arm/xen: fix SMP guests boot
[deliverable/linux.git] / drivers / mmc / core / mmc.c
1 /*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22
23 #include "core.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "sd_ops.h"
28
29 static const unsigned int tran_exp[] = {
30 10000, 100000, 1000000, 10000000,
31 0, 0, 0, 0
32 };
33
34 static const unsigned char tran_mant[] = {
35 0, 10, 12, 13, 15, 20, 25, 30,
36 35, 40, 45, 50, 55, 60, 70, 80,
37 };
38
39 static const unsigned int tacc_exp[] = {
40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
41 };
42
43 static const unsigned int tacc_mant[] = {
44 0, 10, 12, 13, 15, 20, 25, 30,
45 35, 40, 45, 50, 55, 60, 70, 80,
46 };
47
48 static const struct mmc_fixup mmc_ext_csd_fixups[] = {
49 /*
50 * Certain Hynix eMMC 4.41 cards might get broken when HPI feature
51 * is used so disable the HPI feature for such buggy cards.
52 */
53 MMC_FIXUP_EXT_CSD_REV(CID_NAME_ANY, CID_MANFID_HYNIX,
54 0x014a, add_quirk, MMC_QUIRK_BROKEN_HPI, 5),
55
56 END_FIXUP
57 };
58
59 #define UNSTUFF_BITS(resp,start,size) \
60 ({ \
61 const int __size = size; \
62 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
63 const int __off = 3 - ((start) / 32); \
64 const int __shft = (start) & 31; \
65 u32 __res; \
66 \
67 __res = resp[__off] >> __shft; \
68 if (__size + __shft > 32) \
69 __res |= resp[__off-1] << ((32 - __shft) % 32); \
70 __res & __mask; \
71 })
72
73 /*
74 * Given the decoded CSD structure, decode the raw CID to our CID structure.
75 */
76 static int mmc_decode_cid(struct mmc_card *card)
77 {
78 u32 *resp = card->raw_cid;
79
80 /*
81 * The selection of the format here is based upon published
82 * specs from sandisk and from what people have reported.
83 */
84 switch (card->csd.mmca_vsn) {
85 case 0: /* MMC v1.0 - v1.2 */
86 case 1: /* MMC v1.4 */
87 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
88 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
89 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
90 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
91 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
92 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
93 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
94 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
95 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
96 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
97 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
98 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
99 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
100 break;
101
102 case 2: /* MMC v2.0 - v2.2 */
103 case 3: /* MMC v3.1 - v3.3 */
104 case 4: /* MMC v4 */
105 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
106 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
107 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
108 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
109 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
110 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
111 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
112 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
113 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
114 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
115 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
116 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
117 break;
118
119 default:
120 pr_err("%s: card has unknown MMCA version %d\n",
121 mmc_hostname(card->host), card->csd.mmca_vsn);
122 return -EINVAL;
123 }
124
125 return 0;
126 }
127
128 static void mmc_set_erase_size(struct mmc_card *card)
129 {
130 if (card->ext_csd.erase_group_def & 1)
131 card->erase_size = card->ext_csd.hc_erase_size;
132 else
133 card->erase_size = card->csd.erase_size;
134
135 mmc_init_erase(card);
136 }
137
138 /*
139 * Given a 128-bit response, decode to our card CSD structure.
140 */
141 static int mmc_decode_csd(struct mmc_card *card)
142 {
143 struct mmc_csd *csd = &card->csd;
144 unsigned int e, m, a, b;
145 u32 *resp = card->raw_csd;
146
147 /*
148 * We only understand CSD structure v1.1 and v1.2.
149 * v1.2 has extra information in bits 15, 11 and 10.
150 * We also support eMMC v4.4 & v4.41.
151 */
152 csd->structure = UNSTUFF_BITS(resp, 126, 2);
153 if (csd->structure == 0) {
154 pr_err("%s: unrecognised CSD structure version %d\n",
155 mmc_hostname(card->host), csd->structure);
156 return -EINVAL;
157 }
158
159 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
160 m = UNSTUFF_BITS(resp, 115, 4);
161 e = UNSTUFF_BITS(resp, 112, 3);
162 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
163 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
164
165 m = UNSTUFF_BITS(resp, 99, 4);
166 e = UNSTUFF_BITS(resp, 96, 3);
167 csd->max_dtr = tran_exp[e] * tran_mant[m];
168 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
169
170 e = UNSTUFF_BITS(resp, 47, 3);
171 m = UNSTUFF_BITS(resp, 62, 12);
172 csd->capacity = (1 + m) << (e + 2);
173
174 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
175 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
176 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
177 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
178 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
179 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
180 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
181 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
182
183 if (csd->write_blkbits >= 9) {
184 a = UNSTUFF_BITS(resp, 42, 5);
185 b = UNSTUFF_BITS(resp, 37, 5);
186 csd->erase_size = (a + 1) * (b + 1);
187 csd->erase_size <<= csd->write_blkbits - 9;
188 }
189
190 return 0;
191 }
192
193 static void mmc_select_card_type(struct mmc_card *card)
194 {
195 struct mmc_host *host = card->host;
196 u8 card_type = card->ext_csd.raw_card_type;
197 u32 caps = host->caps, caps2 = host->caps2;
198 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
199 unsigned int avail_type = 0;
200
201 if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 card_type & EXT_CSD_CARD_TYPE_HS_26) {
203 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
204 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
205 }
206
207 if (caps & MMC_CAP_MMC_HIGHSPEED &&
208 card_type & EXT_CSD_CARD_TYPE_HS_52) {
209 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
210 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
211 }
212
213 if (caps & MMC_CAP_1_8V_DDR &&
214 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
217 }
218
219 if (caps & MMC_CAP_1_2V_DDR &&
220 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
221 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
222 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
223 }
224
225 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
226 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
227 hs200_max_dtr = MMC_HS200_MAX_DTR;
228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
229 }
230
231 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
232 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
233 hs200_max_dtr = MMC_HS200_MAX_DTR;
234 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
235 }
236
237 if (caps2 & MMC_CAP2_HS400_1_8V &&
238 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
239 hs200_max_dtr = MMC_HS200_MAX_DTR;
240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
241 }
242
243 if (caps2 & MMC_CAP2_HS400_1_2V &&
244 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
245 hs200_max_dtr = MMC_HS200_MAX_DTR;
246 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
247 }
248
249 if ((caps2 & MMC_CAP2_HS400_ES) &&
250 card->ext_csd.strobe_support &&
251 (avail_type & EXT_CSD_CARD_TYPE_HS400))
252 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
253
254 card->ext_csd.hs_max_dtr = hs_max_dtr;
255 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
256 card->mmc_avail_type = avail_type;
257 }
258
259 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
260 {
261 u8 hc_erase_grp_sz, hc_wp_grp_sz;
262
263 /*
264 * Disable these attributes by default
265 */
266 card->ext_csd.enhanced_area_offset = -EINVAL;
267 card->ext_csd.enhanced_area_size = -EINVAL;
268
269 /*
270 * Enhanced area feature support -- check whether the eMMC
271 * card has the Enhanced area enabled. If so, export enhanced
272 * area offset and size to user by adding sysfs interface.
