Merge remote-tracking branch 'selinux/next'
[deliverable/linux.git] / drivers / mmc / card / mmc_test.c
1 /*
2 * linux/drivers/mmc/card/mmc_test.c
3 *
4 * Copyright 2007-2008 Pierre Ossman
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
10 */
11
12 #include <linux/mmc/core.h>
13 #include <linux/mmc/card.h>
14 #include <linux/mmc/host.h>
15 #include <linux/mmc/mmc.h>
16 #include <linux/slab.h>
17
18 #include <linux/scatterlist.h>
19 #include <linux/swap.h> /* For nr_free_buffer_pages() */
20 #include <linux/list.h>
21
22 #include <linux/debugfs.h>
23 #include <linux/uaccess.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26
27 #define RESULT_OK 0
28 #define RESULT_FAIL 1
29 #define RESULT_UNSUP_HOST 2
30 #define RESULT_UNSUP_CARD 3
31
32 #define BUFFER_ORDER 2
33 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
34
35 #define TEST_ALIGN_END 8
36
37 /*
38 * Limit the test area size to the maximum MMC HC erase group size. Note that
39 * the maximum SD allocation unit size is just 4MiB.
40 */
41 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
42
43 /**
44 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
45 * @page: first page in the allocation
46 * @order: order of the number of pages allocated
47 */
48 struct mmc_test_pages {
49 struct page *page;
50 unsigned int order;
51 };
52
53 /**
54 * struct mmc_test_mem - allocated memory.
55 * @arr: array of allocations
56 * @cnt: number of allocations
57 */
58 struct mmc_test_mem {
59 struct mmc_test_pages *arr;
60 unsigned int cnt;
61 };
62
63 /**
64 * struct mmc_test_area - information for performance tests.
65 * @max_sz: test area size (in bytes)
66 * @dev_addr: address on card at which to do performance tests
67 * @max_tfr: maximum transfer size allowed by driver (in bytes)
68 * @max_segs: maximum segments allowed by driver in scatterlist @sg
69 * @max_seg_sz: maximum segment size allowed by driver
70 * @blocks: number of (512 byte) blocks currently mapped by @sg
71 * @sg_len: length of currently mapped scatterlist @sg
72 * @mem: allocated memory
73 * @sg: scatterlist
74 */
75 struct mmc_test_area {
76 unsigned long max_sz;
77 unsigned int dev_addr;
78 unsigned int max_tfr;
79 unsigned int max_segs;
80 unsigned int max_seg_sz;
81 unsigned int blocks;
82 unsigned int sg_len;
83 struct mmc_test_mem *mem;
84 struct scatterlist *sg;
85 };
86
87 /**
88 * struct mmc_test_transfer_result - transfer results for performance tests.
89 * @link: double-linked list
90 * @count: amount of group of sectors to check
91 * @sectors: amount of sectors to check in one group
92 * @ts: time values of transfer
93 * @rate: calculated transfer rate
94 * @iops: I/O operations per second (times 100)
95 */
96 struct mmc_test_transfer_result {
97 struct list_head link;
98 unsigned int count;
99 unsigned int sectors;
100 struct timespec ts;
101 unsigned int rate;
102 unsigned int iops;
103 };
104
105 /**
106 * struct mmc_test_general_result - results for tests.
107 * @link: double-linked list
108 * @card: card under test
109 * @testcase: number of test case
110 * @result: result of test run
111 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
112 */
113 struct mmc_test_general_result {
114 struct list_head link;
115 struct mmc_card *card;
116 int testcase;
117 int result;
118 struct list_head tr_lst;
119 };
120
121 /**
122 * struct mmc_test_dbgfs_file - debugfs related file.
123 * @link: double-linked list
124 * @card: card under test
125 * @file: file created under debugfs
126 */
127 struct mmc_test_dbgfs_file {
128 struct list_head link;
129 struct mmc_card *card;
130 struct dentry *file;
131 };
132
133 /**
134 * struct mmc_test_card - test information.
135 * @card: card under test
136 * @scratch: transfer buffer
137 * @buffer: transfer buffer
138 * @highmem: buffer for highmem tests
139 * @area: information for performance tests
140 * @gr: pointer to results of current testcase
141 */
142 struct mmc_test_card {
143 struct mmc_card *card;
144
145 u8 scratch[BUFFER_SIZE];
146 u8 *buffer;
147 #ifdef CONFIG_HIGHMEM
148 struct page *highmem;
149 #endif
150 struct mmc_test_area area;
151 struct mmc_test_general_result *gr;
152 };
153
154 enum mmc_test_prep_media {
155 MMC_TEST_PREP_NONE = 0,
156 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
157 MMC_TEST_PREP_ERASE = 1 << 1,
158 };
159
160 struct mmc_test_multiple_rw {
161 unsigned int *sg_len;
162 unsigned int *bs;
163 unsigned int len;
164 unsigned int size;
165 bool do_write;
166 bool do_nonblock_req;
167 enum mmc_test_prep_media prepare;
168 };
169
170 struct mmc_test_async_req {
171 struct mmc_async_req areq;
172 struct mmc_test_card *test;
173 };
174
175 /*******************************************************************/
176 /* General helper functions */
177 /*******************************************************************/
178
179 /*
180 * Configure correct block size in card
181 */
182 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
183 {
184 return mmc_set_blocklen(test->card, size);
185 }
186
187 static bool mmc_test_card_cmd23(struct mmc_card *card)
188 {
189 return mmc_card_mmc(card) ||
190 (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
191 }
192
193 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
194 struct mmc_request *mrq, unsigned int blocks)
195 {
196 struct mmc_card *card = test->card;
197
198 if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
199 !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
200 (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
201 mrq->sbc = NULL;
202 return;
203 }
204
205 mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
206 mrq->sbc->arg = blocks;
207 mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
208 }
209
210 /*
211 * Fill in the mmc_request structure given a set of transfer parameters.
212 */
213 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
214 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
215 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
216 {
217 BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
218
219 if (blocks > 1) {
220 mrq->cmd->opcode = write ?
221 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
222 } else {
223 mrq->cmd->opcode = write ?
224 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
225 }
226
227 mrq->cmd->arg = dev_addr;
228 if (!mmc_card_blockaddr(test->card))
229 mrq->cmd->arg <<= 9;
230
231 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
232
233 if (blocks == 1)
234 mrq->stop = NULL;
235 else {
236 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
237 mrq->stop->arg = 0;
238 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
239 }
240
241 mrq->data->blksz = blksz;
242 mrq->data->blocks = blocks;
243 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
244 mrq->data->sg = sg;
245 mrq->data->sg_len = sg_len;
246
247 mmc_test_prepare_sbc(test, mrq, blocks);
248
249 mmc_set_data_timeout(mrq->data, test->card);
250 }
251
252 static int mmc_test_busy(struct mmc_command *cmd)
253 {
254 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
255 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
256 }
257
258 /*
259 * Wait for the card to finish the busy state
260 */
261 static int mmc_test_wait_busy(struct mmc_test_card *test)
262 {
263 int ret, busy;
264 struct mmc_command cmd = {0};
265
266 busy = 0;
267 do {
268 memset(&cmd, 0, sizeof(struct mmc_command));
269
270 cmd.opcode = MMC_SEND_STATUS;
271 cmd.arg = test->card->rca << 16;
272 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
273
274 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
275 if (ret)
276 break;
277
278 if (!busy && mmc_test_busy(&cmd)) {
279 busy = 1;
280 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
281 pr_info("%s: Warning: Host did not "
282 "wait for busy state to end.\n",
283 mmc_hostname(test->card->host));
284 }
285 } while (mmc_test_busy(&cmd));
286
287 return ret;
288 }
289
290 /*
291 * Transfer a single sector of kernel addressable data
292 */
293 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
294 u8 *buffer, unsigned addr, unsigned blksz, int write)
295 {
296 struct mmc_request mrq = {0};
297 struct mmc_command cmd = {0};
298 struct mmc_command stop = {0};
299 struct mmc_data data = {0};
300
301 struct scatterlist sg;
302
303 mrq.cmd = &cmd;
304 mrq.data = &data;
305 mrq.stop = &stop;
306
307 sg_init_one(&sg, buffer, blksz);
308
309 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
310
311 mmc_wait_for_req(test->card->host, &mrq);
312
313 if (cmd.error)
314 return cmd.error;
315 if (data.error)
316 return data.error;
317
318 return mmc_test_wait_busy(test);
319 }
320
321 static void mmc_test_free_mem(struct mmc_test_mem *mem)
322 {
323 if (!mem)
324 return;
325 while (mem->cnt--)
326 __free_pages(mem->arr[mem->cnt].page,
327 mem->arr[mem->cnt].order);
328 kfree(mem->arr);
329 kfree(mem);
330 }
331
332 /*
333 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
334 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
335 * not exceed a maximum number of segments and try not to make segments much
336 * bigger than maximum segment size.
337 */
338 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
339 unsigned long max_sz,
340 unsigned int max_segs,
341 unsigned int max_seg_sz)
342 {
343 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
344 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
345 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
346 unsigned long page_cnt = 0;
347 unsigned long limit = nr_free_buffer_pages() >> 4;
348 struct mmc_test_mem *mem;
349
350 if (max_page_cnt > limit)
351 max_page_cnt = limit;
352 if (min_page_cnt > max_page_cnt)
353 min_page_cnt = max_page_cnt;
354
355 if (max_seg_page_cnt > max_page_cnt)
356 max_seg_page_cnt = max_page_cnt;
357
358 if (max_segs > max_page_cnt)
359 max_segs = max_page_cnt;
360
361 mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
362 if (!mem)
363 return NULL;
364
365 mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
366 GFP_KERNEL);
367 if (!mem->arr)
368 goto out_free;
369
370 while (max_page_cnt) {
371 struct page *page;
372 unsigned int order;
373 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
374 __GFP_NORETRY;
375
376 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
377 while (1) {
378 page = alloc_pages(flags, order);
379 if (page || !order)
380 break;
381 order -= 1;
382 }
383 if (!page) {
384 if (page_cnt < min_page_cnt)
385 goto out_free;
386 break;
387 }
388 mem->arr[mem->cnt].page = page;
389 mem->arr[mem->cnt].order = order;
390 mem->cnt += 1;
391 if (max_page_cnt <= (1UL << order))
392 break;
393 max_page_cnt -= 1UL << order;
394 page_cnt += 1UL << order;
395 if (mem->cnt >= max_segs) {
396 if (page_cnt < min_page_cnt)
397 goto out_free;
398 break;
399 }
400 }
401
402 return mem;
403
404 out_free:
405 mmc_test_free_mem(mem);
406 return NULL;
407 }
408
409 /*
410 * Map memory into a scatterlist. Optionally allow the same memory to be
411 * mapped more than once.
412 */
413 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
414 struct scatterlist *sglist, int repeat,
415 unsigned int max_segs, unsigned int max_seg_sz,
416 unsigned int *sg_len, int min_sg_len)
417 {
418 struct scatterlist *sg = NULL;
419 unsigned int i;
420 unsigned long sz = size;
421
422 sg_init_table(sglist, max_segs);
423 if (min_sg_len > max_segs)
424 min_sg_len = max_segs;
425
426 *sg_len = 0;
427 do {
428 for (i = 0; i < mem->cnt; i++) {
429 unsigned long len = PAGE_SIZE << mem->arr[i].order;
430
431 if (min_sg_len && (size / min_sg_len < len))
432 len = ALIGN(size / min_sg_len, 512);
433 if (len > sz)
434 len = sz;
435 if (len > max_seg_sz)
436 len = max_seg_sz;
437 if (sg)
438 sg = sg_next(sg);
439 else
440 sg = sglist;
441 if (!sg)
442 return -EINVAL;
443 sg_set_page(sg, mem->arr[i].page, len, 0);
444 sz -= len;
445 *sg_len += 1;
446 if (!sz)
447 break;
448 }
449 } while (sz && repeat);
450
451 if (sz)
452 return -EINVAL;
453
454 if (sg)
455 sg_mark_end(sg);
456
457 return 0;
458 }
459
460 /*
461 * Map memory into a scatterlist so that no pages are contiguous. Allow the
462 * same memory to be mapped more than once.
