Merge remote-tracking branch 'battery/for-next'
[deliverable/linux.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45
46 #include <asm/uaccess.h>
47
48 #include "queue.h"
49
50 MODULE_ALIAS("mmc:block");
51 #ifdef MODULE_PARAM_PREFIX
52 #undef MODULE_PARAM_PREFIX
53 #endif
54 #define MODULE_PARAM_PREFIX "mmcblk."
55
56 #define INAND_CMD38_ARG_EXT_CSD 113
57 #define INAND_CMD38_ARG_ERASE 0x00
58 #define INAND_CMD38_ARG_TRIM 0x01
59 #define INAND_CMD38_ARG_SECERASE 0x80
60 #define INAND_CMD38_ARG_SECTRIM1 0x81
61 #define INAND_CMD38_ARG_SECTRIM2 0x88
62 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
63 #define MMC_SANITIZE_REQ_TIMEOUT 240000
64 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65
66 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
70
71 static DEFINE_MUTEX(block_mutex);
72
73 /*
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
76 */
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
78
79 /*
80 * We've only got one major, so number of mmcblk devices is
81 * limited to (1 << 20) / number of minors per device. It is also
82 * limited by the MAX_DEVICES below.
83 */
84 static int max_devices;
85
86 #define MAX_DEVICES 256
87
88 static DEFINE_IDA(mmc_blk_ida);
89 static DEFINE_SPINLOCK(mmc_blk_lock);
90
91 /*
92 * There is one mmc_blk_data per slot.
93 */
94 struct mmc_blk_data {
95 spinlock_t lock;
96 struct device *parent;
97 struct gendisk *disk;
98 struct mmc_queue queue;
99 struct list_head part;
100
101 unsigned int flags;
102 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
103 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
104 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
105
106 unsigned int usage;
107 unsigned int read_only;
108 unsigned int part_type;
109 unsigned int reset_done;
110 #define MMC_BLK_READ BIT(0)
111 #define MMC_BLK_WRITE BIT(1)
112 #define MMC_BLK_DISCARD BIT(2)
113 #define MMC_BLK_SECDISCARD BIT(3)
114
115 /*
116 * Only set in main mmc_blk_data associated
117 * with mmc_card with dev_set_drvdata, and keeps
118 * track of the current selected device partition.
119 */
120 unsigned int part_curr;
121 struct device_attribute force_ro;
122 struct device_attribute power_ro_lock;
123 int area_type;
124 };
125
126 static DEFINE_MUTEX(open_lock);
127
128 enum {
129 MMC_PACKED_NR_IDX = -1,
130 MMC_PACKED_NR_ZERO,
131 MMC_PACKED_NR_SINGLE,
132 };
133
134 module_param(perdev_minors, int, 0444);
135 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
136
137 static inline int mmc_blk_part_switch(struct mmc_card *card,
138 struct mmc_blk_data *md);
139 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
140
141 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
142 {
143 struct mmc_packed *packed = mqrq->packed;
144
145 mqrq->cmd_type = MMC_PACKED_NONE;
146 packed->nr_entries = MMC_PACKED_NR_ZERO;
147 packed->idx_failure = MMC_PACKED_NR_IDX;
148 packed->retries = 0;
149 packed->blocks = 0;
150 }
151
152 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
153 {
154 struct mmc_blk_data *md;
155
156 mutex_lock(&open_lock);
157 md = disk->private_data;
158 if (md && md->usage == 0)
159 md = NULL;
160 if (md)
161 md->usage++;
162 mutex_unlock(&open_lock);
163
164 return md;
165 }
166
167 static inline int mmc_get_devidx(struct gendisk *disk)
168 {
169 int devidx = disk->first_minor / perdev_minors;
170 return devidx;
171 }
172
173 static void mmc_blk_put(struct mmc_blk_data *md)
174 {
175 mutex_lock(&open_lock);
176 md->usage--;
177 if (md->usage == 0) {
178 int devidx = mmc_get_devidx(md->disk);
179 blk_cleanup_queue(md->queue.queue);
180
181 spin_lock(&mmc_blk_lock);
182 ida_remove(&mmc_blk_ida, devidx);
183 spin_unlock(&mmc_blk_lock);
184
185 put_disk(md->disk);
186 kfree(md);
187 }
188 mutex_unlock(&open_lock);
189 }
190
191 static ssize_t power_ro_lock_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 int ret;
195 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
196 struct mmc_card *card = md->queue.card;
197 int locked = 0;
198
199 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
200 locked = 2;
201 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
202 locked = 1;
203
204 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
205
206 mmc_blk_put(md);
207
208 return ret;
209 }
210
211 static ssize_t power_ro_lock_store(struct device *dev,
212 struct device_attribute *attr, const char *buf, size_t count)
213 {
214 int ret;
215 struct mmc_blk_data *md, *part_md;
216 struct mmc_card *card;
217 unsigned long set;
218
219 if (kstrtoul(buf, 0, &set))
220 return -EINVAL;
221
222 if (set != 1)
223 return count;
224
225 md = mmc_blk_get(dev_to_disk(dev));
226 card = md->queue.card;
227
228 mmc_get_card(card);
229
230 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
231 card->ext_csd.boot_ro_lock |
232 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
233 card->ext_csd.part_time);
234 if (ret)
235 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
236 else
237 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
238
239 mmc_put_card(card);
240
241 if (!ret) {
242 pr_info("%s: Locking boot partition ro until next power on\n",
243 md->disk->disk_name);
244 set_disk_ro(md->disk, 1);
245
246 list_for_each_entry(part_md, &md->part, part)
247 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
248 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
249 set_disk_ro(part_md->disk, 1);
250 }
251 }
252
253 mmc_blk_put(md);
254 return count;
255 }
256
257 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
258 char *buf)
259 {
260 int ret;
261 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
262
263 ret = snprintf(buf, PAGE_SIZE, "%d\n",
264 get_disk_ro(dev_to_disk(dev)) ^
265 md->read_only);
266 mmc_blk_put(md);
267 return ret;
268 }
269
270 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
271 const char *buf, size_t count)
272 {
273 int ret;
274 char *end;
275 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 unsigned long set = simple_strtoul(buf, &end, 0);
277 if (end == buf) {
278 ret = -EINVAL;
279 goto out;
280 }
281
282 set_disk_ro(dev_to_disk(dev), set || md->read_only);
283 ret = count;
284 out:
285 mmc_blk_put(md);
286 return ret;
287 }
288
289 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
290 {
291 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
292 int ret = -ENXIO;
293
294 mutex_lock(&block_mutex);
295 if (md) {
296 if (md->usage == 2)
297 check_disk_change(bdev);
298 ret = 0;
299
300 if ((mode & FMODE_WRITE) && md->read_only) {
301 mmc_blk_put(md);
302 ret = -EROFS;
303 }
304 }
305 mutex_unlock(&block_mutex);
306
307 return ret;
308 }
309
310 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
311 {
312 struct mmc_blk_data *md = disk->private_data;
313
314 mutex_lock(&block_mutex);
315 mmc_blk_put(md);
316 mutex_unlock(&block_mutex);
317 }
318
319 static int
320 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
321 {
322 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
323 geo->heads = 4;
324 geo->sectors = 16;
325 return 0;
326 }
327
328 struct mmc_blk_ioc_data {
329 struct mmc_ioc_cmd ic;
330 unsigned char *buf;
331 u64 buf_bytes;
332 };
333
334 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user *user)
336 {
337 struct mmc_blk_ioc_data *idata;
338 int err;
339
340 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
341 if (!idata) {
342 err = -ENOMEM;
343 goto out;
344 }
345
346 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
347 err = -EFAULT;
348 goto idata_err;
349 }
350
351 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
352 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
353 err = -EOVERFLOW;
354 goto idata_err;
355 }
356
357 if (!idata->buf_bytes) {
358 idata->buf = NULL;
359 return idata;
360 }
361
362 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
363 if (!idata->buf) {
364 err = -ENOMEM;
365 goto idata_err;
366 }
367
368 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
369 idata->ic.data_ptr, idata->buf_bytes)) {
370 err = -EFAULT;
371 goto copy_err;
372 }
373
374 return idata;
375
376 copy_err:
377 kfree(idata->buf);
378 idata_err:
379 kfree(idata);
380 out:
381 return ERR_PTR(err);
382 }
383
384 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
385 struct mmc_blk_ioc_data *idata)
386 {
387 struct mmc_ioc_cmd *ic = &idata->ic;
388
389 if (copy_to_user(&(ic_ptr->response), ic->response,
390 sizeof(ic->response)))
391 return -EFAULT;
392
393 if (!idata->ic.write_flag) {
394 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
395 idata->buf, idata->buf_bytes))
396 return -EFAULT;
397 }
398
399 return 0;
400 }
401
402 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
403 u32 retries_max)
404 {
405 int err;
406 u32 retry_count = 0;
407
408 if (!status || !retries_max)
409 return -EINVAL;
410
411 do {
412 err = get_card_status(card, status, 5);
413 if (err)
414 break;
415
416 if (!R1_STATUS(*status) &&
417 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
418 break; /* RPMB programming operation complete */
419
420 /*
421 * Rechedule to give the MMC device a chance to continue
422 * processing the previous command without being polled too
423 * frequently.
