Merge branch 'keys-asym-keyctl' into keys-next
[deliverable/linux.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
54
55 /*
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
58 */
59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
60
61 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
62
63 /*
64 * Enabling software CRCs on the data blocks can be a significant (30%)
65 * performance cost, and for other reasons may not always be desired.
66 * So we allow it it to be disabled.
67 */
68 bool use_spi_crc = 1;
69 module_param(use_spi_crc, bool, 0);
70
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73 {
74 /*
75 * We use the system_freezable_wq, because of two reasons.
76 * First, it allows several works (not the same work item) to be
77 * executed simultaneously. Second, the queue becomes frozen when
78 * userspace becomes frozen during system PM.
79 */
80 return queue_delayed_work(system_freezable_wq, work, delay);
81 }
82
83 #ifdef CONFIG_FAIL_MMC_REQUEST
84
85 /*
86 * Internal function. Inject random data errors.
87 * If mmc_data is NULL no errors are injected.
88 */
89 static void mmc_should_fail_request(struct mmc_host *host,
90 struct mmc_request *mrq)
91 {
92 struct mmc_command *cmd = mrq->cmd;
93 struct mmc_data *data = mrq->data;
94 static const int data_errors[] = {
95 -ETIMEDOUT,
96 -EILSEQ,
97 -EIO,
98 };
99
100 if (!data)
101 return;
102
103 if (cmd->error || data->error ||
104 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
105 return;
106
107 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
108 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
109 }
110
111 #else /* CONFIG_FAIL_MMC_REQUEST */
112
113 static inline void mmc_should_fail_request(struct mmc_host *host,
114 struct mmc_request *mrq)
115 {
116 }
117
118 #endif /* CONFIG_FAIL_MMC_REQUEST */
119
120 /**
121 * mmc_request_done - finish processing an MMC request
122 * @host: MMC host which completed request
123 * @mrq: MMC request which request
124 *
125 * MMC drivers should call this function when they have completed
126 * their processing of a request.
127 */
128 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
129 {
130 struct mmc_command *cmd = mrq->cmd;
131 int err = cmd->error;
132
133 /* Flag re-tuning needed on CRC errors */
134 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
135 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
136 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
137 (mrq->data && mrq->data->error == -EILSEQ) ||
138 (mrq->stop && mrq->stop->error == -EILSEQ)))
139 mmc_retune_needed(host);
140
141 if (err && cmd->retries && mmc_host_is_spi(host)) {
142 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
143 cmd->retries = 0;
144 }
145
146 trace_mmc_request_done(host, mrq);
147
148 if (err && cmd->retries && !mmc_card_removed(host->card)) {
149 /*
150 * Request starter must handle retries - see
151 * mmc_wait_for_req_done().
152 */
153 if (mrq->done)
154 mrq->done(mrq);
155 } else {
156 mmc_should_fail_request(host, mrq);
157
158 led_trigger_event(host->led, LED_OFF);
159
160 if (mrq->sbc) {
161 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
162 mmc_hostname(host), mrq->sbc->opcode,
163 mrq->sbc->error,
164 mrq->sbc->resp[0], mrq->sbc->resp[1],
165 mrq->sbc->resp[2], mrq->sbc->resp[3]);
166 }
167
168 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
169 mmc_hostname(host), cmd->opcode, err,
170 cmd->resp[0], cmd->resp[1],
171 cmd->resp[2], cmd->resp[3]);
172
173 if (mrq->data) {
174 pr_debug("%s: %d bytes transferred: %d\n",
175 mmc_hostname(host),
176 mrq->data->bytes_xfered, mrq->data->error);
177 }
178
179 if (mrq->stop) {
180 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->stop->opcode,
182 mrq->stop->error,
183 mrq->stop->resp[0], mrq->stop->resp[1],
184 mrq->stop->resp[2], mrq->stop->resp[3]);
185 }
186
187 if (mrq->done)
188 mrq->done(mrq);
189 }
190 }
191
192 EXPORT_SYMBOL(mmc_request_done);
193
194 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
195 {
196 int err;
197
198 /* Assumes host controller has been runtime resumed by mmc_claim_host */
199 err = mmc_retune(host);
200 if (err) {
201 mrq->cmd->error = err;
202 mmc_request_done(host, mrq);
203 return;
204 }
205
206 /*
207 * For sdio rw commands we must wait for card busy otherwise some
208 * sdio devices won't work properly.
209 */
210 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
211 int tries = 500; /* Wait aprox 500ms at maximum */
212
213 while (host->ops->card_busy(host) && --tries)
214 mmc_delay(1);
215
216 if (tries == 0) {
217 mrq->cmd->error = -EBUSY;
218 mmc_request_done(host, mrq);
219 return;
220 }
221 }
222
223 trace_mmc_request_start(host, mrq);
224
225 host->ops->request(host, mrq);
226 }
227
228 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
229 {
230 #ifdef CONFIG_MMC_DEBUG
231 unsigned int i, sz;
232 struct scatterlist *sg;
233 #endif
234 mmc_retune_hold(host);
235
236 if (mmc_card_removed(host->card))
237 return -ENOMEDIUM;
238
239 if (mrq->sbc) {
240 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
241 mmc_hostname(host), mrq->sbc->opcode,
242 mrq->sbc->arg, mrq->sbc->flags);
243 }
244
245 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
246 mmc_hostname(host), mrq->cmd->opcode,
247 mrq->cmd->arg, mrq->cmd->flags);
248
249 if (mrq->data) {
250 pr_debug("%s: blksz %d blocks %d flags %08x "
251 "tsac %d ms nsac %d\n",
252 mmc_hostname(host), mrq->data->blksz,
253 mrq->data->blocks, mrq->data->flags,
254 mrq->data->timeout_ns / 1000000,
255 mrq->data->timeout_clks);
256 }
257
258 if (mrq->stop) {
259 pr_debug("%s: CMD%u arg %08x flags %08x\n",
260 mmc_hostname(host), mrq->stop->opcode,
261 mrq->stop->arg, mrq->stop->flags);
262 }
263
264 WARN_ON(!host->claimed);
265
266 mrq->cmd->error = 0;
267 mrq->cmd->mrq = mrq;
268 if (mrq->sbc) {
269 mrq->sbc->error = 0;
270 mrq->sbc->mrq = mrq;
271 }
272 if (mrq->data) {
273 BUG_ON(mrq->data->blksz > host->max_blk_size);
274 BUG_ON(mrq->data->blocks > host->max_blk_count);
275 BUG_ON(mrq->data->blocks * mrq->data->blksz >
276 host->max_req_size);
277
278 #ifdef CONFIG_MMC_DEBUG
279 sz = 0;
280 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
281 sz += sg->length;
282 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
283 #endif
284
285 mrq->cmd->data = mrq->data;
286 mrq->data->error = 0;
287 mrq->data->mrq = mrq;
288 if (mrq->stop) {
289 mrq->data->stop = mrq->stop;
290 mrq->stop->error = 0;
291 mrq->stop->mrq = mrq;
292 }
293 }
294 led_trigger_event(host->led, LED_FULL);
295 __mmc_start_request(host, mrq);
296
297 return 0;
298 }
299
300 /**
301 * mmc_start_bkops - start BKOPS for supported cards
302 * @card: MMC card to start BKOPS
303 * @form_exception: A flag to indicate if this function was
304 * called due to an exception raised by the card
305 *
306 * Start background operations whenever requested.
307 * When the urgent BKOPS bit is set in a R1 command response
308 * then background operations should be started immediately.
309 */
310 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
311 {
312 int err;
313 int timeout;
314 bool use_busy_signal;
315
316 BUG_ON(!card);
317
318 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
319 return;
320
321 err = mmc_read_bkops_status(card);
322 if (err) {
323 pr_err("%s: Failed to read bkops status: %d\n",
324 mmc_hostname(card->host), err);
325 return;
326 }
327
328 if (!card->ext_csd.raw_bkops_status)
329 return;
330
331 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
332 from_exception)
333 return;
334
335 mmc_claim_host(card->host);
336 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
337 timeout = MMC_BKOPS_MAX_TIMEOUT;
338 use_busy_signal = true;
339 } else {
340 timeout = 0;
341 use_busy_signal = false;
342 }
343
344 mmc_retune_hold(card->host);
345
346 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
347 EXT_CSD_BKOPS_START, 1, timeout,
348 use_busy_signal, true, false);
349 if (err) {
350 pr_warn("%s: Error %d starting bkops\n",
351 mmc_hostname(card->host), err);
352 mmc_retune_release(card->host);
353 goto out;
354 }
355
356 /*
357 * For urgent bkops status (LEVEL_2 and more)
358 * bkops executed synchronously, otherwise
359 * the operation is in progress
360 */
361 if (!use_busy_signal)
362 mmc_card_set_doing_bkops(card);
363 else
364 mmc_retune_release(card->host);
365 out:
366 mmc_release_host(card->host);
367 }
368 EXPORT_SYMBOL(mmc_start_bkops);
369
370 /*
371 * mmc_wait_data_done() - done callback for data request
372 * @mrq: done data request
373 *
374 * Wakes up mmc context, passed as a callback to host controller driver
375 */
376 static void mmc_wait_data_done(struct mmc_request *mrq)
377 {
378 struct mmc_context_info *context_info = &mrq->host->context_info;
379
380 context_info->is_done_rcv = true;
381 wake_up_interruptible(&context_info->wait);
382 }
383
384 static void mmc_wait_done(struct mmc_request *mrq)
385 {
386 complete(&mrq->completion);
387 }
388
389 /*
390 *__mmc_start_data_req() - starts data request
391 * @host: MMC host to start the request
392 * @mrq: data request to start
393 *
394 * Sets the done callback to be called when request is completed by the card.
395 * Starts data mmc request execution
396 */
397 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 int err;
400
401 mrq->done = mmc_wait_data_done;
402 mrq->host = host;
403
404 err = mmc_start_request(host, mrq);
405 if (err) {
406 mrq->cmd->error = err;
407 mmc_wait_data_done(mrq);
408 }
409
410 return err;
411 }
412
413 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
414 {
415 int err;
416
417 init_completion(&mrq->completion);
418 mrq->done = mmc_wait_done;
419
420 err = mmc_start_request(host, mrq);
421 if (err) {
422 mrq->cmd->error = err;
423 complete(&mrq->completion);
424 }
425
426 return err;
427 }
428
429 /*
430 * mmc_wait_for_data_req_done() - wait for request completed
431 * @host: MMC host to prepare the command.
432 * @mrq: MMC request to wait for
433 *
434 * Blocks MMC context till host controller will ack end of data request
435 * execution or new request notification arrives from the block layer.
436 * Handles command retries.
437 *
438 * Returns enum mmc_blk_status after checking errors.
