power: supply: sbs-battery: simplify DT parsing
[deliverable/linux.git] / drivers / misc / mei / hw-me.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21
22 #include "mei_dev.h"
23 #include "hbm.h"
24
25 #include "hw-me.h"
26 #include "hw-me-regs.h"
27
28 #include "mei-trace.h"
29
30 /**
31 * mei_me_reg_read - Reads 32bit data from the mei device
32 *
33 * @hw: the me hardware structure
34 * @offset: offset from which to read the data
35 *
36 * Return: register value (u32)
37 */
38 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
39 unsigned long offset)
40 {
41 return ioread32(hw->mem_addr + offset);
42 }
43
44
45 /**
46 * mei_me_reg_write - Writes 32bit data to the mei device
47 *
48 * @hw: the me hardware structure
49 * @offset: offset from which to write the data
50 * @value: register value to write (u32)
51 */
52 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
53 unsigned long offset, u32 value)
54 {
55 iowrite32(value, hw->mem_addr + offset);
56 }
57
58 /**
59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
60 * read window register
61 *
62 * @dev: the device structure
63 *
64 * Return: ME_CB_RW register value (u32)
65 */
66 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
67 {
68 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
69 }
70
71 /**
72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
73 *
74 * @dev: the device structure
75 * @data: 32bit data to be written to the host circular buffer
76 */
77 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
78 {
79 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
80 }
81
82 /**
83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
84 *
85 * @dev: the device structure
86 *
87 * Return: ME_CSR_HA register value (u32)
88 */
89 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
90 {
91 u32 reg;
92
93 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
94 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
95
96 return reg;
97 }
98
99 /**
100 * mei_hcsr_read - Reads 32bit data from the host CSR
101 *
102 * @dev: the device structure
103 *
104 * Return: H_CSR register value (u32)
105 */
106 static inline u32 mei_hcsr_read(const struct mei_device *dev)
107 {
108 u32 reg;
109
110 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
111 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
112
113 return reg;
114 }
115
116 /**
117 * mei_hcsr_write - writes H_CSR register to the mei device
118 *
119 * @dev: the device structure
120 * @reg: new register value
121 */
122 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
123 {
124 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
125 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
126 }
127
128 /**
129 * mei_hcsr_set - writes H_CSR register to the mei device,
130 * and ignores the H_IS bit for it is write-one-to-zero.
131 *
132 * @dev: the device structure
133 * @reg: new register value
134 */
135 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
136 {
137 reg &= ~H_CSR_IS_MASK;
138 mei_hcsr_write(dev, reg);
139 }
140
141 /**
142 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
143 *
144 * @dev: the device structure
145 *
146 * Return: H_D0I3C register value (u32)
147 */
148 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
149 {
150 u32 reg;
151
152 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
153 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
154
155 return reg;
156 }
157
158 /**
159 * mei_me_d0i3c_write - writes H_D0I3C register to device
160 *
161 * @dev: the device structure
162 * @reg: new register value
163 */
164 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
165 {
166 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
167 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
168 }
169
170 /**
171 * mei_me_fw_status - read fw status register from pci config space
172 *
173 * @dev: mei device
174 * @fw_status: fw status register values
175 *
176 * Return: 0 on success, error otherwise
177 */
178 static int mei_me_fw_status(struct mei_device *dev,
179 struct mei_fw_status *fw_status)
180 {
181 struct pci_dev *pdev = to_pci_dev(dev->dev);
182 struct mei_me_hw *hw = to_me_hw(dev);
183 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
184 int ret;
185 int i;
186
187 if (!fw_status)
188 return -EINVAL;
189
190 fw_status->count = fw_src->count;
191 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
192 ret = pci_read_config_dword(pdev, fw_src->status[i],
193 &fw_status->status[i]);
194 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
195 fw_src->status[i],
196 fw_status->status[i]);
197 if (ret)
198 return ret;
199 }
200
201 return 0;
202 }
203
204 /**
205 * mei_me_hw_config - configure hw dependent settings
206 *
207 * @dev: mei device