424 */
425 usleep_range(1000, 5000);
426 } while (++retry_count < retries_max);
427
428 if (retry_count == retries_max)
429 err = -EPERM;
430
431 return err;
432 }
433
434 static int ioctl_do_sanitize(struct mmc_card *card)
435 {
436 int err;
437
438 if (!mmc_can_sanitize(card)) {
439 pr_warn("%s: %s - SANITIZE is not supported\n",
440 mmc_hostname(card->host), __func__);
441 err = -EOPNOTSUPP;
442 goto out;
443 }
444
445 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
446 mmc_hostname(card->host), __func__);
447
448 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
449 EXT_CSD_SANITIZE_START, 1,
450 MMC_SANITIZE_REQ_TIMEOUT);
451
452 if (err)
453 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
454 mmc_hostname(card->host), __func__, err);
455
456 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
457 __func__);
458 out:
459 return err;
460 }
461
462 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
463 struct mmc_blk_ioc_data *idata)
464 {
465 struct mmc_command cmd = {0};
466 struct mmc_data data = {0};
467 struct mmc_request mrq = {NULL};
468 struct scatterlist sg;
469 int err;
470 int is_rpmb = false;
471 u32 status = 0;
472
473 if (!card || !md || !idata)
474 return -EINVAL;
475
476 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
477 is_rpmb = true;
478
479 cmd.opcode = idata->ic.opcode;
480 cmd.arg = idata->ic.arg;
481 cmd.flags = idata->ic.flags;
482
483 if (idata->buf_bytes) {
484 data.sg = &sg;
485 data.sg_len = 1;
486 data.blksz = idata->ic.blksz;
487 data.blocks = idata->ic.blocks;
488
489 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
490
491 if (idata->ic.write_flag)
492 data.flags = MMC_DATA_WRITE;
493 else
494 data.flags = MMC_DATA_READ;
495
496 /* data.flags must already be set before doing this. */
497 mmc_set_data_timeout(&data, card);
498
499 /* Allow overriding the timeout_ns for empirical tuning. */
500 if (idata->ic.data_timeout_ns)
501 data.timeout_ns = idata->ic.data_timeout_ns;
502
503 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
504 /*
505 * Pretend this is a data transfer and rely on the
506 * host driver to compute timeout. When all host
507 * drivers support cmd.cmd_timeout for R1B, this
508 * can be changed to:
509 *
510 * mrq.data = NULL;
511 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
512 */
513 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
514 }
515
516 mrq.data = &data;
517 }
518
519 mrq.cmd = &cmd;
520
521 err = mmc_blk_part_switch(card, md);
522 if (err)
523 return err;
524
525 if (idata->ic.is_acmd) {
526 err = mmc_app_cmd(card->host, card);
527 if (err)
528 return err;
529 }
530
531 if (is_rpmb) {
532 err = mmc_set_blockcount(card, data.blocks,
533 idata->ic.write_flag & (1 << 31));
534 if (err)
535 return err;
536 }
537
538 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
539 (cmd.opcode == MMC_SWITCH)) {
540 err = ioctl_do_sanitize(card);
541
542 if (err)
543 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
544 __func__, err);
545
546 return err;
547 }
548
549 mmc_wait_for_req(card->host, &mrq);
550
551 if (cmd.error) {
552 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
553 __func__, cmd.error);
554 return cmd.error;
555 }
556 if (data.error) {
557 dev_err(mmc_dev(card->host), "%s: data error %d\n",
558 __func__, data.error);
559 return data.error;
560 }
561
562 /*
563 * According to the SD specs, some commands require a delay after
564 * issuing the command.
565 */
566 if (idata->ic.postsleep_min_us)
567 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
568
569 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
570
571 if (is_rpmb) {
572 /*
573 * Ensure RPMB command has completed by polling CMD13
574 * "Send Status".
575 */
576 err = ioctl_rpmb_card_status_poll(card, &status, 5);
577 if (err)
578 dev_err(mmc_dev(card->host),
579 "%s: Card Status=0x%08X, error %d\n",
580 __func__, status, err);
581 }
582
583 return err;
584 }
585
586 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
587 struct mmc_ioc_cmd __user *ic_ptr)
588 {
589 struct mmc_blk_ioc_data *idata;
590 struct mmc_blk_data *md;
591 struct mmc_card *card;
592 int err = 0, ioc_err = 0;
593
594 /*
595 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
596 * whole block device, not on a partition. This prevents overspray
597 * between sibling partitions.
598 */
599 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
600 return -EPERM;
601
602 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
603 if (IS_ERR(idata))
604 return PTR_ERR(idata);
605
606 md = mmc_blk_get(bdev->bd_disk);
607 if (!md) {
608 err = -EINVAL;
609 goto cmd_err;
610 }
611
612 card = md->queue.card;
613 if (IS_ERR(card)) {
614 err = PTR_ERR(card);
615 goto cmd_done;
616 }
617
618 mmc_get_card(card);
619
620 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
621
622 /* Always switch back to main area after RPMB access */
623 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
624 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
625
626 mmc_put_card(card);
627
628 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
629
630 cmd_done:
631 mmc_blk_put(md);
632 cmd_err:
633 kfree(idata->buf);
634 kfree(idata);
635 return ioc_err ? ioc_err : err;
636 }
637
638 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
639 struct mmc_ioc_multi_cmd __user *user)
640 {
641 struct mmc_blk_ioc_data **idata = NULL;
642 struct mmc_ioc_cmd __user *cmds = user->cmds;
643 struct mmc_card *card;
644 struct mmc_blk_data *md;
645 int i, err = 0, ioc_err = 0;
646 __u64 num_of_cmds;
647
648 /*
649 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
650 * whole block device, not on a partition. This prevents overspray
651 * between sibling partitions.
652 */
653 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
654 return -EPERM;
655
656 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
657 sizeof(num_of_cmds)))
658 return -EFAULT;
659
660 if (num_of_cmds > MMC_IOC_MAX_CMDS)
661 return -EINVAL;
662
663 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
664 if (!idata)
665 return -ENOMEM;
666
667 for (i = 0; i < num_of_cmds; i++) {
668 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
669 if (IS_ERR(idata[i])) {
670 err = PTR_ERR(idata[i]);
671 num_of_cmds = i;
672 goto cmd_err;
673 }
674 }
675
676 md = mmc_blk_get(bdev->bd_disk);
677 if (!md) {
678 err = -EINVAL;
679 goto cmd_err;
680 }
681
682 card = md->queue.card;
683 if (IS_ERR(card)) {
684 err = PTR_ERR(card);
685 goto cmd_done;
686 }
687
688 mmc_get_card(card);
689
690 for (i = 0; i < num_of_cmds && !ioc_err; i++)
691 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
692
693 /* Always switch back to main area after RPMB access */
694 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
695 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
696
697 mmc_put_card(card);
698
699 /* copy to user if data and response */
700 for (i = 0; i < num_of_cmds && !err; i++)
701 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
702
703 cmd_done:
704 mmc_blk_put(md);
705 cmd_err:
706 for (i = 0; i < num_of_cmds; i++) {
707 kfree(idata[i]->buf);
708 kfree(idata[i]);
709 }
710 kfree(idata);
711 return ioc_err ? ioc_err : err;
712 }
713
714 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
715 unsigned int cmd, unsigned long arg)
716 {
717 switch (cmd) {
718 case MMC_IOC_CMD:
719 return mmc_blk_ioctl_cmd(bdev,
720 (struct mmc_ioc_cmd __user *)arg);
721 case MMC_IOC_MULTI_CMD:
722 return mmc_blk_ioctl_multi_cmd(bdev,
723 (struct mmc_ioc_multi_cmd __user *)arg);
724 default:
725 return -EINVAL;
726 }
727 }
728
729 #ifdef CONFIG_COMPAT
730 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
731 unsigned int cmd, unsigned long arg)
732 {
733 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
734 }
735 #endif
736
737 static const struct block_device_operations mmc_bdops = {
738 .open = mmc_blk_open,
739 .release = mmc_blk_release,
740 .getgeo = mmc_blk_getgeo,
741 .owner = THIS_MODULE,
742 .ioctl = mmc_blk_ioctl,
743 #ifdef CONFIG_COMPAT
744 .compat_ioctl = mmc_blk_compat_ioctl,
745 #endif
746 };
747
748 static inline int mmc_blk_part_switch(struct mmc_card *card,
749 struct mmc_blk_data *md)
750 {
751 int ret;
752 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
753
754 if (main_md->part_curr == md->part_type)
755 return 0;
756
757 if (mmc_card_mmc(card)) {
758 u8 part_config = card->ext_csd.part_config;
759
760 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
761 mmc_retune_pause(card->host);
762
763 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
764 part_config |= md->part_type;
765
766 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
767 EXT_CSD_PART_CONFIG, part_config,
768 card->ext_csd.part_time);
769 if (ret) {
770 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
771 mmc_retune_unpause(card->host);
772 return ret;
773 }
774
775 card->ext_csd.part_config = part_config;
776
777 if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
778 mmc_retune_unpause(card->host);
779 }
780
781 main_md->part_curr = md->part_type;
782 return 0;
783 }
784
785 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
786 {
787 int err;
788 u32 result;
789 __be32 *blocks;
790
791 struct mmc_request mrq = {NULL};
792 struct mmc_command cmd = {0};
793 struct mmc_data data = {0};
794
795 struct scatterlist sg;
796
797 cmd.opcode = MMC_APP_CMD;
798 cmd.arg = card->rca << 16;
799 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
800
801 err = mmc_wait_for_cmd(card->host, &cmd, 0);
802 if (err)
803 return (u32)-1;
804 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
805 return (u32)-1;
806
807 memset(&cmd, 0, sizeof(struct mmc_command));
808
809 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
810 cmd.arg = 0;
811 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
812
813 data.blksz = 4;
814 data.blocks = 1;
815 data.flags = MMC_DATA_READ;
816 data.sg = &sg;
817 data.sg_len = 1;
818 mmc_set_data_timeout(&data, card);
819
820 mrq.cmd = &cmd;
821 mrq.data = &data;
822
823 blocks = kmalloc(4, GFP_KERNEL);
824 if (!blocks)
825 return (u32)-1;
826
827 sg_init_one(&sg, blocks, 4);
828
829 mmc_wait_for_req(card->host, &mrq);
830
831 result = ntohl(*blocks);
832 kfree(blocks);
833
834 if (cmd.error || data.error)
835 result = (u32)-1;
836
837 return result;
838 }
839
840 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
841 {
842 struct mmc_command cmd = {0};
843 int err;
844
845 cmd.opcode = MMC_SEND_STATUS;
846 if (!mmc_host_is_spi(card->host))
847 cmd.arg = card->rca << 16;
848 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
849 err = mmc_wait_for_cmd(card->host, &cmd, retries);
850 if (err == 0)
851 *status = cmd.resp[0];
852 return err;
853 }
854
855 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
856 bool hw_busy_detect, struct request *req, int *gen_err)
857 {
858 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
859 int err = 0;
860 u32 status;
861
862 do {
863 err = get_card_status(card, &status, 5);
864 if (err) {
865 pr_err("%s: error %d requesting status\n",
866 req->rq_disk->disk_name, err);
867 return err;
868 }
869
870 if (status & R1_ERROR) {
871 pr_err("%s: %s: error sending status cmd, status %#x\n",
872 req->rq_disk->disk_name, __func__, status);
873 *gen_err = 1;
874 }
875
876 /* We may rely on the host hw to handle busy detection.*/
877 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
878 hw_busy_detect)
879 break;
880
881 /*
882 * Timeout if the device never becomes ready for data and never
883 * leaves the program state.