439 */
440 static int mmc_wait_for_data_req_done(struct mmc_host *host,
441 struct mmc_request *mrq,
442 struct mmc_async_req *next_req)
443 {
444 struct mmc_command *cmd;
445 struct mmc_context_info *context_info = &host->context_info;
446 int err;
447 unsigned long flags;
448
449 while (1) {
450 wait_event_interruptible(context_info->wait,
451 (context_info->is_done_rcv ||
452 context_info->is_new_req));
453 spin_lock_irqsave(&context_info->lock, flags);
454 context_info->is_waiting_last_req = false;
455 spin_unlock_irqrestore(&context_info->lock, flags);
456 if (context_info->is_done_rcv) {
457 context_info->is_done_rcv = false;
458 context_info->is_new_req = false;
459 cmd = mrq->cmd;
460
461 if (!cmd->error || !cmd->retries ||
462 mmc_card_removed(host->card)) {
463 err = host->areq->err_check(host->card,
464 host->areq);
465 break; /* return err */
466 } else {
467 mmc_retune_recheck(host);
468 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
469 mmc_hostname(host),
470 cmd->opcode, cmd->error);
471 cmd->retries--;
472 cmd->error = 0;
473 __mmc_start_request(host, mrq);
474 continue; /* wait for done/new event again */
475 }
476 } else if (context_info->is_new_req) {
477 context_info->is_new_req = false;
478 if (!next_req)
479 return MMC_BLK_NEW_REQUEST;
480 }
481 }
482 mmc_retune_release(host);
483 return err;
484 }
485
486 static void mmc_wait_for_req_done(struct mmc_host *host,
487 struct mmc_request *mrq)
488 {
489 struct mmc_command *cmd;
490
491 while (1) {
492 wait_for_completion(&mrq->completion);
493
494 cmd = mrq->cmd;
495
496 /*
497 * If host has timed out waiting for the sanitize
498 * to complete, card might be still in programming state
499 * so let's try to bring the card out of programming
500 * state.
501 */
502 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
503 if (!mmc_interrupt_hpi(host->card)) {
504 pr_warn("%s: %s: Interrupted sanitize\n",
505 mmc_hostname(host), __func__);
506 cmd->error = 0;
507 break;
508 } else {
509 pr_err("%s: %s: Failed to interrupt sanitize\n",
510 mmc_hostname(host), __func__);
511 }
512 }
513 if (!cmd->error || !cmd->retries ||
514 mmc_card_removed(host->card))
515 break;
516
517 mmc_retune_recheck(host);
518
519 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
520 mmc_hostname(host), cmd->opcode, cmd->error);
521 cmd->retries--;
522 cmd->error = 0;
523 __mmc_start_request(host, mrq);
524 }
525
526 mmc_retune_release(host);
527 }
528
529 /**
530 * mmc_pre_req - Prepare for a new request
531 * @host: MMC host to prepare command
532 * @mrq: MMC request to prepare for
533 * @is_first_req: true if there is no previous started request
534 * that may run in parellel to this call, otherwise false
535 *
536 * mmc_pre_req() is called in prior to mmc_start_req() to let
537 * host prepare for the new request. Preparation of a request may be
538 * performed while another request is running on the host.
539 */
540 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
541 bool is_first_req)
542 {
543 if (host->ops->pre_req)
544 host->ops->pre_req(host, mrq, is_first_req);
545 }
546
547 /**
548 * mmc_post_req - Post process a completed request
549 * @host: MMC host to post process command
550 * @mrq: MMC request to post process for
551 * @err: Error, if non zero, clean up any resources made in pre_req
552 *
553 * Let the host post process a completed request. Post processing of
554 * a request may be performed while another reuqest is running.
555 */
556 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
557 int err)
558 {
559 if (host->ops->post_req)
560 host->ops->post_req(host, mrq, err);
561 }
562
563 /**
564 * mmc_start_req - start a non-blocking request
565 * @host: MMC host to start command
566 * @areq: async request to start
567 * @error: out parameter returns 0 for success, otherwise non zero
568 *
569 * Start a new MMC custom command request for a host.
570 * If there is on ongoing async request wait for completion
571 * of that request and start the new one and return.
572 * Does not wait for the new request to complete.
573 *
574 * Returns the completed request, NULL in case of none completed.
575 * Wait for the an ongoing request (previoulsy started) to complete and
576 * return the completed request. If there is no ongoing request, NULL
577 * is returned without waiting. NULL is not an error condition.
578 */
579 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
580 struct mmc_async_req *areq, int *error)
581 {
582 int err = 0;
583 int start_err = 0;
584 struct mmc_async_req *data = host->areq;
585
586 /* Prepare a new request */
587 if (areq)
588 mmc_pre_req(host, areq->mrq, !host->areq);
589
590 if (host->areq) {
591 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
592 if (err == MMC_BLK_NEW_REQUEST) {
593 if (error)
594 *error = err;
595 /*
596 * The previous request was not completed,
597 * nothing to return
598 */
599 return NULL;
600 }
601 /*
602 * Check BKOPS urgency for each R1 response
603 */
604 if (host->card && mmc_card_mmc(host->card) &&
605 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
606 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
607 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
608
609 /* Cancel the prepared request */
610 if (areq)
611 mmc_post_req(host, areq->mrq, -EINVAL);
612
613 mmc_start_bkops(host->card, true);
614
615 /* prepare the request again */
616 if (areq)
617 mmc_pre_req(host, areq->mrq, !host->areq);
618 }
619 }
620
621 if (!err && areq)
622 start_err = __mmc_start_data_req(host, areq->mrq);
623
624 if (host->areq)
625 mmc_post_req(host, host->areq->mrq, 0);
626
627 /* Cancel a prepared request if it was not started. */
628 if ((err || start_err) && areq)
629 mmc_post_req(host, areq->mrq, -EINVAL);
630
631 if (err)
632 host->areq = NULL;
633 else
634 host->areq = areq;
635
636 if (error)
637 *error = err;
638 return data;
639 }
640 EXPORT_SYMBOL(mmc_start_req);
641
642 /**
643 * mmc_wait_for_req - start a request and wait for completion
644 * @host: MMC host to start command
645 * @mrq: MMC request to start
646 *
647 * Start a new MMC custom command request for a host, and wait
648 * for the command to complete. Does not attempt to parse the
649 * response.
650 */
651 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
652 {
653 __mmc_start_req(host, mrq);
654 mmc_wait_for_req_done(host, mrq);
655 }
656 EXPORT_SYMBOL(mmc_wait_for_req);
657
658 /**
659 * mmc_interrupt_hpi - Issue for High priority Interrupt
660 * @card: the MMC card associated with the HPI transfer
661 *
662 * Issued High Priority Interrupt, and check for card status
663 * until out-of prg-state.
664 */
665 int mmc_interrupt_hpi(struct mmc_card *card)
666 {
667 int err;
668 u32 status;
669 unsigned long prg_wait;
670
671 BUG_ON(!card);
672
673 if (!card->ext_csd.hpi_en) {
674 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
675 return 1;
676 }
677
678 mmc_claim_host(card->host);
679 err = mmc_send_status(card, &status);
680 if (err) {
681 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
682 goto out;
683 }
684
685 switch (R1_CURRENT_STATE(status)) {
686 case R1_STATE_IDLE:
687 case R1_STATE_READY:
688 case R1_STATE_STBY:
689 case R1_STATE_TRAN:
690 /*
691 * In idle and transfer states, HPI is not needed and the caller
692 * can issue the next intended command immediately
693 */
694 goto out;
695 case R1_STATE_PRG:
696 break;
697 default:
698 /* In all other states, it's illegal to issue HPI */
699 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
700 mmc_hostname(card->host), R1_CURRENT_STATE(status));
701 err = -EINVAL;
702 goto out;
703 }
704
705 err = mmc_send_hpi_cmd(card, &status);
706 if (err)
707 goto out;
708
709 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
710 do {
711 err = mmc_send_status(card, &status);
712
713 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
714 break;
715 if (time_after(jiffies, prg_wait))
716 err = -ETIMEDOUT;
717 } while (!err);
718
719 out:
720 mmc_release_host(card->host);
721 return err;
722 }
723 EXPORT_SYMBOL(mmc_interrupt_hpi);
724
725 /**
726 * mmc_wait_for_cmd - start a command and wait for completion
727 * @host: MMC host to start command
728 * @cmd: MMC command to start
729 * @retries: maximum number of retries
730 *
731 * Start a new MMC command for a host, and wait for the command
732 * to complete. Return any error that occurred while the command
733 * was executing. Do not attempt to parse the response.
734 */
735 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
736 {
737 struct mmc_request mrq = {NULL};
738
739 WARN_ON(!host->claimed);
740
741 memset(cmd->resp, 0, sizeof(cmd->resp));
742 cmd->retries = retries;
743
744 mrq.cmd = cmd;
745 cmd->data = NULL;
746
747 mmc_wait_for_req(host, &mrq);
748
749 return cmd->error;
750 }
751
752 EXPORT_SYMBOL(mmc_wait_for_cmd);
753
754 /**
755 * mmc_stop_bkops - stop ongoing BKOPS
756 * @card: MMC card to check BKOPS
757 *
758 * Send HPI command to stop ongoing background operations to
759 * allow rapid servicing of foreground operations, e.g. read/
760 * writes. Wait until the card comes out of the programming state
761 * to avoid errors in servicing read/write requests.
762 */
763 int mmc_stop_bkops(struct mmc_card *card)
764 {
765 int err = 0;
766
767 BUG_ON(!card);
768 err = mmc_interrupt_hpi(card);
769
770 /*
771 * If err is EINVAL, we can't issue an HPI.
772 * It should complete the BKOPS.
773 */
774 if (!err || (err == -EINVAL)) {
775 mmc_card_clr_doing_bkops(card);
776 mmc_retune_release(card->host);
777 err = 0;
778 }
779
780 return err;
781 }
782 EXPORT_SYMBOL(mmc_stop_bkops);
783
784 int mmc_read_bkops_status(struct mmc_card *card)
785 {
786 int err;
787 u8 *ext_csd;
788
789 mmc_claim_host(card->host);
790 err = mmc_get_ext_csd(card, &ext_csd);
791 mmc_release_host(card->host);
792 if (err)
793 return err;
794
795 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
796 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
797 kfree(ext_csd);
798 return 0;
799 }
800 EXPORT_SYMBOL(mmc_read_bkops_status);
801
802 /**
803 * mmc_set_data_timeout - set the timeout for a data command
804 * @data: data phase for command
805 * @card: the MMC card associated with the data transfer
806 *
807 * Computes the data timeout parameters according to the
808 * correct algorithm given the card type.