463 */
464 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
465 unsigned long sz,
466 struct scatterlist *sglist,
467 unsigned int max_segs,
468 unsigned int max_seg_sz,
469 unsigned int *sg_len)
470 {
471 struct scatterlist *sg = NULL;
472 unsigned int i = mem->cnt, cnt;
473 unsigned long len;
474 void *base, *addr, *last_addr = NULL;
475
476 sg_init_table(sglist, max_segs);
477
478 *sg_len = 0;
479 while (sz) {
480 base = page_address(mem->arr[--i].page);
481 cnt = 1 << mem->arr[i].order;
482 while (sz && cnt) {
483 addr = base + PAGE_SIZE * --cnt;
484 if (last_addr && last_addr + PAGE_SIZE == addr)
485 continue;
486 last_addr = addr;
487 len = PAGE_SIZE;
488 if (len > max_seg_sz)
489 len = max_seg_sz;
490 if (len > sz)
491 len = sz;
492 if (sg)
493 sg = sg_next(sg);
494 else
495 sg = sglist;
496 if (!sg)
497 return -EINVAL;
498 sg_set_page(sg, virt_to_page(addr), len, 0);
499 sz -= len;
500 *sg_len += 1;
501 }
502 if (i == 0)
503 i = mem->cnt;
504 }
505
506 if (sg)
507 sg_mark_end(sg);
508
509 return 0;
510 }
511
512 /*
513 * Calculate transfer rate in bytes per second.
514 */
515 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
516 {
517 uint64_t ns;
518
519 ns = ts->tv_sec;
520 ns *= 1000000000;
521 ns += ts->tv_nsec;
522
523 bytes *= 1000000000;
524
525 while (ns > UINT_MAX) {
526 bytes >>= 1;
527 ns >>= 1;
528 }
529
530 if (!ns)
531 return 0;
532
533 do_div(bytes, (uint32_t)ns);
534
535 return bytes;
536 }
537
538 /*
539 * Save transfer results for future usage
540 */
541 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
542 unsigned int count, unsigned int sectors, struct timespec ts,
543 unsigned int rate, unsigned int iops)
544 {
545 struct mmc_test_transfer_result *tr;
546
547 if (!test->gr)
548 return;
549
550 tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
551 if (!tr)
552 return;
553
554 tr->count = count;
555 tr->sectors = sectors;
556 tr->ts = ts;
557 tr->rate = rate;
558 tr->iops = iops;
559
560 list_add_tail(&tr->link, &test->gr->tr_lst);
561 }
562
563 /*
564 * Print the transfer rate.
565 */
566 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
567 struct timespec *ts1, struct timespec *ts2)
568 {
569 unsigned int rate, iops, sectors = bytes >> 9;
570 struct timespec ts;
571
572 ts = timespec_sub(*ts2, *ts1);
573
574 rate = mmc_test_rate(bytes, &ts);
575 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
576
577 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
578 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
579 mmc_hostname(test->card->host), sectors, sectors >> 1,
580 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
581 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
582 iops / 100, iops % 100);
583
584 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
585 }
586
587 /*
588 * Print the average transfer rate.
589 */
590 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
591 unsigned int count, struct timespec *ts1,
592 struct timespec *ts2)
593 {
594 unsigned int rate, iops, sectors = bytes >> 9;
595 uint64_t tot = bytes * count;
596 struct timespec ts;
597
598 ts = timespec_sub(*ts2, *ts1);
599
600 rate = mmc_test_rate(tot, &ts);
601 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
602
603 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
604 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
605 "%u.%02u IOPS, sg_len %d)\n",
606 mmc_hostname(test->card->host), count, sectors, count,
607 sectors >> 1, (sectors & 1 ? ".5" : ""),
608 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
609 rate / 1000, rate / 1024, iops / 100, iops % 100,
610 test->area.sg_len);
611
612 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
613 }
614
615 /*
616 * Return the card size in sectors.
617 */
618 static unsigned int mmc_test_capacity(struct mmc_card *card)
619 {
620 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
621 return card->ext_csd.sectors;
622 else
623 return card->csd.capacity << (card->csd.read_blkbits - 9);
624 }
625
626 /*******************************************************************/
627 /* Test preparation and cleanup */
628 /*******************************************************************/
629
630 /*
631 * Fill the first couple of sectors of the card with known data
632 * so that bad reads/writes can be detected
633 */
634 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
635 {
636 int ret, i;
637
638 ret = mmc_test_set_blksize(test, 512);
639 if (ret)
640 return ret;
641
642 if (write)
643 memset(test->buffer, 0xDF, 512);
644 else {
645 for (i = 0;i < 512;i++)
646 test->buffer[i] = i;
647 }
648
649 for (i = 0;i < BUFFER_SIZE / 512;i++) {
650 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
651 if (ret)
652 return ret;
653 }
654
655 return 0;
656 }
657
658 static int mmc_test_prepare_write(struct mmc_test_card *test)
659 {
660 return __mmc_test_prepare(test, 1);
661 }
662
663 static int mmc_test_prepare_read(struct mmc_test_card *test)
664 {
665 return __mmc_test_prepare(test, 0);
666 }
667
668 static int mmc_test_cleanup(struct mmc_test_card *test)
669 {
670 int ret, i;
671
672 ret = mmc_test_set_blksize(test, 512);
673 if (ret)
674 return ret;
675
676 memset(test->buffer, 0, 512);
677
678 for (i = 0;i < BUFFER_SIZE / 512;i++) {
679 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
680 if (ret)
681 return ret;
682 }
683
684 return 0;
685 }
686
687 /*******************************************************************/
688 /* Test execution helpers */
689 /*******************************************************************/
690
691 /*
692 * Modifies the mmc_request to perform the "short transfer" tests
693 */
694 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
695 struct mmc_request *mrq, int write)
696 {
697 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
698
699 if (mrq->data->blocks > 1) {
700 mrq->cmd->opcode = write ?
701 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
702 mrq->stop = NULL;
703 } else {
704 mrq->cmd->opcode = MMC_SEND_STATUS;
705 mrq->cmd->arg = test->card->rca << 16;
706 }
707 }
708
709 /*
710 * Checks that a normal transfer didn't have any errors
711 */
712 static int mmc_test_check_result(struct mmc_test_card *test,
713 struct mmc_request *mrq)
714 {
715 int ret;
716
717 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
718
719 ret = 0;
720
721 if (mrq->sbc && mrq->sbc->error)
722 ret = mrq->sbc->error;
723 if (!ret && mrq->cmd->error)
724 ret = mrq->cmd->error;
725 if (!ret && mrq->data->error)
726 ret = mrq->data->error;
727 if (!ret && mrq->stop && mrq->stop->error)
728 ret = mrq->stop->error;
729 if (!ret && mrq->data->bytes_xfered !=
730 mrq->data->blocks * mrq->data->blksz)
731 ret = RESULT_FAIL;
732
733 if (ret == -EINVAL)
734 ret = RESULT_UNSUP_HOST;
735
736 return ret;
737 }
738
739 static int mmc_test_check_result_async(struct mmc_card *card,
740 struct mmc_async_req *areq)
741 {
742 struct mmc_test_async_req *test_async =
743 container_of(areq, struct mmc_test_async_req, areq);
744
745 mmc_test_wait_busy(test_async->test);
746
747 return mmc_test_check_result(test_async->test, areq->mrq);
748 }
749
750 /*
751 * Checks that a "short transfer" behaved as expected
752 */
753 static int mmc_test_check_broken_result(struct mmc_test_card *test,
754 struct mmc_request *mrq)
755 {
756 int ret;
757
758 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
759
760 ret = 0;
761
762 if (!ret && mrq->cmd->error)
763 ret = mrq->cmd->error;
764 if (!ret && mrq->data->error == 0)
765 ret = RESULT_FAIL;
766 if (!ret && mrq->data->error != -ETIMEDOUT)
767 ret = mrq->data->error;
768 if (!ret && mrq->stop && mrq->stop->error)
769 ret = mrq->stop->error;
770 if (mrq->data->blocks > 1) {
771 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
772 ret = RESULT_FAIL;
773 } else {
774 if (!ret && mrq->data->bytes_xfered > 0)
775 ret = RESULT_FAIL;
776 }
777
778 if (ret == -EINVAL)
779 ret = RESULT_UNSUP_HOST;
780
781 return ret;
782 }
783
784 /*
785 * Tests nonblock transfer with certain parameters
786 */
787 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
788 struct mmc_command *cmd,
789 struct mmc_command *stop,
790 struct mmc_data *data)
791 {
792 memset(mrq, 0, sizeof(struct mmc_request));
793 memset(cmd, 0, sizeof(struct mmc_command));
794 memset(data, 0, sizeof(struct mmc_data));
795 memset(stop, 0, sizeof(struct mmc_command));
796
797 mrq->cmd = cmd;
798 mrq->data = data;
799 mrq->stop = stop;
800 }
801 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
802 struct scatterlist *sg, unsigned sg_len,
803 unsigned dev_addr, unsigned blocks,
804 unsigned blksz, int write, int count)
805 {
806 struct mmc_request mrq1;
807 struct mmc_command cmd1;
808 struct mmc_command stop1;
809 struct mmc_data data1;
810
811 struct mmc_request mrq2;
812 struct mmc_command cmd2;
813 struct mmc_command stop2;
814 struct mmc_data data2;
815
816 struct mmc_test_async_req test_areq[2];
817 struct mmc_async_req *done_areq;
818 struct mmc_async_req *cur_areq = &test_areq[0].areq;
819 struct mmc_async_req *other_areq = &test_areq[1].areq;
820 int i;
821 int ret;
822
823 test_areq[0].test = test;
824 test_areq[1].test = test;
825
826 mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
827 mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
828
829 cur_areq->mrq = &mrq1;
830 cur_areq->err_check = mmc_test_check_result_async;
831 other_areq->mrq = &mrq2;
832 other_areq->err_check = mmc_test_check_result_async;
833
834 for (i = 0; i < count; i++) {
835 mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
836 blocks, blksz, write);
837 done_areq = mmc_start_req(test->card->host, cur_areq, &ret);
838
839 if (ret || (!done_areq && i > 0))
840 goto err;
841
842 if (done_areq) {
843 if (done_areq->mrq == &mrq2)
844 mmc_test_nonblock_reset(&mrq2, &cmd2,
845 &stop2, &data2);
846 else
847 mmc_test_nonblock_reset(&mrq1, &cmd1,
848 &stop1, &data1);
849 }
850 swap(cur_areq, other_areq);
851 dev_addr += blocks;
852 }
853
854 done_areq = mmc_start_req(test->card->host, NULL, &ret);
855
856 return ret;
857 err:
858 return ret;
859 }
860
861 /*
862 * Tests a basic transfer with certain parameters
863 */
864 static int mmc_test_simple_transfer(struct mmc_test_card *test,
865 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
866 unsigned blocks, unsigned blksz, int write)
867 {
868 struct mmc_request mrq = {0};
869 struct mmc_command cmd = {0};
870 struct mmc_command stop = {0};
871 struct mmc_data data = {0};
872
873 mrq.cmd = &cmd;
874 mrq.data = &data;
875 mrq.stop = &stop;
876
877 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
878 blocks, blksz, write);
879
880 mmc_wait_for_req(test->card->host, &mrq);
881
882 mmc_test_wait_busy(test);
883
884 return mmc_test_check_result(test, &mrq);
885 }
886
887 /*
888 * Tests a transfer where the card will fail completely or partly
889 */
890 static int mmc_test_broken_transfer(struct mmc_test_card *test,
891 unsigned blocks, unsigned blksz, int write)
892 {
893 struct mmc_request mrq = {0};
894 struct mmc_command cmd = {0};
895 struct mmc_command stop = {0};
896 struct mmc_data data = {0};
897
898 struct scatterlist sg;
899
900 mrq.cmd = &cmd;
901 mrq.data = &data;
902 mrq.stop = &stop;
903
904 sg_init_one(&sg, test->buffer, blocks * blksz);
905
906 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
907 mmc_test_prepare_broken_mrq(test, &mrq, write);
908
909 mmc_wait_for_req(test->card->host, &mrq);