884 */
885 if (time_after(jiffies, timeout)) {
886 pr_err("%s: Card stuck in programming state! %s %s\n",
887 mmc_hostname(card->host),
888 req->rq_disk->disk_name, __func__);
889 return -ETIMEDOUT;
890 }
891
892 /*
893 * Some cards mishandle the status bits,
894 * so make sure to check both the busy
895 * indication and the card state.
896 */
897 } while (!(status & R1_READY_FOR_DATA) ||
898 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
899
900 return err;
901 }
902
903 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
904 struct request *req, int *gen_err, u32 *stop_status)
905 {
906 struct mmc_host *host = card->host;
907 struct mmc_command cmd = {0};
908 int err;
909 bool use_r1b_resp = rq_data_dir(req) == WRITE;
910
911 /*
912 * Normally we use R1B responses for WRITE, but in cases where the host
913 * has specified a max_busy_timeout we need to validate it. A failure
914 * means we need to prevent the host from doing hw busy detection, which
915 * is done by converting to a R1 response instead.
916 */
917 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
918 use_r1b_resp = false;
919
920 cmd.opcode = MMC_STOP_TRANSMISSION;
921 if (use_r1b_resp) {
922 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
923 cmd.busy_timeout = timeout_ms;
924 } else {
925 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
926 }
927
928 err = mmc_wait_for_cmd(host, &cmd, 5);
929 if (err)
930 return err;
931
932 *stop_status = cmd.resp[0];
933
934 /* No need to check card status in case of READ. */
935 if (rq_data_dir(req) == READ)
936 return 0;
937
938 if (!mmc_host_is_spi(host) &&
939 (*stop_status & R1_ERROR)) {
940 pr_err("%s: %s: general error sending stop command, resp %#x\n",
941 req->rq_disk->disk_name, __func__, *stop_status);
942 *gen_err = 1;
943 }
944
945 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
946 }
947
948 #define ERR_NOMEDIUM 3
949 #define ERR_RETRY 2
950 #define ERR_ABORT 1
951 #define ERR_CONTINUE 0
952
953 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
954 bool status_valid, u32 status)
955 {
956 switch (error) {
957 case -EILSEQ:
958 /* response crc error, retry the r/w cmd */
959 pr_err("%s: %s sending %s command, card status %#x\n",
960 req->rq_disk->disk_name, "response CRC error",
961 name, status);
962 return ERR_RETRY;
963
964 case -ETIMEDOUT:
965 pr_err("%s: %s sending %s command, card status %#x\n",
966 req->rq_disk->disk_name, "timed out", name, status);
967
968 /* If the status cmd initially failed, retry the r/w cmd */
969 if (!status_valid) {
970 pr_err("%s: status not valid, retrying timeout\n",
971 req->rq_disk->disk_name);
972 return ERR_RETRY;
973 }
974
975 /*
976 * If it was a r/w cmd crc error, or illegal command
977 * (eg, issued in wrong state) then retry - we should
978 * have corrected the state problem above.
979 */
980 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
981 pr_err("%s: command error, retrying timeout\n",
982 req->rq_disk->disk_name);
983 return ERR_RETRY;
984 }
985
986 /* Otherwise abort the command */
987 return ERR_ABORT;
988
989 default:
990 /* We don't understand the error code the driver gave us */
991 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
992 req->rq_disk->disk_name, error, status);
993 return ERR_ABORT;
994 }
995 }
996
997 /*
998 * Initial r/w and stop cmd error recovery.
999 * We don't know whether the card received the r/w cmd or not, so try to
1000 * restore things back to a sane state. Essentially, we do this as follows:
1001 * - Obtain card status. If the first attempt to obtain card status fails,
1002 * the status word will reflect the failed status cmd, not the failed
1003 * r/w cmd. If we fail to obtain card status, it suggests we can no
1004 * longer communicate with the card.
1005 * - Check the card state. If the card received the cmd but there was a
1006 * transient problem with the response, it might still be in a data transfer
1007 * mode. Try to send it a stop command. If this fails, we can't recover.
1008 * - If the r/w cmd failed due to a response CRC error, it was probably
1009 * transient, so retry the cmd.
1010 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1011 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1012 * illegal cmd, retry.
1013 * Otherwise we don't understand what happened, so abort.
1014 */
1015 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1016 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
1017 {
1018 bool prev_cmd_status_valid = true;
1019 u32 status, stop_status = 0;
1020 int err, retry;
1021
1022 if (mmc_card_removed(card))
1023 return ERR_NOMEDIUM;
1024
1025 /*
1026 * Try to get card status which indicates both the card state
1027 * and why there was no response. If the first attempt fails,
1028 * we can't be sure the returned status is for the r/w command.
1029 */
1030 for (retry = 2; retry >= 0; retry--) {
1031 err = get_card_status(card, &status, 0);
1032 if (!err)
1033 break;
1034
1035 /* Re-tune if needed */
1036 mmc_retune_recheck(card->host);
1037
1038 prev_cmd_status_valid = false;
1039 pr_err("%s: error %d sending status command, %sing\n",
1040 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1041 }
1042
1043 /* We couldn't get a response from the card. Give up. */
1044 if (err) {
1045 /* Check if the card is removed */
1046 if (mmc_detect_card_removed(card->host))
1047 return ERR_NOMEDIUM;
1048 return ERR_ABORT;
1049 }
1050
1051 /* Flag ECC errors */
1052 if ((status & R1_CARD_ECC_FAILED) ||
1053 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1054 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1055 *ecc_err = 1;
1056
1057 /* Flag General errors */
1058 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1059 if ((status & R1_ERROR) ||
1060 (brq->stop.resp[0] & R1_ERROR)) {
1061 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1062 req->rq_disk->disk_name, __func__,
1063 brq->stop.resp[0], status);
1064 *gen_err = 1;
1065 }
1066
1067 /*
1068 * Check the current card state. If it is in some data transfer
1069 * mode, tell it to stop (and hopefully transition back to TRAN.)
1070 */
1071 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1072 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1073 err = send_stop(card,
1074 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1075 req, gen_err, &stop_status);
1076 if (err) {
1077 pr_err("%s: error %d sending stop command\n",
1078 req->rq_disk->disk_name, err);
1079 /*
1080 * If the stop cmd also timed out, the card is probably
1081 * not present, so abort. Other errors are bad news too.
1082 */
1083 return ERR_ABORT;
1084 }
1085
1086 if (stop_status & R1_CARD_ECC_FAILED)
1087 *ecc_err = 1;
1088 }
1089
1090 /* Check for set block count errors */
1091 if (brq->sbc.error)
1092 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1093 prev_cmd_status_valid, status);
1094
1095 /* Check for r/w command errors */
1096 if (brq->cmd.error)
1097 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1098 prev_cmd_status_valid, status);
1099
1100 /* Data errors */
1101 if (!brq->stop.error)
1102 return ERR_CONTINUE;
1103
1104 /* Now for stop errors. These aren't fatal to the transfer. */
1105 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1106 req->rq_disk->disk_name, brq->stop.error,
1107 brq->cmd.resp[0], status);
1108
1109 /*
1110 * Subsitute in our own stop status as this will give the error
1111 * state which happened during the execution of the r/w command.
1112 */
1113 if (stop_status) {
1114 brq->stop.resp[0] = stop_status;
1115 brq->stop.error = 0;
1116 }
1117 return ERR_CONTINUE;
1118 }
1119
1120 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1121 int type)
1122 {
1123 int err;
1124
1125 if (md->reset_done & type)
1126 return -EEXIST;
1127
1128 md->reset_done |= type;
1129 err = mmc_hw_reset(host);
1130 /* Ensure we switch back to the correct partition */
1131 if (err != -EOPNOTSUPP) {
1132 struct mmc_blk_data *main_md =
1133 dev_get_drvdata(&host->card->dev);
1134 int part_err;
1135
1136 main_md->part_curr = main_md->part_type;
1137 part_err = mmc_blk_part_switch(host->card, md);
1138 if (part_err) {
1139 /*
1140 * We have failed to get back into the correct
1141 * partition, so we need to abort the whole request.
1142 */
1143 return -ENODEV;
1144 }
1145 }
1146 return err;
1147 }
1148
1149 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1150 {
1151 md->reset_done &= ~type;
1152 }
1153
1154 int mmc_access_rpmb(struct mmc_queue *mq)
1155 {
1156 struct mmc_blk_data *md = mq->data;
1157 /*
1158 * If this is a RPMB partition access, return ture
1159 */
1160 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1161 return true;
1162
1163 return false;
1164 }
1165
1166 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1167 {
1168 struct mmc_blk_data *md = mq->data;
1169 struct mmc_card *card = md->queue.card;
1170 unsigned int from, nr, arg;
1171 int err = 0, type = MMC_BLK_DISCARD;
1172
1173 if (!mmc_can_erase(card)) {
1174 err = -EOPNOTSUPP;
1175 goto out;
1176 }
1177
1178 from = blk_rq_pos(req);
1179 nr = blk_rq_sectors(req);
1180
1181 if (mmc_can_discard(card))
1182 arg = MMC_DISCARD_ARG;
1183 else if (mmc_can_trim(card))
1184 arg = MMC_TRIM_ARG;
1185 else
1186 arg = MMC_ERASE_ARG;
1187 retry:
1188 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1189 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1190 INAND_CMD38_ARG_EXT_CSD,
1191 arg == MMC_TRIM_ARG ?
