a7ee7ec89f4f1a7111d24d232c99660a65e85ed2
[deliverable/linux.git] / drivers / md / raid5-cache.c
1 /*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23
24 /*
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
27 */
28 #define BLOCK_SECTORS (8)
29
30 /*
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
33 */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
37 struct r5l_log {
38 struct md_rdev *rdev;
39
40 u32 uuid_checksum;
41
42 sector_t device_size; /* log device size, round to
43 * BLOCK_SECTORS */
44 sector_t max_free_space; /* reclaim run if free space is at
45 * this size */
46
47 sector_t last_checkpoint; /* log tail. where recovery scan
48 * starts from */
49 u64 last_cp_seq; /* log tail sequence */
50
51 sector_t log_start; /* log head. where new data appends */
52 u64 seq; /* log head sequence */
53
54 sector_t next_checkpoint;
55 u64 next_cp_seq;
56
57 struct mutex io_mutex;
58 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
59
60 spinlock_t io_list_lock;
61 struct list_head running_ios; /* io_units which are still running,
62 * and have not yet been completely
63 * written to the log */
64 struct list_head io_end_ios; /* io_units which have been completely
65 * written to the log but not yet written
66 * to the RAID */
67 struct list_head flushing_ios; /* io_units which are waiting for log
68 * cache flush */
69 struct list_head finished_ios; /* io_units which settle down in log disk */
70 struct bio flush_bio;
71
72 struct kmem_cache *io_kc;
73
74 struct md_thread *reclaim_thread;
75 unsigned long reclaim_target; /* number of space that need to be
76 * reclaimed. if it's 0, reclaim spaces
77 * used by io_units which are in
78 * IO_UNIT_STRIPE_END state (eg, reclaim
79 * dones't wait for specific io_unit
80 * switching to IO_UNIT_STRIPE_END
81 * state) */
82 wait_queue_head_t iounit_wait;
83
84 struct list_head no_space_stripes; /* pending stripes, log has no space */
85 spinlock_t no_space_stripes_lock;
86
87 bool need_cache_flush;
88 };
89
90 /*
91 * an IO range starts from a meta data block and end at the next meta data
92 * block. The io unit's the meta data block tracks data/parity followed it. io
93 * unit is written to log disk with normal write, as we always flush log disk
94 * first and then start move data to raid disks, there is no requirement to
95 * write io unit with FLUSH/FUA
96 */
97 struct r5l_io_unit {
98 struct r5l_log *log;
99
100 struct page *meta_page; /* store meta block */
101 int meta_offset; /* current offset in meta_page */
102
103 struct bio_list bios;
104 atomic_t pending_io; /* pending bios not written to log yet */
105 struct bio *current_bio;/* current_bio accepting new data */
106
107 atomic_t pending_stripe;/* how many stripes not flushed to raid */
108 u64 seq; /* seq number of the metablock */
109 sector_t log_start; /* where the io_unit starts */
110 sector_t log_end; /* where the io_unit ends */
111 struct list_head log_sibling; /* log->running_ios */
112 struct list_head stripe_list; /* stripes added to the io_unit */
113
114 int state;
115 };
116
117 /* r5l_io_unit state */
118 enum r5l_io_unit_state {
119 IO_UNIT_RUNNING = 0, /* accepting new IO */
120 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
121 * don't accepting new bio */
122 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
123 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
124 };
125
126 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
127 {
128 start += inc;
129 if (start >= log->device_size)
130 start = start - log->device_size;
131 return start;
132 }
133
134 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
135 sector_t end)
136 {
137 if (end >= start)
138 return end - start;
139 else
140 return end + log->device_size - start;
141 }
142
143 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
144 {
145 sector_t used_size;
146
147 used_size = r5l_ring_distance(log, log->last_checkpoint,
148 log->log_start);
149
150 return log->device_size > used_size + size;
151 }
152
153 static struct r5l_io_unit *r5l_alloc_io_unit(struct r5l_log *log)
154 {
155 struct r5l_io_unit *io;
156 /* We can't handle memory allocate failure so far */
157 gfp_t gfp = GFP_NOIO | __GFP_NOFAIL;
158
159 io = kmem_cache_zalloc(log->io_kc, gfp);
160 io->log = log;
161 io->meta_page = alloc_page(gfp | __GFP_ZERO);
162
163 bio_list_init(&io->bios);
164 INIT_LIST_HEAD(&io->log_sibling);
165 INIT_LIST_HEAD(&io->stripe_list);
166 io->state = IO_UNIT_RUNNING;
167 return io;
168 }
169
170 static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
