f587a727df2ee1b457908c320267d41d3be9332b
[deliverable/linux.git] / drivers / media / rc / nuvoton-cir.c
1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3 *
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
6 *
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25 * USA
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39
40 #include "nuvoton-cir.h"
41
42 static const struct nvt_chip nvt_chips[] = {
43 { "w83667hg", NVT_W83667HG },
44 { "NCT6775F", NVT_6775F },
45 { "NCT6776F", NVT_6776F },
46 { "NCT6779D", NVT_6779D },
47 };
48
49 static inline bool is_w83667hg(struct nvt_dev *nvt)
50 {
51 return nvt->chip_ver == NVT_W83667HG;
52 }
53
54 /* write val to config reg */
55 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
56 {
57 outb(reg, nvt->cr_efir);
58 outb(val, nvt->cr_efdr);
59 }
60
61 /* read val from config reg */
62 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
63 {
64 outb(reg, nvt->cr_efir);
65 return inb(nvt->cr_efdr);
66 }
67
68 /* update config register bit without changing other bits */
69 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
70 {
71 u8 tmp = nvt_cr_read(nvt, reg) | val;
72 nvt_cr_write(nvt, tmp, reg);
73 }
74
75 /* clear config register bit without changing other bits */
76 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
77 {
78 u8 tmp = nvt_cr_read(nvt, reg) & ~val;
79 nvt_cr_write(nvt, tmp, reg);
80 }
81
82 /* enter extended function mode */
83 static inline int nvt_efm_enable(struct nvt_dev *nvt)
84 {
85 if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
86 return -EBUSY;
87
88 /* Enabling Extended Function Mode explicitly requires writing 2x */
89 outb(EFER_EFM_ENABLE, nvt->cr_efir);
90 outb(EFER_EFM_ENABLE, nvt->cr_efir);
91
92 return 0;
93 }
94
95 /* exit extended function mode */
96 static inline void nvt_efm_disable(struct nvt_dev *nvt)
97 {
98 outb(EFER_EFM_DISABLE, nvt->cr_efir);
99
100 release_region(nvt->cr_efir, 2);
101 }
102
103 /*
104 * When you want to address a specific logical device, write its logical
105 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
106 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
107 */
108 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
109 {
110 nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
111 }
112
113 /* select and enable logical device with setting EFM mode*/
114 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
115 {
116 nvt_efm_enable(nvt);
117 nvt_select_logical_dev(nvt, ldev);
118 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
119 nvt_efm_disable(nvt);
120 }
121
122 /* select and disable logical device with setting EFM mode*/
123 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
124 {
125 nvt_efm_enable(nvt);
126 nvt_select_logical_dev(nvt, ldev);
127 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
128 nvt_efm_disable(nvt);
129 }
130
131 /* write val to cir config register */
132 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
133 {
134 outb(val, nvt->cir_addr + offset);
135 }
136
137 /* read val from cir config register */
138 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
139 {
140 u8 val;
141
142 val = inb(nvt->cir_addr + offset);
143
144 return val;
145 }
146
147 /* write val to cir wake register */
148 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
149 u8 val, u8 offset)
150 {
151 outb(val, nvt->cir_wake_addr + offset);
152 }
153
154 /* read val from cir wake config register */
155 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
156 {
157 u8 val;
158
159 val = inb(nvt->cir_wake_addr + offset);
160
161 return val;
162 }
163
164 /* don't override io address if one is set already */
165 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
166 {
167 unsigned long old_addr;
168
169 old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
170 old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
171
172 if (old_addr)
173 *ioaddr = old_addr;
174 else {
175 nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
176 nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
177 }
178 }
179
180 /* dump current cir register contents */
181 static void cir_dump_regs(struct nvt_dev *nvt)
182 {
183 nvt_efm_enable(nvt);
184 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
185
186 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
187 pr_info(" * CR CIR ACTIVE : 0x%x\n",
188 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
189 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
190 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
191 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
192 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
193 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
194
195 nvt_efm_disable(nvt);
196
197 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
198 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
199 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
200 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
201 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
202 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
203 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
