Merge tag 'drm-intel-fixes-2016-03-11' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / media / rc / nuvoton-cir.c
1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3 *
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
6 *
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25 * USA
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39
40 #include "nuvoton-cir.h"
41
42 static const struct nvt_chip nvt_chips[] = {
43 { "w83667hg", NVT_W83667HG },
44 { "NCT6775F", NVT_6775F },
45 { "NCT6776F", NVT_6776F },
46 { "NCT6779D", NVT_6779D },
47 };
48
49 static inline bool is_w83667hg(struct nvt_dev *nvt)
50 {
51 return nvt->chip_ver == NVT_W83667HG;
52 }
53
54 /* write val to config reg */
55 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
56 {
57 outb(reg, nvt->cr_efir);
58 outb(val, nvt->cr_efdr);
59 }
60
61 /* read val from config reg */
62 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
63 {
64 outb(reg, nvt->cr_efir);
65 return inb(nvt->cr_efdr);
66 }
67
68 /* update config register bit without changing other bits */
69 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
70 {
71 u8 tmp = nvt_cr_read(nvt, reg) | val;
72 nvt_cr_write(nvt, tmp, reg);
73 }
74
75 /* clear config register bit without changing other bits */
76 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
77 {
78 u8 tmp = nvt_cr_read(nvt, reg) & ~val;
79 nvt_cr_write(nvt, tmp, reg);
80 }
81
82 /* enter extended function mode */
83 static inline void nvt_efm_enable(struct nvt_dev *nvt)
84 {
85 /* Enabling Extended Function Mode explicitly requires writing 2x */
86 outb(EFER_EFM_ENABLE, nvt->cr_efir);
87 outb(EFER_EFM_ENABLE, nvt->cr_efir);
88 }
89
90 /* exit extended function mode */
91 static inline void nvt_efm_disable(struct nvt_dev *nvt)
92 {
93 outb(EFER_EFM_DISABLE, nvt->cr_efir);
94 }
95
96 /*
97 * When you want to address a specific logical device, write its logical
98 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
99 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
100 */
101 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
102 {
103 outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
104 outb(ldev, nvt->cr_efdr);
105 }
106
107 /* write val to cir config register */
108 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
109 {
110 outb(val, nvt->cir_addr + offset);
111 }
112
113 /* read val from cir config register */
114 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
115 {
116 u8 val;
117
118 val = inb(nvt->cir_addr + offset);
119
120 return val;
121 }
122
123 /* write val to cir wake register */
124 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
125 u8 val, u8 offset)
126 {
127 outb(val, nvt->cir_wake_addr + offset);
128 }
129
130 /* read val from cir wake config register */
131 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
132 {
133 u8 val;
134
135 val = inb(nvt->cir_wake_addr + offset);
136
137 return val;
138 }
139
140 /* dump current cir register contents */
141 static void cir_dump_regs(struct nvt_dev *nvt)
142 {
143 nvt_efm_enable(nvt);
144 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
145
146 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
147 pr_info(" * CR CIR ACTIVE : 0x%x\n",
148 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
149 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
150 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
151 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
152 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
153 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
154
155 nvt_efm_disable(nvt);
156
157 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
158 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
159 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
160 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
161 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
162 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
163 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
164 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
165 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
166 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
167 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
168 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
169 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
170 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
171 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
172 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
173 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
174 }
175
176 /* dump current cir wake register contents */
177 static void cir_wake_dump_regs(struct nvt_dev *nvt)
178 {
179 u8 i, fifo_len;
180
181 nvt_efm_enable(nvt);
182 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
183
184 pr_info("%s: Dump CIR WAKE logical device registers:\n",
185 NVT_DRIVER_NAME);
186 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
187 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
188 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
189 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
190 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
191 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
192 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
193
194 nvt_efm_disable(nvt);
195
196 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
197 pr_info(" * IRCON: 0x%x\n",
198 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
199 pr_info(" * IRSTS: 0x%x\n",
200 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
