Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
54
55 /*
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
58 */
59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
60
61 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
62 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
63
64 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
65
66 /*
67 * Enabling software CRCs on the data blocks can be a significant (30%)
68 * performance cost, and for other reasons may not always be desired.
69 * So we allow it it to be disabled.
70 */
71 bool use_spi_crc = 1;
72 module_param(use_spi_crc, bool, 0);
73
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
76 {
77 /*
78 * We use the system_freezable_wq, because of two reasons.
79 * First, it allows several works (not the same work item) to be
80 * executed simultaneously. Second, the queue becomes frozen when
81 * userspace becomes frozen during system PM.
82 */
83 return queue_delayed_work(system_freezable_wq, work, delay);
84 }
85
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87
88 /*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
92 static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94 {
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118 {
119 }
120
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122
123 static inline void mmc_complete_cmd(struct mmc_request *mrq)
124 {
125 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
126 complete_all(&mrq->cmd_completion);
127 }
128
129 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
130 {
131 if (!mrq->cap_cmd_during_tfr)
132 return;
133
134 mmc_complete_cmd(mrq);
135
136 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
137 mmc_hostname(host), mrq->cmd->opcode);
138 }
139 EXPORT_SYMBOL(mmc_command_done);
140
141 /**
142 * mmc_request_done - finish processing an MMC request
143 * @host: MMC host which completed request
144 * @mrq: MMC request which request
145 *
146 * MMC drivers should call this function when they have completed
147 * their processing of a request.
148 */
149 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
150 {
151 struct mmc_command *cmd = mrq->cmd;
152 int err = cmd->error;
153
154 /* Flag re-tuning needed on CRC errors */
155 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
156 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
157 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
158 (mrq->data && mrq->data->error == -EILSEQ) ||
159 (mrq->stop && mrq->stop->error == -EILSEQ)))
160 mmc_retune_needed(host);
161
162 if (err && cmd->retries && mmc_host_is_spi(host)) {
163 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
164 cmd->retries = 0;
165 }
166
167 if (host->ongoing_mrq == mrq)
168 host->ongoing_mrq = NULL;
169
170 mmc_complete_cmd(mrq);
171
172 trace_mmc_request_done(host, mrq);
173
174 if (err && cmd->retries && !mmc_card_removed(host->card)) {
175 /*
176 * Request starter must handle retries - see
177 * mmc_wait_for_req_done().
178 */
179 if (mrq->done)
180 mrq->done(mrq);
181 } else {
182 mmc_should_fail_request(host, mrq);
183
184 if (!host->ongoing_mrq)
185 led_trigger_event(host->led, LED_OFF);
186
187 if (mrq->sbc) {
188 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), mrq->sbc->opcode,
190 mrq->sbc->error,
191 mrq->sbc->resp[0], mrq->sbc->resp[1],
192 mrq->sbc->resp[2], mrq->sbc->resp[3]);
193 }
194
195 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
196 mmc_hostname(host), cmd->opcode, err,
197 cmd->resp[0], cmd->resp[1],
198 cmd->resp[2], cmd->resp[3]);
199
200 if (mrq->data) {
201 pr_debug("%s: %d bytes transferred: %d\n",
202 mmc_hostname(host),
203 mrq->data->bytes_xfered, mrq->data->error);
204 }
205
206 if (mrq->stop) {
207 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
208 mmc_hostname(host), mrq->stop->opcode,
209 mrq->stop->error,
210 mrq->stop->resp[0], mrq->stop->resp[1],
211 mrq->stop->resp[2], mrq->stop->resp[3]);
212 }
213
214 if (mrq->done)
215 mrq->done(mrq);
216 }
217 }
218
219 EXPORT_SYMBOL(mmc_request_done);
220
221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222 {
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 */
237 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
238 int tries = 500; /* Wait aprox 500ms at maximum */
239
240 while (host->ops->card_busy(host) && --tries)
241 mmc_delay(1);
242
243 if (tries == 0) {
244 mrq->cmd->error = -EBUSY;
245 mmc_request_done(host, mrq);
246 return;
247 }
248 }
249
250 if (mrq->cap_cmd_during_tfr) {
251 host->ongoing_mrq = mrq;
252 /*
253 * Retry path could come through here without having waiting on
254 * cmd_completion, so ensure it is reinitialised.
255 */
256 reinit_completion(&mrq->cmd_completion);
257 }
258
259 trace_mmc_request_start(host, mrq);
260
261 host->ops->request(host, mrq);
262 }
263
264 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
265 {
266 #ifdef CONFIG_MMC_DEBUG
267 unsigned int i, sz;
268 struct scatterlist *sg;
269 #endif
270 mmc_retune_hold(host);
271
272 if (mmc_card_removed(host->card))
273 return -ENOMEDIUM;
274
275 if (mrq->sbc) {
276 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
277 mmc_hostname(host), mrq->sbc->opcode,
278 mrq->sbc->arg, mrq->sbc->flags);
279 }
280
281 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
282 mmc_hostname(host), mrq->cmd->opcode,
283 mrq->cmd->arg, mrq->cmd->flags);
284
285 if (mrq->data) {
286 pr_debug("%s: blksz %d blocks %d flags %08x "
287 "tsac %d ms nsac %d\n",
288 mmc_hostname(host), mrq->data->blksz,
289 mrq->data->blocks, mrq->data->flags,
290 mrq->data->timeout_ns / 1000000,
291 mrq->data->timeout_clks);
292 }
293
294 if (mrq->stop) {
295 pr_debug("%s: CMD%u arg %08x flags %08x\n",
296 mmc_hostname(host), mrq->stop->opcode,
297 mrq->stop->arg, mrq->stop->flags);
298 }
299
300 WARN_ON(!host->claimed);
301
302 mrq->cmd->error = 0;
303 mrq->cmd->mrq = mrq;
304 if (mrq->sbc) {
305 mrq->sbc->error = 0;
306 mrq->sbc->mrq = mrq;
307 }
308 if (mrq->data) {
309 BUG_ON(mrq->data->blksz > host->max_blk_size);
310 BUG_ON(mrq->data->blocks > host->max_blk_count);
311 BUG_ON(mrq->data->blocks * mrq->data->blksz >
312 host->max_req_size);
313
314 #ifdef CONFIG_MMC_DEBUG
315 sz = 0;
316 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
317 sz += sg->length;
318 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
319 #endif
320
321 mrq->cmd->data = mrq->data;
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
324 if (mrq->stop) {
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
328 }
329 }
330 led_trigger_event(host->led, LED_FULL);
331 __mmc_start_request(host, mrq);
332
333 return 0;
334 }
335
336 /**
337 * mmc_start_bkops - start BKOPS for supported cards
338 * @card: MMC card to start BKOPS
339 * @form_exception: A flag to indicate if this function was
340 * called due to an exception raised by the card
341 *
342 * Start background operations whenever requested.
343 * When the urgent BKOPS bit is set in a R1 command response
344 * then background operations should be started immediately.
345 */
346 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
347 {
348 int err;
349 int timeout;
350 bool use_busy_signal;
351
352 BUG_ON(!card);
353
354 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
355 return;
356
357 err = mmc_read_bkops_status(card);
358 if (err) {
359 pr_err("%s: Failed to read bkops status: %d\n",
360 mmc_hostname(card->host), err);
361 return;
362 }
363
364 if (!card->ext_csd.raw_bkops_status)
365 return;
366
367 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
368 from_exception)
369 return;
370
371 mmc_claim_host(card->host);
372 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
373 timeout = MMC_BKOPS_MAX_TIMEOUT;
374 use_busy_signal = true;
375 } else {
376 timeout = 0;
377 use_busy_signal = false;
378 }
379
380 mmc_retune_hold(card->host);
381
382 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
383 EXT_CSD_BKOPS_START, 1, timeout,
384 use_busy_signal, true, false);
385 if (err) {
386 pr_warn("%s: Error %d starting bkops\n",
387 mmc_hostname(card->host), err);
388 mmc_retune_release(card->host);
389 goto out;
390 }
391
392 /*
393 * For urgent bkops status (LEVEL_2 and more)
394 * bkops executed synchronously, otherwise
395 * the operation is in progress
396 */
397 if (!use_busy_signal)
398 mmc_card_set_doing_bkops(card);
399 else
400 mmc_retune_release(card->host);
401 out:
402 mmc_release_host(card->host);
403 }
404 EXPORT_SYMBOL(mmc_start_bkops);
405
406 /*
407 * mmc_wait_data_done() - done callback for data request
408 * @mrq: done data request
409 *
410 * Wakes up mmc context, passed as a callback to host controller driver
411 */
412 static void mmc_wait_data_done(struct mmc_request *mrq)
413 {
414 struct mmc_context_info *context_info = &mrq->host->context_info;
415
416 context_info->is_done_rcv = true;
417 wake_up_interruptible(&context_info->wait);
418 }
419
420 static void mmc_wait_done(struct mmc_request *mrq)
421 {
422 complete(&mrq->completion);
423 }
424
425 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
426 {
427 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
428
429 /*
430 * If there is an ongoing transfer, wait for the command line to become
431 * available.
432 */
433 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
434 wait_for_completion(&ongoing_mrq->cmd_completion);
435 }
436
437 /*
438 *__mmc_start_data_req() - starts data request
439 * @host: MMC host to start the request
440 * @mrq: data request to start
441 *
442 * Sets the done callback to be called when request is completed by the card.
443 * Starts data mmc request execution
444 * If an ongoing transfer is already in progress, wait for the command line
445 * to become available before sending another command.
446 */
447 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
448 {
449 int err;
450
451 mmc_wait_ongoing_tfr_cmd(host);
452
453 mrq->done = mmc_wait_data_done;
454 mrq->host = host;
455
456 init_completion(&mrq->cmd_completion);
457
458 err = mmc_start_request(host, mrq);
459 if (err) {
460 mrq->cmd->error = err;
461 mmc_complete_cmd(mrq);
462 mmc_wait_data_done(mrq);
463 }
464
465 return err;
466 }
467
468 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
469 {
470 int err;
471
472 mmc_wait_ongoing_tfr_cmd(host);
473
474 init_completion(&mrq->completion);
475 mrq->done = mmc_wait_done;
476
477 init_completion(&mrq->cmd_completion);
478
479 err = mmc_start_request(host, mrq);
480 if (err) {
481 mrq->cmd->error = err;
482 mmc_complete_cmd(mrq);
483 complete(&mrq->completion);
484 }
485
486 return err;
487 }
488
489 /*
490 * mmc_wait_for_data_req_done() - wait for request completed
491 * @host: MMC host to prepare the command.
492 * @mrq: MMC request to wait for
493 *
494 * Blocks MMC context till host controller will ack end of data request
495 * execution or new request notification arrives from the block layer.
496 * Handles command retries.
497 *
498 * Returns enum mmc_blk_status after checking errors.