273 */
274 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
275 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
276 if (card->ext_csd.partition_setting_completed) {
277 hc_erase_grp_sz =
278 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
279 hc_wp_grp_sz =
280 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
281
282 /*
283 * calculate the enhanced data area offset, in bytes
284 */
285 card->ext_csd.enhanced_area_offset =
286 (((unsigned long long)ext_csd[139]) << 24) +
287 (((unsigned long long)ext_csd[138]) << 16) +
288 (((unsigned long long)ext_csd[137]) << 8) +
289 (((unsigned long long)ext_csd[136]));
290 if (mmc_card_blockaddr(card))
291 card->ext_csd.enhanced_area_offset <<= 9;
292 /*
293 * calculate the enhanced data area size, in kilobytes
294 */
295 card->ext_csd.enhanced_area_size =
296 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
297 ext_csd[140];
298 card->ext_csd.enhanced_area_size *=
299 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
300 card->ext_csd.enhanced_area_size <<= 9;
301 } else {
302 pr_warn("%s: defines enhanced area without partition setting complete\n",
303 mmc_hostname(card->host));
304 }
305 }
306 }
307
308 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
309 {
310 int idx;
311 u8 hc_erase_grp_sz, hc_wp_grp_sz;
312 unsigned int part_size;
313
314 /*
315 * General purpose partition feature support --
316 * If ext_csd has the size of general purpose partitions,
317 * set size, part_cfg, partition name in mmc_part.
318 */
319 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
320 EXT_CSD_PART_SUPPORT_PART_EN) {
321 hc_erase_grp_sz =
322 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
323 hc_wp_grp_sz =
324 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
325
326 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
327 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
328 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
329 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
330 continue;
331 if (card->ext_csd.partition_setting_completed == 0) {
332 pr_warn("%s: has partition size defined without partition complete\n",
333 mmc_hostname(card->host));
334 break;
335 }
336 part_size =
337 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
338 << 16) +
339 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
340 << 8) +
341 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
342 part_size *= (size_t)(hc_erase_grp_sz *
343 hc_wp_grp_sz);
344 mmc_part_add(card, part_size << 19,
345 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
346 "gp%d", idx, false,
347 MMC_BLK_DATA_AREA_GP);
348 }
349 }
350 }
351
352 /* Minimum partition switch timeout in milliseconds */
353 #define MMC_MIN_PART_SWITCH_TIME 300
354
355 /*
356 * Decode extended CSD.
357 */
358 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
359 {
360 int err = 0, idx;
361 unsigned int part_size;
362 struct device_node *np;
363 bool broken_hpi = false;
364
365 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
366 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
367 if (card->csd.structure == 3) {
368 if (card->ext_csd.raw_ext_csd_structure > 2) {
369 pr_err("%s: unrecognised EXT_CSD structure "
370 "version %d\n", mmc_hostname(card->host),
371 card->ext_csd.raw_ext_csd_structure);
372 err = -EINVAL;
373 goto out;
374 }
375 }
376
377 np = mmc_of_find_child_device(card->host, 0);
378 if (np && of_device_is_compatible(np, "mmc-card"))
379 broken_hpi = of_property_read_bool(np, "broken-hpi");
380 of_node_put(np);
381
382 /*
383 * The EXT_CSD format is meant to be forward compatible. As long
384 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
385 * are authorized, see JEDEC JESD84-B50 section B.8.
386 */
387 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
388
389 /* fixup device after ext_csd revision field is updated */
390 mmc_fixup_device(card, mmc_ext_csd_fixups);
391
392 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
393 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
394 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
395 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
396 if (card->ext_csd.rev >= 2) {
397 card->ext_csd.sectors =
398 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
399 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
400 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
401 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
402
403 /* Cards with density > 2GiB are sector addressed */
404 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
405 mmc_card_set_blockaddr(card);
406 }
407
408 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
409 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
410 mmc_select_card_type(card);
411
412 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
413 card->ext_csd.raw_erase_timeout_mult =
414 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
415 card->ext_csd.raw_hc_erase_grp_size =
416 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
417 if (card->ext_csd.rev >= 3) {
418 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
420
421 /* EXT_CSD value is in units of 10ms, but we store in ms */
422 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
423 /* Some eMMC set the value too low so set a minimum */
424 if (card->ext_csd.part_time &&
425 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
426 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
427
428 /* Sleep / awake timeout in 100ns units */
429 if (sa_shift > 0 && sa_shift <= 0x17)
430 card->ext_csd.sa_timeout =
431 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
432 card->ext_csd.erase_group_def =
433 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
434 card->ext_csd.hc_erase_timeout = 300 *
435 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
436 card->ext_csd.hc_erase_size =
437 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
438
439 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
440
441 /*
442 * There are two boot regions of equal size, defined in
443 * multiples of 128K.
444 */
445 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
446 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
447 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
448 mmc_part_add(card, part_size,
449 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
450 "boot%d", idx, true,
451 MMC_BLK_DATA_AREA_BOOT);
452 }
453 }
454 }
455
456 card->ext_csd.raw_hc_erase_gap_size =
457 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
458 card->ext_csd.raw_sec_trim_mult =
459 ext_csd[EXT_CSD_SEC_TRIM_MULT];
460 card->ext_csd.raw_sec_erase_mult =
461 ext_csd[EXT_CSD_SEC_ERASE_MULT];
462 card->ext_csd.raw_sec_feature_support =
463 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
464 card->ext_csd.raw_trim_mult =
465 ext_csd[EXT_CSD_TRIM_MULT];
466 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
467 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
468 if (card->ext_csd.rev >= 4) {
469 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
470 EXT_CSD_PART_SETTING_COMPLETED)
471 card->ext_csd.partition_setting_completed = 1;
472 else
473 card->ext_csd.partition_setting_completed = 0;
474
475 mmc_manage_enhanced_area(card, ext_csd);
476
477 mmc_manage_gp_partitions(card, ext_csd);
478
479 card->ext_csd.sec_trim_mult =
480 ext_csd[EXT_CSD_SEC_TRIM_MULT];
481 card->ext_csd.sec_erase_mult =
482 ext_csd[EXT_CSD_SEC_ERASE_MULT];
483 card->ext_csd.sec_feature_support =
484 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
485 card->ext_csd.trim_timeout = 300 *
486 ext_csd[EXT_CSD_TRIM_MULT];
487
488 /*
489 * Note that the call to mmc_part_add above defaults to read
490 * only. If this default assumption is changed, the call must
491 * take into account the value of boot_locked below.
492 */
493 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
494 card->ext_csd.boot_ro_lockable = true;
495
496 /* Save power class values */
497 card->ext_csd.raw_pwr_cl_52_195 =
498 ext_csd[EXT_CSD_PWR_CL_52_195];
499 card->ext_csd.raw_pwr_cl_26_195 =
500 ext_csd[EXT_CSD_PWR_CL_26_195];
501 card->ext_csd.raw_pwr_cl_52_360 =
502 ext_csd[EXT_CSD_PWR_CL_52_360];
503 card->ext_csd.raw_pwr_cl_26_360 =
504 ext_csd[EXT_CSD_PWR_CL_26_360];
505 card->ext_csd.raw_pwr_cl_200_195 =
506 ext_csd[EXT_CSD_PWR_CL_200_195];
507 card->ext_csd.raw_pwr_cl_200_360 =
508 ext_csd[EXT_CSD_PWR_CL_200_360];
509 card->ext_csd.raw_pwr_cl_ddr_52_195 =
510 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
511 card->ext_csd.raw_pwr_cl_ddr_52_360 =
512 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
513 card->ext_csd.raw_pwr_cl_ddr_200_360 =
514 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
515 }
516
517 if (card->ext_csd.rev >= 5) {
518 /* Adjust production date as per JEDEC JESD84-B451 */
519 if (card->cid.year < 2010)
520 card->cid.year += 16;
521
522 /* check whether the eMMC card supports BKOPS */
523 if (!mmc_card_broken_hpi(card) &&
524 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
525 card->ext_csd.bkops = 1;
526 card->ext_csd.man_bkops_en =
527 (ext_csd[EXT_CSD_BKOPS_EN] &
528 EXT_CSD_MANUAL_BKOPS_MASK);
529 card->ext_csd.raw_bkops_status =
530 ext_csd[EXT_CSD_BKOPS_STATUS];
531 if (!card->ext_csd.man_bkops_en)
532 pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
533 mmc_hostname(card->host));
534 }
535
536 /* check whether the eMMC card supports HPI */
537 if (!mmc_card_broken_hpi(card) &&
538 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
539 card->ext_csd.hpi = 1;
540 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
541 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
542 else
543 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
544 /*
545 * Indicate the maximum timeout to close
546 * a command interrupted by HPI
547 */
548 card->ext_csd.out_of_int_time =
549 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
550 }
551
552 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
553 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
554
555 /*
556 * RPMB regions are defined in multiples of 128K.
