233 if (minor >= (1 << MINORBITS))
2234 return -EINVAL;
2235
2236 idr_preload(GFP_KERNEL);
2237 spin_lock(&_minor_lock);
2238
2239 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2240
2241 spin_unlock(&_minor_lock);
2242 idr_preload_end();
2243 if (r < 0)
2244 return r == -ENOSPC ? -EBUSY : r;
2245 return 0;
2246 }
2247
2248 static int next_free_minor(int *minor)
2249 {
2250 int r;
2251
2252 idr_preload(GFP_KERNEL);
2253 spin_lock(&_minor_lock);
2254
2255 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2256
2257 spin_unlock(&_minor_lock);
2258 idr_preload_end();
2259 if (r < 0)
2260 return r;
2261 *minor = r;
2262 return 0;
2263 }
2264
2265 static const struct block_device_operations dm_blk_dops;
2266
2267 static void dm_wq_work(struct work_struct *work);
2268
2269 static void dm_init_md_queue(struct mapped_device *md)
2270 {
2271 /*
2272 * Request-based dm devices cannot be stacked on top of bio-based dm
2273 * devices. The type of this dm device may not have been decided yet.
2274 * The type is decided at the first table loading time.
2275 * To prevent problematic device stacking, clear the queue flag
2276 * for request stacking support until then.
2277 *
2278 * This queue is new, so no concurrency on the queue_flags.
2279 */
2280 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2281
2282 /*
2283 * Initialize data that will only be used by a non-blk-mq DM queue
2284 * - must do so here (in alloc_dev callchain) before queue is used
2285 */
2286 md->queue->queuedata = md;
2287 md->queue->backing_dev_info.congested_data = md;
2288 }
2289
2290 static void dm_init_normal_md_queue(struct mapped_device *md)
2291 {
2292 md->use_blk_mq = false;
2293 dm_init_md_queue(md);
2294
2295 /*
2296 * Initialize aspects of queue that aren't relevant for blk-mq
2297 */
2298 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2299 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2300 }
2301
2302 static void cleanup_mapped_device(struct mapped_device *md)
2303 {
2304 if (md->wq)
2305 destroy_workqueue(md->wq);
2306 if (md->kworker_task)
2307 kthread_stop(md->kworker_task);
2308 mempool_destroy(md->io_pool);
2309 mempool_destroy(md->rq_pool);
2310 if (md->bs)
2311 bioset_free(md->bs);
2312
2313 cleanup_srcu_struct(&md->io_barrier);
2314
2315 if (md->disk) {
2316 spin_lock(&_minor_lock);
2317 md->disk->private_data = NULL;
2318 spin_unlock(&_minor_lock);
2319 del_gendisk(md->disk);
2320 put_disk(md->disk);
2321 }
2322
2323 if (md->queue)
2324 blk_cleanup_queue(md->queue);
2325
2326 if (md->bdev) {
2327 bdput(md->bdev);
2328 md->bdev = NULL;
2329 }
2330 }
2331
2332 /*
2333 * Allocate and initialise a blank device with a given minor.
2334 */
2335 static struct mapped_device *alloc_dev(int minor)
2336 {
2337 int r, numa_node_id = dm_get_numa_node();
2338 struct mapped_device *md;
2339 void *old_md;
2340
2341 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2342 if (!md) {
2343 DMWARN("unable to allocate device, out of memory.");
2344 return NULL;
2345 }
2346
2347 if (!try_module_get(THIS_MODULE))
2348 goto bad_module_get;
2349
2350 /* get a minor number for the dev */
2351 if (minor == DM_ANY_MINOR)
2352 r = next_free_minor(&minor);
2353 else
2354 r = specific_minor(minor);
2355 if (r < 0)
2356 goto bad_minor;
2357
2358 r = init_srcu_struct(&md->io_barrier);
2359 if (r < 0)
2360 goto bad_io_barrier;
2361
2362 md->numa_node_id = numa_node_id;
2363 md->use_blk_mq = use_blk_mq;
2364 md->init_tio_pdu = false;
2365 md->type = DM_TYPE_NONE;
2366 mutex_init(&md->suspend_lock);
2367 mutex_init(&md->type_lock);
2368 mutex_init(&md->table_devices_lock);
2369 spin_lock_init(&md->deferred_lock);
2370 atomic_set(&md->holders, 1);
2371 atomic_set(&md->open_count, 0);
2372 atomic_set(&md->event_nr, 0);
2373 atomic_set(&md->uevent_seq, 0);
2374 INIT_LIST_HEAD(&md->uevent_list);
2375 INIT_LIST_HEAD(&md->table_devices);
2376 spin_lock_init(&md->uevent_lock);
2377
2378 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2379 if (!md->queue)
2380 goto bad;
2381
2382 dm_init_md_queue(md);
2383
2384 md->disk = alloc_disk_node(1, numa_node_id);
2385 if (!md->disk)
2386 goto bad;
2387
2388 atomic_set(&md->pending[0], 0);
2389 atomic_set(&md->pending[1], 0);
2390 init_waitqueue_head(&md->wait);
2391 INIT_WORK(&md->work, dm_wq_work);
2392 init_waitqueue_head(&md->eventq);
2393 init_completion(&md->kobj_holder.completion);
2394 md->kworker_task = NULL;
2395
2396 md->disk->major = _major;
2397 md->disk->first_minor = minor;
2398 md->disk->fops = &dm_blk_dops;
2399 md->disk->queue = md->queue;
2400 md->disk->private_data = md;
2401 sprintf(md->disk->disk_name, "dm-%d", minor);
2402 add_disk(md->disk);
2403 format_dev_t(md->name, MKDEV(_major, minor));
2404