910
911 mmc_test_wait_busy(test);
912
913 return mmc_test_check_broken_result(test, &mrq);
914 }
915
916 /*
917 * Does a complete transfer test where data is also validated
918 *
919 * Note: mmc_test_prepare() must have been done before this call
920 */
921 static int mmc_test_transfer(struct mmc_test_card *test,
922 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
923 unsigned blocks, unsigned blksz, int write)
924 {
925 int ret, i;
926 unsigned long flags;
927
928 if (write) {
929 for (i = 0;i < blocks * blksz;i++)
930 test->scratch[i] = i;
931 } else {
932 memset(test->scratch, 0, BUFFER_SIZE);
933 }
934 local_irq_save(flags);
935 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
936 local_irq_restore(flags);
937
938 ret = mmc_test_set_blksize(test, blksz);
939 if (ret)
940 return ret;
941
942 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
943 blocks, blksz, write);
944 if (ret)
945 return ret;
946
947 if (write) {
948 int sectors;
949
950 ret = mmc_test_set_blksize(test, 512);
951 if (ret)
952 return ret;
953
954 sectors = (blocks * blksz + 511) / 512;
955 if ((sectors * 512) == (blocks * blksz))
956 sectors++;
957
958 if ((sectors * 512) > BUFFER_SIZE)
959 return -EINVAL;
960
961 memset(test->buffer, 0, sectors * 512);
962
963 for (i = 0;i < sectors;i++) {
964 ret = mmc_test_buffer_transfer(test,
965 test->buffer + i * 512,
966 dev_addr + i, 512, 0);
967 if (ret)
968 return ret;
969 }
970
971 for (i = 0;i < blocks * blksz;i++) {
972 if (test->buffer[i] != (u8)i)
973 return RESULT_FAIL;
974 }
975
976 for (;i < sectors * 512;i++) {
977 if (test->buffer[i] != 0xDF)
978 return RESULT_FAIL;
979 }
980 } else {
981 local_irq_save(flags);
982 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
983 local_irq_restore(flags);
984 for (i = 0;i < blocks * blksz;i++) {
985 if (test->scratch[i] != (u8)i)
986 return RESULT_FAIL;
987 }
988 }
989
990 return 0;
991 }
992
993 /*******************************************************************/
994 /* Tests */
995 /*******************************************************************/
996
997 struct mmc_test_case {
998 const char *name;
999
1000 int (*prepare)(struct mmc_test_card *);
1001 int (*run)(struct mmc_test_card *);
1002 int (*cleanup)(struct mmc_test_card *);
1003 };
1004
1005 static int mmc_test_basic_write(struct mmc_test_card *test)
1006 {
1007 int ret;
1008 struct scatterlist sg;
1009
1010 ret = mmc_test_set_blksize(test, 512);
1011 if (ret)
1012 return ret;
1013
1014 sg_init_one(&sg, test->buffer, 512);
1015
1016 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1017 }
1018
1019 static int mmc_test_basic_read(struct mmc_test_card *test)
1020 {
1021 int ret;
1022 struct scatterlist sg;
1023
1024 ret = mmc_test_set_blksize(test, 512);
1025 if (ret)
1026 return ret;
1027
1028 sg_init_one(&sg, test->buffer, 512);
1029
1030 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1031 }
1032
1033 static int mmc_test_verify_write(struct mmc_test_card *test)
1034 {
1035 struct scatterlist sg;
1036
1037 sg_init_one(&sg, test->buffer, 512);
1038
1039 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1040 }
1041
1042 static int mmc_test_verify_read(struct mmc_test_card *test)
1043 {
1044 struct scatterlist sg;
1045
1046 sg_init_one(&sg, test->buffer, 512);
1047
1048 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1049 }
1050
1051 static int mmc_test_multi_write(struct mmc_test_card *test)
1052 {
1053 unsigned int size;
1054 struct scatterlist sg;
1055
1056 if (test->card->host->max_blk_count == 1)
1057 return RESULT_UNSUP_HOST;
1058
1059 size = PAGE_SIZE * 2;
1060 size = min(size, test->card->host->max_req_size);
1061 size = min(size, test->card->host->max_seg_size);
1062 size = min(size, test->card->host->max_blk_count * 512);
1063
1064 if (size < 1024)
1065 return RESULT_UNSUP_HOST;
1066
1067 sg_init_one(&sg, test->buffer, size);
1068
1069 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1070 }
1071
1072 static int mmc_test_multi_read(struct mmc_test_card *test)
1073 {
1074 unsigned int size;
1075 struct scatterlist sg;
1076
1077 if (test->card->host->max_blk_count == 1)
1078 return RESULT_UNSUP_HOST;
1079
1080 size = PAGE_SIZE * 2;
1081 size = min(size, test->card->host->max_req_size);
1082 size = min(size, test->card->host->max_seg_size);
1083 size = min(size, test->card->host->max_blk_count * 512);
1084
1085 if (size < 1024)
1086 return RESULT_UNSUP_HOST;
1087
1088 sg_init_one(&sg, test->buffer, size);
1089
1090 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1091 }
1092
1093 static int mmc_test_pow2_write(struct mmc_test_card *test)
1094 {
1095 int ret, i;
1096 struct scatterlist sg;
1097
1098 if (!test->card->csd.write_partial)
1099 return RESULT_UNSUP_CARD;
1100
1101 for (i = 1; i < 512;i <<= 1) {
1102 sg_init_one(&sg, test->buffer, i);
1103 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1104 if (ret)
1105 return ret;
1106 }
1107
1108 return 0;
1109 }
1110
1111 static int mmc_test_pow2_read(struct mmc_test_card *test)
1112 {
1113 int ret, i;
1114 struct scatterlist sg;
1115
1116 if (!test->card->csd.read_partial)
1117 return RESULT_UNSUP_CARD;
1118
1119 for (i = 1; i < 512;i <<= 1) {
1120 sg_init_one(&sg, test->buffer, i);
1121 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1122 if (ret)
1123 return ret;
1124 }
1125
1126 return 0;
1127 }
1128
1129 static int mmc_test_weird_write(struct mmc_test_card *test)
1130 {
1131 int ret, i;
1132 struct scatterlist sg;
1133
1134 if (!test->card->csd.write_partial)
1135 return RESULT_UNSUP_CARD;
1136
1137 for (i = 3; i < 512;i += 7) {
1138 sg_init_one(&sg, test->buffer, i);
1139 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1140 if (ret)
1141 return ret;
1142 }
1143
1144 return 0;
1145 }
1146
1147 static int mmc_test_weird_read(struct mmc_test_card *test)
1148 {
1149 int ret, i;
1150 struct scatterlist sg;
1151
1152 if (!test->card->csd.read_partial)
1153 return RESULT_UNSUP_CARD;
1154
1155 for (i = 3; i < 512;i += 7) {
1156 sg_init_one(&sg, test->buffer, i);
1157 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1158 if (ret)
1159 return ret;
1160 }
1161
1162 return 0;
1163 }
1164
1165 static int mmc_test_align_write(struct mmc_test_card *test)
1166 {
1167 int ret, i;
1168 struct scatterlist sg;
1169
1170 for (i = 1; i < TEST_ALIGN_END; i++) {
1171 sg_init_one(&sg, test->buffer + i, 512);
1172 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1173 if (ret)
1174 return ret;
1175 }
1176
1177 return 0;
1178 }
1179
1180 static int mmc_test_align_read(struct mmc_test_card *test)
1181 {
1182 int ret, i;
1183 struct scatterlist sg;
1184
1185 for (i = 1; i < TEST_ALIGN_END; i++) {
1186 sg_init_one(&sg, test->buffer + i, 512);
1187 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1188 if (ret)
1189 return ret;
1190 }
1191
1192 return 0;
1193 }
1194
1195 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1196 {
1197 int ret, i;
1198 unsigned int size;
1199 struct scatterlist sg;
1200
1201 if (test->card->host->max_blk_count == 1)
1202 return RESULT_UNSUP_HOST;
1203
1204 size = PAGE_SIZE * 2;
1205 size = min(size, test->card->host->max_req_size);
1206 size = min(size, test->card->host->max_seg_size);
1207 size = min(size, test->card->host->max_blk_count * 512);
1208
1209 if (size < 1024)
1210 return RESULT_UNSUP_HOST;
1211
1212 for (i = 1; i < TEST_ALIGN_END; i++) {
1213 sg_init_one(&sg, test->buffer + i, size);
1214 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1215 if (ret)
1216 return ret;
1217 }
1218
1219 return 0;
1220 }
1221
1222 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1223 {
1224 int ret, i;
1225 unsigned int size;
1226 struct scatterlist sg;
1227
1228 if (test->card->host->max_blk_count == 1)
1229 return RESULT_UNSUP_HOST;
1230
1231 size = PAGE_SIZE * 2;
1232 size = min(size, test->card->host->max_req_size);
1233 size = min(size, test->card->host->max_seg_size);
1234 size = min(size, test->card->host->max_blk_count * 512);
1235
1236 if (size < 1024)
1237 return RESULT_UNSUP_HOST;
1238
1239 for (i = 1; i < TEST_ALIGN_END; i++) {
1240 sg_init_one(&sg, test->buffer + i, size);
1241 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1242 if (ret)
1243 return ret;
1244 }
1245
1246 return 0;
1247 }
1248
1249 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1250 {
1251 int ret;
1252
1253 ret = mmc_test_set_blksize(test, 512);
1254 if (ret)
1255 return ret;
1256
1257 return mmc_test_broken_transfer(test, 1, 512, 1);
1258 }
1259
1260 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1261 {
1262 int ret;
1263
1264 ret = mmc_test_set_blksize(test, 512);
1265 if (ret)
1266 return ret;
1267
1268 return mmc_test_broken_transfer(test, 1, 512, 0);
1269 }
1270
1271 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1272 {
1273 int ret;
1274
1275 if (test->card->host->max_blk_count == 1)
1276 return RESULT_UNSUP_HOST;
1277
1278 ret = mmc_test_set_blksize(test, 512);
1279 if (ret)
1280 return ret;
1281
1282 return mmc_test_broken_transfer(test, 2, 512, 1);
1283 }
1284
1285 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1286 {
1287 int ret;
1288
1289 if (test->card->host->max_blk_count == 1)
1290 return RESULT_UNSUP_HOST;
1291
1292 ret = mmc_test_set_blksize(test, 512);
1293 if (ret)
1294 return ret;
1295
1296 return mmc_test_broken_transfer(test, 2, 512, 0);
1297 }
1298
1299 #ifdef CONFIG_HIGHMEM
1300
1301 static int mmc_test_write_high(struct mmc_test_card *test)
1302 {
1303 struct scatterlist sg;
1304
1305 sg_init_table(&sg, 1);
1306 sg_set_page(&sg, test->highmem, 512, 0);
1307
1308 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1309 }
1310
1311 static int mmc_test_read_high(struct mmc_test_card *test)
1312 {
1313 struct scatterlist sg;
1314
1315 sg_init_table(&sg, 1);
1316 sg_set_page(&sg, test->highmem, 512, 0);
1317
1318 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1319 }
1320
1321 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1322 {
1323 unsigned int size;
1324 struct scatterlist sg;
1325
1326 if (test->card->host->max_blk_count == 1)
1327 return RESULT_UNSUP_HOST;
1328
1329 size = PAGE_SIZE * 2;
1330 size = min(size, test->card->host->max_req_size);
1331 size = min(size, test->card->host->max_seg_size);
1332 size = min(size, test->card->host->max_blk_count * 512);
1333
1334 if (size < 1024)
1335 return RESULT_UNSUP_HOST;
1336
1337 sg_init_table(&sg, 1);
1338 sg_set_page(&sg, test->highmem, size, 0);
1339
1340 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1341 }
1342
1343 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1344 {
1345 unsigned int size;
1346 struct scatterlist sg;
1347
1348 if (test->card->host->max_blk_count == 1)
1349 return RESULT_UNSUP_HOST;
1350
1351 size = PAGE_SIZE * 2;
1352 size = min(size, test->card->host->max_req_size);
1353 size = min(size, test->card->host->max_seg_size);
1354 size = min(size, test->card->host->max_blk_count * 512);
1355
1356 if (size < 1024)
1357 return RESULT_UNSUP_HOST;
1358
1359 sg_init_table(&sg, 1);
1360 sg_set_page(&sg, test->highmem, size, 0);
1361
1362 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1363 }
1364
1365 #else
1366
1367 static int mmc_test_no_highmem(struct mmc_test_card *test)
1368 {
1369 pr_info("%s: Highmem not configured - test skipped\n",
1370 mmc_hostname(test->card->host));
1371 return 0;
1372 }
1373
1374 #endif /* CONFIG_HIGHMEM */
1375
1376 /*
1377 * Map sz bytes so that it can be transferred.