809 */
810 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
811 {
812 unsigned int mult;
813
814 /*
815 * SDIO cards only define an upper 1 s limit on access.
816 */
817 if (mmc_card_sdio(card)) {
818 data->timeout_ns = 1000000000;
819 data->timeout_clks = 0;
820 return;
821 }
822
823 /*
824 * SD cards use a 100 multiplier rather than 10
825 */
826 mult = mmc_card_sd(card) ? 100 : 10;
827
828 /*
829 * Scale up the multiplier (and therefore the timeout) by
830 * the r2w factor for writes.
831 */
832 if (data->flags & MMC_DATA_WRITE)
833 mult <<= card->csd.r2w_factor;
834
835 data->timeout_ns = card->csd.tacc_ns * mult;
836 data->timeout_clks = card->csd.tacc_clks * mult;
837
838 /*
839 * SD cards also have an upper limit on the timeout.
840 */
841 if (mmc_card_sd(card)) {
842 unsigned int timeout_us, limit_us;
843
844 timeout_us = data->timeout_ns / 1000;
845 if (card->host->ios.clock)
846 timeout_us += data->timeout_clks * 1000 /
847 (card->host->ios.clock / 1000);
848
849 if (data->flags & MMC_DATA_WRITE)
850 /*
851 * The MMC spec "It is strongly recommended
852 * for hosts to implement more than 500ms
853 * timeout value even if the card indicates
854 * the 250ms maximum busy length." Even the
855 * previous value of 300ms is known to be
856 * insufficient for some cards.
857 */
858 limit_us = 3000000;
859 else
860 limit_us = 100000;
861
862 /*
863 * SDHC cards always use these fixed values.
864 */
865 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
866 data->timeout_ns = limit_us * 1000;
867 data->timeout_clks = 0;
868 }
869
870 /* assign limit value if invalid */
871 if (timeout_us == 0)
872 data->timeout_ns = limit_us * 1000;
873 }
874
875 /*
876 * Some cards require longer data read timeout than indicated in CSD.
877 * Address this by setting the read timeout to a "reasonably high"
878 * value. For the cards tested, 600ms has proven enough. If necessary,
879 * this value can be increased if other problematic cards require this.
880 */
881 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
882 data->timeout_ns = 600000000;
883 data->timeout_clks = 0;
884 }
885
886 /*
887 * Some cards need very high timeouts if driven in SPI mode.
888 * The worst observed timeout was 900ms after writing a
889 * continuous stream of data until the internal logic
890 * overflowed.
891 */
892 if (mmc_host_is_spi(card->host)) {
893 if (data->flags & MMC_DATA_WRITE) {
894 if (data->timeout_ns < 1000000000)
895 data->timeout_ns = 1000000000; /* 1s */
896 } else {
897 if (data->timeout_ns < 100000000)
898 data->timeout_ns = 100000000; /* 100ms */
899 }
900 }
901 }
902 EXPORT_SYMBOL(mmc_set_data_timeout);
903
904 /**
905 * mmc_align_data_size - pads a transfer size to a more optimal value
906 * @card: the MMC card associated with the data transfer
907 * @sz: original transfer size
908 *
909 * Pads the original data size with a number of extra bytes in
910 * order to avoid controller bugs and/or performance hits
911 * (e.g. some controllers revert to PIO for certain sizes).
912 *
913 * Returns the improved size, which might be unmodified.
914 *
915 * Note that this function is only relevant when issuing a
916 * single scatter gather entry.
917 */
918 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
919 {
920 /*
921 * FIXME: We don't have a system for the controller to tell
922 * the core about its problems yet, so for now we just 32-bit
923 * align the size.
924 */
925 sz = ((sz + 3) / 4) * 4;
926
927 return sz;
928 }
929 EXPORT_SYMBOL(mmc_align_data_size);
930
931 /**
932 * __mmc_claim_host - exclusively claim a host
933 * @host: mmc host to claim
934 * @abort: whether or not the operation should be aborted
935 *
936 * Claim a host for a set of operations. If @abort is non null and
937 * dereference a non-zero value then this will return prematurely with
938 * that non-zero value without acquiring the lock. Returns zero
939 * with the lock held otherwise.
940 */
941 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
942 {
943 DECLARE_WAITQUEUE(wait, current);
944 unsigned long flags;
945 int stop;
946 bool pm = false;
947
948 might_sleep();
949
950 add_wait_queue(&host->wq, &wait);
951 spin_lock_irqsave(&host->lock, flags);
952 while (1) {
953 set_current_state(TASK_UNINTERRUPTIBLE);
954 stop = abort ? atomic_read(abort) : 0;
955 if (stop || !host->claimed || host->claimer == current)
956 break;
957 spin_unlock_irqrestore(&host->lock, flags);
958 schedule();
959 spin_lock_irqsave(&host->lock, flags);
960 }
961 set_current_state(TASK_RUNNING);
962 if (!stop) {
963 host->claimed = 1;
964 host->claimer = current;
965 host->claim_cnt += 1;
966 if (host->claim_cnt == 1)
967 pm = true;
968 } else
969 wake_up(&host->wq);
970 spin_unlock_irqrestore(&host->lock, flags);
971 remove_wait_queue(&host->wq, &wait);
972
973 if (pm)
974 pm_runtime_get_sync(mmc_dev(host));
975
976 return stop;
977 }
978 EXPORT_SYMBOL(__mmc_claim_host);
979
980 /**
981 * mmc_release_host - release a host
982 * @host: mmc host to release
983 *
984 * Release a MMC host, allowing others to claim the host
985 * for their operations.
986 */
987 void mmc_release_host(struct mmc_host *host)
988 {
989 unsigned long flags;
990
991 WARN_ON(!host->claimed);
992
993 spin_lock_irqsave(&host->lock, flags);
994 if (--host->claim_cnt) {
995 /* Release for nested claim */
996 spin_unlock_irqrestore(&host->lock, flags);
997 } else {
998 host->claimed = 0;
999 host->claimer = NULL;
1000 spin_unlock_irqrestore(&host->lock, flags);
1001 wake_up(&host->wq);
1002 pm_runtime_mark_last_busy(mmc_dev(host));
1003 pm_runtime_put_autosuspend(mmc_dev(host));
1004 }
1005 }
1006 EXPORT_SYMBOL(mmc_release_host);
1007
1008 /*
1009 * This is a helper function, which fetches a runtime pm reference for the
1010 * card device and also claims the host.
1011 */
1012 void mmc_get_card(struct mmc_card *card)
1013 {
1014 pm_runtime_get_sync(&card->dev);
1015 mmc_claim_host(card->host);
1016 }
1017 EXPORT_SYMBOL(mmc_get_card);
1018
1019 /*
1020 * This is a helper function, which releases the host and drops the runtime
1021 * pm reference for the card device.
1022 */
1023 void mmc_put_card(struct mmc_card *card)
1024 {
1025 mmc_release_host(card->host);
1026 pm_runtime_mark_last_busy(&card->dev);
1027 pm_runtime_put_autosuspend(&card->dev);
1028 }
1029 EXPORT_SYMBOL(mmc_put_card);
1030
1031 /*
1032 * Internal function that does the actual ios call to the host driver,
1033 * optionally printing some debug output.
1034 */
1035 static inline void mmc_set_ios(struct mmc_host *host)
1036 {
1037 struct mmc_ios *ios = &host->ios;
1038
1039 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1040 "width %u timing %u\n",
1041 mmc_hostname(host), ios->clock, ios->bus_mode,
1042 ios->power_mode, ios->chip_select, ios->vdd,
1043 1 << ios->bus_width, ios->timing);
1044
1045 host->ops->set_ios(host, ios);
1046 }
1047
1048 /*
1049 * Control chip select pin on a host.
1050 */
1051 void mmc_set_chip_select(struct mmc_host *host, int mode)
1052 {
1053 host->ios.chip_select = mode;
1054 mmc_set_ios(host);
1055 }
1056
1057 /*
1058 * Sets the host clock to the highest possible frequency that
1059 * is below "hz".
1060 */
1061 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1062 {
1063 WARN_ON(hz && hz < host->f_min);
1064
1065 if (hz > host->f_max)
1066 hz = host->f_max;
1067
1068 host->ios.clock = hz;
1069 mmc_set_ios(host);
1070 }
1071
1072 int mmc_execute_tuning(struct mmc_card *card)
1073 {
1074 struct mmc_host *host = card->host;
1075 u32 opcode;
1076 int err;
1077
1078 if (!host->ops->execute_tuning)
1079 return 0;
1080
1081 if (mmc_card_mmc(card))
1082 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1083 else
1084 opcode = MMC_SEND_TUNING_BLOCK;
1085
1086 err = host->ops->execute_tuning(host, opcode);
1087
1088 if (err)
1089 pr_err("%s: tuning execution failed: %d\n",
1090 mmc_hostname(host), err);
1091 else
1092 mmc_retune_enable(host);
1093
1094 return err;
1095 }
1096
1097 /*
1098 * Change the bus mode (open drain/push-pull) of a host.
1099 */
1100 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1101 {
1102 host->ios.bus_mode = mode;
1103 mmc_set_ios(host);
1104 }
1105
1106 /*
1107 * Change data bus width of a host.
1108 */
1109 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1110 {
1111 host->ios.bus_width = width;
1112 mmc_set_ios(host);
1113 }
1114
1115 /*
1116 * Set initial state after a power cycle or a hw_reset.
1117 */
1118 void mmc_set_initial_state(struct mmc_host *host)
1119 {
1120 mmc_retune_disable(host);
1121
1122 if (mmc_host_is_spi(host))
1123 host->ios.chip_select = MMC_CS_HIGH;
1124 else
1125 host->ios.chip_select = MMC_CS_DONTCARE;
1126 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1127 host->ios.bus_width = MMC_BUS_WIDTH_1;
1128 host->ios.timing = MMC_TIMING_LEGACY;
1129 host->ios.drv_type = 0;
1130 host->ios.enhanced_strobe = false;
1131
1132 /*
1133 * Make sure we are in non-enhanced strobe mode before we
1134 * actually enable it in ext_csd.
1135 */
1136 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1137 host->ops->hs400_enhanced_strobe)
1138 host->ops->hs400_enhanced_strobe(host, &host->ios);
1139
1140 mmc_set_ios(host);
1141 }
1142
1143 /**
1144 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1145 * @vdd: voltage (mV)
1146 * @low_bits: prefer low bits in boundary cases
1147 *
1148 * This function returns the OCR bit number according to the provided @vdd
1149 * value. If conversion is not possible a negative errno value returned.
