drm/i915: Update DRIVER_DATE to 20160214
[deliverable/linux.git] / drivers / media / dvb-frontends / tda1004x.c
1 /*
2 Driver for Philips tda1004xh OFDM Demodulator
3
4 (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21 */
22 /*
23 * This driver needs external firmware. Please use the commands
24 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26 * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27 * or /lib/firmware (depending on configuration of firmware hotplug).
28 */
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/jiffies.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38
39 #include "dvb_frontend.h"
40 #include "tda1004x.h"
41
42 static int debug;
43 #define dprintk(args...) \
44 do { \
45 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
46 } while (0)
47
48 #define TDA1004X_CHIPID 0x00
49 #define TDA1004X_AUTO 0x01
50 #define TDA1004X_IN_CONF1 0x02
51 #define TDA1004X_IN_CONF2 0x03
52 #define TDA1004X_OUT_CONF1 0x04
53 #define TDA1004X_OUT_CONF2 0x05
54 #define TDA1004X_STATUS_CD 0x06
55 #define TDA1004X_CONFC4 0x07
56 #define TDA1004X_DSSPARE2 0x0C
57 #define TDA10045H_CODE_IN 0x0D
58 #define TDA10045H_FWPAGE 0x0E
59 #define TDA1004X_SCAN_CPT 0x10
60 #define TDA1004X_DSP_CMD 0x11
61 #define TDA1004X_DSP_ARG 0x12
62 #define TDA1004X_DSP_DATA1 0x13
63 #define TDA1004X_DSP_DATA2 0x14
64 #define TDA1004X_CONFADC1 0x15
65 #define TDA1004X_CONFC1 0x16
66 #define TDA10045H_S_AGC 0x1a
67 #define TDA10046H_AGC_TUN_LEVEL 0x1a
68 #define TDA1004X_SNR 0x1c
69 #define TDA1004X_CONF_TS1 0x1e
70 #define TDA1004X_CONF_TS2 0x1f
71 #define TDA1004X_CBER_RESET 0x20
72 #define TDA1004X_CBER_MSB 0x21
73 #define TDA1004X_CBER_LSB 0x22
74 #define TDA1004X_CVBER_LUT 0x23
75 #define TDA1004X_VBER_MSB 0x24
76 #define TDA1004X_VBER_MID 0x25
77 #define TDA1004X_VBER_LSB 0x26
78 #define TDA1004X_UNCOR 0x27
79
80 #define TDA10045H_CONFPLL_P 0x2D
81 #define TDA10045H_CONFPLL_M_MSB 0x2E
82 #define TDA10045H_CONFPLL_M_LSB 0x2F
83 #define TDA10045H_CONFPLL_N 0x30
84
85 #define TDA10046H_CONFPLL1 0x2D
86 #define TDA10046H_CONFPLL2 0x2F
87 #define TDA10046H_CONFPLL3 0x30
88 #define TDA10046H_TIME_WREF1 0x31
89 #define TDA10046H_TIME_WREF2 0x32
90 #define TDA10046H_TIME_WREF3 0x33
91 #define TDA10046H_TIME_WREF4 0x34
92 #define TDA10046H_TIME_WREF5 0x35
93
94 #define TDA10045H_UNSURW_MSB 0x31
95 #define TDA10045H_UNSURW_LSB 0x32
96 #define TDA10045H_WREF_MSB 0x33
97 #define TDA10045H_WREF_MID 0x34
98 #define TDA10045H_WREF_LSB 0x35
99 #define TDA10045H_MUXOUT 0x36
100 #define TDA1004X_CONFADC2 0x37
101
102 #define TDA10045H_IOFFSET 0x38
103
104 #define TDA10046H_CONF_TRISTATE1 0x3B
105 #define TDA10046H_CONF_TRISTATE2 0x3C
106 #define TDA10046H_CONF_POLARITY 0x3D
107 #define TDA10046H_FREQ_OFFSET 0x3E
108 #define TDA10046H_GPIO_OUT_SEL 0x41
109 #define TDA10046H_GPIO_SELECT 0x42
110 #define TDA10046H_AGC_CONF 0x43
111 #define TDA10046H_AGC_THR 0x44
112 #define TDA10046H_AGC_RENORM 0x45
113 #define TDA10046H_AGC_GAINS 0x46
114 #define TDA10046H_AGC_TUN_MIN 0x47
115 #define TDA10046H_AGC_TUN_MAX 0x48
116 #define TDA10046H_AGC_IF_MIN 0x49
117 #define TDA10046H_AGC_IF_MAX 0x4A
118
119 #define TDA10046H_FREQ_PHY2_MSB 0x4D
120 #define TDA10046H_FREQ_PHY2_LSB 0x4E
121
122 #define TDA10046H_CVBER_CTRL 0x4F
123 #define TDA10046H_AGC_IF_LEVEL 0x52
124 #define TDA10046H_CODE_CPT 0x57
125 #define TDA10046H_CODE_IN 0x58
126
127
128 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
129 {
130 int ret;
131 u8 buf[] = { reg, data };
132 struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
133
134 dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data);
135
136 msg.addr = state->config->demod_address;
137 ret = i2c_transfer(state->i2c, &msg, 1);
138
139 if (ret != 1)
140 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
141 __func__, reg, data, ret);
142
143 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
144 reg, data, ret);
145 return (ret != 1) ? -1 : 0;
146 }
147
148 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
149 {
150 int ret;
151 u8 b0[] = { reg };
152 u8 b1[] = { 0 };
153 struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
154 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
155
156 dprintk("%s: reg=0x%x\n", __func__, reg);
157
158 msg[0].addr = state->config->demod_address;
159 msg[1].addr = state->config->demod_address;
160 ret = i2c_transfer(state->i2c, msg, 2);
161
162 if (ret != 2) {
163 dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg,
164 ret);
165 return -EINVAL;
166 }
167
168 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
169 reg, b1[0], ret);
170 return b1[0];
171 }
172
173 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
174 {
175 int val;
176 dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg,
177 mask, data);
178
179 // read a byte and check
180 val = tda1004x_read_byte(state, reg);
181 if (val < 0)
182 return val;
183
184 // mask if off
185 val = val & ~mask;
186 val |= data & 0xff;
187
188 // write it out again
189 return tda1004x_write_byteI(state, reg, val);