1378 */
1379 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1380 int max_scatter, int min_sg_len)
1381 {
1382 struct mmc_test_area *t = &test->area;
1383 int err;
1384
1385 t->blocks = sz >> 9;
1386
1387 if (max_scatter) {
1388 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1389 t->max_segs, t->max_seg_sz,
1390 &t->sg_len);
1391 } else {
1392 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1393 t->max_seg_sz, &t->sg_len, min_sg_len);
1394 }
1395 if (err)
1396 pr_info("%s: Failed to map sg list\n",
1397 mmc_hostname(test->card->host));
1398 return err;
1399 }
1400
1401 /*
1402 * Transfer bytes mapped by mmc_test_area_map().
1403 */
1404 static int mmc_test_area_transfer(struct mmc_test_card *test,
1405 unsigned int dev_addr, int write)
1406 {
1407 struct mmc_test_area *t = &test->area;
1408
1409 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1410 t->blocks, 512, write);
1411 }
1412
1413 /*
1414 * Map and transfer bytes for multiple transfers.
1415 */
1416 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1417 unsigned int dev_addr, int write,
1418 int max_scatter, int timed, int count,
1419 bool nonblock, int min_sg_len)
1420 {
1421 struct timespec ts1, ts2;
1422 int ret = 0;
1423 int i;
1424 struct mmc_test_area *t = &test->area;
1425
1426 /*
1427 * In the case of a maximally scattered transfer, the maximum transfer
1428 * size is further limited by using PAGE_SIZE segments.
1429 */
1430 if (max_scatter) {
1431 struct mmc_test_area *t = &test->area;
1432 unsigned long max_tfr;
1433
1434 if (t->max_seg_sz >= PAGE_SIZE)
1435 max_tfr = t->max_segs * PAGE_SIZE;
1436 else
1437 max_tfr = t->max_segs * t->max_seg_sz;
1438 if (sz > max_tfr)
1439 sz = max_tfr;
1440 }
1441
1442 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1443 if (ret)
1444 return ret;
1445
1446 if (timed)
1447 getnstimeofday(&ts1);
1448 if (nonblock)
1449 ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1450 dev_addr, t->blocks, 512, write, count);
1451 else
1452 for (i = 0; i < count && ret == 0; i++) {
1453 ret = mmc_test_area_transfer(test, dev_addr, write);
1454 dev_addr += sz >> 9;
1455 }
1456
1457 if (ret)
1458 return ret;
1459
1460 if (timed)
1461 getnstimeofday(&ts2);
1462
1463 if (timed)
1464 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1465
1466 return 0;
1467 }
1468
1469 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1470 unsigned int dev_addr, int write, int max_scatter,
1471 int timed)
1472 {
1473 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1474 timed, 1, false, 0);
1475 }
1476
1477 /*
1478 * Write the test area entirely.
1479 */
1480 static int mmc_test_area_fill(struct mmc_test_card *test)
1481 {
1482 struct mmc_test_area *t = &test->area;
1483
1484 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1485 }
1486
1487 /*
1488 * Erase the test area entirely.
1489 */
1490 static int mmc_test_area_erase(struct mmc_test_card *test)
1491 {
1492 struct mmc_test_area *t = &test->area;
1493
1494 if (!mmc_can_erase(test->card))
1495 return 0;
1496
1497 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1498 MMC_ERASE_ARG);
1499 }
1500
1501 /*
1502 * Cleanup struct mmc_test_area.
1503 */
1504 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1505 {
1506 struct mmc_test_area *t = &test->area;
1507
1508 kfree(t->sg);
1509 mmc_test_free_mem(t->mem);
1510
1511 return 0;
1512 }
1513
1514 /*
1515 * Initialize an area for testing large transfers. The test area is set to the
1516 * middle of the card because cards may have different charateristics at the
1517 * front (for FAT file system optimization). Optionally, the area is erased
1518 * (if the card supports it) which may improve write performance. Optionally,
1519 * the area is filled with data for subsequent read tests.
1520 */
1521 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1522 {
1523 struct mmc_test_area *t = &test->area;
1524 unsigned long min_sz = 64 * 1024, sz;
1525 int ret;
1526
1527 ret = mmc_test_set_blksize(test, 512);
1528 if (ret)
1529 return ret;
1530
1531 /* Make the test area size about 4MiB */
1532 sz = (unsigned long)test->card->pref_erase << 9;
1533 t->max_sz = sz;
1534 while (t->max_sz < 4 * 1024 * 1024)
1535 t->max_sz += sz;
1536 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1537 t->max_sz -= sz;
1538
1539 t->max_segs = test->card->host->max_segs;
1540 t->max_seg_sz = test->card->host->max_seg_size;
1541 t->max_seg_sz -= t->max_seg_sz % 512;
1542
1543 t->max_tfr = t->max_sz;
1544 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1545 t->max_tfr = test->card->host->max_blk_count << 9;
1546 if (t->max_tfr > test->card->host->max_req_size)
1547 t->max_tfr = test->card->host->max_req_size;
1548 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1549 t->max_tfr = t->max_segs * t->max_seg_sz;
1550
1551 /*
1552 * Try to allocate enough memory for a max. sized transfer. Less is OK
1553 * because the same memory can be mapped into the scatterlist more than
1554 * once. Also, take into account the limits imposed on scatterlist
1555 * segments by the host driver.
1556 */
1557 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1558 t->max_seg_sz);
1559 if (!t->mem)
1560 return -ENOMEM;
1561
1562 t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1563 if (!t->sg) {
1564 ret = -ENOMEM;
1565 goto out_free;
1566 }
1567
1568 t->dev_addr = mmc_test_capacity(test->card) / 2;
1569 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1570
1571 if (erase) {
1572 ret = mmc_test_area_erase(test);
1573 if (ret)
1574 goto out_free;
1575 }
1576
1577 if (fill) {
1578 ret = mmc_test_area_fill(test);
1579 if (ret)
1580 goto out_free;
1581 }
1582
1583 return 0;
1584
1585 out_free:
1586 mmc_test_area_cleanup(test);
1587 return ret;
1588 }
1589
1590 /*
1591 * Prepare for large transfers. Do not erase the test area.
1592 */
1593 static int mmc_test_area_prepare(struct mmc_test_card *test)
1594 {
1595 return mmc_test_area_init(test, 0, 0);
1596 }
1597
1598 /*
1599 * Prepare for large transfers. Do erase the test area.
1600 */
1601 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1602 {
1603 return mmc_test_area_init(test, 1, 0);
1604 }
1605
1606 /*
1607 * Prepare for large transfers. Erase and fill the test area.
1608 */
1609 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1610 {
1611 return mmc_test_area_init(test, 1, 1);
1612 }
1613
1614 /*
1615 * Test best-case performance. Best-case performance is expected from
1616 * a single large transfer.
1617 *
1618 * An additional option (max_scatter) allows the measurement of the same
1619 * transfer but with no contiguous pages in the scatter list. This tests
1620 * the efficiency of DMA to handle scattered pages.
1621 */
1622 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1623 int max_scatter)
1624 {
1625 struct mmc_test_area *t = &test->area;
1626
1627 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1628 max_scatter, 1);
1629 }
1630
1631 /*
1632 * Best-case read performance.
1633 */
1634 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1635 {
1636 return mmc_test_best_performance(test, 0, 0);
1637 }
1638
1639 /*
1640 * Best-case write performance.
1641 */
1642 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1643 {
1644 return mmc_test_best_performance(test, 1, 0);
1645 }
1646
1647 /*
1648 * Best-case read performance into scattered pages.
1649 */
1650 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1651 {
1652 return mmc_test_best_performance(test, 0, 1);
1653 }
1654
1655 /*
1656 * Best-case write performance from scattered pages.
1657 */
1658 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1659 {
1660 return mmc_test_best_performance(test, 1, 1);
1661 }
1662
1663 /*
1664 * Single read performance by transfer size.
1665 */
1666 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1667 {
1668 struct mmc_test_area *t = &test->area;
1669 unsigned long sz;
1670 unsigned int dev_addr;
1671 int ret;
1672
1673 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1674 dev_addr = t->dev_addr + (sz >> 9);
1675 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1676 if (ret)
1677 return ret;
1678 }
1679 sz = t->max_tfr;
1680 dev_addr = t->dev_addr;
1681 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1682 }
1683
1684 /*
1685 * Single write performance by transfer size.
1686 */
1687 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1688 {
1689 struct mmc_test_area *t = &test->area;
1690 unsigned long sz;
1691 unsigned int dev_addr;
1692 int ret;
1693
1694 ret = mmc_test_area_erase(test);
1695 if (ret)
1696 return ret;
1697 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1698 dev_addr = t->dev_addr + (sz >> 9);
1699 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1700 if (ret)
1701 return ret;
1702 }
1703 ret = mmc_test_area_erase(test);
1704 if (ret)
1705 return ret;
1706 sz = t->max_tfr;
1707 dev_addr = t->dev_addr;
1708 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1709 }
1710
1711 /*
1712 * Single trim performance by transfer size.