1150 *
1151 * Depending on the @low_bits flag the function prefers low or high OCR bits
1152 * on boundary voltages. For example,
1153 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1154 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1155 *
1156 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1157 */
1158 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1159 {
1160 const int max_bit = ilog2(MMC_VDD_35_36);
1161 int bit;
1162
1163 if (vdd < 1650 || vdd > 3600)
1164 return -EINVAL;
1165
1166 if (vdd >= 1650 && vdd <= 1950)
1167 return ilog2(MMC_VDD_165_195);
1168
1169 if (low_bits)
1170 vdd -= 1;
1171
1172 /* Base 2000 mV, step 100 mV, bit's base 8. */
1173 bit = (vdd - 2000) / 100 + 8;
1174 if (bit > max_bit)
1175 return max_bit;
1176 return bit;
1177 }
1178
1179 /**
1180 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1181 * @vdd_min: minimum voltage value (mV)
1182 * @vdd_max: maximum voltage value (mV)
1183 *
1184 * This function returns the OCR mask bits according to the provided @vdd_min
1185 * and @vdd_max values. If conversion is not possible the function returns 0.
1186 *
1187 * Notes wrt boundary cases:
1188 * This function sets the OCR bits for all boundary voltages, for example
1189 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1190 * MMC_VDD_34_35 mask.
1191 */
1192 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1193 {
1194 u32 mask = 0;
1195
1196 if (vdd_max < vdd_min)
1197 return 0;
1198
1199 /* Prefer high bits for the boundary vdd_max values. */
1200 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1201 if (vdd_max < 0)
1202 return 0;
1203
1204 /* Prefer low bits for the boundary vdd_min values. */
1205 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1206 if (vdd_min < 0)
1207 return 0;
1208
1209 /* Fill the mask, from max bit to min bit. */
1210 while (vdd_max >= vdd_min)
1211 mask |= 1 << vdd_max--;
1212
1213 return mask;
1214 }
1215 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1216
1217 #ifdef CONFIG_OF
1218
1219 /**
1220 * mmc_of_parse_voltage - return mask of supported voltages
1221 * @np: The device node need to be parsed.
1222 * @mask: mask of voltages available for MMC/SD/SDIO
1223 *
1224 * Parse the "voltage-ranges" DT property, returning zero if it is not
1225 * found, negative errno if the voltage-range specification is invalid,
1226 * or one if the voltage-range is specified and successfully parsed.
1227 */
1228 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1229 {
1230 const u32 *voltage_ranges;
1231 int num_ranges, i;
1232
1233 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1234 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1235 if (!voltage_ranges) {
1236 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1237 return 0;
1238 }
1239 if (!num_ranges) {
1240 pr_err("%s: voltage-ranges empty\n", np->full_name);
1241 return -EINVAL;
1242 }
1243
1244 for (i = 0; i < num_ranges; i++) {
1245 const int j = i * 2;
1246 u32 ocr_mask;
1247
1248 ocr_mask = mmc_vddrange_to_ocrmask(
1249 be32_to_cpu(voltage_ranges[j]),
1250 be32_to_cpu(voltage_ranges[j + 1]));
1251 if (!ocr_mask) {
1252 pr_err("%s: voltage-range #%d is invalid\n",
1253 np->full_name, i);
1254 return -EINVAL;
1255 }
1256 *mask |= ocr_mask;
1257 }
1258
1259 return 1;
1260 }
1261 EXPORT_SYMBOL(mmc_of_parse_voltage);
1262
1263 #endif /* CONFIG_OF */
1264
1265 static int mmc_of_get_func_num(struct device_node *node)
1266 {
1267 u32 reg;
1268 int ret;
1269
1270 ret = of_property_read_u32(node, "reg", &reg);
1271 if (ret < 0)
1272 return ret;
1273
1274 return reg;
1275 }
1276
1277 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1278 unsigned func_num)
1279 {
1280 struct device_node *node;
1281
1282 if (!host->parent || !host->parent->of_node)
1283 return NULL;
1284
1285 for_each_child_of_node(host->parent->of_node, node) {
1286 if (mmc_of_get_func_num(node) == func_num)
1287 return node;
1288 }
1289
1290 return NULL;
1291 }
1292
1293 #ifdef CONFIG_REGULATOR
1294
1295 /**
1296 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1297 * @vdd_bit: OCR bit number
1298 * @min_uV: minimum voltage value (mV)
1299 * @max_uV: maximum voltage value (mV)
1300 *
1301 * This function returns the voltage range according to the provided OCR
1302 * bit number. If conversion is not possible a negative errno value returned.
1303 */
1304 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1305 {
1306 int tmp;
1307
1308 if (!vdd_bit)
1309 return -EINVAL;
1310
1311 /*
1312 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1313 * bits this regulator doesn't quite support ... don't
1314 * be too picky, most cards and regulators are OK with
1315 * a 0.1V range goof (it's a small error percentage).
1316 */
1317 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1318 if (tmp == 0) {
1319 *min_uV = 1650 * 1000;
1320 *max_uV = 1950 * 1000;
1321 } else {
1322 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1323 *max_uV = *min_uV + 100 * 1000;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * mmc_regulator_get_ocrmask - return mask of supported voltages
1331 * @supply: regulator to use
1332 *
1333 * This returns either a negative errno, or a mask of voltages that
1334 * can be provided to MMC/SD/SDIO devices using the specified voltage
1335 * regulator. This would normally be called before registering the
1336 * MMC host adapter.
1337 */
1338 int mmc_regulator_get_ocrmask(struct regulator *supply)
1339 {
1340 int result = 0;
1341 int count;
1342 int i;
1343 int vdd_uV;
1344 int vdd_mV;
1345
1346 count = regulator_count_voltages(supply);
1347 if (count < 0)
1348 return count;
1349
1350 for (i = 0; i < count; i++) {
1351 vdd_uV = regulator_list_voltage(supply, i);
1352 if (vdd_uV <= 0)
1353 continue;
1354
1355 vdd_mV = vdd_uV / 1000;
1356 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1357 }
1358
1359 if (!result) {
1360 vdd_uV = regulator_get_voltage(supply);
1361 if (vdd_uV <= 0)
1362 return vdd_uV;
1363
1364 vdd_mV = vdd_uV / 1000;
1365 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1366 }
1367
1368 return result;
1369 }
1370 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1371
1372 /**
1373 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1374 * @mmc: the host to regulate
1375 * @supply: regulator to use
1376 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1377 *
1378 * Returns zero on success, else negative errno.
1379 *
1380 * MMC host drivers may use this to enable or disable a regulator using
1381 * a particular supply voltage. This would normally be called from the
1382 * set_ios() method.
1383 */
1384 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1385 struct regulator *supply,
1386 unsigned short vdd_bit)
1387 {
1388 int result = 0;
1389 int min_uV, max_uV;
1390
1391 if (vdd_bit) {
1392 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1393
1394 result = regulator_set_voltage(supply, min_uV, max_uV);
1395 if (result == 0 && !mmc->regulator_enabled) {
1396 result = regulator_enable(supply);
1397 if (!result)
1398 mmc->regulator_enabled = true;
1399 }
1400 } else if (mmc->regulator_enabled) {
1401 result = regulator_disable(supply);
1402 if (result == 0)
1403 mmc->regulator_enabled = false;
1404 }
1405
1406 if (result)
1407 dev_err(mmc_dev(mmc),
1408 "could not set regulator OCR (%d)\n", result);
1409 return result;
1410 }
1411 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1412
1413 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1414 int min_uV, int target_uV,
1415 int max_uV)
1416 {
1417 /*
1418 * Check if supported first to avoid errors since we may try several
1419 * signal levels during power up and don't want to show errors.
1420 */
1421 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1422 return -EINVAL;
1423
1424 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1425 max_uV);
1426 }
1427
1428 /**
1429 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1430 *
1431 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1432 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1433 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1434 * SD card spec also define VQMMC in terms of VMMC.
1435 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1436 *
1437 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1438 * requested voltage. This is definitely a good idea for UHS where there's a
1439 * separate regulator on the card that's trying to make 1.8V and it's best if
1440 * we match.
1441 *
1442 * This function is expected to be used by a controller's
1443 * start_signal_voltage_switch() function.
1444 */
1445 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1446 {
1447 struct device *dev = mmc_dev(mmc);
1448 int ret, volt, min_uV, max_uV;
1449
1450 /* If no vqmmc supply then we can't change the voltage */
1451 if (IS_ERR(mmc->supply.vqmmc))
1452 return -EINVAL;
1453
1454 switch (ios->signal_voltage) {
1455 case MMC_SIGNAL_VOLTAGE_120:
1456 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1457 1100000, 1200000, 1300000);
1458 case MMC_SIGNAL_VOLTAGE_180:
1459 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1460 1700000, 1800000, 1950000);
1461 case MMC_SIGNAL_VOLTAGE_330:
1462 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1463 if (ret < 0)
1464 return ret;
1465
1466 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1467 __func__, volt, max_uV);
1468
1469 min_uV = max(volt - 300000, 2700000);
1470 max_uV = min(max_uV + 200000, 3600000);
1471
1472 /*
1473 * Due to a limitation in the current implementation of
1474 * regulator_set_voltage_triplet() which is taking the lowest
1475 * voltage possible if below the target, search for a suitable
1476 * voltage in two steps and try to stay close to vmmc
1477 * with a 0.3V tolerance at first.
1478 */
1479 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1480 min_uV, volt, max_uV))
1481 return 0;
1482
1483 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1484 2700000, volt, 3600000);
1485 default:
1486 return -EINVAL;
1487 }
1488 }
1489 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1490
1491 #endif /* CONFIG_REGULATOR */
1492
1493 int mmc_regulator_get_supply(struct mmc_host *mmc)
1494 {
1495 struct device *dev = mmc_dev(mmc);
1496 int ret;
1497
1498 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1499 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1500
1501 if (IS_ERR(mmc->supply.vmmc)) {
1502 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1503 return -EPROBE_DEFER;
1504 dev_dbg(dev, "No vmmc regulator found\n");
1505 } else {
1506 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1507 if (ret > 0)
1508 mmc->ocr_avail = ret;
1509 else
1510 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1511 }
1512
1513 if (IS_ERR(mmc->supply.vqmmc)) {
1514 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1515 return -EPROBE_DEFER;
1516 dev_dbg(dev, "No vqmmc regulator found\n");
1517 }
1518
1519 return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1522
1523 /*
1524 * Mask off any voltages we don't support and select
1525 * the lowest voltage
1526 */
1527 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1528 {
1529 int bit;
1530
1531 /*
1532 * Sanity check the voltages that the card claims to
1533 * support.