208 */
209 static void mei_me_hw_config(struct mei_device *dev)
210 {
211 struct pci_dev *pdev = to_pci_dev(dev->dev);
212 struct mei_me_hw *hw = to_me_hw(dev);
213 u32 hcsr, reg;
214
215 /* Doesn't change in runtime */
216 hcsr = mei_hcsr_read(dev);
217 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
218
219 reg = 0;
220 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
221 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
222 hw->d0i3_supported =
223 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
224
225 hw->pg_state = MEI_PG_OFF;
226 if (hw->d0i3_supported) {
227 reg = mei_me_d0i3c_read(dev);
228 if (reg & H_D0I3C_I3)
229 hw->pg_state = MEI_PG_ON;
230 }
231 }
232
233 /**
234 * mei_me_pg_state - translate internal pg state
235 * to the mei power gating state
236 *
237 * @dev: mei device
238 *
239 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
240 */
241 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
242 {
243 struct mei_me_hw *hw = to_me_hw(dev);
244
245 return hw->pg_state;
246 }
247
248 /**
249 * mei_me_intr_clear - clear and stop interrupts
250 *
251 * @dev: the device structure
252 */
253 static void mei_me_intr_clear(struct mei_device *dev)
254 {
255 u32 hcsr = mei_hcsr_read(dev);
256
257 if (hcsr & H_CSR_IS_MASK)
258 mei_hcsr_write(dev, hcsr);
259 }
260 /**
261 * mei_me_intr_enable - enables mei device interrupts
262 *
263 * @dev: the device structure
264 */
265 static void mei_me_intr_enable(struct mei_device *dev)
266 {
267 u32 hcsr = mei_hcsr_read(dev);
268
269 hcsr |= H_CSR_IE_MASK;
270 mei_hcsr_set(dev, hcsr);
271 }
272
273 /**
274 * mei_me_intr_disable - disables mei device interrupts
275 *
276 * @dev: the device structure
277 */
278 static void mei_me_intr_disable(struct mei_device *dev)
279 {
280 u32 hcsr = mei_hcsr_read(dev);
281
282 hcsr &= ~H_CSR_IE_MASK;
283 mei_hcsr_set(dev, hcsr);
284 }
285
286 /**
287 * mei_me_hw_reset_release - release device from the reset
288 *
289 * @dev: the device structure
290 */
291 static void mei_me_hw_reset_release(struct mei_device *dev)
292 {
293 u32 hcsr = mei_hcsr_read(dev);
294
295 hcsr |= H_IG;
296 hcsr &= ~H_RST;
297 mei_hcsr_set(dev, hcsr);
298
299 /* complete this write before we set host ready on another CPU */
300 mmiowb();
301 }
302
303 /**
304 * mei_me_host_set_ready - enable device
305 *
306 * @dev: mei device
307 */
308 static void mei_me_host_set_ready(struct mei_device *dev)
309 {
310 u32 hcsr = mei_hcsr_read(dev);
311
312 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
313 mei_hcsr_set(dev, hcsr);
314 }
315
316 /**
317 * mei_me_host_is_ready - check whether the host has turned ready
318 *
319 * @dev: mei device
320 * Return: bool
321 */
322 static bool mei_me_host_is_ready(struct mei_device *dev)
323 {
324 u32 hcsr = mei_hcsr_read(dev);
325
326 return (hcsr & H_RDY) == H_RDY;
327 }
328
329 /**
330 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
331 *
332 * @dev: mei device
333 * Return: bool
334 */
335 static bool mei_me_hw_is_ready(struct mei_device *dev)
336 {
337 u32 mecsr = mei_me_mecsr_read(dev);
338
339 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
340 }
341
342 /**
343 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
344 * or timeout is reached
345 *
346 * @dev: mei device
347 * Return: 0 on success, error otherwise
348 */
349 static int mei_me_hw_ready_wait(struct mei_device *dev)
350 {
351 mutex_unlock(&dev->device_lock);
352 wait_event_timeout(dev->wait_hw_ready,
353 dev->recvd_hw_ready,
354 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
355 mutex_lock(&dev->device_lock);
356 if (!dev->recvd_hw_ready) {
357 dev_err(dev->dev, "wait hw ready failed\n");
358 return -ETIME;
359 }
360
361 mei_me_hw_reset_release(dev);
362 dev->recvd_hw_ready = false;
363 return 0;
364 }
365
366 /**
367 * mei_me_hw_start - hw start routine
368 *
369 * @dev: mei device
370 * Return: 0 on success, error otherwise
371 */
372 static int mei_me_hw_start(struct mei_device *dev)
373 {
374 int ret = mei_me_hw_ready_wait(dev);
375
376 if (ret)
377 return ret;
378 dev_dbg(dev->dev, "hw is ready\n");
379
380 mei_me_host_set_ready(dev);
381 return ret;
382 }
383
384
385 /**
386 * mei_hbuf_filled_slots - gets number of device filled buffer slots
387 *
388 * @dev: the device structure
389 *
390 * Return: number of filled slots
391 */
392 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
393 {
394 u32 hcsr;
395 char read_ptr, write_ptr;
396
397 hcsr = mei_hcsr_read(dev);
398
399 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
400 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
401
402 return (unsigned char) (write_ptr - read_ptr);
403 }
404
405 /**
406 * mei_me_hbuf_is_empty - checks if host buffer is empty.