204 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
205 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
206 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
207 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
208 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
209 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
210 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
211 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
212 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
213 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
214 }
215
216 /* dump current cir wake register contents */
217 static void cir_wake_dump_regs(struct nvt_dev *nvt)
218 {
219 u8 i, fifo_len;
220
221 nvt_efm_enable(nvt);
222 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
223
224 pr_info("%s: Dump CIR WAKE logical device registers:\n",
225 NVT_DRIVER_NAME);
226 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
227 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
228 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
229 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
230 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
231 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
232 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
233
234 nvt_efm_disable(nvt);
235
236 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
237 pr_info(" * IRCON: 0x%x\n",
238 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
239 pr_info(" * IRSTS: 0x%x\n",
240 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
241 pr_info(" * IREN: 0x%x\n",
242 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
243 pr_info(" * FIFO CMP DEEP: 0x%x\n",
244 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
245 pr_info(" * FIFO CMP TOL: 0x%x\n",
246 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
247 pr_info(" * FIFO COUNT: 0x%x\n",
248 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
249 pr_info(" * SLCH: 0x%x\n",
250 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
251 pr_info(" * SLCL: 0x%x\n",
252 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
253 pr_info(" * FIFOCON: 0x%x\n",
254 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
255 pr_info(" * SRXFSTS: 0x%x\n",
256 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
257 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
258 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
259 pr_info(" * WR FIFO DATA: 0x%x\n",
260 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
261 pr_info(" * RD FIFO ONLY: 0x%x\n",
262 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
263 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
264 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
265 pr_info(" * FIFO IGNORE: 0x%x\n",
266 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
267 pr_info(" * IRFSM: 0x%x\n",
268 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
269
270 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
271 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
272 pr_info("* Contents =");
273 for (i = 0; i < fifo_len; i++)
274 pr_cont(" %02x",
275 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
276 pr_cont("\n");
277 }
278
279 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
280 {
281 int i;
282
283 for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
284 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
285 nvt->chip_ver = nvt_chips[i].chip_ver;
286 return nvt_chips[i].name;
287 }
288
289 return NULL;
290 }
291
292
293 /* detect hardware features */
294 static int nvt_hw_detect(struct nvt_dev *nvt)
295 {
296 const char *chip_name;
297 int chip_id;
298
299 nvt_efm_enable(nvt);
300
301 /* Check if we're wired for the alternate EFER setup */
302 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
303 if (nvt->chip_major == 0xff) {
304 nvt->cr_efir = CR_EFIR2;
305 nvt->cr_efdr = CR_EFDR2;
306 nvt_efm_enable(nvt);
307 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
308 }
309 nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
310
311 nvt_efm_disable(nvt);
312
313 chip_id = nvt->chip_major << 8 | nvt->chip_minor;
314 if (chip_id == NVT_INVALID) {
315 dev_err(&nvt->pdev->dev,
316 "No device found on either EFM port\n");
317 return -ENODEV;
318 }
319
320 chip_name = nvt_find_chip(nvt, chip_id);
321
322 /* warn, but still let the driver load, if we don't know this chip */
323 if (!chip_name)
324 dev_warn(&nvt->pdev->dev,
325 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
326 nvt->chip_major, nvt->chip_minor);
327 else
328 dev_info(&nvt->pdev->dev,
329 "found %s or compatible: chip id: 0x%02x 0x%02x",
330 chip_name, nvt->chip_major, nvt->chip_minor);
331
332 return 0;
333 }
334
335 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
336 {
337 u8 val, psreg, psmask, psval;
338
339 if (is_w83667hg(nvt)) {
340 psreg = CR_MULTIFUNC_PIN_SEL;
341 psmask = MULTIFUNC_PIN_SEL_MASK;
342 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
343 } else {
344 psreg = CR_OUTPUT_PIN_SEL;
345 psmask = OUTPUT_PIN_SEL_MASK;