1713 */
1714 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1715 {
1716 struct mmc_test_area *t = &test->area;
1717 unsigned long sz;
1718 unsigned int dev_addr;
1719 struct timespec ts1, ts2;
1720 int ret;
1721
1722 if (!mmc_can_trim(test->card))
1723 return RESULT_UNSUP_CARD;
1724
1725 if (!mmc_can_erase(test->card))
1726 return RESULT_UNSUP_HOST;
1727
1728 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1729 dev_addr = t->dev_addr + (sz >> 9);
1730 getnstimeofday(&ts1);
1731 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1732 if (ret)
1733 return ret;
1734 getnstimeofday(&ts2);
1735 mmc_test_print_rate(test, sz, &ts1, &ts2);
1736 }
1737 dev_addr = t->dev_addr;
1738 getnstimeofday(&ts1);
1739 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1740 if (ret)
1741 return ret;
1742 getnstimeofday(&ts2);
1743 mmc_test_print_rate(test, sz, &ts1, &ts2);
1744 return 0;
1745 }
1746
1747 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1748 {
1749 struct mmc_test_area *t = &test->area;
1750 unsigned int dev_addr, i, cnt;
1751 struct timespec ts1, ts2;
1752 int ret;
1753
1754 cnt = t->max_sz / sz;
1755 dev_addr = t->dev_addr;
1756 getnstimeofday(&ts1);
1757 for (i = 0; i < cnt; i++) {
1758 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1759 if (ret)
1760 return ret;
1761 dev_addr += (sz >> 9);
1762 }
1763 getnstimeofday(&ts2);
1764 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1765 return 0;
1766 }
1767
1768 /*
1769 * Consecutive read performance by transfer size.
1770 */
1771 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1772 {
1773 struct mmc_test_area *t = &test->area;
1774 unsigned long sz;
1775 int ret;
1776
1777 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1778 ret = mmc_test_seq_read_perf(test, sz);
1779 if (ret)
1780 return ret;
1781 }
1782 sz = t->max_tfr;
1783 return mmc_test_seq_read_perf(test, sz);
1784 }
1785
1786 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1787 {
1788 struct mmc_test_area *t = &test->area;
1789 unsigned int dev_addr, i, cnt;
1790 struct timespec ts1, ts2;
1791 int ret;
1792
1793 ret = mmc_test_area_erase(test);
1794 if (ret)
1795 return ret;
1796 cnt = t->max_sz / sz;
1797 dev_addr = t->dev_addr;
1798 getnstimeofday(&ts1);
1799 for (i = 0; i < cnt; i++) {
1800 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1801 if (ret)
1802 return ret;
1803 dev_addr += (sz >> 9);
1804 }
1805 getnstimeofday(&ts2);
1806 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1807 return 0;
1808 }
1809
1810 /*
1811 * Consecutive write performance by transfer size.
1812 */
1813 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1814 {
1815 struct mmc_test_area *t = &test->area;
1816 unsigned long sz;
1817 int ret;
1818
1819 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1820 ret = mmc_test_seq_write_perf(test, sz);
1821 if (ret)
1822 return ret;
1823 }
1824 sz = t->max_tfr;
1825 return mmc_test_seq_write_perf(test, sz);
1826 }
1827
1828 /*
1829 * Consecutive trim performance by transfer size.
1830 */
1831 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1832 {
1833 struct mmc_test_area *t = &test->area;
1834 unsigned long sz;
1835 unsigned int dev_addr, i, cnt;
1836 struct timespec ts1, ts2;
1837 int ret;
1838
1839 if (!mmc_can_trim(test->card))
1840 return RESULT_UNSUP_CARD;
1841
1842 if (!mmc_can_erase(test->card))
1843 return RESULT_UNSUP_HOST;
1844
1845 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1846 ret = mmc_test_area_erase(test);
1847 if (ret)
1848 return ret;
1849 ret = mmc_test_area_fill(test);
1850 if (ret)
1851 return ret;
1852 cnt = t->max_sz / sz;
1853 dev_addr = t->dev_addr;
1854 getnstimeofday(&ts1);
1855 for (i = 0; i < cnt; i++) {
1856 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1857 MMC_TRIM_ARG);
1858 if (ret)
1859 return ret;
1860 dev_addr += (sz >> 9);
1861 }
1862 getnstimeofday(&ts2);
1863 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1864 }
1865 return 0;
1866 }
1867
1868 static unsigned int rnd_next = 1;
1869
1870 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1871 {
1872 uint64_t r;
1873
1874 rnd_next = rnd_next * 1103515245 + 12345;
1875 r = (rnd_next >> 16) & 0x7fff;
1876 return (r * rnd_cnt) >> 15;
1877 }
1878
1879 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1880 unsigned long sz)
1881 {
1882 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1883 unsigned int ssz;
1884 struct timespec ts1, ts2, ts;
1885 int ret;
1886
1887 ssz = sz >> 9;
1888
1889 rnd_addr = mmc_test_capacity(test->card) / 4;
1890 range1 = rnd_addr / test->card->pref_erase;
1891 range2 = range1 / ssz;
1892
1893 getnstimeofday(&ts1);
1894 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1895 getnstimeofday(&ts2);
1896 ts = timespec_sub(ts2, ts1);
1897 if (ts.tv_sec >= 10)
1898 break;
1899 ea = mmc_test_rnd_num(range1);
1900 if (ea == last_ea)
1901 ea -= 1;
1902 last_ea = ea;
1903 dev_addr = rnd_addr + test->card->pref_erase * ea +
1904 ssz * mmc_test_rnd_num(range2);
1905 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1906 if (ret)
1907 return ret;
1908 }
1909 if (print)
1910 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1911 return 0;
1912 }
1913
1914 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1915 {
1916 struct mmc_test_area *t = &test->area;
1917 unsigned int next;
1918 unsigned long sz;
1919 int ret;
1920
1921 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1922 /*
1923 * When writing, try to get more consistent results by running
1924 * the test twice with exactly the same I/O but outputting the
1925 * results only for the 2nd run.
1926 */
1927 if (write) {
1928 next = rnd_next;
1929 ret = mmc_test_rnd_perf(test, write, 0, sz);
1930 if (ret)
1931 return ret;
1932 rnd_next = next;
1933 }
1934 ret = mmc_test_rnd_perf(test, write, 1, sz);
1935 if (ret)
1936 return ret;
1937 }
1938 sz = t->max_tfr;
1939 if (write) {
1940 next = rnd_next;
1941 ret = mmc_test_rnd_perf(test, write, 0, sz);
1942 if (ret)
1943 return ret;
1944 rnd_next = next;
1945 }
1946 return mmc_test_rnd_perf(test, write, 1, sz);
1947 }
1948
1949 /*
1950 * Random read performance by transfer size.
1951 */
1952 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1953 {
1954 return mmc_test_random_perf(test, 0);
1955 }
1956
1957 /*
1958 * Random write performance by transfer size.
1959 */
1960 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1961 {
1962 return mmc_test_random_perf(test, 1);
1963 }
1964
1965 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1966 unsigned int tot_sz, int max_scatter)
1967 {
1968 struct mmc_test_area *t = &test->area;
1969 unsigned int dev_addr, i, cnt, sz, ssz;
1970 struct timespec ts1, ts2;
1971 int ret;
1972
1973 sz = t->max_tfr;
1974
1975 /*
1976 * In the case of a maximally scattered transfer, the maximum transfer
1977 * size is further limited by using PAGE_SIZE segments.
1978 */
1979 if (max_scatter) {
1980 unsigned long max_tfr;
1981
1982 if (t->max_seg_sz >= PAGE_SIZE)
1983 max_tfr = t->max_segs * PAGE_SIZE;
1984 else
1985 max_tfr = t->max_segs * t->max_seg_sz;
1986 if (sz > max_tfr)
1987 sz = max_tfr;
1988 }
1989
1990 ssz = sz >> 9;
1991 dev_addr = mmc_test_capacity(test->card) / 4;
1992 if (tot_sz > dev_addr << 9)
1993 tot_sz = dev_addr << 9;
1994 cnt = tot_sz / sz;
1995 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
1996
1997 getnstimeofday(&ts1);
1998 for (i = 0; i < cnt; i++) {
1999 ret = mmc_test_area_io(test, sz, dev_addr, write,
2000 max_scatter, 0);
2001 if (ret)
2002 return ret;
2003 dev_addr += ssz;
2004 }
2005 getnstimeofday(&ts2);
2006
2007 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2008
2009 return 0;
2010 }
2011
2012 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2013 {
2014 int ret, i;
2015
2016 for (i = 0; i < 10; i++) {
2017 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2018 if (ret)
2019 return ret;
2020 }
2021 for (i = 0; i < 5; i++) {
2022 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2023 if (ret)
2024 return ret;
2025 }
2026 for (i = 0; i < 3; i++) {
2027 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2028 if (ret)
2029 return ret;
2030 }
2031
2032 return ret;
2033 }
2034
2035 /*
2036 * Large sequential read performance.
2037 */
2038 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2039 {
2040 return mmc_test_large_seq_perf(test, 0);
2041 }
2042
2043 /*
2044 * Large sequential write performance.
