Restartable sequences: tests: introduce simple rseq start/finish
[deliverable/linux.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/kconfig.h>
43 #include <linux/leds.h>
44
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47
48 #include "mtdcore.h"
49
50 static struct backing_dev_info mtd_bdi = {
51 };
52
53 #ifdef CONFIG_PM_SLEEP
54
55 static int mtd_cls_suspend(struct device *dev)
56 {
57 struct mtd_info *mtd = dev_get_drvdata(dev);
58
59 return mtd ? mtd_suspend(mtd) : 0;
60 }
61
62 static int mtd_cls_resume(struct device *dev)
63 {
64 struct mtd_info *mtd = dev_get_drvdata(dev);
65
66 if (mtd)
67 mtd_resume(mtd);
68 return 0;
69 }
70
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #else
74 #define MTD_CLS_PM_OPS NULL
75 #endif
76
77 static struct class mtd_class = {
78 .name = "mtd",
79 .owner = THIS_MODULE,
80 .pm = MTD_CLS_PM_OPS,
81 };
82
83 static DEFINE_IDR(mtd_idr);
84
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96 static LIST_HEAD(mtd_notifiers);
97
98
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102 * the mtd_info will probably want to use the release() hook...
103 */
104 static void mtd_release(struct device *dev)
105 {
106 struct mtd_info *mtd = dev_get_drvdata(dev);
107 dev_t index = MTD_DEVT(mtd->index);
108
109 /* remove /dev/mtdXro node */
110 device_destroy(&mtd_class, index + 1);
111 }
112
113 static ssize_t mtd_type_show(struct device *dev,
114 struct device_attribute *attr, char *buf)
115 {
116 struct mtd_info *mtd = dev_get_drvdata(dev);
117 char *type;
118
119 switch (mtd->type) {
120 case MTD_ABSENT:
121 type = "absent";
122 break;
123 case MTD_RAM:
124 type = "ram";
125 break;
126 case MTD_ROM:
127 type = "rom";
128 break;
129 case MTD_NORFLASH:
130 type = "nor";
131 break;
132 case MTD_NANDFLASH:
133 type = "nand";
134 break;
135 case MTD_DATAFLASH:
136 type = "dataflash";
137 break;
138 case MTD_UBIVOLUME:
139 type = "ubi";
140 break;
141 case MTD_MLCNANDFLASH:
142 type = "mlc-nand";
143 break;
144 default:
145 type = "unknown";
146 }
147
148 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 }
150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151
152 static ssize_t mtd_flags_show(struct device *dev,
153 struct device_attribute *attr, char *buf)
154 {
155 struct mtd_info *mtd = dev_get_drvdata(dev);
156
157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
158
159 }
160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161
162 static ssize_t mtd_size_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return snprintf(buf, PAGE_SIZE, "%llu\n",
168 (unsigned long long)mtd->size);
169
170 }
171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172
173 static ssize_t mtd_erasesize_show(struct device *dev,
174 struct device_attribute *attr, char *buf)
175 {
176 struct mtd_info *mtd = dev_get_drvdata(dev);
177
178 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
179
180 }
181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182
183 static ssize_t mtd_writesize_show(struct device *dev,
184 struct device_attribute *attr, char *buf)
185 {
186 struct mtd_info *mtd = dev_get_drvdata(dev);
187
188 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
189
190 }
191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192
193 static ssize_t mtd_subpagesize_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195 {
196 struct mtd_info *mtd = dev_get_drvdata(dev);
197 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
200
201 }
202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203
204 static ssize_t mtd_oobsize_show(struct device *dev,
205 struct device_attribute *attr, char *buf)
206 {
207 struct mtd_info *mtd = dev_get_drvdata(dev);
208
209 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
210
211 }
212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213
214 static ssize_t mtd_numeraseregions_show(struct device *dev,
215 struct device_attribute *attr, char *buf)
216 {
217 struct mtd_info *mtd = dev_get_drvdata(dev);
218
219 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
220
221 }
222 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
223 NULL);
224
225 static ssize_t mtd_name_show(struct device *dev,
226 struct device_attribute *attr, char *buf)
227 {
228 struct mtd_info *mtd = dev_get_drvdata(dev);
229
230 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
231
232 }
233 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
234
235 static ssize_t mtd_ecc_strength_show(struct device *dev,
236 struct device_attribute *attr, char *buf)
237 {
238 struct mtd_info *mtd = dev_get_drvdata(dev);
239
240 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
241 }
242 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
243
244 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
245 struct device_attribute *attr,
246 char *buf)
247 {
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249
250 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
251 }
252
253 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
254 struct device_attribute *attr,
255 const char *buf, size_t count)
256 {
257 struct mtd_info *mtd = dev_get_drvdata(dev);
258 unsigned int bitflip_threshold;
259 int retval;
260
261 retval = kstrtouint(buf, 0, &bitflip_threshold);
262 if (retval)
263 return retval;
264
265 mtd->bitflip_threshold = bitflip_threshold;
266 return count;
267 }
268 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
269 mtd_bitflip_threshold_show,
270 mtd_bitflip_threshold_store);
271
272 static ssize_t mtd_ecc_step_size_show(struct device *dev,
273 struct device_attribute *attr, char *buf)
274 {
275 struct mtd_info *mtd = dev_get_drvdata(dev);
276
277 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
278
279 }
280 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
281
282 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
284 {
285 struct mtd_info *mtd = dev_get_drvdata(dev);
286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287