407 *
408 * @dev: the device structure
409 *
410 * Return: true if empty, false - otherwise.
411 */
412 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
413 {
414 return mei_hbuf_filled_slots(dev) == 0;
415 }
416
417 /**
418 * mei_me_hbuf_empty_slots - counts write empty slots.
419 *
420 * @dev: the device structure
421 *
422 * Return: -EOVERFLOW if overflow, otherwise empty slots count
423 */
424 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
425 {
426 unsigned char filled_slots, empty_slots;
427
428 filled_slots = mei_hbuf_filled_slots(dev);
429 empty_slots = dev->hbuf_depth - filled_slots;
430
431 /* check for overflow */
432 if (filled_slots > dev->hbuf_depth)
433 return -EOVERFLOW;
434
435 return empty_slots;
436 }
437
438 /**
439 * mei_me_hbuf_max_len - returns size of hw buffer.
440 *
441 * @dev: the device structure
442 *
443 * Return: size of hw buffer in bytes
444 */
445 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
446 {
447 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
448 }
449
450
451 /**
452 * mei_me_write_message - writes a message to mei device.
453 *
454 * @dev: the device structure
455 * @header: mei HECI header of message
456 * @buf: message payload will be written
457 *
458 * Return: -EIO if write has failed
459 */
460 static int mei_me_write_message(struct mei_device *dev,
461 struct mei_msg_hdr *header,
462 unsigned char *buf)
463 {
464 unsigned long rem;
465 unsigned long length = header->length;
466 u32 *reg_buf = (u32 *)buf;
467 u32 hcsr;
468 u32 dw_cnt;
469 int i;
470 int empty_slots;
471
472 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
473
474 empty_slots = mei_hbuf_empty_slots(dev);
475 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
476
477 dw_cnt = mei_data2slots(length);
478 if (empty_slots < 0 || dw_cnt > empty_slots)
479 return -EMSGSIZE;
480
481 mei_me_hcbww_write(dev, *((u32 *) header));
482
483 for (i = 0; i < length / 4; i++)
484 mei_me_hcbww_write(dev, reg_buf[i]);
485
486 rem = length & 0x3;
487 if (rem > 0) {
488 u32 reg = 0;
489
490 memcpy(&reg, &buf[length - rem], rem);
491 mei_me_hcbww_write(dev, reg);
492 }
493
494 hcsr = mei_hcsr_read(dev) | H_IG;
495 mei_hcsr_set(dev, hcsr);
496 if (!mei_me_hw_is_ready(dev))
497 return -EIO;
498
499 return 0;
500 }
501
502 /**
503 * mei_me_count_full_read_slots - counts read full slots.
504 *
505 * @dev: the device structure
506 *
507 * Return: -EOVERFLOW if overflow, otherwise filled slots count
508 */
509 static int mei_me_count_full_read_slots(struct mei_device *dev)
510 {
511 u32 me_csr;
512 char read_ptr, write_ptr;
513 unsigned char buffer_depth, filled_slots;
514
515 me_csr = mei_me_mecsr_read(dev);
516 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
517 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
518 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
519 filled_slots = (unsigned char) (write_ptr - read_ptr);
520
521 /* check for overflow */
522 if (filled_slots > buffer_depth)
523 return -EOVERFLOW;
524
525 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
526 return (int)filled_slots;
527 }
528
529 /**
530 * mei_me_read_slots - reads a message from mei device.