190 }
191
192 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
193 {
194 int i;
195 int result;
196
197 dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len);
198
199 result = 0;
200 for (i = 0; i < len; i++) {
201 result = tda1004x_write_byteI(state, reg + i, buf[i]);
202 if (result != 0)
203 break;
204 }
205
206 return result;
207 }
208
209 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
210 {
211 int result;
212 dprintk("%s\n", __func__);
213
214 result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
215 msleep(20);
216 return result;
217 }
218
219 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
220 {
221 dprintk("%s\n", __func__);
222
223 return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
224 }
225
226 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
227 u32 bandwidth)
228 {
229 static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
230 static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
231 static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
232
233 switch (bandwidth) {
234 case 6000000:
235 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
236 break;
237
238 case 7000000:
239 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
240 break;
241
242 case 8000000:
243 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
244 break;
245
246 default:
247 return -EINVAL;
248 }
249
250 tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
251
252 return 0;
253 }
254
255 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
256 u32 bandwidth)
257 {
258 static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
259 static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
260 static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
261
262 static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
263 static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
264 static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
265 int tda10046_clk53m;
266
267 if ((state->config->if_freq == TDA10046_FREQ_045) ||
268 (state->config->if_freq == TDA10046_FREQ_052))
269 tda10046_clk53m = 0;
270 else
271 tda10046_clk53m = 1;
272 switch (bandwidth) {
273 case 6000000:
274 if (tda10046_clk53m)
275 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
276 sizeof(bandwidth_6mhz_53M));
277 else
278 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
279 sizeof(bandwidth_6mhz_48M));
280 if (state->config->if_freq == TDA10046_FREQ_045) {
281 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
282 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
283 }
284 break;
285
286 case 7000000:
287 if (tda10046_clk53m)
288 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
289 sizeof(bandwidth_7mhz_53M));
290 else
291 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
292 sizeof(bandwidth_7mhz_48M));
293 if (state->config->if_freq == TDA10046_FREQ_045) {
294 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
295 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
296 }
297 break;
298
299 case 8000000:
300 if (tda10046_clk53m)
301 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
302 sizeof(bandwidth_8mhz_53M));
303 else
304 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
305 sizeof(bandwidth_8mhz_48M));
306 if (state->config->if_freq == TDA10046_FREQ_045) {
307 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
308 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
309 }
310 break;
311
312 default:
313 return -EINVAL;
314 }
315
316 return 0;
317 }
318
319 static int tda1004x_do_upload(struct tda1004x_state *state,
320 const unsigned char *mem, unsigned int len,
321 u8 dspCodeCounterReg, u8 dspCodeInReg)
322 {
323 u8 buf[65];
324 struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
325 int tx_size;
326 int pos = 0;
327
328 /* clear code counter */
329 tda1004x_write_byteI(state, dspCodeCounterReg, 0);
330 fw_msg.addr = state->config->demod_address;
331
332 i2c_lock_adapter(state->i2c);
333 buf[0] = dspCodeInReg;
334 while (pos != len) {
335 // work out how much to send this time
336 tx_size = len - pos;
337 if (tx_size > 0x10)
338 tx_size = 0x10;
339
340 // send the chunk
341 memcpy(buf + 1, mem + pos, tx_size);
342 fw_msg.len = tx_size + 1;
343 if (__i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
344 printk(KERN_ERR "tda1004x: Error during firmware upload\n");
345 i2c_unlock_adapter(state->i2c);
346 return -EIO;
347 }
348 pos += tx_size;
349
350 dprintk("%s: fw_pos=0x%x\n", __func__, pos);
351 }
352 i2c_unlock_adapter(state->i2c);
353
354 /* give the DSP a chance to settle 03/10/05 Hac */
355 msleep(100);
356
357 return 0;
358 }
359
360 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
361 {
362 u8 data1, data2;
363 unsigned long timeout;
364
365 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
366 timeout = jiffies + 2 * HZ;
367 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
368 if (time_after(jiffies, timeout)) {
369 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
370 break;
371 }
372 msleep(1);
373 }
374 } else
375 msleep(100);