2045 */
2046 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2047 {
2048 return mmc_test_large_seq_perf(test, 1);
2049 }
2050
2051 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2052 struct mmc_test_multiple_rw *tdata,
2053 unsigned int reqsize, unsigned int size,
2054 int min_sg_len)
2055 {
2056 unsigned int dev_addr;
2057 struct mmc_test_area *t = &test->area;
2058 int ret = 0;
2059
2060 /* Set up test area */
2061 if (size > mmc_test_capacity(test->card) / 2 * 512)
2062 size = mmc_test_capacity(test->card) / 2 * 512;
2063 if (reqsize > t->max_tfr)
2064 reqsize = t->max_tfr;
2065 dev_addr = mmc_test_capacity(test->card) / 4;
2066 if ((dev_addr & 0xffff0000))
2067 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2068 else
2069 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2070 if (!dev_addr)
2071 goto err;
2072
2073 if (reqsize > size)
2074 return 0;
2075
2076 /* prepare test area */
2077 if (mmc_can_erase(test->card) &&
2078 tdata->prepare & MMC_TEST_PREP_ERASE) {
2079 ret = mmc_erase(test->card, dev_addr,
2080 size / 512, MMC_SECURE_ERASE_ARG);
2081 if (ret)
2082 ret = mmc_erase(test->card, dev_addr,
2083 size / 512, MMC_ERASE_ARG);
2084 if (ret)
2085 goto err;
2086 }
2087
2088 /* Run test */
2089 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2090 tdata->do_write, 0, 1, size / reqsize,
2091 tdata->do_nonblock_req, min_sg_len);
2092 if (ret)
2093 goto err;
2094
2095 return ret;
2096 err:
2097 pr_info("[%s] error\n", __func__);
2098 return ret;
2099 }
2100
2101 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2102 struct mmc_test_multiple_rw *rw)
2103 {
2104 int ret = 0;
2105 int i;
2106 void *pre_req = test->card->host->ops->pre_req;
2107 void *post_req = test->card->host->ops->post_req;
2108
2109 if (rw->do_nonblock_req &&
2110 ((!pre_req && post_req) || (pre_req && !post_req))) {
2111 pr_info("error: only one of pre/post is defined\n");
2112 return -EINVAL;
2113 }
2114
2115 for (i = 0 ; i < rw->len && ret == 0; i++) {
2116 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2117 if (ret)
2118 break;
2119 }
2120 return ret;
2121 }
2122
2123 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2124 struct mmc_test_multiple_rw *rw)
2125 {
2126 int ret = 0;
2127 int i;
2128
2129 for (i = 0 ; i < rw->len && ret == 0; i++) {
2130 ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2131 rw->sg_len[i]);
2132 if (ret)
2133 break;
2134 }
2135 return ret;
2136 }
2137
2138 /*
2139 * Multiple blocking write 4k to 4 MB chunks
2140 */
2141 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2142 {
2143 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2144 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2145 struct mmc_test_multiple_rw test_data = {
2146 .bs = bs,
2147 .size = TEST_AREA_MAX_SIZE,
2148 .len = ARRAY_SIZE(bs),
2149 .do_write = true,
2150 .do_nonblock_req = false,
2151 .prepare = MMC_TEST_PREP_ERASE,
2152 };
2153
2154 return mmc_test_rw_multiple_size(test, &test_data);
2155 };
2156
2157 /*
2158 * Multiple non-blocking write 4k to 4 MB chunks
2159 */
2160 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2161 {
2162 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2163 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2164 struct mmc_test_multiple_rw test_data = {
2165 .bs = bs,
2166 .size = TEST_AREA_MAX_SIZE,
2167 .len = ARRAY_SIZE(bs),
2168 .do_write = true,
2169 .do_nonblock_req = true,
2170 .prepare = MMC_TEST_PREP_ERASE,
2171 };
2172
2173 return mmc_test_rw_multiple_size(test, &test_data);
2174 }
2175
2176 /*
2177 * Multiple blocking read 4k to 4 MB chunks
2178 */
2179 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2180 {
2181 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2182 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2183 struct mmc_test_multiple_rw test_data = {
2184 .bs = bs,
2185 .size = TEST_AREA_MAX_SIZE,
2186 .len = ARRAY_SIZE(bs),
2187 .do_write = false,
2188 .do_nonblock_req = false,
2189 .prepare = MMC_TEST_PREP_NONE,
2190 };
2191
2192 return mmc_test_rw_multiple_size(test, &test_data);
2193 }
2194
2195 /*
2196 * Multiple non-blocking read 4k to 4 MB chunks
2197 */
2198 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2199 {
2200 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2201 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2202 struct mmc_test_multiple_rw test_data = {
2203 .bs = bs,
2204 .size = TEST_AREA_MAX_SIZE,
2205 .len = ARRAY_SIZE(bs),
2206 .do_write = false,
2207 .do_nonblock_req = true,
2208 .prepare = MMC_TEST_PREP_NONE,
2209 };
2210
2211 return mmc_test_rw_multiple_size(test, &test_data);
2212 }
2213
2214 /*
2215 * Multiple blocking write 1 to 512 sg elements
2216 */
2217 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2218 {
2219 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2220 1 << 7, 1 << 8, 1 << 9};
2221 struct mmc_test_multiple_rw test_data = {
2222 .sg_len = sg_len,
2223 .size = TEST_AREA_MAX_SIZE,
2224 .len = ARRAY_SIZE(sg_len),
2225 .do_write = true,
2226 .do_nonblock_req = false,
2227 .prepare = MMC_TEST_PREP_ERASE,
2228 };
2229
2230 return mmc_test_rw_multiple_sg_len(test, &test_data);
2231 };
2232
2233 /*
2234 * Multiple non-blocking write 1 to 512 sg elements
2235 */
2236 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2237 {
2238 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2239 1 << 7, 1 << 8, 1 << 9};
2240 struct mmc_test_multiple_rw test_data = {
2241 .sg_len = sg_len,
2242 .size = TEST_AREA_MAX_SIZE,
2243 .len = ARRAY_SIZE(sg_len),
2244 .do_write = true,
2245 .do_nonblock_req = true,
2246 .prepare = MMC_TEST_PREP_ERASE,
2247 };
2248
2249 return mmc_test_rw_multiple_sg_len(test, &test_data);
2250 }
2251
2252 /*
2253 * Multiple blocking read 1 to 512 sg elements
2254 */
2255 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2256 {
2257 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2258 1 << 7, 1 << 8, 1 << 9};
2259 struct mmc_test_multiple_rw test_data = {
2260 .sg_len = sg_len,
2261 .size = TEST_AREA_MAX_SIZE,
2262 .len = ARRAY_SIZE(sg_len),
2263 .do_write = false,
2264 .do_nonblock_req = false,
2265 .prepare = MMC_TEST_PREP_NONE,
2266 };
2267
2268 return mmc_test_rw_multiple_sg_len(test, &test_data);
2269 }
2270
2271 /*
2272 * Multiple non-blocking read 1 to 512 sg elements
2273 */
2274 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2275 {
2276 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2277 1 << 7, 1 << 8, 1 << 9};
2278 struct mmc_test_multiple_rw test_data = {
2279 .sg_len = sg_len,
2280 .size = TEST_AREA_MAX_SIZE,
2281 .len = ARRAY_SIZE(sg_len),
2282 .do_write = false,
2283 .do_nonblock_req = true,
2284 .prepare = MMC_TEST_PREP_NONE,
2285 };
2286
2287 return mmc_test_rw_multiple_sg_len(test, &test_data);
2288 }
2289
2290 /*
2291 * eMMC hardware reset.
2292 */
2293 static int mmc_test_reset(struct mmc_test_card *test)
2294 {
2295 struct mmc_card *card = test->card;
2296 struct mmc_host *host = card->host;
2297 int err;
2298
2299 err = mmc_hw_reset(host);
2300 if (!err)
2301 return RESULT_OK;
2302 else if (err == -EOPNOTSUPP)
2303 return RESULT_UNSUP_HOST;
2304
2305 return RESULT_FAIL;
2306 }
2307
2308 struct mmc_test_req {
2309 struct mmc_request mrq;
2310 struct mmc_command sbc;
2311 struct mmc_command cmd;
2312 struct mmc_command stop;
2313 struct mmc_command status;
2314 struct mmc_data data;
2315 };
2316
2317 static struct mmc_test_req *mmc_test_req_alloc(void)
2318 {
2319 struct mmc_test_req *rq = kzalloc(sizeof(*rq), GFP_KERNEL);
2320
2321 if (rq) {
2322 rq->mrq.cmd = &rq->cmd;
2323 rq->mrq.data = &rq->data;
2324 rq->mrq.stop = &rq->stop;
2325 }
2326
2327 return rq;
2328 }
2329
2330 static int mmc_test_send_status(struct mmc_test_card *test,
2331 struct mmc_command *cmd)
2332 {
2333 memset(cmd, 0, sizeof(*cmd));
2334
2335 cmd->opcode = MMC_SEND_STATUS;
2336 if (!mmc_host_is_spi(test->card->host))
2337 cmd->arg = test->card->rca << 16;
2338 cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2339
2340 return mmc_wait_for_cmd(test->card->host, cmd, 0);
2341 }
2342
2343 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2344 unsigned int dev_addr, int use_sbc,
2345 int repeat_cmd, int write, int use_areq)
2346 {
2347 struct mmc_test_req *rq = mmc_test_req_alloc();
2348 struct mmc_host *host = test->card->host;
2349 struct mmc_test_area *t = &test->area;
2350 struct mmc_async_req areq;
2351 struct mmc_request *mrq;
2352 unsigned long timeout;
2353 bool expired = false;
2354 int ret = 0, cmd_ret;
2355 u32 status = 0;
2356 int count = 0;
2357
2358 if (!rq)
2359 return -ENOMEM;
2360
2361 mrq = &rq->mrq;
2362 if (use_sbc)
2363 mrq->sbc = &rq->sbc;
2364 mrq->cap_cmd_during_tfr = true;
2365
2366 areq.mrq = mrq;
2367 areq.err_check = mmc_test_check_result_async;
2368
2369 mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2370 512, write);
2371
2372 if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2373 ret = mmc_host_cmd23(host) ?
2374 RESULT_UNSUP_CARD :
2375 RESULT_UNSUP_HOST;
2376 goto out_free;
2377 }
2378
2379 /* Start ongoing data request */
2380 if (use_areq) {
2381 mmc_start_req(host, &areq, &ret);
2382 if (ret)
2383 goto out_free;
2384 } else {
2385 mmc_wait_for_req(host, mrq);
2386 }
2387
2388 timeout = jiffies + msecs_to_jiffies(3000);
2389 do {
2390 count += 1;
2391
2392 /* Send status command while data transfer in progress */
2393 cmd_ret = mmc_test_send_status(test, &rq->status);
2394 if (cmd_ret)
2395 break;
2396
2397 status = rq->status.resp[0];
2398 if (status & R1_ERROR) {
2399 cmd_ret = -EIO;
2400 break;
2401 }
2402
2403 if (mmc_is_req_done(host, mrq))
2404 break;
2405
2406 expired = time_after(jiffies, timeout);
2407 if (expired) {
2408 pr_info("%s: timeout waiting for Tran state status %#x\n",
2409 mmc_hostname(host), status);
2410 cmd_ret = -ETIMEDOUT;
2411 break;
2412 }
2413 } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2414
2415 /* Wait for data request to complete */
2416 if (use_areq)
2417 mmc_start_req(host, NULL, &ret);
2418 else
2419 mmc_wait_for_req_done(test->card->host, mrq);
2420
2421 /*
2422 * For cap_cmd_during_tfr request, upper layer must send stop if
2423 * required.
2424 */
2425 if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2426 if (ret)
2427 mmc_wait_for_cmd(host, mrq->data->stop, 0);
2428 else
2429 ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2430 }
2431
2432 if (ret)
2433 goto out_free;
2434
2435 if (cmd_ret) {
2436 pr_info("%s: Send Status failed: status %#x, error %d\n",
2437 mmc_hostname(test->card->host), status, cmd_ret);
2438 }
2439
2440 ret = mmc_test_check_result(test, mrq);
2441 if (ret)
2442 goto out_free;
2443
2444 ret = mmc_test_wait_busy(test);
2445 if (ret)
2446 goto out_free;
2447
2448 if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2449 pr_info("%s: %d commands completed during transfer of %u blocks\n",
2450 mmc_hostname(test->card->host), count, t->blocks);
2451
2452 if (cmd_ret)
2453 ret = cmd_ret;
2454 out_free:
2455 kfree(rq);
2456
2457 return ret;
2458 }
2459
2460 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2461 unsigned long sz, int use_sbc, int write,
2462 int use_areq)
2463 {
2464 struct mmc_test_area *t = &test->area;
2465 int ret;
2466
2467 if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2468 return RESULT_UNSUP_HOST;
2469
2470 ret = mmc_test_area_map(test, sz, 0, 0);
2471 if (ret)
2472 return ret;
2473
2474 ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2475 use_areq);
2476 if (ret)
2477 return ret;
2478
2479 return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2480 use_areq);
2481 }
2482
2483 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2484 int write, int use_areq)
2485 {
2486 struct mmc_test_area *t = &test->area;
2487 unsigned long sz;
2488 int ret;
2489
2490 for (sz = 512; sz <= t->max_tfr; sz += 512) {
2491 ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2492 use_areq);
2493 if (ret)
2494 return ret;
2495 }
2496 return 0;
2497 }
2498
2499 /*
2500 * Commands during read - no Set Block Count (CMD23).
2501 */
2502 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2503 {
2504 return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2505 }
2506
2507 /*
2508 * Commands during write - no Set Block Count (CMD23).
2509 */
2510 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2511 {
2512 return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2513 }
2514
2515 /*
2516 * Commands during read - use Set Block Count (CMD23).
2517 */
2518 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2519 {
2520 return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2521 }
2522
2523 /*
2524 * Commands during write - use Set Block Count (CMD23).
2525 */
2526 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2527 {
2528 return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2529 }
2530
2531 /*
2532 * Commands during non-blocking read - use Set Block Count (CMD23).