2405 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2406 if (!md->wq)
2407 goto bad;
2408
2409 md->bdev = bdget_disk(md->disk, 0);
2410 if (!md->bdev)
2411 goto bad;
2412
2413 bio_init(&md->flush_bio);
2414 md->flush_bio.bi_bdev = md->bdev;
2415 md->flush_bio.bi_rw = WRITE_FLUSH;
2416
2417 dm_stats_init(&md->stats);
2418
2419 /* Populate the mapping, nobody knows we exist yet */
2420 spin_lock(&_minor_lock);
2421 old_md = idr_replace(&_minor_idr, md, minor);
2422 spin_unlock(&_minor_lock);
2423
2424 BUG_ON(old_md != MINOR_ALLOCED);
2425
2426 return md;
2427
2428 bad:
2429 cleanup_mapped_device(md);
2430 bad_io_barrier:
2431 free_minor(minor);
2432 bad_minor:
2433 module_put(THIS_MODULE);
2434 bad_module_get:
2435 kfree(md);
2436 return NULL;
2437 }
2438
2439 static void unlock_fs(struct mapped_device *md);
2440
2441 static void free_dev(struct mapped_device *md)
2442 {
2443 int minor = MINOR(disk_devt(md->disk));
2444
2445 unlock_fs(md);
2446
2447 cleanup_mapped_device(md);
2448 if (md->tag_set) {
2449 blk_mq_free_tag_set(md->tag_set);
2450 kfree(md->tag_set);
2451 }
2452
2453 free_table_devices(&md->table_devices);
2454 dm_stats_cleanup(&md->stats);
2455 free_minor(minor);
2456
2457 module_put(THIS_MODULE);
2458 kfree(md);
2459 }
2460
2461 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2462 {
2463 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2464
2465 if (md->bs) {
2466 /* The md already has necessary mempools. */
2467 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2468 /*
2469 * Reload bioset because front_pad may have changed
2470 * because a different table was loaded.
2471 */
2472 bioset_free(md->bs);
2473 md->bs = p->bs;
2474 p->bs = NULL;
2475 }
2476 /*
2477 * There's no need to reload with request-based dm
2478 * because the size of front_pad doesn't change.
2479 * Note for future: If you are to reload bioset,
2480 * prep-ed requests in the queue may refer
2481 * to bio from the old bioset, so you must walk
2482 * through the queue to unprep.
2483 */
2484 goto out;
2485 }
2486
2487 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2488
2489 md->io_pool = p->io_pool;
2490 p->io_pool = NULL;
2491 md->rq_pool = p->rq_pool;
2492 p->rq_pool = NULL;
2493 md->bs = p->bs;
2494 p->bs = NULL;
2495
2496 out:
2497 /* mempool bind completed, no longer need any mempools in the table */
2498 dm_table_free_md_mempools(t);
2499 }
2500
2501 /*
2502 * Bind a table to the device.
2503 */
2504 static void event_callback(void *context)
2505 {
2506 unsigned long flags;
2507 LIST_HEAD(uevents);
2508 struct mapped_device *md = (struct mapped_device *) context;
2509
2510 spin_lock_irqsave(&md->uevent_lock, flags);
2511 list_splice_init(&md->uevent_list, &uevents);
2512 spin_unlock_irqrestore(&md->uevent_lock, flags);
2513
2514 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2515
2516 atomic_inc(&md->event_nr);
2517 wake_up(&md->eventq);
2518 }
2519
2520 /*
2521 * Protected by md->suspend_lock obtained by dm_swap_table().
2522 */
2523 static void __set_size(struct mapped_device *md, sector_t size)
2524 {
2525 set_capacity(md->disk, size);
2526
2527 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2528 }
2529
2530 /*
2531 * Returns old map, which caller must destroy.
2532 */
2533 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2534 struct queue_limits *limits)
2535 {
2536 struct dm_table *old_map;
2537 struct request_queue *q = md->queue;
2538 sector_t size;
2539
2540 size = dm_table_get_size(t);
2541
2542 /*
2543 * Wipe any geometry if the size of the table changed.
2544 */
2545 if (size != dm_get_size(md))
2546 memset(&md->geometry, 0, sizeof(md->geometry));
2547
2548 __set_size(md, size);
2549
2550 dm_table_event_callback(t, event_callback, md);
2551
2552 /*
2553 * The queue hasn't been stopped yet, if the old table type wasn't
2554 * for request-based during suspension. So stop it to prevent
2555 * I/O mapping before resume.
2556 * This must be done before setting the queue restrictions,
2557 * because request-based dm may be run just after the setting.
2558 */
2559 if (dm_table_request_based(t)) {
2560 dm_stop_queue(q);
2561 /*
2562 * Leverage the fact that request-based DM targets are
2563 * immutable singletons and establish md->immutable_target
2564 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2565 */
2566 md->immutable_target = dm_table_get_immutable_target(t);
2567 }
2568
2569 __bind_mempools(md, t);
2570
2571 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2572 rcu_assign_pointer(md->map, (void *)t);
2573 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2574
2575 dm_table_set_restrictions(t, q, limits);
2576 if (old_map)
2577 dm_sync_table(md);
2578
2579 return old_map;
2580 }
2581
2582 /*
2583 * Returns unbound table for the caller to free.