346 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
347 }
348
349 /* output pin selection: enable CIR, with WB sensor enabled */
350 val = nvt_cr_read(nvt, psreg);
351 val &= psmask;
352 val |= psval;
353 nvt_cr_write(nvt, val, psreg);
354
355 /* Select CIR logical device */
356 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
357
358 nvt_set_ioaddr(nvt, &nvt->cir_addr);
359
360 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
361
362 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
363 nvt->cir_addr, nvt->cir_irq);
364 }
365
366 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
367 {
368 /* Select ACPI logical device and anable it */
369 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
370 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
371
372 /* Enable CIR Wake via PSOUT# (Pin60) */
373 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
374
375 /* enable pme interrupt of cir wakeup event */
376 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
377
378 /* Select CIR Wake logical device */
379 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
380
381 nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
382
383 nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
384
385 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
386 nvt->cir_wake_addr, nvt->cir_wake_irq);
387 }
388
389 /* clear out the hardware's cir rx fifo */
390 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
391 {
392 u8 val;
393
394 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
395 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
396 }
397
398 /* clear out the hardware's cir wake rx fifo */
399 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
400 {
401 u8 val, config;
402
403 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
404
405 /* clearing wake fifo works in learning mode only */
406 nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
407 CIR_WAKE_IRCON);
408
409 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
410 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
411 CIR_WAKE_FIFOCON);
412
413 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
414 }
415
416 /* clear out the hardware's cir tx fifo */
417 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
418 {
419 u8 val;
420
421 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
422 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
423 }
424
425 /* enable RX Trigger Level Reach and Packet End interrupts */
426 static void nvt_set_cir_iren(struct nvt_dev *nvt)
427 {
428 u8 iren;
429
430 iren = CIR_IREN_RTR | CIR_IREN_PE;
431 nvt_cir_reg_write(nvt, iren, CIR_IREN);
432 }
433
434 static void nvt_cir_regs_init(struct nvt_dev *nvt)
435 {
436 /* set sample limit count (PE interrupt raised when reached) */
437 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
438 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
439
440 /* set fifo irq trigger levels */
441 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
442 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
443
444 /*
445 * Enable TX and RX, specify carrier on = low, off = high, and set
446 * sample period (currently 50us)
447 */
448 nvt_cir_reg_write(nvt,
449 CIR_IRCON_TXEN | CIR_IRCON_RXEN |
450 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
451 CIR_IRCON);
452
453 /* clear hardware rx and tx fifos */
454 nvt_clear_cir_fifo(nvt);
455 nvt_clear_tx_fifo(nvt);
456
457 /* clear any and all stray interrupts */
458 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
459
460 /* and finally, enable interrupts */
461 nvt_set_cir_iren(nvt);
462
463 /* enable the CIR logical device */
464 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
465 }
466
467 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
468 {
469 /* set number of bytes needed for wake from s3 (default 65) */
470 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
471 CIR_WAKE_FIFO_CMP_DEEP);
472
473 /* set tolerance/variance allowed per byte during wake compare */
474 nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
475 CIR_WAKE_FIFO_CMP_TOL);
476
477 /* set sample limit count (PE interrupt raised when reached) */
478 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
479 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
480
481 /* set cir wake fifo rx trigger level (currently 67) */
482 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
483 CIR_WAKE_FIFOCON);
484
485 /*
486 * Enable TX and RX, specific carrier on = low, off = high, and set
487 * sample period (currently 50us)
488 */
489 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
490 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
491 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
492 CIR_WAKE_IRCON);
493
494 /* clear cir wake rx fifo */
495 nvt_clear_cir_wake_fifo(nvt);
496
497 /* clear any and all stray interrupts */
498 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
499
500 /* enable the CIR WAKE logical device */
501 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
502 }
503
504 static void nvt_enable_wake(struct nvt_dev *nvt)
505 {
506 nvt_efm_enable(nvt);
507