1192 INAND_CMD38_ARG_TRIM :
1193 INAND_CMD38_ARG_ERASE,
1194 0);
1195 if (err)
1196 goto out;
1197 }
1198 err = mmc_erase(card, from, nr, arg);
1199 out:
1200 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1201 goto retry;
1202 if (!err)
1203 mmc_blk_reset_success(md, type);
1204 blk_end_request(req, err, blk_rq_bytes(req));
1205
1206 return err ? 0 : 1;
1207 }
1208
1209 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1210 struct request *req)
1211 {
1212 struct mmc_blk_data *md = mq->data;
1213 struct mmc_card *card = md->queue.card;
1214 unsigned int from, nr, arg;
1215 int err = 0, type = MMC_BLK_SECDISCARD;
1216
1217 if (!(mmc_can_secure_erase_trim(card))) {
1218 err = -EOPNOTSUPP;
1219 goto out;
1220 }
1221
1222 from = blk_rq_pos(req);
1223 nr = blk_rq_sectors(req);
1224
1225 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1226 arg = MMC_SECURE_TRIM1_ARG;
1227 else
1228 arg = MMC_SECURE_ERASE_ARG;
1229
1230 retry:
1231 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1232 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1233 INAND_CMD38_ARG_EXT_CSD,
1234 arg == MMC_SECURE_TRIM1_ARG ?
1235 INAND_CMD38_ARG_SECTRIM1 :
1236 INAND_CMD38_ARG_SECERASE,
1237 0);
1238 if (err)
1239 goto out_retry;
1240 }
1241
1242 err = mmc_erase(card, from, nr, arg);
1243 if (err == -EIO)
1244 goto out_retry;
1245 if (err)
1246 goto out;
1247
1248 if (arg == MMC_SECURE_TRIM1_ARG) {
1249 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1250 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1251 INAND_CMD38_ARG_EXT_CSD,
1252 INAND_CMD38_ARG_SECTRIM2,
1253 0);
1254 if (err)
1255 goto out_retry;
1256 }
1257
1258 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1259 if (err == -EIO)
1260 goto out_retry;
1261 if (err)
1262 goto out;
1263 }
1264
1265 out_retry:
1266 if (err && !mmc_blk_reset(md, card->host, type))
1267 goto retry;
1268 if (!err)
1269 mmc_blk_reset_success(md, type);
1270 out:
1271 blk_end_request(req, err, blk_rq_bytes(req));
1272
1273 return err ? 0 : 1;
1274 }
1275
1276 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1277 {
1278 struct mmc_blk_data *md = mq->data;
1279 struct mmc_card *card = md->queue.card;
1280 int ret = 0;
1281
1282 ret = mmc_flush_cache(card);
1283 if (ret)
1284 ret = -EIO;
1285
1286 blk_end_request_all(req, ret);
1287
1288 return ret ? 0 : 1;
1289 }
1290
1291 /*
1292 * Reformat current write as a reliable write, supporting
1293 * both legacy and the enhanced reliable write MMC cards.
1294 * In each transfer we'll handle only as much as a single
1295 * reliable write can handle, thus finish the request in
1296 * partial completions.
1297 */
1298 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1299 struct mmc_card *card,
1300 struct request *req)
1301 {
1302 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1303 /* Legacy mode imposes restrictions on transfers. */
1304 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1305 brq->data.blocks = 1;
1306
1307 if (brq->data.blocks > card->ext_csd.rel_sectors)
1308 brq->data.blocks = card->ext_csd.rel_sectors;
1309 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1310 brq->data.blocks = 1;
1311 }
1312 }
1313
1314 #define CMD_ERRORS \
1315 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1316 R1_ADDRESS_ERROR | /* Misaligned address */ \
1317 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1318 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1319 R1_CC_ERROR | /* Card controller error */ \
1320 R1_ERROR) /* General/unknown error */
1321
1322 static int mmc_blk_err_check(struct mmc_card *card,
1323 struct mmc_async_req *areq)
1324 {
1325 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1326 mmc_active);
1327 struct mmc_blk_request *brq = &mq_mrq->brq;
1328 struct request *req = mq_mrq->req;
1329 int need_retune = card->host->need_retune;
1330 int ecc_err = 0, gen_err = 0;
1331
1332 /*
1333 * sbc.error indicates a problem with the set block count
1334 * command. No data will have been transferred.
1335 *
1336 * cmd.error indicates a problem with the r/w command. No
1337 * data will have been transferred.
1338 *
1339 * stop.error indicates a problem with the stop command. Data
1340 * may have been transferred, or may still be transferring.
1341 */
1342 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1343 brq->data.error) {
1344 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1345 case ERR_RETRY:
1346 return MMC_BLK_RETRY;
1347 case ERR_ABORT:
1348 return MMC_BLK_ABORT;
1349 case ERR_NOMEDIUM:
1350 return MMC_BLK_NOMEDIUM;
1351 case ERR_CONTINUE:
1352 break;
1353 }
1354 }
1355
1356 /*
1357 * Check for errors relating to the execution of the
1358 * initial command - such as address errors. No data
1359 * has been transferred.
1360 */
1361 if (brq->cmd.resp[0] & CMD_ERRORS) {
1362 pr_err("%s: r/w command failed, status = %#x\n",
1363 req->rq_disk->disk_name, brq->cmd.resp[0]);
1364 return MMC_BLK_ABORT;
1365 }
1366
1367 /*
1368 * Everything else is either success, or a data error of some
1369 * kind. If it was a write, we may have transitioned to
1370 * program mode, which we have to wait for it to complete.
1371 */
1372 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1373 int err;
1374
1375 /* Check stop command response */
1376 if (brq->stop.resp[0] & R1_ERROR) {
1377 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1378 req->rq_disk->disk_name, __func__,
1379 brq->stop.resp[0]);
1380 gen_err = 1;
1381 }
1382
1383 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1384 &gen_err);
1385 if (err)
1386 return MMC_BLK_CMD_ERR;
1387 }
1388
1389 /* if general error occurs, retry the write operation. */
1390 if (gen_err) {
1391 pr_warn("%s: retrying write for general error\n",
1392 req->rq_disk->disk_name);
1393 return MMC_BLK_RETRY;
1394 }
1395
1396 if (brq->data.error) {
1397 if (need_retune && !brq->retune_retry_done) {
1398 pr_debug("%s: retrying because a re-tune was needed\n",
1399 req->rq_disk->disk_name);
1400 brq->retune_retry_done = 1;
1401 return MMC_BLK_RETRY;
1402 }
1403 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1404 req->rq_disk->disk_name, brq->data.error,
1405 (unsigned)blk_rq_pos(req),
1406 (unsigned)blk_rq_sectors(req),
1407 brq->cmd.resp[0], brq->stop.resp[0]);
1408
1409 if (rq_data_dir(req) == READ) {
1410 if (ecc_err)
1411 return MMC_BLK_ECC_ERR;
1412 return MMC_BLK_DATA_ERR;
1413 } else {
1414 return MMC_BLK_CMD_ERR;
1415 }
1416 }
1417
1418 if (!brq->data.bytes_xfered)
1419 return MMC_BLK_RETRY;
1420
1421 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1422 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1423 return MMC_BLK_PARTIAL;
1424 else
1425 return MMC_BLK_SUCCESS;
1426 }
1427
1428 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1429 return MMC_BLK_PARTIAL;
1430
1431 return MMC_BLK_SUCCESS;
1432 }
1433
1434 static int mmc_blk_packed_err_check(struct mmc_card *card,
1435 struct mmc_async_req *areq)
1436 {
1437 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1438 mmc_active);
1439 struct request *req = mq_rq->req;
1440 struct mmc_packed *packed = mq_rq->packed;
1441 int err, check, status;
1442 u8 *ext_csd;
1443
1444 packed->retries--;
1445 check = mmc_blk_err_check(card, areq);
1446 err = get_card_status(card, &status, 0);
1447 if (err) {
1448 pr_err("%s: error %d sending status command\n",
1449 req->rq_disk->disk_name, err);
1450 return MMC_BLK_ABORT;
1451 }
1452
1453 if (status & R1_EXCEPTION_EVENT) {
1454 err = mmc_get_ext_csd(card, &ext_csd);
1455 if (err) {
1456 pr_err("%s: error %d sending ext_csd\n",
1457 req->rq_disk->disk_name, err);
1458 return MMC_BLK_ABORT;
1459 }
1460
1461 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1462 EXT_CSD_PACKED_FAILURE) &&
1463 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1464 EXT_CSD_PACKED_GENERIC_ERROR)) {
1465 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1466 EXT_CSD_PACKED_INDEXED_ERROR) {
1467 packed->idx_failure =
1468 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1469 check = MMC_BLK_PARTIAL;
1470 }
1471 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1472 "failure index: %d\n",
1473 req->rq_disk->disk_name, packed->nr_entries,
1474 packed->blocks, packed->idx_failure);
1475 }
1476 kfree(ext_csd);
1477 }
1478
1479 return check;
1480 }
1481
1482 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1483 struct mmc_card *card,
1484 int disable_multi,
1485 struct mmc_queue *mq)
1486 {
1487 u32 readcmd, writecmd;
1488 struct mmc_blk_request *brq = &mqrq->brq;
1489 struct request *req = mqrq->req;
1490 struct mmc_blk_data *md = mq->data;
1491 bool do_data_tag;
1492
1493 /*
1494 * Reliable writes are used to implement Forced Unit Access and
1495 * are supported only on MMCs.