171 {
172 __free_page(io->meta_page);
173 kmem_cache_free(log->io_kc, io);
174 }
175
176 static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
177 enum r5l_io_unit_state state)
178 {
179 struct r5l_io_unit *io;
180
181 while (!list_empty(from)) {
182 io = list_first_entry(from, struct r5l_io_unit, log_sibling);
183 /* don't change list order */
184 if (io->state >= state)
185 list_move_tail(&io->log_sibling, to);
186 else
187 break;
188 }
189 }
190
191 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
192 enum r5l_io_unit_state state)
193 {
194 if (WARN_ON(io->state >= state))
195 return;
196 io->state = state;
197 }
198
199 static void r5l_io_run_stripes(struct r5l_io_unit *io)
200 {
201 struct stripe_head *sh, *next;
202
203 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
204 list_del_init(&sh->log_list);
205 set_bit(STRIPE_HANDLE, &sh->state);
206 raid5_release_stripe(sh);
207 }
208 }
209
210 /* XXX: totally ignores I/O errors */
211 static void r5l_log_run_stripes(struct r5l_log *log)
212 {
213 struct r5l_io_unit *io, *next;
214
215 assert_spin_locked(&log->io_list_lock);
216
217 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
218 /* don't change list order */
219 if (io->state < IO_UNIT_IO_END)
220 break;
221
222 list_move_tail(&io->log_sibling, &log->finished_ios);
223 r5l_io_run_stripes(io);
224 }
225 }
226
227 static void r5l_log_endio(struct bio *bio)
228 {
229 struct r5l_io_unit *io = bio->bi_private;
230 struct r5l_log *log = io->log;
231 unsigned long flags;
232
233 bio_put(bio);
234
235 if (!atomic_dec_and_test(&io->pending_io))
236 return;
237
238 spin_lock_irqsave(&log->io_list_lock, flags);
239 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
240 if (log->need_cache_flush)
241 r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
242 IO_UNIT_IO_END);
243 else
244 r5l_log_run_stripes(log);
245 spin_unlock_irqrestore(&log->io_list_lock, flags);
246
247 if (log->need_cache_flush)
248 md_wakeup_thread(log->rdev->mddev->thread);
249 }
250
251 static void r5l_submit_current_io(struct r5l_log *log)
252 {
253 struct r5l_io_unit *io = log->current_io;
254 struct r5l_meta_block *block;
255 struct bio *bio;
256 unsigned long flags;
257 u32 crc;
258
259 if (!io)
260 return;
261
262 block = page_address(io->meta_page);
263 block->meta_size = cpu_to_le32(io->meta_offset);
264 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
265 block->checksum = cpu_to_le32(crc);
266
267 log->current_io = NULL;
268 spin_lock_irqsave(&log->io_list_lock, flags);
269 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
270 spin_unlock_irqrestore(&log->io_list_lock, flags);
271
272 while ((bio = bio_list_pop(&io->bios))) {
273 /* all IO must start from rdev->data_offset */
274 bio->bi_iter.bi_sector += log->rdev->data_offset;
275 submit_bio(WRITE, bio);
276 }
277 }
278
279 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
280 {
281 struct r5l_io_unit *io;
282 struct r5l_meta_block *block;
283 struct bio *bio;
284
285 io = r5l_alloc_io_unit(log);
286
287 block = page_address(io->meta_page);
288 block->magic = cpu_to_le32(R5LOG_MAGIC);
289 block->version = R5LOG_VERSION;
290 block->seq = cpu_to_le64(log->seq);
291 block->position = cpu_to_le64(log->log_start);
292
293 io->log_start = log->log_start;
294 io->meta_offset = sizeof(struct r5l_meta_block);
295 io->seq = log->seq;
296
297 bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
298 io->current_bio = bio;
299 bio->bi_rw = WRITE;
300 bio->bi_bdev = log->rdev->bdev;
301 bio->bi_iter.bi_sector = log->log_start;
302 bio_add_page(bio, io->meta_page, PAGE_SIZE, 0);
303 bio->bi_end_io = r5l_log_endio;
304 bio->bi_private = io;
305
306 bio_list_add(&io->bios, bio);
307 atomic_inc(&io->pending_io);
308
309 log->seq++;
310 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
311 io->log_end = log->log_start;
312 /* current bio hit disk end */
313 if (log->log_start == 0)
314 io->current_bio = NULL;
315
316 spin_lock_irq(&log->io_list_lock);
317 list_add_tail(&io->log_sibling, &log->running_ios);
318 spin_unlock_irq(&log->io_list_lock);
319
320 return io;
321 }
322
323 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
324 {
325 struct r5l_io_unit *io;
326
327 io = log->current_io;
328 if (io && io->meta_offset + payload_size > PAGE_SIZE)
329 r5l_submit_current_io(log);
330 io = log->current_io;
331 if (io)
332 return 0;
333
334 log->current_io = r5l_new_meta(log);
335 return 0;
336 }
337
338 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
339 sector_t location,
340 u32 checksum1, u32 checksum2,