531 *
532 * @dev: the device structure
533 * @buffer: message buffer will be written
534 * @buffer_length: message size will be read
535 *
536 * Return: always 0
537 */
538 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
539 unsigned long buffer_length)
540 {
541 u32 *reg_buf = (u32 *)buffer;
542 u32 hcsr;
543
544 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
545 *reg_buf++ = mei_me_mecbrw_read(dev);
546
547 if (buffer_length > 0) {
548 u32 reg = mei_me_mecbrw_read(dev);
549
550 memcpy(reg_buf, &reg, buffer_length);
551 }
552
553 hcsr = mei_hcsr_read(dev) | H_IG;
554 mei_hcsr_set(dev, hcsr);
555 return 0;
556 }
557
558 /**
559 * mei_me_pg_set - write pg enter register
560 *
561 * @dev: the device structure
562 */
563 static void mei_me_pg_set(struct mei_device *dev)
564 {
565 struct mei_me_hw *hw = to_me_hw(dev);
566 u32 reg;
567
568 reg = mei_me_reg_read(hw, H_HPG_CSR);
569 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
570
571 reg |= H_HPG_CSR_PGI;
572
573 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
574 mei_me_reg_write(hw, H_HPG_CSR, reg);
575 }
576
577 /**
578 * mei_me_pg_unset - write pg exit register
579 *
580 * @dev: the device structure
581 */
582 static void mei_me_pg_unset(struct mei_device *dev)
583 {
584 struct mei_me_hw *hw = to_me_hw(dev);
585 u32 reg;
586
587 reg = mei_me_reg_read(hw, H_HPG_CSR);
588 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
589
590 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
591
592 reg |= H_HPG_CSR_PGIHEXR;
593
594 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
595 mei_me_reg_write(hw, H_HPG_CSR, reg);
596 }
597
598 /**
599 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
600 *
601 * @dev: the device structure
602 *
603 * Return: 0 on success an error code otherwise
604 */
605 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
606 {
607 struct mei_me_hw *hw = to_me_hw(dev);
608 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
609 int ret;
610
611 dev->pg_event = MEI_PG_EVENT_WAIT;
612
613 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
614 if (ret)
615 return ret;
616
617 mutex_unlock(&dev->device_lock);
618 wait_event_timeout(dev->wait_pg,
619 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
620 mutex_lock(&dev->device_lock);
621
622 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
623 mei_me_pg_set(dev);
624 ret = 0;
625 } else {
626 ret = -ETIME;
627 }
628
629 dev->pg_event = MEI_PG_EVENT_IDLE;
630 hw->pg_state = MEI_PG_ON;
631
632 return ret;
633 }
634
635 /**
636 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
637 *
638 * @dev: the device structure
639 *
640 * Return: 0 on success an error code otherwise
641 */
642 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
643 {
644 struct mei_me_hw *hw = to_me_hw(dev);
645 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
646 int ret;
647
648 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
649 goto reply;
650
651 dev->pg_event = MEI_PG_EVENT_WAIT;
652
653 mei_me_pg_unset(dev);
654
655 mutex_unlock(&dev->device_lock);
656 wait_event_timeout(dev->wait_pg,
657 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
658 mutex_lock(&dev->device_lock);
659
660 reply:
661 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
662 ret = -ETIME;
663 goto out;
664 }
665
666 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
667 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
668 if (ret)
669 return ret;
670
671 mutex_unlock(&dev->device_lock);
672 wait_event_timeout(dev->wait_pg,
673 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
674 mutex_lock(&dev->device_lock);
675
676 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
677 ret = 0;
678 else
679 ret = -ETIME;
680
681 out:
682 dev->pg_event = MEI_PG_EVENT_IDLE;
683 hw->pg_state = MEI_PG_OFF;
684
685 return ret;
686 }
687
688 /**
689 * mei_me_pg_in_transition - is device now in pg transition
690 *
691 * @dev: the device structure
692 *
693 * Return: true if in pg transition, false otherwise
694 */
695 static bool mei_me_pg_in_transition(struct mei_device *dev)
696 {
697 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
698 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
699 }
700
701 /**
702 * mei_me_pg_is_enabled - detect if PG is supported by HW
703 *
704 * @dev: the device structure
705 *
706 * Return: true is pg supported, false otherwise
707 */
708 static bool mei_me_pg_is_enabled(struct mei_device *dev)
709 {
710 struct mei_me_hw *hw = to_me_hw(dev);
711 u32 reg = mei_me_mecsr_read(dev);
712
713 if (hw->d0i3_supported)
714 return true;
715
716 if ((reg & ME_PGIC_HRA) == 0)
717 goto notsupported;
718
719 if (!dev->hbm_f_pg_supported)
720 goto notsupported;
721
722 return true;
723
724 notsupported:
725 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
726 hw->d0i3_supported,
727 !!(reg & ME_PGIC_HRA),
728 dev->version.major_version,
729 dev->version.minor_version,
730 HBM_MAJOR_VERSION_PGI,
731 HBM_MINOR_VERSION_PGI);
732
733 return false;
734 }
735
736 /**
737 * mei_me_d0i3_set - write d0i3 register bit on mei device.