1534 */
1535 if (ocr & 0x7F) {
1536 dev_warn(mmc_dev(host),
1537 "card claims to support voltages below defined range\n");
1538 ocr &= ~0x7F;
1539 }
1540
1541 ocr &= host->ocr_avail;
1542 if (!ocr) {
1543 dev_warn(mmc_dev(host), "no support for card's volts\n");
1544 return 0;
1545 }
1546
1547 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1548 bit = ffs(ocr) - 1;
1549 ocr &= 3 << bit;
1550 mmc_power_cycle(host, ocr);
1551 } else {
1552 bit = fls(ocr) - 1;
1553 ocr &= 3 << bit;
1554 if (bit != host->ios.vdd)
1555 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1556 }
1557
1558 return ocr;
1559 }
1560
1561 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1562 {
1563 int err = 0;
1564 int old_signal_voltage = host->ios.signal_voltage;
1565
1566 host->ios.signal_voltage = signal_voltage;
1567 if (host->ops->start_signal_voltage_switch)
1568 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1569
1570 if (err)
1571 host->ios.signal_voltage = old_signal_voltage;
1572
1573 return err;
1574
1575 }
1576
1577 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1578 {
1579 struct mmc_command cmd = {0};
1580 int err = 0;
1581 u32 clock;
1582
1583 BUG_ON(!host);
1584
1585 /*
1586 * Send CMD11 only if the request is to switch the card to
1587 * 1.8V signalling.
1588 */
1589 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1590 return __mmc_set_signal_voltage(host, signal_voltage);
1591
1592 /*
1593 * If we cannot switch voltages, return failure so the caller
1594 * can continue without UHS mode
1595 */
1596 if (!host->ops->start_signal_voltage_switch)
1597 return -EPERM;
1598 if (!host->ops->card_busy)
1599 pr_warn("%s: cannot verify signal voltage switch\n",
1600 mmc_hostname(host));
1601
1602 cmd.opcode = SD_SWITCH_VOLTAGE;
1603 cmd.arg = 0;
1604 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1605
1606 err = mmc_wait_for_cmd(host, &cmd, 0);
1607 if (err)
1608 return err;
1609
1610 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1611 return -EIO;
1612
1613 /*
1614 * The card should drive cmd and dat[0:3] low immediately
1615 * after the response of cmd11, but wait 1 ms to be sure
1616 */
1617 mmc_delay(1);
1618 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1619 err = -EAGAIN;
1620 goto power_cycle;
1621 }
1622 /*
1623 * During a signal voltage level switch, the clock must be gated
1624 * for 5 ms according to the SD spec
1625 */
1626 clock = host->ios.clock;
1627 host->ios.clock = 0;
1628 mmc_set_ios(host);
1629
1630 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1631 /*
1632 * Voltages may not have been switched, but we've already
1633 * sent CMD11, so a power cycle is required anyway
1634 */
1635 err = -EAGAIN;
1636 goto power_cycle;
1637 }
1638
1639 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1640 mmc_delay(10);
1641 host->ios.clock = clock;
1642 mmc_set_ios(host);
1643
1644 /* Wait for at least 1 ms according to spec */
1645 mmc_delay(1);
1646
1647 /*
1648 * Failure to switch is indicated by the card holding
1649 * dat[0:3] low
1650 */
1651 if (host->ops->card_busy && host->ops->card_busy(host))
1652 err = -EAGAIN;
1653
1654 power_cycle:
1655 if (err) {
1656 pr_debug("%s: Signal voltage switch failed, "
1657 "power cycling card\n", mmc_hostname(host));
1658 mmc_power_cycle(host, ocr);
1659 }
1660
1661 return err;
1662 }
1663
1664 /*
1665 * Select timing parameters for host.
1666 */
1667 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1668 {
1669 host->ios.timing = timing;
1670 mmc_set_ios(host);
1671 }
1672
1673 /*
1674 * Select appropriate driver type for host.
1675 */
1676 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1677 {
1678 host->ios.drv_type = drv_type;
1679 mmc_set_ios(host);
1680 }
1681
1682 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1683 int card_drv_type, int *drv_type)
1684 {
1685 struct mmc_host *host = card->host;
1686 int host_drv_type = SD_DRIVER_TYPE_B;
1687
1688 *drv_type = 0;
1689
1690 if (!host->ops->select_drive_strength)
1691 return 0;
1692
1693 /* Use SD definition of driver strength for hosts */
1694 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1695 host_drv_type |= SD_DRIVER_TYPE_A;
1696
1697 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1698 host_drv_type |= SD_DRIVER_TYPE_C;
1699
1700 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1701 host_drv_type |= SD_DRIVER_TYPE_D;
1702
1703 /*
1704 * The drive strength that the hardware can support
1705 * depends on the board design. Pass the appropriate
1706 * information and let the hardware specific code
1707 * return what is possible given the options
1708 */
1709 return host->ops->select_drive_strength(card, max_dtr,
1710 host_drv_type,
1711 card_drv_type,
1712 drv_type);
1713 }
1714
1715 /*
1716 * Apply power to the MMC stack. This is a two-stage process.
1717 * First, we enable power to the card without the clock running.
1718 * We then wait a bit for the power to stabilise. Finally,
1719 * enable the bus drivers and clock to the card.
1720 *
1721 * We must _NOT_ enable the clock prior to power stablising.
1722 *
1723 * If a host does all the power sequencing itself, ignore the
1724 * initial MMC_POWER_UP stage.
1725 */
1726 void mmc_power_up(struct mmc_host *host, u32 ocr)
1727 {
1728 if (host->ios.power_mode == MMC_POWER_ON)
1729 return;
1730
1731 mmc_pwrseq_pre_power_on(host);
1732
1733 host->ios.vdd = fls(ocr) - 1;
1734 host->ios.power_mode = MMC_POWER_UP;
1735 /* Set initial state and call mmc_set_ios */
1736 mmc_set_initial_state(host);
1737
1738 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1739 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1740 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1741 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1742 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1743 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1744 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1745
1746 /*
1747 * This delay should be sufficient to allow the power supply
1748 * to reach the minimum voltage.
1749 */
1750 mmc_delay(10);
1751
1752 mmc_pwrseq_post_power_on(host);
1753
1754 host->ios.clock = host->f_init;
1755
1756 host->ios.power_mode = MMC_POWER_ON;
1757 mmc_set_ios(host);
1758
1759 /*
1760 * This delay must be at least 74 clock sizes, or 1 ms, or the
1761 * time required to reach a stable voltage.
1762 */
1763 mmc_delay(10);
1764 }
1765
1766 void mmc_power_off(struct mmc_host *host)
1767 {
1768 if (host->ios.power_mode == MMC_POWER_OFF)
1769 return;
1770
1771 mmc_pwrseq_power_off(host);
1772
1773 host->ios.clock = 0;
1774 host->ios.vdd = 0;
1775
1776 host->ios.power_mode = MMC_POWER_OFF;
1777 /* Set initial state and call mmc_set_ios */
1778 mmc_set_initial_state(host);
1779
1780 /*
1781 * Some configurations, such as the 802.11 SDIO card in the OLPC
1782 * XO-1.5, require a short delay after poweroff before the card
1783 * can be successfully turned on again.
1784 */
1785 mmc_delay(1);
1786 }
1787
1788 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1789 {
1790 mmc_power_off(host);
1791 /* Wait at least 1 ms according to SD spec */
1792 mmc_delay(1);
1793 mmc_power_up(host, ocr);
1794 }
1795
1796 /*
1797 * Cleanup when the last reference to the bus operator is dropped.
1798 */
1799 static void __mmc_release_bus(struct mmc_host *host)
1800 {
1801 BUG_ON(!host);
1802 BUG_ON(host->bus_refs);
1803 BUG_ON(!host->bus_dead);
1804
1805 host->bus_ops = NULL;
1806 }
1807
1808 /*
1809 * Increase reference count of bus operator
1810 */
1811 static inline void mmc_bus_get(struct mmc_host *host)
1812 {
1813 unsigned long flags;
1814
1815 spin_lock_irqsave(&host->lock, flags);
1816 host->bus_refs++;
1817 spin_unlock_irqrestore(&host->lock, flags);
1818 }
1819
1820 /*
1821 * Decrease reference count of bus operator and free it if
1822 * it is the last reference.
1823 */
1824 static inline void mmc_bus_put(struct mmc_host *host)
1825 {
1826 unsigned long flags;
1827
1828 spin_lock_irqsave(&host->lock, flags);
1829 host->bus_refs--;
1830 if ((host->bus_refs == 0) && host->bus_ops)
1831 __mmc_release_bus(host);
1832 spin_unlock_irqrestore(&host->lock, flags);
1833 }
1834
1835 /*
1836 * Assign a mmc bus handler to a host. Only one bus handler may control a
1837 * host at any given time.
1838 */
1839 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1840 {
1841 unsigned long flags;
1842
1843 BUG_ON(!host);
1844 BUG_ON(!ops);
1845
1846 WARN_ON(!host->claimed);
1847
1848 spin_lock_irqsave(&host->lock, flags);
1849
1850 BUG_ON(host->bus_ops);
1851 BUG_ON(host->bus_refs);
1852
1853 host->bus_ops = ops;
1854 host->bus_refs = 1;
1855 host->bus_dead = 0;
1856
1857 spin_unlock_irqrestore(&host->lock, flags);
1858 }
1859
1860 /*
1861 * Remove the current bus handler from a host.
1862 */
1863 void mmc_detach_bus(struct mmc_host *host)
1864 {
1865 unsigned long flags;
1866
1867 BUG_ON(!host);
1868
1869 WARN_ON(!host->claimed);
1870 WARN_ON(!host->bus_ops);
1871
1872 spin_lock_irqsave(&host->lock, flags);
1873
1874 host->bus_dead = 1;
1875
1876 spin_unlock_irqrestore(&host->lock, flags);
1877
1878 mmc_bus_put(host);
1879 }
1880
1881 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1882 bool cd_irq)
1883 {
1884 #ifdef CONFIG_MMC_DEBUG
1885 unsigned long flags;
1886 spin_lock_irqsave(&host->lock, flags);
1887 WARN_ON(host->removed);
1888 spin_unlock_irqrestore(&host->lock, flags);
1889 #endif
1890
1891 /*
1892 * If the device is configured as wakeup, we prevent a new sleep for
1893 * 5 s to give provision for user space to consume the event.
1894 */
1895 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1896 device_can_wakeup(mmc_dev(host)))
1897 pm_wakeup_event(mmc_dev(host), 5000);
1898
1899 host->detect_change = 1;
1900 mmc_schedule_delayed_work(&host->detect, delay);
1901 }
1902
1903 /**
1904 * mmc_detect_change - process change of state on a MMC socket
1905 * @host: host which changed state.
1906 * @delay: optional delay to wait before detection (jiffies)
1907 *
1908 * MMC drivers should call this when they detect a card has been
1909 * inserted or removed. The MMC layer will confirm that any
1910 * present card is still functional, and initialize any newly
1911 * inserted.