499 */
500 static int mmc_wait_for_data_req_done(struct mmc_host *host,
501 struct mmc_request *mrq,
502 struct mmc_async_req *next_req)
503 {
504 struct mmc_command *cmd;
505 struct mmc_context_info *context_info = &host->context_info;
506 int err;
507 unsigned long flags;
508
509 while (1) {
510 wait_event_interruptible(context_info->wait,
511 (context_info->is_done_rcv ||
512 context_info->is_new_req));
513 spin_lock_irqsave(&context_info->lock, flags);
514 context_info->is_waiting_last_req = false;
515 spin_unlock_irqrestore(&context_info->lock, flags);
516 if (context_info->is_done_rcv) {
517 context_info->is_done_rcv = false;
518 context_info->is_new_req = false;
519 cmd = mrq->cmd;
520
521 if (!cmd->error || !cmd->retries ||
522 mmc_card_removed(host->card)) {
523 err = host->areq->err_check(host->card,
524 host->areq);
525 break; /* return err */
526 } else {
527 mmc_retune_recheck(host);
528 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
529 mmc_hostname(host),
530 cmd->opcode, cmd->error);
531 cmd->retries--;
532 cmd->error = 0;
533 __mmc_start_request(host, mrq);
534 continue; /* wait for done/new event again */
535 }
536 } else if (context_info->is_new_req) {
537 context_info->is_new_req = false;
538 if (!next_req)
539 return MMC_BLK_NEW_REQUEST;
540 }
541 }
542 mmc_retune_release(host);
543 return err;
544 }
545
546 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
547 {
548 struct mmc_command *cmd;
549
550 while (1) {
551 wait_for_completion(&mrq->completion);
552
553 cmd = mrq->cmd;
554
555 /*
556 * If host has timed out waiting for the sanitize
557 * to complete, card might be still in programming state
558 * so let's try to bring the card out of programming
559 * state.
560 */
561 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
562 if (!mmc_interrupt_hpi(host->card)) {
563 pr_warn("%s: %s: Interrupted sanitize\n",
564 mmc_hostname(host), __func__);
565 cmd->error = 0;
566 break;
567 } else {
568 pr_err("%s: %s: Failed to interrupt sanitize\n",
569 mmc_hostname(host), __func__);
570 }
571 }
572 if (!cmd->error || !cmd->retries ||
573 mmc_card_removed(host->card))
574 break;
575
576 mmc_retune_recheck(host);
577
578 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
579 mmc_hostname(host), cmd->opcode, cmd->error);
580 cmd->retries--;
581 cmd->error = 0;
582 __mmc_start_request(host, mrq);
583 }
584
585 mmc_retune_release(host);
586 }
587 EXPORT_SYMBOL(mmc_wait_for_req_done);
588
589 /**
590 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
591 * @host: MMC host
592 * @mrq: MMC request
593 *
594 * mmc_is_req_done() is used with requests that have
595 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
596 * starting a request and before waiting for it to complete. That is,
597 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
598 * and before mmc_wait_for_req_done(). If it is called at other times the
599 * result is not meaningful.
600 */
601 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
602 {
603 if (host->areq)
604 return host->context_info.is_done_rcv;
605 else
606 return completion_done(&mrq->completion);
607 }
608 EXPORT_SYMBOL(mmc_is_req_done);
609
610 /**
611 * mmc_pre_req - Prepare for a new request
612 * @host: MMC host to prepare command
613 * @mrq: MMC request to prepare for
614 * @is_first_req: true if there is no previous started request
615 * that may run in parellel to this call, otherwise false
616 *
617 * mmc_pre_req() is called in prior to mmc_start_req() to let
618 * host prepare for the new request. Preparation of a request may be
619 * performed while another request is running on the host.
620 */
621 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
622 bool is_first_req)
623 {
624 if (host->ops->pre_req)
625 host->ops->pre_req(host, mrq, is_first_req);
626 }
627
628 /**
629 * mmc_post_req - Post process a completed request
630 * @host: MMC host to post process command
631 * @mrq: MMC request to post process for
632 * @err: Error, if non zero, clean up any resources made in pre_req
633 *
634 * Let the host post process a completed request. Post processing of
635 * a request may be performed while another reuqest is running.
636 */
637 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
638 int err)
639 {
640 if (host->ops->post_req)
641 host->ops->post_req(host, mrq, err);
642 }
643
644 /**
645 * mmc_start_req - start a non-blocking request
646 * @host: MMC host to start command
647 * @areq: async request to start
648 * @error: out parameter returns 0 for success, otherwise non zero
649 *
650 * Start a new MMC custom command request for a host.
651 * If there is on ongoing async request wait for completion
652 * of that request and start the new one and return.
653 * Does not wait for the new request to complete.
654 *
655 * Returns the completed request, NULL in case of none completed.
656 * Wait for the an ongoing request (previoulsy started) to complete and
657 * return the completed request. If there is no ongoing request, NULL
658 * is returned without waiting. NULL is not an error condition.
659 */
660 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
661 struct mmc_async_req *areq, int *error)
662 {
663 int err = 0;
664 int start_err = 0;
665 struct mmc_async_req *data = host->areq;
666
667 /* Prepare a new request */
668 if (areq)
669 mmc_pre_req(host, areq->mrq, !host->areq);
670
671 if (host->areq) {
672 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
673 if (err == MMC_BLK_NEW_REQUEST) {
674 if (error)
675 *error = err;
676 /*
677 * The previous request was not completed,
678 * nothing to return
679 */
680 return NULL;
681 }
682 /*
683 * Check BKOPS urgency for each R1 response
684 */
685 if (host->card && mmc_card_mmc(host->card) &&
686 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
687 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
688 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
689
690 /* Cancel the prepared request */
691 if (areq)
692 mmc_post_req(host, areq->mrq, -EINVAL);
693
694 mmc_start_bkops(host->card, true);
695
696 /* prepare the request again */
697 if (areq)
698 mmc_pre_req(host, areq->mrq, !host->areq);
699 }
700 }
701
702 if (!err && areq)
703 start_err = __mmc_start_data_req(host, areq->mrq);
704
705 if (host->areq)
706 mmc_post_req(host, host->areq->mrq, 0);
707
708 /* Cancel a prepared request if it was not started. */
709 if ((err || start_err) && areq)
710 mmc_post_req(host, areq->mrq, -EINVAL);
711
712 if (err)
713 host->areq = NULL;
714 else
715 host->areq = areq;
716
717 if (error)
718 *error = err;
719 return data;
720 }
721 EXPORT_SYMBOL(mmc_start_req);
722
723 /**
724 * mmc_wait_for_req - start a request and wait for completion
725 * @host: MMC host to start command
726 * @mrq: MMC request to start
727 *
728 * Start a new MMC custom command request for a host, and wait
729 * for the command to complete. In the case of 'cap_cmd_during_tfr'
730 * requests, the transfer is ongoing and the caller can issue further
731 * commands that do not use the data lines, and then wait by calling
732 * mmc_wait_for_req_done().
733 * Does not attempt to parse the response.
734 */
735 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
736 {
737 __mmc_start_req(host, mrq);
738
739 if (!mrq->cap_cmd_during_tfr)
740 mmc_wait_for_req_done(host, mrq);
741 }
742 EXPORT_SYMBOL(mmc_wait_for_req);
743
744 /**
745 * mmc_interrupt_hpi - Issue for High priority Interrupt
746 * @card: the MMC card associated with the HPI transfer
747 *
748 * Issued High Priority Interrupt, and check for card status
749 * until out-of prg-state.
750 */
751 int mmc_interrupt_hpi(struct mmc_card *card)
752 {
753 int err;
754 u32 status;
755 unsigned long prg_wait;
756
757 BUG_ON(!card);
758
759 if (!card->ext_csd.hpi_en) {
760 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
761 return 1;
762 }
763
764 mmc_claim_host(card->host);
765 err = mmc_send_status(card, &status);
766 if (err) {
767 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
768 goto out;
769 }
770
771 switch (R1_CURRENT_STATE(status)) {
772 case R1_STATE_IDLE:
773 case R1_STATE_READY:
774 case R1_STATE_STBY:
775 case R1_STATE_TRAN:
776 /*
777 * In idle and transfer states, HPI is not needed and the caller
778 * can issue the next intended command immediately
779 */
780 goto out;
781 case R1_STATE_PRG:
782 break;
783 default:
784 /* In all other states, it's illegal to issue HPI */
785 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
786 mmc_hostname(card->host), R1_CURRENT_STATE(status));
787 err = -EINVAL;
788 goto out;
789 }
790
791 err = mmc_send_hpi_cmd(card, &status);
792 if (err)
793 goto out;
794
795 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
796 do {
797 err = mmc_send_status(card, &status);
798
799 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
800 break;
801 if (time_after(jiffies, prg_wait))
802 err = -ETIMEDOUT;
803 } while (!err);
804
805 out:
806 mmc_release_host(card->host);
807 return err;
808 }
809 EXPORT_SYMBOL(mmc_interrupt_hpi);
810
811 /**
812 * mmc_wait_for_cmd - start a command and wait for completion
813 * @host: MMC host to start command
814 * @cmd: MMC command to start
815 * @retries: maximum number of retries
816 *
817 * Start a new MMC command for a host, and wait for the command
818 * to complete. Return any error that occurred while the command
819 * was executing. Do not attempt to parse the response.
820 */
821 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
822 {
823 struct mmc_request mrq = {NULL};
824
825 WARN_ON(!host->claimed);
826
827 memset(cmd->resp, 0, sizeof(cmd->resp));
828 cmd->retries = retries;
829
830 mrq.cmd = cmd;
831 cmd->data = NULL;
832
833 mmc_wait_for_req(host, &mrq);
834
835 return cmd->error;
836 }
837
838 EXPORT_SYMBOL(mmc_wait_for_cmd);
839
840 /**
841 * mmc_stop_bkops - stop ongoing BKOPS
842 * @card: MMC card to check BKOPS
843 *
844 * Send HPI command to stop ongoing background operations to
845 * allow rapid servicing of foreground operations, e.g. read/
846 * writes. Wait until the card comes out of the programming state
847 * to avoid errors in servicing read/write requests.
848 */
849 int mmc_stop_bkops(struct mmc_card *card)
850 {
851 int err = 0;
852
853 BUG_ON(!card);
854 err = mmc_interrupt_hpi(card);
855
856 /*
857 * If err is EINVAL, we can't issue an HPI.
858 * It should complete the BKOPS.
859 */
860 if (!err || (err == -EINVAL)) {
861 mmc_card_clr_doing_bkops(card);
862 mmc_retune_release(card->host);
863 err = 0;
864 }
865
866 return err;
867 }
868 EXPORT_SYMBOL(mmc_stop_bkops);
869
870 int mmc_read_bkops_status(struct mmc_card *card)
871 {
872 int err;
873 u8 *ext_csd;
874
875 mmc_claim_host(card->host);
876 err = mmc_get_ext_csd(card, &ext_csd);
877 mmc_release_host(card->host);
878 if (err)
879 return err;
880
881 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
882 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
883 kfree(ext_csd);
884 return 0;
885 }
886 EXPORT_SYMBOL(mmc_read_bkops_status);
887
888 /**
889 * mmc_set_data_timeout - set the timeout for a data command
890 * @data: data phase for command
891 * @card: the MMC card associated with the data transfer
892 *
893 * Computes the data timeout parameters according to the
894 * correct algorithm given the card type.