738 *
739 * @dev: the device structure
740 * @intr: ask for interrupt
741 *
742 * Return: D0I3C register value
743 */
744 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
745 {
746 u32 reg = mei_me_d0i3c_read(dev);
747
748 reg |= H_D0I3C_I3;
749 if (intr)
750 reg |= H_D0I3C_IR;
751 else
752 reg &= ~H_D0I3C_IR;
753 mei_me_d0i3c_write(dev, reg);
754 /* read it to ensure HW consistency */
755 reg = mei_me_d0i3c_read(dev);
756 return reg;
757 }
758
759 /**
760 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
761 *
762 * @dev: the device structure
763 *
764 * Return: D0I3C register value
765 */
766 static u32 mei_me_d0i3_unset(struct mei_device *dev)
767 {
768 u32 reg = mei_me_d0i3c_read(dev);
769
770 reg &= ~H_D0I3C_I3;
771 reg |= H_D0I3C_IR;
772 mei_me_d0i3c_write(dev, reg);
773 /* read it to ensure HW consistency */
774 reg = mei_me_d0i3c_read(dev);
775 return reg;
776 }
777
778 /**
779 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
780 *
781 * @dev: the device structure
782 *
783 * Return: 0 on success an error code otherwise
784 */
785 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
786 {
787 struct mei_me_hw *hw = to_me_hw(dev);
788 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
789 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
790 int ret;
791 u32 reg;
792
793 reg = mei_me_d0i3c_read(dev);
794 if (reg & H_D0I3C_I3) {
795 /* we are in d0i3, nothing to do */
796 dev_dbg(dev->dev, "d0i3 set not needed\n");
797 ret = 0;
798 goto on;
799 }
800
801 /* PGI entry procedure */
802 dev->pg_event = MEI_PG_EVENT_WAIT;
803
804 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
805 if (ret)
806 /* FIXME: should we reset here? */
807 goto out;
808
809 mutex_unlock(&dev->device_lock);
810 wait_event_timeout(dev->wait_pg,
811 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
812 mutex_lock(&dev->device_lock);
813
814 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
815 ret = -ETIME;
816 goto out;
817 }
818 /* end PGI entry procedure */
819
820 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
821
822 reg = mei_me_d0i3_set(dev, true);
823 if (!(reg & H_D0I3C_CIP)) {
824 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
825 ret = 0;
826 goto on;
827 }
828
829 mutex_unlock(&dev->device_lock);
830 wait_event_timeout(dev->wait_pg,
831 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
832 mutex_lock(&dev->device_lock);
833
834 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
835 reg = mei_me_d0i3c_read(dev);
836 if (!(reg & H_D0I3C_I3)) {
837 ret = -ETIME;
838 goto out;
839 }
840 }
841
842 ret = 0;
843 on:
844 hw->pg_state = MEI_PG_ON;
845 out:
846 dev->pg_event = MEI_PG_EVENT_IDLE;
847 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
848 return ret;
849 }
850
851 /**
852 * mei_me_d0i3_enter - perform d0i3 entry procedure
853 * no hbm PG handshake
854 * no waiting for confirmation; runs with interrupts
855 * disabled
856 *
857 * @dev: the device structure
858 *
859 * Return: 0 on success an error code otherwise
860 */
861 static int mei_me_d0i3_enter(struct mei_device *dev)
862 {
863 struct mei_me_hw *hw = to_me_hw(dev);
864 u32 reg;
865
866 reg = mei_me_d0i3c_read(dev);
867 if (reg & H_D0I3C_I3) {
868 /* we are in d0i3, nothing to do */
869 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
870 goto on;
871 }
872
873 mei_me_d0i3_set(dev, false);
874 on:
875 hw->pg_state = MEI_PG_ON;
876 dev->pg_event = MEI_PG_EVENT_IDLE;
877 dev_dbg(dev->dev, "d0i3 enter\n");
878 return 0;
879 }
880
881 /**
882 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
883 *
884 * @dev: the device structure
885 *
886 * Return: 0 on success an error code otherwise
887 */
888 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
889 {
890 struct mei_me_hw *hw = to_me_hw(dev);
891 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
892 int ret;
893 u32 reg;
894
895 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
896
897 reg = mei_me_d0i3c_read(dev);
898 if (!(reg & H_D0I3C_I3)) {
899 /* we are not in d0i3, nothing to do */
900 dev_dbg(dev->dev, "d0i3 exit not needed\n");
901 ret = 0;
902 goto off;
903 }
904
905 reg = mei_me_d0i3_unset(dev);
906 if (!(reg & H_D0I3C_CIP)) {