2584 */
2585 static struct dm_table *__unbind(struct mapped_device *md)
2586 {
2587 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2588
2589 if (!map)
2590 return NULL;
2591
2592 dm_table_event_callback(map, NULL, NULL);
2593 RCU_INIT_POINTER(md->map, NULL);
2594 dm_sync_table(md);
2595
2596 return map;
2597 }
2598
2599 /*
2600 * Constructor for a new device.
2601 */
2602 int dm_create(int minor, struct mapped_device **result)
2603 {
2604 struct mapped_device *md;
2605
2606 md = alloc_dev(minor);
2607 if (!md)
2608 return -ENXIO;
2609
2610 dm_sysfs_init(md);
2611
2612 *result = md;
2613 return 0;
2614 }
2615
2616 /*
2617 * Functions to manage md->type.
2618 * All are required to hold md->type_lock.
2619 */
2620 void dm_lock_md_type(struct mapped_device *md)
2621 {
2622 mutex_lock(&md->type_lock);
2623 }
2624
2625 void dm_unlock_md_type(struct mapped_device *md)
2626 {
2627 mutex_unlock(&md->type_lock);
2628 }
2629
2630 void dm_set_md_type(struct mapped_device *md, unsigned type)
2631 {
2632 BUG_ON(!mutex_is_locked(&md->type_lock));
2633 md->type = type;
2634 }
2635
2636 unsigned dm_get_md_type(struct mapped_device *md)
2637 {
2638 return md->type;
2639 }
2640
2641 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2642 {
2643 return md->immutable_target_type;
2644 }
2645
2646 /*
2647 * The queue_limits are only valid as long as you have a reference
2648 * count on 'md'.
2649 */
2650 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2651 {
2652 BUG_ON(!atomic_read(&md->holders));
2653 return &md->queue->limits;
2654 }
2655 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2656
2657 static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2658 {
2659 /* Initialize the request-based DM worker thread */
2660 init_kthread_worker(&md->kworker);
2661 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2662 "kdmwork-%s", dm_device_name(md));
2663 }
2664
2665 /*
2666 * Fully initialize a .request_fn request-based queue.
2667 */
2668 static int dm_old_init_request_queue(struct mapped_device *md)
2669 {
2670 /* Fully initialize the queue */
2671 if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2672 return -EINVAL;
2673
2674 /* disable dm_request_fn's merge heuristic by default */
2675 md->seq_rq_merge_deadline_usecs = 0;
2676
2677 dm_init_normal_md_queue(md);
2678 blk_queue_softirq_done(md->queue, dm_softirq_done);
2679 blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2680
2681 dm_old_init_rq_based_worker_thread(md);
2682
2683 elv_register_queue(md->queue);
2684
2685 return 0;
2686 }
2687
2688 static int dm_mq_init_request(void *data, struct request *rq,
2689 unsigned int hctx_idx, unsigned int request_idx,
2690 unsigned int numa_node)
2691 {
2692 struct mapped_device *md = data;
2693 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2694
2695 /*
2696 * Must initialize md member of tio, otherwise it won't
2697 * be available in dm_mq_queue_rq.
2698 */
2699 tio->md = md;
2700
2701 if (md->init_tio_pdu) {
2702 /* target-specific per-io data is immediately after the tio */
2703 tio->info.ptr = tio + 1;
2704 }
2705
2706 return 0;
2707 }
2708
2709 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2710 const struct blk_mq_queue_data *bd)
2711 {
2712 struct request *rq = bd->rq;
2713 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2714 struct mapped_device *md = tio->md;
2715 struct dm_target *ti = md->immutable_target;
2716
2717 if (unlikely(!ti)) {
2718 int srcu_idx;
2719 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2720
2721 ti = dm_table_find_target(map, 0);
2722 dm_put_live_table(md, srcu_idx);
2723 }
2724
2725 if (ti->type->busy && ti->type->busy(ti))
2726 return BLK_MQ_RQ_QUEUE_BUSY;
2727
2728 dm_start_request(md, rq);
2729
2730 /* Init tio using md established in .init_request */
2731 init_tio(tio, rq, md);
2732
2733 /*
2734 * Establish tio->ti before queuing work (map_tio_request)
2735 * or making direct call to map_request().