508 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
509 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
510 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
511
512 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
513 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
514
515 nvt_efm_disable(nvt);
516
517 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
518 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
519 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
520 CIR_WAKE_IRCON);
521 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
522 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
523 }
524
525 #if 0 /* Currently unused */
526 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
527 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
528 {
529 u32 count, carrier, duration = 0;
530 int i;
531
532 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
533 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
534
535 for (i = 0; i < nvt->pkts; i++) {
536 if (nvt->buf[i] & BUF_PULSE_BIT)
537 duration += nvt->buf[i] & BUF_LEN_MASK;
538 }
539
540 duration *= SAMPLE_PERIOD;
541
542 if (!count || !duration) {
543 dev_notice(&nvt->pdev->dev,
544 "Unable to determine carrier! (c:%u, d:%u)",
545 count, duration);
546 return 0;
547 }
548
549 carrier = MS_TO_NS(count) / duration;
550
551 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
552 nvt_dbg("WTF? Carrier frequency out of range!");
553
554 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
555 carrier, count, duration);
556
557 return carrier;
558 }
559 #endif
560 /*
561 * set carrier frequency
562 *
563 * set carrier on 2 registers: CP & CC
564 * always set CP as 0x81
565 * set CC by SPEC, CC = 3MHz/carrier - 1
566 */
567 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
568 {
569 struct nvt_dev *nvt = dev->priv;
570 u16 val;
571
572 if (carrier == 0)
573 return -EINVAL;
574
575 nvt_cir_reg_write(nvt, 1, CIR_CP);
576 val = 3000000 / (carrier) - 1;
577 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
578
579 nvt_dbg("cp: 0x%x cc: 0x%x\n",
580 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
581
582 return 0;
583 }
584
585 /*
586 * nvt_tx_ir
587 *
588 * 1) clean TX fifo first (handled by AP)
589 * 2) copy data from user space
590 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
591 * 4) send 9 packets to TX FIFO to open TTR
592 * in interrupt_handler:
593 * 5) send all data out
594 * go back to write():
595 * 6) disable TX interrupts, re-enable RX interupts
596 *
597 * The key problem of this function is user space data may larger than
598 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
599 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
600 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
601 * set TXFCONT as 0xff, until buf_count less than 0xff.
602 */
603 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
604 {
605 struct nvt_dev *nvt = dev->priv;
606 unsigned long flags;
607 unsigned int i;
608 u8 iren;
609 int ret;
610
611 spin_lock_irqsave(&nvt->tx.lock, flags);
612
613 ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
614 nvt->tx.buf_count = (ret * sizeof(unsigned));
615
616 memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
617
618 nvt->tx.cur_buf_num = 0;
619
620 /* save currently enabled interrupts */
621 iren = nvt_cir_reg_read(nvt, CIR_IREN);
622
623 /* now disable all interrupts, save TFU & TTR */
624 nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
625
626 nvt->tx.tx_state = ST_TX_REPLY;
627
628 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
629 CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
630
631 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
632 for (i = 0; i < 9; i++)
633 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
634
635 spin_unlock_irqrestore(&nvt->tx.lock, flags);
636
637 wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
638
639 spin_lock_irqsave(&nvt->tx.lock, flags);
640 nvt->tx.tx_state = ST_TX_NONE;
641 spin_unlock_irqrestore(&nvt->tx.lock, flags);
642
643 /* restore enabled interrupts to prior state */
644 nvt_cir_reg_write(nvt, iren, CIR_IREN);
645
646 return ret;
647 }
648
649 /* dump contents of the last rx buffer we got from the hw rx fifo */
650 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
651 {
652 int i;
653
654 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
655 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
656 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
657 printk(KERN_CONT "\n");
658 }
659
660 /*
661 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
662 * trigger decode when appropriate.
663 *
664 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
665 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
666 * (default 50us) intervals for that pulse/space. A discrete signal is
667 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
668 * to signal more IR coming (repeats) or end of IR, respectively. We store
669 * sample data in the raw event kfifo until we see 0x7<something> (except f)
670 * or 0x80, at which time, we trigger a decode operation.