1496 */
1497 bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1498 (rq_data_dir(req) == WRITE) &&
1499 (md->flags & MMC_BLK_REL_WR);
1500
1501 memset(brq, 0, sizeof(struct mmc_blk_request));
1502 brq->mrq.cmd = &brq->cmd;
1503 brq->mrq.data = &brq->data;
1504
1505 brq->cmd.arg = blk_rq_pos(req);
1506 if (!mmc_card_blockaddr(card))
1507 brq->cmd.arg <<= 9;
1508 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1509 brq->data.blksz = 512;
1510 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1511 brq->stop.arg = 0;
1512 brq->data.blocks = blk_rq_sectors(req);
1513
1514 /*
1515 * The block layer doesn't support all sector count
1516 * restrictions, so we need to be prepared for too big
1517 * requests.
1518 */
1519 if (brq->data.blocks > card->host->max_blk_count)
1520 brq->data.blocks = card->host->max_blk_count;
1521
1522 if (brq->data.blocks > 1) {
1523 /*
1524 * After a read error, we redo the request one sector
1525 * at a time in order to accurately determine which
1526 * sectors can be read successfully.
1527 */
1528 if (disable_multi)
1529 brq->data.blocks = 1;
1530
1531 /*
1532 * Some controllers have HW issues while operating
1533 * in multiple I/O mode
1534 */
1535 if (card->host->ops->multi_io_quirk)
1536 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1537 (rq_data_dir(req) == READ) ?
1538 MMC_DATA_READ : MMC_DATA_WRITE,
1539 brq->data.blocks);
1540 }
1541
1542 if (brq->data.blocks > 1 || do_rel_wr) {
1543 /* SPI multiblock writes terminate using a special
1544 * token, not a STOP_TRANSMISSION request.
1545 */
1546 if (!mmc_host_is_spi(card->host) ||
1547 rq_data_dir(req) == READ)
1548 brq->mrq.stop = &brq->stop;
1549 readcmd = MMC_READ_MULTIPLE_BLOCK;
1550 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1551 } else {
1552 brq->mrq.stop = NULL;
1553 readcmd = MMC_READ_SINGLE_BLOCK;
1554 writecmd = MMC_WRITE_BLOCK;
1555 }
1556 if (rq_data_dir(req) == READ) {
1557 brq->cmd.opcode = readcmd;
1558 brq->data.flags = MMC_DATA_READ;
1559 if (brq->mrq.stop)
1560 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1561 MMC_CMD_AC;
1562 } else {
1563 brq->cmd.opcode = writecmd;
1564 brq->data.flags = MMC_DATA_WRITE;
1565 if (brq->mrq.stop)
1566 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1567 MMC_CMD_AC;
1568 }
1569
1570 if (do_rel_wr)
1571 mmc_apply_rel_rw(brq, card, req);
1572
1573 /*
1574 * Data tag is used only during writing meta data to speed
1575 * up write and any subsequent read of this meta data
1576 */
1577 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1578 (req->cmd_flags & REQ_META) &&
1579 (rq_data_dir(req) == WRITE) &&
1580 ((brq->data.blocks * brq->data.blksz) >=
1581 card->ext_csd.data_tag_unit_size);
1582
1583 /*
1584 * Pre-defined multi-block transfers are preferable to
1585 * open ended-ones (and necessary for reliable writes).
1586 * However, it is not sufficient to just send CMD23,
1587 * and avoid the final CMD12, as on an error condition
1588 * CMD12 (stop) needs to be sent anyway. This, coupled
1589 * with Auto-CMD23 enhancements provided by some
1590 * hosts, means that the complexity of dealing
1591 * with this is best left to the host. If CMD23 is
1592 * supported by card and host, we'll fill sbc in and let
1593 * the host deal with handling it correctly. This means
1594 * that for hosts that don't expose MMC_CAP_CMD23, no
1595 * change of behavior will be observed.
1596 *
1597 * N.B: Some MMC cards experience perf degradation.
1598 * We'll avoid using CMD23-bounded multiblock writes for
1599 * these, while retaining features like reliable writes.
1600 */
1601 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1602 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1603 do_data_tag)) {
1604 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1605 brq->sbc.arg = brq->data.blocks |
1606 (do_rel_wr ? (1 << 31) : 0) |
1607 (do_data_tag ? (1 << 29) : 0);
1608 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1609 brq->mrq.sbc = &brq->sbc;
1610 }
1611
1612 mmc_set_data_timeout(&brq->data, card);
1613
1614 brq->data.sg = mqrq->sg;
1615 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1616
1617 /*
1618 * Adjust the sg list so it is the same size as the
1619 * request.
1620 */
1621 if (brq->data.blocks != blk_rq_sectors(req)) {
1622 int i, data_size = brq->data.blocks << 9;
1623 struct scatterlist *sg;
1624
1625 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1626 data_size -= sg->length;
1627 if (data_size <= 0) {
1628 sg->length += data_size;
1629 i++;
1630 break;
1631 }
1632 }
1633 brq->data.sg_len = i;
1634 }
1635
1636 mqrq->mmc_active.mrq = &brq->mrq;
1637 mqrq->mmc_active.err_check = mmc_blk_err_check;
1638
1639 mmc_queue_bounce_pre(mqrq);
1640 }
1641
1642 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1643 struct mmc_card *card)
1644 {
1645 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1646 unsigned int max_seg_sz = queue_max_segment_size(q);
1647 unsigned int len, nr_segs = 0;
1648
1649 do {
1650 len = min(hdr_sz, max_seg_sz);
1651 hdr_sz -= len;
1652 nr_segs++;
1653 } while (hdr_sz);
1654
1655 return nr_segs;
1656 }
1657
1658 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1659 {
1660 struct request_queue *q = mq->queue;
1661 struct mmc_card *card = mq->card;
1662 struct request *cur = req, *next = NULL;
1663 struct mmc_blk_data *md = mq->data;
1664 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1665 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1666 unsigned int req_sectors = 0, phys_segments = 0;
1667 unsigned int max_blk_count, max_phys_segs;
1668 bool put_back = true;
1669 u8 max_packed_rw = 0;
1670 u8 reqs = 0;
1671
1672 /*
1673 * We don't need to check packed for any further
1674 * operation of packed stuff as we set MMC_PACKED_NONE
1675 * and return zero for reqs if geting null packed. Also
1676 * we clean the flag of MMC_BLK_PACKED_CMD to avoid doing
1677 * it again when removing blk req.
1678 */
1679 if (!mqrq->packed) {
1680 md->flags &= (~MMC_BLK_PACKED_CMD);
1681 goto no_packed;
1682 }
1683
1684 if (!(md->flags & MMC_BLK_PACKED_CMD))
1685 goto no_packed;
1686
1687 if ((rq_data_dir(cur) == WRITE) &&
1688 mmc_host_packed_wr(card->host))
1689 max_packed_rw = card->ext_csd.max_packed_writes;
1690
1691 if (max_packed_rw == 0)
1692 goto no_packed;
1693
1694 if (mmc_req_rel_wr(cur) &&
1695 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1696 goto no_packed;
1697
1698 if (mmc_large_sector(card) &&
1699 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1700 goto no_packed;
1701
1702 mmc_blk_clear_packed(mqrq);
1703
1704 max_blk_count = min(card->host->max_blk_count,
1705 card->host->max_req_size >> 9);
1706 if (unlikely(max_blk_count > 0xffff))
1707 max_blk_count = 0xffff;
1708
1709 max_phys_segs = queue_max_segments(q);
1710 req_sectors += blk_rq_sectors(cur);
1711 phys_segments += cur->nr_phys_segments;
1712
1713 if (rq_data_dir(cur) == WRITE) {
1714 req_sectors += mmc_large_sector(card) ? 8 : 1;
1715 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1716 }
1717
1718 do {
1719 if (reqs >= max_packed_rw - 1) {
1720 put_back = false;
1721 break;
1722 }
1723
1724 spin_lock_irq(q->queue_lock);
1725 next = blk_fetch_request(q);
1726 spin_unlock_irq(q->queue_lock);
1727 if (!next) {
1728 put_back = false;
1729 break;
1730 }
1731
1732 if (mmc_large_sector(card) &&
1733 !IS_ALIGNED(blk_rq_sectors(next), 8))
1734 break;
1735
1736 if (req_op(next) == REQ_OP_DISCARD ||
1737 req_op(next) == REQ_OP_SECURE_ERASE ||
1738 req_op(next) == REQ_OP_FLUSH)
1739 break;
1740
1741 if (rq_data_dir(cur) != rq_data_dir(next))
1742 break;
1743
1744 if (mmc_req_rel_wr(next) &&
1745 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1746 break;
1747
1748 req_sectors += blk_rq_sectors(next);
1749 if (req_sectors > max_blk_count)
1750 break;
1751
1752 phys_segments += next->nr_phys_segments;
1753 if (phys_segments > max_phys_segs)
1754 break;
1755
1756 list_add_tail(&next->queuelist, &mqrq->packed->list);
1757 cur = next;
1758 reqs++;
1759 } while (1);
1760
1761 if (put_back) {
1762 spin_lock_irq(q->queue_lock);
1763 blk_requeue_request(q, next);
1764 spin_unlock_irq(q->queue_lock);
1765 }
1766
1767 if (reqs > 0) {
1768 list_add(&req->queuelist, &mqrq->packed->list);
1769 mqrq->packed->nr_entries = ++reqs;
1770 mqrq->packed->retries = reqs;
1771 return reqs;
1772 }
1773
1774 no_packed:
1775 mqrq->cmd_type = MMC_PACKED_NONE;
1776 return 0;
1777 }
1778
1779 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1780 struct mmc_card *card,
1781 struct mmc_queue *mq)
1782 {
1783 struct mmc_blk_request *brq = &mqrq->brq;
1784 struct request *req = mqrq->req;
1785 struct request *prq;
1786 struct mmc_blk_data *md = mq->data;
1787 struct mmc_packed *packed = mqrq->packed;
1788 bool do_rel_wr, do_data_tag;
1789 u32 *packed_cmd_hdr;
1790 u8 hdr_blocks;
1791 u8 i = 1;
1792
1793 mqrq->cmd_type = MMC_PACKED_WRITE;
1794 packed->blocks = 0;
1795 packed->idx_failure = MMC_PACKED_NR_IDX;
1796
1797 packed_cmd_hdr = packed->cmd_hdr;
1798 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1799 packed_cmd_hdr[0] = cpu_to_le32((packed->nr_entries << 16) |
1800 (PACKED_CMD_WR << 8) | PACKED_CMD_VER);
1801 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1802
1803 /*
1804 * Argument for each entry of packed group
1805 */
1806 list_for_each_entry(prq, &packed->list, queuelist) {
1807 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1808 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1809 (prq->cmd_flags & REQ_META) &&
1810 (rq_data_dir(prq) == WRITE) &&
1811 blk_rq_bytes(prq) >= card->ext_csd.data_tag_unit_size;
1812 /* Argument of CMD23 */
1813 packed_cmd_hdr[(i * 2)] = cpu_to_le32(
1814 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1815 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1816 blk_rq_sectors(prq));
1817 /* Argument of CMD18 or CMD25 */
1818 packed_cmd_hdr[((i * 2)) + 1] = cpu_to_le32(
1819 mmc_card_blockaddr(card) ?