376
377 // check upload was OK
378 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
379 tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
380
381 data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
382 data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
383 if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
384 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
385 return -EIO;
386 }
387 printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
388 return 0;
389 }
390
391 static int tda10045_fwupload(struct dvb_frontend* fe)
392 {
393 struct tda1004x_state* state = fe->demodulator_priv;
394 int ret;
395 const struct firmware *fw;
396
397 /* don't re-upload unless necessary */
398 if (tda1004x_check_upload_ok(state) == 0)
399 return 0;
400
401 /* request the firmware, this will block until someone uploads it */
402 printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
403 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
404 if (ret) {
405 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
406 return ret;
407 }
408
409 /* reset chip */
410 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
411 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
412 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
413 msleep(10);
414
415 /* set parameters */
416 tda10045h_set_bandwidth(state, 8000000);
417
418 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
419 release_firmware(fw);
420 if (ret)
421 return ret;
422 printk(KERN_INFO "tda1004x: firmware upload complete\n");
423
424 /* wait for DSP to initialise */
425 /* DSPREADY doesn't seem to work on the TDA10045H */
426 msleep(100);
427
428 return tda1004x_check_upload_ok(state);
429 }
430
431 static void tda10046_init_plls(struct dvb_frontend* fe)
432 {
433 struct tda1004x_state* state = fe->demodulator_priv;
434 int tda10046_clk53m;
435
436 if ((state->config->if_freq == TDA10046_FREQ_045) ||
437 (state->config->if_freq == TDA10046_FREQ_052))
438 tda10046_clk53m = 0;
439 else
440 tda10046_clk53m = 1;
441
442 tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
443 if(tda10046_clk53m) {
444 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
445 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
446 } else {
447 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
448 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
449 }
450 if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
451 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__);
452 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
453 } else {
454 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__);
455 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
456 }
457 if(tda10046_clk53m)
458 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
459 else
460 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
461 /* Note clock frequency is handled implicitly */
462 switch (state->config->if_freq) {
463 case TDA10046_FREQ_045:
464 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
465 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
466 break;
467 case TDA10046_FREQ_052:
468 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
469 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
470 break;
471 case TDA10046_FREQ_3617:
472 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
473 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
474 break;
475 case TDA10046_FREQ_3613:
476 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
477 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
478 break;
479 }
480 tda10046h_set_bandwidth(state, 8000000); /* default bandwidth 8 MHz */
481 /* let the PLLs settle */
482 msleep(120);
483 }
484
485 static int tda10046_fwupload(struct dvb_frontend* fe)
486 {
487 struct tda1004x_state* state = fe->demodulator_priv;
488 int ret, confc4;
489 const struct firmware *fw;
490
491 /* reset + wake up chip */
492 if (state->config->xtal_freq == TDA10046_XTAL_4M) {
493 confc4 = 0;
494 } else {
495 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__);
496 confc4 = 0x80;
497 }
498 tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
499
500 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
501 /* set GPIO 1 and 3 */
502 if (state->config->gpio_config != TDA10046_GPTRI) {
503 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
504 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
505 }
506 /* let the clocks recover from sleep */
507 msleep(10);
508
509 /* The PLLs need to be reprogrammed after sleep */
510 tda10046_init_plls(fe);
511 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
512
513 /* don't re-upload unless necessary */
514 if (tda1004x_check_upload_ok(state) == 0)
515 return 0;
516
517 /*
518 For i2c normal work, we need to slow down the bus speed.
519 However, the slow down breaks the eeprom firmware load.
520 So, use normal speed for eeprom booting and then restore the
521 i2c speed after that. Tested with MSI TV @nyware A/D board,
522 that comes with firmware version 29 inside their eeprom.