907 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
908 ret = 0;
909 goto off;
910 }
911
912 mutex_unlock(&dev->device_lock);
913 wait_event_timeout(dev->wait_pg,
914 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
915 mutex_lock(&dev->device_lock);
916
917 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
918 reg = mei_me_d0i3c_read(dev);
919 if (reg & H_D0I3C_I3) {
920 ret = -ETIME;
921 goto out;
922 }
923 }
924
925 ret = 0;
926 off:
927 hw->pg_state = MEI_PG_OFF;
928 out:
929 dev->pg_event = MEI_PG_EVENT_IDLE;
930
931 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
932 return ret;
933 }
934
935 /**
936 * mei_me_pg_legacy_intr - perform legacy pg processing
937 * in interrupt thread handler
938 *
939 * @dev: the device structure
940 */
941 static void mei_me_pg_legacy_intr(struct mei_device *dev)
942 {
943 struct mei_me_hw *hw = to_me_hw(dev);
944
945 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
946 return;
947
948 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
949 hw->pg_state = MEI_PG_OFF;
950 if (waitqueue_active(&dev->wait_pg))
951 wake_up(&dev->wait_pg);
952 }
953
954 /**
955 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
956 *
957 * @dev: the device structure
958 */
959 static void mei_me_d0i3_intr(struct mei_device *dev)
960 {
961 struct mei_me_hw *hw = to_me_hw(dev);
962
963 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
964 (hw->intr_source & H_D0I3C_IS)) {
965 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
966 if (hw->pg_state == MEI_PG_ON) {
967 hw->pg_state = MEI_PG_OFF;
968 if (dev->hbm_state != MEI_HBM_IDLE) {
969 /*
970 * force H_RDY because it could be
971 * wiped off during PG
972 */
973 dev_dbg(dev->dev, "d0i3 set host ready\n");
974 mei_me_host_set_ready(dev);
975 }
976 } else {
977 hw->pg_state = MEI_PG_ON;
978 }
979
980 wake_up(&dev->wait_pg);
981 }
982
983 if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
984 /*
985 * HW sent some data and we are in D0i3, so
986 * we got here because of HW initiated exit from D0i3.
987 * Start runtime pm resume sequence to exit low power state.
988 */
989 dev_dbg(dev->dev, "d0i3 want resume\n");
990 mei_hbm_pg_resume(dev);
991 }
992 }
993
994 /**
995 * mei_me_pg_intr - perform pg processing in interrupt thread handler
996 *
997 * @dev: the device structure
998 */
999 static void mei_me_pg_intr(struct mei_device *dev)
1000 {
1001 struct mei_me_hw *hw = to_me_hw(dev);
1002
1003 if (hw->d0i3_supported)
1004 mei_me_d0i3_intr(dev);
1005 else
1006 mei_me_pg_legacy_intr(dev);
1007 }
1008
1009 /**
1010 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1011 *
1012 * @dev: the device structure
1013 *
1014 * Return: 0 on success an error code otherwise
1015 */
1016 int mei_me_pg_enter_sync(struct mei_device *dev)
1017 {
1018 struct mei_me_hw *hw = to_me_hw(dev);
1019
1020 if (hw->d0i3_supported)
1021 return mei_me_d0i3_enter_sync(dev);
1022 else
1023 return mei_me_pg_legacy_enter_sync(dev);
1024 }
1025
1026 /**
1027 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1028 *
1029 * @dev: the device structure
1030 *
1031 * Return: 0 on success an error code otherwise
1032 */
1033 int mei_me_pg_exit_sync(struct mei_device *dev)
1034 {
1035 struct mei_me_hw *hw = to_me_hw(dev);
1036
1037 if (hw->d0i3_supported)
1038 return mei_me_d0i3_exit_sync(dev);
1039 else
1040 return mei_me_pg_legacy_exit_sync(dev);
1041 }
1042
1043 /**
1044 * mei_me_hw_reset - resets fw via mei csr register.
1045 *
1046 * @dev: the device structure
1047 * @intr_enable: if interrupt should be enabled after reset.
1048 *
1049 * Return: 0 on success an error code otherwise
1050 */
1051 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1052 {
1053 struct mei_me_hw *hw = to_me_hw(dev);
1054 int ret;
1055 u32 hcsr;
1056
1057 if (intr_enable) {
1058 mei_me_intr_enable(dev);
1059 if (hw->d0i3_supported) {
1060 ret = mei_me_d0i3_exit_sync(dev);
1061 if (ret)
1062 return ret;
1063 }
1064 }
1065
1066 hcsr = mei_hcsr_read(dev);
1067 /* H_RST may be found lit before reset is started,
1068 * for example if preceding reset flow hasn't completed.
1069 * In that case asserting H_RST will be ignored, therefore
1070 * we need to clean H_RST bit to start a successful reset sequence.