2533 */
2534 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2535 {
2536 return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2537 }
2538
2539 /*
2540 * Commands during non-blocking write - use Set Block Count (CMD23).
2541 */
2542 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2543 {
2544 return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2545 }
2546
2547 static const struct mmc_test_case mmc_test_cases[] = {
2548 {
2549 .name = "Basic write (no data verification)",
2550 .run = mmc_test_basic_write,
2551 },
2552
2553 {
2554 .name = "Basic read (no data verification)",
2555 .run = mmc_test_basic_read,
2556 },
2557
2558 {
2559 .name = "Basic write (with data verification)",
2560 .prepare = mmc_test_prepare_write,
2561 .run = mmc_test_verify_write,
2562 .cleanup = mmc_test_cleanup,
2563 },
2564
2565 {
2566 .name = "Basic read (with data verification)",
2567 .prepare = mmc_test_prepare_read,
2568 .run = mmc_test_verify_read,
2569 .cleanup = mmc_test_cleanup,
2570 },
2571
2572 {
2573 .name = "Multi-block write",
2574 .prepare = mmc_test_prepare_write,
2575 .run = mmc_test_multi_write,
2576 .cleanup = mmc_test_cleanup,
2577 },
2578
2579 {
2580 .name = "Multi-block read",
2581 .prepare = mmc_test_prepare_read,
2582 .run = mmc_test_multi_read,
2583 .cleanup = mmc_test_cleanup,
2584 },
2585
2586 {
2587 .name = "Power of two block writes",
2588 .prepare = mmc_test_prepare_write,
2589 .run = mmc_test_pow2_write,
2590 .cleanup = mmc_test_cleanup,
2591 },
2592
2593 {
2594 .name = "Power of two block reads",
2595 .prepare = mmc_test_prepare_read,
2596 .run = mmc_test_pow2_read,
2597 .cleanup = mmc_test_cleanup,
2598 },
2599
2600 {
2601 .name = "Weird sized block writes",
2602 .prepare = mmc_test_prepare_write,
2603 .run = mmc_test_weird_write,
2604 .cleanup = mmc_test_cleanup,
2605 },
2606
2607 {
2608 .name = "Weird sized block reads",
2609 .prepare = mmc_test_prepare_read,
2610 .run = mmc_test_weird_read,
2611 .cleanup = mmc_test_cleanup,
2612 },
2613
2614 {
2615 .name = "Badly aligned write",
2616 .prepare = mmc_test_prepare_write,
2617 .run = mmc_test_align_write,
2618 .cleanup = mmc_test_cleanup,
2619 },
2620
2621 {
2622 .name = "Badly aligned read",
2623 .prepare = mmc_test_prepare_read,
2624 .run = mmc_test_align_read,
2625 .cleanup = mmc_test_cleanup,
2626 },
2627
2628 {
2629 .name = "Badly aligned multi-block write",
2630 .prepare = mmc_test_prepare_write,
2631 .run = mmc_test_align_multi_write,
2632 .cleanup = mmc_test_cleanup,
2633 },
2634
2635 {
2636 .name = "Badly aligned multi-block read",
2637 .prepare = mmc_test_prepare_read,
2638 .run = mmc_test_align_multi_read,
2639 .cleanup = mmc_test_cleanup,
2640 },
2641
2642 {
2643 .name = "Correct xfer_size at write (start failure)",
2644 .run = mmc_test_xfersize_write,
2645 },
2646
2647 {
2648 .name = "Correct xfer_size at read (start failure)",
2649 .run = mmc_test_xfersize_read,
2650 },
2651
2652 {
2653 .name = "Correct xfer_size at write (midway failure)",
2654 .run = mmc_test_multi_xfersize_write,
2655 },
2656
2657 {
2658 .name = "Correct xfer_size at read (midway failure)",
2659 .run = mmc_test_multi_xfersize_read,
2660 },
2661
2662 #ifdef CONFIG_HIGHMEM
2663
2664 {
2665 .name = "Highmem write",
2666 .prepare = mmc_test_prepare_write,
2667 .run = mmc_test_write_high,
2668 .cleanup = mmc_test_cleanup,
2669 },
2670
2671 {
2672 .name = "Highmem read",
2673 .prepare = mmc_test_prepare_read,
2674 .run = mmc_test_read_high,
2675 .cleanup = mmc_test_cleanup,
2676 },
2677
2678 {
2679 .name = "Multi-block highmem write",
2680 .prepare = mmc_test_prepare_write,
2681 .run = mmc_test_multi_write_high,
2682 .cleanup = mmc_test_cleanup,
2683 },
2684
2685 {
2686 .name = "Multi-block highmem read",
2687 .prepare = mmc_test_prepare_read,
2688 .run = mmc_test_multi_read_high,
2689 .cleanup = mmc_test_cleanup,
2690 },
2691
2692 #else
2693
2694 {
2695 .name = "Highmem write",
2696 .run = mmc_test_no_highmem,
2697 },
2698
2699 {
2700 .name = "Highmem read",
2701 .run = mmc_test_no_highmem,
2702 },
2703
2704 {
2705 .name = "Multi-block highmem write",
2706 .run = mmc_test_no_highmem,
2707 },
2708
2709 {
2710 .name = "Multi-block highmem read",
2711 .run = mmc_test_no_highmem,
2712 },
2713
2714 #endif /* CONFIG_HIGHMEM */
2715
2716 {
2717 .name = "Best-case read performance",
2718 .prepare = mmc_test_area_prepare_fill,
2719 .run = mmc_test_best_read_performance,
2720 .cleanup = mmc_test_area_cleanup,
2721 },
2722
2723 {
2724 .name = "Best-case write performance",
2725 .prepare = mmc_test_area_prepare_erase,
2726 .run = mmc_test_best_write_performance,
2727 .cleanup = mmc_test_area_cleanup,
2728 },
2729
2730 {
2731 .name = "Best-case read performance into scattered pages",
2732 .prepare = mmc_test_area_prepare_fill,
2733 .run = mmc_test_best_read_perf_max_scatter,
2734 .cleanup = mmc_test_area_cleanup,
2735 },
2736
2737 {
2738 .name = "Best-case write performance from scattered pages",
2739 .prepare = mmc_test_area_prepare_erase,
2740 .run = mmc_test_best_write_perf_max_scatter,
2741 .cleanup = mmc_test_area_cleanup,
2742 },
2743
2744 {
2745 .name = "Single read performance by transfer size",
2746 .prepare = mmc_test_area_prepare_fill,
2747 .run = mmc_test_profile_read_perf,
2748 .cleanup = mmc_test_area_cleanup,
2749 },
2750
2751 {
2752 .name = "Single write performance by transfer size",
2753 .prepare = mmc_test_area_prepare,
2754 .run = mmc_test_profile_write_perf,
2755 .cleanup = mmc_test_area_cleanup,
2756 },
2757
2758 {
2759 .name = "Single trim performance by transfer size",
2760 .prepare = mmc_test_area_prepare_fill,
2761 .run = mmc_test_profile_trim_perf,
2762 .cleanup = mmc_test_area_cleanup,
2763 },
2764
2765 {
2766 .name = "Consecutive read performance by transfer size",
2767 .prepare = mmc_test_area_prepare_fill,
2768 .run = mmc_test_profile_seq_read_perf,
2769 .cleanup = mmc_test_area_cleanup,
2770 },
2771
2772 {
2773 .name = "Consecutive write performance by transfer size",
2774 .prepare = mmc_test_area_prepare,
2775 .run = mmc_test_profile_seq_write_perf,
2776 .cleanup = mmc_test_area_cleanup,
2777 },
2778
2779 {
2780 .name = "Consecutive trim performance by transfer size",
2781 .prepare = mmc_test_area_prepare,
2782 .run = mmc_test_profile_seq_trim_perf,
2783 .cleanup = mmc_test_area_cleanup,
2784 },
2785
2786 {
2787 .name = "Random read performance by transfer size",
2788 .prepare = mmc_test_area_prepare,
2789 .run = mmc_test_random_read_perf,
2790 .cleanup = mmc_test_area_cleanup,
2791 },
2792
2793 {
2794 .name = "Random write performance by transfer size",
2795 .prepare = mmc_test_area_prepare,
2796 .run = mmc_test_random_write_perf,
2797 .cleanup = mmc_test_area_cleanup,
2798 },
2799
2800 {
2801 .name = "Large sequential read into scattered pages",
2802 .prepare = mmc_test_area_prepare,
2803 .run = mmc_test_large_seq_read_perf,
2804 .cleanup = mmc_test_area_cleanup,
2805 },
2806
2807 {
2808 .name = "Large sequential write from scattered pages",
2809 .prepare = mmc_test_area_prepare,
2810 .run = mmc_test_large_seq_write_perf,
2811 .cleanup = mmc_test_area_cleanup,
2812 },
2813
2814 {
2815 .name = "Write performance with blocking req 4k to 4MB",
2816 .prepare = mmc_test_area_prepare,
2817 .run = mmc_test_profile_mult_write_blocking_perf,
2818 .cleanup = mmc_test_area_cleanup,
2819 },
2820
2821 {
2822 .name = "Write performance with non-blocking req 4k to 4MB",
2823 .prepare = mmc_test_area_prepare,
2824 .run = mmc_test_profile_mult_write_nonblock_perf,
2825 .cleanup = mmc_test_area_cleanup,
2826 },
2827
2828 {
2829 .name = "Read performance with blocking req 4k to 4MB",
2830 .prepare = mmc_test_area_prepare,
2831 .run = mmc_test_profile_mult_read_blocking_perf,
2832 .cleanup = mmc_test_area_cleanup,
2833 },
2834
2835 {
2836 .name = "Read performance with non-blocking req 4k to 4MB",
2837 .prepare = mmc_test_area_prepare,
2838 .run = mmc_test_profile_mult_read_nonblock_perf,
2839 .cleanup = mmc_test_area_cleanup,
2840 },
2841
2842 {
2843 .name = "Write performance blocking req 1 to 512 sg elems",
2844 .prepare = mmc_test_area_prepare,
2845 .run = mmc_test_profile_sglen_wr_blocking_perf,
2846 .cleanup = mmc_test_area_cleanup,
2847 },
2848
2849 {
2850 .name = "Write performance non-blocking req 1 to 512 sg elems",
2851 .prepare = mmc_test_area_prepare,
2852 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2853 .cleanup = mmc_test_area_cleanup,
2854 },
2855
2856 {
2857 .name = "Read performance blocking req 1 to 512 sg elems",
2858 .prepare = mmc_test_area_prepare,
2859 .run = mmc_test_profile_sglen_r_blocking_perf,
2860 .cleanup = mmc_test_area_cleanup,
2861 },
2862
2863 {
2864 .name = "Read performance non-blocking req 1 to 512 sg elems",
2865 .prepare = mmc_test_area_prepare,
2866 .run = mmc_test_profile_sglen_r_nonblock_perf,
2867 .cleanup = mmc_test_area_cleanup,
2868 },
2869
2870 {
2871 .name = "Reset test",
2872 .run = mmc_test_reset,
2873 },
2874
2875 {
2876 .name = "Commands during read - no Set Block Count (CMD23)",
2877 .prepare = mmc_test_area_prepare,
2878 .run = mmc_test_cmds_during_read,
2879 .cleanup = mmc_test_area_cleanup,
2880 },
2881
2882 {
2883 .name = "Commands during write - no Set Block Count (CMD23)",
2884 .prepare = mmc_test_area_prepare,
2885 .run = mmc_test_cmds_during_write,
2886 .cleanup = mmc_test_area_cleanup,
2887 },
2888
2889 {
2890 .name = "Commands during read - use Set Block Count (CMD23)",
2891 .prepare = mmc_test_area_prepare,
2892 .run = mmc_test_cmds_during_read_cmd23,
2893 .cleanup = mmc_test_area_cleanup,
2894 },
2895
2896 {
2897 .name = "Commands during write - use Set Block Count (CMD23)",
2898 .prepare = mmc_test_area_prepare,
2899 .run = mmc_test_cmds_during_write_cmd23,
2900 .cleanup = mmc_test_area_cleanup,
2901 },
2902
2903 {
2904 .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2905 .prepare = mmc_test_area_prepare,
2906 .run = mmc_test_cmds_during_read_cmd23_nonblock,
2907 .cleanup = mmc_test_area_cleanup,
2908 },
2909
2910 {
2911 .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2912 .prepare = mmc_test_area_prepare,
2913 .run = mmc_test_cmds_during_write_cmd23_nonblock,
2914 .cleanup = mmc_test_area_cleanup,
2915 },
2916 };
2917
2918 static DEFINE_MUTEX(mmc_test_lock);
2919
2920 static LIST_HEAD(mmc_test_result);
2921
2922 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2923 {
2924 int i, ret;
2925
2926 pr_info("%s: Starting tests of card %s...\n",
2927 mmc_hostname(test->card->host), mmc_card_id(test->card));
2928
2929 mmc_claim_host(test->card->host);
2930
2931 for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2932 struct mmc_test_general_result *gr;
2933
2934 if (testcase && ((i + 1) != testcase))
2935 continue;
2936
2937 pr_info("%s: Test case %d. %s...\n",
2938 mmc_hostname(test->card->host), i + 1,
2939 mmc_test_cases[i].name);
2940
2941 if (mmc_test_cases[i].prepare) {
2942 ret = mmc_test_cases[i].prepare(test);
2943 if (ret) {
2944 pr_info("%s: Result: Prepare "
2945 "stage failed! (%d)\n",
2946 mmc_hostname(test->card->host),
2947 ret);
2948 continue;
2949 }
2950 }
2951
2952 gr = kzalloc(sizeof(struct mmc_test_general_result),
2953 GFP_KERNEL);
2954 if (gr) {
2955 INIT_LIST_HEAD(&gr->tr_lst);
2956
2957 /* Assign data what we know already */
2958 gr->card = test->card;
2959 gr->testcase = i;
2960
2961 /* Append container to global one */
2962 list_add_tail(&gr->link, &mmc_test_result);
2963
2964 /*
2965 * Save the pointer to created container in our private
2966 * structure.