2736 */
2737 tio->ti = ti;
2738
2739 /* Direct call is fine since .queue_rq allows allocations */
2740 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2741 /* Undo dm_start_request() before requeuing */
2742 rq_end_stats(md, rq);
2743 rq_completed(md, rq_data_dir(rq), false);
2744 return BLK_MQ_RQ_QUEUE_BUSY;
2745 }
2746
2747 return BLK_MQ_RQ_QUEUE_OK;
2748 }
2749
2750 static struct blk_mq_ops dm_mq_ops = {
2751 .queue_rq = dm_mq_queue_rq,
2752 .map_queue = blk_mq_map_queue,
2753 .complete = dm_softirq_done,
2754 .init_request = dm_mq_init_request,
2755 };
2756
2757 static int dm_mq_init_request_queue(struct mapped_device *md,
2758 struct dm_target *immutable_tgt)
2759 {
2760 struct request_queue *q;
2761 int err;
2762
2763 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2764 DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2765 return -EINVAL;
2766 }
2767
2768 md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2769 if (!md->tag_set)
2770 return -ENOMEM;
2771
2772 md->tag_set->ops = &dm_mq_ops;
2773 md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2774 md->tag_set->numa_node = md->numa_node_id;
2775 md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2776 md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2777 md->tag_set->driver_data = md;
2778
2779 md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2780 if (immutable_tgt && immutable_tgt->per_io_data_size) {
2781 /* any target-specific per-io data is immediately after the tio */
2782 md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2783 md->init_tio_pdu = true;
2784 }
2785
2786 err = blk_mq_alloc_tag_set(md->tag_set);
2787 if (err)
2788 goto out_kfree_tag_set;
2789
2790 q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2791 if (IS_ERR(q)) {
2792 err = PTR_ERR(q);
2793 goto out_tag_set;
2794 }
2795 dm_init_md_queue(md);
2796
2797 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2798 blk_mq_register_disk(md->disk);
2799
2800 return 0;
2801
2802 out_tag_set:
2803 blk_mq_free_tag_set(md->tag_set);
2804 out_kfree_tag_set:
2805 kfree(md->tag_set);
2806
2807 return err;
2808 }
2809
2810 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2811 {
2812 if (type == DM_TYPE_BIO_BASED)
2813 return type;
2814
2815 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2816 }
2817
2818 /*
2819 * Setup the DM device's queue based on md's type
2820 */
2821 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2822 {
2823 int r;
2824 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2825
2826 switch (md_type) {
2827 case DM_TYPE_REQUEST_BASED:
2828 r = dm_old_init_request_queue(md);
2829 if (r) {
2830 DMERR("Cannot initialize queue for request-based mapped device");
2831 return r;
2832 }
2833 break;
2834 case DM_TYPE_MQ_REQUEST_BASED:
2835 r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2836 if (r) {
2837 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2838 return r;
2839 }
2840 break;
2841 case DM_TYPE_BIO_BASED:
2842 dm_init_normal_md_queue(md);
2843 blk_queue_make_request(md->queue, dm_make_request);
2844 /*
2845 * DM handles splitting bios as needed. Free the bio_split bioset
2846 * since it won't be used (saves 1 process per bio-based DM device).
2847 */
2848 bioset_free(md->queue->bio_split);
2849 md->queue->bio_split = NULL;
2850 break;
2851 }
2852
2853 return 0;
2854 }
2855
2856 struct mapped_device *dm_get_md(dev_t dev)
2857 {
2858 struct mapped_device *md;
2859 unsigned minor = MINOR(dev);
2860
2861 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2862 return NULL;
2863
2864 spin_lock(&_minor_lock);
2865
2866 md = idr_find(&_minor_idr, minor);
2867 if (md) {
2868 if ((md == MINOR_ALLOCED ||
2869 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2870 dm_deleting_md(md) ||
2871 test_bit(DMF_FREEING, &md->flags))) {
2872 md = NULL;
2873 goto out;
2874 }
2875 dm_get(md);
2876 }
2877
2878 out:
2879 spin_unlock(&_minor_lock);
2880
2881 return md;
2882 }
2883 EXPORT_SYMBOL_GPL(dm_get_md);
2884
2885 void *dm_get_mdptr(struct mapped_device *md)
2886 {
2887 return md->interface_ptr;
2888 }
2889
2890 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2891 {
2892 md->interface_ptr = ptr;
2893 }
2894
2895 void dm_get(struct mapped_device *md)
2896 {
2897 atomic_inc(&md->holders);
2898 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2899 }
2900
2901 int dm_hold(struct mapped_device *md)
2902 {
2903 spin_lock(&_minor_lock);
2904 if (test_bit(DMF_FREEING, &md->flags)) {
2905 spin_unlock(&_minor_lock);
2906 return -EBUSY;
2907 }
2908 dm_get(md);
2909 spin_unlock(&_minor_lock);
2910 return 0;
2911 }
2912 EXPORT_SYMBOL_GPL(dm_hold);
2913
2914 const char *dm_device_name(struct mapped_device *md)
2915 {
2916 return md->name;
2917 }
2918 EXPORT_SYMBOL_GPL(dm_device_name);
2919
2920 static void __dm_destroy(struct mapped_device *md, bool wait)
2921 {
2922 struct dm_table *map;
2923 int srcu_idx;
2924
2925 might_sleep();
2926
2927 spin_lock(&_minor_lock);
2928 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2929 set_bit(DMF_FREEING, &md->flags);
2930 spin_unlock(&_minor_lock);
2931
2932 if (dm_request_based(md) && md->kworker_task)
2933 flush_kthread_worker(&md->kworker);
2934
2935 /*
2936 * Take suspend_lock so that presuspend and postsuspend methods
2937 * do not race with internal suspend.
2938 */
2939 mutex_lock(&md->suspend_lock);
2940 map = dm_get_live_table(md, &srcu_idx);
2941 if (!dm_suspended_md(md)) {
2942 dm_table_presuspend_targets(map);
2943 dm_table_postsuspend_targets(map);
2944 }
2945 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2946 dm_put_live_table(md, srcu_idx);
2947 mutex_unlock(&md->suspend_lock);
2948
2949 /*
2950 * Rare, but there may be I/O requests still going to complete,
2951 * for example. Wait for all references to disappear.
2952 * No one should increment the reference count of the mapped_device,
2953 * after the mapped_device state becomes DMF_FREEING.