288 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
289 }
290 static DEVICE_ATTR(corrected_bits, S_IRUGO,
291 mtd_ecc_stats_corrected_show, NULL);
292
293 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
294 struct device_attribute *attr, char *buf)
295 {
296 struct mtd_info *mtd = dev_get_drvdata(dev);
297 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
298
299 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
300 }
301 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
302
303 static ssize_t mtd_badblocks_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct mtd_info *mtd = dev_get_drvdata(dev);
307 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
308
309 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
310 }
311 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
312
313 static ssize_t mtd_bbtblocks_show(struct device *dev,
314 struct device_attribute *attr, char *buf)
315 {
316 struct mtd_info *mtd = dev_get_drvdata(dev);
317 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
318
319 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
320 }
321 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
322
323 static struct attribute *mtd_attrs[] = {
324 &dev_attr_type.attr,
325 &dev_attr_flags.attr,
326 &dev_attr_size.attr,
327 &dev_attr_erasesize.attr,
328 &dev_attr_writesize.attr,
329 &dev_attr_subpagesize.attr,
330 &dev_attr_oobsize.attr,
331 &dev_attr_numeraseregions.attr,
332 &dev_attr_name.attr,
333 &dev_attr_ecc_strength.attr,
334 &dev_attr_ecc_step_size.attr,
335 &dev_attr_corrected_bits.attr,
336 &dev_attr_ecc_failures.attr,
337 &dev_attr_bad_blocks.attr,
338 &dev_attr_bbt_blocks.attr,
339 &dev_attr_bitflip_threshold.attr,
340 NULL,
341 };
342 ATTRIBUTE_GROUPS(mtd);
343
344 static struct device_type mtd_devtype = {
345 .name = "mtd",
346 .groups = mtd_groups,
347 .release = mtd_release,
348 };
349
350 #ifndef CONFIG_MMU
351 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
352 {
353 switch (mtd->type) {
354 case MTD_RAM:
355 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
356 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
357 case MTD_ROM:
358 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
359 NOMMU_MAP_READ;
360 default:
361 return NOMMU_MAP_COPY;
362 }
363 }
364 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
365 #endif
366
367 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
368 void *cmd)
369 {
370 struct mtd_info *mtd;
371
372 mtd = container_of(n, struct mtd_info, reboot_notifier);
373 mtd->_reboot(mtd);
374
375 return NOTIFY_DONE;
376 }
377
378 /**
379 * add_mtd_device - register an MTD device
380 * @mtd: pointer to new MTD device info structure
381 *
382 * Add a device to the list of MTD devices present in the system, and
383 * notify each currently active MTD 'user' of its arrival. Returns
384 * zero on success or non-zero on failure.
385 */
386
387 int add_mtd_device(struct mtd_info *mtd)
388 {
389 struct mtd_notifier *not;
390 int i, error;
391
392 /*
393 * May occur, for instance, on buggy drivers which call
394 * mtd_device_parse_register() multiple times on the same master MTD,
395 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
396 */
397 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
398 return -EEXIST;
399
400 mtd->backing_dev_info = &mtd_bdi;
401
402 BUG_ON(mtd->writesize == 0);
403 mutex_lock(&mtd_table_mutex);
404
405 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
406 if (i < 0) {
407 error = i;
408 goto fail_locked;
409 }
410
411 mtd->index = i;
412 mtd->usecount = 0;
413
414 /* default value if not set by driver */
415 if (mtd->bitflip_threshold == 0)
416 mtd->bitflip_threshold = mtd->ecc_strength;
417
418 if (is_power_of_2(mtd->erasesize))
419 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
420 else
421 mtd->erasesize_shift = 0;
422
423 if (is_power_of_2(mtd->writesize))
424 mtd->writesize_shift = ffs(mtd->writesize) - 1;
425 else
426 mtd->writesize_shift = 0;
427
428 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
429 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
430
431 /* Some chips always power up locked. Unlock them now */
432 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
433 error = mtd_unlock(mtd, 0, mtd->size);
434 if (error && error != -EOPNOTSUPP)
435 printk(KERN_WARNING
436 "%s: unlock failed, writes may not work\n",
437 mtd->name);
438 /* Ignore unlock failures? */
439 error = 0;
440 }
441
442 /* Caller should have set dev.parent to match the
443 * physical device, if appropriate.
444 */
445 mtd->dev.type = &mtd_devtype;
446 mtd->dev.class = &mtd_class;
447 mtd->dev.devt = MTD_DEVT(i);
448 dev_set_name(&mtd->dev, "mtd%d", i);
449 dev_set_drvdata(&mtd->dev, mtd);
450 of_node_get(mtd_get_of_node(mtd));
451 error = device_register(&mtd->dev);
452 if (error)
453 goto fail_added;
454
455 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
456 "mtd%dro", i);
457
458 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
459 /* No need to get a refcount on the module containing
460 the notifier, since we hold the mtd_table_mutex */
461 list_for_each_entry(not, &mtd_notifiers, list)
462 not->add(mtd);
463
464 mutex_unlock(&mtd_table_mutex);
465 /* We _know_ we aren't being removed, because
466 our caller is still holding us here. So none
467 of this try_ nonsense, and no bitching about it
468 either. :) */
469 __module_get(THIS_MODULE);
470 return 0;
471
472 fail_added:
473 of_node_put(mtd_get_of_node(mtd));
474 idr_remove(&mtd_idr, i);
475 fail_locked:
476 mutex_unlock(&mtd_table_mutex);
477 return error;
478 }
479
480 /**
481 * del_mtd_device - unregister an MTD device
482 * @mtd: pointer to MTD device info structure
483 *
484 * Remove a device from the list of MTD devices present in the system,
485 * and notify each currently active MTD 'user' of its departure.
486 * Returns zero on success or 1 on failure, which currently will happen
487 * if the requested device does not appear to be present in the list.