671 */
672 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
673 {
674 DEFINE_IR_RAW_EVENT(rawir);
675 u8 sample;
676 int i;
677
678 nvt_dbg_verbose("%s firing", __func__);
679
680 if (debug)
681 nvt_dump_rx_buf(nvt);
682
683 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
684
685 init_ir_raw_event(&rawir);
686
687 for (i = 0; i < nvt->pkts; i++) {
688 sample = nvt->buf[i];
689
690 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
691 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
692 * SAMPLE_PERIOD);
693
694 nvt_dbg("Storing %s with duration %d",
695 rawir.pulse ? "pulse" : "space", rawir.duration);
696
697 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
698
699 /*
700 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
701 * indicates end of IR signal, but new data incoming. In both
702 * cases, it means we're ready to call ir_raw_event_handle
703 */
704 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
705 nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
706 ir_raw_event_handle(nvt->rdev);
707 }
708 }
709
710 nvt->pkts = 0;
711
712 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
713 ir_raw_event_handle(nvt->rdev);
714
715 nvt_dbg_verbose("%s done", __func__);
716 }
717
718 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
719 {
720 dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!");
721
722 nvt->pkts = 0;
723 nvt_clear_cir_fifo(nvt);
724 ir_raw_event_reset(nvt->rdev);
725 }
726
727 /* copy data from hardware rx fifo into driver buffer */
728 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
729 {
730 unsigned long flags;
731 u8 fifocount, val;
732 unsigned int b_idx;
733 bool overrun = false;
734 int i;
735
736 /* Get count of how many bytes to read from RX FIFO */
737 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
738 /* if we get 0xff, probably means the logical dev is disabled */
739 if (fifocount == 0xff)
740 return;
741 /* watch out for a fifo overrun condition */
742 else if (fifocount > RX_BUF_LEN) {
743 overrun = true;
744 fifocount = RX_BUF_LEN;
745 }
746
747 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
748
749 spin_lock_irqsave(&nvt->nvt_lock, flags);
750
751 b_idx = nvt->pkts;
752
753 /* This should never happen, but lets check anyway... */
754 if (b_idx + fifocount > RX_BUF_LEN) {
755 nvt_process_rx_ir_data(nvt);
756 b_idx = 0;
757 }
758
759 /* Read fifocount bytes from CIR Sample RX FIFO register */
760 for (i = 0; i < fifocount; i++) {
761 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
762 nvt->buf[b_idx + i] = val;
763 }
764
765 nvt->pkts += fifocount;
766 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
767
768 nvt_process_rx_ir_data(nvt);
769
770 if (overrun)
771 nvt_handle_rx_fifo_overrun(nvt);
772
773 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
774 }
775
776 static void nvt_cir_log_irqs(u8 status, u8 iren)
777 {
778 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
779 status, iren,
780 status & CIR_IRSTS_RDR ? " RDR" : "",
781 status & CIR_IRSTS_RTR ? " RTR" : "",
782 status & CIR_IRSTS_PE ? " PE" : "",
783 status & CIR_IRSTS_RFO ? " RFO" : "",
784 status & CIR_IRSTS_TE ? " TE" : "",
785 status & CIR_IRSTS_TTR ? " TTR" : "",
786 status & CIR_IRSTS_TFU ? " TFU" : "",
787 status & CIR_IRSTS_GH ? " GH" : "",
788 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
789 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
790 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
791 }
792
793 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
794 {
795 unsigned long flags;
796 u8 tx_state;
797
798 spin_lock_irqsave(&nvt->tx.lock, flags);
799 tx_state = nvt->tx.tx_state;
800 spin_unlock_irqrestore(&nvt->tx.lock, flags);
801
802 return tx_state == ST_TX_NONE;
803 }
804
805 /* interrupt service routine for incoming and outgoing CIR data */
806 static irqreturn_t nvt_cir_isr(int irq, void *data)
807 {
808 struct nvt_dev *nvt = data;
809 u8 status, iren, cur_state;
810 unsigned long flags;
811
812 nvt_dbg_verbose("%s firing", __func__);
813
814 /*
815 * Get IR Status register contents. Write 1 to ack/clear
816 *
817 * bit: reg name - description