341 bool checksum2_valid)
342 {
343 struct r5l_io_unit *io = log->current_io;
344 struct r5l_payload_data_parity *payload;
345
346 payload = page_address(io->meta_page) + io->meta_offset;
347 payload->header.type = cpu_to_le16(type);
348 payload->header.flags = cpu_to_le16(0);
349 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
350 (PAGE_SHIFT - 9));
351 payload->location = cpu_to_le64(location);
352 payload->checksum[0] = cpu_to_le32(checksum1);
353 if (checksum2_valid)
354 payload->checksum[1] = cpu_to_le32(checksum2);
355
356 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
357 sizeof(__le32) * (1 + !!checksum2_valid);
358 }
359
360 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
361 {
362 struct r5l_io_unit *io = log->current_io;
363
364 alloc_bio:
365 if (!io->current_bio) {
366 struct bio *bio;
367
368 bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
369 bio->bi_rw = WRITE;
370 bio->bi_bdev = log->rdev->bdev;
371 bio->bi_iter.bi_sector = log->log_start;
372 bio->bi_end_io = r5l_log_endio;
373 bio->bi_private = io;
374 bio_list_add(&io->bios, bio);
375 atomic_inc(&io->pending_io);
376 io->current_bio = bio;
377 }
378 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) {
379 io->current_bio = NULL;
380 goto alloc_bio;
381 }
382 log->log_start = r5l_ring_add(log, log->log_start,
383 BLOCK_SECTORS);
384 /* current bio hit disk end */
385 if (log->log_start == 0)
386 io->current_bio = NULL;
387
388 io->log_end = log->log_start;
389 }
390
391 static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
392 int data_pages, int parity_pages)
393 {
394 int i;
395 int meta_size;
396 struct r5l_io_unit *io;
397
398 meta_size =
399 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
400 * data_pages) +
401 sizeof(struct r5l_payload_data_parity) +
402 sizeof(__le32) * parity_pages;
403
404 r5l_get_meta(log, meta_size);
405 io = log->current_io;
406
407 for (i = 0; i < sh->disks; i++) {
408 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
409 continue;
410 if (i == sh->pd_idx || i == sh->qd_idx)
411 continue;
412 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
413 raid5_compute_blocknr(sh, i, 0),
414 sh->dev[i].log_checksum, 0, false);
415 r5l_append_payload_page(log, sh->dev[i].page);
416 }
417
418 if (sh->qd_idx >= 0) {
419 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
420 sh->sector, sh->dev[sh->pd_idx].log_checksum,
421 sh->dev[sh->qd_idx].log_checksum, true);
422 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
423 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
424 } else {
425 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
426 sh->sector, sh->dev[sh->pd_idx].log_checksum,
427 0, false);
428 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
429 }
430
431 list_add_tail(&sh->log_list, &io->stripe_list);
432 atomic_inc(&io->pending_stripe);
433 sh->log_io = io;
434 }
435
436 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
437 /*
438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
439 * data from log to raid disks), so we shouldn't wait for reclaim here
440 */
441 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
442 {
443 int write_disks = 0;
444 int data_pages, parity_pages;
445 int meta_size;
446 int reserve;
447 int i;
448
449 if (!log)
450 return -EAGAIN;
451 /* Don't support stripe batch */
452 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
453 test_bit(STRIPE_SYNCING, &sh->state)) {
454 /* the stripe is written to log, we start writing it to raid */
455 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
456 return -EAGAIN;
457 }
458
459 for (i = 0; i < sh->disks; i++) {
460 void *addr;
461
462 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
463 continue;
464 write_disks++;
465 /* checksum is already calculated in last run */
466 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
467 continue;
468 addr = kmap_atomic(sh->dev[i].page);
469 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
470 addr, PAGE_SIZE);
471 kunmap_atomic(addr);
472 }
473 parity_pages = 1 + !!(sh->qd_idx >= 0);
474 data_pages = write_disks - parity_pages;
475
476 meta_size =
477 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
478 * data_pages) +
479 sizeof(struct r5l_payload_data_parity) +
480 sizeof(__le32) * parity_pages;
481 /* Doesn't work with very big raid array */
482 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
483 return -EINVAL;
484
485 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
486 /*
487 * The stripe must enter state machine again to finish the write, so
488 * don't delay.