2954 */
2955 if (wait)
2956 while (atomic_read(&md->holders))
2957 msleep(1);
2958 else if (atomic_read(&md->holders))
2959 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2960 dm_device_name(md), atomic_read(&md->holders));
2961
2962 dm_sysfs_exit(md);
2963 dm_table_destroy(__unbind(md));
2964 free_dev(md);
2965 }
2966
2967 void dm_destroy(struct mapped_device *md)
2968 {
2969 __dm_destroy(md, true);
2970 }
2971
2972 void dm_destroy_immediate(struct mapped_device *md)
2973 {
2974 __dm_destroy(md, false);
2975 }
2976
2977 void dm_put(struct mapped_device *md)
2978 {
2979 atomic_dec(&md->holders);
2980 }
2981 EXPORT_SYMBOL_GPL(dm_put);
2982
2983 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2984 {
2985 int r = 0;
2986 DECLARE_WAITQUEUE(wait, current);
2987
2988 add_wait_queue(&md->wait, &wait);
2989
2990 while (1) {
2991 set_current_state(interruptible);
2992
2993 if (!md_in_flight(md))
2994 break;
2995
2996 if (interruptible == TASK_INTERRUPTIBLE &&
2997 signal_pending(current)) {
2998 r = -EINTR;
2999 break;
3000 }
3001
3002 io_schedule();
3003 }
3004 set_current_state(TASK_RUNNING);
3005
3006 remove_wait_queue(&md->wait, &wait);
3007
3008 return r;
3009 }
3010
3011 /*
3012 * Process the deferred bios
3013 */
3014 static void dm_wq_work(struct work_struct *work)
3015 {
3016 struct mapped_device *md = container_of(work, struct mapped_device,
3017 work);
3018 struct bio *c;
3019 int srcu_idx;
3020 struct dm_table *map;
3021
3022 map = dm_get_live_table(md, &srcu_idx);
3023
3024 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3025 spin_lock_irq(&md->deferred_lock);
3026 c = bio_list_pop(&md->deferred);
3027 spin_unlock_irq(&md->deferred_lock);
3028
3029 if (!c)
3030 break;
3031
3032 if (dm_request_based(md))
3033 generic_make_request(c);
3034 else
3035 __split_and_process_bio(md, map, c);
3036 }
3037
3038 dm_put_live_table(md, srcu_idx);
3039 }
3040
3041 static void dm_queue_flush(struct mapped_device *md)
3042 {
3043 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3044 smp_mb__after_atomic();
3045 queue_work(md->wq, &md->work);
3046 }
3047
3048 /*
3049 * Swap in a new table, returning the old one for the caller to destroy.
3050 */
3051 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3052 {
3053 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3054 struct queue_limits limits;
3055 int r;
3056
3057 mutex_lock(&md->suspend_lock);
3058
3059 /* device must be suspended */
3060 if (!dm_suspended_md(md))
3061 goto out;
3062
3063 /*
3064 * If the new table has no data devices, retain the existing limits.
3065 * This helps multipath with queue_if_no_path if all paths disappear,
3066 * then new I/O is queued based on these limits, and then some paths
3067 * reappear.
3068 */
3069 if (dm_table_has_no_data_devices(table)) {
3070 live_map = dm_get_live_table_fast(md);
3071 if (live_map)
3072 limits = md->queue->limits;
3073 dm_put_live_table_fast(md);
3074 }
3075
3076 if (!live_map) {
3077 r = dm_calculate_queue_limits(table, &limits);
3078 if (r) {
3079 map = ERR_PTR(r);
3080 goto out;
3081 }
3082 }
3083
3084 map = __bind(md, table, &limits);
3085
3086 out:
3087 mutex_unlock(&md->suspend_lock);
3088 return map;
3089 }
3090
3091 /*
3092 * Functions to lock and unlock any filesystem running on the
3093 * device.
3094 */
3095 static int lock_fs(struct mapped_device *md)
3096 {
3097 int r;
3098
3099 WARN_ON(md->frozen_sb);
3100
3101 md->frozen_sb = freeze_bdev(md->bdev);
3102 if (IS_ERR(md->frozen_sb)) {
3103 r = PTR_ERR(md->frozen_sb);
3104 md->frozen_sb = NULL;
3105 return r;
3106 }
3107
3108 set_bit(DMF_FROZEN, &md->flags);
3109
3110 return 0;
3111 }
3112
3113 static void unlock_fs(struct mapped_device *md)
3114 {
3115 if (!test_bit(DMF_FROZEN, &md->flags))
3116 return;
3117
3118 thaw_bdev(md->bdev, md->frozen_sb);
3119 md->frozen_sb = NULL;
3120 clear_bit(DMF_FROZEN, &md->flags);
3121 }
3122
3123 /*
3124 * If __dm_suspend returns 0, the device is completely quiescent
3125 * now. There is no request-processing activity. All new requests
3126 * are being added to md->deferred list.
3127 *
3128 * Caller must hold md->suspend_lock
3129 */
3130 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3131 unsigned suspend_flags, int interruptible)
3132 {
3133 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3134 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3135 int r;
3136
3137 /*
3138 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3139 * This flag is cleared before dm_suspend returns.
3140 */
3141 if (noflush)
3142 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3143
3144 /*
3145 * This gets reverted if there's an error later and the targets
3146 * provide the .presuspend_undo hook.
3147 */
3148 dm_table_presuspend_targets(map);
3149
3150 /*
3151 * Flush I/O to the device.
3152 * Any I/O submitted after lock_fs() may not be flushed.
3153 * noflush takes precedence over do_lockfs.
3154 * (lock_fs() flushes I/Os and waits for them to complete.)