895 */
896 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
897 {
898 unsigned int mult;
899
900 /*
901 * SDIO cards only define an upper 1 s limit on access.
902 */
903 if (mmc_card_sdio(card)) {
904 data->timeout_ns = 1000000000;
905 data->timeout_clks = 0;
906 return;
907 }
908
909 /*
910 * SD cards use a 100 multiplier rather than 10
911 */
912 mult = mmc_card_sd(card) ? 100 : 10;
913
914 /*
915 * Scale up the multiplier (and therefore the timeout) by
916 * the r2w factor for writes.
917 */
918 if (data->flags & MMC_DATA_WRITE)
919 mult <<= card->csd.r2w_factor;
920
921 data->timeout_ns = card->csd.tacc_ns * mult;
922 data->timeout_clks = card->csd.tacc_clks * mult;
923
924 /*
925 * SD cards also have an upper limit on the timeout.
926 */
927 if (mmc_card_sd(card)) {
928 unsigned int timeout_us, limit_us;
929
930 timeout_us = data->timeout_ns / 1000;
931 if (card->host->ios.clock)
932 timeout_us += data->timeout_clks * 1000 /
933 (card->host->ios.clock / 1000);
934
935 if (data->flags & MMC_DATA_WRITE)
936 /*
937 * The MMC spec "It is strongly recommended
938 * for hosts to implement more than 500ms
939 * timeout value even if the card indicates
940 * the 250ms maximum busy length." Even the
941 * previous value of 300ms is known to be
942 * insufficient for some cards.
943 */
944 limit_us = 3000000;
945 else
946 limit_us = 100000;
947
948 /*
949 * SDHC cards always use these fixed values.
950 */
951 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
952 data->timeout_ns = limit_us * 1000;
953 data->timeout_clks = 0;
954 }
955
956 /* assign limit value if invalid */
957 if (timeout_us == 0)
958 data->timeout_ns = limit_us * 1000;
959 }
960
961 /*
962 * Some cards require longer data read timeout than indicated in CSD.
963 * Address this by setting the read timeout to a "reasonably high"
964 * value. For the cards tested, 600ms has proven enough. If necessary,
965 * this value can be increased if other problematic cards require this.
966 */
967 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
968 data->timeout_ns = 600000000;
969 data->timeout_clks = 0;
970 }
971
972 /*
973 * Some cards need very high timeouts if driven in SPI mode.
974 * The worst observed timeout was 900ms after writing a
975 * continuous stream of data until the internal logic
976 * overflowed.
977 */
978 if (mmc_host_is_spi(card->host)) {
979 if (data->flags & MMC_DATA_WRITE) {
980 if (data->timeout_ns < 1000000000)
981 data->timeout_ns = 1000000000; /* 1s */
982 } else {
983 if (data->timeout_ns < 100000000)
984 data->timeout_ns = 100000000; /* 100ms */
985 }
986 }
987 }
988 EXPORT_SYMBOL(mmc_set_data_timeout);
989
990 /**
991 * mmc_align_data_size - pads a transfer size to a more optimal value
992 * @card: the MMC card associated with the data transfer
993 * @sz: original transfer size
994 *
995 * Pads the original data size with a number of extra bytes in
996 * order to avoid controller bugs and/or performance hits
997 * (e.g. some controllers revert to PIO for certain sizes).
998 *
999 * Returns the improved size, which might be unmodified.
1000 *
1001 * Note that this function is only relevant when issuing a
1002 * single scatter gather entry.
1003 */
1004 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
1005 {
1006 /*
1007 * FIXME: We don't have a system for the controller to tell
1008 * the core about its problems yet, so for now we just 32-bit
1009 * align the size.
1010 */
1011 sz = ((sz + 3) / 4) * 4;
1012
1013 return sz;
1014 }
1015 EXPORT_SYMBOL(mmc_align_data_size);
1016
1017 /**
1018 * __mmc_claim_host - exclusively claim a host
1019 * @host: mmc host to claim
1020 * @abort: whether or not the operation should be aborted
1021 *
1022 * Claim a host for a set of operations. If @abort is non null and
1023 * dereference a non-zero value then this will return prematurely with
1024 * that non-zero value without acquiring the lock. Returns zero
1025 * with the lock held otherwise.
1026 */
1027 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1028 {
1029 DECLARE_WAITQUEUE(wait, current);
1030 unsigned long flags;
1031 int stop;
1032 bool pm = false;
1033
1034 might_sleep();
1035
1036 add_wait_queue(&host->wq, &wait);
1037 spin_lock_irqsave(&host->lock, flags);
1038 while (1) {
1039 set_current_state(TASK_UNINTERRUPTIBLE);
1040 stop = abort ? atomic_read(abort) : 0;
1041 if (stop || !host->claimed || host->claimer == current)
1042 break;
1043 spin_unlock_irqrestore(&host->lock, flags);
1044 schedule();
1045 spin_lock_irqsave(&host->lock, flags);
1046 }
1047 set_current_state(TASK_RUNNING);
1048 if (!stop) {
1049 host->claimed = 1;
1050 host->claimer = current;
1051 host->claim_cnt += 1;
1052 if (host->claim_cnt == 1)
1053 pm = true;
1054 } else
1055 wake_up(&host->wq);
1056 spin_unlock_irqrestore(&host->lock, flags);
1057 remove_wait_queue(&host->wq, &wait);
1058
1059 if (pm)
1060 pm_runtime_get_sync(mmc_dev(host));
1061
1062 return stop;
1063 }
1064 EXPORT_SYMBOL(__mmc_claim_host);
1065
1066 /**
1067 * mmc_release_host - release a host
1068 * @host: mmc host to release
1069 *
1070 * Release a MMC host, allowing others to claim the host
1071 * for their operations.
1072 */
1073 void mmc_release_host(struct mmc_host *host)
1074 {
1075 unsigned long flags;
1076
1077 WARN_ON(!host->claimed);
1078
1079 spin_lock_irqsave(&host->lock, flags);
1080 if (--host->claim_cnt) {
1081 /* Release for nested claim */
1082 spin_unlock_irqrestore(&host->lock, flags);
1083 } else {
1084 host->claimed = 0;
1085 host->claimer = NULL;
1086 spin_unlock_irqrestore(&host->lock, flags);
1087 wake_up(&host->wq);
1088 pm_runtime_mark_last_busy(mmc_dev(host));
1089 pm_runtime_put_autosuspend(mmc_dev(host));
1090 }
1091 }
1092 EXPORT_SYMBOL(mmc_release_host);
1093
1094 /*
1095 * This is a helper function, which fetches a runtime pm reference for the
1096 * card device and also claims the host.
1097 */
1098 void mmc_get_card(struct mmc_card *card)
1099 {
1100 pm_runtime_get_sync(&card->dev);
1101 mmc_claim_host(card->host);
1102 }
1103 EXPORT_SYMBOL(mmc_get_card);
1104
1105 /*
1106 * This is a helper function, which releases the host and drops the runtime
1107 * pm reference for the card device.
1108 */
1109 void mmc_put_card(struct mmc_card *card)
1110 {
1111 mmc_release_host(card->host);
1112 pm_runtime_mark_last_busy(&card->dev);
1113 pm_runtime_put_autosuspend(&card->dev);
1114 }
1115 EXPORT_SYMBOL(mmc_put_card);
1116
1117 /*
1118 * Internal function that does the actual ios call to the host driver,
1119 * optionally printing some debug output.
1120 */
1121 static inline void mmc_set_ios(struct mmc_host *host)
1122 {
1123 struct mmc_ios *ios = &host->ios;
1124
1125 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1126 "width %u timing %u\n",
1127 mmc_hostname(host), ios->clock, ios->bus_mode,
1128 ios->power_mode, ios->chip_select, ios->vdd,
1129 1 << ios->bus_width, ios->timing);
1130
1131 host->ops->set_ios(host, ios);
1132 }
1133
1134 /*
1135 * Control chip select pin on a host.
1136 */
1137 void mmc_set_chip_select(struct mmc_host *host, int mode)
1138 {
1139 host->ios.chip_select = mode;
1140 mmc_set_ios(host);
1141 }
1142
1143 /*
1144 * Sets the host clock to the highest possible frequency that
1145 * is below "hz".
1146 */
1147 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1148 {
1149 WARN_ON(hz && hz < host->f_min);
1150
1151 if (hz > host->f_max)
1152 hz = host->f_max;
1153
1154 host->ios.clock = hz;
1155 mmc_set_ios(host);
1156 }
1157
1158 int mmc_execute_tuning(struct mmc_card *card)
1159 {
1160 struct mmc_host *host = card->host;
1161 u32 opcode;
1162 int err;
1163
1164 if (!host->ops->execute_tuning)
1165 return 0;
1166
1167 if (mmc_card_mmc(card))
1168 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1169 else
1170 opcode = MMC_SEND_TUNING_BLOCK;
1171
1172 err = host->ops->execute_tuning(host, opcode);
1173
1174 if (err)
1175 pr_err("%s: tuning execution failed: %d\n",
1176 mmc_hostname(host), err);
1177 else
1178 mmc_retune_enable(host);
1179
1180 return err;
1181 }
1182
1183 /*
1184 * Change the bus mode (open drain/push-pull) of a host.
1185 */
1186 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1187 {
1188 host->ios.bus_mode = mode;
1189 mmc_set_ios(host);
1190 }
1191
1192 /*
1193 * Change data bus width of a host.
1194 */
1195 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1196 {
1197 host->ios.bus_width = width;
1198 mmc_set_ios(host);
1199 }
1200
1201 /*
1202 * Set initial state after a power cycle or a hw_reset.
1203 */
1204 void mmc_set_initial_state(struct mmc_host *host)
1205 {
1206 mmc_retune_disable(host);
1207
1208 if (mmc_host_is_spi(host))
1209 host->ios.chip_select = MMC_CS_HIGH;
1210 else
1211 host->ios.chip_select = MMC_CS_DONTCARE;
1212 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1213 host->ios.bus_width = MMC_BUS_WIDTH_1;
1214 host->ios.timing = MMC_TIMING_LEGACY;
1215 host->ios.drv_type = 0;
1216 host->ios.enhanced_strobe = false;
1217
1218 /*
1219 * Make sure we are in non-enhanced strobe mode before we
1220 * actually enable it in ext_csd.
1221 */
1222 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1223 host->ops->hs400_enhanced_strobe)
1224 host->ops->hs400_enhanced_strobe(host, &host->ios);
1225
1226 mmc_set_ios(host);
1227 }
1228
1229 /**
1230 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1231 * @vdd: voltage (mV)
1232 * @low_bits: prefer low bits in boundary cases
1233 *
1234 * This function returns the OCR bit number according to the provided @vdd
1235 * value. If conversion is not possible a negative errno value returned.