1912 */
1913 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1914 {
1915 _mmc_detect_change(host, delay, true);
1916 }
1917 EXPORT_SYMBOL(mmc_detect_change);
1918
1919 void mmc_init_erase(struct mmc_card *card)
1920 {
1921 unsigned int sz;
1922
1923 if (is_power_of_2(card->erase_size))
1924 card->erase_shift = ffs(card->erase_size) - 1;
1925 else
1926 card->erase_shift = 0;
1927
1928 /*
1929 * It is possible to erase an arbitrarily large area of an SD or MMC
1930 * card. That is not desirable because it can take a long time
1931 * (minutes) potentially delaying more important I/O, and also the
1932 * timeout calculations become increasingly hugely over-estimated.
1933 * Consequently, 'pref_erase' is defined as a guide to limit erases
1934 * to that size and alignment.
1935 *
1936 * For SD cards that define Allocation Unit size, limit erases to one
1937 * Allocation Unit at a time.
1938 * For MMC, have a stab at ai good value and for modern cards it will
1939 * end up being 4MiB. Note that if the value is too small, it can end
1940 * up taking longer to erase. Also note, erase_size is already set to
1941 * High Capacity Erase Size if available when this function is called.
1942 */
1943 if (mmc_card_sd(card) && card->ssr.au) {
1944 card->pref_erase = card->ssr.au;
1945 card->erase_shift = ffs(card->ssr.au) - 1;
1946 } else if (card->erase_size) {
1947 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1948 if (sz < 128)
1949 card->pref_erase = 512 * 1024 / 512;
1950 else if (sz < 512)
1951 card->pref_erase = 1024 * 1024 / 512;
1952 else if (sz < 1024)
1953 card->pref_erase = 2 * 1024 * 1024 / 512;
1954 else
1955 card->pref_erase = 4 * 1024 * 1024 / 512;
1956 if (card->pref_erase < card->erase_size)
1957 card->pref_erase = card->erase_size;
1958 else {
1959 sz = card->pref_erase % card->erase_size;
1960 if (sz)
1961 card->pref_erase += card->erase_size - sz;
1962 }
1963 } else
1964 card->pref_erase = 0;
1965 }
1966
1967 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1968 unsigned int arg, unsigned int qty)
1969 {
1970 unsigned int erase_timeout;
1971
1972 if (arg == MMC_DISCARD_ARG ||
1973 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1974 erase_timeout = card->ext_csd.trim_timeout;
1975 } else if (card->ext_csd.erase_group_def & 1) {
1976 /* High Capacity Erase Group Size uses HC timeouts */
1977 if (arg == MMC_TRIM_ARG)
1978 erase_timeout = card->ext_csd.trim_timeout;
1979 else
1980 erase_timeout = card->ext_csd.hc_erase_timeout;
1981 } else {
1982 /* CSD Erase Group Size uses write timeout */
1983 unsigned int mult = (10 << card->csd.r2w_factor);
1984 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1985 unsigned int timeout_us;
1986
1987 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1988 if (card->csd.tacc_ns < 1000000)
1989 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1990 else
1991 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1992
1993 /*
1994 * ios.clock is only a target. The real clock rate might be
1995 * less but not that much less, so fudge it by multiplying by 2.
1996 */
1997 timeout_clks <<= 1;
1998 timeout_us += (timeout_clks * 1000) /
1999 (card->host->ios.clock / 1000);
2000
2001 erase_timeout = timeout_us / 1000;
2002
2003 /*
2004 * Theoretically, the calculation could underflow so round up
2005 * to 1ms in that case.
2006 */
2007 if (!erase_timeout)
2008 erase_timeout = 1;
2009 }
2010
2011 /* Multiplier for secure operations */
2012 if (arg & MMC_SECURE_ARGS) {
2013 if (arg == MMC_SECURE_ERASE_ARG)
2014 erase_timeout *= card->ext_csd.sec_erase_mult;
2015 else
2016 erase_timeout *= card->ext_csd.sec_trim_mult;
2017 }
2018
2019 erase_timeout *= qty;
2020
2021 /*
2022 * Ensure at least a 1 second timeout for SPI as per
2023 * 'mmc_set_data_timeout()'
2024 */
2025 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2026 erase_timeout = 1000;
2027
2028 return erase_timeout;
2029 }
2030
2031 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2032 unsigned int arg,
2033 unsigned int qty)
2034 {
2035 unsigned int erase_timeout;
2036
2037 if (card->ssr.erase_timeout) {
2038 /* Erase timeout specified in SD Status Register (SSR) */
2039 erase_timeout = card->ssr.erase_timeout * qty +
2040 card->ssr.erase_offset;
2041 } else {
2042 /*
2043 * Erase timeout not specified in SD Status Register (SSR) so
2044 * use 250ms per write block.
2045 */
2046 erase_timeout = 250 * qty;
2047 }
2048
2049 /* Must not be less than 1 second */
2050 if (erase_timeout < 1000)
2051 erase_timeout = 1000;
2052
2053 return erase_timeout;
2054 }
2055
2056 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2057 unsigned int arg,
2058 unsigned int qty)
2059 {
2060 if (mmc_card_sd(card))
2061 return mmc_sd_erase_timeout(card, arg, qty);
2062 else
2063 return mmc_mmc_erase_timeout(card, arg, qty);
2064 }
2065
2066 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2067 unsigned int to, unsigned int arg)
2068 {
2069 struct mmc_command cmd = {0};
2070 unsigned int qty = 0, busy_timeout = 0;
2071 bool use_r1b_resp = false;
2072 unsigned long timeout;
2073 int err;
2074
2075 mmc_retune_hold(card->host);
2076
2077 /*
2078 * qty is used to calculate the erase timeout which depends on how many
2079 * erase groups (or allocation units in SD terminology) are affected.
2080 * We count erasing part of an erase group as one erase group.
2081 * For SD, the allocation units are always a power of 2. For MMC, the
2082 * erase group size is almost certainly also power of 2, but it does not
2083 * seem to insist on that in the JEDEC standard, so we fall back to
2084 * division in that case. SD may not specify an allocation unit size,
2085 * in which case the timeout is based on the number of write blocks.
2086 *
2087 * Note that the timeout for secure trim 2 will only be correct if the
2088 * number of erase groups specified is the same as the total of all
2089 * preceding secure trim 1 commands. Since the power may have been
2090 * lost since the secure trim 1 commands occurred, it is generally
2091 * impossible to calculate the secure trim 2 timeout correctly.
2092 */
2093 if (card->erase_shift)
2094 qty += ((to >> card->erase_shift) -
2095 (from >> card->erase_shift)) + 1;
2096 else if (mmc_card_sd(card))
2097 qty += to - from + 1;
2098 else
2099 qty += ((to / card->erase_size) -
2100 (from / card->erase_size)) + 1;
2101
2102 if (!mmc_card_blockaddr(card)) {
2103 from <<= 9;
2104 to <<= 9;
2105 }
2106
2107 if (mmc_card_sd(card))
2108 cmd.opcode = SD_ERASE_WR_BLK_START;
2109 else
2110 cmd.opcode = MMC_ERASE_GROUP_START;
2111 cmd.arg = from;
2112 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2113 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2114 if (err) {
2115 pr_err("mmc_erase: group start error %d, "
2116 "status %#x\n", err, cmd.resp[0]);
2117 err = -EIO;
2118 goto out;
2119 }
2120
2121 memset(&cmd, 0, sizeof(struct mmc_command));
2122 if (mmc_card_sd(card))
2123 cmd.opcode = SD_ERASE_WR_BLK_END;
2124 else
2125 cmd.opcode = MMC_ERASE_GROUP_END;
2126 cmd.arg = to;
2127 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2128 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2129 if (err) {
2130 pr_err("mmc_erase: group end error %d, status %#x\n",
2131 err, cmd.resp[0]);
2132 err = -EIO;
2133 goto out;
2134 }
2135
2136 memset(&cmd, 0, sizeof(struct mmc_command));
2137 cmd.opcode = MMC_ERASE;
2138 cmd.arg = arg;
2139 busy_timeout = mmc_erase_timeout(card, arg, qty);
2140 /*
2141 * If the host controller supports busy signalling and the timeout for
2142 * the erase operation does not exceed the max_busy_timeout, we should
2143 * use R1B response. Or we need to prevent the host from doing hw busy
2144 * detection, which is done by converting to a R1 response instead.
2145 */
2146 if (card->host->max_busy_timeout &&
2147 busy_timeout > card->host->max_busy_timeout) {
2148 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2149 } else {
2150 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2151 cmd.busy_timeout = busy_timeout;
2152 use_r1b_resp = true;
2153 }
2154
2155 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2156 if (err) {
2157 pr_err("mmc_erase: erase error %d, status %#x\n",
2158 err, cmd.resp[0]);
2159 err = -EIO;
2160 goto out;
2161 }
2162
2163 if (mmc_host_is_spi(card->host))
2164 goto out;
2165
2166 /*
2167 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2168 * shall be avoided.
2169 */
2170 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2171 goto out;
2172
2173 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2174 do {
2175 memset(&cmd, 0, sizeof(struct mmc_command));
2176 cmd.opcode = MMC_SEND_STATUS;
2177 cmd.arg = card->rca << 16;
2178 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2179 /* Do not retry else we can't see errors */
2180 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2181 if (err || (cmd.resp[0] & 0xFDF92000)) {
2182 pr_err("error %d requesting status %#x\n",
2183 err, cmd.resp[0]);
2184 err = -EIO;
2185 goto out;
2186 }
2187
2188 /* Timeout if the device never becomes ready for data and
2189 * never leaves the program state.
2190 */
2191 if (time_after(jiffies, timeout)) {
2192 pr_err("%s: Card stuck in programming state! %s\n",
2193 mmc_hostname(card->host), __func__);
2194 err = -EIO;
2195 goto out;
2196 }
2197
2198 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2199 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2200 out:
2201 mmc_retune_release(card->host);
2202 return err;
2203 }
2204
2205 /**
2206 * mmc_erase - erase sectors.
2207 * @card: card to erase
2208 * @from: first sector to erase
2209 * @nr: number of sectors to erase
2210 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2211 *
2212 * Caller must claim host before calling this function.