201 pr_info(" * IREN: 0x%x\n",
202 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
203 pr_info(" * FIFO CMP DEEP: 0x%x\n",
204 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
205 pr_info(" * FIFO CMP TOL: 0x%x\n",
206 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
207 pr_info(" * FIFO COUNT: 0x%x\n",
208 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
209 pr_info(" * SLCH: 0x%x\n",
210 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
211 pr_info(" * SLCL: 0x%x\n",
212 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
213 pr_info(" * FIFOCON: 0x%x\n",
214 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
215 pr_info(" * SRXFSTS: 0x%x\n",
216 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
217 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
218 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
219 pr_info(" * WR FIFO DATA: 0x%x\n",
220 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
221 pr_info(" * RD FIFO ONLY: 0x%x\n",
222 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
223 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
224 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
225 pr_info(" * FIFO IGNORE: 0x%x\n",
226 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
227 pr_info(" * IRFSM: 0x%x\n",
228 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
229
230 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
231 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
232 pr_info("* Contents =");
233 for (i = 0; i < fifo_len; i++)
234 pr_cont(" %02x",
235 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
236 pr_cont("\n");
237 }
238
239 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
240 {
241 int i;
242
243 for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
244 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
245 nvt->chip_ver = nvt_chips[i].chip_ver;
246 return nvt_chips[i].name;
247 }
248
249 return NULL;
250 }
251
252
253 /* detect hardware features */
254 static void nvt_hw_detect(struct nvt_dev *nvt)
255 {
256 const char *chip_name;
257 int chip_id;
258
259 nvt_efm_enable(nvt);
260
261 /* Check if we're wired for the alternate EFER setup */
262 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
263 if (nvt->chip_major == 0xff) {
264 nvt->cr_efir = CR_EFIR2;
265 nvt->cr_efdr = CR_EFDR2;
266 nvt_efm_enable(nvt);
267 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
268 }
269
270 nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
271
272 chip_id = nvt->chip_major << 8 | nvt->chip_minor;
273 chip_name = nvt_find_chip(nvt, chip_id);
274
275 /* warn, but still let the driver load, if we don't know this chip */
276 if (!chip_name)
277 dev_warn(&nvt->pdev->dev,
278 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
279 nvt->chip_major, nvt->chip_minor);
280 else
281 dev_info(&nvt->pdev->dev,
282 "found %s or compatible: chip id: 0x%02x 0x%02x",
283 chip_name, nvt->chip_major, nvt->chip_minor);
284
285 nvt_efm_disable(nvt);
286 }
287
288 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
289 {
290 u8 val, psreg, psmask, psval;
291
292 if (is_w83667hg(nvt)) {
293 psreg = CR_MULTIFUNC_PIN_SEL;
294 psmask = MULTIFUNC_PIN_SEL_MASK;
295 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
296 } else {
297 psreg = CR_OUTPUT_PIN_SEL;
298 psmask = OUTPUT_PIN_SEL_MASK;
299 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
300 }
301
302 /* output pin selection: enable CIR, with WB sensor enabled */
303 val = nvt_cr_read(nvt, psreg);
304 val &= psmask;
305 val |= psval;
306 nvt_cr_write(nvt, val, psreg);
307
308 /* Select CIR logical device and enable */
309 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
310 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
311
312 nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
313 nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
314
315 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
316
317 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
318 nvt->cir_addr, nvt->cir_irq);
319 }
320
321 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
322 {
323 /* Select ACPI logical device, enable it and CIR Wake */
324 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
325 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
326
327 /* Enable CIR Wake via PSOUT# (Pin60) */
328 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
329
330 /* enable pme interrupt of cir wakeup event */
331 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
332
333 /* Select CIR Wake logical device and enable */
334 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
335 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
336
337 nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
338 nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
339
340 nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
341
342 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
343 nvt->cir_wake_addr, nvt->cir_wake_irq);
344 }
345
346 /* clear out the hardware's cir rx fifo */
347 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
348 {
349 u8 val;
350
351 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
352 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
353 }
354
355 /* clear out the hardware's cir wake rx fifo */
356 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
357 {
358 u8 val;
359
360 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
361 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
362 CIR_WAKE_FIFOCON);
363 }
364
365 /* clear out the hardware's cir tx fifo */
