Merge remote-tracking branch 'xen-tip/linux-next'
[deliverable/linux.git] / drivers / media / i2c / ad9389b.c
1 /*
2 * Analog Devices AD9389B/AD9889B video encoder driver
3 *
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5 *
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
18 */
19
20 /*
21 * References (c = chapter, p = page):
22 * REF_01 - Analog Devices, Programming Guide, AD9889B/AD9389B,
23 * HDMI Transitter, Rev. A, October 2010
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/delay.h>
31 #include <linux/videodev2.h>
32 #include <linux/workqueue.h>
33 #include <linux/v4l2-dv-timings.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-common.h>
36 #include <media/v4l2-dv-timings.h>
37 #include <media/v4l2-ctrls.h>
38 #include <media/i2c/ad9389b.h>
39
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
43
44 MODULE_DESCRIPTION("Analog Devices AD9389B/AD9889B video encoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>");
47 MODULE_LICENSE("GPL");
48
49 #define MASK_AD9389B_EDID_RDY_INT 0x04
50 #define MASK_AD9389B_MSEN_INT 0x40
51 #define MASK_AD9389B_HPD_INT 0x80
52
53 #define MASK_AD9389B_HPD_DETECT 0x40
54 #define MASK_AD9389B_MSEN_DETECT 0x20
55 #define MASK_AD9389B_EDID_RDY 0x10
56
57 #define EDID_MAX_RETRIES (8)
58 #define EDID_DELAY 250
59 #define EDID_MAX_SEGM 8
60
61 /*
62 **********************************************************************
63 *
64 * Arrays with configuration parameters for the AD9389B
65 *
66 **********************************************************************
67 */
68
69 struct ad9389b_state_edid {
70 /* total number of blocks */
71 u32 blocks;
72 /* Number of segments read */
73 u32 segments;
74 u8 data[EDID_MAX_SEGM * 256];
75 /* Number of EDID read retries left */
76 unsigned read_retries;
77 };
78
79 struct ad9389b_state {
80 struct ad9389b_platform_data pdata;
81 struct v4l2_subdev sd;
82 struct media_pad pad;
83 struct v4l2_ctrl_handler hdl;
84 int chip_revision;
85 /* Is the ad9389b powered on? */
86 bool power_on;
87 /* Did we receive hotplug and rx-sense signals? */
88 bool have_monitor;
89 /* timings from s_dv_timings */
90 struct v4l2_dv_timings dv_timings;
91 /* controls */
92 struct v4l2_ctrl *hdmi_mode_ctrl;
93 struct v4l2_ctrl *hotplug_ctrl;
94 struct v4l2_ctrl *rx_sense_ctrl;
95 struct v4l2_ctrl *have_edid0_ctrl;
96 struct v4l2_ctrl *rgb_quantization_range_ctrl;
97 struct i2c_client *edid_i2c_client;
98 struct ad9389b_state_edid edid;
99 /* Running counter of the number of detected EDIDs (for debugging) */
100 unsigned edid_detect_counter;
101 struct delayed_work edid_handler; /* work entry */
102 };
103
104 static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd);
105 static bool ad9389b_check_edid_status(struct v4l2_subdev *sd);
106 static void ad9389b_setup(struct v4l2_subdev *sd);
107 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq);
108 static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq);
109
110 static inline struct ad9389b_state *get_ad9389b_state(struct v4l2_subdev *sd)
111 {
112 return container_of(sd, struct ad9389b_state, sd);
113 }
114
115 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
116 {
117 return &container_of(ctrl->handler, struct ad9389b_state, hdl)->sd;
118 }
119
120 /* ------------------------ I2C ----------------------------------------------- */
121
122 static int ad9389b_rd(struct v4l2_subdev *sd, u8 reg)
123 {
124 struct i2c_client *client = v4l2_get_subdevdata(sd);
125
126 return i2c_smbus_read_byte_data(client, reg);
127 }
128
129 static int ad9389b_wr(struct v4l2_subdev *sd, u8 reg, u8 val)
130 {
131 struct i2c_client *client = v4l2_get_subdevdata(sd);
132 int ret;
133 int i;
134
135 for (i = 0; i < 3; i++) {
136 ret = i2c_smbus_write_byte_data(client, reg, val);
137 if (ret == 0)
138 return 0;
139 }
140 v4l2_err(sd, "%s: failed reg 0x%x, val 0x%x\n", __func__, reg, val);
141 return ret;
142 }
143
144 /* To set specific bits in the register, a clear-mask is given (to be AND-ed),
145 and then the value-mask (to be OR-ed). */
146 static inline void ad9389b_wr_and_or(struct v4l2_subdev *sd, u8 reg,
147 u8 clr_mask, u8 val_mask)
148 {
149 ad9389b_wr(sd, reg, (ad9389b_rd(sd, reg) & clr_mask) | val_mask);
150 }
151
152 static void ad9389b_edid_rd(struct v4l2_subdev *sd, u16 len, u8 *buf)
153 {
154 struct ad9389b_state *state = get_ad9389b_state(sd);
155 int i;
156
157 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