523
524 It should also be noticed that no other I2C transfer should
525 be in course while booting from eeprom, otherwise, tda10046
526 goes into an instable state. So, proper locking are needed
527 at the i2c bus master.
528 */
529 printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
530 tda1004x_write_byteI(state, TDA1004X_CONFC4, 4);
531 msleep(300);
532 tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
533
534 /* Checks if eeprom firmware went without troubles */
535 if (tda1004x_check_upload_ok(state) == 0)
536 return 0;
537
538 /* eeprom firmware didn't work. Load one manually. */
539
540 if (state->config->request_firmware != NULL) {
541 /* request the firmware, this will block until someone uploads it */
542 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
543 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
544 if (ret) {
545 /* remain compatible to old bug: try to load with tda10045 image name */
546 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
547 if (ret) {
548 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
549 return ret;
550 } else {
551 printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
552 TDA10046_DEFAULT_FIRMWARE);
553 }
554 }
555 } else {
556 printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
557 return -EIO;
558 }
559 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
560 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
561 release_firmware(fw);
562 return tda1004x_check_upload_ok(state);
563 }
564
565 static int tda1004x_encode_fec(int fec)
566 {
567 // convert known FEC values
568 switch (fec) {
569 case FEC_1_2:
570 return 0;
571 case FEC_2_3:
572 return 1;
573 case FEC_3_4:
574 return 2;
575 case FEC_5_6:
576 return 3;
577 case FEC_7_8:
578 return 4;
579 }
580
581 // unsupported
582 return -EINVAL;
583 }
584
585 static int tda1004x_decode_fec(int tdafec)
586 {
587 // convert known FEC values
588 switch (tdafec) {
589 case 0:
590 return FEC_1_2;
591 case 1:
592 return FEC_2_3;
593 case 2:
594 return FEC_3_4;
595 case 3:
596 return FEC_5_6;
597 case 4:
598 return FEC_7_8;
599 }
600
601 // unsupported
602 return -1;
603 }
604
605 static int tda1004x_write(struct dvb_frontend* fe, const u8 buf[], int len)
606 {
607 struct tda1004x_state* state = fe->demodulator_priv;
608
609 if (len != 2)
610 return -EINVAL;
611
612 return tda1004x_write_byteI(state, buf[0], buf[1]);
613 }
614
615 static int tda10045_init(struct dvb_frontend* fe)
616 {
617 struct tda1004x_state* state = fe->demodulator_priv;
618
619 dprintk("%s\n", __func__);
620
621 if (tda10045_fwupload(fe)) {
622 printk("tda1004x: firmware upload failed\n");
623 return -EIO;
624 }
625
626 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
627
628 // tda setup
629 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
630 tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
631 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
632 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
633 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
634 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
635 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
636 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
637 tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
638 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
639 tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
640
641 tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
642
643 return 0;
644 }
645
646 static int tda10046_init(struct dvb_frontend* fe)
647 {
648 struct tda1004x_state* state = fe->demodulator_priv;
649 dprintk("%s\n", __func__);
650
651 if (tda10046_fwupload(fe)) {
652 printk("tda1004x: firmware upload failed\n");
653 return -EIO;
654 }
655
656 // tda setup
657 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
658 tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
659 tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer
660
661 switch (state->config->agc_config) {
662 case TDA10046_AGC_DEFAULT:
663 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
664 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
665 break;
666 case TDA10046_AGC_IFO_AUTO_NEG:
667 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
668 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
669 break;
670 case TDA10046_AGC_IFO_AUTO_POS:
671 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
672 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00); // set AGC polarities
673 break;
674 case TDA10046_AGC_TDA827X:
675 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
676 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
677 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
678 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
679 break;
680 }
681 if (state->config->ts_mode == 0) {
682 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
683 tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
684 } else {
685 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
686 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
687 state->config->invert_oclk << 4);
688 }
689 tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
690 tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
691 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
692 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
693 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
694 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
695 tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
696 tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
697 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
698 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
699 // tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes
700
701 return 0;
702 }
703
704 static int tda1004x_set_fe(struct dvb_frontend *fe)
705 {
706 struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
707 struct tda1004x_state* state = fe->demodulator_priv;
708 int tmp;
709 int inversion;
710
711 dprintk("%s\n", __func__);
712
713 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
714 // setup auto offset
715 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
716 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
717 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
718
719 // disable agc_conf[2]
720 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
721 }
722
723 // set frequency
724 if (fe->ops.tuner_ops.set_params) {
725 fe->ops.tuner_ops.set_params(fe);
726 if (fe->ops.i2c_gate_ctrl)
727 fe->ops.i2c_gate_ctrl(fe, 0);
728 }
729
730 // Hardcoded to use auto as much as possible on the TDA10045 as it
731 // is very unreliable if AUTO mode is _not_ used.