2213 */
2214 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2215 unsigned int arg)
2216 {
2217 unsigned int rem, to = from + nr;
2218 int err;
2219
2220 if (!(card->host->caps & MMC_CAP_ERASE) ||
2221 !(card->csd.cmdclass & CCC_ERASE))
2222 return -EOPNOTSUPP;
2223
2224 if (!card->erase_size)
2225 return -EOPNOTSUPP;
2226
2227 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2228 return -EOPNOTSUPP;
2229
2230 if ((arg & MMC_SECURE_ARGS) &&
2231 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2232 return -EOPNOTSUPP;
2233
2234 if ((arg & MMC_TRIM_ARGS) &&
2235 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2236 return -EOPNOTSUPP;
2237
2238 if (arg == MMC_SECURE_ERASE_ARG) {
2239 if (from % card->erase_size || nr % card->erase_size)
2240 return -EINVAL;
2241 }
2242
2243 if (arg == MMC_ERASE_ARG) {
2244 rem = from % card->erase_size;
2245 if (rem) {
2246 rem = card->erase_size - rem;
2247 from += rem;
2248 if (nr > rem)
2249 nr -= rem;
2250 else
2251 return 0;
2252 }
2253 rem = nr % card->erase_size;
2254 if (rem)
2255 nr -= rem;
2256 }
2257
2258 if (nr == 0)
2259 return 0;
2260
2261 to = from + nr;
2262
2263 if (to <= from)
2264 return -EINVAL;
2265
2266 /* 'from' and 'to' are inclusive */
2267 to -= 1;
2268
2269 /*
2270 * Special case where only one erase-group fits in the timeout budget:
2271 * If the region crosses an erase-group boundary on this particular
2272 * case, we will be trimming more than one erase-group which, does not
2273 * fit in the timeout budget of the controller, so we need to split it
2274 * and call mmc_do_erase() twice if necessary. This special case is
2275 * identified by the card->eg_boundary flag.
2276 */
2277 rem = card->erase_size - (from % card->erase_size);
2278 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2279 err = mmc_do_erase(card, from, from + rem - 1, arg);
2280 from += rem;
2281 if ((err) || (to <= from))
2282 return err;
2283 }
2284
2285 return mmc_do_erase(card, from, to, arg);
2286 }
2287 EXPORT_SYMBOL(mmc_erase);
2288
2289 int mmc_can_erase(struct mmc_card *card)
2290 {
2291 if ((card->host->caps & MMC_CAP_ERASE) &&
2292 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2293 return 1;
2294 return 0;
2295 }
2296 EXPORT_SYMBOL(mmc_can_erase);
2297
2298 int mmc_can_trim(struct mmc_card *card)
2299 {
2300 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2301 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2302 return 1;
2303 return 0;
2304 }
2305 EXPORT_SYMBOL(mmc_can_trim);
2306
2307 int mmc_can_discard(struct mmc_card *card)
2308 {
2309 /*
2310 * As there's no way to detect the discard support bit at v4.5
2311 * use the s/w feature support filed.
2312 */
2313 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2314 return 1;
2315 return 0;
2316 }
2317 EXPORT_SYMBOL(mmc_can_discard);
2318
2319 int mmc_can_sanitize(struct mmc_card *card)
2320 {
2321 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2322 return 0;
2323 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2324 return 1;
2325 return 0;
2326 }
2327 EXPORT_SYMBOL(mmc_can_sanitize);
2328
2329 int mmc_can_secure_erase_trim(struct mmc_card *card)
2330 {
2331 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2332 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2333 return 1;
2334 return 0;
2335 }
2336 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2337
2338 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2339 unsigned int nr)
2340 {
2341 if (!card->erase_size)
2342 return 0;
2343 if (from % card->erase_size || nr % card->erase_size)
2344 return 0;
2345 return 1;
2346 }
2347 EXPORT_SYMBOL(mmc_erase_group_aligned);
2348
2349 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2350 unsigned int arg)
2351 {
2352 struct mmc_host *host = card->host;
2353 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2354 unsigned int last_timeout = 0;
2355
2356 if (card->erase_shift) {
2357 max_qty = UINT_MAX >> card->erase_shift;
2358 min_qty = card->pref_erase >> card->erase_shift;
2359 } else if (mmc_card_sd(card)) {
2360 max_qty = UINT_MAX;
2361 min_qty = card->pref_erase;
2362 } else {
2363 max_qty = UINT_MAX / card->erase_size;
2364 min_qty = card->pref_erase / card->erase_size;
2365 }
2366
2367 /*
2368 * We should not only use 'host->max_busy_timeout' as the limitation
2369 * when deciding the max discard sectors. We should set a balance value
2370 * to improve the erase speed, and it can not get too long timeout at
2371 * the same time.
2372 *
2373 * Here we set 'card->pref_erase' as the minimal discard sectors no
2374 * matter what size of 'host->max_busy_timeout', but if the
2375 * 'host->max_busy_timeout' is large enough for more discard sectors,
2376 * then we can continue to increase the max discard sectors until we
2377 * get a balance value.
2378 */
2379 do {
2380 y = 0;
2381 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2382 timeout = mmc_erase_timeout(card, arg, qty + x);
2383
2384 if (qty + x > min_qty &&
2385 timeout > host->max_busy_timeout)
2386 break;
2387
2388 if (timeout < last_timeout)
2389 break;
2390 last_timeout = timeout;
2391 y = x;
2392 }
2393 qty += y;
2394 } while (y);
2395
2396 if (!qty)
2397 return 0;
2398
2399 /*
2400 * When specifying a sector range to trim, chances are we might cross
2401 * an erase-group boundary even if the amount of sectors is less than
2402 * one erase-group.
2403 * If we can only fit one erase-group in the controller timeout budget,
2404 * we have to care that erase-group boundaries are not crossed by a
2405 * single trim operation. We flag that special case with "eg_boundary".
2406 * In all other cases we can just decrement qty and pretend that we
2407 * always touch (qty + 1) erase-groups as a simple optimization.
2408 */
2409 if (qty == 1)
2410 card->eg_boundary = 1;
2411 else
2412 qty--;
2413
2414 /* Convert qty to sectors */
2415 if (card->erase_shift)
2416 max_discard = qty << card->erase_shift;
2417 else if (mmc_card_sd(card))
2418 max_discard = qty + 1;
2419 else
2420 max_discard = qty * card->erase_size;
2421
2422 return max_discard;
2423 }
2424
2425 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2426 {
2427 struct mmc_host *host = card->host;
2428 unsigned int max_discard, max_trim;
2429
2430 if (!host->max_busy_timeout)
2431 return UINT_MAX;
2432
2433 /*
2434 * Without erase_group_def set, MMC erase timeout depends on clock
2435 * frequence which can change. In that case, the best choice is
2436 * just the preferred erase size.
2437 */
2438 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2439 return card->pref_erase;
2440
2441 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2442 if (mmc_can_trim(card)) {
2443 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2444 if (max_trim < max_discard)
2445 max_discard = max_trim;
2446 } else if (max_discard < card->erase_size) {
2447 max_discard = 0;
2448 }
2449 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2450 mmc_hostname(host), max_discard, host->max_busy_timeout);
2451 return max_discard;
2452 }
2453 EXPORT_SYMBOL(mmc_calc_max_discard);
2454
2455 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2456 {
2457 struct mmc_command cmd = {0};
2458
2459 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2460 return 0;
2461
2462 cmd.opcode = MMC_SET_BLOCKLEN;
2463 cmd.arg = blocklen;
2464 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2465 return mmc_wait_for_cmd(card->host, &cmd, 5);
2466 }
2467 EXPORT_SYMBOL(mmc_set_blocklen);
2468
2469 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2470 bool is_rel_write)
2471 {
2472 struct mmc_command cmd = {0};
2473
2474 cmd.opcode = MMC_SET_BLOCK_COUNT;
2475 cmd.arg = blockcount & 0x0000FFFF;
2476 if (is_rel_write)
2477 cmd.arg |= 1 << 31;
2478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2479 return mmc_wait_for_cmd(card->host, &cmd, 5);
2480 }
2481 EXPORT_SYMBOL(mmc_set_blockcount);
2482
2483 static void mmc_hw_reset_for_init(struct mmc_host *host)
2484 {
2485 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2486 return;
2487 host->ops->hw_reset(host);
2488 }
2489
2490 int mmc_hw_reset(struct mmc_host *host)
2491 {
2492 int ret;
2493
2494 if (!host->card)
2495 return -EINVAL;
2496
2497 mmc_bus_get(host);
2498 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2499 mmc_bus_put(host);
2500 return -EOPNOTSUPP;
2501 }
2502
2503 ret = host->bus_ops->reset(host);
2504 mmc_bus_put(host);
2505
2506 if (ret)
2507 pr_warn("%s: tried to reset card, got error %d\n",
2508 mmc_hostname(host), ret);
2509
2510 return ret;
2511 }
2512 EXPORT_SYMBOL(mmc_hw_reset);
2513
2514 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2515 {
2516 host->f_init = freq;
2517
2518 #ifdef CONFIG_MMC_DEBUG
2519 pr_info("%s: %s: trying to init card at %u Hz\n",
2520 mmc_hostname(host), __func__, host->f_init);
2521 #endif
2522 mmc_power_up(host, host->ocr_avail);
2523
2524 /*
2525 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2526 * do a hardware reset if possible.
2527 */
2528 mmc_hw_reset_for_init(host);
2529
2530 /*
2531 * sdio_reset sends CMD52 to reset card. Since we do not know
2532 * if the card is being re-initialized, just send it. CMD52
2533 * should be ignored by SD/eMMC cards.
2534 * Skip it if we already know that we do not support SDIO commands
2535 */
2536 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2537 sdio_reset(host);
2538
2539 mmc_go_idle(host);
2540
2541 if (!(host->caps2 & MMC_CAP2_NO_SD))
2542 mmc_send_if_cond(host, host->ocr_avail);
2543
2544 /* Order's important: probe SDIO, then SD, then MMC */
2545 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2546 if (!mmc_attach_sdio(host))
2547 return 0;
2548
2549 if (!(host->caps2 & MMC_CAP2_NO_SD))
2550 if (!mmc_attach_sd(host))
2551 return 0;
2552
2553 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2554 if (!mmc_attach_mmc(host))
2555 return 0;
2556
2557 mmc_power_off(host);
2558 return -EIO;
2559 }
2560
2561 int _mmc_detect_card_removed(struct mmc_host *host)
2562 {
2563 int ret;
2564
2565 if (!host->card || mmc_card_removed(host->card))
2566 return 1;
2567
2568 ret = host->bus_ops->alive(host);
2569
2570 /*
2571 * Card detect status and alive check may be out of sync if card is
2572 * removed slowly, when card detect switch changes while card/slot
2573 * pads are still contacted in hardware (refer to "SD Card Mechanical
2574 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2575 * detect work 200ms later for this case.