158
159 for (i = 0; i < len; i++)
160 buf[i] = i2c_smbus_read_byte_data(state->edid_i2c_client, i);
161 }
162
163 static inline bool ad9389b_have_hotplug(struct v4l2_subdev *sd)
164 {
165 return ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT;
166 }
167
168 static inline bool ad9389b_have_rx_sense(struct v4l2_subdev *sd)
169 {
170 return ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT;
171 }
172
173 static void ad9389b_csc_conversion_mode(struct v4l2_subdev *sd, u8 mode)
174 {
175 ad9389b_wr_and_or(sd, 0x17, 0xe7, (mode & 0x3)<<3);
176 ad9389b_wr_and_or(sd, 0x18, 0x9f, (mode & 0x3)<<5);
177 }
178
179 static void ad9389b_csc_coeff(struct v4l2_subdev *sd,
180 u16 A1, u16 A2, u16 A3, u16 A4,
181 u16 B1, u16 B2, u16 B3, u16 B4,
182 u16 C1, u16 C2, u16 C3, u16 C4)
183 {
184 /* A */
185 ad9389b_wr_and_or(sd, 0x18, 0xe0, A1>>8);
186 ad9389b_wr(sd, 0x19, A1);
187 ad9389b_wr_and_or(sd, 0x1A, 0xe0, A2>>8);
188 ad9389b_wr(sd, 0x1B, A2);
189 ad9389b_wr_and_or(sd, 0x1c, 0xe0, A3>>8);
190 ad9389b_wr(sd, 0x1d, A3);
191 ad9389b_wr_and_or(sd, 0x1e, 0xe0, A4>>8);
192 ad9389b_wr(sd, 0x1f, A4);
193
194 /* B */
195 ad9389b_wr_and_or(sd, 0x20, 0xe0, B1>>8);
196 ad9389b_wr(sd, 0x21, B1);
197 ad9389b_wr_and_or(sd, 0x22, 0xe0, B2>>8);
198 ad9389b_wr(sd, 0x23, B2);
199 ad9389b_wr_and_or(sd, 0x24, 0xe0, B3>>8);
200 ad9389b_wr(sd, 0x25, B3);
201 ad9389b_wr_and_or(sd, 0x26, 0xe0, B4>>8);
202 ad9389b_wr(sd, 0x27, B4);
203
204 /* C */
205 ad9389b_wr_and_or(sd, 0x28, 0xe0, C1>>8);
206 ad9389b_wr(sd, 0x29, C1);
207 ad9389b_wr_and_or(sd, 0x2A, 0xe0, C2>>8);
208 ad9389b_wr(sd, 0x2B, C2);
209 ad9389b_wr_and_or(sd, 0x2C, 0xe0, C3>>8);
210 ad9389b_wr(sd, 0x2D, C3);
211 ad9389b_wr_and_or(sd, 0x2E, 0xe0, C4>>8);
212 ad9389b_wr(sd, 0x2F, C4);
213 }
214
215 static void ad9389b_csc_rgb_full2limit(struct v4l2_subdev *sd, bool enable)
216 {
217 if (enable) {
218 u8 csc_mode = 0;
219
220 ad9389b_csc_conversion_mode(sd, csc_mode);
221 ad9389b_csc_coeff(sd,
222 4096-564, 0, 0, 256,
223 0, 4096-564, 0, 256,
224 0, 0, 4096-564, 256);
225 /* enable CSC */
226 ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x1);
227 /* AVI infoframe: Limited range RGB (16-235) */
228 ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x02);
229 } else {
230 /* disable CSC */
231 ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x0);
232 /* AVI infoframe: Full range RGB (0-255) */
233 ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x04);
234 }
235 }
236
237 static void ad9389b_set_IT_content_AVI_InfoFrame(struct v4l2_subdev *sd)
238 {
239 struct ad9389b_state *state = get_ad9389b_state(sd);
240
241 if (state->dv_timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
242 /* CE format, not IT */
243 ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x00);
244 } else {
245 /* IT format */
246 ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x40);
247 }
248 }
249
250 static int ad9389b_set_rgb_quantization_mode(struct v4l2_subdev *sd, struct v4l2_ctrl *ctrl)
251 {
252 struct ad9389b_state *state = get_ad9389b_state(sd);
253
254 switch (ctrl->val) {
255 case V4L2_DV_RGB_RANGE_AUTO:
256 /* automatic */
257 if (state->dv_timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
258 /* CE format, RGB limited range (16-235) */
259 ad9389b_csc_rgb_full2limit(sd, true);
260 } else {
261 /* not CE format, RGB full range (0-255) */
262 ad9389b_csc_rgb_full2limit(sd, false);
263 }
264 break;
265 case V4L2_DV_RGB_RANGE_LIMITED:
266 /* RGB limited range (16-235) */
267 ad9389b_csc_rgb_full2limit(sd, true);
268 break;
269 case V4L2_DV_RGB_RANGE_FULL:
270 /* RGB full range (0-255) */
271 ad9389b_csc_rgb_full2limit(sd, false);
272 break;
273 default:
274 return -EINVAL;
275 }
276 return 0;
277 }
278
279 static void ad9389b_set_manual_pll_gear(struct v4l2_subdev *sd, u32 pixelclock)
280 {
281 u8 gear;
282
283 /* Workaround for TMDS PLL problem
284 * The TMDS PLL in AD9389b change gear when the chip is heated above a
285 * certain temperature. The output is disabled when the PLL change gear
286 * so the monitor has to lock on the signal again. A workaround for
287 * this is to use the manual PLL gears. This is a solution from Analog
288 * Devices that is not documented in the datasheets.
289 * 0x98 [7] = enable manual gearing. 0x98 [6:4] = gear
290 *
291 * The pixel frequency ranges are based on readout of the gear the
292 * automatic gearing selects for different pixel clocks
293 * (read from 0x9e [3:1]).