557 */
558 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
559 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
560 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
561 EXT_CSD_PART_CONFIG_ACC_RPMB,
562 "rpmb", 0, false,
563 MMC_BLK_DATA_AREA_RPMB);
564 }
565 }
566
567 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
568 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
569 card->erased_byte = 0xFF;
570 else
571 card->erased_byte = 0x0;
572
573 /* eMMC v4.5 or later */
574 if (card->ext_csd.rev >= 6) {
575 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
576
577 card->ext_csd.generic_cmd6_time = 10 *
578 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
579 card->ext_csd.power_off_longtime = 10 *
580 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
581
582 card->ext_csd.cache_size =
583 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
584 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
585 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
586 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
587
588 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
589 card->ext_csd.data_sector_size = 4096;
590 else
591 card->ext_csd.data_sector_size = 512;
592
593 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
594 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
595 card->ext_csd.data_tag_unit_size =
596 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
597 (card->ext_csd.data_sector_size);
598 } else {
599 card->ext_csd.data_tag_unit_size = 0;
600 }
601
602 card->ext_csd.max_packed_writes =
603 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
604 card->ext_csd.max_packed_reads =
605 ext_csd[EXT_CSD_MAX_PACKED_READS];
606 } else {
607 card->ext_csd.data_sector_size = 512;
608 }
609
610 /* eMMC v5 or later */
611 if (card->ext_csd.rev >= 7) {
612 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
613 MMC_FIRMWARE_LEN);
614 card->ext_csd.ffu_capable =
615 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
616 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
617 }
618 out:
619 return err;
620 }
621
622 static int mmc_read_ext_csd(struct mmc_card *card)
623 {
624 u8 *ext_csd;
625 int err;
626
627 if (!mmc_can_ext_csd(card))
628 return 0;
629
630 err = mmc_get_ext_csd(card, &ext_csd);
631 if (err) {
632 /* If the host or the card can't do the switch,
633 * fail more gracefully. */
634 if ((err != -EINVAL)
635 && (err != -ENOSYS)
636 && (err != -EFAULT))
637 return err;
638
639 /*
640 * High capacity cards should have this "magic" size
641 * stored in their CSD.
642 */
643 if (card->csd.capacity == (4096 * 512)) {
644 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
645 mmc_hostname(card->host));
646 } else {
647 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
648 mmc_hostname(card->host));
649 err = 0;
650 }
651
652 return err;
653 }
654
655 err = mmc_decode_ext_csd(card, ext_csd);
656 kfree(ext_csd);
657 return err;
658 }
659
660 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
661 {
662 u8 *bw_ext_csd;
663 int err;
664
665 if (bus_width == MMC_BUS_WIDTH_1)
666 return 0;
667
668 err = mmc_get_ext_csd(card, &bw_ext_csd);
669 if (err)
670 return err;
671
672 /* only compare read only fields */
673 err = !((card->ext_csd.raw_partition_support ==
674 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
675 (card->ext_csd.raw_erased_mem_count ==
676 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
677 (card->ext_csd.rev ==
678 bw_ext_csd[EXT_CSD_REV]) &&
679 (card->ext_csd.raw_ext_csd_structure ==
680 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
681 (card->ext_csd.raw_card_type ==
682 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
683 (card->ext_csd.raw_s_a_timeout ==
684 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
685 (card->ext_csd.raw_hc_erase_gap_size ==
686 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
687 (card->ext_csd.raw_erase_timeout_mult ==
688 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
689 (card->ext_csd.raw_hc_erase_grp_size ==
690 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
691 (card->ext_csd.raw_sec_trim_mult ==
692 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
693 (card->ext_csd.raw_sec_erase_mult ==
694 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
695 (card->ext_csd.raw_sec_feature_support ==
696 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
697 (card->ext_csd.raw_trim_mult ==
698 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
699 (card->ext_csd.raw_sectors[0] ==
700 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
701 (card->ext_csd.raw_sectors[1] ==
702 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
703 (card->ext_csd.raw_sectors[2] ==
704 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
705 (card->ext_csd.raw_sectors[3] ==
706 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
707 (card->ext_csd.raw_pwr_cl_52_195 ==
708 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
709 (card->ext_csd.raw_pwr_cl_26_195 ==
710 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
711 (card->ext_csd.raw_pwr_cl_52_360 ==
712 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
713 (card->ext_csd.raw_pwr_cl_26_360 ==
714 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
715 (card->ext_csd.raw_pwr_cl_200_195 ==
716 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
717 (card->ext_csd.raw_pwr_cl_200_360 ==
718 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
719 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
720 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
721 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
722 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
723 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
724 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
725
726 if (err)
727 err = -EINVAL;
728
729 kfree(bw_ext_csd);
730 return err;
731 }
732
733 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
734 card->raw_cid[2], card->raw_cid[3]);
735 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
736 card->raw_csd[2], card->raw_csd[3]);
737 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
738 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
739 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
740 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
741 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
742 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
743 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
744 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
745 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
746 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
747 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
748 card->ext_csd.enhanced_area_offset);
749 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
750 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
751 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
752 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
753
754 static ssize_t mmc_fwrev_show(struct device *dev,
755 struct device_attribute *attr,
756 char *buf)
757 {
758 struct mmc_card *card = mmc_dev_to_card(dev);
759
760 if (card->ext_csd.rev < 7) {
761 return sprintf(buf, "0x%x\n", card->cid.fwrev);
762 } else {
763 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
764 card->ext_csd.fwrev);
765 }
766 }
767
768 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
769
770 static ssize_t mmc_dsr_show(struct device *dev,
771 struct device_attribute *attr,
772 char *buf)
773 {
774 struct mmc_card *card = mmc_dev_to_card(dev);
775 struct mmc_host *host = card->host;
776
777 if (card->csd.dsr_imp && host->dsr_req)
778 return sprintf(buf, "0x%x\n", host->dsr);
779 else
780 /* return default DSR value */
781 return sprintf(buf, "0x%x\n", 0x404);
782 }
783
784 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
785
786 static struct attribute *mmc_std_attrs[] = {
787 &dev_attr_cid.attr,
788 &dev_attr_csd.attr,
789 &dev_attr_date.attr,
790 &dev_attr_erase_size.attr,
791 &dev_attr_preferred_erase_size.attr,
792 &dev_attr_fwrev.attr,
793 &dev_attr_ffu_capable.attr,
794 &dev_attr_hwrev.attr,
795 &dev_attr_manfid.attr,
796 &dev_attr_name.attr,
797 &dev_attr_oemid.attr,
798 &dev_attr_prv.attr,
799 &dev_attr_serial.attr,
800 &dev_attr_enhanced_area_offset.attr,
801 &dev_attr_enhanced_area_size.attr,
802 &dev_attr_raw_rpmb_size_mult.attr,
803 &dev_attr_rel_sectors.attr,
804 &dev_attr_ocr.attr,
805 &dev_attr_dsr.attr,
806 NULL,
807 };
808 ATTRIBUTE_GROUPS(mmc_std);
809
810 static struct device_type mmc_type = {
811 .groups = mmc_std_groups,
812 };
813
814 /*
815 * Select the PowerClass for the current bus width
816 * If power class is defined for 4/8 bit bus in the
817 * extended CSD register, select it by executing the
818 * mmc_switch command.