732 if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
733 fe_params->code_rate_HP = FEC_AUTO;
734 fe_params->guard_interval = GUARD_INTERVAL_AUTO;
735 fe_params->transmission_mode = TRANSMISSION_MODE_AUTO;
736 }
737
738 // Set standard params.. or put them to auto
739 if ((fe_params->code_rate_HP == FEC_AUTO) ||
740 (fe_params->code_rate_LP == FEC_AUTO) ||
741 (fe_params->modulation == QAM_AUTO) ||
742 (fe_params->hierarchy == HIERARCHY_AUTO)) {
743 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
744 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); /* turn off modulation bits */
745 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
746 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
747 } else {
748 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
749
750 // set HP FEC
751 tmp = tda1004x_encode_fec(fe_params->code_rate_HP);
752 if (tmp < 0)
753 return tmp;
754 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
755
756 // set LP FEC
757 tmp = tda1004x_encode_fec(fe_params->code_rate_LP);
758 if (tmp < 0)
759 return tmp;
760 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
761
762 /* set modulation */
763 switch (fe_params->modulation) {
764 case QPSK:
765 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
766 break;
767
768 case QAM_16:
769 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
770 break;
771
772 case QAM_64:
773 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
774 break;
775
776 default:
777 return -EINVAL;
778 }
779
780 // set hierarchy
781 switch (fe_params->hierarchy) {
782 case HIERARCHY_NONE:
783 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
784 break;
785
786 case HIERARCHY_1:
787 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
788 break;
789
790 case HIERARCHY_2:
791 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
792 break;
793
794 case HIERARCHY_4:
795 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
796 break;
797
798 default:
799 return -EINVAL;
800 }
801 }
802
803 // set bandwidth
804 switch (state->demod_type) {
805 case TDA1004X_DEMOD_TDA10045:
806 tda10045h_set_bandwidth(state, fe_params->bandwidth_hz);
807 break;
808
809 case TDA1004X_DEMOD_TDA10046:
810 tda10046h_set_bandwidth(state, fe_params->bandwidth_hz);
811 break;
812 }
813
814 // set inversion
815 inversion = fe_params->inversion;
816 if (state->config->invert)
817 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
818 switch (inversion) {
819 case INVERSION_OFF:
820 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
821 break;
822
823 case INVERSION_ON:
824 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
825 break;
826
827 default:
828 return -EINVAL;
829 }
830
831 // set guard interval
832 switch (fe_params->guard_interval) {
833 case GUARD_INTERVAL_1_32:
834 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
835 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
836 break;
837
838 case GUARD_INTERVAL_1_16:
839 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
840 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
841 break;
842
843 case GUARD_INTERVAL_1_8:
844 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
845 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
846 break;
847
848 case GUARD_INTERVAL_1_4:
849 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
850 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
851 break;
852
853 case GUARD_INTERVAL_AUTO:
854 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
855 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
856 break;
857
858 default:
859 return -EINVAL;
860 }
861
862 // set transmission mode
863 switch (fe_params->transmission_mode) {
864 case TRANSMISSION_MODE_2K:
865 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
866 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
867 break;
868
869 case TRANSMISSION_MODE_8K:
870 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
871 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
872 break;
873
874 case TRANSMISSION_MODE_AUTO:
875 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
876 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
877 break;
878
879 default:
880 return -EINVAL;
881 }
882
883 // start the lock
884 switch (state->demod_type) {
885 case TDA1004X_DEMOD_TDA10045:
886 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
887 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
888 break;
889
890 case TDA1004X_DEMOD_TDA10046:
891 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
892 msleep(1);
893 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
894 break;
895 }