366 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
367 {
368 u8 val;
369
370 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
371 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
372 }
373
374 /* enable RX Trigger Level Reach and Packet End interrupts */
375 static void nvt_set_cir_iren(struct nvt_dev *nvt)
376 {
377 u8 iren;
378
379 iren = CIR_IREN_RTR | CIR_IREN_PE;
380 nvt_cir_reg_write(nvt, iren, CIR_IREN);
381 }
382
383 static void nvt_cir_regs_init(struct nvt_dev *nvt)
384 {
385 /* set sample limit count (PE interrupt raised when reached) */
386 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
387 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
388
389 /* set fifo irq trigger levels */
390 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
391 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
392
393 /*
394 * Enable TX and RX, specify carrier on = low, off = high, and set
395 * sample period (currently 50us)
396 */
397 nvt_cir_reg_write(nvt,
398 CIR_IRCON_TXEN | CIR_IRCON_RXEN |
399 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
400 CIR_IRCON);
401
402 /* clear hardware rx and tx fifos */
403 nvt_clear_cir_fifo(nvt);
404 nvt_clear_tx_fifo(nvt);
405
406 /* clear any and all stray interrupts */
407 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
408
409 /* and finally, enable interrupts */
410 nvt_set_cir_iren(nvt);
411 }
412
413 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
414 {
415 /* set number of bytes needed for wake from s3 (default 65) */
416 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
417 CIR_WAKE_FIFO_CMP_DEEP);
418
419 /* set tolerance/variance allowed per byte during wake compare */
420 nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
421 CIR_WAKE_FIFO_CMP_TOL);
422
423 /* set sample limit count (PE interrupt raised when reached) */
424 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
425 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
426
427 /* set cir wake fifo rx trigger level (currently 67) */
428 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
429 CIR_WAKE_FIFOCON);
430
431 /*
432 * Enable TX and RX, specific carrier on = low, off = high, and set
433 * sample period (currently 50us)
434 */
435 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
436 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
437 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
438 CIR_WAKE_IRCON);
439
440 /* clear cir wake rx fifo */
441 nvt_clear_cir_wake_fifo(nvt);
442
443 /* clear any and all stray interrupts */
444 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
445 }
446
447 static void nvt_enable_wake(struct nvt_dev *nvt)
448 {
449 nvt_efm_enable(nvt);
450
451 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
452 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
453 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
454
455 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
456 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
457
458 nvt_efm_disable(nvt);
459
460 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
461 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
462 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
463 CIR_WAKE_IRCON);
464 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
465 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
466 }
467
468 #if 0 /* Currently unused */
469 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
470 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
471 {
472 u32 count, carrier, duration = 0;
473 int i;
474
475 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
476 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
477
478 for (i = 0; i < nvt->pkts; i++) {
479 if (nvt->buf[i] & BUF_PULSE_BIT)
480 duration += nvt->buf[i] & BUF_LEN_MASK;
481 }
482
483 duration *= SAMPLE_PERIOD;
484
485 if (!count || !duration) {
486 dev_notice(&nvt->pdev->dev,
487 "Unable to determine carrier! (c:%u, d:%u)",
488 count, duration);
489 return 0;
490 }
491
492 carrier = MS_TO_NS(count) / duration;
493
494 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
495 nvt_dbg("WTF? Carrier frequency out of range!");
496
497 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
498 carrier, count, duration);
499
500 return carrier;
501 }
502 #endif
503 /*
504 * set carrier frequency
505 *
506 * set carrier on 2 registers: CP & CC
507 * always set CP as 0x81
508 * set CC by SPEC, CC = 3MHz/carrier - 1
509 */
510 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
511 {
512 struct nvt_dev *nvt = dev->priv;
513 u16 val;
514
515 if (carrier == 0)
516 return -EINVAL;
517
518 nvt_cir_reg_write(nvt, 1, CIR_CP);
519 val = 3000000 / (carrier) - 1;
520 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
521
522 nvt_dbg("cp: 0x%x cc: 0x%x\n",
523 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
524
525 return 0;
526 }
527
528 /*
529 * nvt_tx_ir
530 *
531 * 1) clean TX fifo first (handled by AP)
532 * 2) copy data from user space
533 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
534 * 4) send 9 packets to TX FIFO to open TTR
535 * in interrupt_handler:
536 * 5) send all data out
537 * go back to write():
538 * 6) disable TX interrupts, re-enable RX interupts
539 *
540 * The key problem of this function is user space data may larger than
541 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
542 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
543 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
544 * set TXFCONT as 0xff, until buf_count less than 0xff.