294 */
295
296 if (pixelclock > 140000000)
297 gear = 0xc0; /* 4th gear */
298 else if (pixelclock > 117000000)
299 gear = 0xb0; /* 3rd gear */
300 else if (pixelclock > 87000000)
301 gear = 0xa0; /* 2nd gear */
302 else if (pixelclock > 60000000)
303 gear = 0x90; /* 1st gear */
304 else
305 gear = 0x80; /* 0th gear */
306
307 ad9389b_wr_and_or(sd, 0x98, 0x0f, gear);
308 }
309
310 /* ------------------------------ CTRL OPS ------------------------------ */
311
312 static int ad9389b_s_ctrl(struct v4l2_ctrl *ctrl)
313 {
314 struct v4l2_subdev *sd = to_sd(ctrl);
315 struct ad9389b_state *state = get_ad9389b_state(sd);
316
317 v4l2_dbg(1, debug, sd,
318 "%s: ctrl id: %d, ctrl->val %d\n", __func__, ctrl->id, ctrl->val);
319
320 if (state->hdmi_mode_ctrl == ctrl) {
321 /* Set HDMI or DVI-D */
322 ad9389b_wr_and_or(sd, 0xaf, 0xfd,
323 ctrl->val == V4L2_DV_TX_MODE_HDMI ? 0x02 : 0x00);
324 return 0;
325 }
326 if (state->rgb_quantization_range_ctrl == ctrl)
327 return ad9389b_set_rgb_quantization_mode(sd, ctrl);
328 return -EINVAL;
329 }
330
331 static const struct v4l2_ctrl_ops ad9389b_ctrl_ops = {
332 .s_ctrl = ad9389b_s_ctrl,
333 };
334
335 /* ---------------------------- CORE OPS ------------------------------------------- */
336
337 #ifdef CONFIG_VIDEO_ADV_DEBUG
338 static int ad9389b_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
339 {
340 reg->val = ad9389b_rd(sd, reg->reg & 0xff);
341 reg->size = 1;
342 return 0;
343 }
344
345 static int ad9389b_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
346 {
347 ad9389b_wr(sd, reg->reg & 0xff, reg->val & 0xff);
348 return 0;
349 }
350 #endif
351
352 static int ad9389b_log_status(struct v4l2_subdev *sd)
353 {
354 struct ad9389b_state *state = get_ad9389b_state(sd);
355 struct ad9389b_state_edid *edid = &state->edid;
356
357 static const char * const states[] = {
358 "in reset",
359 "reading EDID",
360 "idle",
361 "initializing HDCP",
362 "HDCP enabled",
363 "initializing HDCP repeater",
364 "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"
365 };
366 static const char * const errors[] = {
367 "no error",
368 "bad receiver BKSV",
369 "Ri mismatch",
370 "Pj mismatch",
371 "i2c error",
372 "timed out",
373 "max repeater cascade exceeded",
374 "hash check failed",
375 "too many devices",
376 "9", "A", "B", "C", "D", "E", "F"
377 };
378
379 u8 manual_gear;
380
381 v4l2_info(sd, "chip revision %d\n", state->chip_revision);
382 v4l2_info(sd, "power %s\n", state->power_on ? "on" : "off");
383 v4l2_info(sd, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n",
384 (ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT) ?
385 "detected" : "no",
386 (ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT) ?
387 "detected" : "no",
388 edid->segments ? "found" : "no", edid->blocks);
389 v4l2_info(sd, "%s output %s\n",
390 (ad9389b_rd(sd, 0xaf) & 0x02) ?
391 "HDMI" : "DVI-D",
392 (ad9389b_rd(sd, 0xa1) & 0x3c) ?
393 "disabled" : "enabled");
394 v4l2_info(sd, "ad9389b: %s\n", (ad9389b_rd(sd, 0xb8) & 0x40) ?
395 "encrypted" : "no encryption");
396 v4l2_info(sd, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n",
397 states[ad9389b_rd(sd, 0xc8) & 0xf],
398 errors[ad9389b_rd(sd, 0xc8) >> 4],
399 state->edid_detect_counter,
400 ad9389b_rd(sd, 0x94), ad9389b_rd(sd, 0x96));
401 manual_gear = ad9389b_rd(sd, 0x98) & 0x80;
402 v4l2_info(sd, "ad9389b: RGB quantization: %s range\n",
403 ad9389b_rd(sd, 0x3b) & 0x01 ? "limited" : "full");
404 v4l2_info(sd, "ad9389b: %s gear %d\n",
405 manual_gear ? "manual" : "automatic",
406 manual_gear ? ((ad9389b_rd(sd, 0x98) & 0x70) >> 4) :
407 ((ad9389b_rd(sd, 0x9e) & 0x0e) >> 1));
408 if (ad9389b_rd(sd, 0xaf) & 0x02) {
409 /* HDMI only */
410 u8 manual_cts = ad9389b_rd(sd, 0x0a) & 0x80;
411 u32 N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 |
412 ad9389b_rd(sd, 0x02) << 8 |
413 ad9389b_rd(sd, 0x03);
414 u8 vic_detect = ad9389b_rd(sd, 0x3e) >> 2;
415 u8 vic_sent = ad9389b_rd(sd, 0x3d) & 0x3f;
416 u32 CTS;
417
418 if (manual_cts)
419 CTS = (ad9389b_rd(sd, 0x07) & 0xf) << 16 |
420 ad9389b_rd(sd, 0x08) << 8 |
421 ad9389b_rd(sd, 0x09);
422 else
423 CTS = (ad9389b_rd(sd, 0x04) & 0xf) << 16 |
424 ad9389b_rd(sd, 0x05) << 8 |
425 ad9389b_rd(sd, 0x06);
426 N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 |
427 ad9389b_rd(sd, 0x02) << 8 |
428 ad9389b_rd(sd, 0x03);
429
430 v4l2_info(sd, "ad9389b: CTS %s mode: N %d, CTS %d\n",
431 manual_cts ? "manual" : "automatic", N, CTS);
432
433 v4l2_info(sd, "ad9389b: VIC: detected %d, sent %d\n",
434 vic_detect, vic_sent);
435 }
436 if (state->dv_timings.type == V4L2_DV_BT_656_1120)
437 v4l2_print_dv_timings(sd->name, "timings: ",
438 &state->dv_timings, false);
439 else
440 v4l2_info(sd, "no timings set\n");
441 return 0;
442 }
443
444 /* Power up/down ad9389b */
445 static int ad9389b_s_power(struct v4l2_subdev *sd, int on)
446 {
447 struct ad9389b_state *state = get_ad9389b_state(sd);
448 struct ad9389b_platform_data *pdata = &state->pdata;
449 const int retries = 20;
450 int i;
451
452 v4l2_dbg(1, debug, sd, "%s: power %s\n", __func__, on ? "on" : "off");
453
454 state->power_on = on;
455
456 if (!on) {
457 /* Power down */
458 ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40);
459 return true;
460 }
461
462 /* Power up */
463 /* The ad9389b does not always come up immediately.