896
897 msleep(10);
898
899 return 0;
900 }
901
902 static int tda1004x_get_fe(struct dvb_frontend *fe)
903 {
904 struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
905 struct tda1004x_state* state = fe->demodulator_priv;
906 int status;
907
908 dprintk("%s\n", __func__);
909
910 status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
911 if (status == -1)
912 return -EIO;
913
914 /* Only update the properties cache if device is locked */
915 if (!(status & 8))
916 return 0;
917
918 // inversion status
919 fe_params->inversion = INVERSION_OFF;
920 if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
921 fe_params->inversion = INVERSION_ON;
922 if (state->config->invert)
923 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
924
925 // bandwidth
926 switch (state->demod_type) {
927 case TDA1004X_DEMOD_TDA10045:
928 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
929 case 0x14:
930 fe_params->bandwidth_hz = 8000000;
931 break;
932 case 0xdb:
933 fe_params->bandwidth_hz = 7000000;
934 break;
935 case 0x4f:
936 fe_params->bandwidth_hz = 6000000;
937 break;
938 }
939 break;
940 case TDA1004X_DEMOD_TDA10046:
941 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
942 case 0x5c:
943 case 0x54:
944 fe_params->bandwidth_hz = 8000000;
945 break;
946 case 0x6a:
947 case 0x60:
948 fe_params->bandwidth_hz = 7000000;
949 break;
950 case 0x7b:
951 case 0x70:
952 fe_params->bandwidth_hz = 6000000;
953 break;
954 }
955 break;
956 }
957
958 // FEC
959 fe_params->code_rate_HP =
960 tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
961 fe_params->code_rate_LP =
962 tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
963
964 /* modulation */
965 switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
966 case 0:
967 fe_params->modulation = QPSK;
968 break;
969 case 1:
970 fe_params->modulation = QAM_16;
971 break;
972 case 2:
973 fe_params->modulation = QAM_64;
974 break;
975 }
976
977 // transmission mode
978 fe_params->transmission_mode = TRANSMISSION_MODE_2K;
979 if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
980 fe_params->transmission_mode = TRANSMISSION_MODE_8K;
981
982 // guard interval
983 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
984 case 0:
985 fe_params->guard_interval = GUARD_INTERVAL_1_32;
986 break;
987 case 1:
988 fe_params->guard_interval = GUARD_INTERVAL_1_16;
989 break;
990 case 2:
991 fe_params->guard_interval = GUARD_INTERVAL_1_8;
992 break;
993 case 3:
994 fe_params->guard_interval = GUARD_INTERVAL_1_4;
995 break;
996 }
997
998 // hierarchy
999 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
1000 case 0:
1001 fe_params->hierarchy = HIERARCHY_NONE;
1002 break;
1003 case 1:
1004 fe_params->hierarchy = HIERARCHY_1;
1005 break;
1006 case 2:
1007 fe_params->hierarchy = HIERARCHY_2;
1008 break;
1009 case 3:
1010 fe_params->hierarchy = HIERARCHY_4;
1011 break;
1012 }
1013
1014 return 0;
1015 }
1016
1017 static int tda1004x_read_status(struct dvb_frontend *fe,
1018 enum fe_status *fe_status)
1019 {
1020 struct tda1004x_state* state = fe->demodulator_priv;
1021 int status;
1022 int cber;
1023 int vber;
1024
1025 dprintk("%s\n", __func__);
1026
1027 // read status
1028 status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
1029 if (status == -1)
1030 return -EIO;
1031
1032 // decode
1033 *fe_status = 0;
1034 if (status & 4)
1035 *fe_status |= FE_HAS_SIGNAL;
1036 if (status & 2)
1037 *fe_status |= FE_HAS_CARRIER;
1038 if (status & 8)
1039 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1040
1041 // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1042 // is getting anything valid
1043 if (!(*fe_status & FE_HAS_VITERBI)) {
1044 // read the CBER
1045 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1046 if (cber == -1)
1047 return -EIO;
1048 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1049 if (status == -1)
1050 return -EIO;
1051 cber |= (status << 8);
1052 // The address 0x20 should be read to cope with a TDA10046 bug
1053 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1054
1055 if (cber != 65535)
1056 *fe_status |= FE_HAS_VITERBI;
1057 }
1058
1059 // if we DO have some valid VITERBI output, but don't already have SYNC
1060 // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1061 if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1062 // read the VBER
1063 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1064 if (vber == -1)
1065 return -EIO;
1066 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1067 if (status == -1)
1068 return -EIO;
1069 vber |= (status << 8);
1070 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1071 if (status == -1)