3155 */
3156 if (!noflush && do_lockfs) {
3157 r = lock_fs(md);
3158 if (r) {
3159 dm_table_presuspend_undo_targets(map);
3160 return r;
3161 }
3162 }
3163
3164 /*
3165 * Here we must make sure that no processes are submitting requests
3166 * to target drivers i.e. no one may be executing
3167 * __split_and_process_bio. This is called from dm_request and
3168 * dm_wq_work.
3169 *
3170 * To get all processes out of __split_and_process_bio in dm_request,
3171 * we take the write lock. To prevent any process from reentering
3172 * __split_and_process_bio from dm_request and quiesce the thread
3173 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3174 * flush_workqueue(md->wq).
3175 */
3176 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3177 if (map)
3178 synchronize_srcu(&md->io_barrier);
3179
3180 /*
3181 * Stop md->queue before flushing md->wq in case request-based
3182 * dm defers requests to md->wq from md->queue.
3183 */
3184 if (dm_request_based(md)) {
3185 dm_stop_queue(md->queue);
3186 if (md->kworker_task)
3187 flush_kthread_worker(&md->kworker);
3188 }
3189
3190 flush_workqueue(md->wq);
3191
3192 /*
3193 * At this point no more requests are entering target request routines.
3194 * We call dm_wait_for_completion to wait for all existing requests
3195 * to finish.
3196 */
3197 r = dm_wait_for_completion(md, interruptible);
3198
3199 if (noflush)
3200 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3201 if (map)
3202 synchronize_srcu(&md->io_barrier);
3203
3204 /* were we interrupted ? */
3205 if (r < 0) {
3206 dm_queue_flush(md);
3207
3208 if (dm_request_based(md))
3209 dm_start_queue(md->queue);
3210
3211 unlock_fs(md);
3212 dm_table_presuspend_undo_targets(map);
3213 /* pushback list is already flushed, so skip flush */
3214 }
3215
3216 return r;
3217 }
3218
3219 /*
3220 * We need to be able to change a mapping table under a mounted
3221 * filesystem. For example we might want to move some data in
3222 * the background. Before the table can be swapped with
3223 * dm_bind_table, dm_suspend must be called to flush any in
3224 * flight bios and ensure that any further io gets deferred.
3225 */
3226 /*
3227 * Suspend mechanism in request-based dm.
3228 *
3229 * 1. Flush all I/Os by lock_fs() if needed.
3230 * 2. Stop dispatching any I/O by stopping the request_queue.
3231 * 3. Wait for all in-flight I/Os to be completed or requeued.
3232 *
3233 * To abort suspend, start the request_queue.
3234 */
3235 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3236 {
3237 struct dm_table *map = NULL;
3238 int r = 0;
3239
3240 retry:
3241 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3242
3243 if (dm_suspended_md(md)) {
3244 r = -EINVAL;
3245 goto out_unlock;
3246 }
3247
3248 if (dm_suspended_internally_md(md)) {
3249 /* already internally suspended, wait for internal resume */
3250 mutex_unlock(&md->suspend_lock);
3251 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3252 if (r)
3253 return r;
3254 goto retry;
3255 }
3256
3257 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3258
3259 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3260 if (r)
3261 goto out_unlock;
3262
3263 set_bit(DMF_SUSPENDED, &md->flags);
3264
3265 dm_table_postsuspend_targets(map);
3266
3267 out_unlock:
3268 mutex_unlock(&md->suspend_lock);
3269 return r;
3270 }
3271
3272 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3273 {
3274 if (map) {
3275 int r = dm_table_resume_targets(map);
3276 if (r)
3277 return r;
3278 }
3279
3280 dm_queue_flush(md);
3281
3282 /*
3283 * Flushing deferred I/Os must be done after targets are resumed
3284 * so that mapping of targets can work correctly.
3285 * Request-based dm is queueing the deferred I/Os in its request_queue.
3286 */
3287 if (dm_request_based(md))
3288 dm_start_queue(md->queue);
3289
3290 unlock_fs(md);
3291
3292 return 0;
3293 }
3294
3295 int dm_resume(struct mapped_device *md)
3296 {
3297 int r = -EINVAL;
3298 struct dm_table *map = NULL;
3299
3300 retry:
3301 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3302
3303 if (!dm_suspended_md(md))
3304 goto out;
3305
3306 if (dm_suspended_internally_md(md)) {
3307 /* already internally suspended, wait for internal resume */
3308 mutex_unlock(&md->suspend_lock);
3309 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3310 if (r)
3311 return r;
3312 goto retry;
3313 }
3314
3315 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3316 if (!map || !dm_table_get_size(map))
3317 goto out;
3318
3319 r = __dm_resume(md, map);
3320 if (r)
3321 goto out;
3322
3323 clear_bit(DMF_SUSPENDED, &md->flags);
3324
3325 r = 0;
3326 out:
3327 mutex_unlock(&md->suspend_lock);
3328
3329 return r;
3330 }
3331
3332 /*
3333 * Internal suspend/resume works like userspace-driven suspend. It waits
3334 * until all bios finish and prevents issuing new bios to the target drivers.
3335 * It may be used only from the kernel.
3336 */
3337
3338 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3339 {
3340 struct dm_table *map = NULL;
3341
3342 if (md->internal_suspend_count++)
3343 return; /* nested internal suspend */
3344
3345 if (dm_suspended_md(md)) {
3346 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3347 return; /* nest suspend */
3348 }
3349
3350 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3351
3352 /*
3353 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3354 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3355 * would require changing .presuspend to return an error -- avoid this
3356 * until there is a need for more elaborate variants of internal suspend.