464 Retry multiple times. */
465 for (i = 0; i < retries; i++) {
466 ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x0);
467 if ((ad9389b_rd(sd, 0x41) & 0x40) == 0)
468 break;
469 ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40);
470 msleep(10);
471 }
472 if (i == retries) {
473 v4l2_dbg(1, debug, sd, "failed to powerup the ad9389b\n");
474 ad9389b_s_power(sd, 0);
475 return false;
476 }
477 if (i > 1)
478 v4l2_dbg(1, debug, sd,
479 "needed %d retries to powerup the ad9389b\n", i);
480
481 /* Select chip: AD9389B */
482 ad9389b_wr_and_or(sd, 0xba, 0xef, 0x10);
483
484 /* Reserved registers that must be set according to REF_01 p. 11*/
485 ad9389b_wr_and_or(sd, 0x98, 0xf0, 0x07);
486 ad9389b_wr(sd, 0x9c, 0x38);
487 ad9389b_wr_and_or(sd, 0x9d, 0xfc, 0x01);
488
489 /* Differential output drive strength */
490 if (pdata->diff_data_drive_strength > 0)
491 ad9389b_wr(sd, 0xa2, pdata->diff_data_drive_strength);
492 else
493 ad9389b_wr(sd, 0xa2, 0x87);
494
495 if (pdata->diff_clk_drive_strength > 0)
496 ad9389b_wr(sd, 0xa3, pdata->diff_clk_drive_strength);
497 else
498 ad9389b_wr(sd, 0xa3, 0x87);
499
500 ad9389b_wr(sd, 0x0a, 0x01);
501 ad9389b_wr(sd, 0xbb, 0xff);
502
503 /* Set number of attempts to read the EDID */
504 ad9389b_wr(sd, 0xc9, 0xf);
505 return true;
506 }
507
508 /* Enable interrupts */
509 static void ad9389b_set_isr(struct v4l2_subdev *sd, bool enable)
510 {
511 u8 irqs = MASK_AD9389B_HPD_INT | MASK_AD9389B_MSEN_INT;
512 u8 irqs_rd;
513 int retries = 100;
514
515 /* The datasheet says that the EDID ready interrupt should be
516 disabled if there is no hotplug. */
517 if (!enable)
518 irqs = 0;
519 else if (ad9389b_have_hotplug(sd))
520 irqs |= MASK_AD9389B_EDID_RDY_INT;
521
522 /*
523 * This i2c write can fail (approx. 1 in 1000 writes). But it
524 * is essential that this register is correct, so retry it
525 * multiple times.
526 *
527 * Note that the i2c write does not report an error, but the readback
528 * clearly shows the wrong value.
529 */
530 do {
531 ad9389b_wr(sd, 0x94, irqs);
532 irqs_rd = ad9389b_rd(sd, 0x94);
533 } while (retries-- && irqs_rd != irqs);
534
535 if (irqs_rd != irqs)
536 v4l2_err(sd, "Could not set interrupts: hw failure?\n");
537 }
538
539 /* Interrupt handler */
540 static int ad9389b_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
541 {
542 u8 irq_status;
543
544 /* disable interrupts to prevent a race condition */
545 ad9389b_set_isr(sd, false);
546 irq_status = ad9389b_rd(sd, 0x96);
547 /* clear detected interrupts */
548 ad9389b_wr(sd, 0x96, irq_status);
549 /* enable interrupts */
550 ad9389b_set_isr(sd, true);
551
552 v4l2_dbg(1, debug, sd, "%s: irq_status 0x%x\n", __func__, irq_status);
553
554 if (irq_status & (MASK_AD9389B_HPD_INT))
555 ad9389b_check_monitor_present_status(sd);
556 if (irq_status & MASK_AD9389B_EDID_RDY_INT)
557 ad9389b_check_edid_status(sd);
558
559 *handled = true;
560 return 0;
561 }
562
563 static const struct v4l2_subdev_core_ops ad9389b_core_ops = {
564 .log_status = ad9389b_log_status,
565 #ifdef CONFIG_VIDEO_ADV_DEBUG
566 .g_register = ad9389b_g_register,
567 .s_register = ad9389b_s_register,
568 #endif
569 .s_power = ad9389b_s_power,
570 .interrupt_service_routine = ad9389b_isr,
571 };
572
573 /* ------------------------------ VIDEO OPS ------------------------------ */
574
575 /* Enable/disable ad9389b output */
576 static int ad9389b_s_stream(struct v4l2_subdev *sd, int enable)
577 {
578 v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis"));
579
580 ad9389b_wr_and_or(sd, 0xa1, ~0x3c, (enable ? 0 : 0x3c));
581 if (enable) {
582 ad9389b_check_monitor_present_status(sd);
583 } else {
584 ad9389b_s_power(sd, 0);
585 }
586 return 0;
587 }
588
589 static const struct v4l2_dv_timings_cap ad9389b_timings_cap = {
590 .type = V4L2_DV_BT_656_1120,
591 /* keep this initialization for compatibility with GCC < 4.4.6 */
592 .reserved = { 0 },
593 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
594 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
595 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
596 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
597 V4L2_DV_BT_CAP_CUSTOM)
598 };
599
600 static int ad9389b_s_dv_timings(struct v4l2_subdev *sd,
601 struct v4l2_dv_timings *timings)
602 {
603 struct ad9389b_state *state = get_ad9389b_state(sd);
604
605 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
606
607 /* quick sanity check */
608 if (!v4l2_valid_dv_timings(timings, &ad9389b_timings_cap, NULL, NULL))
609 return -EINVAL;
610
611 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
612 if the format is one of the CEA or DMT timings. */
613 v4l2_find_dv_timings_cap(timings, &ad9389b_timings_cap, 0, NULL, NULL);
614
615 timings->bt.flags &= ~V4L2_DV_FL_REDUCED_FPS;
616
617 /* save timings */
618 state->dv_timings = *timings;
619
620 /* update quantization range based on new dv_timings */
621 ad9389b_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl);
622
623 /* update PLL gear based on new dv_timings */
624 if (state->pdata.tmds_pll_gear == AD9389B_TMDS_PLL_GEAR_SEMI_AUTOMATIC)