1236 *
1237 * Depending on the @low_bits flag the function prefers low or high OCR bits
1238 * on boundary voltages. For example,
1239 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1240 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1241 *
1242 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1243 */
1244 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1245 {
1246 const int max_bit = ilog2(MMC_VDD_35_36);
1247 int bit;
1248
1249 if (vdd < 1650 || vdd > 3600)
1250 return -EINVAL;
1251
1252 if (vdd >= 1650 && vdd <= 1950)
1253 return ilog2(MMC_VDD_165_195);
1254
1255 if (low_bits)
1256 vdd -= 1;
1257
1258 /* Base 2000 mV, step 100 mV, bit's base 8. */
1259 bit = (vdd - 2000) / 100 + 8;
1260 if (bit > max_bit)
1261 return max_bit;
1262 return bit;
1263 }
1264
1265 /**
1266 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1267 * @vdd_min: minimum voltage value (mV)
1268 * @vdd_max: maximum voltage value (mV)
1269 *
1270 * This function returns the OCR mask bits according to the provided @vdd_min
1271 * and @vdd_max values. If conversion is not possible the function returns 0.
1272 *
1273 * Notes wrt boundary cases:
1274 * This function sets the OCR bits for all boundary voltages, for example
1275 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1276 * MMC_VDD_34_35 mask.
1277 */
1278 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1279 {
1280 u32 mask = 0;
1281
1282 if (vdd_max < vdd_min)
1283 return 0;
1284
1285 /* Prefer high bits for the boundary vdd_max values. */
1286 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1287 if (vdd_max < 0)
1288 return 0;
1289
1290 /* Prefer low bits for the boundary vdd_min values. */
1291 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1292 if (vdd_min < 0)
1293 return 0;
1294
1295 /* Fill the mask, from max bit to min bit. */
1296 while (vdd_max >= vdd_min)
1297 mask |= 1 << vdd_max--;
1298
1299 return mask;
1300 }
1301 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1302
1303 #ifdef CONFIG_OF
1304
1305 /**
1306 * mmc_of_parse_voltage - return mask of supported voltages
1307 * @np: The device node need to be parsed.
1308 * @mask: mask of voltages available for MMC/SD/SDIO
1309 *
1310 * Parse the "voltage-ranges" DT property, returning zero if it is not
1311 * found, negative errno if the voltage-range specification is invalid,
1312 * or one if the voltage-range is specified and successfully parsed.
1313 */
1314 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1315 {
1316 const u32 *voltage_ranges;
1317 int num_ranges, i;
1318
1319 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1320 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1321 if (!voltage_ranges) {
1322 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1323 return 0;
1324 }
1325 if (!num_ranges) {
1326 pr_err("%s: voltage-ranges empty\n", np->full_name);
1327 return -EINVAL;
1328 }
1329
1330 for (i = 0; i < num_ranges; i++) {
1331 const int j = i * 2;
1332 u32 ocr_mask;
1333
1334 ocr_mask = mmc_vddrange_to_ocrmask(
1335 be32_to_cpu(voltage_ranges[j]),
1336 be32_to_cpu(voltage_ranges[j + 1]));
1337 if (!ocr_mask) {
1338 pr_err("%s: voltage-range #%d is invalid\n",
1339 np->full_name, i);
1340 return -EINVAL;
1341 }
1342 *mask |= ocr_mask;
1343 }
1344
1345 return 1;
1346 }
1347 EXPORT_SYMBOL(mmc_of_parse_voltage);
1348
1349 #endif /* CONFIG_OF */
1350
1351 static int mmc_of_get_func_num(struct device_node *node)
1352 {
1353 u32 reg;
1354 int ret;
1355
1356 ret = of_property_read_u32(node, "reg", &reg);
1357 if (ret < 0)
1358 return ret;
1359
1360 return reg;
1361 }
1362
1363 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1364 unsigned func_num)
1365 {
1366 struct device_node *node;
1367
1368 if (!host->parent || !host->parent->of_node)
1369 return NULL;
1370
1371 for_each_child_of_node(host->parent->of_node, node) {
1372 if (mmc_of_get_func_num(node) == func_num)
1373 return node;
1374 }
1375
1376 return NULL;
1377 }
1378
1379 #ifdef CONFIG_REGULATOR
1380
1381 /**
1382 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1383 * @vdd_bit: OCR bit number
1384 * @min_uV: minimum voltage value (mV)
1385 * @max_uV: maximum voltage value (mV)
1386 *
1387 * This function returns the voltage range according to the provided OCR
1388 * bit number. If conversion is not possible a negative errno value returned.
1389 */
1390 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1391 {
1392 int tmp;
1393
1394 if (!vdd_bit)
1395 return -EINVAL;
1396
1397 /*
1398 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1399 * bits this regulator doesn't quite support ... don't
1400 * be too picky, most cards and regulators are OK with
1401 * a 0.1V range goof (it's a small error percentage).
1402 */
1403 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1404 if (tmp == 0) {
1405 *min_uV = 1650 * 1000;
1406 *max_uV = 1950 * 1000;
1407 } else {
1408 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1409 *max_uV = *min_uV + 100 * 1000;
1410 }
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * mmc_regulator_get_ocrmask - return mask of supported voltages
1417 * @supply: regulator to use
1418 *
1419 * This returns either a negative errno, or a mask of voltages that
1420 * can be provided to MMC/SD/SDIO devices using the specified voltage
1421 * regulator. This would normally be called before registering the
1422 * MMC host adapter.
1423 */
1424 int mmc_regulator_get_ocrmask(struct regulator *supply)
1425 {
1426 int result = 0;
1427 int count;
1428 int i;
1429 int vdd_uV;
1430 int vdd_mV;
1431
1432 count = regulator_count_voltages(supply);
1433 if (count < 0)
1434 return count;
1435
1436 for (i = 0; i < count; i++) {
1437 vdd_uV = regulator_list_voltage(supply, i);
1438 if (vdd_uV <= 0)
1439 continue;
1440
1441 vdd_mV = vdd_uV / 1000;
1442 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1443 }
1444
1445 if (!result) {
1446 vdd_uV = regulator_get_voltage(supply);
1447 if (vdd_uV <= 0)
1448 return vdd_uV;
1449
1450 vdd_mV = vdd_uV / 1000;
1451 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1452 }
1453
1454 return result;
1455 }
1456 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1457
1458 /**
1459 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1460 * @mmc: the host to regulate
1461 * @supply: regulator to use
1462 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1463 *
1464 * Returns zero on success, else negative errno.
1465 *
1466 * MMC host drivers may use this to enable or disable a regulator using
1467 * a particular supply voltage. This would normally be called from the
1468 * set_ios() method.
1469 */
1470 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1471 struct regulator *supply,
1472 unsigned short vdd_bit)
1473 {
1474 int result = 0;
1475 int min_uV, max_uV;
1476
1477 if (vdd_bit) {
1478 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1479
1480 result = regulator_set_voltage(supply, min_uV, max_uV);
1481 if (result == 0 && !mmc->regulator_enabled) {
1482 result = regulator_enable(supply);
1483 if (!result)
1484 mmc->regulator_enabled = true;
1485 }
1486 } else if (mmc->regulator_enabled) {
1487 result = regulator_disable(supply);
1488 if (result == 0)
1489 mmc->regulator_enabled = false;
1490 }
1491
1492 if (result)
1493 dev_err(mmc_dev(mmc),
1494 "could not set regulator OCR (%d)\n", result);
1495 return result;
1496 }
1497 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1498
1499 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1500 int min_uV, int target_uV,
1501 int max_uV)
1502 {
1503 /*
1504 * Check if supported first to avoid errors since we may try several
1505 * signal levels during power up and don't want to show errors.
1506 */
1507 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1508 return -EINVAL;
1509
1510 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1511 max_uV);
1512 }
1513
1514 /**
1515 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1516 *
1517 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1518 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1519 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1520 * SD card spec also define VQMMC in terms of VMMC.
1521 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1522 *
1523 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1524 * requested voltage. This is definitely a good idea for UHS where there's a
1525 * separate regulator on the card that's trying to make 1.8V and it's best if
1526 * we match.
1527 *
1528 * This function is expected to be used by a controller's
1529 * start_signal_voltage_switch() function.
1530 */
1531 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1532 {
1533 struct device *dev = mmc_dev(mmc);
1534 int ret, volt, min_uV, max_uV;
1535
1536 /* If no vqmmc supply then we can't change the voltage */
1537 if (IS_ERR(mmc->supply.vqmmc))
1538 return -EINVAL;
1539
1540 switch (ios->signal_voltage) {
1541 case MMC_SIGNAL_VOLTAGE_120:
1542 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1543 1100000, 1200000, 1300000);
1544 case MMC_SIGNAL_VOLTAGE_180:
1545 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1546 1700000, 1800000, 1950000);
1547 case MMC_SIGNAL_VOLTAGE_330:
1548 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1549 if (ret < 0)
1550 return ret;
1551
1552 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1553 __func__, volt, max_uV);
1554
1555 min_uV = max(volt - 300000, 2700000);
1556 max_uV = min(max_uV + 200000, 3600000);
1557
1558 /*
1559 * Due to a limitation in the current implementation of
1560 * regulator_set_voltage_triplet() which is taking the lowest
1561 * voltage possible if below the target, search for a suitable
1562 * voltage in two steps and try to stay close to vmmc
1563 * with a 0.3V tolerance at first.
1564 */
1565 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1566 min_uV, volt, max_uV))
1567 return 0;
1568
1569 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1570 2700000, volt, 3600000);
1571 default:
1572 return -EINVAL;
1573 }
1574 }
1575 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1576
1577 #endif /* CONFIG_REGULATOR */
1578
1579 int mmc_regulator_get_supply(struct mmc_host *mmc)
1580 {
1581 struct device *dev = mmc_dev(mmc);
1582 int ret;
1583
1584 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1585 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1586
1587 if (IS_ERR(mmc->supply.vmmc)) {
1588 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1589 return -EPROBE_DEFER;
1590 dev_dbg(dev, "No vmmc regulator found\n");
1591 } else {
1592 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1593 if (ret > 0)
1594 mmc->ocr_avail = ret;
1595 else
1596 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1597 }
1598
1599 if (IS_ERR(mmc->supply.vqmmc)) {
1600 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1601 return -EPROBE_DEFER;
1602 dev_dbg(dev, "No vqmmc regulator found\n");
1603 }
1604
1605 return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1608
1609 /*
1610 * Mask off any voltages we don't support and select
1611 * the lowest voltage
1612 */
1613 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1614 {
1615 int bit;
1616
1617 /*
1618 * Sanity check the voltages that the card claims to
1619 * support.