545 */
546 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
547 {
548 struct nvt_dev *nvt = dev->priv;
549 unsigned long flags;
550 unsigned int i;
551 u8 iren;
552 int ret;
553
554 spin_lock_irqsave(&nvt->tx.lock, flags);
555
556 ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
557 nvt->tx.buf_count = (ret * sizeof(unsigned));
558
559 memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
560
561 nvt->tx.cur_buf_num = 0;
562
563 /* save currently enabled interrupts */
564 iren = nvt_cir_reg_read(nvt, CIR_IREN);
565
566 /* now disable all interrupts, save TFU & TTR */
567 nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
568
569 nvt->tx.tx_state = ST_TX_REPLY;
570
571 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
572 CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
573
574 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
575 for (i = 0; i < 9; i++)
576 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
577
578 spin_unlock_irqrestore(&nvt->tx.lock, flags);
579
580 wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
581
582 spin_lock_irqsave(&nvt->tx.lock, flags);
583 nvt->tx.tx_state = ST_TX_NONE;
584 spin_unlock_irqrestore(&nvt->tx.lock, flags);
585
586 /* restore enabled interrupts to prior state */
587 nvt_cir_reg_write(nvt, iren, CIR_IREN);
588
589 return ret;
590 }
591
592 /* dump contents of the last rx buffer we got from the hw rx fifo */
593 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
594 {
595 int i;
596
597 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
598 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
599 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
600 printk(KERN_CONT "\n");
601 }
602
603 /*
604 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
605 * trigger decode when appropriate.
606 *
607 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
608 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
609 * (default 50us) intervals for that pulse/space. A discrete signal is
610 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
611 * to signal more IR coming (repeats) or end of IR, respectively. We store
612 * sample data in the raw event kfifo until we see 0x7<something> (except f)
613 * or 0x80, at which time, we trigger a decode operation.
614 */
615 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
616 {
617 DEFINE_IR_RAW_EVENT(rawir);
618 u8 sample;
619 int i;
620
621 nvt_dbg_verbose("%s firing", __func__);
622
623 if (debug)
624 nvt_dump_rx_buf(nvt);
625
626 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
627
628 init_ir_raw_event(&rawir);
629
630 for (i = 0; i < nvt->pkts; i++) {
631 sample = nvt->buf[i];
632
633 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
634 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
635 * SAMPLE_PERIOD);
636
637 nvt_dbg("Storing %s with duration %d",
638 rawir.pulse ? "pulse" : "space", rawir.duration);
639
640 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
641
642 /*
643 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
644 * indicates end of IR signal, but new data incoming. In both
645 * cases, it means we're ready to call ir_raw_event_handle
646 */
647 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
648 nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
649 ir_raw_event_handle(nvt->rdev);
650 }
651 }
652
653 nvt->pkts = 0;
654
655 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
656 ir_raw_event_handle(nvt->rdev);
657
658 nvt_dbg_verbose("%s done", __func__);
659 }
660
661 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
662 {
663 dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!");
664
665 nvt->pkts = 0;
666 nvt_clear_cir_fifo(nvt);
667 ir_raw_event_reset(nvt->rdev);
668 }
669
670 /* copy data from hardware rx fifo into driver buffer */
671 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
672 {
673 unsigned long flags;
674 u8 fifocount, val;