819 */
820 static int __mmc_select_powerclass(struct mmc_card *card,
821 unsigned int bus_width)
822 {
823 struct mmc_host *host = card->host;
824 struct mmc_ext_csd *ext_csd = &card->ext_csd;
825 unsigned int pwrclass_val = 0;
826 int err = 0;
827
828 switch (1 << host->ios.vdd) {
829 case MMC_VDD_165_195:
830 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
831 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
832 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
833 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
834 ext_csd->raw_pwr_cl_52_195 :
835 ext_csd->raw_pwr_cl_ddr_52_195;
836 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
837 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
838 break;
839 case MMC_VDD_27_28:
840 case MMC_VDD_28_29:
841 case MMC_VDD_29_30:
842 case MMC_VDD_30_31:
843 case MMC_VDD_31_32:
844 case MMC_VDD_32_33:
845 case MMC_VDD_33_34:
846 case MMC_VDD_34_35:
847 case MMC_VDD_35_36:
848 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
849 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
850 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
851 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
852 ext_csd->raw_pwr_cl_52_360 :
853 ext_csd->raw_pwr_cl_ddr_52_360;
854 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
855 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
856 ext_csd->raw_pwr_cl_ddr_200_360 :
857 ext_csd->raw_pwr_cl_200_360;
858 break;
859 default:
860 pr_warn("%s: Voltage range not supported for power class\n",
861 mmc_hostname(host));
862 return -EINVAL;
863 }
864
865 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
866 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
867 EXT_CSD_PWR_CL_8BIT_SHIFT;
868 else
869 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
870 EXT_CSD_PWR_CL_4BIT_SHIFT;
871
872 /* If the power class is different from the default value */
873 if (pwrclass_val > 0) {
874 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
875 EXT_CSD_POWER_CLASS,
876 pwrclass_val,
877 card->ext_csd.generic_cmd6_time);
878 }
879
880 return err;
881 }
882
883 static int mmc_select_powerclass(struct mmc_card *card)
884 {
885 struct mmc_host *host = card->host;
886 u32 bus_width, ext_csd_bits;
887 int err, ddr;
888
889 /* Power class selection is supported for versions >= 4.0 */
890 if (!mmc_can_ext_csd(card))
891 return 0;
892
893 bus_width = host->ios.bus_width;
894 /* Power class values are defined only for 4/8 bit bus */
895 if (bus_width == MMC_BUS_WIDTH_1)
896 return 0;
897
898 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
899 if (ddr)
900 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
901 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
902 else
903 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
904 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
905
906 err = __mmc_select_powerclass(card, ext_csd_bits);
907 if (err)
908 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
909 mmc_hostname(host), 1 << bus_width, ddr);
910
911 return err;
912 }
913
914 /*
915 * Set the bus speed for the selected speed mode.
916 */
917 static void mmc_set_bus_speed(struct mmc_card *card)
918 {
919 unsigned int max_dtr = (unsigned int)-1;
920
921 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
922 max_dtr > card->ext_csd.hs200_max_dtr)
923 max_dtr = card->ext_csd.hs200_max_dtr;
924 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
925 max_dtr = card->ext_csd.hs_max_dtr;
926 else if (max_dtr > card->csd.max_dtr)
927 max_dtr = card->csd.max_dtr;
928
929 mmc_set_clock(card->host, max_dtr);
930 }
931
932 /*
933 * Select the bus width amoung 4-bit and 8-bit(SDR).
934 * If the bus width is changed successfully, return the selected width value.
935 * Zero is returned instead of error value if the wide width is not supported.
936 */
937 static int mmc_select_bus_width(struct mmc_card *card)
938 {
939 static unsigned ext_csd_bits[] = {
940 EXT_CSD_BUS_WIDTH_8,
941 EXT_CSD_BUS_WIDTH_4,
942 };
943 static unsigned bus_widths[] = {
944 MMC_BUS_WIDTH_8,
945 MMC_BUS_WIDTH_4,
946 };
947 struct mmc_host *host = card->host;
948 unsigned idx, bus_width = 0;
949 int err = 0;
950
951 if (!mmc_can_ext_csd(card) ||
952 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
953 return 0;
954
955 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
956
957 /*
958 * Unlike SD, MMC cards dont have a configuration register to notify
959 * supported bus width. So bus test command should be run to identify
960 * the supported bus width or compare the ext csd values of current
961 * bus width and ext csd values of 1 bit mode read earlier.
962 */
963 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
964 /*
965 * Host is capable of 8bit transfer, then switch
966 * the device to work in 8bit transfer mode. If the
967 * mmc switch command returns error then switch to
968 * 4bit transfer mode. On success set the corresponding
969 * bus width on the host.
970 */
971 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
972 EXT_CSD_BUS_WIDTH,
973 ext_csd_bits[idx],
974 card->ext_csd.generic_cmd6_time);
975 if (err)
976 continue;
977
978 bus_width = bus_widths[idx];
979 mmc_set_bus_width(host, bus_width);
980
981 /*
982 * If controller can't handle bus width test,
983 * compare ext_csd previously read in 1 bit mode
984 * against ext_csd at new bus width
985 */
986 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
987 err = mmc_compare_ext_csds(card, bus_width);
988 else
989 err = mmc_bus_test(card, bus_width);
990
991 if (!err) {
992 err = bus_width;
993 break;
994 } else {
995 pr_warn("%s: switch to bus width %d failed\n",
996 mmc_hostname(host), 1 << bus_width);
997 }
998 }
999
1000 return err;
1001 }
1002
1003 /* Caller must hold re-tuning */
1004 static int mmc_switch_status(struct mmc_card *card)
1005 {
1006 u32 status;
1007 int err;
1008
1009 err = mmc_send_status(card, &status);
1010 if (err)
1011 return err;
1012
1013 return mmc_switch_status_error(card->host, status);
1014 }
1015
1016 /*
1017 * Switch to the high-speed mode
1018 */
1019 static int mmc_select_hs(struct mmc_card *card)
1020 {
1021 int err;
1022
1023 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1024 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1025 card->ext_csd.generic_cmd6_time,
1026 true, false, true);
1027 if (!err) {
1028 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1029 err = mmc_switch_status(card);
1030 }
1031
1032 return err;
1033 }
1034
1035 /*
1036 * Activate wide bus and DDR if supported.
1037 */
1038 static int mmc_select_hs_ddr(struct mmc_card *card)
1039 {
1040 struct mmc_host *host = card->host;
1041 u32 bus_width, ext_csd_bits;
1042 int err = 0;
1043
1044 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1045 return 0;
1046
1047 bus_width = host->ios.bus_width;
1048 if (bus_width == MMC_BUS_WIDTH_1)
1049 return 0;
1050
1051 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1052 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1053
1054 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1055 EXT_CSD_BUS_WIDTH,
1056 ext_csd_bits,
1057 card->ext_csd.generic_cmd6_time);
1058 if (err) {
1059 pr_err("%s: switch to bus width %d ddr failed\n",
1060 mmc_hostname(host), 1 << bus_width);
1061 return err;
1062 }
1063
1064 /*
1065 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1066 * signaling.
1067 *
1068 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1069 *
1070 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1071 * in the JEDEC spec for DDR.