488 */
489
490 int del_mtd_device(struct mtd_info *mtd)
491 {
492 int ret;
493 struct mtd_notifier *not;
494
495 mutex_lock(&mtd_table_mutex);
496
497 if (idr_find(&mtd_idr, mtd->index) != mtd) {
498 ret = -ENODEV;
499 goto out_error;
500 }
501
502 /* No need to get a refcount on the module containing
503 the notifier, since we hold the mtd_table_mutex */
504 list_for_each_entry(not, &mtd_notifiers, list)
505 not->remove(mtd);
506
507 if (mtd->usecount) {
508 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
509 mtd->index, mtd->name, mtd->usecount);
510 ret = -EBUSY;
511 } else {
512 device_unregister(&mtd->dev);
513
514 idr_remove(&mtd_idr, mtd->index);
515 of_node_put(mtd_get_of_node(mtd));
516
517 module_put(THIS_MODULE);
518 ret = 0;
519 }
520
521 out_error:
522 mutex_unlock(&mtd_table_mutex);
523 return ret;
524 }
525
526 static int mtd_add_device_partitions(struct mtd_info *mtd,
527 struct mtd_partitions *parts)
528 {
529 const struct mtd_partition *real_parts = parts->parts;
530 int nbparts = parts->nr_parts;
531 int ret;
532
533 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
534 ret = add_mtd_device(mtd);
535 if (ret)
536 return ret;
537 }
538
539 if (nbparts > 0) {
540 ret = add_mtd_partitions(mtd, real_parts, nbparts);
541 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
542 del_mtd_device(mtd);
543 return ret;
544 }
545
546 return 0;
547 }
548
549 /*
550 * Set a few defaults based on the parent devices, if not provided by the
551 * driver
552 */
553 static void mtd_set_dev_defaults(struct mtd_info *mtd)
554 {
555 if (mtd->dev.parent) {
556 if (!mtd->owner && mtd->dev.parent->driver)
557 mtd->owner = mtd->dev.parent->driver->owner;
558 if (!mtd->name)
559 mtd->name = dev_name(mtd->dev.parent);
560 } else {
561 pr_debug("mtd device won't show a device symlink in sysfs\n");
562 }
563 }
564
565 /**
566 * mtd_device_parse_register - parse partitions and register an MTD device.
567 *
568 * @mtd: the MTD device to register
569 * @types: the list of MTD partition probes to try, see
570 * 'parse_mtd_partitions()' for more information
571 * @parser_data: MTD partition parser-specific data
572 * @parts: fallback partition information to register, if parsing fails;
573 * only valid if %nr_parts > %0
574 * @nr_parts: the number of partitions in parts, if zero then the full
575 * MTD device is registered if no partition info is found
576 *
577 * This function aggregates MTD partitions parsing (done by
578 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
579 * basically follows the most common pattern found in many MTD drivers:
580 *
581 * * It first tries to probe partitions on MTD device @mtd using parsers
582 * specified in @types (if @types is %NULL, then the default list of parsers
583 * is used, see 'parse_mtd_partitions()' for more information). If none are
584 * found this functions tries to fallback to information specified in
585 * @parts/@nr_parts.
586 * * If any partitioning info was found, this function registers the found
587 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
588 * as a whole is registered first.
589 * * If no partitions were found this function just registers the MTD device
590 * @mtd and exits.
591 *
592 * Returns zero in case of success and a negative error code in case of failure.
593 */
594 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
595 struct mtd_part_parser_data *parser_data,
596 const struct mtd_partition *parts,
597 int nr_parts)
598 {
599 struct mtd_partitions parsed;
600 int ret;
601
602 mtd_set_dev_defaults(mtd);
603
604 memset(&parsed, 0, sizeof(parsed));
605
606 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
607 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
608 /* Fall back to driver-provided partitions */
609 parsed = (struct mtd_partitions){
610 .parts = parts,
611 .nr_parts = nr_parts,
612 };
613 } else if (ret < 0) {
614 /* Didn't come up with parsed OR fallback partitions */
615 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
616 ret);
617 /* Don't abort on errors; we can still use unpartitioned MTD */
618 memset(&parsed, 0, sizeof(parsed));
619 }
620
621 ret = mtd_add_device_partitions(mtd, &parsed);
622 if (ret)
623 goto out;
624
625 /*
626 * FIXME: some drivers unfortunately call this function more than once.
627 * So we have to check if we've already assigned the reboot notifier.
628 *
629 * Generally, we can make multiple calls work for most cases, but it
630 * does cause problems with parse_mtd_partitions() above (e.g.,
631 * cmdlineparts will register partitions more than once).
632 */
633 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
634 "MTD already registered\n");
635 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
636 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
637 register_reboot_notifier(&mtd->reboot_notifier);
638 }
639
640 out:
641 /* Cleanup any parsed partitions */
642 mtd_part_parser_cleanup(&parsed);
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
646
647 /**
648 * mtd_device_unregister - unregister an existing MTD device.
649 *
650 * @master: the MTD device to unregister. This will unregister both the master
651 * and any partitions if registered.
652 */
653 int mtd_device_unregister(struct mtd_info *master)
654 {
655 int err;
656
657 if (master->_reboot)
658 unregister_reboot_notifier(&master->reboot_notifier);
659
660 err = del_mtd_partitions(master);
661 if (err)
662 return err;
663
664 if (!device_is_registered(&master->dev))
665 return 0;
666
667 return del_mtd_device(master);
668 }
669 EXPORT_SYMBOL_GPL(mtd_device_unregister);
670
671 /**
672 * register_mtd_user - register a 'user' of MTD devices.
673 * @new: pointer to notifier info structure
674 *
675 * Registers a pair of callbacks function to be called upon addition
676 * or removal of MTD devices. Causes the 'add' callback to be immediately
677 * invoked for each MTD device currently present in the system.
678 */
679 void register_mtd_user (struct mtd_notifier *new)
680 {
681 struct mtd_info *mtd;
682
683 mutex_lock(&mtd_table_mutex);
684
685 list_add(&new->list, &mtd_notifiers);
686
687 __module_get(THIS_MODULE);
688
689 mtd_for_each_device(mtd)
690 new->add(mtd);
691
692 mutex_unlock(&mtd_table_mutex);
693 }
694 EXPORT_SYMBOL_GPL(register_mtd_user);
695
696 /**
697 * unregister_mtd_user - unregister a 'user' of MTD devices.
698 * @old: pointer to notifier info structure
699 *
700 * Removes a callback function pair from the list of 'users' to be
701 * notified upon addition or removal of MTD devices. Causes the
702 * 'remove' callback to be immediately invoked for each MTD device
703 * currently present in the system.