1071 */
1072 if ((hcsr & H_RST) == H_RST) {
1073 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1074 hcsr &= ~H_RST;
1075 mei_hcsr_set(dev, hcsr);
1076 hcsr = mei_hcsr_read(dev);
1077 }
1078
1079 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1080
1081 if (!intr_enable)
1082 hcsr &= ~H_CSR_IE_MASK;
1083
1084 dev->recvd_hw_ready = false;
1085 mei_hcsr_write(dev, hcsr);
1086
1087 /*
1088 * Host reads the H_CSR once to ensure that the
1089 * posted write to H_CSR completes.
1090 */
1091 hcsr = mei_hcsr_read(dev);
1092
1093 if ((hcsr & H_RST) == 0)
1094 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1095
1096 if ((hcsr & H_RDY) == H_RDY)
1097 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1098
1099 if (!intr_enable) {
1100 mei_me_hw_reset_release(dev);
1101 if (hw->d0i3_supported) {
1102 ret = mei_me_d0i3_enter(dev);
1103 if (ret)
1104 return ret;
1105 }
1106 }
1107 return 0;
1108 }
1109
1110 /**
1111 * mei_me_irq_quick_handler - The ISR of the MEI device
1112 *
1113 * @irq: The irq number
1114 * @dev_id: pointer to the device structure
1115 *
1116 * Return: irqreturn_t
1117 */
1118 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1119 {
1120 struct mei_device *dev = (struct mei_device *)dev_id;
1121 struct mei_me_hw *hw = to_me_hw(dev);
1122 u32 hcsr;
1123
1124 hcsr = mei_hcsr_read(dev);
1125 if (!(hcsr & H_CSR_IS_MASK))
1126 return IRQ_NONE;
1127
1128 hw->intr_source = hcsr & H_CSR_IS_MASK;
1129 dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);
1130
1131 /* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1132 mei_hcsr_write(dev, hcsr);
1133
1134 return IRQ_WAKE_THREAD;
1135 }
1136
1137 /**
1138 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1139 * processing.
1140 *
1141 * @irq: The irq number
1142 * @dev_id: pointer to the device structure
1143 *
1144 * Return: irqreturn_t
1145 *
1146 */
1147 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1148 {
1149 struct mei_device *dev = (struct mei_device *) dev_id;
1150 struct mei_cl_cb complete_list;
1151 s32 slots;
1152 int rets = 0;
1153
1154 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1155 /* initialize our complete list */
1156 mutex_lock(&dev->device_lock);
1157 mei_io_list_init(&complete_list);
1158
1159 /* check if ME wants a reset */
1160 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1161 dev_warn(dev->dev, "FW not ready: resetting.\n");
1162 schedule_work(&dev->reset_work);
1163 goto end;
1164 }
1165
1166 mei_me_pg_intr(dev);
1167
1168 /* check if we need to start the dev */
1169 if (!mei_host_is_ready(dev)) {
1170 if (mei_hw_is_ready(dev)) {
1171 dev_dbg(dev->dev, "we need to start the dev.\n");
1172 dev->recvd_hw_ready = true;
1173 wake_up(&dev->wait_hw_ready);
1174 } else {
1175 dev_dbg(dev->dev, "Spurious Interrupt\n");
1176 }
1177 goto end;
1178 }
1179 /* check slots available for reading */
1180 slots = mei_count_full_read_slots(dev);
1181 while (slots > 0) {
1182 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1183 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1184 /* There is a race between ME write and interrupt delivery:
1185 * Not all data is always available immediately after the
1186 * interrupt, so try to read again on the next interrupt.