1072 *
1073 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1074 * host controller can support this, like some of the SDHCI
1075 * controller which connect to an eMMC device. Some of these
1076 * host controller still needs to use 1.8v vccq for supporting
1077 * DDR mode.
1078 *
1079 * So the sequence will be:
1080 * if (host and device can both support 1.2v IO)
1081 * use 1.2v IO;
1082 * else if (host and device can both support 1.8v IO)
1083 * use 1.8v IO;
1084 * so if host and device can only support 3.3v IO, this is the
1085 * last choice.
1086 *
1087 * WARNING: eMMC rules are NOT the same as SD DDR
1088 */
1089 err = -EINVAL;
1090 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1091 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1092
1093 if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1094 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1095
1096 /* make sure vccq is 3.3v after switching disaster */
1097 if (err)
1098 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1099
1100 if (!err)
1101 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1102
1103 return err;
1104 }
1105
1106 static int mmc_select_hs400(struct mmc_card *card)
1107 {
1108 struct mmc_host *host = card->host;
1109 unsigned int max_dtr;
1110 int err = 0;
1111 u8 val;
1112
1113 /*
1114 * HS400 mode requires 8-bit bus width
1115 */
1116 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1117 host->ios.bus_width == MMC_BUS_WIDTH_8))
1118 return 0;
1119
1120 /* Switch card to HS mode */
1121 val = EXT_CSD_TIMING_HS;
1122 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1123 EXT_CSD_HS_TIMING, val,
1124 card->ext_csd.generic_cmd6_time,
1125 true, false, true);
1126 if (err) {
1127 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1128 mmc_hostname(host), err);
1129 return err;
1130 }
1131
1132 /* Set host controller to HS timing */
1133 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1134
1135 /* Reduce frequency to HS frequency */
1136 max_dtr = card->ext_csd.hs_max_dtr;
1137 mmc_set_clock(host, max_dtr);
1138
1139 err = mmc_switch_status(card);
1140 if (err)
1141 goto out_err;
1142
1143 /* Switch card to DDR */
1144 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1145 EXT_CSD_BUS_WIDTH,
1146 EXT_CSD_DDR_BUS_WIDTH_8,
1147 card->ext_csd.generic_cmd6_time);
1148 if (err) {
1149 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1150 mmc_hostname(host), err);
1151 return err;
1152 }
1153
1154 /* Switch card to HS400 */
1155 val = EXT_CSD_TIMING_HS400 |
1156 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1157 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1158 EXT_CSD_HS_TIMING, val,
1159 card->ext_csd.generic_cmd6_time,
1160 true, false, true);
1161 if (err) {
1162 pr_err("%s: switch to hs400 failed, err:%d\n",
1163 mmc_hostname(host), err);
1164 return err;
1165 }
1166
1167 /* Set host controller to HS400 timing and frequency */
1168 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1169 mmc_set_bus_speed(card);
1170
1171 err = mmc_switch_status(card);
1172 if (err)
1173 goto out_err;
1174
1175 return 0;
1176
1177 out_err:
1178 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1179 __func__, err);
1180 return err;
1181 }
1182
1183 int mmc_hs200_to_hs400(struct mmc_card *card)
1184 {
1185 return mmc_select_hs400(card);
1186 }
1187
1188 int mmc_hs400_to_hs200(struct mmc_card *card)
1189 {
1190 struct mmc_host *host = card->host;
1191 unsigned int max_dtr;
1192 int err;
1193 u8 val;
1194
1195 /* Reduce frequency to HS */
1196 max_dtr = card->ext_csd.hs_max_dtr;
1197 mmc_set_clock(host, max_dtr);
1198
1199 /* Switch HS400 to HS DDR */
1200 val = EXT_CSD_TIMING_HS;
1201 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1202 val, card->ext_csd.generic_cmd6_time,
1203 true, false, true);
1204 if (err)
1205 goto out_err;
1206
1207 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1208
1209 err = mmc_switch_status(card);
1210 if (err)
1211 goto out_err;
1212
1213 /* Switch HS DDR to HS */
1214 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1215 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1216 true, false, true);
1217 if (err)
1218 goto out_err;
1219
1220 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1221
1222 err = mmc_switch_status(card);
1223 if (err)
1224 goto out_err;
1225
1226 /* Switch HS to HS200 */
1227 val = EXT_CSD_TIMING_HS200 |
1228 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1229 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1230 val, card->ext_csd.generic_cmd6_time,
1231 true, false, true);
1232 if (err)
1233 goto out_err;
1234
1235 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1236
1237 err = mmc_switch_status(card);
1238 if (err)
1239 goto out_err;
1240
1241 mmc_set_bus_speed(card);
1242
1243 return 0;
1244
1245 out_err:
1246 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1247 __func__, err);
1248 return err;
1249 }
1250
1251 static int mmc_select_hs400es(struct mmc_card *card)
1252 {
1253 struct mmc_host *host = card->host;
1254 int err = 0;
1255 u8 val;
1256
1257 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1258 err = -ENOTSUPP;
1259 goto out_err;
1260 }
1261
1262 err = mmc_select_bus_width(card);
1263 if (err < 0)
1264 goto out_err;
1265
1266 /* Switch card to HS mode */
1267 err = mmc_select_hs(card);
1268 if (err) {
1269 pr_err("%s: switch to high-speed failed, err:%d\n",
1270 mmc_hostname(host), err);
1271 goto out_err;
1272 }
1273
1274 err = mmc_switch_status(card);
1275 if (err)
1276 goto out_err;
1277
1278 /* Switch card to DDR with strobe bit */
1279 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1280 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1281 EXT_CSD_BUS_WIDTH,
1282 val,
1283 card->ext_csd.generic_cmd6_time);
1284 if (err) {
1285 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1286 mmc_hostname(host), err);
1287 goto out_err;
1288 }
1289
1290 /* Switch card to HS400 */
1291 val = EXT_CSD_TIMING_HS400 |
1292 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1293 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1294 EXT_CSD_HS_TIMING, val,
1295 card->ext_csd.generic_cmd6_time,
1296 true, false, true);
1297 if (err) {
1298 pr_err("%s: switch to hs400es failed, err:%d\n",
1299 mmc_hostname(host), err);
1300 goto out_err;
1301 }
1302
1303 /* Set host controller to HS400 timing and frequency */
1304 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1305
1306 /* Controller enable enhanced strobe function */
1307 host->ios.enhanced_strobe = true;
1308 if (host->ops->hs400_enhanced_strobe)
1309 host->ops->hs400_enhanced_strobe(host, &host->ios);
1310
1311 err = mmc_switch_status(card);
1312 if (err)
1313 goto out_err;
1314
1315 return 0;
1316
1317 out_err:
1318 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1319 __func__, err);
1320 return err;
1321 }
1322
1323 static void mmc_select_driver_type(struct mmc_card *card)
1324 {
1325 int card_drv_type, drive_strength, drv_type;
1326
1327 card_drv_type = card->ext_csd.raw_driver_strength |
1328 mmc_driver_type_mask(0);
1329
1330 drive_strength = mmc_select_drive_strength(card,
1331 card->ext_csd.hs200_max_dtr,
1332 card_drv_type, &drv_type);
1333
1334 card->drive_strength = drive_strength;
1335
1336 if (drv_type)
1337 mmc_set_driver_type(card->host, drv_type);
1338 }
1339
1340 /*
1341 * For device supporting HS200 mode, the following sequence
1342 * should be done before executing the tuning process.