489 */
490 clear_bit(STRIPE_DELAYED, &sh->state);
491 atomic_inc(&sh->count);
492
493 mutex_lock(&log->io_mutex);
494 /* meta + data */
495 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
496 if (r5l_has_free_space(log, reserve))
497 r5l_log_stripe(log, sh, data_pages, parity_pages);
498 else {
499 spin_lock(&log->no_space_stripes_lock);
500 list_add_tail(&sh->log_list, &log->no_space_stripes);
501 spin_unlock(&log->no_space_stripes_lock);
502
503 r5l_wake_reclaim(log, reserve);
504 }
505 mutex_unlock(&log->io_mutex);
506
507 return 0;
508 }
509
510 void r5l_write_stripe_run(struct r5l_log *log)
511 {
512 if (!log)
513 return;
514 mutex_lock(&log->io_mutex);
515 r5l_submit_current_io(log);
516 mutex_unlock(&log->io_mutex);
517 }
518
519 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
520 {
521 if (!log)
522 return -ENODEV;
523 /*
524 * we flush log disk cache first, then write stripe data to raid disks.
525 * So if bio is finished, the log disk cache is flushed already. The
526 * recovery guarantees we can recovery the bio from log disk, so we
527 * don't need to flush again
528 */
529 if (bio->bi_iter.bi_size == 0) {
530 bio_endio(bio);
531 return 0;
532 }
533 bio->bi_rw &= ~REQ_FLUSH;
534 return -EAGAIN;
535 }
536
537 /* This will run after log space is reclaimed */
538 static void r5l_run_no_space_stripes(struct r5l_log *log)
539 {
540 struct stripe_head *sh;
541
542 spin_lock(&log->no_space_stripes_lock);
543 while (!list_empty(&log->no_space_stripes)) {
544 sh = list_first_entry(&log->no_space_stripes,
545 struct stripe_head, log_list);
546 list_del_init(&sh->log_list);
547 set_bit(STRIPE_HANDLE, &sh->state);
548 raid5_release_stripe(sh);
549 }
550 spin_unlock(&log->no_space_stripes_lock);
551 }
552
553 static sector_t r5l_reclaimable_space(struct r5l_log *log)
554 {
555 return r5l_ring_distance(log, log->last_checkpoint,
556 log->next_checkpoint);
557 }
558
559 static bool r5l_complete_finished_ios(struct r5l_log *log)
560 {
561 struct r5l_io_unit *io, *next;
562 bool found = false;
563
564 assert_spin_locked(&log->io_list_lock);
565
566 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
567 /* don't change list order */
568 if (io->state < IO_UNIT_STRIPE_END)
569 break;
570
571 log->next_checkpoint = io->log_start;
572 log->next_cp_seq = io->seq;
573
574 list_del(&io->log_sibling);
575 r5l_free_io_unit(log, io);
576
577 found = true;
578 }
579
580 return found;
581 }
582
583 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
584 {
585 struct r5l_log *log = io->log;
586 unsigned long flags;
587
588 spin_lock_irqsave(&log->io_list_lock, flags);
589 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
590
591 if (!r5l_complete_finished_ios(log)) {
592 spin_unlock_irqrestore(&log->io_list_lock, flags);
593 return;
594 }
595
596 if (r5l_reclaimable_space(log) > log->max_free_space)
597 r5l_wake_reclaim(log, 0);
598
599 spin_unlock_irqrestore(&log->io_list_lock, flags);
600 wake_up(&log->iounit_wait);
601 }
602
603 void r5l_stripe_write_finished(struct stripe_head *sh)
604 {
605 struct r5l_io_unit *io;
606
607 io = sh->log_io;
608 sh->log_io = NULL;
609
610 if (io && atomic_dec_and_test(&io->pending_stripe))
611 __r5l_stripe_write_finished(io);
612 }
613
614 static void r5l_log_flush_endio(struct bio *bio)
615 {
616 struct r5l_log *log = container_of(bio, struct r5l_log,
617 flush_bio);
618 unsigned long flags;
619 struct r5l_io_unit *io;
620
621 spin_lock_irqsave(&log->io_list_lock, flags);
622 list_for_each_entry(io, &log->flushing_ios, log_sibling)
623 r5l_io_run_stripes(io);
624 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
625 spin_unlock_irqrestore(&log->io_list_lock, flags);
626 }
627
628 /*
629 * Starting dispatch IO to raid.