625 ad9389b_set_manual_pll_gear(sd, (u32)timings->bt.pixelclock);
626
627 /* update AVI infoframe */
628 ad9389b_set_IT_content_AVI_InfoFrame(sd);
629
630 return 0;
631 }
632
633 static int ad9389b_g_dv_timings(struct v4l2_subdev *sd,
634 struct v4l2_dv_timings *timings)
635 {
636 struct ad9389b_state *state = get_ad9389b_state(sd);
637
638 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
639
640 if (!timings)
641 return -EINVAL;
642
643 *timings = state->dv_timings;
644
645 return 0;
646 }
647
648 static int ad9389b_enum_dv_timings(struct v4l2_subdev *sd,
649 struct v4l2_enum_dv_timings *timings)
650 {
651 if (timings->pad != 0)
652 return -EINVAL;
653
654 return v4l2_enum_dv_timings_cap(timings, &ad9389b_timings_cap,
655 NULL, NULL);
656 }
657
658 static int ad9389b_dv_timings_cap(struct v4l2_subdev *sd,
659 struct v4l2_dv_timings_cap *cap)
660 {
661 if (cap->pad != 0)
662 return -EINVAL;
663
664 *cap = ad9389b_timings_cap;
665 return 0;
666 }
667
668 static const struct v4l2_subdev_video_ops ad9389b_video_ops = {
669 .s_stream = ad9389b_s_stream,
670 .s_dv_timings = ad9389b_s_dv_timings,
671 .g_dv_timings = ad9389b_g_dv_timings,
672 };
673
674 /* ------------------------------ PAD OPS ------------------------------ */
675
676 static int ad9389b_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
677 {
678 struct ad9389b_state *state = get_ad9389b_state(sd);
679
680 if (edid->pad != 0)
681 return -EINVAL;
682 if (edid->blocks == 0 || edid->blocks > 256)
683 return -EINVAL;
684 if (!state->edid.segments) {
685 v4l2_dbg(1, debug, sd, "EDID segment 0 not found\n");
686 return -ENODATA;
687 }
688 if (edid->start_block >= state->edid.segments * 2)
689 return -E2BIG;
690 if (edid->blocks + edid->start_block >= state->edid.segments * 2)
691 edid->blocks = state->edid.segments * 2 - edid->start_block;
692 memcpy(edid->edid, &state->edid.data[edid->start_block * 128],
693 128 * edid->blocks);
694 return 0;
695 }
696
697 static const struct v4l2_subdev_pad_ops ad9389b_pad_ops = {
698 .get_edid = ad9389b_get_edid,
699 .enum_dv_timings = ad9389b_enum_dv_timings,
700 .dv_timings_cap = ad9389b_dv_timings_cap,
701 };
702
703 /* ------------------------------ AUDIO OPS ------------------------------ */
704
705 static int ad9389b_s_audio_stream(struct v4l2_subdev *sd, int enable)
706 {
707 v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis"));
708
709 if (enable)
710 ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x80);
711 else
712 ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x40);
713
714 return 0;
715 }
716
717 static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
718 {
719 u32 N;
720
721 switch (freq) {
722 case 32000: N = 4096; break;
723 case 44100: N = 6272; break;
724 case 48000: N = 6144; break;
725 case 88200: N = 12544; break;
726 case 96000: N = 12288; break;
727 case 176400: N = 25088; break;
728 case 192000: N = 24576; break;
729 default:
730 return -EINVAL;
731 }
732
733 /* Set N (used with CTS to regenerate the audio clock) */
734 ad9389b_wr(sd, 0x01, (N >> 16) & 0xf);
735 ad9389b_wr(sd, 0x02, (N >> 8) & 0xff);
736 ad9389b_wr(sd, 0x03, N & 0xff);
737
738 return 0;
739 }
740
741 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq)
742 {
743 u32 i2s_sf;
744
745 switch (freq) {
746 case 32000: i2s_sf = 0x30; break;
747 case 44100: i2s_sf = 0x00; break;
748 case 48000: i2s_sf = 0x20; break;
749 case 88200: i2s_sf = 0x80; break;
750 case 96000: i2s_sf = 0xa0; break;
751 case 176400: i2s_sf = 0xc0; break;
752 case 192000: i2s_sf = 0xe0; break;
753 default:
754 return -EINVAL;
755 }
756
757 /* Set sampling frequency for I2S audio to 48 kHz */
758 ad9389b_wr_and_or(sd, 0x15, 0xf, i2s_sf);
759
760 return 0;
761 }
762
763 static int ad9389b_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config)
764 {
765 /* TODO based on input/output/config */
766 /* TODO See datasheet "Programmers guide" p. 39-40 */
767
768 /* Only 2 channels in use for application */
769 ad9389b_wr_and_or(sd, 0x50, 0x1f, 0x20);
770 /* Speaker mapping */
771 ad9389b_wr(sd, 0x51, 0x00);
772
773 /* TODO Where should this be placed? */
774 /* 16 bit audio word length */
775 ad9389b_wr_and_or(sd, 0x14, 0xf0, 0x02);
776
777 return 0;
778 }
779
780 static const struct v4l2_subdev_audio_ops ad9389b_audio_ops = {
781 .s_stream = ad9389b_s_audio_stream,
782 .s_clock_freq = ad9389b_s_clock_freq,
783 .s_i2s_clock_freq = ad9389b_s_i2s_clock_freq,
784 .s_routing = ad9389b_s_routing,
785 };
786
787 /* --------------------- SUBDEV OPS --------------------------------------- */
788
789 static const struct v4l2_subdev_ops ad9389b_ops = {
790 .core = &ad9389b_core_ops,
791 .video = &ad9389b_video_ops,
792 .audio = &ad9389b_audio_ops,
793 .pad = &ad9389b_pad_ops,
794 };
795
796 /* ----------------------------------------------------------------------- */
797 static void ad9389b_dbg_dump_edid(int lvl, int debug, struct v4l2_subdev *sd,
798 int segment, u8 *buf)
799 {
800 int i, j;
801
802 if (debug < lvl)
803 return;
804
805 v4l2_dbg(lvl, debug, sd, "edid segment %d\n", segment);
806 for (i = 0; i < 256; i += 16) {
807 u8 b[128];
808 u8 *bp = b;
809