1820 blk_rq_pos(prq) : blk_rq_pos(prq) << 9);
1821 packed->blocks += blk_rq_sectors(prq);
1822 i++;
1823 }
1824
1825 memset(brq, 0, sizeof(struct mmc_blk_request));
1826 brq->mrq.cmd = &brq->cmd;
1827 brq->mrq.data = &brq->data;
1828 brq->mrq.sbc = &brq->sbc;
1829 brq->mrq.stop = &brq->stop;
1830
1831 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1832 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1833 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1834
1835 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1836 brq->cmd.arg = blk_rq_pos(req);
1837 if (!mmc_card_blockaddr(card))
1838 brq->cmd.arg <<= 9;
1839 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1840
1841 brq->data.blksz = 512;
1842 brq->data.blocks = packed->blocks + hdr_blocks;
1843 brq->data.flags = MMC_DATA_WRITE;
1844
1845 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1846 brq->stop.arg = 0;
1847 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1848
1849 mmc_set_data_timeout(&brq->data, card);
1850
1851 brq->data.sg = mqrq->sg;
1852 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1853
1854 mqrq->mmc_active.mrq = &brq->mrq;
1855 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1856
1857 mmc_queue_bounce_pre(mqrq);
1858 }
1859
1860 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1861 struct mmc_blk_request *brq, struct request *req,
1862 int ret)
1863 {
1864 struct mmc_queue_req *mq_rq;
1865 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1866
1867 /*
1868 * If this is an SD card and we're writing, we can first
1869 * mark the known good sectors as ok.
1870 *
1871 * If the card is not SD, we can still ok written sectors
1872 * as reported by the controller (which might be less than
1873 * the real number of written sectors, but never more).
1874 */
1875 if (mmc_card_sd(card)) {
1876 u32 blocks;
1877
1878 blocks = mmc_sd_num_wr_blocks(card);
1879 if (blocks != (u32)-1) {
1880 ret = blk_end_request(req, 0, blocks << 9);
1881 }
1882 } else {
1883 if (!mmc_packed_cmd(mq_rq->cmd_type))
1884 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1885 }
1886 return ret;
1887 }
1888
1889 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1890 {
1891 struct request *prq;
1892 struct mmc_packed *packed = mq_rq->packed;
1893 int idx = packed->idx_failure, i = 0;
1894 int ret = 0;
1895
1896 while (!list_empty(&packed->list)) {
1897 prq = list_entry_rq(packed->list.next);
1898 if (idx == i) {
1899 /* retry from error index */
1900 packed->nr_entries -= idx;
1901 mq_rq->req = prq;
1902 ret = 1;
1903
1904 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1905 list_del_init(&prq->queuelist);
1906 mmc_blk_clear_packed(mq_rq);
1907 }
1908 return ret;
1909 }
1910 list_del_init(&prq->queuelist);
1911 blk_end_request(prq, 0, blk_rq_bytes(prq));
1912 i++;
1913 }
1914
1915 mmc_blk_clear_packed(mq_rq);
1916 return ret;
1917 }
1918
1919 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1920 {
1921 struct request *prq;
1922 struct mmc_packed *packed = mq_rq->packed;
1923
1924 while (!list_empty(&packed->list)) {
1925 prq = list_entry_rq(packed->list.next);
1926 list_del_init(&prq->queuelist);
1927 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1928 }
1929
1930 mmc_blk_clear_packed(mq_rq);
1931 }
1932
1933 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1934 struct mmc_queue_req *mq_rq)
1935 {
1936 struct request *prq;
1937 struct request_queue *q = mq->queue;
1938 struct mmc_packed *packed = mq_rq->packed;
1939
1940 while (!list_empty(&packed->list)) {
1941 prq = list_entry_rq(packed->list.prev);
1942 if (prq->queuelist.prev != &packed->list) {
1943 list_del_init(&prq->queuelist);
1944 spin_lock_irq(q->queue_lock);
1945 blk_requeue_request(mq->queue, prq);
1946 spin_unlock_irq(q->queue_lock);
1947 } else {
1948 list_del_init(&prq->queuelist);
1949 }
1950 }
1951
1952 mmc_blk_clear_packed(mq_rq);
1953 }
1954
1955 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1956 {
1957 struct mmc_blk_data *md = mq->data;
1958 struct mmc_card *card = md->queue.card;
1959 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1960 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1961 enum mmc_blk_status status;
1962 struct mmc_queue_req *mq_rq;
1963 struct request *req = rqc;
1964 struct mmc_async_req *areq;
1965 const u8 packed_nr = 2;
1966 u8 reqs = 0;
1967
1968 if (!rqc && !mq->mqrq_prev->req)
1969 return 0;
1970
1971 if (rqc)
1972 reqs = mmc_blk_prep_packed_list(mq, rqc);
1973
1974 do {
1975 if (rqc) {
1976 /*
1977 * When 4KB native sector is enabled, only 8 blocks
1978 * multiple read or write is allowed
1979 */
1980 if (mmc_large_sector(card) &&
1981 !IS_ALIGNED(blk_rq_sectors(rqc), 8)) {
1982 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1983 req->rq_disk->disk_name);
1984 mq_rq = mq->mqrq_cur;
1985 goto cmd_abort;
1986 }
1987
1988 if (reqs >= packed_nr)
1989 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1990 card, mq);
1991 else
1992 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1993 areq = &mq->mqrq_cur->mmc_active;
1994 } else
1995 areq = NULL;
1996 areq = mmc_start_req(card->host, areq, (int *) &status);
1997 if (!areq) {
1998 if (status == MMC_BLK_NEW_REQUEST)
1999 mq->flags |= MMC_QUEUE_NEW_REQUEST;
2000 return 0;
2001 }
2002
2003 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
2004 brq = &mq_rq->brq;
2005 req = mq_rq->req;
2006 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2007 mmc_queue_bounce_post(mq_rq);
2008
2009 switch (status) {
2010 case MMC_BLK_SUCCESS:
2011 case MMC_BLK_PARTIAL:
2012 /*
2013 * A block was successfully transferred.
2014 */
2015 mmc_blk_reset_success(md, type);
2016
2017 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2018 ret = mmc_blk_end_packed_req(mq_rq);
2019 break;
2020 } else {
2021 ret = blk_end_request(req, 0,
2022 brq->data.bytes_xfered);
2023 }
2024
2025 /*
2026 * If the blk_end_request function returns non-zero even
2027 * though all data has been transferred and no errors
2028 * were returned by the host controller, it's a bug.
2029 */
2030 if (status == MMC_BLK_SUCCESS && ret) {
2031 pr_err("%s BUG rq_tot %d d_xfer %d\n",
2032 __func__, blk_rq_bytes(req),
2033 brq->data.bytes_xfered);
2034 rqc = NULL;
2035 goto cmd_abort;
2036 }
2037 break;
2038 case MMC_BLK_CMD_ERR:
2039 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2040 if (mmc_blk_reset(md, card->host, type))
2041 goto cmd_abort;
2042 if (!ret)
2043 goto start_new_req;
2044 break;
2045 case MMC_BLK_RETRY:
2046 retune_retry_done = brq->retune_retry_done;
2047 if (retry++ < 5)
2048 break;
2049 /* Fall through */
2050 case MMC_BLK_ABORT:
2051 if (!mmc_blk_reset(md, card->host, type))
2052 break;
2053 goto cmd_abort;
2054 case MMC_BLK_DATA_ERR: {
2055 int err;
2056
2057 err = mmc_blk_reset(md, card->host, type);
2058 if (!err)
2059 break;
2060 if (err == -ENODEV ||
2061 mmc_packed_cmd(mq_rq->cmd_type))
2062 goto cmd_abort;
2063 /* Fall through */
2064 }
2065 case MMC_BLK_ECC_ERR:
2066 if (brq->data.blocks > 1) {
2067 /* Redo read one sector at a time */
2068 pr_warn("%s: retrying using single block read\n",
2069 req->rq_disk->disk_name);
2070 disable_multi = 1;
2071 break;
2072 }
2073 /*
2074 * After an error, we redo I/O one sector at a
2075 * time, so we only reach here after trying to
2076 * read a single sector.