630 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
631 * broken meta in the middle of a log causes recovery can't find meta at the
632 * head of log. If operations require meta at the head persistent in log, we
633 * must make sure meta before it persistent in log too. A case is:
634 *
635 * stripe data/parity is in log, we start write stripe to raid disks. stripe
636 * data/parity must be persistent in log before we do the write to raid disks.
637 *
638 * The solution is we restrictly maintain io_unit list order. In this case, we
639 * only write stripes of an io_unit to raid disks till the io_unit is the first
640 * one whose data/parity is in log.
641 */
642 void r5l_flush_stripe_to_raid(struct r5l_log *log)
643 {
644 bool do_flush;
645
646 if (!log || !log->need_cache_flush)
647 return;
648
649 spin_lock_irq(&log->io_list_lock);
650 /* flush bio is running */
651 if (!list_empty(&log->flushing_ios)) {
652 spin_unlock_irq(&log->io_list_lock);
653 return;
654 }
655 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
656 do_flush = !list_empty(&log->flushing_ios);
657 spin_unlock_irq(&log->io_list_lock);
658
659 if (!do_flush)
660 return;
661 bio_reset(&log->flush_bio);
662 log->flush_bio.bi_bdev = log->rdev->bdev;
663 log->flush_bio.bi_end_io = r5l_log_flush_endio;
664 submit_bio(WRITE_FLUSH, &log->flush_bio);
665 }
666
667 static void r5l_write_super(struct r5l_log *log, sector_t cp);
668 static void r5l_do_reclaim(struct r5l_log *log)
669 {
670 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
671 sector_t reclaimable;
672 sector_t next_checkpoint;
673 u64 next_cp_seq;
674
675 spin_lock_irq(&log->io_list_lock);
676 /*
677 * move proper io_unit to reclaim list. We should not change the order.