1620 */
1621 if (ocr & 0x7F) {
1622 dev_warn(mmc_dev(host),
1623 "card claims to support voltages below defined range\n");
1624 ocr &= ~0x7F;
1625 }
1626
1627 ocr &= host->ocr_avail;
1628 if (!ocr) {
1629 dev_warn(mmc_dev(host), "no support for card's volts\n");
1630 return 0;
1631 }
1632
1633 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1634 bit = ffs(ocr) - 1;
1635 ocr &= 3 << bit;
1636 mmc_power_cycle(host, ocr);
1637 } else {
1638 bit = fls(ocr) - 1;
1639 ocr &= 3 << bit;
1640 if (bit != host->ios.vdd)
1641 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1642 }
1643
1644 return ocr;
1645 }
1646
1647 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1648 {
1649 int err = 0;
1650 int old_signal_voltage = host->ios.signal_voltage;
1651
1652 host->ios.signal_voltage = signal_voltage;
1653 if (host->ops->start_signal_voltage_switch)
1654 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1655
1656 if (err)
1657 host->ios.signal_voltage = old_signal_voltage;
1658
1659 return err;
1660
1661 }
1662
1663 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1664 {
1665 struct mmc_command cmd = {0};
1666 int err = 0;
1667 u32 clock;
1668
1669 BUG_ON(!host);
1670
1671 /*
1672 * Send CMD11 only if the request is to switch the card to
1673 * 1.8V signalling.
1674 */
1675 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1676 return __mmc_set_signal_voltage(host, signal_voltage);
1677
1678 /*
1679 * If we cannot switch voltages, return failure so the caller
1680 * can continue without UHS mode
1681 */
1682 if (!host->ops->start_signal_voltage_switch)
1683 return -EPERM;
1684 if (!host->ops->card_busy)
1685 pr_warn("%s: cannot verify signal voltage switch\n",
1686 mmc_hostname(host));
1687
1688 cmd.opcode = SD_SWITCH_VOLTAGE;
1689 cmd.arg = 0;
1690 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1691
1692 err = mmc_wait_for_cmd(host, &cmd, 0);
1693 if (err)
1694 return err;
1695
1696 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1697 return -EIO;
1698
1699 /*
1700 * The card should drive cmd and dat[0:3] low immediately
1701 * after the response of cmd11, but wait 1 ms to be sure
1702 */
1703 mmc_delay(1);
1704 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1705 err = -EAGAIN;
1706 goto power_cycle;
1707 }
1708 /*
1709 * During a signal voltage level switch, the clock must be gated
1710 * for 5 ms according to the SD spec
1711 */
1712 clock = host->ios.clock;
1713 host->ios.clock = 0;
1714 mmc_set_ios(host);
1715
1716 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1717 /*
1718 * Voltages may not have been switched, but we've already
1719 * sent CMD11, so a power cycle is required anyway
1720 */
1721 err = -EAGAIN;
1722 goto power_cycle;
1723 }
1724
1725 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1726 mmc_delay(10);
1727 host->ios.clock = clock;
1728 mmc_set_ios(host);
1729
1730 /* Wait for at least 1 ms according to spec */
1731 mmc_delay(1);
1732
1733 /*
1734 * Failure to switch is indicated by the card holding
1735 * dat[0:3] low
1736 */
1737 if (host->ops->card_busy && host->ops->card_busy(host))
1738 err = -EAGAIN;
1739
1740 power_cycle:
1741 if (err) {
1742 pr_debug("%s: Signal voltage switch failed, "
1743 "power cycling card\n", mmc_hostname(host));
1744 mmc_power_cycle(host, ocr);
1745 }
1746
1747 return err;
1748 }
1749
1750 /*
1751 * Select timing parameters for host.
1752 */
1753 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1754 {
1755 host->ios.timing = timing;
1756 mmc_set_ios(host);
1757 }
1758
1759 /*
1760 * Select appropriate driver type for host.
1761 */
1762 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1763 {
1764 host->ios.drv_type = drv_type;
1765 mmc_set_ios(host);
1766 }
1767
1768 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1769 int card_drv_type, int *drv_type)
1770 {
1771 struct mmc_host *host = card->host;
1772 int host_drv_type = SD_DRIVER_TYPE_B;
1773
1774 *drv_type = 0;
1775
1776 if (!host->ops->select_drive_strength)
1777 return 0;
1778
1779 /* Use SD definition of driver strength for hosts */
1780 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1781 host_drv_type |= SD_DRIVER_TYPE_A;
1782
1783 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1784 host_drv_type |= SD_DRIVER_TYPE_C;
1785
1786 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1787 host_drv_type |= SD_DRIVER_TYPE_D;
1788
1789 /*
1790 * The drive strength that the hardware can support
1791 * depends on the board design. Pass the appropriate
1792 * information and let the hardware specific code
1793 * return what is possible given the options
1794 */
1795 return host->ops->select_drive_strength(card, max_dtr,
1796 host_drv_type,
1797 card_drv_type,
1798 drv_type);
1799 }
1800
1801 /*
1802 * Apply power to the MMC stack. This is a two-stage process.
1803 * First, we enable power to the card without the clock running.
1804 * We then wait a bit for the power to stabilise. Finally,
1805 * enable the bus drivers and clock to the card.
1806 *
1807 * We must _NOT_ enable the clock prior to power stablising.
1808 *
1809 * If a host does all the power sequencing itself, ignore the
1810 * initial MMC_POWER_UP stage.
1811 */
1812 void mmc_power_up(struct mmc_host *host, u32 ocr)
1813 {
1814 if (host->ios.power_mode == MMC_POWER_ON)
1815 return;
1816
1817 mmc_pwrseq_pre_power_on(host);
1818
1819 host->ios.vdd = fls(ocr) - 1;
1820 host->ios.power_mode = MMC_POWER_UP;
1821 /* Set initial state and call mmc_set_ios */
1822 mmc_set_initial_state(host);
1823
1824 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1825 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1826 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1827 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1828 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1829 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1830 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1831
1832 /*
1833 * This delay should be sufficient to allow the power supply
1834 * to reach the minimum voltage.
1835 */
1836 mmc_delay(10);
1837
1838 mmc_pwrseq_post_power_on(host);
1839
1840 host->ios.clock = host->f_init;
1841
1842 host->ios.power_mode = MMC_POWER_ON;
1843 mmc_set_ios(host);
1844
1845 /*
1846 * This delay must be at least 74 clock sizes, or 1 ms, or the
1847 * time required to reach a stable voltage.
1848 */
1849 mmc_delay(10);
1850 }
1851
1852 void mmc_power_off(struct mmc_host *host)
1853 {
1854 if (host->ios.power_mode == MMC_POWER_OFF)
1855 return;
1856
1857 mmc_pwrseq_power_off(host);
1858
1859 host->ios.clock = 0;
1860 host->ios.vdd = 0;
1861
1862 host->ios.power_mode = MMC_POWER_OFF;
1863 /* Set initial state and call mmc_set_ios */
1864 mmc_set_initial_state(host);
1865
1866 /*
1867 * Some configurations, such as the 802.11 SDIO card in the OLPC
1868 * XO-1.5, require a short delay after poweroff before the card
1869 * can be successfully turned on again.
1870 */
1871 mmc_delay(1);
1872 }
1873
1874 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1875 {
1876 mmc_power_off(host);
1877 /* Wait at least 1 ms according to SD spec */
1878 mmc_delay(1);
1879 mmc_power_up(host, ocr);
1880 }
1881
1882 /*
1883 * Cleanup when the last reference to the bus operator is dropped.
1884 */
1885 static void __mmc_release_bus(struct mmc_host *host)
1886 {
1887 BUG_ON(!host);
1888 BUG_ON(host->bus_refs);
1889 BUG_ON(!host->bus_dead);
1890
1891 host->bus_ops = NULL;
1892 }
1893
1894 /*
1895 * Increase reference count of bus operator
1896 */
1897 static inline void mmc_bus_get(struct mmc_host *host)
1898 {
1899 unsigned long flags;
1900
1901 spin_lock_irqsave(&host->lock, flags);
1902 host->bus_refs++;
1903 spin_unlock_irqrestore(&host->lock, flags);
1904 }
1905
1906 /*
1907 * Decrease reference count of bus operator and free it if
1908 * it is the last reference.
1909 */
1910 static inline void mmc_bus_put(struct mmc_host *host)
1911 {
1912 unsigned long flags;
1913
1914 spin_lock_irqsave(&host->lock, flags);
1915 host->bus_refs--;
1916 if ((host->bus_refs == 0) && host->bus_ops)
1917 __mmc_release_bus(host);
1918 spin_unlock_irqrestore(&host->lock, flags);
1919 }
1920
1921 /*
1922 * Assign a mmc bus handler to a host. Only one bus handler may control a
1923 * host at any given time.
1924 */
1925 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1926 {
1927 unsigned long flags;
1928
1929 BUG_ON(!host);
1930 BUG_ON(!ops);
1931
1932 WARN_ON(!host->claimed);
1933
1934 spin_lock_irqsave(&host->lock, flags);
1935
1936 BUG_ON(host->bus_ops);
1937 BUG_ON(host->bus_refs);
1938
1939 host->bus_ops = ops;
1940 host->bus_refs = 1;
1941 host->bus_dead = 0;
1942
1943 spin_unlock_irqrestore(&host->lock, flags);
1944 }
1945
1946 /*
1947 * Remove the current bus handler from a host.
1948 */
1949 void mmc_detach_bus(struct mmc_host *host)
1950 {
1951 unsigned long flags;
1952
1953 BUG_ON(!host);
1954
1955 WARN_ON(!host->claimed);
1956 WARN_ON(!host->bus_ops);
1957
1958 spin_lock_irqsave(&host->lock, flags);
1959
1960 host->bus_dead = 1;
1961
1962 spin_unlock_irqrestore(&host->lock, flags);
1963
1964 mmc_bus_put(host);
1965 }
1966
1967 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1968 bool cd_irq)
1969 {
1970 #ifdef CONFIG_MMC_DEBUG
1971 unsigned long flags;
1972 spin_lock_irqsave(&host->lock, flags);
1973 WARN_ON(host->removed);
1974 spin_unlock_irqrestore(&host->lock, flags);
1975 #endif
1976
1977 /*
1978 * If the device is configured as wakeup, we prevent a new sleep for
1979 * 5 s to give provision for user space to consume the event.
1980 */
1981 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1982 device_can_wakeup(mmc_dev(host)))
1983 pm_wakeup_event(mmc_dev(host), 5000);
1984
1985 host->detect_change = 1;
1986 mmc_schedule_delayed_work(&host->detect, delay);
1987 }
1988
1989 /**
1990 * mmc_detect_change - process change of state on a MMC socket
1991 * @host: host which changed state.
1992 * @delay: optional delay to wait before detection (jiffies)
1993 *
1994 * MMC drivers should call this when they detect a card has been
1995 * inserted or removed. The MMC layer will confirm that any
1996 * present card is still functional, and initialize any newly
1997 * inserted.