675 unsigned int b_idx;
676 bool overrun = false;
677 int i;
678
679 /* Get count of how many bytes to read from RX FIFO */
680 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
681 /* if we get 0xff, probably means the logical dev is disabled */
682 if (fifocount == 0xff)
683 return;
684 /* watch out for a fifo overrun condition */
685 else if (fifocount > RX_BUF_LEN) {
686 overrun = true;
687 fifocount = RX_BUF_LEN;
688 }
689
690 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
691
692 spin_lock_irqsave(&nvt->nvt_lock, flags);
693
694 b_idx = nvt->pkts;
695
696 /* This should never happen, but lets check anyway... */
697 if (b_idx + fifocount > RX_BUF_LEN) {
698 nvt_process_rx_ir_data(nvt);
699 b_idx = 0;
700 }
701
702 /* Read fifocount bytes from CIR Sample RX FIFO register */
703 for (i = 0; i < fifocount; i++) {
704 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
705 nvt->buf[b_idx + i] = val;
706 }
707
708 nvt->pkts += fifocount;
709 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
710
711 nvt_process_rx_ir_data(nvt);
712
713 if (overrun)
714 nvt_handle_rx_fifo_overrun(nvt);
715
716 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
717 }
718
719 static void nvt_cir_log_irqs(u8 status, u8 iren)
720 {
721 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
722 status, iren,
723 status & CIR_IRSTS_RDR ? " RDR" : "",
724 status & CIR_IRSTS_RTR ? " RTR" : "",
725 status & CIR_IRSTS_PE ? " PE" : "",
726 status & CIR_IRSTS_RFO ? " RFO" : "",
727 status & CIR_IRSTS_TE ? " TE" : "",
728 status & CIR_IRSTS_TTR ? " TTR" : "",
729 status & CIR_IRSTS_TFU ? " TFU" : "",
730 status & CIR_IRSTS_GH ? " GH" : "",
731 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
732 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
733 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
734 }
735
736 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
737 {
738 unsigned long flags;
739 bool tx_inactive;
740 u8 tx_state;
741
742 spin_lock_irqsave(&nvt->tx.lock, flags);
743 tx_state = nvt->tx.tx_state;
744 spin_unlock_irqrestore(&nvt->tx.lock, flags);
745
746 tx_inactive = (tx_state == ST_TX_NONE);
747
748 return tx_inactive;
749 }
750
751 /* interrupt service routine for incoming and outgoing CIR data */
752 static irqreturn_t nvt_cir_isr(int irq, void *data)
753 {
754 struct nvt_dev *nvt = data;
755 u8 status, iren, cur_state;
756 unsigned long flags;
757
758 nvt_dbg_verbose("%s firing", __func__);
759
760 nvt_efm_enable(nvt);
761 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
762 nvt_efm_disable(nvt);
763
764 /*
765 * Get IR Status register contents. Write 1 to ack/clear
766 *
767 * bit: reg name - description
768 * 7: CIR_IRSTS_RDR - RX Data Ready
769 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
770 * 5: CIR_IRSTS_PE - Packet End
771 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
772 * 3: CIR_IRSTS_TE - TX FIFO Empty
773 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
774 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
775 * 0: CIR_IRSTS_GH - Min Length Detected
776 */
777 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
778 if (!status) {
779 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
780 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
781 return IRQ_NONE;
782 }
783
784 /* ack/clear all irq flags we've got */
785 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
786 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
787
788 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
789 iren = nvt_cir_reg_read(nvt, CIR_IREN);
790 if (!iren) {
791 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
792 return IRQ_NONE;
793 }
794
795 nvt_cir_log_irqs(status, iren);
796
797 if (status & CIR_IRSTS_RTR) {
798 /* FIXME: add code for study/learn mode */
799 /* We only do rx if not tx'ing */
800 if (nvt_cir_tx_inactive(nvt))
801 nvt_get_rx_ir_data(nvt);