2077 */
2078 ret = blk_end_request(req, -EIO,
2079 brq->data.blksz);
2080 if (!ret)
2081 goto start_new_req;
2082 break;
2083 case MMC_BLK_NOMEDIUM:
2084 goto cmd_abort;
2085 default:
2086 pr_err("%s: Unhandled return value (%d)",
2087 req->rq_disk->disk_name, status);
2088 goto cmd_abort;
2089 }
2090
2091 if (ret) {
2092 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2093 if (!mq_rq->packed->retries)
2094 goto cmd_abort;
2095 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2096 mmc_start_req(card->host,
2097 &mq_rq->mmc_active, NULL);
2098 } else {
2099
2100 /*
2101 * In case of a incomplete request
2102 * prepare it again and resend.
2103 */
2104 mmc_blk_rw_rq_prep(mq_rq, card,
2105 disable_multi, mq);
2106 mmc_start_req(card->host,
2107 &mq_rq->mmc_active, NULL);
2108 }
2109 mq_rq->brq.retune_retry_done = retune_retry_done;
2110 }
2111 } while (ret);
2112
2113 return 1;
2114
2115 cmd_abort:
2116 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2117 mmc_blk_abort_packed_req(mq_rq);
2118 } else {
2119 if (mmc_card_removed(card))
2120 req->cmd_flags |= REQ_QUIET;
2121 while (ret)
2122 ret = blk_end_request(req, -EIO,
2123 blk_rq_cur_bytes(req));
2124 }
2125
2126 start_new_req:
2127 if (rqc) {
2128 if (mmc_card_removed(card)) {
2129 rqc->cmd_flags |= REQ_QUIET;
2130 blk_end_request_all(rqc, -EIO);
2131 } else {
2132 /*
2133 * If current request is packed, it needs to put back.
2134 */
2135 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2136 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2137
2138 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2139 mmc_start_req(card->host,
2140 &mq->mqrq_cur->mmc_active, NULL);
2141 }
2142 }
2143
2144 return 0;
2145 }
2146
2147 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2148 {
2149 int ret;
2150 struct mmc_blk_data *md = mq->data;
2151 struct mmc_card *card = md->queue.card;
2152 struct mmc_host *host = card->host;
2153 unsigned long flags;
2154 bool req_is_special = mmc_req_is_special(req);
2155
2156 if (req && !mq->mqrq_prev->req)
2157 /* claim host only for the first request */
2158 mmc_get_card(card);
2159
2160 ret = mmc_blk_part_switch(card, md);
2161 if (ret) {
2162 if (req) {
2163 blk_end_request_all(req, -EIO);
2164 }
2165 ret = 0;
2166 goto out;
2167 }
2168
2169 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2170 if (req && req_op(req) == REQ_OP_DISCARD) {
2171 /* complete ongoing async transfer before issuing discard */
2172 if (card->host->areq)
2173 mmc_blk_issue_rw_rq(mq, NULL);
2174 ret = mmc_blk_issue_discard_rq(mq, req);
2175 } else if (req && req_op(req) == REQ_OP_SECURE_ERASE) {
2176 /* complete ongoing async transfer before issuing secure erase*/
2177 if (card->host->areq)
2178 mmc_blk_issue_rw_rq(mq, NULL);
2179 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2180 } else if (req && req_op(req) == REQ_OP_FLUSH) {
2181 /* complete ongoing async transfer before issuing flush */
2182 if (card->host->areq)
2183 mmc_blk_issue_rw_rq(mq, NULL);
2184 ret = mmc_blk_issue_flush(mq, req);
2185 } else {
2186 if (!req && host->areq) {
2187 spin_lock_irqsave(&host->context_info.lock, flags);
2188 host->context_info.is_waiting_last_req = true;
2189 spin_unlock_irqrestore(&host->context_info.lock, flags);
2190 }
2191 ret = mmc_blk_issue_rw_rq(mq, req);
2192 }
2193
2194 out:
2195 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) || req_is_special)
2196 /*
2197 * Release host when there are no more requests
2198 * and after special request(discard, flush) is done.
2199 * In case sepecial request, there is no reentry to
2200 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2201 */
2202 mmc_put_card(card);
2203 return ret;
2204 }
2205
2206 static inline int mmc_blk_readonly(struct mmc_card *card)
2207 {
2208 return mmc_card_readonly(card) ||
2209 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2210 }
2211
2212 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2213 struct device *parent,
2214 sector_t size,
2215 bool default_ro,
2216 const char *subname,
2217 int area_type)
2218 {
2219 struct mmc_blk_data *md;
2220 int devidx, ret;
2221
2222 again:
2223 if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
2224 return ERR_PTR(-ENOMEM);
2225
2226 spin_lock(&mmc_blk_lock);
2227 ret = ida_get_new(&mmc_blk_ida, &devidx);
2228 spin_unlock(&mmc_blk_lock);
2229
2230 if (ret == -EAGAIN)
2231 goto again;
2232 else if (ret)
2233 return ERR_PTR(ret);
2234
2235 if (devidx >= max_devices) {
2236 ret = -ENOSPC;
2237 goto out;
2238 }
2239
2240 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2241 if (!md) {
2242 ret = -ENOMEM;
2243 goto out;
2244 }
2245
2246 md->area_type = area_type;
2247
2248 /*
2249 * Set the read-only status based on the supported commands
2250 * and the write protect switch.
2251 */
2252 md->read_only = mmc_blk_readonly(card);
2253
2254 md->disk = alloc_disk(perdev_minors);
2255 if (md->disk == NULL) {
2256 ret = -ENOMEM;
2257 goto err_kfree;
2258 }
2259
2260 spin_lock_init(&md->lock);
2261 INIT_LIST_HEAD(&md->part);
2262 md->usage = 1;
2263
2264 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2265 if (ret)
2266 goto err_putdisk;
2267
2268 md->queue.issue_fn = mmc_blk_issue_rq;
2269 md->queue.data = md;
2270
2271 md->disk->major = MMC_BLOCK_MAJOR;
2272 md->disk->first_minor = devidx * perdev_minors;
2273 md->disk->fops = &mmc_bdops;
2274 md->disk->private_data = md;
2275 md->disk->queue = md->queue.queue;
2276 md->parent = parent;
2277 set_disk_ro(md->disk, md->read_only || default_ro);
2278 md->disk->flags = GENHD_FL_EXT_DEVT;
2279 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2280 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2281
2282 /*
2283 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2284 *
2285 * - be set for removable media with permanent block devices
2286 * - be unset for removable block devices with permanent media
2287 *
2288 * Since MMC block devices clearly fall under the second
2289 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2290 * should use the block device creation/destruction hotplug
2291 * messages to tell when the card is present.
2292 */
2293
2294 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2295 "mmcblk%u%s", card->host->index, subname ? subname : "");
2296
2297 if (mmc_card_mmc(card))
2298 blk_queue_logical_block_size(md->queue.queue,
2299 card->ext_csd.data_sector_size);
2300 else
2301 blk_queue_logical_block_size(md->queue.queue, 512);
2302
2303 set_capacity(md->disk, size);
2304
2305 if (mmc_host_cmd23(card->host)) {
2306 if ((mmc_card_mmc(card) &&
2307 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2308 (mmc_card_sd(card) &&
2309 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2310 md->flags |= MMC_BLK_CMD23;
2311 }
2312
2313 if (mmc_card_mmc(card) &&
2314 md->flags & MMC_BLK_CMD23 &&
2315 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2316 card->ext_csd.rel_sectors)) {
2317 md->flags |= MMC_BLK_REL_WR;
2318 blk_queue_write_cache(md->queue.queue, true, true);
2319 }
2320
2321 if (mmc_card_mmc(card) &&
2322 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2323 (md->flags & MMC_BLK_CMD23) &&
2324 card->ext_csd.packed_event_en) {
2325 if (!mmc_packed_init(&md->queue, card))
2326 md->flags |= MMC_BLK_PACKED_CMD;
2327 }
2328
2329 return md;
2330
2331 err_putdisk:
2332 put_disk(md->disk);
2333 err_kfree:
2334 kfree(md);
2335 out:
2336 spin_lock(&mmc_blk_lock);
2337 ida_remove(&mmc_blk_ida, devidx);
2338 spin_unlock(&mmc_blk_lock);
2339 return ERR_PTR(ret);
2340 }
2341
2342 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2343 {
2344 sector_t size;
2345
2346 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2347 /*
2348 * The EXT_CSD sector count is in number or 512 byte
2349 * sectors.
2350 */
2351 size = card->ext_csd.sectors;
2352 } else {
2353 /*
2354 * The CSD capacity field is in units of read_blkbits.
2355 * set_capacity takes units of 512 bytes.
2356 */
2357 size = (typeof(sector_t))card->csd.capacity
2358 << (card->csd.read_blkbits - 9);
2359 }
2360
2361 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2362 MMC_BLK_DATA_AREA_MAIN);
2363 }
2364
2365 static int mmc_blk_alloc_part(struct mmc_card *card,
2366 struct mmc_blk_data *md,
2367 unsigned int part_type,
2368 sector_t size,
2369 bool default_ro,
2370 const char *subname,
2371 int area_type)
2372 {
2373 char cap_str[10];
2374 struct mmc_blk_data *part_md;
2375
2376 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2377 subname, area_type);
2378 if (IS_ERR(part_md))
2379 return PTR_ERR(part_md);
2380 part_md->part_type = part_type;
2381 list_add(&part_md->part, &md->part);
2382
2383 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2384 cap_str, sizeof(cap_str));
2385 pr_info("%s: %s %s partition %u %s\n",
2386 part_md->disk->disk_name, mmc_card_id(card),
2387 mmc_card_name(card), part_md->part_type, cap_str);
2388 return 0;
2389 }
2390
2391 /* MMC Physical partitions consist of two boot partitions and
2392 * up to four general purpose partitions.
2393 * For each partition enabled in EXT_CSD a block device will be allocatedi
2394 * to provide access to the partition.