2967 */
2968 test->gr = gr;
2969 }
2970
2971 ret = mmc_test_cases[i].run(test);
2972 switch (ret) {
2973 case RESULT_OK:
2974 pr_info("%s: Result: OK\n",
2975 mmc_hostname(test->card->host));
2976 break;
2977 case RESULT_FAIL:
2978 pr_info("%s: Result: FAILED\n",
2979 mmc_hostname(test->card->host));
2980 break;
2981 case RESULT_UNSUP_HOST:
2982 pr_info("%s: Result: UNSUPPORTED "
2983 "(by host)\n",
2984 mmc_hostname(test->card->host));
2985 break;
2986 case RESULT_UNSUP_CARD:
2987 pr_info("%s: Result: UNSUPPORTED "
2988 "(by card)\n",
2989 mmc_hostname(test->card->host));
2990 break;
2991 default:
2992 pr_info("%s: Result: ERROR (%d)\n",
2993 mmc_hostname(test->card->host), ret);
2994 }
2995
2996 /* Save the result */
2997 if (gr)
2998 gr->result = ret;
2999
3000 if (mmc_test_cases[i].cleanup) {
3001 ret = mmc_test_cases[i].cleanup(test);
3002 if (ret) {
3003 pr_info("%s: Warning: Cleanup "
3004 "stage failed! (%d)\n",
3005 mmc_hostname(test->card->host),
3006 ret);
3007 }
3008 }
3009 }
3010
3011 mmc_release_host(test->card->host);
3012
3013 pr_info("%s: Tests completed.\n",
3014 mmc_hostname(test->card->host));
3015 }
3016
3017 static void mmc_test_free_result(struct mmc_card *card)
3018 {
3019 struct mmc_test_general_result *gr, *grs;
3020
3021 mutex_lock(&mmc_test_lock);
3022
3023 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3024 struct mmc_test_transfer_result *tr, *trs;
3025
3026 if (card && gr->card != card)
3027 continue;
3028
3029 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3030 list_del(&tr->link);
3031 kfree(tr);
3032 }
3033
3034 list_del(&gr->link);
3035 kfree(gr);
3036 }
3037
3038 mutex_unlock(&mmc_test_lock);
3039 }
3040
3041 static LIST_HEAD(mmc_test_file_test);
3042
3043 static int mtf_test_show(struct seq_file *sf, void *data)
3044 {
3045 struct mmc_card *card = (struct mmc_card *)sf->private;
3046 struct mmc_test_general_result *gr;
3047
3048 mutex_lock(&mmc_test_lock);
3049
3050 list_for_each_entry(gr, &mmc_test_result, link) {
3051 struct mmc_test_transfer_result *tr;
3052
3053 if (gr->card != card)
3054 continue;
3055
3056 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3057
3058 list_for_each_entry(tr, &gr->tr_lst, link) {
3059 seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
3060 tr->count, tr->sectors,
3061 (unsigned long)tr->ts.tv_sec,
3062 (unsigned long)tr->ts.tv_nsec,
3063 tr->rate, tr->iops / 100, tr->iops % 100);
3064 }
3065 }
3066
3067 mutex_unlock(&mmc_test_lock);
3068
3069 return 0;
3070 }
3071
3072 static int mtf_test_open(struct inode *inode, struct file *file)
3073 {
3074 return single_open(file, mtf_test_show, inode->i_private);
3075 }
3076
3077 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3078 size_t count, loff_t *pos)
3079 {
3080 struct seq_file *sf = (struct seq_file *)file->private_data;
3081 struct mmc_card *card = (struct mmc_card *)sf->private;
3082 struct mmc_test_card *test;
3083 long testcase;
3084 int ret;
3085
3086 ret = kstrtol_from_user(buf, count, 10, &testcase);
3087 if (ret)
3088 return ret;
3089
3090 test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
3091 if (!test)
3092 return -ENOMEM;
3093
3094 /*
3095 * Remove all test cases associated with given card. Thus we have only
3096 * actual data of the last run.
3097 */
3098 mmc_test_free_result(card);
3099
3100 test->card = card;
3101
3102 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3103 #ifdef CONFIG_HIGHMEM
3104 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3105 #endif
3106
3107 #ifdef CONFIG_HIGHMEM
3108 if (test->buffer && test->highmem) {
3109 #else
3110 if (test->buffer) {
3111 #endif
3112 mutex_lock(&mmc_test_lock);
3113 mmc_test_run(test, testcase);
3114 mutex_unlock(&mmc_test_lock);
3115 }
3116
3117 #ifdef CONFIG_HIGHMEM
3118 __free_pages(test->highmem, BUFFER_ORDER);
3119 #endif
3120 kfree(test->buffer);
3121 kfree(test);
3122
3123 return count;
3124 }
3125
3126 static const struct file_operations mmc_test_fops_test = {
3127 .open = mtf_test_open,
3128 .read = seq_read,
3129 .write = mtf_test_write,
3130 .llseek = seq_lseek,
3131 .release = single_release,
3132 };
3133
3134 static int mtf_testlist_show(struct seq_file *sf, void *data)
3135 {
3136 int i;
3137
3138 mutex_lock(&mmc_test_lock);
3139
3140 seq_printf(sf, "0:\tRun all tests\n");
3141 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3142 seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
3143
3144 mutex_unlock(&mmc_test_lock);
3145
3146 return 0;
3147 }
3148
3149 static int mtf_testlist_open(struct inode *inode, struct file *file)
3150 {
3151 return single_open(file, mtf_testlist_show, inode->i_private);
3152 }
3153
3154 static const struct file_operations mmc_test_fops_testlist = {
3155 .open = mtf_testlist_open,
3156 .read = seq_read,
3157 .llseek = seq_lseek,
3158 .release = single_release,
3159 };
3160
3161 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3162 {
3163 struct mmc_test_dbgfs_file *df, *dfs;
3164
3165 mutex_lock(&mmc_test_lock);
3166
3167 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3168 if (card && df->card != card)
3169 continue;
3170 debugfs_remove(df->file);
3171 list_del(&df->link);
3172 kfree(df);
3173 }
3174
3175 mutex_unlock(&mmc_test_lock);
3176 }
3177
3178 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3179 const char *name, umode_t mode, const struct file_operations *fops)
3180 {
3181 struct dentry *file = NULL;
3182 struct mmc_test_dbgfs_file *df;
3183
3184 if (card->debugfs_root)
3185 file = debugfs_create_file(name, mode, card->debugfs_root,
3186 card, fops);
3187
3188 if (IS_ERR_OR_NULL(file)) {
3189 dev_err(&card->dev,
3190 "Can't create %s. Perhaps debugfs is disabled.\n",
3191 name);
3192 return -ENODEV;
3193 }
3194
3195 df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
3196 if (!df) {
3197 debugfs_remove(file);
3198 dev_err(&card->dev,
3199 "Can't allocate memory for internal usage.\n");
3200 return -ENOMEM;
3201 }
3202
3203 df->card = card;
3204 df->file = file;
3205
3206 list_add(&df->link, &mmc_test_file_test);
3207 return 0;
3208 }
3209
3210 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3211 {
3212 int ret;
3213
3214 mutex_lock(&mmc_test_lock);
3215
3216 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3217 &mmc_test_fops_test);
3218 if (ret)
3219 goto err;
3220
3221 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3222 &mmc_test_fops_testlist);
3223 if (ret)
3224 goto err;
3225
3226 err:
3227 mutex_unlock(&mmc_test_lock);
3228
3229 return ret;
3230 }
3231
3232 static int mmc_test_probe(struct mmc_card *card)
3233 {
3234 int ret;
3235
3236 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3237 return -ENODEV;
3238
3239 ret = mmc_test_register_dbgfs_file(card);
3240 if (ret)
3241 return ret;
3242
3243 dev_info(&card->dev, "Card claimed for testing.\n");
3244
3245 return 0;
3246 }
3247
3248 static void mmc_test_remove(struct mmc_card *card)
3249 {
3250 mmc_test_free_result(card);
3251 mmc_test_free_dbgfs_file(card);
3252 }
3253
3254 static void mmc_test_shutdown(struct mmc_card *card)
3255 {
3256 }
3257
3258 static struct mmc_driver mmc_driver = {
3259 .drv = {
3260 .name = "mmc_test",
3261 },
3262 .probe = mmc_test_probe,
3263 .remove = mmc_test_remove,
3264 .shutdown = mmc_test_shutdown,
3265 };
3266
3267 static int __init mmc_test_init(void)
3268 {
3269 return mmc_register_driver(&mmc_driver);
3270 }
3271
3272 static void __exit mmc_test_exit(void)
3273 {
3274 /* Clear stalled data if card is still plugged */
3275 mmc_test_free_result(NULL);
3276 mmc_test_free_dbgfs_file(NULL);
3277
3278 mmc_unregister_driver(&mmc_driver);
3279 }
3280
3281 module_init(mmc_test_init);
3282 module_exit(mmc_test_exit);
3283
3284 MODULE_LICENSE("GPL");
3285 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3286 MODULE_AUTHOR("Pierre Ossman");
This page took 0.102419 seconds and 5 git commands to generate.