802 }
803
804 if (status & CIR_IRSTS_PE) {
805 if (nvt_cir_tx_inactive(nvt))
806 nvt_get_rx_ir_data(nvt);
807
808 spin_lock_irqsave(&nvt->nvt_lock, flags);
809
810 cur_state = nvt->study_state;
811
812 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
813
814 if (cur_state == ST_STUDY_NONE)
815 nvt_clear_cir_fifo(nvt);
816 }
817
818 if (status & CIR_IRSTS_TE)
819 nvt_clear_tx_fifo(nvt);
820
821 if (status & CIR_IRSTS_TTR) {
822 unsigned int pos, count;
823 u8 tmp;
824
825 spin_lock_irqsave(&nvt->tx.lock, flags);
826
827 pos = nvt->tx.cur_buf_num;
828 count = nvt->tx.buf_count;
829
830 /* Write data into the hardware tx fifo while pos < count */
831 if (pos < count) {
832 nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
833 nvt->tx.cur_buf_num++;
834 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
835 } else {
836 tmp = nvt_cir_reg_read(nvt, CIR_IREN);
837 nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
838 }
839
840 spin_unlock_irqrestore(&nvt->tx.lock, flags);
841
842 }
843
844 if (status & CIR_IRSTS_TFU) {
845 spin_lock_irqsave(&nvt->tx.lock, flags);
846 if (nvt->tx.tx_state == ST_TX_REPLY) {
847 nvt->tx.tx_state = ST_TX_REQUEST;
848 wake_up(&nvt->tx.queue);
849 }
850 spin_unlock_irqrestore(&nvt->tx.lock, flags);
851 }
852
853 nvt_dbg_verbose("%s done", __func__);
854 return IRQ_HANDLED;
855 }
856
857 /* Interrupt service routine for CIR Wake */
858 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
859 {
860 u8 status, iren, val;
861 struct nvt_dev *nvt = data;
862 unsigned long flags;
863
864 nvt_dbg_wake("%s firing", __func__);
865
866 status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
867 if (!status)
868 return IRQ_NONE;
869
870 if (status & CIR_WAKE_IRSTS_IR_PENDING)
871 nvt_clear_cir_wake_fifo(nvt);
872
873 nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
874 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
875
876 /* Interrupt may be shared with CIR, bail if Wake not enabled */
877 iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
878 if (!iren) {
879 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
880 return IRQ_HANDLED;
881 }
882
883 if ((status & CIR_WAKE_IRSTS_PE) &&
884 (nvt->wake_state == ST_WAKE_START)) {
885 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
886 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
887 nvt_dbg("setting wake up key: 0x%x", val);
888 }
889
890 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
891 spin_lock_irqsave(&nvt->nvt_lock, flags);
892 nvt->wake_state = ST_WAKE_FINISH;
893 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
894 }
895
896 nvt_dbg_wake("%s done", __func__);
897 return IRQ_HANDLED;
898 }
899
900 static void nvt_enable_cir(struct nvt_dev *nvt)
901 {
902 /* set function enable flags */
903 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
904 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
905 CIR_IRCON);
906
907 nvt_efm_enable(nvt);
908
909 /* enable the CIR logical device */
910 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
911 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
912
913 nvt_efm_disable(nvt);
914
915 /* clear all pending interrupts */
916 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
917
918 /* enable interrupts */
919 nvt_set_cir_iren(nvt);
920 }
921
922 static void nvt_disable_cir(struct nvt_dev *nvt)
923 {
924 /* disable CIR interrupts */
925 nvt_cir_reg_write(nvt, 0, CIR_IREN);
926
927 /* clear any and all pending interrupts */
928 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
929
930 /* clear all function enable flags */
931 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
932
933 /* clear hardware rx and tx fifos */
934 nvt_clear_cir_fifo(nvt);
935 nvt_clear_tx_fifo(nvt);
936
937 nvt_efm_enable(nvt);
938
939 /* disable the CIR logical device */
940 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