2395 */
2396
2397 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2398 {
2399 int idx, ret = 0;
2400
2401 if (!mmc_card_mmc(card))
2402 return 0;
2403
2404 for (idx = 0; idx < card->nr_parts; idx++) {
2405 if (card->part[idx].size) {
2406 ret = mmc_blk_alloc_part(card, md,
2407 card->part[idx].part_cfg,
2408 card->part[idx].size >> 9,
2409 card->part[idx].force_ro,
2410 card->part[idx].name,
2411 card->part[idx].area_type);
2412 if (ret)
2413 return ret;
2414 }
2415 }
2416
2417 return ret;
2418 }
2419
2420 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2421 {
2422 struct mmc_card *card;
2423
2424 if (md) {
2425 /*
2426 * Flush remaining requests and free queues. It
2427 * is freeing the queue that stops new requests
2428 * from being accepted.
2429 */
2430 card = md->queue.card;
2431 mmc_cleanup_queue(&md->queue);
2432 if (md->flags & MMC_BLK_PACKED_CMD)
2433 mmc_packed_clean(&md->queue);
2434 if (md->disk->flags & GENHD_FL_UP) {
2435 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2436 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2437 card->ext_csd.boot_ro_lockable)
2438 device_remove_file(disk_to_dev(md->disk),
2439 &md->power_ro_lock);
2440
2441 del_gendisk(md->disk);
2442 }
2443 mmc_blk_put(md);
2444 }
2445 }
2446
2447 static void mmc_blk_remove_parts(struct mmc_card *card,
2448 struct mmc_blk_data *md)
2449 {
2450 struct list_head *pos, *q;
2451 struct mmc_blk_data *part_md;
2452
2453 list_for_each_safe(pos, q, &md->part) {
2454 part_md = list_entry(pos, struct mmc_blk_data, part);
2455 list_del(pos);
2456 mmc_blk_remove_req(part_md);
2457 }
2458 }
2459
2460 static int mmc_add_disk(struct mmc_blk_data *md)
2461 {
2462 int ret;
2463 struct mmc_card *card = md->queue.card;
2464
2465 device_add_disk(md->parent, md->disk);
2466 md->force_ro.show = force_ro_show;
2467 md->force_ro.store = force_ro_store;
2468 sysfs_attr_init(&md->force_ro.attr);
2469 md->force_ro.attr.name = "force_ro";
2470 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2471 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2472 if (ret)
2473 goto force_ro_fail;
2474
2475 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2476 card->ext_csd.boot_ro_lockable) {
2477 umode_t mode;
2478
2479 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2480 mode = S_IRUGO;
2481 else
2482 mode = S_IRUGO | S_IWUSR;
2483
2484 md->power_ro_lock.show = power_ro_lock_show;
2485 md->power_ro_lock.store = power_ro_lock_store;
2486 sysfs_attr_init(&md->power_ro_lock.attr);
2487 md->power_ro_lock.attr.mode = mode;
2488 md->power_ro_lock.attr.name =
2489 "ro_lock_until_next_power_on";
2490 ret = device_create_file(disk_to_dev(md->disk),
2491 &md->power_ro_lock);
2492 if (ret)
2493 goto power_ro_lock_fail;
2494 }
2495 return ret;
2496
2497 power_ro_lock_fail:
2498 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2499 force_ro_fail:
2500 del_gendisk(md->disk);
2501
2502 return ret;
2503 }
2504
2505 static const struct mmc_fixup blk_fixups[] =
2506 {
2507 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2508 MMC_QUIRK_INAND_CMD38),
2509 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2510 MMC_QUIRK_INAND_CMD38),
2511 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2512 MMC_QUIRK_INAND_CMD38),
2513 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2514 MMC_QUIRK_INAND_CMD38),
2515 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2516 MMC_QUIRK_INAND_CMD38),
2517
2518 /*
2519 * Some MMC cards experience performance degradation with CMD23
2520 * instead of CMD12-bounded multiblock transfers. For now we'll
2521 * black list what's bad...
2522 * - Certain Toshiba cards.
2523 *
2524 * N.B. This doesn't affect SD cards.
2525 */
2526 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2527 MMC_QUIRK_BLK_NO_CMD23),
2528 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2529 MMC_QUIRK_BLK_NO_CMD23),
2530 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2531 MMC_QUIRK_BLK_NO_CMD23),
2532 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2533 MMC_QUIRK_BLK_NO_CMD23),
2534 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2535 MMC_QUIRK_BLK_NO_CMD23),
2536
2537 /*
2538 * Some MMC cards need longer data read timeout than indicated in CSD.
2539 */
2540 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2541 MMC_QUIRK_LONG_READ_TIME),
2542 MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2543 MMC_QUIRK_LONG_READ_TIME),
2544
2545 /*
2546 * On these Samsung MoviNAND parts, performing secure erase or
2547 * secure trim can result in unrecoverable corruption due to a
2548 * firmware bug.
2549 */
2550 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2551 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2552 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2553 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2554 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2555 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2556 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2557 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2558 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2559 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2560 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2561 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2562 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2563 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2564 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2565 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2566
2567 /*
2568 * On Some Kingston eMMCs, performing trim can result in
2569 * unrecoverable data conrruption occasionally due to a firmware bug.
2570 */
2571 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2572 MMC_QUIRK_TRIM_BROKEN),
2573 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2574 MMC_QUIRK_TRIM_BROKEN),
2575
2576 END_FIXUP
2577 };
2578
2579 static int mmc_blk_probe(struct mmc_card *card)
2580 {
2581 struct mmc_blk_data *md, *part_md;
2582 char cap_str[10];
2583
2584 /*
2585 * Check that the card supports the command class(es) we need.
2586 */
2587 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2588 return -ENODEV;
2589
2590 mmc_fixup_device(card, blk_fixups);
2591
2592 md = mmc_blk_alloc(card);
2593 if (IS_ERR(md))
2594 return PTR_ERR(md);
2595
2596 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2597 cap_str, sizeof(cap_str));
2598 pr_info("%s: %s %s %s %s\n",
2599 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2600 cap_str, md->read_only ? "(ro)" : "");
2601
2602 if (mmc_blk_alloc_parts(card, md))
2603 goto out;
2604
2605 dev_set_drvdata(&card->dev, md);
2606
2607 if (mmc_add_disk(md))
2608 goto out;
2609
2610 list_for_each_entry(part_md, &md->part, part) {
2611 if (mmc_add_disk(part_md))
2612 goto out;
2613 }
2614
2615 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2616 pm_runtime_use_autosuspend(&card->dev);
2617
2618 /*
2619 * Don't enable runtime PM for SD-combo cards here. Leave that
2620 * decision to be taken during the SDIO init sequence instead.
2621 */
2622 if (card->type != MMC_TYPE_SD_COMBO) {
2623 pm_runtime_set_active(&card->dev);
2624 pm_runtime_enable(&card->dev);
2625 }
2626
2627 return 0;
2628
2629 out:
2630 mmc_blk_remove_parts(card, md);
2631 mmc_blk_remove_req(md);
2632 return 0;
2633 }
2634
2635 static void mmc_blk_remove(struct mmc_card *card)
2636 {
2637 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2638
2639 mmc_blk_remove_parts(card, md);
2640 pm_runtime_get_sync(&card->dev);
2641 mmc_claim_host(card->host);
2642 mmc_blk_part_switch(card, md);
2643 mmc_release_host(card->host);
2644 if (card->type != MMC_TYPE_SD_COMBO)
2645 pm_runtime_disable(&card->dev);
2646 pm_runtime_put_noidle(&card->dev);
2647 mmc_blk_remove_req(md);
2648 dev_set_drvdata(&card->dev, NULL);
2649 }
2650
2651 static int _mmc_blk_suspend(struct mmc_card *card)
2652 {
2653 struct mmc_blk_data *part_md;
2654 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2655
2656 if (md) {
2657 mmc_queue_suspend(&md->queue);
2658 list_for_each_entry(part_md, &md->part, part) {
2659 mmc_queue_suspend(&part_md->queue);
2660 }
2661 }
2662 return 0;
2663 }
2664
2665 static void mmc_blk_shutdown(struct mmc_card *card)
2666 {
2667 _mmc_blk_suspend(card);
2668 }
2669
2670 #ifdef CONFIG_PM_SLEEP
2671 static int mmc_blk_suspend(struct device *dev)
2672 {
2673 struct mmc_card *card = mmc_dev_to_card(dev);
2674
2675 return _mmc_blk_suspend(card);
2676 }
2677
2678 static int mmc_blk_resume(struct device *dev)
2679 {
2680 struct mmc_blk_data *part_md;
2681 struct mmc_blk_data *md = dev_get_drvdata(dev);
2682
2683 if (md) {
2684 /*
2685 * Resume involves the card going into idle state,
2686 * so current partition is always the main one.
2687 */
2688 md->part_curr = md->part_type;
2689 mmc_queue_resume(&md->queue);
2690 list_for_each_entry(part_md, &md->part, part) {
2691 mmc_queue_resume(&part_md->queue);
2692 }
2693 }
2694 return 0;
2695 }
2696 #endif
2697
2698 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2699
2700 static struct mmc_driver mmc_driver = {
2701 .drv = {
2702 .name = "mmcblk",
2703 .pm = &mmc_blk_pm_ops,
2704 },
2705 .probe = mmc_blk_probe,
2706 .remove = mmc_blk_remove,
2707 .shutdown = mmc_blk_shutdown,
2708 };
2709
2710 static int __init mmc_blk_init(void)
2711 {
2712 int res;
2713
2714 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2715 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2716
2717 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2718
2719 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2720 if (res)
2721 goto out;
2722
2723 res = mmc_register_driver(&mmc_driver);
2724 if (res)
2725 goto out2;
2726
2727 return 0;
2728 out2:
2729 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2730 out:
2731 return res;
2732 }
2733
2734 static void __exit mmc_blk_exit(void)
2735 {
2736 mmc_unregister_driver(&mmc_driver);
2737 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2738 }
2739
2740 module_init(mmc_blk_init);
2741 module_exit(mmc_blk_exit);
2742
2743 MODULE_LICENSE("GPL");
2744 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2745
This page took 0.087855 seconds and 5 git commands to generate.