810 if (i == 128)
811 v4l2_dbg(lvl, debug, sd, "\n");
812 for (j = i; j < i + 16; j++) {
813 sprintf(bp, "0x%02x, ", buf[j]);
814 bp += 6;
815 }
816 bp[0] = '\0';
817 v4l2_dbg(lvl, debug, sd, "%s\n", b);
818 }
819 }
820
821 static void ad9389b_edid_handler(struct work_struct *work)
822 {
823 struct delayed_work *dwork = to_delayed_work(work);
824 struct ad9389b_state *state =
825 container_of(dwork, struct ad9389b_state, edid_handler);
826 struct v4l2_subdev *sd = &state->sd;
827 struct ad9389b_edid_detect ed;
828
829 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
830
831 if (ad9389b_check_edid_status(sd)) {
832 /* Return if we received the EDID. */
833 return;
834 }
835
836 if (ad9389b_have_hotplug(sd)) {
837 /* We must retry reading the EDID several times, it is possible
838 * that initially the EDID couldn't be read due to i2c errors
839 * (DVI connectors are particularly prone to this problem). */
840 if (state->edid.read_retries) {
841 state->edid.read_retries--;
842 v4l2_dbg(1, debug, sd, "%s: edid read failed\n", __func__);
843 ad9389b_s_power(sd, false);
844 ad9389b_s_power(sd, true);
845 schedule_delayed_work(&state->edid_handler, EDID_DELAY);
846 return;
847 }
848 }
849
850 /* We failed to read the EDID, so send an event for this. */
851 ed.present = false;
852 ed.segment = ad9389b_rd(sd, 0xc4);
853 v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed);
854 v4l2_dbg(1, debug, sd, "%s: no edid found\n", __func__);
855 }
856
857 static void ad9389b_audio_setup(struct v4l2_subdev *sd)
858 {
859 v4l2_dbg(1, debug, sd, "%s\n", __func__);
860
861 ad9389b_s_i2s_clock_freq(sd, 48000);
862 ad9389b_s_clock_freq(sd, 48000);
863 ad9389b_s_routing(sd, 0, 0, 0);
864 }
865
866 /* Initial setup of AD9389b */
867
868 /* Configure hdmi transmitter. */
869 static void ad9389b_setup(struct v4l2_subdev *sd)
870 {
871 struct ad9389b_state *state = get_ad9389b_state(sd);
872
873 v4l2_dbg(1, debug, sd, "%s\n", __func__);
874
875 /* Input format: RGB 4:4:4 */
876 ad9389b_wr_and_or(sd, 0x15, 0xf1, 0x0);
877 /* Output format: RGB 4:4:4 */
878 ad9389b_wr_and_or(sd, 0x16, 0x3f, 0x0);
879 /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion,
880 Aspect ratio: 16:9 */
881 ad9389b_wr_and_or(sd, 0x17, 0xf9, 0x06);
882 /* Output format: RGB 4:4:4, Active Format Information is valid. */
883 ad9389b_wr_and_or(sd, 0x45, 0xc7, 0x08);
884 /* Underscanned */
885 ad9389b_wr_and_or(sd, 0x46, 0x3f, 0x80);
886 /* Setup video format */
887 ad9389b_wr(sd, 0x3c, 0x0);
888 /* Active format aspect ratio: same as picure. */
889 ad9389b_wr(sd, 0x47, 0x80);
890 /* No encryption */
891 ad9389b_wr_and_or(sd, 0xaf, 0xef, 0x0);
892 /* Positive clk edge capture for input video clock */
893 ad9389b_wr_and_or(sd, 0xba, 0x1f, 0x60);
894
895 ad9389b_audio_setup(sd);
896
897 v4l2_ctrl_handler_setup(&state->hdl);
898
899 ad9389b_set_IT_content_AVI_InfoFrame(sd);
900 }
901
902 static void ad9389b_notify_monitor_detect(struct v4l2_subdev *sd)
903 {
904 struct ad9389b_monitor_detect mdt;
905 struct ad9389b_state *state = get_ad9389b_state(sd);
906
907 mdt.present = state->have_monitor;
908 v4l2_subdev_notify(sd, AD9389B_MONITOR_DETECT, (void *)&mdt);
909 }
910
911 static void ad9389b_update_monitor_present_status(struct v4l2_subdev *sd)
912 {
913 struct ad9389b_state *state = get_ad9389b_state(sd);
914 /* read hotplug and rx-sense state */
915 u8 status = ad9389b_rd(sd, 0x42);
916
917 v4l2_dbg(1, debug, sd, "%s: status: 0x%x%s%s\n",
918 __func__,
919 status,
920 status & MASK_AD9389B_HPD_DETECT ? ", hotplug" : "",
921 status & MASK_AD9389B_MSEN_DETECT ? ", rx-sense" : "");
922
923 if (status & MASK_AD9389B_HPD_DETECT) {
924 v4l2_dbg(1, debug, sd, "%s: hotplug detected\n", __func__);
925 state->have_monitor = true;
926 if (!ad9389b_s_power(sd, true)) {
927 v4l2_dbg(1, debug, sd,
928 "%s: monitor detected, powerup failed\n", __func__);
929 return;
930 }
931 ad9389b_setup(sd);
932 ad9389b_notify_monitor_detect(sd);
933 state->edid.read_retries = EDID_MAX_RETRIES;
934 schedule_delayed_work(&state->edid_handler, EDID_DELAY);
935 } else if (!(status & MASK_AD9389B_HPD_DETECT)) {
936 v4l2_dbg(1, debug, sd, "%s: hotplug not detected\n", __func__);
937 state->have_monitor = false;
938 ad9389b_notify_monitor_detect(sd);
939 ad9389b_s_power(sd, false);
940 memset(&state->edid, 0, sizeof(struct ad9389b_state_edid));
941 }
942
943 /* update read only ctrls */
944 v4l2_ctrl_s_ctrl(state->hotplug_ctrl, ad9389b_have_hotplug(sd) ? 0x1 : 0x0);
945 v4l2_ctrl_s_ctrl(state->rx_sense_ctrl, ad9389b_have_rx_sense(sd) ? 0x1 : 0x0);
946 v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0);
947
948 /* update with setting from ctrls */
949 ad9389b_s_ctrl(state->rgb_quantization_range_ctrl);
950 ad9389b_s_ctrl(state->hdmi_mode_ctrl);
951 }
952
953 static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd)
954 {
955 struct ad9389b_state *state = get_ad9389b_state(sd);
956 int retry = 0;
957
958 ad9389b_update_monitor_present_status(sd);
959
960 /*
961 * Rapid toggling of the hotplug may leave the chip powered off,
962 * even if we think it is on. In that case reset and power up again.