704 */
705 int unregister_mtd_user (struct mtd_notifier *old)
706 {
707 struct mtd_info *mtd;
708
709 mutex_lock(&mtd_table_mutex);
710
711 module_put(THIS_MODULE);
712
713 mtd_for_each_device(mtd)
714 old->remove(mtd);
715
716 list_del(&old->list);
717 mutex_unlock(&mtd_table_mutex);
718 return 0;
719 }
720 EXPORT_SYMBOL_GPL(unregister_mtd_user);
721
722 /**
723 * get_mtd_device - obtain a validated handle for an MTD device
724 * @mtd: last known address of the required MTD device
725 * @num: internal device number of the required MTD device
726 *
727 * Given a number and NULL address, return the num'th entry in the device
728 * table, if any. Given an address and num == -1, search the device table
729 * for a device with that address and return if it's still present. Given
730 * both, return the num'th driver only if its address matches. Return
731 * error code if not.
732 */
733 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
734 {
735 struct mtd_info *ret = NULL, *other;
736 int err = -ENODEV;
737
738 mutex_lock(&mtd_table_mutex);
739
740 if (num == -1) {
741 mtd_for_each_device(other) {
742 if (other == mtd) {
743 ret = mtd;
744 break;
745 }
746 }
747 } else if (num >= 0) {
748 ret = idr_find(&mtd_idr, num);
749 if (mtd && mtd != ret)
750 ret = NULL;
751 }
752
753 if (!ret) {
754 ret = ERR_PTR(err);
755 goto out;
756 }
757
758 err = __get_mtd_device(ret);
759 if (err)
760 ret = ERR_PTR(err);
761 out:
762 mutex_unlock(&mtd_table_mutex);
763 return ret;
764 }
765 EXPORT_SYMBOL_GPL(get_mtd_device);
766
767
768 int __get_mtd_device(struct mtd_info *mtd)
769 {
770 int err;
771
772 if (!try_module_get(mtd->owner))
773 return -ENODEV;
774
775 if (mtd->_get_device) {
776 err = mtd->_get_device(mtd);
777
778 if (err) {
779 module_put(mtd->owner);
780 return err;
781 }
782 }
783 mtd->usecount++;
784 return 0;
785 }
786 EXPORT_SYMBOL_GPL(__get_mtd_device);
787
788 /**
789 * get_mtd_device_nm - obtain a validated handle for an MTD device by
790 * device name
791 * @name: MTD device name to open
792 *
793 * This function returns MTD device description structure in case of
794 * success and an error code in case of failure.
795 */
796 struct mtd_info *get_mtd_device_nm(const char *name)
797 {
798 int err = -ENODEV;
799 struct mtd_info *mtd = NULL, *other;
800
801 mutex_lock(&mtd_table_mutex);
802
803 mtd_for_each_device(other) {
804 if (!strcmp(name, other->name)) {
805 mtd = other;
806 break;
807 }
808 }
809
810 if (!mtd)
811 goto out_unlock;
812
813 err = __get_mtd_device(mtd);
814 if (err)
815 goto out_unlock;
816
817 mutex_unlock(&mtd_table_mutex);
818 return mtd;
819
820 out_unlock:
821 mutex_unlock(&mtd_table_mutex);
822 return ERR_PTR(err);
823 }
824 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
825
826 void put_mtd_device(struct mtd_info *mtd)
827 {
828 mutex_lock(&mtd_table_mutex);
829 __put_mtd_device(mtd);
830 mutex_unlock(&mtd_table_mutex);
831
832 }
833 EXPORT_SYMBOL_GPL(put_mtd_device);
834
835 void __put_mtd_device(struct mtd_info *mtd)
836 {
837 --mtd->usecount;
838 BUG_ON(mtd->usecount < 0);
839
840 if (mtd->_put_device)
841 mtd->_put_device(mtd);
842
843 module_put(mtd->owner);
844 }
845 EXPORT_SYMBOL_GPL(__put_mtd_device);
846
847 /*
848 * Erase is an asynchronous operation. Device drivers are supposed
849 * to call instr->callback() whenever the operation completes, even
850 * if it completes with a failure.
851 * Callers are supposed to pass a callback function and wait for it
852 * to be called before writing to the block.
853 */
854 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
855 {
856 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
857 return -EINVAL;
858 if (!(mtd->flags & MTD_WRITEABLE))
859 return -EROFS;
860 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
861 if (!instr->len) {
862 instr->state = MTD_ERASE_DONE;
863 mtd_erase_callback(instr);
864 return 0;
865 }
866 ledtrig_mtd_activity();
867 return mtd->_erase(mtd, instr);
868 }
869 EXPORT_SYMBOL_GPL(mtd_erase);
870
871 /*
872 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
873 */
874 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
875 void **virt, resource_size_t *phys)
876 {
877 *retlen = 0;
878 *virt = NULL;
879 if (phys)
880 *phys = 0;
881 if (!mtd->_point)
882 return -EOPNOTSUPP;
883 if (from < 0 || from >= mtd->size || len > mtd->size - from)
884 return -EINVAL;
885 if (!len)
886 return 0;
887 return mtd->_point(mtd, from, len, retlen, virt, phys);
888 }
889 EXPORT_SYMBOL_GPL(mtd_point);
890
891 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
892 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
893 {
894 if (!mtd->_point)
895 return -EOPNOTSUPP;
896 if (from < 0 || from >= mtd->size || len > mtd->size - from)
897 return -EINVAL;
898 if (!len)
899 return 0;
900 return mtd->_unpoint(mtd, from, len);
901 }
902 EXPORT_SYMBOL_GPL(mtd_unpoint);
903
904 /*
905 * Allow NOMMU mmap() to directly map the device (if not NULL)
906 * - return the address to which the offset maps
907 * - return -ENOSYS to indicate refusal to do the mapping
908 */
909 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
910 unsigned long offset, unsigned long flags)
911 {
912 if (!mtd->_get_unmapped_area)
913 return -EOPNOTSUPP;
914 if (offset >= mtd->size || len > mtd->size - offset)
915 return -EINVAL;
916 return mtd->_get_unmapped_area(mtd, len, offset, flags);
917 }
918 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
919
920 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
921 u_char *buf)
922 {
923 int ret_code;
924 *retlen = 0;
925 if (from < 0 || from >= mtd->size || len > mtd->size - from)
926 return -EINVAL;
927 if (!len)
928 return 0;
929
930 ledtrig_mtd_activity();
931 /*
932 * In the absence of an error, drivers return a non-negative integer
933 * representing the maximum number of bitflips that were corrected on
934 * any one ecc region (if applicable; zero otherwise).