1998 */
1999 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
2000 {
2001 _mmc_detect_change(host, delay, true);
2002 }
2003 EXPORT_SYMBOL(mmc_detect_change);
2004
2005 void mmc_init_erase(struct mmc_card *card)
2006 {
2007 unsigned int sz;
2008
2009 if (is_power_of_2(card->erase_size))
2010 card->erase_shift = ffs(card->erase_size) - 1;
2011 else
2012 card->erase_shift = 0;
2013
2014 /*
2015 * It is possible to erase an arbitrarily large area of an SD or MMC
2016 * card. That is not desirable because it can take a long time
2017 * (minutes) potentially delaying more important I/O, and also the
2018 * timeout calculations become increasingly hugely over-estimated.
2019 * Consequently, 'pref_erase' is defined as a guide to limit erases
2020 * to that size and alignment.
2021 *
2022 * For SD cards that define Allocation Unit size, limit erases to one
2023 * Allocation Unit at a time.
2024 * For MMC, have a stab at ai good value and for modern cards it will
2025 * end up being 4MiB. Note that if the value is too small, it can end
2026 * up taking longer to erase. Also note, erase_size is already set to
2027 * High Capacity Erase Size if available when this function is called.
2028 */
2029 if (mmc_card_sd(card) && card->ssr.au) {
2030 card->pref_erase = card->ssr.au;
2031 card->erase_shift = ffs(card->ssr.au) - 1;
2032 } else if (card->erase_size) {
2033 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2034 if (sz < 128)
2035 card->pref_erase = 512 * 1024 / 512;
2036 else if (sz < 512)
2037 card->pref_erase = 1024 * 1024 / 512;
2038 else if (sz < 1024)
2039 card->pref_erase = 2 * 1024 * 1024 / 512;
2040 else
2041 card->pref_erase = 4 * 1024 * 1024 / 512;
2042 if (card->pref_erase < card->erase_size)
2043 card->pref_erase = card->erase_size;
2044 else {
2045 sz = card->pref_erase % card->erase_size;
2046 if (sz)
2047 card->pref_erase += card->erase_size - sz;
2048 }
2049 } else
2050 card->pref_erase = 0;
2051 }
2052
2053 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2054 unsigned int arg, unsigned int qty)
2055 {
2056 unsigned int erase_timeout;
2057
2058 if (arg == MMC_DISCARD_ARG ||
2059 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2060 erase_timeout = card->ext_csd.trim_timeout;
2061 } else if (card->ext_csd.erase_group_def & 1) {
2062 /* High Capacity Erase Group Size uses HC timeouts */
2063 if (arg == MMC_TRIM_ARG)
2064 erase_timeout = card->ext_csd.trim_timeout;
2065 else
2066 erase_timeout = card->ext_csd.hc_erase_timeout;
2067 } else {
2068 /* CSD Erase Group Size uses write timeout */
2069 unsigned int mult = (10 << card->csd.r2w_factor);
2070 unsigned int timeout_clks = card->csd.tacc_clks * mult;
2071 unsigned int timeout_us;
2072
2073 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2074 if (card->csd.tacc_ns < 1000000)
2075 timeout_us = (card->csd.tacc_ns * mult) / 1000;
2076 else
2077 timeout_us = (card->csd.tacc_ns / 1000) * mult;
2078
2079 /*
2080 * ios.clock is only a target. The real clock rate might be
2081 * less but not that much less, so fudge it by multiplying by 2.
2082 */
2083 timeout_clks <<= 1;
2084 timeout_us += (timeout_clks * 1000) /
2085 (card->host->ios.clock / 1000);
2086
2087 erase_timeout = timeout_us / 1000;
2088
2089 /*
2090 * Theoretically, the calculation could underflow so round up
2091 * to 1ms in that case.
2092 */
2093 if (!erase_timeout)
2094 erase_timeout = 1;
2095 }
2096
2097 /* Multiplier for secure operations */
2098 if (arg & MMC_SECURE_ARGS) {
2099 if (arg == MMC_SECURE_ERASE_ARG)
2100 erase_timeout *= card->ext_csd.sec_erase_mult;
2101 else
2102 erase_timeout *= card->ext_csd.sec_trim_mult;
2103 }
2104
2105 erase_timeout *= qty;
2106
2107 /*
2108 * Ensure at least a 1 second timeout for SPI as per
2109 * 'mmc_set_data_timeout()'
2110 */
2111 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2112 erase_timeout = 1000;
2113
2114 return erase_timeout;
2115 }
2116
2117 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2118 unsigned int arg,
2119 unsigned int qty)
2120 {
2121 unsigned int erase_timeout;
2122
2123 if (card->ssr.erase_timeout) {
2124 /* Erase timeout specified in SD Status Register (SSR) */
2125 erase_timeout = card->ssr.erase_timeout * qty +
2126 card->ssr.erase_offset;
2127 } else {
2128 /*
2129 * Erase timeout not specified in SD Status Register (SSR) so
2130 * use 250ms per write block.
2131 */
2132 erase_timeout = 250 * qty;
2133 }
2134
2135 /* Must not be less than 1 second */
2136 if (erase_timeout < 1000)
2137 erase_timeout = 1000;
2138
2139 return erase_timeout;
2140 }
2141
2142 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2143 unsigned int arg,
2144 unsigned int qty)
2145 {
2146 if (mmc_card_sd(card))
2147 return mmc_sd_erase_timeout(card, arg, qty);
2148 else
2149 return mmc_mmc_erase_timeout(card, arg, qty);
2150 }
2151
2152 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2153 unsigned int to, unsigned int arg)
2154 {
2155 struct mmc_command cmd = {0};
2156 unsigned int qty = 0, busy_timeout = 0;
2157 bool use_r1b_resp = false;
2158 unsigned long timeout;
2159 int err;
2160
2161 mmc_retune_hold(card->host);
2162
2163 /*
2164 * qty is used to calculate the erase timeout which depends on how many
2165 * erase groups (or allocation units in SD terminology) are affected.
2166 * We count erasing part of an erase group as one erase group.
2167 * For SD, the allocation units are always a power of 2. For MMC, the
2168 * erase group size is almost certainly also power of 2, but it does not
2169 * seem to insist on that in the JEDEC standard, so we fall back to
2170 * division in that case. SD may not specify an allocation unit size,
2171 * in which case the timeout is based on the number of write blocks.
2172 *
2173 * Note that the timeout for secure trim 2 will only be correct if the
2174 * number of erase groups specified is the same as the total of all
2175 * preceding secure trim 1 commands. Since the power may have been
2176 * lost since the secure trim 1 commands occurred, it is generally
2177 * impossible to calculate the secure trim 2 timeout correctly.
2178 */
2179 if (card->erase_shift)
2180 qty += ((to >> card->erase_shift) -
2181 (from >> card->erase_shift)) + 1;
2182 else if (mmc_card_sd(card))
2183 qty += to - from + 1;
2184 else
2185 qty += ((to / card->erase_size) -
2186 (from / card->erase_size)) + 1;
2187
2188 if (!mmc_card_blockaddr(card)) {
2189 from <<= 9;
2190 to <<= 9;
2191 }
2192
2193 if (mmc_card_sd(card))
2194 cmd.opcode = SD_ERASE_WR_BLK_START;
2195 else
2196 cmd.opcode = MMC_ERASE_GROUP_START;
2197 cmd.arg = from;
2198 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2199 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2200 if (err) {
2201 pr_err("mmc_erase: group start error %d, "
2202 "status %#x\n", err, cmd.resp[0]);
2203 err = -EIO;
2204 goto out;
2205 }
2206
2207 memset(&cmd, 0, sizeof(struct mmc_command));
2208 if (mmc_card_sd(card))
2209 cmd.opcode = SD_ERASE_WR_BLK_END;
2210 else
2211 cmd.opcode = MMC_ERASE_GROUP_END;
2212 cmd.arg = to;
2213 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2214 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2215 if (err) {
2216 pr_err("mmc_erase: group end error %d, status %#x\n",
2217 err, cmd.resp[0]);
2218 err = -EIO;
2219 goto out;
2220 }
2221
2222 memset(&cmd, 0, sizeof(struct mmc_command));
2223 cmd.opcode = MMC_ERASE;
2224 cmd.arg = arg;
2225 busy_timeout = mmc_erase_timeout(card, arg, qty);
2226 /*
2227 * If the host controller supports busy signalling and the timeout for
2228 * the erase operation does not exceed the max_busy_timeout, we should
2229 * use R1B response. Or we need to prevent the host from doing hw busy
2230 * detection, which is done by converting to a R1 response instead.
2231 */
2232 if (card->host->max_busy_timeout &&
2233 busy_timeout > card->host->max_busy_timeout) {
2234 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2235 } else {
2236 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2237 cmd.busy_timeout = busy_timeout;
2238 use_r1b_resp = true;
2239 }
2240
2241 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2242 if (err) {
2243 pr_err("mmc_erase: erase error %d, status %#x\n",
2244 err, cmd.resp[0]);
2245 err = -EIO;
2246 goto out;
2247 }
2248
2249 if (mmc_host_is_spi(card->host))
2250 goto out;
2251
2252 /*
2253 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2254 * shall be avoided.
2255 */
2256 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2257 goto out;
2258
2259 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2260 do {
2261 memset(&cmd, 0, sizeof(struct mmc_command));
2262 cmd.opcode = MMC_SEND_STATUS;
2263 cmd.arg = card->rca << 16;
2264 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2265 /* Do not retry else we can't see errors */
2266 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2267 if (err || (cmd.resp[0] & 0xFDF92000)) {
2268 pr_err("error %d requesting status %#x\n",
2269 err, cmd.resp[0]);
2270 err = -EIO;
2271 goto out;
2272 }
2273
2274 /* Timeout if the device never becomes ready for data and
2275 * never leaves the program state.
2276 */
2277 if (time_after(jiffies, timeout)) {
2278 pr_err("%s: Card stuck in programming state! %s\n",
2279 mmc_hostname(card->host), __func__);
2280 err = -EIO;
2281 goto out;
2282 }
2283
2284 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2285 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2286 out:
2287 mmc_retune_release(card->host);
2288 return err;
2289 }
2290
2291 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2292 unsigned int *from,
2293 unsigned int *to,
2294 unsigned int nr)
2295 {
2296 unsigned int from_new = *from, nr_new = nr, rem;
2297
2298 /*
2299 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2300 * to align the erase size efficiently.
2301 */
2302 if (is_power_of_2(card->erase_size)) {
2303 unsigned int temp = from_new;
2304
2305 from_new = round_up(temp, card->erase_size);
2306 rem = from_new - temp;
2307
2308 if (nr_new > rem)
2309 nr_new -= rem;
2310 else
2311 return 0;
2312
2313 nr_new = round_down(nr_new, card->erase_size);
2314 } else {
2315 rem = from_new % card->erase_size;
2316 if (rem) {
2317 rem = card->erase_size - rem;
2318 from_new += rem;
2319 if (nr_new > rem)
2320 nr_new -= rem;
2321 else
2322 return 0;
2323 }
2324
2325 rem = nr_new % card->erase_size;
2326 if (rem)
2327 nr_new -= rem;
2328 }
2329
2330 if (nr_new == 0)
2331 return 0;
2332
2333 *to = from_new + nr_new;
2334 *from = from_new;
2335
2336 return nr_new;
2337 }
2338
2339 /**
2340 * mmc_erase - erase sectors.