1072 return -EIO;
1073 vber |= (status & 0x0f) << 16;
1074 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1075 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1076
1077 // if RS has passed some valid TS packets, then we must be
1078 // getting some SYNC bytes
1079 if (vber < 16632)
1080 *fe_status |= FE_HAS_SYNC;
1081 }
1082
1083 // success
1084 dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
1085 return 0;
1086 }
1087
1088 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1089 {
1090 struct tda1004x_state* state = fe->demodulator_priv;
1091 int tmp;
1092 int reg = 0;
1093
1094 dprintk("%s\n", __func__);
1095
1096 // determine the register to use
1097 switch (state->demod_type) {
1098 case TDA1004X_DEMOD_TDA10045:
1099 reg = TDA10045H_S_AGC;
1100 break;
1101
1102 case TDA1004X_DEMOD_TDA10046:
1103 reg = TDA10046H_AGC_IF_LEVEL;
1104 break;
1105 }
1106
1107 // read it
1108 tmp = tda1004x_read_byte(state, reg);
1109 if (tmp < 0)
1110 return -EIO;
1111
1112 *signal = (tmp << 8) | tmp;
1113 dprintk("%s: signal=0x%x\n", __func__, *signal);
1114 return 0;
1115 }
1116
1117 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1118 {
1119 struct tda1004x_state* state = fe->demodulator_priv;
1120 int tmp;
1121
1122 dprintk("%s\n", __func__);
1123
1124 // read it
1125 tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1126 if (tmp < 0)
1127 return -EIO;
1128 tmp = 255 - tmp;
1129
1130 *snr = ((tmp << 8) | tmp);
1131 dprintk("%s: snr=0x%x\n", __func__, *snr);
1132 return 0;
1133 }
1134
1135 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1136 {
1137 struct tda1004x_state* state = fe->demodulator_priv;
1138 int tmp;
1139 int tmp2;
1140 int counter;
1141
1142 dprintk("%s\n", __func__);
1143
1144 // read the UCBLOCKS and reset
1145 counter = 0;
1146 tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1147 if (tmp < 0)
1148 return -EIO;
1149 tmp &= 0x7f;
1150 while (counter++ < 5) {
1151 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1152 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1153 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1154
1155 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1156 if (tmp2 < 0)
1157 return -EIO;
1158 tmp2 &= 0x7f;
1159 if ((tmp2 < tmp) || (tmp2 == 0))
1160 break;
1161 }
1162
1163 if (tmp != 0x7f)
1164 *ucblocks = tmp;
1165 else
1166 *ucblocks = 0xffffffff;
1167
1168 dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks);
1169 return 0;
1170 }
1171
1172 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1173 {
1174 struct tda1004x_state* state = fe->demodulator_priv;
1175 int tmp;
1176
1177 dprintk("%s\n", __func__);
1178
1179 // read it in
1180 tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1181 if (tmp < 0)
1182 return -EIO;
1183 *ber = tmp << 1;
1184 tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1185 if (tmp < 0)
1186 return -EIO;
1187 *ber |= (tmp << 9);
1188 // The address 0x20 should be read to cope with a TDA10046 bug
1189 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1190
1191 dprintk("%s: ber=0x%x\n", __func__, *ber);
1192 return 0;
1193 }
1194
1195 static int tda1004x_sleep(struct dvb_frontend* fe)
1196 {
1197 struct tda1004x_state* state = fe->demodulator_priv;
1198 int gpio_conf;
1199
1200 switch (state->demod_type) {
1201 case TDA1004X_DEMOD_TDA10045:
1202 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1203 break;
1204
1205 case TDA1004X_DEMOD_TDA10046:
1206 /* set outputs to tristate */
1207 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1208 /* invert GPIO 1 and 3 if desired*/
1209 gpio_conf = state->config->gpio_config;
1210 if (gpio_conf >= TDA10046_GP00_I)
1211 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
1212 (gpio_conf & 0x0f) ^ 0x0a);
1213
1214 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
1215 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1216 break;
1217 }
1218
1219 return 0;
1220 }
1221
1222 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1223 {
1224 struct tda1004x_state* state = fe->demodulator_priv;
1225
1226 if (enable) {
1227 return tda1004x_enable_tuner_i2c(state);
1228 } else {
1229 return tda1004x_disable_tuner_i2c(state);
1230 }
1231 }
1232
1233 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1234 {
1235 fesettings->min_delay_ms = 800;
1236 /* Drift compensation makes no sense for DVB-T */
1237 fesettings->step_size = 0;
1238 fesettings->max_drift = 0;
1239 return 0;
1240 }
1241
1242 static void tda1004x_release(struct dvb_frontend* fe)
1243 {
1244 struct tda1004x_state *state = fe->demodulator_priv;
1245 kfree(state);
1246 }
1247