818 * 7: CIR_IRSTS_RDR - RX Data Ready
819 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
820 * 5: CIR_IRSTS_PE - Packet End
821 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
822 * 3: CIR_IRSTS_TE - TX FIFO Empty
823 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
824 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
825 * 0: CIR_IRSTS_GH - Min Length Detected
826 */
827 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
828 if (!status) {
829 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
830 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
831 return IRQ_NONE;
832 }
833
834 /* ack/clear all irq flags we've got */
835 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
836 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
837
838 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
839 iren = nvt_cir_reg_read(nvt, CIR_IREN);
840 if (!iren) {
841 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
842 return IRQ_NONE;
843 }
844
845 nvt_cir_log_irqs(status, iren);
846
847 if (status & CIR_IRSTS_RTR) {
848 /* FIXME: add code for study/learn mode */
849 /* We only do rx if not tx'ing */
850 if (nvt_cir_tx_inactive(nvt))
851 nvt_get_rx_ir_data(nvt);
852 }
853
854 if (status & CIR_IRSTS_PE) {
855 if (nvt_cir_tx_inactive(nvt))
856 nvt_get_rx_ir_data(nvt);
857
858 spin_lock_irqsave(&nvt->nvt_lock, flags);
859
860 cur_state = nvt->study_state;
861
862 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
863
864 if (cur_state == ST_STUDY_NONE)
865 nvt_clear_cir_fifo(nvt);
866 }
867
868 if (status & CIR_IRSTS_TE)
869 nvt_clear_tx_fifo(nvt);
870
871 if (status & CIR_IRSTS_TTR) {
872 unsigned int pos, count;
873 u8 tmp;
874
875 spin_lock_irqsave(&nvt->tx.lock, flags);
876
877 pos = nvt->tx.cur_buf_num;
878 count = nvt->tx.buf_count;
879
880 /* Write data into the hardware tx fifo while pos < count */
881 if (pos < count) {
882 nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
883 nvt->tx.cur_buf_num++;
884 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
885 } else {
886 tmp = nvt_cir_reg_read(nvt, CIR_IREN);
887 nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
888 }
889
890 spin_unlock_irqrestore(&nvt->tx.lock, flags);
891
892 }
893
894 if (status & CIR_IRSTS_TFU) {
895 spin_lock_irqsave(&nvt->tx.lock, flags);
896 if (nvt->tx.tx_state == ST_TX_REPLY) {
897 nvt->tx.tx_state = ST_TX_REQUEST;
898 wake_up(&nvt->tx.queue);
899 }
900 spin_unlock_irqrestore(&nvt->tx.lock, flags);
901 }
902
903 nvt_dbg_verbose("%s done", __func__);
904 return IRQ_HANDLED;
905 }
906
907 /* Interrupt service routine for CIR Wake */
908 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
909 {
910 u8 status, iren, val;
911 struct nvt_dev *nvt = data;
912 unsigned long flags;
913
914 nvt_dbg_wake("%s firing", __func__);
915
916 status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
917 if (!status)
918 return IRQ_NONE;
919
920 if (status & CIR_WAKE_IRSTS_IR_PENDING)
921 nvt_clear_cir_wake_fifo(nvt);
922
923 nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
924 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
925
926 /* Interrupt may be shared with CIR, bail if Wake not enabled */
927 iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
928 if (!iren) {
929 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
930 return IRQ_HANDLED;
931 }
932
933 if ((status & CIR_WAKE_IRSTS_PE) &&
934 (nvt->wake_state == ST_WAKE_START)) {
935 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
936 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
937 nvt_dbg("setting wake up key: 0x%x", val);
938 }
939
940 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
941 spin_lock_irqsave(&nvt->nvt_lock, flags);
942 nvt->wake_state = ST_WAKE_FINISH;
943 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
944 }
945
946 nvt_dbg_wake("%s done", __func__);
947 return IRQ_HANDLED;
948 }
949
950 static void nvt_enable_cir(struct nvt_dev *nvt)
951 {
952 /* set function enable flags */
953 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
954 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
955 CIR_IRCON);
956
957 /* enable the CIR logical device */