941 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
942
943 nvt_efm_disable(nvt);
944 }
945
946 static int nvt_open(struct rc_dev *dev)
947 {
948 struct nvt_dev *nvt = dev->priv;
949 unsigned long flags;
950
951 spin_lock_irqsave(&nvt->nvt_lock, flags);
952 nvt_enable_cir(nvt);
953 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
954
955 return 0;
956 }
957
958 static void nvt_close(struct rc_dev *dev)
959 {
960 struct nvt_dev *nvt = dev->priv;
961 unsigned long flags;
962
963 spin_lock_irqsave(&nvt->nvt_lock, flags);
964 nvt_disable_cir(nvt);
965 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
966 }
967
968 /* Allocate memory, probe hardware, and initialize everything */
969 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
970 {
971 struct nvt_dev *nvt;
972 struct rc_dev *rdev;
973 int ret = -ENOMEM;
974
975 nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
976 if (!nvt)
977 return ret;
978
979 /* input device for IR remote (and tx) */
980 rdev = rc_allocate_device();
981 if (!rdev)
982 goto exit_free_dev_rdev;
983
984 ret = -ENODEV;
985 /* activate pnp device */
986 if (pnp_activate_dev(pdev) < 0) {
987 dev_err(&pdev->dev, "Could not activate PNP device!\n");
988 goto exit_free_dev_rdev;
989 }
990
991 /* validate pnp resources */
992 if (!pnp_port_valid(pdev, 0) ||
993 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
994 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
995 goto exit_free_dev_rdev;
996 }
997
998 if (!pnp_irq_valid(pdev, 0)) {
999 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1000 goto exit_free_dev_rdev;
1001 }
1002
1003 if (!pnp_port_valid(pdev, 1) ||
1004 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1005 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1006 goto exit_free_dev_rdev;
1007 }
1008
1009 nvt->cir_addr = pnp_port_start(pdev, 0);
1010 nvt->cir_irq = pnp_irq(pdev, 0);
1011
1012 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1013 /* irq is always shared between cir and cir wake */
1014 nvt->cir_wake_irq = nvt->cir_irq;
1015
1016 nvt->cr_efir = CR_EFIR;
1017 nvt->cr_efdr = CR_EFDR;
1018
1019 spin_lock_init(&nvt->nvt_lock);
1020 spin_lock_init(&nvt->tx.lock);
1021
1022 pnp_set_drvdata(pdev, nvt);
1023 nvt->pdev = pdev;
1024
1025 init_waitqueue_head(&nvt->tx.queue);
1026
1027 nvt_hw_detect(nvt);
1028
1029 /* Initialize CIR & CIR Wake Logical Devices */
1030 nvt_efm_enable(nvt);
1031 nvt_cir_ldev_init(nvt);
1032 nvt_cir_wake_ldev_init(nvt);
1033 nvt_efm_disable(nvt);
1034
1035 /* Initialize CIR & CIR Wake Config Registers */
1036 nvt_cir_regs_init(nvt);
1037 nvt_cir_wake_regs_init(nvt);
1038
1039 /* Set up the rc device */
1040 rdev->priv = nvt;
1041 rdev->driver_type = RC_DRIVER_IR_RAW;
1042 rdev->allowed_protocols = RC_BIT_ALL;
1043 rdev->open = nvt_open;
1044 rdev->close = nvt_close;
1045 rdev->tx_ir = nvt_tx_ir;
1046 rdev->s_tx_carrier = nvt_set_tx_carrier;
1047 rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1048 rdev->input_phys = "nuvoton/cir0";
1049 rdev->input_id.bustype = BUS_HOST;
1050 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1051 rdev->input_id.product = nvt->chip_major;
1052 rdev->input_id.version = nvt->chip_minor;
1053 rdev->dev.parent = &pdev->dev;
1054 rdev->driver_name = NVT_DRIVER_NAME;
1055 rdev->map_name = RC_MAP_RC6_MCE;
1056 rdev->timeout = MS_TO_NS(100);
1057 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1058 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1059 #if 0
1060 rdev->min_timeout = XYZ;
1061 rdev->max_timeout = XYZ;
1062 /* tx bits */
1063 rdev->tx_resolution = XYZ;
1064 #endif
1065 nvt->rdev = rdev;
1066
1067 ret = rc_register_device(rdev);
1068 if (ret)
1069 goto exit_free_dev_rdev;
1070
1071 ret = -EBUSY;
1072 /* now claim resources */
1073 if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1074 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1075 goto exit_unregister_device;
1076