3357 */
3358 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3359
3360 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3361
3362 dm_table_postsuspend_targets(map);
3363 }
3364
3365 static void __dm_internal_resume(struct mapped_device *md)
3366 {
3367 BUG_ON(!md->internal_suspend_count);
3368
3369 if (--md->internal_suspend_count)
3370 return; /* resume from nested internal suspend */
3371
3372 if (dm_suspended_md(md))
3373 goto done; /* resume from nested suspend */
3374
3375 /*
3376 * NOTE: existing callers don't need to call dm_table_resume_targets
3377 * (which may fail -- so best to avoid it for now by passing NULL map)
3378 */
3379 (void) __dm_resume(md, NULL);
3380
3381 done:
3382 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3383 smp_mb__after_atomic();
3384 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3385 }
3386
3387 void dm_internal_suspend_noflush(struct mapped_device *md)
3388 {
3389 mutex_lock(&md->suspend_lock);
3390 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3391 mutex_unlock(&md->suspend_lock);
3392 }
3393 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3394
3395 void dm_internal_resume(struct mapped_device *md)
3396 {
3397 mutex_lock(&md->suspend_lock);
3398 __dm_internal_resume(md);
3399 mutex_unlock(&md->suspend_lock);
3400 }
3401 EXPORT_SYMBOL_GPL(dm_internal_resume);
3402
3403 /*
3404 * Fast variants of internal suspend/resume hold md->suspend_lock,
3405 * which prevents interaction with userspace-driven suspend.
3406 */
3407
3408 void dm_internal_suspend_fast(struct mapped_device *md)
3409 {
3410 mutex_lock(&md->suspend_lock);
3411 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3412 return;
3413
3414 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3415 synchronize_srcu(&md->io_barrier);
3416 flush_workqueue(md->wq);
3417 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3418 }
3419 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3420
3421 void dm_internal_resume_fast(struct mapped_device *md)
3422 {
3423 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3424 goto done;
3425
3426 dm_queue_flush(md);
3427
3428 done:
3429 mutex_unlock(&md->suspend_lock);
3430 }
3431 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3432
3433 /*-----------------------------------------------------------------
3434 * Event notification.
3435 *---------------------------------------------------------------*/
3436 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3437 unsigned cookie)
3438 {
3439 char udev_cookie[DM_COOKIE_LENGTH];
3440 char *envp[] = { udev_cookie, NULL };
3441
3442 if (!cookie)
3443 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3444 else {
3445 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3446 DM_COOKIE_ENV_VAR_NAME, cookie);
3447 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3448 action, envp);
3449 }
3450 }
3451
3452 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3453 {
3454 return atomic_add_return(1, &md->uevent_seq);
3455 }
3456
3457 uint32_t dm_get_event_nr(struct mapped_device *md)
3458 {
3459 return atomic_read(&md->event_nr);
3460 }
3461
3462 int dm_wait_event(struct mapped_device *md, int event_nr)
3463 {
3464 return wait_event_interruptible(md->eventq,
3465 (event_nr != atomic_read(&md->event_nr)));
3466 }
3467
3468 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3469 {
3470 unsigned long flags;
3471
3472 spin_lock_irqsave(&md->uevent_lock, flags);
3473 list_add(elist, &md->uevent_list);
3474 spin_unlock_irqrestore(&md->uevent_lock, flags);
3475 }
3476
3477 /*
3478 * The gendisk is only valid as long as you have a reference
3479 * count on 'md'.
3480 */
3481 struct gendisk *dm_disk(struct mapped_device *md)
3482 {
3483 return md->disk;
3484 }
3485 EXPORT_SYMBOL_GPL(dm_disk);
3486
3487 struct kobject *dm_kobject(struct mapped_device *md)
3488 {
3489 return &md->kobj_holder.kobj;
3490 }
3491
3492 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3493 {
3494 struct mapped_device *md;
3495
3496 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3497
3498 if (test_bit(DMF_FREEING, &md->flags) ||
3499 dm_deleting_md(md))
3500 return NULL;
3501
3502 dm_get(md);
3503 return md;
3504 }
3505
3506 int dm_suspended_md(struct mapped_device *md)
3507 {
3508 return test_bit(DMF_SUSPENDED, &md->flags);
3509 }
3510
3511 int dm_suspended_internally_md(struct mapped_device *md)
3512 {
3513 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3514 }
3515
3516 int dm_test_deferred_remove_flag(struct mapped_device *md)
3517 {
3518 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3519 }
3520
3521 int dm_suspended(struct dm_target *ti)
3522 {
3523 return dm_suspended_md(dm_table_get_md(ti->table));
3524 }
3525 EXPORT_SYMBOL_GPL(dm_suspended);
3526
3527 int dm_noflush_suspending(struct dm_target *ti)
3528 {
3529 return __noflush_suspending(dm_table_get_md(ti->table));
3530 }
3531 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3532
3533 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3534 unsigned integrity, unsigned per_io_data_size)
3535 {
3536 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3537 struct kmem_cache *cachep = NULL;
3538 unsigned int pool_size = 0;
3539 unsigned int front_pad;
3540
3541 if (!pools)
3542 return NULL;
3543
3544 type = filter_md_type(type, md);
3545
3546 switch (type) {
3547 case DM_TYPE_BIO_BASED:
3548 cachep = _io_cache;
3549 pool_size = dm_get_reserved_bio_based_ios();