963 */
964 while (state->power_on && (ad9389b_rd(sd, 0x41) & 0x40)) {
965 if (++retry > 5) {
966 v4l2_err(sd, "retried %d times, give up\n", retry);
967 return;
968 }
969 v4l2_dbg(1, debug, sd, "%s: reset and re-check status (%d)\n", __func__, retry);
970 ad9389b_notify_monitor_detect(sd);
971 cancel_delayed_work_sync(&state->edid_handler);
972 memset(&state->edid, 0, sizeof(struct ad9389b_state_edid));
973 ad9389b_s_power(sd, false);
974 ad9389b_update_monitor_present_status(sd);
975 }
976 }
977
978 static bool edid_block_verify_crc(u8 *edid_block)
979 {
980 u8 sum = 0;
981 int i;
982
983 for (i = 0; i < 128; i++)
984 sum += edid_block[i];
985 return sum == 0;
986 }
987
988 static bool edid_verify_crc(struct v4l2_subdev *sd, u32 segment)
989 {
990 struct ad9389b_state *state = get_ad9389b_state(sd);
991 u32 blocks = state->edid.blocks;
992 u8 *data = state->edid.data;
993
994 if (edid_block_verify_crc(&data[segment * 256])) {
995 if ((segment + 1) * 2 <= blocks)
996 return edid_block_verify_crc(&data[segment * 256 + 128]);
997 return true;
998 }
999 return false;
1000 }
1001
1002 static bool edid_verify_header(struct v4l2_subdev *sd, u32 segment)
1003 {
1004 static const u8 hdmi_header[] = {
1005 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1006 };
1007 struct ad9389b_state *state = get_ad9389b_state(sd);
1008 u8 *data = state->edid.data;
1009 int i;
1010
1011 if (segment)
1012 return true;
1013
1014 for (i = 0; i < ARRAY_SIZE(hdmi_header); i++)
1015 if (data[i] != hdmi_header[i])
1016 return false;
1017
1018 return true;
1019 }
1020
1021 static bool ad9389b_check_edid_status(struct v4l2_subdev *sd)
1022 {
1023 struct ad9389b_state *state = get_ad9389b_state(sd);
1024 struct ad9389b_edid_detect ed;
1025 int segment;
1026 u8 edidRdy = ad9389b_rd(sd, 0xc5);
1027
1028 v4l2_dbg(1, debug, sd, "%s: edid ready (retries: %d)\n",
1029 __func__, EDID_MAX_RETRIES - state->edid.read_retries);
1030
1031 if (!(edidRdy & MASK_AD9389B_EDID_RDY))
1032 return false;
1033
1034 segment = ad9389b_rd(sd, 0xc4);
1035 if (segment >= EDID_MAX_SEGM) {
1036 v4l2_err(sd, "edid segment number too big\n");
1037 return false;
1038 }
1039 v4l2_dbg(1, debug, sd, "%s: got segment %d\n", __func__, segment);
1040 ad9389b_edid_rd(sd, 256, &state->edid.data[segment * 256]);
1041 ad9389b_dbg_dump_edid(2, debug, sd, segment,
1042 &state->edid.data[segment * 256]);
1043 if (segment == 0) {
1044 state->edid.blocks = state->edid.data[0x7e] + 1;
1045 v4l2_dbg(1, debug, sd, "%s: %d blocks in total\n",
1046 __func__, state->edid.blocks);
1047 }
1048 if (!edid_verify_crc(sd, segment) ||
1049 !edid_verify_header(sd, segment)) {
1050 /* edid crc error, force reread of edid segment */
1051 v4l2_err(sd, "%s: edid crc or header error\n", __func__);
1052 ad9389b_s_power(sd, false);
1053 ad9389b_s_power(sd, true);
1054 return false;
1055 }
1056 /* one more segment read ok */
1057 state->edid.segments = segment + 1;
1058 if (((state->edid.data[0x7e] >> 1) + 1) > state->edid.segments) {
1059 /* Request next EDID segment */
1060 v4l2_dbg(1, debug, sd, "%s: request segment %d\n",
1061 __func__, state->edid.segments);
1062 ad9389b_wr(sd, 0xc9, 0xf);
1063 ad9389b_wr(sd, 0xc4, state->edid.segments);
1064 state->edid.read_retries = EDID_MAX_RETRIES;
1065 schedule_delayed_work(&state->edid_handler, EDID_DELAY);
1066 return false;
1067 }
1068
1069 /* report when we have all segments but report only for segment 0 */
1070 ed.present = true;
1071 ed.segment = 0;
1072 v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed);
1073 state->edid_detect_counter++;
1074 v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0);
1075 return ed.present;
1076 }
1077
1078 /* ----------------------------------------------------------------------- */
1079
1080 static void ad9389b_init_setup(struct v4l2_subdev *sd)
1081 {
1082 struct ad9389b_state *state = get_ad9389b_state(sd);
1083 struct ad9389b_state_edid *edid = &state->edid;
1084
1085 v4l2_dbg(1, debug, sd, "%s\n", __func__);
1086
1087 /* clear all interrupts */
1088 ad9389b_wr(sd, 0x96, 0xff);
1089
1090 memset(edid, 0, sizeof(struct ad9389b_state_edid));
1091 state->have_monitor = false;
1092 ad9389b_set_isr(sd, false);
1093 }
1094
1095 static int ad9389b_probe(struct i2c_client *client, const struct i2c_device_id *id)
1096 {