1187 */
1188 if (rets == -ENODATA)
1189 break;
1190
1191 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1192 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1193 rets);
1194 schedule_work(&dev->reset_work);
1195 goto end;
1196 }
1197 }
1198
1199 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1200
1201 /*
1202 * During PG handshake only allowed write is the replay to the
1203 * PG exit message, so block calling write function
1204 * if the pg event is in PG handshake
1205 */
1206 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1207 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1208 rets = mei_irq_write_handler(dev, &complete_list);
1209 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1210 }
1211
1212 mei_irq_compl_handler(dev, &complete_list);
1213
1214 end:
1215 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1216 mutex_unlock(&dev->device_lock);
1217 return IRQ_HANDLED;
1218 }
1219
1220 static const struct mei_hw_ops mei_me_hw_ops = {
1221
1222 .fw_status = mei_me_fw_status,
1223 .pg_state = mei_me_pg_state,
1224
1225 .host_is_ready = mei_me_host_is_ready,
1226
1227 .hw_is_ready = mei_me_hw_is_ready,
1228 .hw_reset = mei_me_hw_reset,
1229 .hw_config = mei_me_hw_config,
1230 .hw_start = mei_me_hw_start,
1231
1232 .pg_in_transition = mei_me_pg_in_transition,
1233 .pg_is_enabled = mei_me_pg_is_enabled,
1234
1235 .intr_clear = mei_me_intr_clear,
1236 .intr_enable = mei_me_intr_enable,
1237 .intr_disable = mei_me_intr_disable,
1238
1239 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1240 .hbuf_is_ready = mei_me_hbuf_is_empty,
1241 .hbuf_max_len = mei_me_hbuf_max_len,
1242
1243 .write = mei_me_write_message,
1244
1245 .rdbuf_full_slots = mei_me_count_full_read_slots,
1246 .read_hdr = mei_me_mecbrw_read,
1247 .read = mei_me_read_slots
1248 };
1249
1250 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1251 {
1252 u32 reg;
1253
1254 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1255 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1256 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1257 return (reg & 0x600) == 0x200;
1258 }
1259
1260 #define MEI_CFG_FW_NM \
1261 .quirk_probe = mei_me_fw_type_nm
1262
1263 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1264 {
1265 u32 reg;
1266 /* Read ME FW Status check for SPS Firmware */
1267 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
1268 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1269 /* if bits [19:16] = 15, running SPS Firmware */
1270 return (reg & 0xf0000) == 0xf0000;
1271 }
1272
1273 #define MEI_CFG_FW_SPS \
1274 .quirk_probe = mei_me_fw_type_sps
1275
1276
1277 #define MEI_CFG_LEGACY_HFS \
1278 .fw_status.count = 0
1279
1280 #define MEI_CFG_ICH_HFS \
1281 .fw_status.count = 1, \
1282 .fw_status.status[0] = PCI_CFG_HFS_1
1283
1284 #define MEI_CFG_PCH_HFS \
1285 .fw_status.count = 2, \
1286 .fw_status.status[0] = PCI_CFG_HFS_1, \
1287 .fw_status.status[1] = PCI_CFG_HFS_2
1288
1289 #define MEI_CFG_PCH8_HFS \
1290 .fw_status.count = 6, \
1291 .fw_status.status[0] = PCI_CFG_HFS_1, \
1292 .fw_status.status[1] = PCI_CFG_HFS_2, \
1293 .fw_status.status[2] = PCI_CFG_HFS_3, \
1294 .fw_status.status[3] = PCI_CFG_HFS_4, \
1295 .fw_status.status[4] = PCI_CFG_HFS_5, \
1296 .fw_status.status[5] = PCI_CFG_HFS_6
1297
1298 /* ICH Legacy devices */
1299 const struct mei_cfg mei_me_legacy_cfg = {
1300 MEI_CFG_LEGACY_HFS,
1301 };
1302
1303 /* ICH devices */
1304 const struct mei_cfg mei_me_ich_cfg = {
1305 MEI_CFG_ICH_HFS,
1306 };
1307
1308 /* PCH devices */
1309 const struct mei_cfg mei_me_pch_cfg = {
1310 MEI_CFG_PCH_HFS,
1311 };
1312
1313
1314 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1315 const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1316 MEI_CFG_PCH_HFS,
1317 MEI_CFG_FW_NM,
1318 };
1319
1320 /* PCH8 Lynx Point and newer devices */
1321 const struct mei_cfg mei_me_pch8_cfg = {
1322 MEI_CFG_PCH8_HFS,
1323 };
1324
1325 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1326 const struct mei_cfg mei_me_pch8_sps_cfg = {
1327 MEI_CFG_PCH8_HFS,
1328 MEI_CFG_FW_SPS,
1329 };
1330
1331 /**
1332 * mei_me_dev_init - allocates and initializes the mei device structure
1333 *
1334 * @pdev: The pci device structure
1335 * @cfg: per device generation config
1336 *
1337 * Return: The mei_device_device pointer on success, NULL on failure.
1338 */
1339 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1340 const struct mei_cfg *cfg)
1341 {
1342 struct mei_device *dev;
1343 struct mei_me_hw *hw;
1344
1345 dev = kzalloc(sizeof(struct mei_device) +
1346 sizeof(struct mei_me_hw), GFP_KERNEL);
1347 if (!dev)
1348 return NULL;
1349 hw = to_me_hw(dev);
1350
1351 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1352 hw->cfg = cfg;
1353 return dev;
1354 }
1355
This page took 0.060283 seconds and 5 git commands to generate.