3550 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3551 break;
3552 case DM_TYPE_REQUEST_BASED:
3553 cachep = _rq_tio_cache;
3554 pool_size = dm_get_reserved_rq_based_ios();
3555 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3556 if (!pools->rq_pool)
3557 goto out;
3558 /* fall through to setup remaining rq-based pools */
3559 case DM_TYPE_MQ_REQUEST_BASED:
3560 if (!pool_size)
3561 pool_size = dm_get_reserved_rq_based_ios();
3562 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3563 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3564 break;
3565 default:
3566 BUG();
3567 }
3568
3569 if (cachep) {
3570 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3571 if (!pools->io_pool)
3572 goto out;
3573 }
3574
3575 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3576 if (!pools->bs)
3577 goto out;
3578
3579 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3580 goto out;
3581
3582 return pools;
3583
3584 out:
3585 dm_free_md_mempools(pools);
3586
3587 return NULL;
3588 }
3589
3590 void dm_free_md_mempools(struct dm_md_mempools *pools)
3591 {
3592 if (!pools)
3593 return;
3594
3595 mempool_destroy(pools->io_pool);
3596 mempool_destroy(pools->rq_pool);
3597
3598 if (pools->bs)
3599 bioset_free(pools->bs);
3600
3601 kfree(pools);
3602 }
3603
3604 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3605 u32 flags)
3606 {
3607 struct mapped_device *md = bdev->bd_disk->private_data;
3608 const struct pr_ops *ops;
3609 fmode_t mode;
3610 int r;
3611
3612 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3613 if (r < 0)
3614 return r;
3615
3616 ops = bdev->bd_disk->fops->pr_ops;
3617 if (ops && ops->pr_register)
3618 r = ops->pr_register(bdev, old_key, new_key, flags);
3619 else
3620 r = -EOPNOTSUPP;
3621
3622 bdput(bdev);
3623 return r;
3624 }
3625
3626 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3627 u32 flags)
3628 {
3629 struct mapped_device *md = bdev->bd_disk->private_data;
3630 const struct pr_ops *ops;
3631 fmode_t mode;
3632 int r;
3633
3634 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3635 if (r < 0)
3636 return r;
3637
3638 ops = bdev->bd_disk->fops->pr_ops;
3639 if (ops && ops->pr_reserve)
3640 r = ops->pr_reserve(bdev, key, type, flags);
3641 else
3642 r = -EOPNOTSUPP;
3643
3644 bdput(bdev);
3645 return r;
3646 }
3647
3648 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3649 {
3650 struct mapped_device *md = bdev->bd_disk->private_data;
3651 const struct pr_ops *ops;
3652 fmode_t mode;
3653 int r;
3654
3655 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3656 if (r < 0)
3657 return r;
3658
3659 ops = bdev->bd_disk->fops->pr_ops;
3660 if (ops && ops->pr_release)
3661 r = ops->pr_release(bdev, key, type);
3662 else
3663 r = -EOPNOTSUPP;
3664
3665 bdput(bdev);
3666 return r;
3667 }
3668
3669 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3670 enum pr_type type, bool abort)
3671 {
3672 struct mapped_device *md = bdev->bd_disk->private_data;
3673 const struct pr_ops *ops;
3674 fmode_t mode;
3675 int r;
3676
3677 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3678 if (r < 0)
3679 return r;
3680
3681 ops = bdev->bd_disk->fops->pr_ops;
3682 if (ops && ops->pr_preempt)
3683 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3684 else
3685 r = -EOPNOTSUPP;
3686
3687 bdput(bdev);
3688 return r;
3689 }
3690
3691 static int dm_pr_clear(struct block_device *bdev, u64 key)
3692 {
3693 struct mapped_device *md = bdev->bd_disk->private_data;
3694 const struct pr_ops *ops;
3695 fmode_t mode;
3696 int r;
3697
3698 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3699 if (r < 0)
3700 return r;
3701
3702 ops = bdev->bd_disk->fops->pr_ops;
3703 if (ops && ops->pr_clear)
3704 r = ops->pr_clear(bdev, key);
3705 else
3706 r = -EOPNOTSUPP;
3707
3708 bdput(bdev);
3709 return r;
3710 }
3711
3712 static const struct pr_ops dm_pr_ops = {
3713 .pr_register = dm_pr_register,
3714 .pr_reserve = dm_pr_reserve,
3715 .pr_release = dm_pr_release,
3716 .pr_preempt = dm_pr_preempt,
3717 .pr_clear = dm_pr_clear,
3718 };
3719
3720 static const struct block_device_operations dm_blk_dops = {
3721 .open = dm_blk_open,
3722 .release = dm_blk_close,
3723 .ioctl = dm_blk_ioctl,
3724 .getgeo = dm_blk_getgeo,
3725 .pr_ops = &dm_pr_ops,
3726 .owner = THIS_MODULE
3727 };
3728
3729 /*
3730 * module hooks
3731 */
3732 module_init(dm_init);
3733 module_exit(dm_exit);
3734
3735 module_param(major, uint, 0);
3736 MODULE_PARM_DESC(major, "The major number of the device mapper");
3737
3738 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3739 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3740
3741 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3742 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3743
3744 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3745 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3746
3747 module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3748 MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3749
3750 module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3751 MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3752
3753 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3754 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3755
3756 MODULE_DESCRIPTION(DM_NAME " driver");
3757 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3758 MODULE_LICENSE("GPL");
This page took 0.117179 seconds and 6 git commands to generate.