678 * reclaimable/unreclaimable io_unit can be mixed in the list, we
679 * shouldn't reuse space of an unreclaimable io_unit
680 */
681 while (1) {
682 reclaimable = r5l_reclaimable_space(log);
683 if (reclaimable >= reclaim_target ||
684 (list_empty(&log->running_ios) &&
685 list_empty(&log->io_end_ios) &&
686 list_empty(&log->flushing_ios) &&
687 list_empty(&log->finished_ios)))
688 break;
689
690 md_wakeup_thread(log->rdev->mddev->thread);
691 wait_event_lock_irq(log->iounit_wait,
692 r5l_reclaimable_space(log) > reclaimable,
693 log->io_list_lock);
694 }
695
696 next_checkpoint = log->next_checkpoint;
697 next_cp_seq = log->next_cp_seq;
698 spin_unlock_irq(&log->io_list_lock);
699
700 BUG_ON(reclaimable < 0);
701 if (reclaimable == 0)
702 return;
703
704 /*
705 * write_super will flush cache of each raid disk. We must write super
706 * here, because the log area might be reused soon and we don't want to
707 * confuse recovery
708 */
709 r5l_write_super(log, next_checkpoint);
710
711 mutex_lock(&log->io_mutex);
712 log->last_checkpoint = next_checkpoint;
713 log->last_cp_seq = next_cp_seq;
714 mutex_unlock(&log->io_mutex);
715
716 r5l_run_no_space_stripes(log);
717 }
718
719 static void r5l_reclaim_thread(struct md_thread *thread)
720 {
721 struct mddev *mddev = thread->mddev;
722 struct r5conf *conf = mddev->private;
723 struct r5l_log *log = conf->log;
724
725 if (!log)
726 return;
727 r5l_do_reclaim(log);
728 }
729
730 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
731 {
732 unsigned long target;
733 unsigned long new = (unsigned long)space; /* overflow in theory */
734
735 do {
736 target = log->reclaim_target;
737 if (new < target)
738 return;
739 } while (cmpxchg(&log->reclaim_target, target, new) != target);
740 md_wakeup_thread(log->reclaim_thread);
741 }
742
743 void r5l_quiesce(struct r5l_log *log, int state)
744 {
745 if (!log || state == 2)
746 return;
747 if (state == 0) {
748 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
749 log->rdev->mddev, "reclaim");
750 } else if (state == 1) {
751 /*
752 * at this point all stripes are finished, so io_unit is at
753 * least in STRIPE_END state
754 */
755 r5l_wake_reclaim(log, -1L);
756 md_unregister_thread(&log->reclaim_thread);
757 r5l_do_reclaim(log);
758 }
759 }
760
761 struct r5l_recovery_ctx {
762 struct page *meta_page; /* current meta */
763 sector_t meta_total_blocks; /* total size of current meta and data */
764 sector_t pos; /* recovery position */
765 u64 seq; /* recovery position seq */
766 };
767
768 static int r5l_read_meta_block(struct r5l_log *log,
769 struct r5l_recovery_ctx *ctx)
770 {
771 struct page *page = ctx->meta_page;
772 struct r5l_meta_block *mb;
773 u32 crc, stored_crc;
774
775 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
776 return -EIO;
777
778 mb = page_address(page);
779 stored_crc = le32_to_cpu(mb->checksum);
780 mb->checksum = 0;
781
782 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
783 le64_to_cpu(mb->seq) != ctx->seq ||
784 mb->version != R5LOG_VERSION ||
785 le64_to_cpu(mb->position) != ctx->pos)
786 return -EINVAL;
787
788 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
789 if (stored_crc != crc)
790 return -EINVAL;
791
792 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
793 return -EINVAL;
794
795 ctx->meta_total_blocks = BLOCK_SECTORS;
796
797 return 0;
798 }
799
800 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
801 struct r5l_recovery_ctx *ctx,
802 sector_t stripe_sect,
803 int *offset, sector_t *log_offset)
804 {
805 struct r5conf *conf = log->rdev->mddev->private;
806 struct stripe_head *sh;
807 struct r5l_payload_data_parity *payload;
808 int disk_index;
809
810 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
811 while (1) {
812 payload = page_address(ctx->meta_page) + *offset;
813
814 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
815 raid5_compute_sector(conf,
816 le64_to_cpu(payload->location), 0,
817 &disk_index, sh);
818
819 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
820 sh->dev[disk_index].page, READ, false);
821 sh->dev[disk_index].log_checksum =
822 le32_to_cpu(payload->checksum[0]);
823 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
824 ctx->meta_total_blocks += BLOCK_SECTORS;
825 } else {
826 disk_index = sh->pd_idx;
827 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
828 sh->dev[disk_index].page, READ, false);
829 sh->dev[disk_index].log_checksum =
830 le32_to_cpu(payload->checksum[0]);
831 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
832
833 if (sh->qd_idx >= 0) {