1248 static struct dvb_frontend_ops tda10045_ops = {
1249 .delsys = { SYS_DVBT },
1250 .info = {
1251 .name = "Philips TDA10045H DVB-T",
1252 .frequency_min = 51000000,
1253 .frequency_max = 858000000,
1254 .frequency_stepsize = 166667,
1255 .caps =
1256 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1257 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1258 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1259 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1260 },
1261
1262 .release = tda1004x_release,
1263
1264 .init = tda10045_init,
1265 .sleep = tda1004x_sleep,
1266 .write = tda1004x_write,
1267 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1268
1269 .set_frontend = tda1004x_set_fe,
1270 .get_frontend = tda1004x_get_fe,
1271 .get_tune_settings = tda1004x_get_tune_settings,
1272
1273 .read_status = tda1004x_read_status,
1274 .read_ber = tda1004x_read_ber,
1275 .read_signal_strength = tda1004x_read_signal_strength,
1276 .read_snr = tda1004x_read_snr,
1277 .read_ucblocks = tda1004x_read_ucblocks,
1278 };
1279
1280 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1281 struct i2c_adapter* i2c)
1282 {
1283 struct tda1004x_state *state;
1284 int id;
1285
1286 /* allocate memory for the internal state */
1287 state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1288 if (!state) {
1289 printk(KERN_ERR "Can't allocate memory for tda10045 state\n");
1290 return NULL;
1291 }
1292
1293 /* setup the state */
1294 state->config = config;
1295 state->i2c = i2c;
1296 state->demod_type = TDA1004X_DEMOD_TDA10045;
1297
1298 /* check if the demod is there */
1299 id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1300 if (id < 0) {
1301 printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n");
1302 kfree(state);
1303 return NULL;
1304 }
1305
1306 if (id != 0x25) {
1307 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1308 kfree(state);
1309 return NULL;
1310 }
1311
1312 /* create dvb_frontend */
1313 memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1314 state->frontend.demodulator_priv = state;
1315 return &state->frontend;
1316 }
1317
1318 static struct dvb_frontend_ops tda10046_ops = {
1319 .delsys = { SYS_DVBT },
1320 .info = {
1321 .name = "Philips TDA10046H DVB-T",
1322 .frequency_min = 51000000,
1323 .frequency_max = 858000000,
1324 .frequency_stepsize = 166667,
1325 .caps =
1326 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1327 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1328 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1329 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1330 },
1331
1332 .release = tda1004x_release,
1333
1334 .init = tda10046_init,
1335 .sleep = tda1004x_sleep,
1336 .write = tda1004x_write,
1337 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1338
1339 .set_frontend = tda1004x_set_fe,
1340 .get_frontend = tda1004x_get_fe,
1341 .get_tune_settings = tda1004x_get_tune_settings,
1342
1343 .read_status = tda1004x_read_status,
1344 .read_ber = tda1004x_read_ber,
1345 .read_signal_strength = tda1004x_read_signal_strength,
1346 .read_snr = tda1004x_read_snr,
1347 .read_ucblocks = tda1004x_read_ucblocks,
1348 };
1349
1350 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1351 struct i2c_adapter* i2c)
1352 {
1353 struct tda1004x_state *state;
1354 int id;
1355
1356 /* allocate memory for the internal state */
1357 state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1358 if (!state) {
1359 printk(KERN_ERR "Can't allocate memory for tda10046 state\n");
1360 return NULL;
1361 }
1362
1363 /* setup the state */
1364 state->config = config;
1365 state->i2c = i2c;
1366 state->demod_type = TDA1004X_DEMOD_TDA10046;
1367
1368 /* check if the demod is there */
1369 id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1370 if (id < 0) {
1371 printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n");
1372 kfree(state);
1373 return NULL;
1374 }
1375 if (id != 0x46) {
1376 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1377 kfree(state);
1378 return NULL;
1379 }
1380
1381 /* create dvb_frontend */
1382 memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1383 state->frontend.demodulator_priv = state;
1384 return &state->frontend;
1385 }
1386
1387 module_param(debug, int, 0644);
1388 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1389
1390 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1391 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1392 MODULE_LICENSE("GPL");
1393
1394 EXPORT_SYMBOL(tda10045_attach);
1395 EXPORT_SYMBOL(tda10046_attach);
This page took 0.060679 seconds and 5 git commands to generate.