958 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
959
960 /* clear all pending interrupts */
961 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
962
963 /* enable interrupts */
964 nvt_set_cir_iren(nvt);
965 }
966
967 static void nvt_disable_cir(struct nvt_dev *nvt)
968 {
969 /* disable CIR interrupts */
970 nvt_cir_reg_write(nvt, 0, CIR_IREN);
971
972 /* clear any and all pending interrupts */
973 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
974
975 /* clear all function enable flags */
976 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
977
978 /* clear hardware rx and tx fifos */
979 nvt_clear_cir_fifo(nvt);
980 nvt_clear_tx_fifo(nvt);
981
982 /* disable the CIR logical device */
983 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
984 }
985
986 static int nvt_open(struct rc_dev *dev)
987 {
988 struct nvt_dev *nvt = dev->priv;
989 unsigned long flags;
990
991 spin_lock_irqsave(&nvt->nvt_lock, flags);
992 nvt_enable_cir(nvt);
993 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
994
995 return 0;
996 }
997
998 static void nvt_close(struct rc_dev *dev)
999 {
1000 struct nvt_dev *nvt = dev->priv;
1001 unsigned long flags;
1002
1003 spin_lock_irqsave(&nvt->nvt_lock, flags);
1004 nvt_disable_cir(nvt);
1005 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1006 }
1007
1008 /* Allocate memory, probe hardware, and initialize everything */
1009 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
1010 {
1011 struct nvt_dev *nvt;
1012 struct rc_dev *rdev;
1013 int ret = -ENOMEM;
1014
1015 nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
1016 if (!nvt)
1017 return ret;
1018
1019 /* input device for IR remote (and tx) */
1020 rdev = rc_allocate_device();
1021 if (!rdev)
1022 goto exit_free_dev_rdev;
1023
1024 ret = -ENODEV;
1025 /* activate pnp device */
1026 if (pnp_activate_dev(pdev) < 0) {
1027 dev_err(&pdev->dev, "Could not activate PNP device!\n");
1028 goto exit_free_dev_rdev;
1029 }
1030
1031 /* validate pnp resources */
1032 if (!pnp_port_valid(pdev, 0) ||
1033 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
1034 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1035 goto exit_free_dev_rdev;
1036 }
1037
1038 if (!pnp_irq_valid(pdev, 0)) {
1039 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1040 goto exit_free_dev_rdev;
1041 }
1042
1043 if (!pnp_port_valid(pdev, 1) ||
1044 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1045 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1046 goto exit_free_dev_rdev;
1047 }
1048
1049 nvt->cir_addr = pnp_port_start(pdev, 0);
1050 nvt->cir_irq = pnp_irq(pdev, 0);
1051
1052 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1053 /* irq is always shared between cir and cir wake */
1054 nvt->cir_wake_irq = nvt->cir_irq;
1055
1056 nvt->cr_efir = CR_EFIR;
1057 nvt->cr_efdr = CR_EFDR;
1058
1059 spin_lock_init(&nvt->nvt_lock);
1060 spin_lock_init(&nvt->tx.lock);
1061
1062 pnp_set_drvdata(pdev, nvt);
1063 nvt->pdev = pdev;
1064
1065 init_waitqueue_head(&nvt->tx.queue);
1066
1067 ret = nvt_hw_detect(nvt);
1068 if (ret)
1069 goto exit_free_dev_rdev;
1070
1071 /* Initialize CIR & CIR Wake Logical Devices */
1072 nvt_efm_enable(nvt);
1073 nvt_cir_ldev_init(nvt);
1074 nvt_cir_wake_ldev_init(nvt);
1075 nvt_efm_disable(nvt);
1076
1077 /*
1078 * Initialize CIR & CIR Wake Config Registers
1079 * and enable logical devices
1080 */
1081 nvt_cir_regs_init(nvt);
1082 nvt_cir_wake_regs_init(nvt);
1083
1084 /* Set up the rc device */
1085 rdev->priv = nvt;
1086 rdev->driver_type = RC_DRIVER_IR_RAW;
1087 rdev->allowed_protocols = RC_BIT_ALL;
1088 rdev->open = nvt_open;
1089 rdev->close = nvt_close;
1090 rdev->tx_ir = nvt_tx_ir;
1091 rdev->s_tx_carrier = nvt_set_tx_carrier;
1092 rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1093 rdev->input_phys = "nuvoton/cir0";
1094 rdev->input_id.bustype = BUS_HOST;
1095 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1096 rdev->input_id.product = nvt->chip_major;
1097 rdev->input_id.version = nvt->chip_minor;
1098 rdev->dev.parent = &pdev->dev;
1099 rdev->driver_name = NVT_DRIVER_NAME;
1100 rdev->map_name = RC_MAP_RC6_MCE;