834 disk_index = sh->qd_idx;
835 sync_page_io(log->rdev,
836 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
837 PAGE_SIZE, sh->dev[disk_index].page,
838 READ, false);
839 sh->dev[disk_index].log_checksum =
840 le32_to_cpu(payload->checksum[1]);
841 set_bit(R5_Wantwrite,
842 &sh->dev[disk_index].flags);
843 }
844 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
845 }
846
847 *log_offset = r5l_ring_add(log, *log_offset,
848 le32_to_cpu(payload->size));
849 *offset += sizeof(struct r5l_payload_data_parity) +
850 sizeof(__le32) *
851 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
852 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
853 break;
854 }
855
856 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
857 void *addr;
858 u32 checksum;
859
860 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
861 continue;
862 addr = kmap_atomic(sh->dev[disk_index].page);
863 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
864 kunmap_atomic(addr);
865 if (checksum != sh->dev[disk_index].log_checksum)
866 goto error;
867 }
868
869 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
870 struct md_rdev *rdev, *rrdev;
871
872 if (!test_and_clear_bit(R5_Wantwrite,
873 &sh->dev[disk_index].flags))
874 continue;
875
876 /* in case device is broken */
877 rdev = rcu_dereference(conf->disks[disk_index].rdev);
878 if (rdev)
879 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
880 sh->dev[disk_index].page, WRITE, false);
881 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
882 if (rrdev)
883 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
884 sh->dev[disk_index].page, WRITE, false);
885 }
886 raid5_release_stripe(sh);
887 return 0;
888
889 error:
890 for (disk_index = 0; disk_index < sh->disks; disk_index++)
891 sh->dev[disk_index].flags = 0;
892 raid5_release_stripe(sh);
893 return -EINVAL;
894 }
895
896 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
897 struct r5l_recovery_ctx *ctx)
898 {
899 struct r5conf *conf = log->rdev->mddev->private;
900 struct r5l_payload_data_parity *payload;
901 struct r5l_meta_block *mb;
902 int offset;
903 sector_t log_offset;
904 sector_t stripe_sector;
905
906 mb = page_address(ctx->meta_page);
907 offset = sizeof(struct r5l_meta_block);
908 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
909
910 while (offset < le32_to_cpu(mb->meta_size)) {
911 int dd;
912
913 payload = (void *)mb + offset;
914 stripe_sector = raid5_compute_sector(conf,
915 le64_to_cpu(payload->location), 0, &dd, NULL);
916 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
917 &offset, &log_offset))
918 return -EINVAL;
919 }
920 return 0;
921 }
922
923 /* copy data/parity from log to raid disks */
924 static void r5l_recovery_flush_log(struct r5l_log *log,
925 struct r5l_recovery_ctx *ctx)
926 {
927 while (1) {
928 if (r5l_read_meta_block(log, ctx))
929 return;
930 if (r5l_recovery_flush_one_meta(log, ctx))
931 return;
932 ctx->seq++;
933 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
934 }
935 }
936
937 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
938 u64 seq)
939 {
940 struct page *page;
941 struct r5l_meta_block *mb;
942 u32 crc;
943
944 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
945 if (!page)
946 return -ENOMEM;
947 mb = page_address(page);
948 mb->magic = cpu_to_le32(R5LOG_MAGIC);
949 mb->version = R5LOG_VERSION;
950 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
951 mb->seq = cpu_to_le64(seq);
952 mb->position = cpu_to_le64(pos);
953 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
954 mb->checksum = cpu_to_le32(crc);
955
956 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
957 __free_page(page);
958 return -EIO;
959 }
960 __free_page(page);
961 return 0;
962 }
963
964 static int r5l_recovery_log(struct r5l_log *log)
965 {
966 struct r5l_recovery_ctx ctx;
967
968 ctx.pos = log->last_checkpoint;
969 ctx.seq = log->last_cp_seq;
970 ctx.meta_page = alloc_page(GFP_KERNEL);
971 if (!ctx.meta_page)
972 return -ENOMEM;
973
974 r5l_recovery_flush_log(log, &ctx);
975 __free_page(ctx.meta_page);
976
977 /*
978 * we did a recovery. Now ctx.pos points to an invalid meta block. New
979 * log will start here. but we can't let superblock point to last valid
980 * meta block. The log might looks like:
981 * | meta 1| meta 2| meta 3|
982 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
983 * superblock points to meta 1, we write a new valid meta 2n. if crash
984 * happens again, new recovery will start from meta 1. Since meta 2n is
985 * valid now, recovery will think meta 3 is valid, which is wrong.