1097 const struct v4l2_dv_timings dv1080p60 = V4L2_DV_BT_CEA_1920X1080P60;
1098 struct ad9389b_state *state;
1099 struct ad9389b_platform_data *pdata = client->dev.platform_data;
1100 struct v4l2_ctrl_handler *hdl;
1101 struct v4l2_subdev *sd;
1102 int err = -EIO;
1103
1104 /* Check if the adapter supports the needed features */
1105 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1106 return -EIO;
1107
1108 v4l_dbg(1, debug, client, "detecting ad9389b client on address 0x%x\n",
1109 client->addr << 1);
1110
1111 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
1112 if (!state)
1113 return -ENOMEM;
1114
1115 /* Platform data */
1116 if (pdata == NULL) {
1117 v4l_err(client, "No platform data!\n");
1118 return -ENODEV;
1119 }
1120 memcpy(&state->pdata, pdata, sizeof(state->pdata));
1121
1122 sd = &state->sd;
1123 v4l2_i2c_subdev_init(sd, client, &ad9389b_ops);
1124 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1125
1126 hdl = &state->hdl;
1127 v4l2_ctrl_handler_init(hdl, 5);
1128
1129 state->hdmi_mode_ctrl = v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops,
1130 V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI,
1131 0, V4L2_DV_TX_MODE_DVI_D);
1132 state->hotplug_ctrl = v4l2_ctrl_new_std(hdl, NULL,
1133 V4L2_CID_DV_TX_HOTPLUG, 0, 1, 0, 0);
1134 state->rx_sense_ctrl = v4l2_ctrl_new_std(hdl, NULL,
1135 V4L2_CID_DV_TX_RXSENSE, 0, 1, 0, 0);
1136 state->have_edid0_ctrl = v4l2_ctrl_new_std(hdl, NULL,
1137 V4L2_CID_DV_TX_EDID_PRESENT, 0, 1, 0, 0);
1138 state->rgb_quantization_range_ctrl =
1139 v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops,
1140 V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
1141 0, V4L2_DV_RGB_RANGE_AUTO);
1142 sd->ctrl_handler = hdl;
1143 if (hdl->error) {
1144 err = hdl->error;
1145
1146 goto err_hdl;
1147 }
1148 state->pad.flags = MEDIA_PAD_FL_SINK;
1149 err = media_entity_pads_init(&sd->entity, 1, &state->pad);
1150 if (err)
1151 goto err_hdl;
1152
1153 state->chip_revision = ad9389b_rd(sd, 0x0);
1154 if (state->chip_revision != 2) {
1155 v4l2_err(sd, "chip_revision %d != 2\n", state->chip_revision);
1156 err = -EIO;
1157 goto err_entity;
1158 }
1159 v4l2_dbg(1, debug, sd, "reg 0x41 0x%x, chip version (reg 0x00) 0x%x\n",
1160 ad9389b_rd(sd, 0x41), state->chip_revision);
1161
1162 state->edid_i2c_client = i2c_new_dummy(client->adapter, (0x7e>>1));
1163 if (state->edid_i2c_client == NULL) {
1164 v4l2_err(sd, "failed to register edid i2c client\n");
1165 err = -ENOMEM;
1166 goto err_entity;
1167 }
1168
1169 INIT_DELAYED_WORK(&state->edid_handler, ad9389b_edid_handler);
1170 state->dv_timings = dv1080p60;
1171
1172 ad9389b_init_setup(sd);
1173 ad9389b_set_isr(sd, true);
1174
1175 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
1176 client->addr << 1, client->adapter->name);
1177 return 0;
1178
1179 err_entity:
1180 media_entity_cleanup(&sd->entity);
1181 err_hdl:
1182 v4l2_ctrl_handler_free(&state->hdl);
1183 return err;
1184 }
1185
1186 /* ----------------------------------------------------------------------- */
1187
1188 static int ad9389b_remove(struct i2c_client *client)
1189 {
1190 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1191 struct ad9389b_state *state = get_ad9389b_state(sd);
1192
1193 state->chip_revision = -1;
1194
1195 v4l2_dbg(1, debug, sd, "%s removed @ 0x%x (%s)\n", client->name,
1196 client->addr << 1, client->adapter->name);
1197
1198 ad9389b_s_stream(sd, false);
1199 ad9389b_s_audio_stream(sd, false);
1200 ad9389b_init_setup(sd);
1201 cancel_delayed_work_sync(&state->edid_handler);
1202 i2c_unregister_device(state->edid_i2c_client);
1203 v4l2_device_unregister_subdev(sd);
1204 media_entity_cleanup(&sd->entity);
1205 v4l2_ctrl_handler_free(sd->ctrl_handler);
1206 return 0;
1207 }
1208
1209 /* ----------------------------------------------------------------------- */
1210
1211 static struct i2c_device_id ad9389b_id[] = {
1212 { "ad9389b", 0 },
1213 { "ad9889b", 0 },
1214 { }
1215 };
1216 MODULE_DEVICE_TABLE(i2c, ad9389b_id);
1217
1218 static struct i2c_driver ad9389b_driver = {
1219 .driver = {
1220 .name = "ad9389b",
1221 },
1222 .probe = ad9389b_probe,
1223 .remove = ad9389b_remove,
1224 .id_table = ad9389b_id,
1225 };
1226
1227 module_i2c_driver(ad9389b_driver);
This page took 0.057131 seconds and 5 git commands to generate.