935 */
936 ret_code = mtd->_read(mtd, from, len, retlen, buf);
937 if (unlikely(ret_code < 0))
938 return ret_code;
939 if (mtd->ecc_strength == 0)
940 return 0; /* device lacks ecc */
941 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
942 }
943 EXPORT_SYMBOL_GPL(mtd_read);
944
945 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
946 const u_char *buf)
947 {
948 *retlen = 0;
949 if (to < 0 || to >= mtd->size || len > mtd->size - to)
950 return -EINVAL;
951 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
952 return -EROFS;
953 if (!len)
954 return 0;
955 ledtrig_mtd_activity();
956 return mtd->_write(mtd, to, len, retlen, buf);
957 }
958 EXPORT_SYMBOL_GPL(mtd_write);
959
960 /*
961 * In blackbox flight recorder like scenarios we want to make successful writes
962 * in interrupt context. panic_write() is only intended to be called when its
963 * known the kernel is about to panic and we need the write to succeed. Since
964 * the kernel is not going to be running for much longer, this function can
965 * break locks and delay to ensure the write succeeds (but not sleep).
966 */
967 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
968 const u_char *buf)
969 {
970 *retlen = 0;
971 if (!mtd->_panic_write)
972 return -EOPNOTSUPP;
973 if (to < 0 || to >= mtd->size || len > mtd->size - to)
974 return -EINVAL;
975 if (!(mtd->flags & MTD_WRITEABLE))
976 return -EROFS;
977 if (!len)
978 return 0;
979 return mtd->_panic_write(mtd, to, len, retlen, buf);
980 }
981 EXPORT_SYMBOL_GPL(mtd_panic_write);
982
983 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
984 {
985 int ret_code;
986 ops->retlen = ops->oobretlen = 0;
987 if (!mtd->_read_oob)
988 return -EOPNOTSUPP;
989
990 ledtrig_mtd_activity();
991 /*
992 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
993 * similar to mtd->_read(), returning a non-negative integer
994 * representing max bitflips. In other cases, mtd->_read_oob() may
995 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
996 */
997 ret_code = mtd->_read_oob(mtd, from, ops);
998 if (unlikely(ret_code < 0))
999 return ret_code;
1000 if (mtd->ecc_strength == 0)
1001 return 0; /* device lacks ecc */
1002 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1003 }
1004 EXPORT_SYMBOL_GPL(mtd_read_oob);
1005
1006 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1007 struct mtd_oob_ops *ops)
1008 {
1009 ops->retlen = ops->oobretlen = 0;
1010 if (!mtd->_write_oob)
1011 return -EOPNOTSUPP;
1012 if (!(mtd->flags & MTD_WRITEABLE))
1013 return -EROFS;
1014 ledtrig_mtd_activity();
1015 return mtd->_write_oob(mtd, to, ops);
1016 }
1017 EXPORT_SYMBOL_GPL(mtd_write_oob);
1018
1019 /**
1020 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1021 * @mtd: MTD device structure
1022 * @section: ECC section. Depending on the layout you may have all the ECC
1023 * bytes stored in a single contiguous section, or one section
1024 * per ECC chunk (and sometime several sections for a single ECC
1025 * ECC chunk)
1026 * @oobecc: OOB region struct filled with the appropriate ECC position
1027 * information
1028 *
1029 * This functions return ECC section information in the OOB area. I you want
1030 * to get all the ECC bytes information, then you should call
1031 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1032 *
1033 * Returns zero on success, a negative error code otherwise.
1034 */
1035 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1036 struct mtd_oob_region *oobecc)
1037 {
1038 memset(oobecc, 0, sizeof(*oobecc));
1039
1040 if (!mtd || section < 0)
1041 return -EINVAL;
1042
1043 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1044 return -ENOTSUPP;
1045
1046 return mtd->ooblayout->ecc(mtd, section, oobecc);
1047 }
1048 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1049
1050 /**
1051 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1052 * section
1053 * @mtd: MTD device structure
1054 * @section: Free section you are interested in. Depending on the layout
1055 * you may have all the free bytes stored in a single contiguous
1056 * section, or one section per ECC chunk plus an extra section
1057 * for the remaining bytes (or other funky layout).
1058 * @oobfree: OOB region struct filled with the appropriate free position
1059 * information
1060 *
1061 * This functions return free bytes position in the OOB area. I you want
1062 * to get all the free bytes information, then you should call
1063 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1064 *
1065 * Returns zero on success, a negative error code otherwise.
1066 */
1067 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1068 struct mtd_oob_region *oobfree)
1069 {
1070 memset(oobfree, 0, sizeof(*oobfree));
1071
1072 if (!mtd || section < 0)
1073 return -EINVAL;
1074
1075 if (!mtd->ooblayout || !mtd->ooblayout->free)
1076 return -ENOTSUPP;
1077
1078 return mtd->ooblayout->free(mtd, section, oobfree);
1079 }
1080 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1081
1082 /**
1083 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1084 * @mtd: mtd info structure
1085 * @byte: the byte we are searching for
1086 * @sectionp: pointer where the section id will be stored
1087 * @oobregion: used to retrieve the ECC position
1088 * @iter: iterator function. Should be either mtd_ooblayout_free or
1089 * mtd_ooblayout_ecc depending on the region type you're searching for
1090 *
1091 * This functions returns the section id and oobregion information of a
1092 * specific byte. For example, say you want to know where the 4th ECC byte is
1093 * stored, you'll use:
1094 *
1095 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1096 *
1097 * Returns zero on success, a negative error code otherwise.