1101 rdev->timeout = MS_TO_NS(100);
1102 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1103 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1104 #if 0
1105 rdev->min_timeout = XYZ;
1106 rdev->max_timeout = XYZ;
1107 /* tx bits */
1108 rdev->tx_resolution = XYZ;
1109 #endif
1110 nvt->rdev = rdev;
1111
1112 ret = rc_register_device(rdev);
1113 if (ret)
1114 goto exit_free_dev_rdev;
1115
1116 ret = -EBUSY;
1117 /* now claim resources */
1118 if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1119 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1120 goto exit_unregister_device;
1121
1122 if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1123 IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
1124 goto exit_unregister_device;
1125
1126 if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1127 CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1128 goto exit_unregister_device;
1129
1130 if (devm_request_irq(&pdev->dev, nvt->cir_wake_irq,
1131 nvt_cir_wake_isr, IRQF_SHARED,
1132 NVT_DRIVER_NAME "-wake", (void *)nvt))
1133 goto exit_unregister_device;
1134
1135 device_init_wakeup(&pdev->dev, true);
1136
1137 dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1138 if (debug) {
1139 cir_dump_regs(nvt);
1140 cir_wake_dump_regs(nvt);
1141 }
1142
1143 return 0;
1144
1145 exit_unregister_device:
1146 rc_unregister_device(rdev);
1147 rdev = NULL;
1148 exit_free_dev_rdev:
1149 rc_free_device(rdev);
1150
1151 return ret;
1152 }
1153
1154 static void nvt_remove(struct pnp_dev *pdev)
1155 {
1156 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1157 unsigned long flags;
1158
1159 spin_lock_irqsave(&nvt->nvt_lock, flags);
1160 /* disable CIR */
1161 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1162 nvt_disable_cir(nvt);
1163 /* enable CIR Wake (for IR power-on) */
1164 nvt_enable_wake(nvt);
1165 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1166
1167 rc_unregister_device(nvt->rdev);
1168 }
1169
1170 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1171 {
1172 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1173 unsigned long flags;
1174
1175 nvt_dbg("%s called", __func__);
1176
1177 /* zero out misc state tracking */
1178 spin_lock_irqsave(&nvt->nvt_lock, flags);
1179 nvt->study_state = ST_STUDY_NONE;
1180 nvt->wake_state = ST_WAKE_NONE;
1181 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1182
1183 spin_lock_irqsave(&nvt->tx.lock, flags);
1184 nvt->tx.tx_state = ST_TX_NONE;
1185 spin_unlock_irqrestore(&nvt->tx.lock, flags);
1186
1187 /* disable all CIR interrupts */
1188 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1189
1190 /* disable cir logical dev */
1191 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1192
1193 /* make sure wake is enabled */
1194 nvt_enable_wake(nvt);
1195
1196 return 0;
1197 }
1198
1199 static int nvt_resume(struct pnp_dev *pdev)
1200 {
1201 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1202
1203 nvt_dbg("%s called", __func__);
1204
1205 nvt_cir_regs_init(nvt);
1206 nvt_cir_wake_regs_init(nvt);
1207
1208 return 0;
1209 }
1210
1211 static void nvt_shutdown(struct pnp_dev *pdev)
1212 {
1213 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1214 nvt_enable_wake(nvt);
1215 }
1216
1217 static const struct pnp_device_id nvt_ids[] = {
1218 { "WEC0530", 0 }, /* CIR */
1219 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1220 { "", 0 },
1221 };
1222
1223 static struct pnp_driver nvt_driver = {
1224 .name = NVT_DRIVER_NAME,
1225 .id_table = nvt_ids,
1226 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1227 .probe = nvt_probe,
1228 .remove = nvt_remove,
1229 .suspend = nvt_suspend,
1230 .resume = nvt_resume,
1231 .shutdown = nvt_shutdown,
1232 };
1233
1234 module_param(debug, int, S_IRUGO | S_IWUSR);
1235 MODULE_PARM_DESC(debug, "Enable debugging output");
1236
1237 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1238 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1239
1240 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1241 MODULE_LICENSE("GPL");
1242
1243 module_pnp_driver(nvt_driver);
This page took 0.068447 seconds and 4 git commands to generate.