1077 if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1078 IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
1079 goto exit_unregister_device;
1080
1081 if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1082 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1083 goto exit_unregister_device;
1084
1085 if (devm_request_irq(&pdev->dev, nvt->cir_wake_irq,
1086 nvt_cir_wake_isr, IRQF_SHARED,
1087 NVT_DRIVER_NAME, (void *)nvt))
1088 goto exit_unregister_device;
1089
1090 device_init_wakeup(&pdev->dev, true);
1091
1092 dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1093 if (debug) {
1094 cir_dump_regs(nvt);
1095 cir_wake_dump_regs(nvt);
1096 }
1097
1098 return 0;
1099
1100 exit_unregister_device:
1101 rc_unregister_device(rdev);
1102 rdev = NULL;
1103 exit_free_dev_rdev:
1104 rc_free_device(rdev);
1105
1106 return ret;
1107 }
1108
1109 static void nvt_remove(struct pnp_dev *pdev)
1110 {
1111 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1112 unsigned long flags;
1113
1114 spin_lock_irqsave(&nvt->nvt_lock, flags);
1115 /* disable CIR */
1116 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1117 nvt_disable_cir(nvt);
1118 /* enable CIR Wake (for IR power-on) */
1119 nvt_enable_wake(nvt);
1120 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1121
1122 rc_unregister_device(nvt->rdev);
1123 }
1124
1125 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1126 {
1127 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1128 unsigned long flags;
1129
1130 nvt_dbg("%s called", __func__);
1131
1132 /* zero out misc state tracking */
1133 spin_lock_irqsave(&nvt->nvt_lock, flags);
1134 nvt->study_state = ST_STUDY_NONE;
1135 nvt->wake_state = ST_WAKE_NONE;
1136 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1137
1138 spin_lock_irqsave(&nvt->tx.lock, flags);
1139 nvt->tx.tx_state = ST_TX_NONE;
1140 spin_unlock_irqrestore(&nvt->tx.lock, flags);
1141
1142 /* disable all CIR interrupts */
1143 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1144
1145 nvt_efm_enable(nvt);
1146
1147 /* disable cir logical dev */
1148 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1149 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1150
1151 nvt_efm_disable(nvt);
1152
1153 /* make sure wake is enabled */
1154 nvt_enable_wake(nvt);
1155
1156 return 0;
1157 }
1158
1159 static int nvt_resume(struct pnp_dev *pdev)
1160 {
1161 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1162
1163 nvt_dbg("%s called", __func__);
1164
1165 /* open interrupt */
1166 nvt_set_cir_iren(nvt);
1167
1168 /* Enable CIR logical device */
1169 nvt_efm_enable(nvt);
1170 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1171 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1172
1173 nvt_efm_disable(nvt);
1174
1175 nvt_cir_regs_init(nvt);
1176 nvt_cir_wake_regs_init(nvt);
1177
1178 return 0;
1179 }
1180
1181 static void nvt_shutdown(struct pnp_dev *pdev)
1182 {
1183 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1184 nvt_enable_wake(nvt);
1185 }
1186
1187 static const struct pnp_device_id nvt_ids[] = {
1188 { "WEC0530", 0 }, /* CIR */
1189 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1190 { "", 0 },
1191 };
1192
1193 static struct pnp_driver nvt_driver = {
1194 .name = NVT_DRIVER_NAME,
1195 .id_table = nvt_ids,
1196 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1197 .probe = nvt_probe,
1198 .remove = nvt_remove,
1199 .suspend = nvt_suspend,
1200 .resume = nvt_resume,
1201 .shutdown = nvt_shutdown,
1202 };
1203
1204 module_param(debug, int, S_IRUGO | S_IWUSR);
1205 MODULE_PARM_DESC(debug, "Enable debugging output");
1206
1207 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1208 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1209
1210 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1211 MODULE_LICENSE("GPL");
1212
1213 module_pnp_driver(nvt_driver);
This page took 0.164698 seconds and 5 git commands to generate.