1098 */
1099 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1100 int *sectionp, struct mtd_oob_region *oobregion,
1101 int (*iter)(struct mtd_info *,
1102 int section,
1103 struct mtd_oob_region *oobregion))
1104 {
1105 int pos = 0, ret, section = 0;
1106
1107 memset(oobregion, 0, sizeof(*oobregion));
1108
1109 while (1) {
1110 ret = iter(mtd, section, oobregion);
1111 if (ret)
1112 return ret;
1113
1114 if (pos + oobregion->length > byte)
1115 break;
1116
1117 pos += oobregion->length;
1118 section++;
1119 }
1120
1121 /*
1122 * Adjust region info to make it start at the beginning at the
1123 * 'start' ECC byte.
1124 */
1125 oobregion->offset += byte - pos;
1126 oobregion->length -= byte - pos;
1127 *sectionp = section;
1128
1129 return 0;
1130 }
1131
1132 /**
1133 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1134 * ECC byte
1135 * @mtd: mtd info structure
1136 * @eccbyte: the byte we are searching for
1137 * @sectionp: pointer where the section id will be stored
1138 * @oobregion: OOB region information
1139 *
1140 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1141 * byte.
1142 *
1143 * Returns zero on success, a negative error code otherwise.
1144 */
1145 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1146 int *section,
1147 struct mtd_oob_region *oobregion)
1148 {
1149 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1150 mtd_ooblayout_ecc);
1151 }
1152 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1153
1154 /**
1155 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1156 * @mtd: mtd info structure
1157 * @buf: destination buffer to store OOB bytes
1158 * @oobbuf: OOB buffer
1159 * @start: first byte to retrieve
1160 * @nbytes: number of bytes to retrieve
1161 * @iter: section iterator
1162 *
1163 * Extract bytes attached to a specific category (ECC or free)
1164 * from the OOB buffer and copy them into buf.
1165 *
1166 * Returns zero on success, a negative error code otherwise.
1167 */
1168 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1169 const u8 *oobbuf, int start, int nbytes,
1170 int (*iter)(struct mtd_info *,
1171 int section,
1172 struct mtd_oob_region *oobregion))
1173 {
1174 struct mtd_oob_region oobregion = { };
1175 int section = 0, ret;
1176
1177 ret = mtd_ooblayout_find_region(mtd, start, &section,
1178 &oobregion, iter);
1179
1180 while (!ret) {
1181 int cnt;
1182
1183 cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1184 memcpy(buf, oobbuf + oobregion.offset, cnt);
1185 buf += cnt;
1186 nbytes -= cnt;
1187
1188 if (!nbytes)
1189 break;
1190
1191 ret = iter(mtd, ++section, &oobregion);
1192 }
1193
1194 return ret;
1195 }
1196
1197 /**
1198 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1199 * @mtd: mtd info structure
1200 * @buf: source buffer to get OOB bytes from
1201 * @oobbuf: OOB buffer
1202 * @start: first OOB byte to set
1203 * @nbytes: number of OOB bytes to set
1204 * @iter: section iterator
1205 *
1206 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1207 * is selected by passing the appropriate iterator.
1208 *
1209 * Returns zero on success, a negative error code otherwise.
1210 */
1211 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1212 u8 *oobbuf, int start, int nbytes,
1213 int (*iter)(struct mtd_info *,
1214 int section,
1215 struct mtd_oob_region *oobregion))
1216 {
1217 struct mtd_oob_region oobregion = { };
1218 int section = 0, ret;
1219
1220 ret = mtd_ooblayout_find_region(mtd, start, &section,
1221 &oobregion, iter);
1222
1223 while (!ret) {
1224 int cnt;
1225
1226 cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1227 memcpy(oobbuf + oobregion.offset, buf, cnt);
1228 buf += cnt;
1229 nbytes -= cnt;
1230
1231 if (!nbytes)
1232 break;
1233
1234 ret = iter(mtd, ++section, &oobregion);
1235 }
1236
1237 return ret;
1238 }
1239
1240 /**
1241 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1242 * @mtd: mtd info structure
1243 * @iter: category iterator
1244 *
1245 * Count the number of bytes in a given category.
1246 *
1247 * Returns a positive value on success, a negative error code otherwise.
1248 */
1249 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1250 int (*iter)(struct mtd_info *,
1251 int section,
1252 struct mtd_oob_region *oobregion))
1253 {
1254 struct mtd_oob_region oobregion = { };
1255 int section = 0, ret, nbytes = 0;
1256
1257 while (1) {
1258 ret = iter(mtd, section++, &oobregion);
1259 if (ret) {
1260 if (ret == -ERANGE)
1261 ret = nbytes;
1262 break;
1263 }
1264
1265 nbytes += oobregion.length;
1266 }
1267
1268 return ret;
1269 }
1270
1271 /**
1272 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1273 * @mtd: mtd info structure
1274 * @eccbuf: destination buffer to store ECC bytes
1275 * @oobbuf: OOB buffer
1276 * @start: first ECC byte to retrieve
1277 * @nbytes: number of ECC bytes to retrieve
1278 *
1279 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1280 *
1281 * Returns zero on success, a negative error code otherwise.
1282 */
1283 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1284 const u8 *oobbuf, int start, int nbytes)
1285 {
1286 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1287 mtd_ooblayout_ecc);
1288 }
1289 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1290
1291 /**
1292 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1293 * @mtd: mtd info structure
1294 * @eccbuf: source buffer to get ECC bytes from
1295 * @oobbuf: OOB buffer
1296 * @start: first ECC byte to set
1297 * @nbytes: number of ECC bytes to set
1298 *
1299 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1300 *
1301 * Returns zero on success, a negative error code otherwise.