2341 * @card: card to erase
2342 * @from: first sector to erase
2343 * @nr: number of sectors to erase
2344 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2345 *
2346 * Caller must claim host before calling this function.
2347 */
2348 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2349 unsigned int arg)
2350 {
2351 unsigned int rem, to = from + nr;
2352 int err;
2353
2354 if (!(card->host->caps & MMC_CAP_ERASE) ||
2355 !(card->csd.cmdclass & CCC_ERASE))
2356 return -EOPNOTSUPP;
2357
2358 if (!card->erase_size)
2359 return -EOPNOTSUPP;
2360
2361 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2362 return -EOPNOTSUPP;
2363
2364 if ((arg & MMC_SECURE_ARGS) &&
2365 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2366 return -EOPNOTSUPP;
2367
2368 if ((arg & MMC_TRIM_ARGS) &&
2369 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2370 return -EOPNOTSUPP;
2371
2372 if (arg == MMC_SECURE_ERASE_ARG) {
2373 if (from % card->erase_size || nr % card->erase_size)
2374 return -EINVAL;
2375 }
2376
2377 if (arg == MMC_ERASE_ARG)
2378 nr = mmc_align_erase_size(card, &from, &to, nr);
2379
2380 if (nr == 0)
2381 return 0;
2382
2383 if (to <= from)
2384 return -EINVAL;
2385
2386 /* 'from' and 'to' are inclusive */
2387 to -= 1;
2388
2389 /*
2390 * Special case where only one erase-group fits in the timeout budget:
2391 * If the region crosses an erase-group boundary on this particular
2392 * case, we will be trimming more than one erase-group which, does not
2393 * fit in the timeout budget of the controller, so we need to split it
2394 * and call mmc_do_erase() twice if necessary. This special case is
2395 * identified by the card->eg_boundary flag.
2396 */
2397 rem = card->erase_size - (from % card->erase_size);
2398 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2399 err = mmc_do_erase(card, from, from + rem - 1, arg);
2400 from += rem;
2401 if ((err) || (to <= from))
2402 return err;
2403 }
2404
2405 return mmc_do_erase(card, from, to, arg);
2406 }
2407 EXPORT_SYMBOL(mmc_erase);
2408
2409 int mmc_can_erase(struct mmc_card *card)
2410 {
2411 if ((card->host->caps & MMC_CAP_ERASE) &&
2412 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2413 return 1;
2414 return 0;
2415 }
2416 EXPORT_SYMBOL(mmc_can_erase);
2417
2418 int mmc_can_trim(struct mmc_card *card)
2419 {
2420 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2421 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2422 return 1;
2423 return 0;
2424 }
2425 EXPORT_SYMBOL(mmc_can_trim);
2426
2427 int mmc_can_discard(struct mmc_card *card)
2428 {
2429 /*
2430 * As there's no way to detect the discard support bit at v4.5
2431 * use the s/w feature support filed.
2432 */
2433 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2434 return 1;
2435 return 0;
2436 }
2437 EXPORT_SYMBOL(mmc_can_discard);
2438
2439 int mmc_can_sanitize(struct mmc_card *card)
2440 {
2441 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2442 return 0;
2443 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2444 return 1;
2445 return 0;
2446 }
2447 EXPORT_SYMBOL(mmc_can_sanitize);
2448
2449 int mmc_can_secure_erase_trim(struct mmc_card *card)
2450 {
2451 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2452 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2453 return 1;
2454 return 0;
2455 }
2456 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2457
2458 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2459 unsigned int nr)
2460 {
2461 if (!card->erase_size)
2462 return 0;
2463 if (from % card->erase_size || nr % card->erase_size)
2464 return 0;
2465 return 1;
2466 }
2467 EXPORT_SYMBOL(mmc_erase_group_aligned);
2468
2469 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2470 unsigned int arg)
2471 {
2472 struct mmc_host *host = card->host;
2473 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2474 unsigned int last_timeout = 0;
2475 unsigned int max_busy_timeout = host->max_busy_timeout ?
2476 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2477
2478 if (card->erase_shift) {
2479 max_qty = UINT_MAX >> card->erase_shift;
2480 min_qty = card->pref_erase >> card->erase_shift;
2481 } else if (mmc_card_sd(card)) {
2482 max_qty = UINT_MAX;
2483 min_qty = card->pref_erase;
2484 } else {
2485 max_qty = UINT_MAX / card->erase_size;
2486 min_qty = card->pref_erase / card->erase_size;
2487 }
2488
2489 /*
2490 * We should not only use 'host->max_busy_timeout' as the limitation
2491 * when deciding the max discard sectors. We should set a balance value
2492 * to improve the erase speed, and it can not get too long timeout at
2493 * the same time.
2494 *
2495 * Here we set 'card->pref_erase' as the minimal discard sectors no
2496 * matter what size of 'host->max_busy_timeout', but if the
2497 * 'host->max_busy_timeout' is large enough for more discard sectors,
2498 * then we can continue to increase the max discard sectors until we
2499 * get a balance value. In cases when the 'host->max_busy_timeout'
2500 * isn't specified, use the default max erase timeout.
2501 */
2502 do {
2503 y = 0;
2504 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2505 timeout = mmc_erase_timeout(card, arg, qty + x);
2506
2507 if (qty + x > min_qty && timeout > max_busy_timeout)
2508 break;
2509
2510 if (timeout < last_timeout)
2511 break;
2512 last_timeout = timeout;
2513 y = x;
2514 }
2515 qty += y;
2516 } while (y);
2517
2518 if (!qty)
2519 return 0;
2520
2521 /*
2522 * When specifying a sector range to trim, chances are we might cross
2523 * an erase-group boundary even if the amount of sectors is less than
2524 * one erase-group.
2525 * If we can only fit one erase-group in the controller timeout budget,
2526 * we have to care that erase-group boundaries are not crossed by a
2527 * single trim operation. We flag that special case with "eg_boundary".
2528 * In all other cases we can just decrement qty and pretend that we
2529 * always touch (qty + 1) erase-groups as a simple optimization.
2530 */
2531 if (qty == 1)
2532 card->eg_boundary = 1;
2533 else
2534 qty--;
2535
2536 /* Convert qty to sectors */
2537 if (card->erase_shift)
2538 max_discard = qty << card->erase_shift;
2539 else if (mmc_card_sd(card))
2540 max_discard = qty + 1;
2541 else
2542 max_discard = qty * card->erase_size;
2543
2544 return max_discard;
2545 }
2546
2547 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2548 {
2549 struct mmc_host *host = card->host;
2550 unsigned int max_discard, max_trim;
2551
2552 /*
2553 * Without erase_group_def set, MMC erase timeout depends on clock
2554 * frequence which can change. In that case, the best choice is
2555 * just the preferred erase size.
2556 */
2557 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2558 return card->pref_erase;
2559
2560 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2561 if (mmc_can_trim(card)) {
2562 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2563 if (max_trim < max_discard)
2564 max_discard = max_trim;
2565 } else if (max_discard < card->erase_size) {
2566 max_discard = 0;
2567 }
2568 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2569 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2570 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2571 return max_discard;
2572 }
2573 EXPORT_SYMBOL(mmc_calc_max_discard);
2574
2575 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2576 {
2577 struct mmc_command cmd = {0};
2578
2579 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2580 return 0;
2581
2582 cmd.opcode = MMC_SET_BLOCKLEN;
2583 cmd.arg = blocklen;
2584 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2585 return mmc_wait_for_cmd(card->host, &cmd, 5);
2586 }
2587 EXPORT_SYMBOL(mmc_set_blocklen);
2588
2589 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2590 bool is_rel_write)
2591 {
2592 struct mmc_command cmd = {0};
2593
2594 cmd.opcode = MMC_SET_BLOCK_COUNT;
2595 cmd.arg = blockcount & 0x0000FFFF;
2596 if (is_rel_write)
2597 cmd.arg |= 1 << 31;
2598 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2599 return mmc_wait_for_cmd(card->host, &cmd, 5);
2600 }
2601 EXPORT_SYMBOL(mmc_set_blockcount);
2602
2603 static void mmc_hw_reset_for_init(struct mmc_host *host)
2604 {
2605 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2606 return;
2607 host->ops->hw_reset(host);
2608 }
2609
2610 int mmc_hw_reset(struct mmc_host *host)
2611 {
2612 int ret;
2613
2614 if (!host->card)
2615 return -EINVAL;
2616
2617 mmc_bus_get(host);
2618 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2619 mmc_bus_put(host);
2620 return -EOPNOTSUPP;
2621 }
2622
2623 ret = host->bus_ops->reset(host);
2624 mmc_bus_put(host);
2625
2626 if (ret)
2627 pr_warn("%s: tried to reset card, got error %d\n",
2628 mmc_hostname(host), ret);
2629
2630 return ret;
2631 }
2632 EXPORT_SYMBOL(mmc_hw_reset);
2633
2634 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2635 {
2636 host->f_init = freq;
2637
2638 #ifdef CONFIG_MMC_DEBUG
2639 pr_info("%s: %s: trying to init card at %u Hz\n",
2640 mmc_hostname(host), __func__, host->f_init);
2641 #endif
2642 mmc_power_up(host, host->ocr_avail);
2643
2644 /*
2645 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2646 * do a hardware reset if possible.
2647 */
2648 mmc_hw_reset_for_init(host);
2649
2650 /*
2651 * sdio_reset sends CMD52 to reset card. Since we do not know
2652 * if the card is being re-initialized, just send it. CMD52
2653 * should be ignored by SD/eMMC cards.
2654 * Skip it if we already know that we do not support SDIO commands
2655 */
2656 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2657 sdio_reset(host);
2658
2659 mmc_go_idle(host);
2660
2661 if (!(host->caps2 & MMC_CAP2_NO_SD))
2662 mmc_send_if_cond(host, host->ocr_avail);
2663
2664 /* Order's important: probe SDIO, then SD, then MMC */
2665 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2666 if (!mmc_attach_sdio(host))
2667 return 0;
2668
2669 if (!(host->caps2 & MMC_CAP2_NO_SD))
2670 if (!mmc_attach_sd(host))
2671 return 0;
2672
2673 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2674 if (!mmc_attach_mmc(host))
2675 return 0;
2676
2677 mmc_power_off(host);
2678 return -EIO;
2679 }
2680
2681 int _mmc_detect_card_removed(struct mmc_host *host)
2682 {
2683 int ret;
2684
2685 if (!host->card || mmc_card_removed(host->card))
2686 return 1;
2687
2688 ret = host->bus_ops->alive(host);
2689
2690 /*
2691 * Card detect status and alive check may be out of sync if card is
2692 * removed slowly, when card detect switch changes while card/slot
2693 * pads are still contacted in hardware (refer to "SD Card Mechanical
2694 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2695 * detect work 200ms later for this case.