1343 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1344 * 2. switch to HS200 mode
1345 * 3. set the clock to > 52Mhz and <=200MHz
1346 */
1347 static int mmc_select_hs200(struct mmc_card *card)
1348 {
1349 struct mmc_host *host = card->host;
1350 unsigned int old_timing, old_signal_voltage;
1351 int err = -EINVAL;
1352 u8 val;
1353
1354 old_signal_voltage = host->ios.signal_voltage;
1355 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1356 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1357
1358 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1359 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1360
1361 /* If fails try again during next card power cycle */
1362 if (err)
1363 return err;
1364
1365 mmc_select_driver_type(card);
1366
1367 /*
1368 * Set the bus width(4 or 8) with host's support and
1369 * switch to HS200 mode if bus width is set successfully.
1370 */
1371 err = mmc_select_bus_width(card);
1372 if (err > 0) {
1373 val = EXT_CSD_TIMING_HS200 |
1374 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1375 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1376 EXT_CSD_HS_TIMING, val,
1377 card->ext_csd.generic_cmd6_time,
1378 true, false, true);
1379 if (err)
1380 goto err;
1381 old_timing = host->ios.timing;
1382 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1383
1384 err = mmc_switch_status(card);
1385 /*
1386 * mmc_select_timing() assumes timing has not changed if
1387 * it is a switch error.
1388 */
1389 if (err == -EBADMSG)
1390 mmc_set_timing(host, old_timing);
1391 }
1392 err:
1393 if (err) {
1394 /* fall back to the old signal voltage, if fails report error */
1395 if (__mmc_set_signal_voltage(host, old_signal_voltage))
1396 err = -EIO;
1397
1398 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1399 __func__, err);
1400 }
1401 return err;
1402 }
1403
1404 /*
1405 * Activate High Speed, HS200 or HS400ES mode if supported.
1406 */
1407 static int mmc_select_timing(struct mmc_card *card)
1408 {
1409 int err = 0;
1410
1411 if (!mmc_can_ext_csd(card))
1412 goto bus_speed;
1413
1414 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1415 err = mmc_select_hs400es(card);
1416 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1417 err = mmc_select_hs200(card);
1418 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1419 err = mmc_select_hs(card);
1420
1421 if (err && err != -EBADMSG)
1422 return err;
1423
1424 bus_speed:
1425 /*
1426 * Set the bus speed to the selected bus timing.
1427 * If timing is not selected, backward compatible is the default.
1428 */
1429 mmc_set_bus_speed(card);
1430 return 0;
1431 }
1432
1433 /*
1434 * Execute tuning sequence to seek the proper bus operating
1435 * conditions for HS200 and HS400, which sends CMD21 to the device.
1436 */
1437 static int mmc_hs200_tuning(struct mmc_card *card)
1438 {
1439 struct mmc_host *host = card->host;
1440
1441 /*
1442 * Timing should be adjusted to the HS400 target
1443 * operation frequency for tuning process
1444 */
1445 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1446 host->ios.bus_width == MMC_BUS_WIDTH_8)
1447 if (host->ops->prepare_hs400_tuning)
1448 host->ops->prepare_hs400_tuning(host, &host->ios);
1449
1450 return mmc_execute_tuning(card);
1451 }
1452
1453 /*
1454 * Handle the detection and initialisation of a card.
1455 *
1456 * In the case of a resume, "oldcard" will contain the card
1457 * we're trying to reinitialise.
1458 */
1459 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1460 struct mmc_card *oldcard)
1461 {
1462 struct mmc_card *card;
1463 int err;
1464 u32 cid[4];
1465 u32 rocr;
1466
1467 BUG_ON(!host);
1468 WARN_ON(!host->claimed);
1469
1470 /* Set correct bus mode for MMC before attempting init */
1471 if (!mmc_host_is_spi(host))
1472 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1473
1474 /*
1475 * Since we're changing the OCR value, we seem to
1476 * need to tell some cards to go back to the idle
1477 * state. We wait 1ms to give cards time to
1478 * respond.
1479 * mmc_go_idle is needed for eMMC that are asleep
1480 */
1481 mmc_go_idle(host);
1482
1483 /* The extra bit indicates that we support high capacity */
1484 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1485 if (err)
1486 goto err;
1487
1488 /*
1489 * For SPI, enable CRC as appropriate.
1490 */
1491 if (mmc_host_is_spi(host)) {
1492 err = mmc_spi_set_crc(host, use_spi_crc);
1493 if (err)
1494 goto err;
1495 }
1496
1497 /*
1498 * Fetch CID from card.
1499 */
1500 if (mmc_host_is_spi(host))
1501 err = mmc_send_cid(host, cid);
1502 else
1503 err = mmc_all_send_cid(host, cid);
1504 if (err)
1505 goto err;
1506
1507 if (oldcard) {
1508 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1509 err = -ENOENT;
1510 goto err;
1511 }
1512
1513 card = oldcard;
1514 } else {
1515 /*
1516 * Allocate card structure.
1517 */
1518 card = mmc_alloc_card(host, &mmc_type);
1519 if (IS_ERR(card)) {
1520 err = PTR_ERR(card);
1521 goto err;
1522 }
1523
1524 card->ocr = ocr;
1525 card->type = MMC_TYPE_MMC;
1526 card->rca = 1;
1527 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1528 }
1529
1530 /*
1531 * Call the optional HC's init_card function to handle quirks.
1532 */
1533 if (host->ops->init_card)
1534 host->ops->init_card(host, card);
1535
1536 /*
1537 * For native busses: set card RCA and quit open drain mode.
1538 */
1539 if (!mmc_host_is_spi(host)) {
1540 err = mmc_set_relative_addr(card);
1541 if (err)
1542 goto free_card;
1543
1544 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1545 }
1546
1547 if (!oldcard) {
1548 /*
1549 * Fetch CSD from card.
1550 */
1551 err = mmc_send_csd(card, card->raw_csd);
1552 if (err)
1553 goto free_card;
1554
1555 err = mmc_decode_csd(card);
1556 if (err)
1557 goto free_card;
1558 err = mmc_decode_cid(card);
1559 if (err)
1560 goto free_card;
1561 }
1562
1563 /*
1564 * handling only for cards supporting DSR and hosts requesting
1565 * DSR configuration
1566 */
1567 if (card->csd.dsr_imp && host->dsr_req)
1568 mmc_set_dsr(host);
1569
1570 /*
1571 * Select card, as all following commands rely on that.
1572 */
1573 if (!mmc_host_is_spi(host)) {
1574 err = mmc_select_card(card);
1575 if (err)
1576 goto free_card;
1577 }
1578
1579 if (!oldcard) {
1580 /* Read extended CSD. */
1581 err = mmc_read_ext_csd(card);
1582 if (err)
1583 goto free_card;
1584
1585 /*
1586 * If doing byte addressing, check if required to do sector
1587 * addressing. Handle the case of <2GB cards needing sector
1588 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1589 * ocr register has bit 30 set for sector addressing.
1590 */
1591 if (rocr & BIT(30))
1592 mmc_card_set_blockaddr(card);
1593
1594 /* Erase size depends on CSD and Extended CSD */
1595 mmc_set_erase_size(card);
1596 }
1597
1598 /*
1599 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1600 * bit. This bit will be lost every time after a reset or power off.
1601 */
1602 if (card->ext_csd.partition_setting_completed ||
1603 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1604 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1605 EXT_CSD_ERASE_GROUP_DEF, 1,
1606 card->ext_csd.generic_cmd6_time);
1607
1608 if (err && err != -EBADMSG)
1609 goto free_card;
1610
1611 if (err) {
1612 err = 0;
1613 /*
1614 * Just disable enhanced area off & sz
1615 * will try to enable ERASE_GROUP_DEF
1616 * during next time reinit
1617 */
1618 card->ext_csd.enhanced_area_offset = -EINVAL;
1619 card->ext_csd.enhanced_area_size = -EINVAL;
1620 } else {
1621 card->ext_csd.erase_group_def = 1;
1622 /*
1623 * enable ERASE_GRP_DEF successfully.