1302 */
1303 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1304 u8 *oobbuf, int start, int nbytes)
1305 {
1306 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1307 mtd_ooblayout_ecc);
1308 }
1309 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1310
1311 /**
1312 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1313 * @mtd: mtd info structure
1314 * @databuf: destination buffer to store ECC bytes
1315 * @oobbuf: OOB buffer
1316 * @start: first ECC byte to retrieve
1317 * @nbytes: number of ECC bytes to retrieve
1318 *
1319 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1320 *
1321 * Returns zero on success, a negative error code otherwise.
1322 */
1323 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1324 const u8 *oobbuf, int start, int nbytes)
1325 {
1326 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1327 mtd_ooblayout_free);
1328 }
1329 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1330
1331 /**
1332 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1333 * @mtd: mtd info structure
1334 * @eccbuf: source buffer to get data bytes from
1335 * @oobbuf: OOB buffer
1336 * @start: first ECC byte to set
1337 * @nbytes: number of ECC bytes to set
1338 *
1339 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1340 *
1341 * Returns zero on success, a negative error code otherwise.
1342 */
1343 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1344 u8 *oobbuf, int start, int nbytes)
1345 {
1346 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1347 mtd_ooblayout_free);
1348 }
1349 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1350
1351 /**
1352 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1353 * @mtd: mtd info structure
1354 *
1355 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1356 *
1357 * Returns zero on success, a negative error code otherwise.
1358 */
1359 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1360 {
1361 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1362 }
1363 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1364
1365 /**
1366 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1367 * @mtd: mtd info structure
1368 *
1369 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1370 *
1371 * Returns zero on success, a negative error code otherwise.
1372 */
1373 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1374 {
1375 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1376 }
1377 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1378
1379 /*
1380 * Method to access the protection register area, present in some flash
1381 * devices. The user data is one time programmable but the factory data is read
1382 * only.
1383 */
1384 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1385 struct otp_info *buf)
1386 {
1387 if (!mtd->_get_fact_prot_info)
1388 return -EOPNOTSUPP;
1389 if (!len)
1390 return 0;
1391 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1392 }
1393 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1394
1395 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1396 size_t *retlen, u_char *buf)
1397 {
1398 *retlen = 0;
1399 if (!mtd->_read_fact_prot_reg)
1400 return -EOPNOTSUPP;
1401 if (!len)
1402 return 0;
1403 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1404 }
1405 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1406
1407 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1408 struct otp_info *buf)
1409 {
1410 if (!mtd->_get_user_prot_info)
1411 return -EOPNOTSUPP;
1412 if (!len)
1413 return 0;
1414 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1417
1418 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1419 size_t *retlen, u_char *buf)
1420 {
1421 *retlen = 0;
1422 if (!mtd->_read_user_prot_reg)
1423 return -EOPNOTSUPP;
1424 if (!len)
1425 return 0;
1426 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1427 }
1428 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1429
1430 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1431 size_t *retlen, u_char *buf)
1432 {
1433 int ret;
1434
1435 *retlen = 0;
1436 if (!mtd->_write_user_prot_reg)
1437 return -EOPNOTSUPP;
1438 if (!len)
1439 return 0;
1440 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1441 if (ret)
1442 return ret;
1443
1444 /*
1445 * If no data could be written at all, we are out of memory and
1446 * must return -ENOSPC.
1447 */
1448 return (*retlen) ? 0 : -ENOSPC;
1449 }
1450 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1451
1452 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1453 {
1454 if (!mtd->_lock_user_prot_reg)
1455 return -EOPNOTSUPP;
1456 if (!len)
1457 return 0;
1458 return mtd->_lock_user_prot_reg(mtd, from, len);
1459 }
1460 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1461
1462 /* Chip-supported device locking */
1463 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1464 {
1465 if (!mtd->_lock)
1466 return -EOPNOTSUPP;
1467 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1468 return -EINVAL;
1469 if (!len)
1470 return 0;
1471 return mtd->_lock(mtd, ofs, len);
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_lock);
1474
1475 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1476 {
1477 if (!mtd->_unlock)
1478 return -EOPNOTSUPP;
1479 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1480 return -EINVAL;
1481 if (!len)
1482 return 0;
1483 return mtd->_unlock(mtd, ofs, len);
1484 }
1485 EXPORT_SYMBOL_GPL(mtd_unlock);
1486
1487 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1488 {
1489 if (!mtd->_is_locked)
1490 return -EOPNOTSUPP;
1491 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1492 return -EINVAL;
1493 if (!len)
1494 return 0;
1495 return mtd->_is_locked(mtd, ofs, len);
1496 }
1497 EXPORT_SYMBOL_GPL(mtd_is_locked);
1498
1499 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1500 {
1501 if (ofs < 0 || ofs >= mtd->size)
1502 return -EINVAL;
1503 if (!mtd->_block_isreserved)
1504 return 0;
1505 return mtd->_block_isreserved(mtd, ofs);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1508
1509 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1510 {
1511 if (ofs < 0 || ofs >= mtd->size)
1512 return -EINVAL;
1513 if (!mtd->_block_isbad)
1514 return 0;
1515 return mtd->_block_isbad(mtd, ofs);
1516 }
1517 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1518
1519 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1520 {
1521 if (!mtd->_block_markbad)
1522 return -EOPNOTSUPP;
1523 if (ofs < 0 || ofs >= mtd->size)
1524 return -EINVAL;
1525 if (!(mtd->flags & MTD_WRITEABLE))
1526 return -EROFS;
1527 return mtd->_block_markbad(mtd, ofs);
1528 }
1529 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1530
1531 /*
1532 * default_mtd_writev - the default writev method
1533 * @mtd: mtd device description object pointer
1534 * @vecs: the vectors to write
1535 * @count: count of vectors in @vecs
1536 * @to: the MTD device offset to write to
1537 * @retlen: on exit contains the count of bytes written to the MTD device.