2576 */
2577 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2578 mmc_detect_change(host, msecs_to_jiffies(200));
2579 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2580 }
2581
2582 if (ret) {
2583 mmc_card_set_removed(host->card);
2584 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2585 }
2586
2587 return ret;
2588 }
2589
2590 int mmc_detect_card_removed(struct mmc_host *host)
2591 {
2592 struct mmc_card *card = host->card;
2593 int ret;
2594
2595 WARN_ON(!host->claimed);
2596
2597 if (!card)
2598 return 1;
2599
2600 if (!mmc_card_is_removable(host))
2601 return 0;
2602
2603 ret = mmc_card_removed(card);
2604 /*
2605 * The card will be considered unchanged unless we have been asked to
2606 * detect a change or host requires polling to provide card detection.
2607 */
2608 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2609 return ret;
2610
2611 host->detect_change = 0;
2612 if (!ret) {
2613 ret = _mmc_detect_card_removed(host);
2614 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2615 /*
2616 * Schedule a detect work as soon as possible to let a
2617 * rescan handle the card removal.
2618 */
2619 cancel_delayed_work(&host->detect);
2620 _mmc_detect_change(host, 0, false);
2621 }
2622 }
2623
2624 return ret;
2625 }
2626 EXPORT_SYMBOL(mmc_detect_card_removed);
2627
2628 void mmc_rescan(struct work_struct *work)
2629 {
2630 struct mmc_host *host =
2631 container_of(work, struct mmc_host, detect.work);
2632 int i;
2633
2634 if (host->rescan_disable)
2635 return;
2636
2637 /* If there is a non-removable card registered, only scan once */
2638 if (!mmc_card_is_removable(host) && host->rescan_entered)
2639 return;
2640 host->rescan_entered = 1;
2641
2642 if (host->trigger_card_event && host->ops->card_event) {
2643 mmc_claim_host(host);
2644 host->ops->card_event(host);
2645 mmc_release_host(host);
2646 host->trigger_card_event = false;
2647 }
2648
2649 mmc_bus_get(host);
2650
2651 /*
2652 * if there is a _removable_ card registered, check whether it is
2653 * still present
2654 */
2655 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2656 host->bus_ops->detect(host);
2657
2658 host->detect_change = 0;
2659
2660 /*
2661 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2662 * the card is no longer present.
2663 */
2664 mmc_bus_put(host);
2665 mmc_bus_get(host);
2666
2667 /* if there still is a card present, stop here */
2668 if (host->bus_ops != NULL) {
2669 mmc_bus_put(host);
2670 goto out;
2671 }
2672
2673 /*
2674 * Only we can add a new handler, so it's safe to
2675 * release the lock here.
2676 */
2677 mmc_bus_put(host);
2678
2679 mmc_claim_host(host);
2680 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2681 host->ops->get_cd(host) == 0) {
2682 mmc_power_off(host);
2683 mmc_release_host(host);
2684 goto out;
2685 }
2686
2687 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2688 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2689 break;
2690 if (freqs[i] <= host->f_min)
2691 break;
2692 }
2693 mmc_release_host(host);
2694
2695 out:
2696 if (host->caps & MMC_CAP_NEEDS_POLL)
2697 mmc_schedule_delayed_work(&host->detect, HZ);
2698 }
2699
2700 void mmc_start_host(struct mmc_host *host)
2701 {
2702 host->f_init = max(freqs[0], host->f_min);
2703 host->rescan_disable = 0;
2704 host->ios.power_mode = MMC_POWER_UNDEFINED;
2705
2706 mmc_claim_host(host);
2707 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2708 mmc_power_off(host);
2709 else
2710 mmc_power_up(host, host->ocr_avail);
2711 mmc_release_host(host);
2712
2713 mmc_gpiod_request_cd_irq(host);
2714 _mmc_detect_change(host, 0, false);
2715 }
2716
2717 void mmc_stop_host(struct mmc_host *host)
2718 {
2719 #ifdef CONFIG_MMC_DEBUG
2720 unsigned long flags;
2721 spin_lock_irqsave(&host->lock, flags);
2722 host->removed = 1;
2723 spin_unlock_irqrestore(&host->lock, flags);
2724 #endif
2725 if (host->slot.cd_irq >= 0)
2726 disable_irq(host->slot.cd_irq);
2727
2728 host->rescan_disable = 1;
2729 cancel_delayed_work_sync(&host->detect);
2730
2731 /* clear pm flags now and let card drivers set them as needed */
2732 host->pm_flags = 0;
2733
2734 mmc_bus_get(host);
2735 if (host->bus_ops && !host->bus_dead) {
2736 /* Calling bus_ops->remove() with a claimed host can deadlock */
2737 host->bus_ops->remove(host);
2738 mmc_claim_host(host);
2739 mmc_detach_bus(host);
2740 mmc_power_off(host);
2741 mmc_release_host(host);
2742 mmc_bus_put(host);
2743 return;
2744 }
2745 mmc_bus_put(host);
2746
2747 BUG_ON(host->card);
2748
2749 mmc_claim_host(host);
2750 mmc_power_off(host);
2751 mmc_release_host(host);
2752 }
2753
2754 int mmc_power_save_host(struct mmc_host *host)
2755 {
2756 int ret = 0;
2757
2758 #ifdef CONFIG_MMC_DEBUG
2759 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2760 #endif
2761
2762 mmc_bus_get(host);
2763
2764 if (!host->bus_ops || host->bus_dead) {
2765 mmc_bus_put(host);
2766 return -EINVAL;
2767 }
2768
2769 if (host->bus_ops->power_save)
2770 ret = host->bus_ops->power_save(host);
2771
2772 mmc_bus_put(host);
2773
2774 mmc_power_off(host);
2775
2776 return ret;
2777 }
2778 EXPORT_SYMBOL(mmc_power_save_host);
2779
2780 int mmc_power_restore_host(struct mmc_host *host)
2781 {
2782 int ret;
2783
2784 #ifdef CONFIG_MMC_DEBUG
2785 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2786 #endif
2787
2788 mmc_bus_get(host);
2789
2790 if (!host->bus_ops || host->bus_dead) {
2791 mmc_bus_put(host);
2792 return -EINVAL;
2793 }
2794
2795 mmc_power_up(host, host->card->ocr);
2796 ret = host->bus_ops->power_restore(host);
2797
2798 mmc_bus_put(host);
2799
2800 return ret;
2801 }
2802 EXPORT_SYMBOL(mmc_power_restore_host);
2803
2804 /*
2805 * Flush the cache to the non-volatile storage.
2806 */
2807 int mmc_flush_cache(struct mmc_card *card)
2808 {
2809 int err = 0;
2810
2811 if (mmc_card_mmc(card) &&
2812 (card->ext_csd.cache_size > 0) &&
2813 (card->ext_csd.cache_ctrl & 1)) {
2814 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2815 EXT_CSD_FLUSH_CACHE, 1, 0);
2816 if (err)
2817 pr_err("%s: cache flush error %d\n",
2818 mmc_hostname(card->host), err);
2819 }
2820
2821 return err;
2822 }
2823 EXPORT_SYMBOL(mmc_flush_cache);
2824
2825 #ifdef CONFIG_PM_SLEEP
2826 /* Do the card removal on suspend if card is assumed removeable
2827 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2828 to sync the card.
2829 */
2830 static int mmc_pm_notify(struct notifier_block *notify_block,
2831 unsigned long mode, void *unused)
2832 {
2833 struct mmc_host *host = container_of(
2834 notify_block, struct mmc_host, pm_notify);
2835 unsigned long flags;
2836 int err = 0;
2837
2838 switch (mode) {
2839 case PM_HIBERNATION_PREPARE:
2840 case PM_SUSPEND_PREPARE:
2841 case PM_RESTORE_PREPARE:
2842 spin_lock_irqsave(&host->lock, flags);
2843 host->rescan_disable = 1;
2844 spin_unlock_irqrestore(&host->lock, flags);
2845 cancel_delayed_work_sync(&host->detect);
2846
2847 if (!host->bus_ops)
2848 break;
2849
2850 /* Validate prerequisites for suspend */
2851 if (host->bus_ops->pre_suspend)
2852 err = host->bus_ops->pre_suspend(host);
2853 if (!err)
2854 break;
2855
2856 /* Calling bus_ops->remove() with a claimed host can deadlock */
2857 host->bus_ops->remove(host);
2858 mmc_claim_host(host);
2859 mmc_detach_bus(host);
2860 mmc_power_off(host);
2861 mmc_release_host(host);
2862 host->pm_flags = 0;
2863 break;
2864
2865 case PM_POST_SUSPEND:
2866 case PM_POST_HIBERNATION:
2867 case PM_POST_RESTORE:
2868
2869 spin_lock_irqsave(&host->lock, flags);
2870 host->rescan_disable = 0;
2871 spin_unlock_irqrestore(&host->lock, flags);
2872 _mmc_detect_change(host, 0, false);
2873
2874 }
2875
2876 return 0;
2877 }
2878
2879 void mmc_register_pm_notifier(struct mmc_host *host)
2880 {
2881 host->pm_notify.notifier_call = mmc_pm_notify;
2882 register_pm_notifier(&host->pm_notify);
2883 }
2884
2885 void mmc_unregister_pm_notifier(struct mmc_host *host)
2886 {
2887 unregister_pm_notifier(&host->pm_notify);
2888 }
2889 #endif
2890
2891 /**
2892 * mmc_init_context_info() - init synchronization context
2893 * @host: mmc host
2894 *
2895 * Init struct context_info needed to implement asynchronous
2896 * request mechanism, used by mmc core, host driver and mmc requests
2897 * supplier.
2898 */
2899 void mmc_init_context_info(struct mmc_host *host)
2900 {
2901 spin_lock_init(&host->context_info.lock);
2902 host->context_info.is_new_req = false;
2903 host->context_info.is_done_rcv = false;
2904 host->context_info.is_waiting_last_req = false;
2905 init_waitqueue_head(&host->context_info.wait);
2906 }
2907
2908 static int __init mmc_init(void)
2909 {
2910 int ret;
2911
2912 ret = mmc_register_bus();
2913 if (ret)
2914 return ret;
2915
2916 ret = mmc_register_host_class();
2917 if (ret)
2918 goto unregister_bus;
2919
2920 ret = sdio_register_bus();
2921 if (ret)
2922 goto unregister_host_class;
2923
2924 return 0;
2925
2926 unregister_host_class:
2927 mmc_unregister_host_class();
2928 unregister_bus:
2929 mmc_unregister_bus();
2930 return ret;
2931 }
2932
2933 static void __exit mmc_exit(void)
2934 {
2935 sdio_unregister_bus();
2936 mmc_unregister_host_class();
2937 mmc_unregister_bus();
2938 }
2939
2940 subsys_initcall(mmc_init);
2941 module_exit(mmc_exit);
2942
2943 MODULE_LICENSE("GPL");
This page took 0.094557 seconds and 5 git commands to generate.