986 * The solution is we create a new meta in meta2 with its seq == meta
987 * 1's seq + 10 and let superblock points to meta2. The same recovery will
988 * not think meta 3 is a valid meta, because its seq doesn't match
989 */
990 if (ctx.seq > log->last_cp_seq + 1) {
991 int ret;
992
993 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
994 if (ret)
995 return ret;
996 log->seq = ctx.seq + 11;
997 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
998 r5l_write_super(log, ctx.pos);
999 } else {
1000 log->log_start = ctx.pos;
1001 log->seq = ctx.seq;
1002 }
1003 return 0;
1004 }
1005
1006 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1007 {
1008 struct mddev *mddev = log->rdev->mddev;
1009
1010 log->rdev->journal_tail = cp;
1011 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1012 }
1013
1014 static int r5l_load_log(struct r5l_log *log)
1015 {
1016 struct md_rdev *rdev = log->rdev;
1017 struct page *page;
1018 struct r5l_meta_block *mb;
1019 sector_t cp = log->rdev->journal_tail;
1020 u32 stored_crc, expected_crc;
1021 bool create_super = false;
1022 int ret;
1023
1024 /* Make sure it's valid */
1025 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1026 cp = 0;
1027 page = alloc_page(GFP_KERNEL);
1028 if (!page)
1029 return -ENOMEM;
1030
1031 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1032 ret = -EIO;
1033 goto ioerr;
1034 }
1035 mb = page_address(page);
1036
1037 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1038 mb->version != R5LOG_VERSION) {
1039 create_super = true;
1040 goto create;
1041 }
1042 stored_crc = le32_to_cpu(mb->checksum);
1043 mb->checksum = 0;
1044 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1045 if (stored_crc != expected_crc) {
1046 create_super = true;
1047 goto create;
1048 }
1049 if (le64_to_cpu(mb->position) != cp) {
1050 create_super = true;
1051 goto create;
1052 }
1053 create:
1054 if (create_super) {
1055 log->last_cp_seq = prandom_u32();
1056 cp = 0;
1057 /*
1058 * Make sure super points to correct address. Log might have
1059 * data very soon. If super hasn't correct log tail address,
1060 * recovery can't find the log
1061 */
1062 r5l_write_super(log, cp);
1063 } else
1064 log->last_cp_seq = le64_to_cpu(mb->seq);
1065
1066 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1067 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1068 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1069 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1070 log->last_checkpoint = cp;
1071
1072 __free_page(page);
1073
1074 return r5l_recovery_log(log);
1075 ioerr:
1076 __free_page(page);
1077 return ret;
1078 }
1079
1080 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1081 {
1082 struct r5l_log *log;
1083
1084 if (PAGE_SIZE != 4096)
1085 return -EINVAL;
1086 log = kzalloc(sizeof(*log), GFP_KERNEL);
1087 if (!log)
1088 return -ENOMEM;
1089 log->rdev = rdev;
1090
1091 log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1092
1093 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1094 sizeof(rdev->mddev->uuid));
1095
1096 mutex_init(&log->io_mutex);
1097
1098 spin_lock_init(&log->io_list_lock);
1099 INIT_LIST_HEAD(&log->running_ios);
1100 INIT_LIST_HEAD(&log->io_end_ios);
1101 INIT_LIST_HEAD(&log->flushing_ios);
1102 INIT_LIST_HEAD(&log->finished_ios);
1103 bio_init(&log->flush_bio);
1104
1105 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1106 if (!log->io_kc)
1107 goto io_kc;
1108
1109 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1110 log->rdev->mddev, "reclaim");
1111 if (!log->reclaim_thread)
1112 goto reclaim_thread;
1113 init_waitqueue_head(&log->iounit_wait);
1114
1115 INIT_LIST_HEAD(&log->no_space_stripes);
1116 spin_lock_init(&log->no_space_stripes_lock);
1117
1118 if (r5l_load_log(log))
1119 goto error;
1120
1121 conf->log = log;
1122 return 0;
1123 error:
1124 md_unregister_thread(&log->reclaim_thread);
1125 reclaim_thread:
1126 kmem_cache_destroy(log->io_kc);
1127 io_kc:
1128 kfree(log);
1129 return -EINVAL;
1130 }
1131
1132 void r5l_exit_log(struct r5l_log *log)
1133 {
1134 md_unregister_thread(&log->reclaim_thread);
1135 kmem_cache_destroy(log->io_kc);
1136 kfree(log);
1137 }
This page took 0.051342 seconds and 4 git commands to generate.