1538 *
1539 * This function returns zero in case of success and a negative error code in
1540 * case of failure.
1541 */
1542 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1543 unsigned long count, loff_t to, size_t *retlen)
1544 {
1545 unsigned long i;
1546 size_t totlen = 0, thislen;
1547 int ret = 0;
1548
1549 for (i = 0; i < count; i++) {
1550 if (!vecs[i].iov_len)
1551 continue;
1552 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1553 vecs[i].iov_base);
1554 totlen += thislen;
1555 if (ret || thislen != vecs[i].iov_len)
1556 break;
1557 to += vecs[i].iov_len;
1558 }
1559 *retlen = totlen;
1560 return ret;
1561 }
1562
1563 /*
1564 * mtd_writev - the vector-based MTD write method
1565 * @mtd: mtd device description object pointer
1566 * @vecs: the vectors to write
1567 * @count: count of vectors in @vecs
1568 * @to: the MTD device offset to write to
1569 * @retlen: on exit contains the count of bytes written to the MTD device.
1570 *
1571 * This function returns zero in case of success and a negative error code in
1572 * case of failure.
1573 */
1574 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1575 unsigned long count, loff_t to, size_t *retlen)
1576 {
1577 *retlen = 0;
1578 if (!(mtd->flags & MTD_WRITEABLE))
1579 return -EROFS;
1580 if (!mtd->_writev)
1581 return default_mtd_writev(mtd, vecs, count, to, retlen);
1582 return mtd->_writev(mtd, vecs, count, to, retlen);
1583 }
1584 EXPORT_SYMBOL_GPL(mtd_writev);
1585
1586 /**
1587 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1588 * @mtd: mtd device description object pointer
1589 * @size: a pointer to the ideal or maximum size of the allocation, points
1590 * to the actual allocation size on success.
1591 *
1592 * This routine attempts to allocate a contiguous kernel buffer up to
1593 * the specified size, backing off the size of the request exponentially
1594 * until the request succeeds or until the allocation size falls below
1595 * the system page size. This attempts to make sure it does not adversely
1596 * impact system performance, so when allocating more than one page, we
1597 * ask the memory allocator to avoid re-trying, swapping, writing back
1598 * or performing I/O.
1599 *
1600 * Note, this function also makes sure that the allocated buffer is aligned to
1601 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1602 *
1603 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1604 * to handle smaller (i.e. degraded) buffer allocations under low- or
1605 * fragmented-memory situations where such reduced allocations, from a
1606 * requested ideal, are allowed.
1607 *
1608 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1609 */
1610 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1611 {
1612 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1613 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1614 void *kbuf;
1615
1616 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1617
1618 while (*size > min_alloc) {
1619 kbuf = kmalloc(*size, flags);
1620 if (kbuf)
1621 return kbuf;
1622
1623 *size >>= 1;
1624 *size = ALIGN(*size, mtd->writesize);
1625 }
1626
1627 /*
1628 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1629 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1630 */
1631 return kmalloc(*size, GFP_KERNEL);
1632 }
1633 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1634
1635 #ifdef CONFIG_PROC_FS
1636
1637 /*====================================================================*/
1638 /* Support for /proc/mtd */
1639
1640 static int mtd_proc_show(struct seq_file *m, void *v)
1641 {
1642 struct mtd_info *mtd;
1643
1644 seq_puts(m, "dev: size erasesize name\n");
1645 mutex_lock(&mtd_table_mutex);
1646 mtd_for_each_device(mtd) {
1647 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1648 mtd->index, (unsigned long long)mtd->size,
1649 mtd->erasesize, mtd->name);
1650 }
1651 mutex_unlock(&mtd_table_mutex);
1652 return 0;
1653 }
1654
1655 static int mtd_proc_open(struct inode *inode, struct file *file)
1656 {
1657 return single_open(file, mtd_proc_show, NULL);
1658 }
1659
1660 static const struct file_operations mtd_proc_ops = {
1661 .open = mtd_proc_open,
1662 .read = seq_read,
1663 .llseek = seq_lseek,
1664 .release = single_release,
1665 };
1666 #endif /* CONFIG_PROC_FS */
1667
1668 /*====================================================================*/
1669 /* Init code */
1670
1671 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1672 {
1673 int ret;
1674
1675 ret = bdi_init(bdi);
1676 if (!ret)
1677 ret = bdi_register(bdi, NULL, "%s", name);
1678
1679 if (ret)
1680 bdi_destroy(bdi);
1681
1682 return ret;
1683 }
1684
1685 static struct proc_dir_entry *proc_mtd;
1686
1687 static int __init init_mtd(void)
1688 {
1689 int ret;
1690
1691 ret = class_register(&mtd_class);
1692 if (ret)
1693 goto err_reg;
1694
1695 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1696 if (ret)
1697 goto err_bdi;
1698
1699 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1700
1701 ret = init_mtdchar();
1702 if (ret)
1703 goto out_procfs;
1704
1705 return 0;
1706
1707 out_procfs:
1708 if (proc_mtd)
1709 remove_proc_entry("mtd", NULL);
1710 err_bdi:
1711 class_unregister(&mtd_class);
1712 err_reg:
1713 pr_err("Error registering mtd class or bdi: %d\n", ret);
1714 return ret;
1715 }
1716
1717 static void __exit cleanup_mtd(void)
1718 {
1719 cleanup_mtdchar();
1720 if (proc_mtd)
1721 remove_proc_entry("mtd", NULL);
1722 class_unregister(&mtd_class);
1723 bdi_destroy(&mtd_bdi);
1724 idr_destroy(&mtd_idr);
1725 }
1726
1727 module_init(init_mtd);
1728 module_exit(cleanup_mtd);
1729
1730 MODULE_LICENSE("GPL");
1731 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1732 MODULE_DESCRIPTION("Core MTD registration and access routines");
This page took 0.063129 seconds and 5 git commands to generate.