1624 * This will affect the erase size, so
1625 * here need to reset erase size
1626 */
1627 mmc_set_erase_size(card);
1628 }
1629 }
1630
1631 /*
1632 * Ensure eMMC user default partition is enabled
1633 */
1634 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1635 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1636 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1637 card->ext_csd.part_config,
1638 card->ext_csd.part_time);
1639 if (err && err != -EBADMSG)
1640 goto free_card;
1641 }
1642
1643 /*
1644 * Enable power_off_notification byte in the ext_csd register
1645 */
1646 if (card->ext_csd.rev >= 6) {
1647 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1648 EXT_CSD_POWER_OFF_NOTIFICATION,
1649 EXT_CSD_POWER_ON,
1650 card->ext_csd.generic_cmd6_time);
1651 if (err && err != -EBADMSG)
1652 goto free_card;
1653
1654 /*
1655 * The err can be -EBADMSG or 0,
1656 * so check for success and update the flag
1657 */
1658 if (!err)
1659 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1660 }
1661
1662 /*
1663 * Select timing interface
1664 */
1665 err = mmc_select_timing(card);
1666 if (err)
1667 goto free_card;
1668
1669 if (mmc_card_hs200(card)) {
1670 err = mmc_hs200_tuning(card);
1671 if (err)
1672 goto free_card;
1673
1674 err = mmc_select_hs400(card);
1675 if (err)
1676 goto free_card;
1677 } else if (mmc_card_hs(card)) {
1678 /* Select the desired bus width optionally */
1679 err = mmc_select_bus_width(card);
1680 if (err > 0) {
1681 err = mmc_select_hs_ddr(card);
1682 if (err)
1683 goto free_card;
1684 }
1685 }
1686
1687 /*
1688 * Choose the power class with selected bus interface
1689 */
1690 mmc_select_powerclass(card);
1691
1692 /*
1693 * Enable HPI feature (if supported)
1694 */
1695 if (card->ext_csd.hpi) {
1696 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1697 EXT_CSD_HPI_MGMT, 1,
1698 card->ext_csd.generic_cmd6_time);
1699 if (err && err != -EBADMSG)
1700 goto free_card;
1701 if (err) {
1702 pr_warn("%s: Enabling HPI failed\n",
1703 mmc_hostname(card->host));
1704 err = 0;
1705 } else
1706 card->ext_csd.hpi_en = 1;
1707 }
1708
1709 /*
1710 * If cache size is higher than 0, this indicates
1711 * the existence of cache and it can be turned on.
1712 */
1713 if (!mmc_card_broken_hpi(card) &&
1714 card->ext_csd.cache_size > 0) {
1715 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1716 EXT_CSD_CACHE_CTRL, 1,
1717 card->ext_csd.generic_cmd6_time);
1718 if (err && err != -EBADMSG)
1719 goto free_card;
1720
1721 /*
1722 * Only if no error, cache is turned on successfully.
1723 */
1724 if (err) {
1725 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1726 mmc_hostname(card->host), err);
1727 card->ext_csd.cache_ctrl = 0;
1728 err = 0;
1729 } else {
1730 card->ext_csd.cache_ctrl = 1;
1731 }
1732 }
1733
1734 /*
1735 * The mandatory minimum values are defined for packed command.
1736 * read: 5, write: 3
1737 */
1738 if (card->ext_csd.max_packed_writes >= 3 &&
1739 card->ext_csd.max_packed_reads >= 5 &&
1740 host->caps2 & MMC_CAP2_PACKED_CMD) {
1741 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1742 EXT_CSD_EXP_EVENTS_CTRL,
1743 EXT_CSD_PACKED_EVENT_EN,
1744 card->ext_csd.generic_cmd6_time);
1745 if (err && err != -EBADMSG)
1746 goto free_card;
1747 if (err) {
1748 pr_warn("%s: Enabling packed event failed\n",
1749 mmc_hostname(card->host));
1750 card->ext_csd.packed_event_en = 0;
1751 err = 0;
1752 } else {
1753 card->ext_csd.packed_event_en = 1;
1754 }
1755 }
1756
1757 if (!oldcard)
1758 host->card = card;
1759
1760 return 0;
1761
1762 free_card:
1763 if (!oldcard)
1764 mmc_remove_card(card);
1765 err:
1766 return err;
1767 }
1768
1769 static int mmc_can_sleep(struct mmc_card *card)
1770 {
1771 return (card && card->ext_csd.rev >= 3);
1772 }
1773
1774 static int mmc_sleep(struct mmc_host *host)
1775 {
1776 struct mmc_command cmd = {0};
1777 struct mmc_card *card = host->card;
1778 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1779 int err;
1780
1781 /* Re-tuning can't be done once the card is deselected */
1782 mmc_retune_hold(host);
1783
1784 err = mmc_deselect_cards(host);
1785 if (err)
1786 goto out_release;
1787
1788 cmd.opcode = MMC_SLEEP_AWAKE;
1789 cmd.arg = card->rca << 16;
1790 cmd.arg |= 1 << 15;
1791
1792 /*
1793 * If the max_busy_timeout of the host is specified, validate it against
1794 * the sleep cmd timeout. A failure means we need to prevent the host
1795 * from doing hw busy detection, which is done by converting to a R1
1796 * response instead of a R1B.
1797 */
1798 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1799 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1800 } else {
1801 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1802 cmd.busy_timeout = timeout_ms;
1803 }
1804
1805 err = mmc_wait_for_cmd(host, &cmd, 0);
1806 if (err)
1807 goto out_release;
1808
1809 /*
1810 * If the host does not wait while the card signals busy, then we will
1811 * will have to wait the sleep/awake timeout. Note, we cannot use the
1812 * SEND_STATUS command to poll the status because that command (and most
1813 * others) is invalid while the card sleeps.
1814 */
1815 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1816 mmc_delay(timeout_ms);
1817
1818 out_release:
1819 mmc_retune_release(host);
1820 return err;
1821 }
1822
1823 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1824 {
1825 return card &&
1826 mmc_card_mmc(card) &&
1827 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1828 }
1829
1830 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1831 {
1832 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1833 int err;
1834
1835 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1836 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1837 timeout = card->ext_csd.power_off_longtime;
1838
1839 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1840 EXT_CSD_POWER_OFF_NOTIFICATION,
1841 notify_type, timeout, true, false, false);
1842 if (err)
1843 pr_err("%s: Power Off Notification timed out, %u\n",
1844 mmc_hostname(card->host), timeout);
1845
1846 /* Disable the power off notification after the switch operation. */
1847 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1848
1849 return err;
1850 }
1851
1852 /*
1853 * Host is being removed. Free up the current card.
1854 */
1855 static void mmc_remove(struct mmc_host *host)
1856 {
1857 BUG_ON(!host);
1858 BUG_ON(!host->card);
1859
1860 mmc_remove_card(host->card);
1861 host->card = NULL;
1862 }
1863
1864 /*
1865 * Card detection - card is alive.
1866 */
1867 static int mmc_alive(struct mmc_host *host)
1868 {
1869 return mmc_send_status(host->card, NULL);
1870 }
1871
1872 /*
1873 * Card detection callback from host.
1874 */
1875 static void mmc_detect(struct mmc_host *host)
1876 {
1877 int err;
1878
1879 BUG_ON(!host);
1880 BUG_ON(!host->card);
1881
1882 mmc_get_card(host->card);
1883
1884 /*
1885 * Just check if our card has been removed.