2696 */
2697 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2698 mmc_detect_change(host, msecs_to_jiffies(200));
2699 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2700 }
2701
2702 if (ret) {
2703 mmc_card_set_removed(host->card);
2704 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2705 }
2706
2707 return ret;
2708 }
2709
2710 int mmc_detect_card_removed(struct mmc_host *host)
2711 {
2712 struct mmc_card *card = host->card;
2713 int ret;
2714
2715 WARN_ON(!host->claimed);
2716
2717 if (!card)
2718 return 1;
2719
2720 if (!mmc_card_is_removable(host))
2721 return 0;
2722
2723 ret = mmc_card_removed(card);
2724 /*
2725 * The card will be considered unchanged unless we have been asked to
2726 * detect a change or host requires polling to provide card detection.
2727 */
2728 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2729 return ret;
2730
2731 host->detect_change = 0;
2732 if (!ret) {
2733 ret = _mmc_detect_card_removed(host);
2734 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2735 /*
2736 * Schedule a detect work as soon as possible to let a
2737 * rescan handle the card removal.
2738 */
2739 cancel_delayed_work(&host->detect);
2740 _mmc_detect_change(host, 0, false);
2741 }
2742 }
2743
2744 return ret;
2745 }
2746 EXPORT_SYMBOL(mmc_detect_card_removed);
2747
2748 void mmc_rescan(struct work_struct *work)
2749 {
2750 struct mmc_host *host =
2751 container_of(work, struct mmc_host, detect.work);
2752 int i;
2753
2754 if (host->rescan_disable)
2755 return;
2756
2757 /* If there is a non-removable card registered, only scan once */
2758 if (!mmc_card_is_removable(host) && host->rescan_entered)
2759 return;
2760 host->rescan_entered = 1;
2761
2762 if (host->trigger_card_event && host->ops->card_event) {
2763 mmc_claim_host(host);
2764 host->ops->card_event(host);
2765 mmc_release_host(host);
2766 host->trigger_card_event = false;
2767 }
2768
2769 mmc_bus_get(host);
2770
2771 /*
2772 * if there is a _removable_ card registered, check whether it is
2773 * still present
2774 */
2775 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2776 host->bus_ops->detect(host);
2777
2778 host->detect_change = 0;
2779
2780 /*
2781 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2782 * the card is no longer present.
2783 */
2784 mmc_bus_put(host);
2785 mmc_bus_get(host);
2786
2787 /* if there still is a card present, stop here */
2788 if (host->bus_ops != NULL) {
2789 mmc_bus_put(host);
2790 goto out;
2791 }
2792
2793 /*
2794 * Only we can add a new handler, so it's safe to
2795 * release the lock here.
2796 */
2797 mmc_bus_put(host);
2798
2799 mmc_claim_host(host);
2800 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2801 host->ops->get_cd(host) == 0) {
2802 mmc_power_off(host);
2803 mmc_release_host(host);
2804 goto out;
2805 }
2806
2807 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2808 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2809 break;
2810 if (freqs[i] <= host->f_min)
2811 break;
2812 }
2813 mmc_release_host(host);
2814
2815 out:
2816 if (host->caps & MMC_CAP_NEEDS_POLL)
2817 mmc_schedule_delayed_work(&host->detect, HZ);
2818 }
2819
2820 void mmc_start_host(struct mmc_host *host)
2821 {
2822 host->f_init = max(freqs[0], host->f_min);
2823 host->rescan_disable = 0;
2824 host->ios.power_mode = MMC_POWER_UNDEFINED;
2825
2826 mmc_claim_host(host);
2827 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2828 mmc_power_off(host);
2829 else
2830 mmc_power_up(host, host->ocr_avail);
2831 mmc_release_host(host);
2832
2833 mmc_gpiod_request_cd_irq(host);
2834 _mmc_detect_change(host, 0, false);
2835 }
2836
2837 void mmc_stop_host(struct mmc_host *host)
2838 {
2839 #ifdef CONFIG_MMC_DEBUG
2840 unsigned long flags;
2841 spin_lock_irqsave(&host->lock, flags);
2842 host->removed = 1;
2843 spin_unlock_irqrestore(&host->lock, flags);
2844 #endif
2845 if (host->slot.cd_irq >= 0)
2846 disable_irq(host->slot.cd_irq);
2847
2848 host->rescan_disable = 1;
2849 cancel_delayed_work_sync(&host->detect);
2850
2851 /* clear pm flags now and let card drivers set them as needed */
2852 host->pm_flags = 0;
2853
2854 mmc_bus_get(host);
2855 if (host->bus_ops && !host->bus_dead) {
2856 /* Calling bus_ops->remove() with a claimed host can deadlock */
2857 host->bus_ops->remove(host);
2858 mmc_claim_host(host);
2859 mmc_detach_bus(host);
2860 mmc_power_off(host);
2861 mmc_release_host(host);
2862 mmc_bus_put(host);
2863 return;
2864 }
2865 mmc_bus_put(host);
2866
2867 BUG_ON(host->card);
2868
2869 mmc_claim_host(host);
2870 mmc_power_off(host);
2871 mmc_release_host(host);
2872 }
2873
2874 int mmc_power_save_host(struct mmc_host *host)
2875 {
2876 int ret = 0;
2877
2878 #ifdef CONFIG_MMC_DEBUG
2879 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2880 #endif
2881
2882 mmc_bus_get(host);
2883
2884 if (!host->bus_ops || host->bus_dead) {
2885 mmc_bus_put(host);
2886 return -EINVAL;
2887 }
2888
2889 if (host->bus_ops->power_save)
2890 ret = host->bus_ops->power_save(host);
2891
2892 mmc_bus_put(host);
2893
2894 mmc_power_off(host);
2895
2896 return ret;
2897 }
2898 EXPORT_SYMBOL(mmc_power_save_host);
2899
2900 int mmc_power_restore_host(struct mmc_host *host)
2901 {
2902 int ret;
2903
2904 #ifdef CONFIG_MMC_DEBUG
2905 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2906 #endif
2907
2908 mmc_bus_get(host);
2909
2910 if (!host->bus_ops || host->bus_dead) {
2911 mmc_bus_put(host);
2912 return -EINVAL;
2913 }
2914
2915 mmc_power_up(host, host->card->ocr);
2916 ret = host->bus_ops->power_restore(host);
2917
2918 mmc_bus_put(host);
2919
2920 return ret;
2921 }
2922 EXPORT_SYMBOL(mmc_power_restore_host);
2923
2924 /*
2925 * Flush the cache to the non-volatile storage.
2926 */
2927 int mmc_flush_cache(struct mmc_card *card)
2928 {
2929 int err = 0;
2930
2931 if (mmc_card_mmc(card) &&
2932 (card->ext_csd.cache_size > 0) &&
2933 (card->ext_csd.cache_ctrl & 1)) {
2934 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2935 EXT_CSD_FLUSH_CACHE, 1, 0);
2936 if (err)
2937 pr_err("%s: cache flush error %d\n",
2938 mmc_hostname(card->host), err);
2939 }
2940
2941 return err;
2942 }
2943 EXPORT_SYMBOL(mmc_flush_cache);
2944
2945 #ifdef CONFIG_PM_SLEEP
2946 /* Do the card removal on suspend if card is assumed removeable
2947 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2948 to sync the card.
2949 */
2950 static int mmc_pm_notify(struct notifier_block *notify_block,
2951 unsigned long mode, void *unused)
2952 {
2953 struct mmc_host *host = container_of(
2954 notify_block, struct mmc_host, pm_notify);
2955 unsigned long flags;
2956 int err = 0;
2957
2958 switch (mode) {
2959 case PM_HIBERNATION_PREPARE:
2960 case PM_SUSPEND_PREPARE:
2961 case PM_RESTORE_PREPARE:
2962 spin_lock_irqsave(&host->lock, flags);
2963 host->rescan_disable = 1;
2964 spin_unlock_irqrestore(&host->lock, flags);
2965 cancel_delayed_work_sync(&host->detect);
2966
2967 if (!host->bus_ops)
2968 break;
2969
2970 /* Validate prerequisites for suspend */
2971 if (host->bus_ops->pre_suspend)
2972 err = host->bus_ops->pre_suspend(host);
2973 if (!err)
2974 break;
2975
2976 /* Calling bus_ops->remove() with a claimed host can deadlock */
2977 host->bus_ops->remove(host);
2978 mmc_claim_host(host);
2979 mmc_detach_bus(host);
2980 mmc_power_off(host);
2981 mmc_release_host(host);
2982 host->pm_flags = 0;
2983 break;
2984
2985 case PM_POST_SUSPEND:
2986 case PM_POST_HIBERNATION:
2987 case PM_POST_RESTORE:
2988
2989 spin_lock_irqsave(&host->lock, flags);
2990 host->rescan_disable = 0;
2991 spin_unlock_irqrestore(&host->lock, flags);
2992 _mmc_detect_change(host, 0, false);
2993
2994 }
2995
2996 return 0;
2997 }
2998
2999 void mmc_register_pm_notifier(struct mmc_host *host)
3000 {
3001 host->pm_notify.notifier_call = mmc_pm_notify;
3002 register_pm_notifier(&host->pm_notify);
3003 }
3004
3005 void mmc_unregister_pm_notifier(struct mmc_host *host)
3006 {
3007 unregister_pm_notifier(&host->pm_notify);
3008 }
3009 #endif
3010
3011 /**
3012 * mmc_init_context_info() - init synchronization context
3013 * @host: mmc host
3014 *
3015 * Init struct context_info needed to implement asynchronous
3016 * request mechanism, used by mmc core, host driver and mmc requests
3017 * supplier.
3018 */
3019 void mmc_init_context_info(struct mmc_host *host)
3020 {
3021 spin_lock_init(&host->context_info.lock);
3022 host->context_info.is_new_req = false;
3023 host->context_info.is_done_rcv = false;
3024 host->context_info.is_waiting_last_req = false;
3025 init_waitqueue_head(&host->context_info.wait);
3026 }
3027
3028 static int __init mmc_init(void)
3029 {
3030 int ret;
3031
3032 ret = mmc_register_bus();
3033 if (ret)
3034 return ret;
3035
3036 ret = mmc_register_host_class();
3037 if (ret)
3038 goto unregister_bus;
3039
3040 ret = sdio_register_bus();
3041 if (ret)
3042 goto unregister_host_class;
3043
3044 return 0;
3045
3046 unregister_host_class:
3047 mmc_unregister_host_class();
3048 unregister_bus:
3049 mmc_unregister_bus();
3050 return ret;
3051 }
3052
3053 static void __exit mmc_exit(void)
3054 {
3055 sdio_unregister_bus();
3056 mmc_unregister_host_class();
3057 mmc_unregister_bus();
3058 }
3059
3060 subsys_initcall(mmc_init);
3061 module_exit(mmc_exit);
3062
3063 MODULE_LICENSE("GPL");
This page took 0.145085 seconds and 5 git commands to generate.