1886 */
1887 err = _mmc_detect_card_removed(host);
1888
1889 mmc_put_card(host->card);
1890
1891 if (err) {
1892 mmc_remove(host);
1893
1894 mmc_claim_host(host);
1895 mmc_detach_bus(host);
1896 mmc_power_off(host);
1897 mmc_release_host(host);
1898 }
1899 }
1900
1901 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1902 {
1903 int err = 0;
1904 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1905 EXT_CSD_POWER_OFF_LONG;
1906
1907 BUG_ON(!host);
1908 BUG_ON(!host->card);
1909
1910 mmc_claim_host(host);
1911
1912 if (mmc_card_suspended(host->card))
1913 goto out;
1914
1915 if (mmc_card_doing_bkops(host->card)) {
1916 err = mmc_stop_bkops(host->card);
1917 if (err)
1918 goto out;
1919 }
1920
1921 err = mmc_flush_cache(host->card);
1922 if (err)
1923 goto out;
1924
1925 if (mmc_can_poweroff_notify(host->card) &&
1926 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1927 err = mmc_poweroff_notify(host->card, notify_type);
1928 else if (mmc_can_sleep(host->card))
1929 err = mmc_sleep(host);
1930 else if (!mmc_host_is_spi(host))
1931 err = mmc_deselect_cards(host);
1932
1933 if (!err) {
1934 mmc_power_off(host);
1935 mmc_card_set_suspended(host->card);
1936 }
1937 out:
1938 mmc_release_host(host);
1939 return err;
1940 }
1941
1942 /*
1943 * Suspend callback
1944 */
1945 static int mmc_suspend(struct mmc_host *host)
1946 {
1947 int err;
1948
1949 err = _mmc_suspend(host, true);
1950 if (!err) {
1951 pm_runtime_disable(&host->card->dev);
1952 pm_runtime_set_suspended(&host->card->dev);
1953 }
1954
1955 return err;
1956 }
1957
1958 /*
1959 * This function tries to determine if the same card is still present
1960 * and, if so, restore all state to it.
1961 */
1962 static int _mmc_resume(struct mmc_host *host)
1963 {
1964 int err = 0;
1965
1966 BUG_ON(!host);
1967 BUG_ON(!host->card);
1968
1969 mmc_claim_host(host);
1970
1971 if (!mmc_card_suspended(host->card))
1972 goto out;
1973
1974 mmc_power_up(host, host->card->ocr);
1975 err = mmc_init_card(host, host->card->ocr, host->card);
1976 mmc_card_clr_suspended(host->card);
1977
1978 out:
1979 mmc_release_host(host);
1980 return err;
1981 }
1982
1983 /*
1984 * Shutdown callback
1985 */
1986 static int mmc_shutdown(struct mmc_host *host)
1987 {
1988 int err = 0;
1989
1990 /*
1991 * In a specific case for poweroff notify, we need to resume the card
1992 * before we can shutdown it properly.
1993 */
1994 if (mmc_can_poweroff_notify(host->card) &&
1995 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
1996 err = _mmc_resume(host);
1997
1998 if (!err)
1999 err = _mmc_suspend(host, false);
2000
2001 return err;
2002 }
2003
2004 /*
2005 * Callback for resume.
2006 */
2007 static int mmc_resume(struct mmc_host *host)
2008 {
2009 pm_runtime_enable(&host->card->dev);
2010 return 0;
2011 }
2012
2013 /*
2014 * Callback for runtime_suspend.
2015 */
2016 static int mmc_runtime_suspend(struct mmc_host *host)
2017 {
2018 int err;
2019
2020 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2021 return 0;
2022
2023 err = _mmc_suspend(host, true);
2024 if (err)
2025 pr_err("%s: error %d doing aggressive suspend\n",
2026 mmc_hostname(host), err);
2027
2028 return err;
2029 }
2030
2031 /*
2032 * Callback for runtime_resume.
2033 */
2034 static int mmc_runtime_resume(struct mmc_host *host)
2035 {
2036 int err;
2037
2038 err = _mmc_resume(host);
2039 if (err && err != -ENOMEDIUM)
2040 pr_err("%s: error %d doing runtime resume\n",
2041 mmc_hostname(host), err);
2042
2043 return 0;
2044 }
2045
2046 int mmc_can_reset(struct mmc_card *card)
2047 {
2048 u8 rst_n_function;
2049
2050 rst_n_function = card->ext_csd.rst_n_function;
2051 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2052 return 0;
2053 return 1;
2054 }
2055 EXPORT_SYMBOL(mmc_can_reset);
2056
2057 static int mmc_reset(struct mmc_host *host)
2058 {
2059 struct mmc_card *card = host->card;
2060
2061 /*
2062 * In the case of recovery, we can't expect flushing the cache to work
2063 * always, but we have a go and ignore errors.
2064 */
2065 mmc_flush_cache(host->card);
2066
2067 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2068 mmc_can_reset(card)) {
2069 /* If the card accept RST_n signal, send it. */
2070 mmc_set_clock(host, host->f_init);
2071 host->ops->hw_reset(host);
2072 /* Set initial state and call mmc_set_ios */
2073 mmc_set_initial_state(host);
2074 } else {
2075 /* Do a brute force power cycle */
2076 mmc_power_cycle(host, card->ocr);
2077 }
2078 return mmc_init_card(host, card->ocr, card);
2079 }
2080
2081 static const struct mmc_bus_ops mmc_ops = {
2082 .remove = mmc_remove,
2083 .detect = mmc_detect,
2084 .suspend = mmc_suspend,
2085 .resume = mmc_resume,
2086 .runtime_suspend = mmc_runtime_suspend,
2087 .runtime_resume = mmc_runtime_resume,
2088 .alive = mmc_alive,
2089 .shutdown = mmc_shutdown,
2090 .reset = mmc_reset,
2091 };
2092
2093 /*
2094 * Starting point for MMC card init.
2095 */
2096 int mmc_attach_mmc(struct mmc_host *host)
2097 {
2098 int err;
2099 u32 ocr, rocr;
2100
2101 BUG_ON(!host);
2102 WARN_ON(!host->claimed);
2103
2104 /* Set correct bus mode for MMC before attempting attach */
2105 if (!mmc_host_is_spi(host))
2106 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2107
2108 err = mmc_send_op_cond(host, 0, &ocr);
2109 if (err)
2110 return err;
2111
2112 mmc_attach_bus(host, &mmc_ops);
2113 if (host->ocr_avail_mmc)
2114 host->ocr_avail = host->ocr_avail_mmc;
2115
2116 /*
2117 * We need to get OCR a different way for SPI.
2118 */
2119 if (mmc_host_is_spi(host)) {
2120 err = mmc_spi_read_ocr(host, 1, &ocr);
2121 if (err)
2122 goto err;
2123 }
2124
2125 rocr = mmc_select_voltage(host, ocr);
2126
2127 /*
2128 * Can we support the voltage of the card?
2129 */
2130 if (!rocr) {
2131 err = -EINVAL;
2132 goto err;
2133 }
2134
2135 /*
2136 * Detect and init the card.
2137 */
2138 err = mmc_init_card(host, rocr, NULL);
2139 if (err)
2140 goto err;
2141
2142 mmc_release_host(host);
2143 err = mmc_add_card(host->card);
2144 if (err)
2145 goto remove_card;
2146
2147 mmc_claim_host(host);
2148 return 0;
2149
2150 remove_card:
2151 mmc_remove_card(host->card);
2152 mmc_claim_host(host);
2153 host->card = NULL;
2154 err:
2155 mmc_detach_bus(host);
2156
2157 pr_err("%s: error %d whilst initialising MMC card\n",
2158 mmc_hostname(host), err);
2159
2160 return err;
2161 }
This page took 0.078462 seconds and 5 git commands to generate.